Science.gov

Sample records for meiotic nuclear reorganization

  1. Light signaling controls nuclear architecture reorganization during seedling establishment.

    PubMed

    Bourbousse, Clara; Mestiri, Imen; Zabulon, Gerald; Bourge, Mickaël; Formiggini, Fabio; Koini, Maria A; Brown, Spencer C; Fransz, Paul; Bowler, Chris; Barneche, Fredy

    2015-05-26

    The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis.

  2. Light signaling controls nuclear architecture reorganization during seedling establishment

    PubMed Central

    Bourbousse, Clara; Mestiri, Imen; Zabulon, Gerald; Bourge, Mickaël; Formiggini, Fabio; Koini, Maria A.; Brown, Spencer C.; Fransz, Paul; Bowler, Chris; Barneche, Fredy

    2015-01-01

    The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. PMID:25964332

  3. The maize (Zea mays) desynaptic (dy) mutation defines a pathway for meiotic chromosome segregation, linking nuclear morphology, telomere distribution and synapsis.

    PubMed

    Murphy, Shaun P; Bass, Hank W

    2012-08-01

    Meiosis involves a dramatic reorganization of the genetic material, along with changes in the architecture of the nucleoplasm and cytoplasm. In the opisthokonts, nuclear envelope and meiotic chromosome behavior are coordinated by forces generated in the cytoplasm and transferred to the nucleus by the nuclear-envelope protein linkers SUN and KASH. During meiotic prophase I, the telomere bouquet arrangement has roles in interhomolog recognition, pairing, synapsis, interlock resolution and homologous chromosome recombination. The maize desynaptic (dy) mutant is defective in homologous chromosome synapsis, recombination, telomere-nuclear envelope interactions and chromosome segregation. A detailed three-dimensional cytological analysis of dy revealed telomere misplacement during the bouquet stage, synaptic irregularities, nuclear envelope distortion and chromosome bridges at anaphase I. Using linkage and B-A translocation mapping, we placed dy on the long arm of chromosome 3, genetic bin 3.06. SSR marker analysis narrowed the mapping interval to 9 cM. Candidate genes in this region include a PM3-type SUN domain protein, ZmSUN3. No obvious genetic lesions were found in the ZmSUN3 allele of dy, but a conspicuous splice variant, ZmSUN3-sv1, was observed in mRNA from dy. The variant message is predicted to result in the synthesis of a truncated ZmSUN3 protein lacking two C-terminal transmembrane domains. Other potential candidate genes relevant to the documented phenotypes were also considered. In summary, this study reveals that dy causes disruption of a central meiotic pathway connecting nuclear envelope integrity to telomere localization and synapsis during meiotic prophase.

  4. Nuclear Localization of PRDM9 and Its Role in Meiotic Chromatin Modifications and Homologous Synapsis

    PubMed Central

    Sun, Fengyun; Fujiwara, Yasuhiro; Reinholdt, Laura G.; Hu, Jianjun; Saxl, Ruth L.; Baker, Christopher L.; Petkov, Petko M.; Paigen, Kenneth; Handel, Mary Ann

    2015-01-01

    Developmental progress of germ cells through meiotic phases is closely tied to ongoing meiotic recombination. In mammals, recombination preferentially occurs in genomic regions known as hotspots; the protein that activates these hotspots is PRDM9, containing a genetically variable zinc-finger domain and a PR-SET domain with histone H3K4 trimethyltransferase activity. PRDM9 is required for fertility in mice, but little is known about its localization and developmental dynamics. Application of spermatogenic stage-specific markers demonstrates that PRDM9 accumulates in male germ-cell nuclei at pre-leptonema to early leptonema, but is no longer detectable in nuclei by late zygonema. By the pachytene stage, PRDM9-dependent histone H3K4 trimethyl marks on hotspots also disappear. PRDM9 localizes to nuclei concurrently with the deposition of meiotic cohesin complexes, but is not required for incorporation of cohesin complex proteins into chromosomal axial elements, or accumulation of normal numbers of RAD51 foci on meiotic chromatin by late zygonema. Germ cells lacking PRDM9 exhibit inefficient homology recognition and synapsis, with aberrant repair of meiotic DNA double-strand breaks and transcriptional abnormalities characteristic of meiotic silencing of unsynapsed chromatin. Together, these results on the developmental time course for nuclear localization of PRDM9 establish its direct window of function, and demonstrate the independence of chromosome axial element formation from the concurrent PRDM9-mediated activation of recombination hotspots. PMID:25894966

  5. Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis.

    PubMed

    Sun, Fengyun; Fujiwara, Yasuhiro; Reinholdt, Laura G; Hu, Jianjun; Saxl, Ruth L; Baker, Christopher L; Petkov, Petko M; Paigen, Kenneth; Handel, Mary Ann

    2015-09-01

    Developmental progress of germ cells through meiotic phases is closely tied to ongoing meiotic recombination. In mammals, recombination preferentially occurs in genomic regions known as hotspots; the protein that activates these hotspots is PRDM9, containing a genetically variable zinc finger (ZNF) domain and a PR-SET domain with histone H3K4 trimethyltransferase activity. PRDM9 is required for fertility in mice, but little is known about its localization and developmental dynamics. Application of spermatogenic stage-specific markers demonstrates that PRDM9 accumulates in male germ cell nuclei at pre-leptonema to early leptonema but is no longer detectable in nuclei by late zygonema. By the pachytene stage, PRDM9-dependent histone H3K4 trimethyl marks on hotspots also disappear. PRDM9 localizes to nuclei concurrently with the deposition of meiotic cohesin complexes, but is not required for incorporation of cohesin complex proteins into chromosomal axial elements, or accumulation of normal numbers of RAD51 foci on meiotic chromatin by late zygonema. Germ cells lacking PRDM9 exhibit inefficient homology recognition and synapsis, with aberrant repair of meiotic DNA double-strand breaks and transcriptional abnormalities characteristic of meiotic silencing of unsynapsed chromatin. Together, these results on the developmental time course for nuclear localization of PRDM9 establish its direct window of function and demonstrate the independence of chromosome axial element formation from the concurrent PRDM9-mediated activation of recombination hotspots.

  6. Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex

    PubMed Central

    Egan, Emily D.; Braun, Craig R.; Gygi, Steven P.; Moazed, Danesh

    2014-01-01

    RNA is a central component of gene-silencing pathways that regulate diverse cellular processes. In the fission yeast Schizosaccharomyces pombe, an RNA-based mechanism represses meiotic gene expression during vegetative growth. This pathway depends on the zinc finger protein Red1, which is required to degrade meiotic mRNAs as well as to target histone H3 lysine 9 (H3K9) methylation, a repressive chromatin mark, to a subset of meiotic genes. However, the mechanism of Red1 function is unknown. Here we use affinity purification and mass spectrometry to identify a Red1-containing nuclear RNA silencing (NURS) complex. In addition to Red1, this complex includes the Mtl1, Red5, Ars2, Rmn1, and Iss10 proteins and associates with several other complexes that are involved in either signaling or mediating RNA silencing. By analyzing the effects of gene knockouts and inducible knockdown alleles, we show that NURS subunits regulate RNA degradation and H3K9 methylation at meiotic genes. We also identify roles for individual NURS subunits in interactions with Mmi1, an RNA-binding protein that marks meiotic RNAs for destruction, and the nuclear exosome RNA degradation complex. Finally, we show that the levels of H3K9 methylation at meiotic genes are not sufficient to restrict RNA polymerase II access or repress gene expression during vegetative growth. Our results demonstrate that Red1 partners with other proteins to silence meiotic gene expression at the post-transcriptional level. Conservation of a NURS-like complex in human cells suggests that this pathway plays an ancient and fundamental role in RNA silencing. PMID:24713849

  7. Global Reorganization of the Nuclear Landscape in Senescent Cells

    PubMed Central

    Chandra, Tamir; Ewels, Philip Andrew; Schoenfelder, Stefan; Furlan-Magaril, Mayra; Wingett, Steven William; Kirschner, Kristina; Thuret, Jean-Yves; Andrews, Simon; Fraser, Peter; Reik, Wolf

    2015-01-01

    Summary Cellular senescence has been implicated in tumor suppression, development, and aging and is accompanied by large-scale chromatin rearrangements, forming senescence-associated heterochromatic foci (SAHF). However, how the chromatin is reorganized during SAHF formation is poorly understood. Furthermore, heterochromatin formation in senescence appears to contrast with loss of heterochromatin in Hutchinson-Gilford progeria. We mapped architectural changes in genome organization in cellular senescence using Hi-C. Unexpectedly, we find a dramatic sequence- and lamin-dependent loss of local interactions in heterochromatin. This change in local connectivity resolves the paradox of opposing chromatin changes in senescence and progeria. In addition, we observe a senescence-specific spatial clustering of heterochromatic regions, suggesting a unique second step required for SAHF formation. Comparison of embryonic stem cells (ESCs), somatic cells, and senescent cells shows a unidirectional loss in local chromatin connectivity, suggesting that senescence is an endpoint of the continuous nuclear remodelling process during differentiation. PMID:25640177

  8. DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena

    PubMed Central

    Mochizuki, Kazufumi; Novatchkova, Maria; Loidl, Josef

    2011-01-01

    Summary During meiosis, the micronuclei of the ciliated protist Tetrahymena thermophila elongate dramatically. Within these elongated nuclei, chromosomes are arranged in a bouquet-like fashion and homologous pairing and recombination takes place. We studied meiotic chromosome behavior in Tetrahymena in the absence of two genes, SPO11 and a homolog of HOP2 (HOP2A), which have conserved roles in the formation of meiotic DNA double-strand breaks (DSBs) and their repair, respectively. Single-knockout mutants for each gene display only a moderate reduction in chromosome pairing, but show a complete failure to form chiasmata and exhibit chromosome missegregation. The lack of SPO11 prevents the elongation of meiotic nuclei, but it is restored by the artificial induction of DSBs. In the hop2AΔ mutant, the transient appearance of γ-H2A.X and Rad51p signals indicates the formation and efficient repair of DSBs; but this repair does not occur by interhomolog crossing over. In the absence of HOP2A, the nuclei are elongated, meaning that DSBs but not their conversion to crossovers are required for the development of this meiosis-specific morphology. In addition, by in silico homology searches, we compiled a list of likely Tetrahymena meiotic proteins as the basis for further studies of the unusual synaptonemal complex-less meiosis in this phylogenetically remote model organism. PMID:18522989

  9. Brca2-Pds5 complexes mobilize persistent meiotic recombination sites to the nuclear envelope.

    PubMed

    Kusch, Thomas

    2015-02-15

    Homologous recombination is required for reciprocal exchange between homologous chromosome arms during meiosis. Only select meiotic recombination events become chromosomal crossovers; the majority of recombination outcomes are noncrossovers. Growing evidence suggests that crossovers are repaired after noncrossovers. Here, I report that persisting recombination sites are mobilized to the nuclear envelope of Drosophila pro-oocytes during mid-pachytene. Their number correlates with the average crossover rate per meiosis. Proteomic and interaction studies reveal that the recombination mediator Brca2 associates with lamin and the cohesion factor Pds5 to secure persistent recombination sites at the nuclear envelope. In Rad51(-/-) females, all persistent DNA breaks are directed to the nuclear envelope. By contrast, a reduction of Pds5 or Brca2 levels abolishes the movement and has a negative impact on crossover rates. The data suggest that persistent meiotic DNA double-strand breaks might correspond to crossovers, which are mobilized to the nuclear envelope for their repair. The identification of Brca2-Pds5 complexes as key mediators of this process provides a first mechanistic explanation for the contribution of lamins and cohesins to meiotic recombination.

  10. The fission yeast meiotic checkpoint kinase Mek1 regulates nuclear localization of Cdc25 by phosphorylation.

    PubMed

    Pérez-Hidalgo, Livia; Moreno, Sergio; San-Segundo, Pedro A

    2008-12-01

    In eukaryotic cells, fidelity in transmission of genetic information during cell division is ensured by the action of cell cycle checkpoints. Checkpoints are surveillance mechanisms that arrest or delay cell cycle progression when critical cellular processes are defective or when the genome is damaged. During meiosis, the so-called meiotic recombination checkpoint blocks entry into meiosis I until recombination has been completed, thus avoiding aberrant chromosome segregation and the formation of aneuploid gametes. One of the key components of the meiotic recombination checkpoint is the meiosis-specific Mek1 kinase, which belongs to the family of Rad53/Cds1/Chk2 checkpoint kinases containing forkhead-associated domains. In fission yeast, several lines of evidence suggest that Mek1 targets the critical cell cycle regulator Cdc25 to delay meiotic cell cycle progression. Here, we investigate in more detail the molecular mechanism of action of the fission yeast Mek1 protein. We demonstrate that Mek1 acts independently of Cds1 to phosphorylate Cdc25, and this phosphorylation is required to trigger cell cycle arrest. Using ectopic overexpression of mek1(+) as a tool to induce in vivo activation of Mek1, we find that Mek1 promotes cytoplasmic accumulation of Cdc25 and results in prolonged phosphorylation of Cdc2 at tyrosine 15. We propose that at least one of the mechanisms contributing to the cell cycle delay when the meiotic recombination checkpoint is activated in fission yeast is the nuclear exclusion of the Cdc25 phosphatase by Mek1-dependent phosphorylation.

  11. [Meiotic abnormalities as expression of nuclear-cytoplasmic incompatibility in crosses of Pisum sativum subspecies].

    PubMed

    Bogdanova, V S; Galieva, E R

    2009-05-01

    Meiosis in anthers and mitosis in somatic cells were studied in reciprocal F1 hybrids of the accession VIR320, which belonged to wild Pisum sativum ssp. elatius (Bieb.) Schmal., and the laboratory line Sprint-1. When VIR320 was used as a maternal form, the hybrids displayed nuclear-cytoplasmic conflict, which caused chlorophyll defects and meiotic abnormalities. One or two chromosomes lagged in the equatorial region during chromosome segregation to the poles, distorting cytokinesis and yielding abnormal microspores. Chlorophyll defects were not observed, and meiotic abnormalities were far less frequent in reciprocal hybrids and in the case of an abnormal paternal inheritance of plastids from Sprint-1. Mitosis lacked overt abnormalities in all of the hybrids.

  12. Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast.

    PubMed

    St-André, Olivier; Lemieux, Caroline; Perreault, Audrey; Lackner, Daniel H; Bähler, Jürg; Bachand, François

    2010-09-03

    Meiosis is a cellular differentiation process in which hundreds of genes are temporally induced. Because the expression of meiotic genes during mitosis is detrimental to proliferation, meiotic genes must be negatively regulated in the mitotic cell cycle. Yet, little is known about mechanisms used by mitotic cells to repress meiosis-specific genes. Here we show that the poly(A)-binding protein Pab2, the fission yeast homolog of mammalian PABPN1, controls the expression of several meiotic transcripts during mitotic division. Our results from chromatin immunoprecipitation and promoter-swapping experiments indicate that Pab2 controls meiotic genes post-transcriptionally. Consistently, we show that the nuclear exosome complex cooperates with Pab2 in the negative regulation of meiotic genes. We also found that Pab2 plays a role in the RNA decay pathway orchestrated by Mmi1, a previously described factor that functions in the post-transcriptional elimination of meiotic transcripts. Our results support a model in which Mmi1 selectively targets meiotic transcripts for degradation via Pab2 and the exosome. Our findings have therefore uncovered a mode of gene regulation whereby a poly(A)-binding protein promotes RNA degradation in the nucleus to prevent untimely expression.

  13. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-04-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.

  14. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    PubMed Central

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-01-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by un-attached chromosomes, but that randomly-directed active forces applied to the telomeres speeds up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions. PMID:27046097

  15. Nuclear substructure reorganization during late stageerythropoiesis is selective and does not involve caspase cleavage ofmajor nuclear substructural proteins

    SciTech Connect

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, MarkJ.; Mohandas, Narla; Chasis, Joel Anne

    2005-04-06

    Enucleation, a rare feature of mammalian differentiation, occurs in three cell types: erythroblasts, lens epithelium and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing BFU-E differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA, and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.

  16. The Nuclear Cap-Binding Complex Mediates Meiotic Silencing by Unpaired DNA.

    PubMed

    Decker, Logan M; Xiao, Hua; Boone, Erin C; Vierling, Michael M; Shanker, Benjamin S; Kingston, Shanika L; Boone, Shannon F; Haynes, Jackson B; Shiu, Patrick K T

    2017-02-07

    In the filamentous fungus Neurospora crassa, cross walls between individual cells are normally incomplete, making the entire fungal network vulnerable to attack by viruses and selfish DNAs. Accordingly, several genome surveillance mechanisms are maintained to help the fungus to combat these repetitive elements. One of these defense mechanisms is known as meiotic silencing by unpaired DNA (MSUD), which is an RNA silencing system that identifies and silences unpaired genes during meiosis. Utilizing common RNAi proteins such as Dicer and Argonaute, MSUD targets mRNAs homologous to the unpaired sequence to achieve silencing. In this study, we have identified another silencing component known as the cap-binding complex (CBC). Made up of CBP20 and CBP80 (cap-binding proteins 20 and 80), CBC associates with the 5' cap of nascent mRNA transcripts in eukaryotes. The loss of CBC leads to a deficiency in MSUD activity, suggesting its role in mediating silencing. As confirmed in this study, CBC is predominantly nuclear, although it is known to travel in and out of the nucleus to facilitate RNA transport. Similar to animals but unlike plants, CBP20's robust nuclear re-entry is shown to be dependent on CBP80. CBC interacts with a component (Argonaute) of the perinuclear meiotic silencing complex (MSC), directly linking the two cellular factors.

  17. The Nuclear Cap-Binding Complex Mediates Meiotic Silencing by Unpaired DNA

    PubMed Central

    Decker, Logan M.; Xiao, Hua; Boone, Erin C.; Vierling, Michael M.; Shanker, Benjamin S.; Kingston, Shanika L.; Boone, Shannon F.; Haynes, Jackson B.; Shiu, Patrick K.T.

    2017-01-01

    In the filamentous fungus Neurospora crassa, cross walls between individual cells are normally incomplete, making the entire fungal network vulnerable to attack by viruses and selfish DNAs. Accordingly, several genome surveillance mechanisms are maintained to help the fungus combat these repetitive elements. One of these defense mechanisms is called meiotic silencing by unpaired DNA (MSUD), which identifies and silences unpaired genes during meiosis. Utilizing common RNA interference (RNAi) proteins, such as Dicer and Argonaute, MSUD targets mRNAs homologous to the unpaired sequence to achieve silencing. In this study, we have identified an additional silencing component, namely the cap-binding complex (CBC). Made up of cap-binding proteins CBP20 and CBP80, CBC associates with the 5′ cap of mRNA transcripts in eukaryotes. The loss of CBC leads to a deficiency in MSUD activity, suggesting its role in mediating silencing. As confirmed in this study, CBC is predominantly nuclear, although it is known to travel in and out of the nucleus to facilitate RNA transport. As seen in animals but not in plants, CBP20’s robust nuclear import depends on CBP80 in Neurospora. CBC interacts with a component (Argonaute) of the perinuclear meiotic silencing complex (MSC), directly linking the two cellular factors. PMID:28179391

  18. Sperm nuclear expansion and meiotic maturation in normal and gynogenetic eggs of the scallop, Chlamys farreri

    NASA Astrophysics Data System (ADS)

    Pan, Ying; Li, Qi; Yu, Ruihai; Wang, Rucai

    2008-02-01

    Sperm nuclear expansion, meiosis and the association of the male and female pronuclei leading to the four-cell stage in normal Chlamys farreri eggs were observed under a fluorescence microscope. The effects of ultraviolet (UV) irradiation on the fertilizing sperm were also examined. Both normal and UV-irradiated sperm nuclei enlarged at three distinct phases (phase A, metaphase I; phase B, polar body formation; and phase C, female pronuclear development and expansion) that were temporally correlated with meiotic process of the maternal chromosomes. Sperm nuclei underwent a rapid, initial enlargement during phase A, but condensed slightly during phase B, then re-enlarged during phase C. The effects of UV irradiation were not apparent during transformation of the sperm nucleus into a male pronucleus, and there was not any apparent effect on meiotic maturation and development of the female pronucleus. However, the rate of expansion of the UV-irradiated sperm nuclei and the size of male pronuclei were reduced apparently. Unlike the female pronucleus, the male pronucleus derived from sperm genome inactivated by UV irradiation did not form chromosomes, but became a dense chromatin body (DCB). At mitotic anaphase, DCB did not participate in the karyokinesis of the first cleavage as evidenced by chromosomal nondisjunction, demonstrating the effectiveness of using UV irradiation to induce gynogenetic scallop embryos.

  19. Rhn1, a nuclear protein, is required for suppression of meiotic mRNAs in mitotically dividing fission yeast.

    PubMed

    Sugiyama, Tomoyasu; Sugioka-Sugiyama, Rie; Hada, Kazumasa; Niwa, Ryusuke

    2012-01-01

    In the fission yeast Schizosaccharomyces pombe, many meiotic mRNAs are transcribed during mitosis and meiosis and selectively eliminated in mitotic cells. However, this pathway for mRNA decay, called the determinant of selective removal (DSR)-Mmi1 system, targets only some of the numerous meiotic mRNAs that are transcribed in mitotic cells. Here we describe Rhn1, a nuclear protein involved in meiotic mRNA suppression in vegetative fission yeast. Rhn1 is homologous to budding yeast Rtt103 and localizes to one or a few discrete nuclear dots in growing vegetative cells. Rhn1 colocalizes with a pre-mRNA 3'-end processing factor, Pcf11, and with the 5'-3' exoribonuclease, Dhp1; moreover, Rhn1 coimmunoprecipitates with Pcf11. Loss of rhn1 results in elevated sensitivity to high temperature, to thiabendazole (TBZ), and to UV. Interestingly, meiotic mRNAs--including moa1(+), mcp5(+), and mug96(+)--accumulate in mitotic rhn1Δ cells. Accumulation of meiotic mRNAs also occurs in strains lacking Lsk1, a kinase that phosphorylates serine 2 (Ser-2) in the C-terminal domain (CTD) of RNA polymerase II (Pol II), and in strains lacking Sen1, an ATP-dependent 5'-3' RNA/DNA helicase: notably, both Lsk1 and Sen1 have been implicated in termination of Pol II-dependent transcription. Furthermore, RNAi knockdown of cids-2, a Caenorhabditis elegans ortholog of rhn1(+), leads to elevated expression of a germline-specific gene, pgl-1, in somatic cells. These results indicate that Rhn1 contributes to the suppression of meiotic mRNAs in vegetative fission yeast and that the mechanism by which Rhn1 downregulates germline-specific transcripts may be conserved in unicellular and multicellular organisms.

  20. An array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence

    PubMed Central

    Laporte, Damien; Courtout, Fabien; Salin, Bénédicte; Ceschin, Johanna

    2013-01-01

    The microtubule cytoskeleton is a highly dynamic network. In dividing cells, its complex architecture not only influences cell shape and movement but is also crucial for chromosome segregation. Curiously, nothing is known about the behavior of this cellular machinery in quiescent cells. Here we show that, upon quiescence entry, the Saccharomyces cerevisiae microtubule cytoskeleton is drastically remodeled. Indeed, while cytoplasmic microtubules vanish, the spindle pole body (SPB) assembles a long and stable monopolar array of nuclear microtubules that spans the entire nucleus. Consequently, the nucleolus is displaced. Kinetochores remain attached to microtubule tips but lose SPB clustering and distribute along the microtubule array, leading to a large reorganization of the nucleus. When cells exit quiescence, the nuclear microtubule array slowly depolymerizes and, by pulling attached centromeres back to the SPB, allows the recovery of a typical Rabl-like configuration. Finally, mutants that do not assemble a nuclear array of microtubules are impaired for both quiescence survival and exit. PMID:24247429

  1. Meiotic nuclear movements in fission yeast are regulated by the transcription factor Mei4 downstream of a Cds1-dependent replication checkpoint pathway.

    PubMed

    Ruan, Kun; Yamamoto, Takaharu G; Asakawa, Haruhiko; Chikashige, Yuji; Masukata, Hisao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2015-03-01

    In meiosis, the fission yeast nucleus displays an elongated morphology, moving back and forth within the cell; these nuclear movements continue for approximately 2 h before meiotic nuclear divisions. Meiotic DNA replication occurs in an early phase of the nuclear movements and is followed by meiotic prophase. Here we report that in mutants deficient in meiotic DNA replication, the duration of nuclear movements is strikingly prolonged to four to 5 h. We found that this prolongation was caused by the Cds1-dependent replication checkpoint, which represses expression of the mei4(+) gene encoding a meiosis-specific transcription factor. In the absence of Mei4, nuclear movements persisted for more than 8 h. In contrast, overproduction of Mei4 accelerated termination of nuclear movements to approximately 30 min. These results show that Mei4 is involved in the termination of nuclear movements and that Mei4-mediated regulatory pathways link a DNA replication checkpoint to the termination of nuclear movements.

  2. A Link between Meiotic Prophase Progression and CrossoverControl

    SciTech Connect

    Carlton, Peter M.; Farruggio, Alfonso P.; Dernburg, Abby F.

    2005-07-06

    During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.

  3. Essential role of the Cdk2 activator RingoA in meiotic telomere tethering to the nuclear envelope

    PubMed Central

    Mikolcevic, Petra; Isoda, Michitaka; Shibuya, Hiroki; del Barco Barrantes, Ivan; Igea, Ana; Suja, José A.; Shackleton, Sue; Watanabe, Yoshinori; Nebreda, Angel R.

    2016-01-01

    Cyclin-dependent kinases (CDKs) play key roles in cell cycle regulation. Genetic analysis in mice has revealed an essential role for Cdk2 in meiosis, which renders Cdk2 knockout (KO) mice sterile. Here we show that mice deficient in RingoA, an atypical activator of Cdk1 and Cdk2 that has no amino acid sequence homology to cyclins, are sterile and display meiotic defects virtually identical to those observed in Cdk2 KO mice including non-homologous chromosome pairing, unrepaired double-strand breaks, undetectable sex-body and pachytene arrest. Interestingly, RingoA is required for Cdk2 targeting to telomeres and RingoA KO spermatocytes display severely affected telomere tethering as well as impaired distribution of Sun1, a protein essential for the attachment of telomeres to the nuclear envelope. Our results identify RingoA as an important activator of Cdk2 at meiotic telomeres, and provide genetic evidence for a physiological function of mammalian Cdk2 that is not dependent on cyclins. PMID:27025256

  4. Functional Analysis of Adenovirus Protein IX Identifies Domains Involved in Capsid Stability, Transcriptional Activity, and Nuclear Reorganization

    PubMed Central

    Rosa-Calatrava, Manuel; Grave, Linda; Puvion-Dutilleul, Francine; Chatton, Bruno; Kedinger, Claude

    2001-01-01

    The product of adenovirus (Ad) type 5 gene IX (pIX) is known to actively participate in the stability of the viral icosahedron, acting as a capsid cement. We have previously demonstrated that pIX is also a transcriptional activator of several viral and cellular TATA-containing promoters, likely contributing to the transactivation of the Ad expression program. By extensive mutagenesis, we have now delineated the functional domains involved in each of the pIX properties: residues 22 to 26 of the highly conserved N-terminal domain are crucial for incorporation of the protein into the virion; specific residues of the C-terminal leucine repeat are responsible for pIX interactions with itself and possibly other proteins, a property that is critical for pIX transcriptional activity. We also show that pIX takes part in the virus-induced nuclear reorganization of late infected cells: the protein induces, most likely through self-assembly, the formation of specific nuclear structures which appear as dispersed nuclear globules by immunofluorescence staining and as clear amorphous spherical inclusions by electron microscopy. The integrity of the leucine repeat appears to be essential for the formation and nuclear retention of these inclusions. Together, our results demonstrate the multifunctional nature of pIX and provide new insights into Ad biology. PMID:11435594

  5. Pre-meiotic bands and novel meiotic spindle ontogeny in quadrilobed sporocytes of leafy liverworts (Jungermannidae, Bryophyta).

    PubMed

    Brown, Roy C; Lemmon, Betty E

    2009-10-01

    Indirect immunofluorescence and confocal microscopy were used to study the nucleation and organization of microtubules during meiosis in two species of leafy liverworts, Cephalozia macrostachya and Telaranea longifolia. This is the first such study of sporogenesis in the largest group of liverworts important as living representatives of some of the first land plant lineages. These studies show that cytoplasmic quadrilobing of pre-meiotic sporocytes into future spore domains is initiated by girdling bands of gamma-tubulin and microtubules similar to those recently described in lobed sporocytes of simple thalloid liverworts. However, spindle ontogeny is not like other liverworts studied and is, in fact, probably unique among bryophytes. Following the establishment of quadrilobing, numerous microtubules diverge from the bands and extend into the enlarging lobes. The bands disappear and are replaced by microtubules that arise from gamma-tubulin associated with the nuclear envelope. This microtubule system extends into the four lobes and is gradually reorganized into a quadripolar spindle, each half spindle consisting of a pair of poles straddling opposite cleavage furrows. Chromosomes move on this spindle to the polar cleavage furrows. The reniform daughter nuclei, each curved over a cleavage furrow, immediately enter second meiotic division with spindles now terminating in the lobes. Phragmoplasts that develop in the interzones among the haploid tetrad nuclei guide deposition of cell plates that join with the pre-meiotic furrows resulting in cleavage of the tetrad of spores. These observations document a significant variation in the innovative process of sporogenesis evolved in early land plants.

  6. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  7. Slk1 is a meiosis-specific Sid2-related kinase that coordinates meiotic nuclear division with growth of the forespore membrane.

    PubMed

    Pérez-Hidalgo, Livia; Rozalén, Ana Elisa; Martín-Castellanos, Cristina; Moreno, Sergio

    2008-05-01

    Septation and spore formation in fission yeast are compartmentalization processes that occur during the mitotic and meiotic cycles, and that are regulated by the septation initiation network (SIN). In mitosis, activation of Sid2 protein kinase transduces the signal from the spindle pole body (SPB) to the middle of the cell in order to promote the constriction of the actomyosin ring. Concomitant with ring contraction, membrane vesicles are added at the cleavage site to enable the necessary expansion of the cell membrane. In meiosis, the forespore membrane is synthesized from the outer layers of the SPB by vesicle fusion. This membrane grows and eventually engulfs each of the four haploid nuclei. The molecular mechanism that connects the SIN pathway with synthesis of the forespore membrane is poorly understood. Here, we describe a meiosis-specific Sid2-like kinase (Slk1), which is important for the coordination of the growth of the forespore membrane with the meiotic nuclear divisions. Slk1 and Sid2 are required for forespore membrane biosynthesis and seem to be the final output of the SIN pathway in meiosis.

  8. Reorganization of actin filaments by ADF/cofilin is involved in formation of microtubule structures during Xenopus oocyte maturation

    PubMed Central

    Yamagishi, Yuka; Abe, Hiroshi

    2015-01-01

    We examined the reorganization of actin filaments and microtubules during Xenopus oocyte maturation. Surrounding the germinal vesicle (GV) in immature oocytes, the cytoplasmic actin filaments reorganized to accumulate beneath the vegetal side of the GV, where the microtubule-organizing center and transient microtubule array (MTOC-TMA) assembled, just before GV breakdown (GVBD). Immediately after GVBD, both Xenopus ADF/cofilin (XAC) and its phosphatase Slingshot (XSSH) accumulated into the nuclei and intranuclear actin filaments disassembled from the vegetal side with the shrinkage of the GV. As the MTOC-TMA developed well, cytoplasmic actin filaments were retained at the MTOC-TMA base region. Suppression of XAC dephosphorylation by anti-XSSH antibody injection inhibited both actin filament reorganization and proper formation and localization of both the MTOC-TMA and meiotic spindles. Stabilization of actin filaments by phalloidin also inhibited formation of the MTOC-TMA and disassembly of intranuclear actin filaments without affecting nuclear shrinkage. Nocodazole also caused the MTOC-TMA and the cytoplasmic actin filaments at its base region to disappear, which further impeded disassembly of intranuclear actin filaments from the vegetal side. XAC appears to reorganize cytoplasmic actin filaments required for precise assembly of the MTOC and, together with the MTOC-TMA, regulate the intranuclear actin filament disassembly essential for meiotic spindle formation. PMID:26424802

  9. Chromosome choreography: the meiotic ballet.

    PubMed

    Page, Scott L; Hawley, R Scott

    2003-08-08

    The separation of homologous chromosomes during meiosis in eukaryotes is the physical basis of Mendelian inheritance. The core of the meiotic process is a specialized nuclear division (meiosis I) in which homologs pair with each other, recombine, and then segregate from each other. The processes of chromosome alignment and pairing allow for homolog recognition. Reciprocal meiotic recombination ensures meiotic chromosome segregation by converting sister chromatid cohesion into mechanisms that hold homologous chromosomes together. Finally, the ability of sister kinetochores to orient to a single pole at metaphase I allows the separation of homologs to two different daughter cells. Failures to properly accomplish this elegant chromosome dance result in aneuploidy, a major cause of miscarriage and birth defects in human beings.

  10. The 14-kDa Dynein Light Chain-Family Protein Dlc1 Is Required for Regular Oscillatory Nuclear Movement and Efficient Recombination during Meiotic Prophase in Fission Yeast

    PubMed Central

    Miki, Futaba; Okazaki, Koei; Shimanuki, Mizuki; Yamamoto, Ayumu; Hiraoka, Yasushi; Niwa, Osami

    2002-01-01

    A Schizosaccharomyces pombe spindle pole body (SPB) protein interacts in a two-hybrid system with Dlc1, which belongs to the 14-kDa Tctex-1 dynein light chain family. Green fluorescent protein-tagged Dlc1 accumulated at the SPB throughout the life cycle. During meiotic prophase, Dlc1 was present along astral microtubules and microtubule-anchoring sites on the cell cortex, reminiscent of the cytoplasmic dynein heavy chain Dhc1. In a dlc1-null mutant, Dhc1-dependent nuclear movement in meiotic prophase became irregular in its duration and direction. Dhc1 protein was displaced from the cortex anchors and the formation of microtubule bundle(s) that guide nuclear movement was impaired in the mutant. Meiotic recombination in the dlc1 mutant was reduced to levels similar to that in the dhc1 mutant. Dlc1 and Dhc1 also have roles in karyogamy and rDNA relocation during the sexual phase. Strains mutated in both the dlc1 and dhc1 loci displayed more severe defects in recombination, karyogamy, and sporulation than in either single mutant alone, suggesting that Dlc1 is involved in nuclear events that are independent of Dhc1. S. pombe contains a homolog of the 8-kDa dynein light chain, Dlc2. This class of dynein light chain, however, is not essential in either the vegetative or sexual phases. PMID:11907273

  11. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons.

    PubMed

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-05-01

    Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.

  12. Meiotic sex chromosome inactivation.

    PubMed

    Turner, James M A

    2007-05-01

    X chromosome inactivation is most commonly studied in the context of female mammalian development, where it performs an essential role in dosage compensation. However, another form of X-inactivation takes place in the male, during spermatogenesis, as germ cells enter meiosis. This second form of X-inactivation, called meiotic sex chromosome inactivation (MSCI) has emerged as a novel paradigm for studying the epigenetic regulation of gene expression. New studies have revealed that MSCI is a special example of a more general mechanism called meiotic silencing of unsynapsed chromatin (MSUC), which silences chromosomes that fail to pair with their homologous partners and, in doing so, may protect against aneuploidy in subsequent generations. Furthermore, failure in MSCI is emerging as an important etiological factor in meiotic sterility.

  13. Control of Oocyte Growth and Meiotic Maturation in C. elegans

    PubMed Central

    Kim, Seongseop; Spike, Caroline; Greenstein, David

    2013-01-01

    In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. C. elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gαs-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition. PMID:22872481

  14. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  15. Data Reorganization Interface

    DTIC Science & Technology

    2007-11-02

    Data Reorganization Interface Kenneth Cain Mercury Computer Systems, Inc. Phone: (978)-967-1645 Email Address: kcain@mc.com Abstract...6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Mercury Computer Systems...18 © 2003 Mercury Computer Systems, Inc. Data Reorganization Interface (DRI) Kenneth Cain Jr. Mercury Computer Systems, Inc. High Performance

  16. Microfilament Distribution in Maize Meiotic Mutants Correlates with Microtubule Organization.

    PubMed Central

    Staiger, CJ; Cande, WZ

    1991-01-01

    Microtubules and microfilaments often codistribute in plants; their presumed interaction can be tested with drugs although it is not always clear that these are without side effects. In this study, we exploited mutants defective in meiotic cell division to investigate in a noninvasive way the relationship between the two cytoskeletal elements. By staining unfixed, permeabilized cells with rhodamine-phalloidin, spatial and temporal changes in microfilament distribution during maize meiosis were examined. In wild-type microsporocytes, a microtubule array that radiates from the nucleus disappeared during spindle formation and returned at late telophase. This result differed from the complex cytoplasmic microfilament array that is present at all stages, including karyokinesis and cytokinesis. During division, a second class of microfilaments also was observed in the spindle and phragmoplast. To analyze this apparent association of microtubules and microfilaments, we examined several meiotic mutants known to have stage-specific disruptions in their microtubule arrays. Two mutations that altered the number or form of meiotic spindles also led to a dramatic reorganization of F-actin. In contrast, rearrangement of nonspindle, cytoplasmic microtubules did not lead to concomitant changes in F-actin distribution. These results suggested that microtubules and microfilaments interact in a cell cycle-specific and site-specific fashion during higher plant meiosis. PMID:12324607

  17. Unions and Workplace Reorganization.

    ERIC Educational Resources Information Center

    Nissen, Bruce, Ed.

    The 11 chapters in this book focus on "The New American Workplace" and assess its adequacy or inadequacy as a guide for the U.S. labor movement in relation to new work systems. "Unions and Workplace Reorganization" (Bruce Nissen) introduces the subject. "The New American Workplace: A Labor Perspective" (AFL-CIO Committee on the Evolution of Work,…

  18. BIA Reorganization Task Force

    ERIC Educational Resources Information Center

    American Indian Journal, 1978

    1978-01-01

    Reporting on three hearings held this spring by the Bureau of Indian Affairs Reorganization Task Force, this article presents highlights from the testimony of Forrest Gerard, Assistant Secretary for Indian Affairs and discusses the matrix system of organization currently under consideration by the BIA. (JC)

  19. The Meiotic Recombination Checkpoint Suppresses NHK-1 Kinase to Prevent Reorganisation of the Oocyte Nucleus in Drosophila

    PubMed Central

    Lancaster, Oscar M.; Breuer, Manuel; Cullen, C. Fiona; Ito, Takashi; Ohkura, Hiroyuki

    2010-01-01

    The meiotic recombination checkpoint is a signalling pathway that blocks meiotic progression when the repair of DNA breaks formed during recombination is delayed. In comparison to the signalling pathway itself, however, the molecular targets of the checkpoint that control meiotic progression are not well understood in metazoans. In Drosophila, activation of the meiotic checkpoint is known to prevent formation of the karyosome, a meiosis-specific organisation of chromosomes, but the molecular pathway by which this occurs remains to be identified. Here we show that the conserved kinase NHK-1 (Drosophila Vrk-1) is a crucial meiotic regulator controlled by the meiotic checkpoint. An nhk-1 mutation, whilst resulting in karyosome defects, does so independent of meiotic checkpoint activation. Rather, we find unrepaired DNA breaks formed during recombination suppress NHK-1 activity (inferred from the phosphorylation level of one of its substrates) through the meiotic checkpoint. Additionally DNA breaks induced by X-rays in cultured cells also suppress NHK-1 kinase activity. Unrepaired DNA breaks in oocytes also delay other NHK-1 dependent nuclear events, such as synaptonemal complex disassembly and condensin loading onto chromosomes. Therefore we propose that NHK-1 is a crucial regulator of meiosis and that the meiotic checkpoint suppresses NHK-1 activity to prevent oocyte nuclear reorganisation until DNA breaks are repaired. PMID:21060809

  20. Nup132 modulates meiotic spindle attachment in fission yeast by regulating kinetochore assembly

    PubMed Central

    Yang, Hui-Ju; Asakawa, Haruhiko; Haraguchi, Tokuko

    2015-01-01

    During meiosis, the kinetochore undergoes substantial reorganization to establish monopolar spindle attachment. In the fission yeast Schizosaccharomyces pombe, the KNL1–Spc7-Mis12-Nuf2 (KMN) complex, which constitutes the outer kinetochore, is disassembled during meiotic prophase and is reassembled before meiosis I. Here, we show that the nucleoporin Nup132 is required for timely assembly of the KMN proteins: In the absence of Nup132, Mis12 and Spc7 are precociously assembled at the centromeres during meiotic prophase. In contrast, Nuf2 shows timely dissociation and reappearance at the meiotic centromeres. We further demonstrate that depletion of Nup132 activates the spindle assembly checkpoint in meiosis I, possibly because of the increased incidence of erroneous spindle attachment at sister chromatids. These results suggest that precocious assembly of the kinetochores leads to the meiosis I defects observed in the nup132-disrupted mutant. Thus, we propose that Nup132 plays an important role in establishing monopolar spindle attachment at meiosis I through outer kinetochore reorganization at meiotic prophase. PMID:26483559

  1. Meiotic process and aneuploidy

    SciTech Connect

    Grell, R.F.

    1985-01-01

    The process of meiosis is analyzed by dissecting it into its component parts using the early oocyte of Drosophila as a model. Entrance of the oocytes into premeiotic interphase signals initiation of DNA replication which continues for 30 h. Coincidentally, extensive synaptonemal complexes appear, averaging 50 ..mu..m (132 h), peaking at 75 ..mu..m (144 h) and continuing into early vitellarial stages. Recombinational response to heat, evidenced by enhancement or induction of exchange, is limited to the S-phase with a peak at 144 h coinciding with maximal extension of the SC. Coincidence of synapsis and recombination response with S at premeiotic interphase is contrary to their conventional localization at meiotic prophase. The interrelationship between exchange and nondisjunction has been clarified by the Distributive Pairing Model of meiosis. Originally revealed through high frequencies of nonrandom assortment of nonhomologous chromosomes, distributive pairing has been shown to follow and to be noncompetitive with exchange, to be based on size-recognition, not homology, and as a raison d'etre, to provide a segregational mechanism for noncrossover homologues. Rearrangements, recombination mutants and aneuploids may contribute noncrossover chromosomes to the distributive pool and so promote the nonhomologous associations responsible for nondisjunction of homologues and regular segregation of nonhomologues. 38 references, 15 figures. (ACR)

  2. The Role of the Equine Herpesvirus Type 1 (EHV-1) US3-Encoded Protein Kinase in Actin Reorganization and Nuclear Egress

    PubMed Central

    Proft, Alexandra; Spiesschaert, Bart; Izume, Satoko; Taferner, Selina; Lehmann, Maik J.; Azab, Walid

    2016-01-01

    The serine-threonine protein kinase encoded by US3 gene (pUS3) of alphaherpesviruses was shown to modulate actin reorganization, cell-to-cell spread, and virus egress in a number of virus species. However, the role of the US3 orthologues of equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) has not yet been studied. Here, we show that US3 is not essential for virus replication in vitro. However, growth rates and plaque diameters of a US3-deleted EHV-1 and a mutant in which the catalytic active site was destroyed were significantly reduced when compared with parental and revertant viruses or a virus in which EHV-1 US3 was replaced with the corresponding EHV-4 gene. The reduced plaque sizes were consistent with accumulation of primarily enveloped virions in the perinuclear space of the US3-negative EHV-1, a phenotype that was also rescued by the EHV-4 orthologue. Furthermore, actin stress fiber disassembly was significantly more pronounced in cells infected with parental EHV-1, revertant, or the recombinant EHV-1 expressing EHV-4 US3. Finally, we observed that deletion of US3 in EHV-1 did not affect the expression of adhesion molecules on the surface of infected cells. PMID:27754319

  3. [Diagnosticum of abnormalities of plant meiotic division].

    PubMed

    Shamina, N V

    2006-01-01

    Abnormalities of plant meiotic division leading to abnormal meiotic products are summarized schematically in the paper. Causes of formation of monads, abnormal diads, triads, pentads, polyads, etc. have been observed in meiosis with both successive and simultaneous cytokinesis.

  4. Meiotic Development in Caenorhabditis elegans

    PubMed Central

    Lui, Doris Y.

    2013-01-01

    Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans. PMID:22872477

  5. Meiotic functions of RAD18.

    PubMed

    Inagaki, Akiko; Sleddens-Linkels, Esther; Wassenaar, Evelyne; Ooms, Marja; van Cappellen, Wiggert A; Hoeijmakers, Jan H J; Seibler, Jost; Vogt, Thomas F; Shin, Myung K; Grootegoed, J Anton; Baarends, Willy M

    2011-08-15

    RAD18 is an ubiquitin ligase that is involved in replication damage bypass and DNA double-strand break (DSB) repair processes in mitotic cells. Here, we investigated the testicular phenotype of Rad18-knockdown mice to determine the function of RAD18 in meiosis, and in particular, in the repair of meiotic DSBs induced by the meiosis-specific topoisomerase-like enzyme SPO11. We found that RAD18 is recruited to a specific subfraction of persistent meiotic DSBs. In addition, RAD18 is recruited to the chromatin of the XY chromosome pair, which forms the transcriptionally silent XY body. At the XY body, RAD18 mediates the chromatin association of its interaction partners, the ubiquitin-conjugating enzymes HR6A and HR6B. Moreover, RAD18 was found to regulate the level of dimethylation of histone H3 at Lys4 and maintain meiotic sex chromosome inactivation, in a manner similar to that previously observed for HR6B. Finally, we show that RAD18 and HR6B have a role in the efficient repair of a small subset of meiotic DSBs.

  6. Discrete Model for Inner-Sphere Reorganization of Anions.

    DTIC Science & Technology

    1986-05-01

    approaches can be followed to calculate the energy of inner-sphere reorganization in photoionization. (i) The terms not corresponding to nuclear ...motion and the outer-sphere Born solvation term are subtracted from the experimental solvation energy . (ii) Only the terms pertaining to nuclear motion...aq), respectively. The term U f(nucl) in eq. (1) represents the nuclear contribution to the solvation energy of the species A(aq) surrounded by its

  7. Initiation of meiotic recombination in chromatin structure.

    PubMed

    Yamada, Takatomi; Ohta, Kunihiro

    2013-08-01

    Meiotic homologous recombination is markedly activated during meiotic prophase to play central roles in faithful chromosome segregation and conferring genetic diversity to gametes. It is initiated by programmed DNA double-strand breaks (DSBs) by the conserved protein Spo11, and preferentially occurs at discrete sites called hotspots. Since the functions of Spo11 are influenced by both of local chromatin at hotspots and higher-order chromosome structures, formation of meiotic DSBs is under regulation of chromatin structure. Therefore, investigating features and roles of meiotic chromatin is crucial to elucidate the in vivo mechanism of meiotic recombination initiation. Recent progress in genome-wide chromatin analyses tremendously improved our understanding on this point, but many critical questions are left unaddressed. In this review, we summarize current knowledge in the field, and also discuss the future problems that must be solved to understand the role of chromatin structure in meiotic recombination.

  8. Meiotic abnormalities in infertile males.

    PubMed

    Egozcue, J; Sarrate, Z; Codina-Pascual, M; Egozcue, S; Oliver-Bonet, M; Blanco, J; Navarro, J; Benet, J; Vidal, F

    2005-01-01

    Meiotic anomalies, as reviewed here, are synaptic chromosome abnormalities, limited to germ cells that cannot be detected through the study of the karyotype. Although the importance of synaptic errors has been underestimated for many years, their presence is related to many cases of human male infertility. Synaptic anomalies can be studied by immunostaining of synaptonemal complexes (SCs), but in this case their frequency is probably underestimated due to the phenomenon of synaptic adjustment. They can also be studied in classic meiotic preparations, which, from a clinical point of view, is still the best approach, especially if multiplex fluorescence in situ hybridization is at hand to solve difficult cases. Sperm chromosome FISH studies also provide indirect evidence of their presence. Synaptic anomalies can affect the rate of recombination of all bivalents, produce achiasmate small univalents, partially achiasmate medium-sized or large bivalents, or affect all bivalents in the cell. The frequency is variable, interindividually and intraindividually. The baseline incidence of synaptic anomalies is 6-8%, which may be increased to 17.6% in males with a severe oligozoospermia, and to 27% in normozoospermic males with one or more previous IVF failures. The clinical consequences are the production of abnormal spermatozoa that will produce a higher number of chromosomally abnormal embryos. The indications for a meiotic study in testicular biopsy are provided.

  9. The fission yeast MTREC and EJC orthologs ensure the maturation of meiotic transcripts during meiosis.

    PubMed

    Marayati, Bahjat Fadi; Hoskins, Victoria; Boger, Robert W; Tucker, James F; Fishman, Emily S; Bray, Andrew S; Zhang, Ke

    2016-09-01

    Meiosis is a highly regulated process by which genetic information is transmitted through sexual reproduction. It encompasses unique mechanisms that do not occur in vegetative cells, producing a distinct, well-regulated meiotic transcriptome. During vegetative growth, many meiotic genes are constitutively transcribed, but most of the resulting mRNAs are rapidly eliminated by the Mmi1-MTREC (Mtl1-Red1 core) complex. While Mmi1-MTREC targets premature meiotic RNAs for degradation by the nuclear 3'-5' exoribonuclease exosome during mitotic growth, its role in meiotic gene expression during meiosis is not known. Here, we report that Red5, an essential MTREC component, interacts with pFal1, an ortholog of eukaryotic translation initiation factor eIF4aIII in the fission yeast Schizosaccharomyces pombe In mammals, together with MAGO (Mnh1), Rnps1, and Y14, elF4AIII (pFal1) forms the core of the exon junction complex (EJC), which is essential for transcriptional surveillance and localization of mature mRNAs. In fission yeast, two EJC orthologs, pFal1 and Mnh1, are functionally connected with MTREC, specifically in the process of meiotic gene expression during meiosis. Although pFal1 interacts with Mnh1, Y14, and Rnps1, its association with Mnh1 is not disrupted upon loss of Y14 or Rnps1. Mutations of Red1, Red5, pFal1, or Mnh1 produce severe meiotic defects; the abundance of meiotic transcripts during meiosis decreases; and mRNA maturation processes such as splicing are impaired. Since studying meiosis in mammalian germline cells is difficult, our findings in fission yeast may help to define the general mechanisms involved in accurate meiotic gene expression in higher eukaryotes.

  10. The fission yeast MTREC and EJC orthologs ensure the maturation of meiotic transcripts during meiosis

    PubMed Central

    Marayati, Bahjat Fadi; Hoskins, Victoria; Boger, Robert W.; Tucker, James F.; Fishman, Emily S.; Bray, Andrew S.; Zhang, Ke

    2016-01-01

    Meiosis is a highly regulated process by which genetic information is transmitted through sexual reproduction. It encompasses unique mechanisms that do not occur in vegetative cells, producing a distinct, well-regulated meiotic transcriptome. During vegetative growth, many meiotic genes are constitutively transcribed, but most of the resulting mRNAs are rapidly eliminated by the Mmi1-MTREC (Mtl1-Red1 core) complex. While Mmi1-MTREC targets premature meiotic RNAs for degradation by the nuclear 3′–5′ exoribonuclease exosome during mitotic growth, its role in meiotic gene expression during meiosis is not known. Here, we report that Red5, an essential MTREC component, interacts with pFal1, an ortholog of eukaryotic translation initiation factor eIF4aIII in the fission yeast Schizosaccharomyces pombe. In mammals, together with MAGO (Mnh1), Rnps1, and Y14, elF4AIII (pFal1) forms the core of the exon junction complex (EJC), which is essential for transcriptional surveillance and localization of mature mRNAs. In fission yeast, two EJC orthologs, pFal1 and Mnh1, are functionally connected with MTREC, specifically in the process of meiotic gene expression during meiosis. Although pFal1 interacts with Mnh1, Y14, and Rnps1, its association with Mnh1 is not disrupted upon loss of Y14 or Rnps1. Mutations of Red1, Red5, pFal1, or Mnh1 produce severe meiotic defects; the abundance of meiotic transcripts during meiosis decreases; and mRNA maturation processes such as splicing are impaired. Since studying meiosis in mammalian germline cells is difficult, our findings in fission yeast may help to define the general mechanisms involved in accurate meiotic gene expression in higher eukaryotes. PMID:27365210

  11. Backcrossing to increase meiotic stability in triticale.

    PubMed

    Giacomin, R M; Assis, R; Brammer, S P; Nascimento Junior, A; Da-Silva, P R

    2015-09-22

    Triticale (X Triticosecale Wittmack) is an intergeneric hybrid derived from a cross between wheat and rye. As a newly created allopolyploid, the plant shows instabilities during the meiotic process, which may result in the loss of fertility. This genomic instability has hindered the success of triticale-breeding programs. Therefore, strategies should be developed to obtain stable triticale lines for use in breeding. In some species, backcrossing has been effective in increasing the meiotic stability of lineages. To assess whether backcrossing has the same effect in triticale, indices of meiotic abnormalities, meiotic index, and pollen viability were determined in genotypes from multiple generations of triticale (P1, P2, F1, F2, BC1a, and BC1b). All analyzed genotypes exhibited instability during meiosis, and their meiotic index values were all lower than normal. However, the backcrosses BC1a and BC1b showed the lowest mean meiotic abnormalities and the highest meiotic indices, demonstrating higher stability. All genotypes showed a high rate of pollen viability, with the backcrosses BC1a and BC1b again exhibiting the best values. Statistical analyses confirmed that backcrossing positively affects the meiotic stability of triticale. Our results show that backcrossing should be considered by breeders aiming to obtain triticale lines with improved genomic stability.

  12. Meiotic Recombination: The Essence of Heredity.

    PubMed

    Hunter, Neil

    2015-10-28

    The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.

  13. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein

    PubMed Central

    1992-01-01

    Mature Drosophila oocytes are arrested in metaphase of the first meiotic division. We have examined microtubule and chromatin reorganization as the meiosis I spindle assembles on maturation using indirect immunofluorescence and laser scanning confocal microscopy. The results suggest that chromatin captures or nucleates microtubules, and that these subsequently form a highly tapered spindle in which the majority of microtubules do not terminate at the poles. Nonexchange homologs separate from each other and move toward opposite poles during spindle assembly. By the time of metaphase arrest, these chromosomes are positioned on opposite half spindles, between the metaphase plate and the spindle poles, with the large nonexchange X chromosomes always closer to the metaphase plate than the smaller nonexchange fourth chromosomes. Nonexchange homologs are therefore oriented on the spindle in the absence of a direct physical linkage, and the spindle position of these chromosomes appears to be determined by size. Loss-of-function mutations at the nod locus, which encodes a kinesin-like protein, cause meiotic loss and nondisjunction of nonexchange chromosomes, but have little or no effect on exchange chromosome segregation. In oocytes lacking functional nod protein, most of the nonexchange chromosomes are ejected from the main chromosomal mass shortly after the nuclear envelope breaks down and microtubules interact with the chromatin. In addition, the nonexchange chromosomes that are associated with spindles in nod/nod oocytes show excessive poleward migration. Based on these observations, and the structural similarity of the nod protein and kinesin, we propose that nonexchange chromosomes are maintained on the half spindle by opposing poleward and anti-poleward forces, and that the nod protein provides the anti-poleward force. PMID:1740471

  14. Theory of meiotic spindle assembly

    NASA Astrophysics Data System (ADS)

    Furthauer, Sebastian; Foster, Peter; Needleman, Daniel; Shelley, Michael

    2016-11-01

    The meiotic spindle is a biological structure that self assembles from the intracellular medium to separate chromosomes during meiosis. It consists of filamentous microtubule (MT) proteins that interact through the fluid in which they are suspended and via the associated molecules that orchestrate their behavior. We aim to understand how the interplay between fluid medium, MTs, and regulatory proteins allows this material to self-organize into the spindle's highly stereotyped shape. To this end we develop a continuum model that treats the spindle as an active liquid crystal with MT turnover. In this active material, molecular motors, such as dyneins which collect MT minus ends and kinesins which slide MTs past each other, generate active fluid and material stresses. Moreover nucleator proteins that are advected with and transported along MTs control the nucleation and depolymerization of MTs. This theory captures the growth process of meiotic spindles, their shapes, and the essential features of many perturbation experiments. It thus provides a framework to think about the physics of this complex biological suspension.

  15. Meiotic and mitotic recombination in meiosis.

    PubMed

    Kohl, Kathryn P; Sekelsky, Jeff

    2013-06-01

    Meiotic crossovers facilitate the segregation of homologous chromosomes and increase genetic diversity. The formation of meiotic crossovers was previously posited to occur via two pathways, with the relative use of each pathway varying between organisms; however, this paradigm could not explain all crossovers, and many of the key proteins involved were unidentified. Recent studies that identify some of these proteins reinforce and expand the model of two meiotic crossover pathways. The results provide novel insights into the evolutionary origins of the pathways, suggesting that one is similar to a mitotic DNA repair pathway and the other evolved to incorporate special features unique to meiosis.

  16. SSP1, a gene necessary for proper completion of meiotic divisions and spore formation in Saccharomyces cerevisiae.

    PubMed Central

    Nag, D K; Koonce, M P; Axelrod, J

    1997-01-01

    During meiosis, a diploid cell undergoes two rounds of nuclear division following one round of DNA replication to produce four haploid gametes. In yeast, haploid meiotic products are packaged into spores. To gain new insights into meiotic development and spore formation, we followed differential expression of genes in meiotic versus vegetatively growing cells in the yeast Saccharomyces cerevisiae. Our results indicate that there are at least five different classes of transcripts representing genes expressed at different stages of the sporulation program. Here we describe one of these differentially expressed genes, SSP1, which plays an essential role in meiosis and spore formation. SSP1 is expressed midway through meiosis, and homozygous ssp1 diploid cells fail to sporulate. In the ssp1 mutant, meiotic recombination is normal but viability declines rapidly. Both meiotic divisions occur at the normal time; however, the fraction of cells completing meiosis is significantly reduced, and nuclei become fragmented soon after meiosis II. The ssp1 defect does not appear to be related to a microtubule-cytoskeletal-dependent event and is independent of two rounds of chromosome segregation. The data suggest that Ssp1 is likely to function in a pathway that controls meiotic nuclear divisions and coordinates meiosis and spore formation. PMID:9372934

  17. Meiotic crossing-over in nondisjoined chromosomes of children with trisomy 21 and a congenital heart defect

    SciTech Connect

    Howard, C.M.; Davis, G.E.; Farrer, M.J.; Cullen, L.M.; Coleman, M.M.; Williamson, R.; Wyse, R.K.H.; Palmer, R.; Kessling, A.M. )

    1993-08-01

    The authors have used DNA polymorphisms to study meiotic crossovers of chromosome 21q in 27 nuclear families. Each family had a child with Down syndrome and a congenital heart defect. Twenty DNA polymorphisms on chromosome 21 were used to determine parental and meiotic origin of nondisjunction and to identify crossovers. Twenty-four cases were of maternal origin, and three were of paternal origin. Twenty-two unequivocal crossover events were identified. Sixteen crossovers were observed in 22 chromosome pairs nondisjoining at the first meiotic division (MI), and six crossovers were observed in five chromosome pairs disjoining at the second meiotic division. Fifty percent of crossover events in MI nondisjunction are detectable by molecular genetic means. Thus, the results suggest that, in this sample, each nondisjoined chromosome 21 pair has been involved in at least one crossover event. 28 refs., 1 fig., 3 tabs.

  18. Mechanism and Regulation of Meiotic Recombination Initiation

    PubMed Central

    Lam, Isabel; Keeney, Scott

    2015-01-01

    Meiotic recombination involves the formation and repair of programmed DNA double-strand breaks (DSBs) catalyzed by the conserved Spo11 protein. This review summarizes recent studies pertaining to the formation of meiotic DSBs, including the mechanism of DNA cleavage by Spo11, proteins required for break formation, and mechanisms that control the location, timing, and number of DSBs. Where appropriate, findings in different organisms are discussed to highlight evolutionary conservation or divergence. PMID:25324213

  19. Reorganizing SOF for Irregular Warfare

    DTIC Science & Technology

    2008-12-01

    after the Soviet Union launched Sputnik in 1957, the creation of the Environmental Protection Agency ( EPA ) in 1970, and the most recent reorganization...elliptical orbit some 550 miles above a Cold War-wracked planet. For the moment, at least, communism had trumped capitalism on a major front, and the

  20. Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation.

    PubMed

    Mahadevaiah, Shantha K; Bourc'his, Déborah; de Rooij, Dirk G; Bestor, Timothy H; Turner, James M A; Burgoyne, Paul S

    2008-07-28

    Chromosome synapsis during zygotene is a prerequisite for the timely homologous recombinational repair of meiotic DNA double-strand breaks (DSBs). Unrepaired DSBs are thought to trigger apoptosis during midpachytene of male meiosis if synapsis fails. An early pachytene response to asynapsis is meiotic silencing of unsynapsed chromatin (MSUC), which, in normal males, silences the X and Y chromosomes (meiotic sex chromosome inactivation [MSCI]). In this study, we show that MSUC occurs in Spo11-null mouse spermatocytes with extensive asynapsis but lacking meiotic DSBs. In contrast, three mutants (Dnmt3l, Msh5, and Dmc1) with high levels of asynapsis and numerous persistent unrepaired DSBs have a severely impaired MSUC response. We suggest that MSUC-related proteins, including the MSUC initiator BRCA1, are sequestered at unrepaired DSBs. All four mutants fail to silence the X and Y chromosomes (MSCI failure), which is sufficient to explain the midpachytene apoptosis. Apoptosis does not occur in mice with a single additional asynapsed chromosome with unrepaired meiotic DSBs and no disturbance of MSCI.

  1. Female meiotic sex chromosome inactivation in chicken.

    PubMed

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2009-05-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  2. Dynamic reorganization of river basins.

    PubMed

    Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu

    2014-03-07

    River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.

  3. Initiation of Meiotic Recombination in Mammals

    PubMed Central

    Kumar, Rajeev; de Massy, Bernard

    2010-01-01

    Meiotic recombination is initiated by the induction of programmed DNA double strand breaks (DSBs). DSB repair promotes homologous interactions and pairing and leads to the formation of crossovers (COs), which are required for the proper reductional segregation at the first meiotic division. In mammals, several hundred DSBs are generated at the beginning of meiotic prophase by the catalytic activity of SPO11. Currently it is not well understood how the frequency and timing of DSB formation and their localization are regulated. Several approaches in humans and mice have provided an extensive description of the localization of initiation events based on CO mapping, leading to the identification and characterization of preferred sites (hotspots) of initiation. This review presents the current knowledge about the proteins known to be involved in this process, the sites where initiation takes place, and the factors that control hotspot localization. PMID:24710101

  4. Epigenetic control of meiotic recombination in plants.

    PubMed

    Yelina, Natasha; Diaz, Patrick; Lambing, Christophe; Henderson, Ian R

    2015-03-01

    Meiotic recombination is a deeply conserved process within eukaryotes that has a profound effect on patterns of natural genetic variation. During meiosis homologous chromosomes pair and undergo DNA double strand breaks generated by the Spo11 endonuclease. These breaks can be repaired as crossovers that result in reciprocal exchange between chromosomes. The frequency of recombination along chromosomes is highly variable, for example, crossovers are rarely observed in heterochromatin and the centromeric regions. Recent work in plants has shown that crossover hotspots occur in gene promoters and are associated with specific chromatin modifications, including H2A.Z. Meiotic chromosomes are also organized in loop-base arrays connected to an underlying chromosome axis, which likely interacts with chromatin to organize patterns of recombination. Therefore, epigenetic information exerts a major influence on patterns of meiotic recombination along chromosomes, genetic variation within populations and evolution of plant genomes.

  5. Meiotic recombination in mammals: localization and regulation.

    PubMed

    Baudat, Frédéric; Imai, Yukiko; de Massy, Bernard

    2013-11-01

    During meiosis, a programmed induction of DNA double-strand breaks (DSBs) leads to the exchange of genetic material between homologous chromosomes. These exchanges increase genome diversity and are essential for proper chromosome segregation at the first meiotic division. Recent findings have highlighted an unexpected molecular control of the distribution of meiotic DSBs in mammals by a rapidly evolving gene, PR domain-containing 9 (PRDM9), and genome-wide analyses have facilitated the characterization of meiotic DSB sites at unprecedented resolution. In addition, the identification of new players in DSB repair processes has allowed the delineation of recombination pathways that have two major outcomes, crossovers and non-crossovers, which have distinct mechanistic roles and consequences for genome evolution.

  6. Reorganization: premises, processes, and pitfalls.

    PubMed Central

    Jacobson, S

    1994-01-01

    As the technological environment changes and libraries assume new and more active roles in their institutions, the traditional library hierarchy ceases to be an effective organizational structure. Guided by theories that emphasize teamwork, quality, and employee empowerment and participation, libraries are developing flatter, more networked organizations. The Health Sciences Library at Columbia University in New York, New York, recently underwent a reorganization in an effort to become a more resilient, more flexible organization. The process was beneficial overall. While some errors and confusion occurred, these are seen as opportunities for learning and evidence of the library's new atmosphere of creativity and experimentation. PMID:7841904

  7. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    SciTech Connect

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J.

    2014-11-15

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.

  8. Homeostatic regulation of meiotic DSB formation by ATM/ATR.

    PubMed

    Cooper, Tim J; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J

    2014-11-15

    Ataxia-telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.

  9. Polyploidization increases meiotic recombination frequency in Arabidopsis

    PubMed Central

    2011-01-01

    Background Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. Results Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. Conclusions The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence. PMID:21510849

  10. Cyclin B-cdk activity stimulates meiotic rereplication in budding yeast.

    PubMed Central

    Strich, Randy; Mallory, Michael J; Jarnik, Michal; Cooper, Katrina F

    2004-01-01

    Haploidization of gametes during meiosis requires a single round of premeiotic DNA replication (meiS) followed by two successive nuclear divisions. This study demonstrates that ectopic activation of cyclin B/cyclin-dependent kinase in budding yeast recruits up to 30% of meiotic cells to execute one to three additional rounds of meiS. Rereplication occurs prior to the meiotic nuclear divisions, indicating that this process is different from the postmeiotic mitoses observed in other fungi. The cells with overreplicated DNA produced asci containing up to 20 spores that were viable and haploid and demonstrated Mendelian marker segregation. Genetic tests indicated that these cells executed the meiosis I reductional division and possessed a spindle checkpoint. Finally, interfering with normal synaptonemal complex formation or recombination increased the efficiency of rereplication. These studies indicate that the block to rereplication is very different in meiotic and mitotic cells and suggest a negative role for the recombination machinery in allowing rereplication. Moreover, the production of haploids, regardless of the genome content, suggests that the cell counts replication cycles, not chromosomes, in determining the number of nuclear divisions to execute. PMID:15342503

  11. A large-scale screen in S. pombe identifies seven novel genes required for critical meiotic events

    PubMed Central

    Martín-Castellanos, Cristina; Blanco, Miguel; Rozalén, Ana E.; Pérez-Hidalgo, Livia; García, Ana I.; Conde, Francisco; Mata, Juan; Ellermeier, Chad; Davis, Luther; San-Segundo, Pedro; Smith, Gerald R.; Moreno, Sergio

    2009-01-01

    Summary Meiosis is a specialized form of cell division by which sexually reproducing diploid organisms generate haploid gametes. During a long prophase, telomeres cluster into the bouquet configuration to aid chromosome pairing, and DNA replication is followed by high levels of recombination between homologous chromosomes (homologs). This recombination is important for the reductional segregation of homologs at the first meiotic division; without further replication a second meiotic division yields haploid nuclei. In the fission yeast Schizosaccharomyces pombe we have deleted 175 meiotically upregulated genes and found seven genes not previously reported to be critical for meiotic events. Three mutants (rec24, rec25, and rec27) had strongly reduced meiosis-specific DNA double-strand breakage and recombination. One mutant (tht2) was deficient in karyogamy, and two (bqt1 and bqt2) in telomere clustering, explaining their defects in recombination and segregation. The moa1 mutant was delayed in premeiotic S-phase progression and nuclear divisions. Further analysis of these mutants will help elucidate the complex machinery governing the special behavior of meiotic chromosomes. PMID:16303567

  12. A large-scale screen in S. pombe identifies seven novel genes required for critical meiotic events.

    PubMed

    Martín-Castellanos, Cristina; Blanco, Miguel; Rozalén, Ana E; Pérez-Hidalgo, Livia; García, Ana I; Conde, Francisco; Mata, Juan; Ellermeier, Chad; Davis, Luther; San-Segundo, Pedro; Smith, Gerald R; Moreno, Sergio

    2005-11-22

    Meiosis is a specialized form of cell division by which sexually reproducing diploid organisms generate haploid gametes. During a long prophase, telomeres cluster into the bouquet configuration to aid chromosome pairing, and DNA replication is followed by high levels of recombination between homologous chromosomes (homologs). This recombination is important for the reductional segregation of homologs at the first meiotic division; without further replication, a second meiotic division yields haploid nuclei. In the fission yeast Schizosaccharomyces pombe, we have deleted 175 meiotically upregulated genes and found seven genes not previously reported to be critical for meiotic events. Three mutants (rec24, rec25, and rec27) had strongly reduced meiosis-specific DNA double-strand breakage and recombination. One mutant (tht2) was deficient in karyogamy, and two (bqt1 and bqt2) were deficient in telomere clustering, explaining their defects in recombination and segregation. The moa1 mutant was delayed in premeiotic S phase progression and nuclear divisions. Further analysis of these mutants will help elucidate the complex machinery governing the special behavior of meiotic chromosomes.

  13. Lansing Community College Reorganization Overview Document.

    ERIC Educational Resources Information Center

    Lansing Community Coll., MI.

    In response to an unstable economy and diminishing resources, Lansing Community College, in Michigan, initiated a college-wide reorganization in July 1993 to improve institutional effectiveness and increase efficiency. This paper provides a description of the reorganization process and organizational structure before and after the change. First, a…

  14. Mature cystic teratomas arise from meiotic oocytes, but not from pre-meiotic oogonia.

    PubMed

    Kaku, Hiroshi; Usui, Hirokazu; Qu, Jia; Shozu, Makio

    2016-04-01

    Mature cystic teratomas (MCTs) in the ovaries have been thought to originate from germ cells from all developmental stages, i.e., from pre-meiotic oogonia through meiotic oocytes to mature post-meiotic ova. This view was based on research on MCTs by classical methods, including those involving centromeric heteromorphisms in karyotypes, enzyme polymorphisms, and DNA polymorphisms. However, insufficient genomic information was obtained in those studies. The current study aimed to confirm the cytogenetic origin of ovarian MCTs by using short tandem repeat (STR) polymorphism analysis to obtain sufficient genomic information, especially in connection with centromeric loci. Tissue samples of MCTs (57 ovaries from 51 patients, 91 MCTs, 156 specimens in total) obtained from cystectomies or oophorectomies were used. We categorized the specimens into two groups: i) solid components of MCTs and ii) cyst walls. The numbers of solid components of MCTs from pre-meiotic oogonia, primary oocytes, secondary oocytes, and ova were 0, 33, 16, and 15, respectively. There were no pre-meiotic oogonia in this series of solid-component specimens. We propose a hypothesis for the tumorigenesis of ovarian MCTs: the precursors of ovarian MCTs are not functional oocytes or ova, but are primary oocytes that have escaped from meiotic arrest. This hypothesis could satisfactorily explain the lack of pre-meiotic teratomas observed in this study and the nearly equal distribution of teratomas originating from primary oocytes, secondary oocytes, and ova in previous studies. Furthermore, this hypothesis could provide a starting point for determining the mechanism underlying tumorigenesis of ovarian MCTs.

  15. Massive cortical reorganization in sighted Braille readers.

    PubMed

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-03-15

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

  16. Parp2 is required for the differentiation of post-meiotic germ cells: Identification of a spermatid-specific complex containing Parp1, Parp2, TP2 and HSPA2

    SciTech Connect

    Quenet, Delphine; Mark, Manuel; Govin, Jerome; Dorsselear, A. van; Schreiber, Valerie; Khochbin, Saadi; Dantzer, Francoise

    2009-10-01

    Spermiogenesis is a complex male germ cell post-meiotic differentiation process characterized by dramatic changes in chromatin structure and function, including chromatin condensation, transcriptional inhibition and the sequential replacement of histones by transition proteins and protamines. Recent advances, in mammalian cells, suggest a possible role of poly(ADP-ribosyl)ation catalyzed by Parp1 and/or Parp2 in this process. We have recently reported severely compromised spermiogenesis in Parp2-deficient mice characterized by a marked delay in nuclear elongation whose molecular mechanisms remain however unknown. Here, using in vitro protein-protein interaction assays, we show that Parp2 interacts significantly with both the transition protein TP2 and the transition chaperone HSPA2, whereas Parp1 binds weakly to HSPA2. Parp2-TP2 interaction is partly mediated by poly(ADP-ribosyl)ation. Only Parp1 poly(ADP-ribosyl)ates HSPA2. In addition, a detailed analysis of spermatid maturation in Parp2-deficient mice, combining immunohistochemistry and electron microscopic approaches, reveals a loss of spermatids expressing TP2, a defect in chromatin condensation and abnormal formation of the manchette microtubules that, together, contribute to spermatid-specific cell death. In conclusion, we propose both Parps as new participants of a spermatid-specific protein complex involved in genome reorganization throughout spermiogenesis.

  17. A DNA topoisomerase VI-like complex initiates meiotic recombination.

    PubMed

    Vrielynck, Nathalie; Chambon, Aurélie; Vezon, Daniel; Pereira, Lucie; Chelysheva, Liudmila; De Muyt, Arnaud; Mézard, Christine; Mayer, Claudine; Grelon, Mathilde

    2016-02-26

    The SPO11 protein catalyzes the formation of meiotic DNA double strand breaks (DSBs) and is homologous to the A subunit of an archaeal topoisomerase (topo VI). Topo VI are heterotetrameric enzymes comprising two A and two B subunits; however, no topo VIB involved in meiotic recombination had been identified. We characterized a structural homolog of the archaeal topo VIB subunit [meiotic topoisomerase VIB-like (MTOPVIB)], which is essential for meiotic DSB formation. It forms a complex with the two Arabidopsis thaliana SPO11 orthologs required for meiotic DSB formation (SPO11-1 and SPO11-2) and is absolutely required for the formation of the SPO11-1/SPO11-2 heterodimer. These findings suggest that the catalytic core complex responsible for meiotic DSB formation in eukaryotes adopts a topo VI-like structure.

  18. HIM-8 binds to the X chromosome pairing center and mediateschromosome-specific meiotic synapsis

    SciTech Connect

    Phillips, Carolyn M.; Wong, Chihunt; Bhalla, Needhi; Carlton,Peter M.; Weiser, Pinky; Meneely, Philip M.; Dernburg, Abby F.

    2005-06-05

    The him-8 gene is essential for proper meiotic segregationof the X chromosomes in C. elegans. Herewe show that loss of him-8function causes profound X-chromosome-specific defects in homolog pairingand synapsis.him-8 encodes a C2H2 zinc finger protein that is expressedduring meiosis andconcentrates at a site on the X chromosome known as themeiotic Pairing Center (PC). A role for HIM-8 in PC function is supportedby genetic interactions between PC lesions and him-8 mutations.HIM-8-bound chromosome sites associate with the nuclear envelope (NE)throughout meiotic prophase. Surprisingly, a point mutation in him-8 thatretains both chromosome binding and NE localization fails to stabilizepairing or promote synapsis. These observations indicate thatstabilization of homolog pairing is an active process in which thetethering of chromosome sites to the NE may be necessary but is notsufficient.

  19. Human male meiotic sex chromosome inactivation.

    PubMed

    de Vries, Marieke; Vosters, Sanne; Merkx, Gerard; D'Hauwers, Kathleen; Wansink, Derick G; Ramos, Liliana; de Boer, Peter

    2012-01-01

    In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.

  20. Human Male Meiotic Sex Chromosome Inactivation

    PubMed Central

    de Vries, Marieke; Vosters, Sanne; Merkx, Gerard; D'Hauwers, Kathleen; Wansink, Derick G.; Ramos, Liliana; de Boer, Peter

    2012-01-01

    In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity. PMID:22355370

  1. Vacuole Partitioning during Meiotic Division in Yeast

    PubMed Central

    Roeder, A. D.; Shaw, J. M.

    1996-01-01

    We have examined the partitioning of the yeast vacuole during meiotic division. In pulse-chase experiments, vacuoles labeled with the lumenal ade2 fluorophore or the membrane-specific dye FM 4-64 were not inherited by haploid spores. Instead, these fluorescent markers were excluded from spores and trapped between the spore cell walls and the ascus. Serial optical sections using a confocal microscope confirmed that spores did not inherit detectable amounts of fluorescently labeled vacuoles. Moreover, indirect immunofluorescence studies established that an endogenous vacuolar membrane protein, alkaline phosphatase, and a soluable vacuolar protease, carboxypeptidase Y, were also detected outside spores after meiotic division. Spores that did not inherit ade2- or FM 4-64-labeled vacuoles did generate an organelle that could be visualized by subsequent staining with vacuole-specific fluorophores. These data contrast with genetic evidence that a soluble vacuolar protease is inherited by spores. When the partitioning of both types of markers was examined in sporulating cultures, the vacuolar protease activity was inherited by spores while fluorescently labeled vacuoles were largely excluded from spores. Our results indicate that the majority of the diploid vacuole, both soluble contents and membrane-bound components, are excluded from spores formed during meiotic division. PMID:8889511

  2. Meiotic chromosome abnormalities in human spermatogenesis.

    PubMed

    Martin, Renée H

    2006-08-01

    The last few years have witnessed an explosion in the information about chromosome abnormalities in human sperm and the meiotic events that predispose to these abnormalities. We have determined that all chromosomes are susceptible to nondisjunction, but chromosomes 21 and 22 and, especially, the sex chromosomes have an increased frequency of aneuploidy. Studies are just beginning on the effects of potential mutagens on the chromosomal constitution of human sperm. The effects of pesticides and cancer therapeutic agents have been reviewed. In the last decade, there has been a great impetus to study chromosome abnormalities in sperm from infertile men because the advent of intracytoplasmic sperm injection (ICSI) made it possible for these men to father pregnancies. A large number of studies have demonstrated that infertile men have an increased frequency of chromosomally abnormal sperm and children, even when they have a normal somatic karyotype. Meiotic studies on the pachytene stage of spermatogenesis have demonstrated that infertile men have impaired chromosome synapsis, a significantly decreased frequency of recombination, and an increased frequency of chromosomes completely lacking a recombination site. Such errors make these cells susceptible to meiotic arrest and the production of aneuploid gametes.

  3. Meiotic drive of chromosomal knobs reshaped the maize genome.

    PubMed Central

    Buckler, E S; Phelps-Durr, T L; Buckler, C S; Dawe, R K; Doebley, J F; Holtsford, T P

    1999-01-01

    Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome. Simulations were used to illustrate the dynamics of this meiotic drive model and suggest knobs might be deleterious in the absence of Ab10. Chromosomal knob data from maize's wild relatives (Zea mays ssp. parviglumis and mexicana) and phylogenetic comparisons demonstrated that the evolution of knob size, frequency, and chromosomal position agreed with the meiotic drive hypothesis. Knob chromosomal position was incompatible with the hypothesis that knob repetitive DNA is neutral or slightly deleterious to the genome. We also show that environmental factors and transposition may play a role in the evolution of knobs. Because knobs occur at multiple locations on all maize chromosomes, the combined effects of meiotic drive and genetic linkage may have reshaped genetic diversity throughout the maize genome in response to the presence of Ab10. Meiotic drive may be a major force of genome evolution, allowing revolutionary changes in genome structure and diversity over short evolutionary periods. PMID:10471723

  4. Meiotic abnormalities and spermatogenic parameters in severe oligoasthenozoospermia.

    PubMed

    Vendrell, J M; García, F; Veiga, A; Calderón, G; Egozcue, S; Egozcue, J; Barri, P N

    1999-02-01

    The incidence of meiotic abnormalities and their relationship with different spermatogenic parameters was assessed in 103 male patients with presumably idiopathic severe oligoasthenozoospermia (motile sperm concentration < or = 1.5 x 10(6)/ml). Meiosis on testicular biopsies was independently evaluated by two observers. Meiotic patterns included normal meiosis and two meiotic abnormalities, i.e. severe arrest and synaptic anomalies. A normal pattern was found in 64 (62.1%), severe arrest in 21 (20.4%) and synaptic anomalies in 18 (17.5%). The overall rate of meiotic abnormalities was 37.9%. Most (66.7%) meiotic abnormalities occurred in patients with a sperm concentration < or = 1 x 10(6)/ml. In this group, total meiotic abnormalities were found in 57.8% of the patients; of these, 26.7% had synaptic anomalies. When the sperm concentration was < or = 0.5 x 10(6)/ml, synaptic anomalies were detected in 40% of the patients. In patients with increased follicle stimulating hormone (FSH) concentrations, total meiotic abnormalities occurred in 54.8% (synaptic anomalies in 22.6%). There were statistically significant differences among the three meiotic patterns in relation to sperm concentration (P < 0.001) and serum FSH concentration (P < 0.05). In the multivariate analysis, sperm concentration < or = 1 x 10(6)/ml and/or FSH concentration > 10 IU/l were the only predictors of meiotic abnormalities.

  5. Reorganization for intravenous procedures in dentistry.

    PubMed

    Litchfield, N B

    1975-08-01

    The importance of reorganization for intravenous dental procedures, involving not only premises and equipment but also the dentist and his staff, is emphasised. These matters are discussed in detail with special emphasis on certain essential factors and psychologic aspects.

  6. PDGF induces reorganization of vimentin filaments.

    PubMed

    Valgeirsdóttir, S; Claesson-Welsh, L; Bongcam-Rudloff, E; Hellman, U; Westermark, B; Heldin, C H

    1998-07-30

    In this study we demonstrate that stimulation with platelet-derived growth factor (PDGF) leads to a marked reorganization of the vimentin filaments in porcine aortic endothelial (PAE) cells ectopically expressing the PDGF beta-receptor. Within 20 minutes after stimulation, the well-spread fine fibrillar vimentin was reorganized as the filaments aggregated into a dense coil around the nucleus. The solubility of vimentin upon Nonidet-P40-extraction of cells decreased considerably after PDGF stimulation, indicating that PDGF caused a redistribution of vimentin to a less soluble compartment. In addition, an increased tyrosine phosphorylation of vimentin was observed. The redistribution of vimentin was not a direct consequence of its tyrosine phosphorylation, since treatment of cells with an inhibitor for the cytoplasmic tyrosine kinase Src, attenuated phosphorylation but not redistribution of vimentin. These changes in the distribution of vimentin occurred in conjunction with reorganization of actin filaments. In PAE cells expressing a Y740/751F mutant receptor that is unable to bind and activate phosphatidylinositol 3'-kinase (PI3-kinase), the distribution of vimentin was virtually unaffected by PDGF stimulation. Thus, PI3-kinase is important for vimentin reorganization, in addition to its previously demonstrated role in actin reorganization. The small GTPase Rac has previously been shown to be involved downstream of PI3-kinase in the reorganization of actin filaments. In PAE cells overexpressing dominant negative Rac1 (N17Rac1), no change in the fine fibrillar vimentin network was seen after PDGF-BB stimulation, whereas in PAE cells overexpressing constitutively active Rac1 (V12Rac1), there was a dramatic change in vimentin filament organization independent of PDGF stimulation. These data indicate that PDGF causes a reorganization of microfilaments as well as intermediate filaments in its target cells and suggest an important role for Rac downstream of PI3-kinase in

  7. 12 CFR 575.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true Mutual holding company reorganizations. 575.3... COMPANIES § 575.3 Mutual holding company reorganizations. A mutual savings association may reorganize to become a mutual holding company, or join in a mutual holding company reorganization as an...

  8. 12 CFR 575.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 6 2013-01-01 2012-01-01 true Mutual holding company reorganizations. 575.3... COMPANIES § 575.3 Mutual holding company reorganizations. A mutual savings association may reorganize to become a mutual holding company, or join in a mutual holding company reorganization as an...

  9. 12 CFR 575.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Mutual holding company reorganizations. 575.3... COMPANIES § 575.3 Mutual holding company reorganizations. A mutual savings association may reorganize to become a mutual holding company, or join in a mutual holding company reorganization as an...

  10. 12 CFR 575.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Mutual holding company reorganizations. 575.3... COMPANIES § 575.3 Mutual holding company reorganizations. A mutual savings association may reorganize to become a mutual holding company, or join in a mutual holding company reorganization as an...

  11. 12 CFR 575.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 6 2012-01-01 2012-01-01 false Mutual holding company reorganizations. 575.3... COMPANIES § 575.3 Mutual holding company reorganizations. A mutual savings association may reorganize to become a mutual holding company, or join in a mutual holding company reorganization as an...

  12. Alternative institutional arrangements for nuclear power

    SciTech Connect

    Bussard, D.

    1980-08-01

    This paper investigates how alternative organizations of nuclear power generation would effect the regulatory environment for nuclear power production, how it would effect financial constraints on new construction, and what governmental barriers to such reorganization exist.

  13. Analysis of meiotic sister chromatid cohesion in Caenorhabditis elegans

    PubMed Central

    Severson, Aaron F.

    2016-01-01

    In sexually reproducing organisms, the formation of healthy gametes (sperm and eggs) requires the proper establishment and release of meiotic sister chromatid cohesion (SCC). SCC tethers replicated sisters from their formation in premeiotic S phase until the stepwise removal of cohesion in anaphase of meiosis I and II allows the separation of homologs and then sisters. Defects in the establishment or release of meiotic cohesion cause chromosome segregation errors that lead to the formation of aneuploid gametes and inviable embryos. The nematode Caenorhabditis elegans is an excellent model for studies of meiotic sister chromatid cohesion due to its genetic tractability and the excellent cytological properties of the hermaphrodite gonad. Moreover, mutants defective in the establishment or maintenance of meiotic SCC nevertheless produce abundant gametes, allowing analysis of the pattern of chromosome segregation. Here I will describe two approaches for analysis of meiotic cohesion in C. elegans. The first approach relies on cytology to detect and quantify defects in SCC. The second approach relies on PCR and restriction digests to identify embryos that inherited an incorrect complement of chromosomes due to aberrant meiotic chromosome segregation. Both approaches are sensitive enough to identify rare errors and precise enough to reveal distinctive phenotypes resulting from mutations that perturb meiotic SCC in different ways. The robust, quantitative nature of these assays should strengthen phenotypic comparisons of different meiotic mutants and enhance the reproducibility of data generated by different investigators. PMID:27797074

  14. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing

    PubMed Central

    1996-01-01

    The preconditions and early steps of meiotic chromosome pairing were studied by fluorescence in situ hybridization (FISH) with chromosome- specific DNA probes to mouse and human testis tissue sections. Premeiotic pairing of homologous chromosomes was not detected in spermatogonia of the two species. FISH with centromere- and telomere- specific DNA probes in combination with immunostaining (IS) of synaptonemal complex (SC) proteins to testis sections of prepuberal mice at days 4-12 post partum was performed to study sequentially the meiotic pairing process. Movements of centromeres and then telomeres to the nuclear envelope, and of telomeres along the nuclear envelope leading to the formation of a chromosomal bouquet were detected during mouse prophase. At the bouquet stage, pairing of a mouse chromosome-8- specific probe was observed. SC-IS and simultaneous telomere FISH revealed that axial element proteins appear as large aggregates in mouse meiocytes when telomeres are attached to the nuclear envelope. Axial element formation initiates during tight telomere clustering and transverse filament-IS indicated the initiation of synapsis during this stage. Comparison of telomere and centromere distribution patterns of mouse and human meiocytes revealed movements of centromeres and then telomeres to the nuclear envelope and subsequent bouquet formation as conserved motifs of the pairing process. Chromosome painting in human spermatogonia revealed compacted, largely mutually exclusive chromosome territories. The territories developed into long, thin threads at the onset of meiotic prophase. Based on these results a unified model of the pairing process is proposed. PMID:8794855

  15. Spatiotemporal regulation of meiotic recombination by Liaisonin

    PubMed Central

    Miyoshi, Tomoichiro; Ito, Masaru; Ohta, Kunihiro

    2013-01-01

    Sexual reproduction involves diversification of genetic information in successive generations. Meiotic recombination, which substantially contributes to the increase in genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) catalyzed by the evolutionarily conserved Spo11 protein. Spo11 requires additional partner proteins for its DNA cleavage reaction. DSBs are preferentially introduced at defined chromosomal sites called “recombination hotspots.” Recent studies have revealed that meiotically established higher-order chromosome structures, such as chromosome axes and loops, are also crucial in the control of DSB formation. Most of the DSB sites are located within chromatin loop regions, while many of the proteins involved in DSB formation reside on chromosomal axes. Hence, DSB proteins and DSB sites seem to be distantly located. To resolve this paradox, we conducted comprehensive proteomics and ChIP-chip analyses on Spo11 partners in Schizosaccharomyces pombe, in combination with mutant studies. We identified two distinct DSB complexes, the “DSBC (DSB Catalytic core)“ and “SFT (Seven-Fifteen-Twenty four; Rec7-Rec15-Rec24)” subcomplexes. The DSBC subcomplex contains Spo11 and functions as the catalytic core for the DNA cleavage reaction. The SFT subcomplex is assumed to execute regulatory functions. To activate the DSBC subcomplex, the SFT subcomplex tethers hotspots to axes via its interaction with Mde2, which can interact with proteins in both DSBC and SFT subcomplexes. Thus, Mde2 is likely to bridge these two subcomplexes, forming a “tethered loop-axis complex.” It should be noted that Mde2 expression is strictly regulated by S phase checkpoint monitoring of the completion of DNA replication. From these observations, we proposed that Mde2 is a central coupler for meiotic recombination initiation to establish a tethered loop-axis complex in liaison with the S phase checkpoint. PMID:23572041

  16. Spatiotemporal regulation of meiotic recombination by Liaisonin.

    PubMed

    Miyoshi, Tomoichiro; Ito, Masaru; Ohta, Kunihiro

    2013-01-01

    Sexual reproduction involves diversification of genetic information in successive generations. Meiotic recombination, which substantially contributes to the increase in genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) catalyzed by the evolutionarily conserved Spo11 protein. Spo11 requires additional partner proteins for its DNA cleavage reaction. DSBs are preferentially introduced at defined chromosomal sites called "recombination hotspots." Recent studies have revealed that meiotically established higher-order chromosome structures, such as chromosome axes and loops, are also crucial in the control of DSB formation. Most of the DSB sites are located within chromatin loop regions, while many of the proteins involved in DSB formation reside on chromosomal axes. Hence, DSB proteins and DSB sites seem to be distantly located. To resolve this paradox, we conducted comprehensive proteomics and ChIP-chip analyses on Spo11 partners in Schizosaccharomyces pombe, in combination with mutant studies. We identified two distinct DSB complexes, the "DSBC (DSB Catalytic core)" and "SFT (Seven-Fifteen-Twenty four; Rec7-Rec15-Rec24)" subcomplexes. The DSBC subcomplex contains Spo11 and functions as the catalytic core for the DNA cleavage reaction. The SFT subcomplex is assumed to execute regulatory functions. To activate the DSBC subcomplex, the SFT subcomplex tethers hotspots to axes via its interaction with Mde2, which can interact with proteins in both DSBC and SFT subcomplexes. Thus, Mde2 is likely to bridge these two subcomplexes, forming a "tethered loop-axis complex." It should be noted that Mde2 expression is strictly regulated by S phase checkpoint monitoring of the completion of DNA replication. From these observations, we proposed that Mde2 is a central coupler for meiotic recombination initiation to establish a tethered loop-axis complex in liaison with the S phase checkpoint.

  17. 76 FR 71919 - Corporate Reorganizations; Allocation of Basis in “All Cash D” Reorganizations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ...In the Rules and Regulations section of this issue of the Federal Register, the IRS is issuing temporary regulations that provide guidance regarding the determination of the basis of stock or securities in a reorganization where no stock or securities of the issuing corporation is issued and distributed in the transaction. These regulations clarify that, in certain reorganizations where no......

  18. Diversity in meiotic spindle origin and determination of cytokinetic planes in sporogenesis of complex thalloid liverworts (Marchantiopsida).

    PubMed

    Brown, Roy C; Lemmon, Betty E; Shimamura, Masaki

    2010-07-01

    As the earliest divergent land plants, bryophytes (mosses, hornworts, and liverworts) provide insight into the evolution of the unique plant process of sporogenesis by which meiosis results in heavy walled spores. New immunohistochemical data on microtubules and gamma-tubulin in four genera of complex thalloid liverworts combined with previously published data on another four genera demonstrate grades in the evolution of spindle organization in meiosis. We have discovered that all recognized forms of microtubule organizing centers (MTOCs) in plant cells (plastid MTOCs, spheroid cytoplasmic MTOCs, polar organizers, and nuclear envelope MTOCs) occur in organization of the meiotic spindle of complex thalloid liverworts. In addition, all aspects of pre-meiotic preparation for quadripartitioning of the sporocyte into a tetrad of spores occur, with the exception of pre-meiotic wall precursors found in certain simple thalloids. The preparation includes morphogenetic plastid migration, cortical bands of microtubules that mark future cytokinetic planes in pre-meiosis, quadrilobing of the cytoplasm during meiotic prophase, and quadripolar microtubule systems that are transformed into functionally bipolar metaphase I spindles. Quadripolar spindle origin is typical of bryophyte sporogenesis even though the MTOCs involved may differ. However, in certain crown taxa of complex thalloids the spindle develops with no traces of quadripolarity and placement of intersporal walls is determined after meiosis, as is typical of higher plants.

  19. Massive cortical reorganization in sighted Braille readers

    PubMed Central

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-01-01

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills. DOI: http://dx.doi.org/10.7554/eLife.10762.001 PMID:26976813

  20. Meiotic sex chromosome inactivation in Drosophila.

    PubMed

    Vibranovski, Maria D

    2014-01-01

    In several different taxa, there is indubitable evidence of transcriptional silencing of the X and Y chromosomes in male meiotic cells of spermatogenesis. However, the so called meiotic sex chromosome inactivation (MSCI) has been recently a hot bed for debate in Drosophila melanogaster. This review covers cytological and genetic observations, data from transgenic constructs with testis-specific promoters, global expression profiles obtained from mutant, wild-type, larvae and adult testes as well as from cells of different stages of spermatogenesis. There is no dispute on that D. melanogaster spermatogenesis presents a down-regulation of X chromosome that does not result from the lack of dosage compensation. However, the issue is currently focused on the level of reduction of X-linked expression, the precise time it occurs and how many genes are affected. The deep examination of data and experiments in this review exposes the limitations intrinsic to the methods of studying MSCI in D. melanogaster. The current methods do not allow us to affirm anything else than the X chromosome down-regulation in meiosis (MSCI). Therefore, conclusion about level, degree or precise timing is inadequate until new approaches are implemented to know the details of MSCI or other processes involved for D. melanogaster model.

  1. Meiotic Sex Chromosome Inactivation in Drosophila

    PubMed Central

    Vibranovski, Maria D.

    2014-01-01

    In several different taxa, there is indubitable evidence of transcriptional silencing of the X and Y chromosomes in male meiotic cells of spermatogenesis. However, the so called meiotic sex chromosome inactivation (MSCI) has been recently a hot bed for debate in Drosophila melanogaster. This review covers cytological and genetic observations, data from transgenic constructs with testis-specific promoters, global expression profiles obtained from mutant, wild-type, larvae and adult testes as well as from cells of different stages of spermatogenesis. There is no dispute on that D. melanogaster spermatogenesis presents a down-regulation of X chromosome that does not result from the lack of dosage compensation. However, the issue is currently focused on the level of reduction of X-linked expression, the precise time it occurs and how many genes are affected. The deep examination of data and experiments in this review exposes the limitations intrinsic to the methods of studying MSCI in D. melanogaster. The current methods do not allow us to affirm anything else than the X chromosome down-regulation in meiosis (MSCI). Therefore, conclusion about level, degree or precise timing is inadequate until new approaches are implemented to know the details of MSCI or other processes involved for D. melanogaster model. PMID:25057326

  2. A new light on the meiotic DSB catalytic complex.

    PubMed

    Robert, Thomas; Vrielynck, Nathalie; Mézard, Christine; de Massy, Bernard; Grelon, Mathilde

    2016-06-01

    Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs). More than 15 years ago, Spo11 was identified as the protein responsible for meiotic DSB formation, notably because of its striking similarities with the A subunit of topoisomerase VI (TopoVI). TopoVI are enzymes that modify DNA topology by generating transient DSBs and are active as heterotetramers, composed of two A and two B subunits. A2 dimers catalyse the DNA cleavage reaction, whereas the B subunits regulate A2 conformation, DNA capture, cleavage and re-ligation. The recent identification in plants and mammals of a B-like TopoVI subunit that interacts with SPO11 and is required for meiotic DSB formation makes us to reconsider our understanding of the meiotic DSB catalytic complex. We provide here an overview of the knowledge on TopoVI structure and mode of action and we compare them with their meiotic counterparts. This allows us to discuss the nature, structure and functions of the meiotic TopoVI-like complex during meiotic DSB formation.

  3. Efficient mutagenesis by CRISPR/Cas system during meiotic maturation of porcine oocytes

    PubMed Central

    ONUMA, Asuka; FUJII, Wataru; SUGIURA, Koji; NAITO, Kunihiko

    2016-01-01

    Genome editing using the CRISPR/Cas system can induce mutations with high efficiency, and allows easier production of genome-modified animals than that offered by the conventional method where embryonic stem cells are used. However, studies using CRISPR/Cas systems have been mostly limited to proliferating somatic cells and pronuclear-stage fertilized eggs. In contrast, the efficiency of a CRISPR/Cas system in immature and maturing oocytes progressing through meiosis has not yet been assessed. In the present study, we evaluated the genome-modification efficiency of the CRISPR/Cas system during meiotic maturation of porcine oocytes. Additionally, the localization of the Cas9 protein in immature oocytes was analyzed in relation to nuclear transport and mutation induction. The results showed that CRISPR/Cas induced mutation with high efficiency even in maturing oocytes with condensed chromosomes, whereas mutations were not induced in GV-stage oocytes. The localization analysis of enhanced green fluorescent protein (EGFP)-tagged Cas9 (Cas9-EGFP) revealed that the nuclei contained lesser Cas9 than the cytoplasm in immature oocytes. Treatment with leptomycin B, a nuclear export inhibitor, increased the amount of nuclear Cas9 and enabled mutation induction in GV oocytes. Our results suggest that CRISPR/Cas systems can be applied to oocytes during meiotic maturation and be implemented in novel applications targeting female genomes. PMID:27773884

  4. Efficient mutagenesis by CRISPR/Cas system during meiotic maturation of porcine oocytes.

    PubMed

    Onuma, Asuka; Fujii, Wataru; Sugiura, Koji; Naito, Kunihiko

    2017-02-16

    Genome editing using the CRISPR/Cas system can induce mutations with high efficiency, and allows easier production of genome-modified animals than that offered by the conventional method where embryonic stem cells are used. However, studies using CRISPR/Cas systems have been mostly limited to proliferating somatic cells and pronuclear-stage fertilized eggs. In contrast, the efficiency of a CRISPR/Cas system in immature and maturing oocytes progressing through meiosis has not yet been assessed. In the present study, we evaluated the genome-modification efficiency of the CRISPR/Cas system during meiotic maturation of porcine oocytes. Additionally, the localization of the Cas9 protein in immature oocytes was analyzed in relation to nuclear transport and mutation induction. The results showed that CRISPR/Cas induced mutation with high efficiency even in maturing oocytes with condensed chromosomes, whereas mutations were not induced in GV-stage oocytes. The localization analysis of enhanced green fluorescent protein (EGFP)-tagged Cas9 (Cas9-EGFP) revealed that the nuclei contained lesser Cas9 than the cytoplasm in immature oocytes. Treatment with leptomycin B, a nuclear export inhibitor, increased the amount of nuclear Cas9 and enabled mutation induction in GV oocytes. Our results suggest that CRISPR/Cas systems can be applied to oocytes during meiotic maturation and be implemented in novel applications targeting female genomes.

  5. Reorganizing the nursing home industry: a proposal.

    PubMed

    Shulman, D; Galanter, R

    1976-01-01

    This paper proposes a reorganization of the nursing home industry with capital facilities owned by government, but with management conducted through a system of competitive contracts with the private sector. The paper explicity demonstrates in real estate finance terms how the present system of private ownership of capital facilities inherently impedes providing a high quality of care. The authors believe that in the proposed industry reorganization, market forces, instead of working against quality care, would be supportive of quality care in a framework that would involve generally less regulation than exists today.

  6. Meiotic recombination, synapsis, meiotic inactivation and sperm aneuploidy in a chromosome 1 inversion carrier.

    PubMed

    Kirkpatrick, Gordon; Chow, Victor; Ma, Sai

    2012-01-01

    Disrupted meiotic behaviour of inversion carriers may be responsible for suboptimal sperm parameters in these carriers. This study investigated meiotic recombination, synapsis, transcriptional silencing and chromosome segregation effects in a pericentric inv(1) carrier. Recombination (MLH1), synapsis (SYCP1, SYCP3) and transcriptional inactivation (γH2AX, BRCA1) were examined by fluorescence immunostaining. Chromosome specific rates of recombination were determined by fluorescence in-situ hybridization. Furthermore, testicular sperm was examined for aneuploidy and segregation of the inv(1). Our findings showed that global recombination rates were similar to controls. Recombination on the inv(1) and the sex chromosomes were reduced. The inv(1) associated with the XY body in 43.4% of cells, in which XY recombination was disproportionately absent, and 94.3% of cells displayed asynapsed regions which displayed meiotic silencing regardless of their association with the XY body. Furthermore, a low frequency of chromosomal imbalance was observed in spermatozoa (3.4%). Our results suggest that certain inversion carriers may display unimpaired global recombination and impaired recombination on the involved and the sex chromosomes during meiosis. Asynapsis or inversion-loop formation in the inverted region may be responsible for impaired spermatogenesis and may prevent sperm-chromosome imbalance.

  7. The POU gene ceh-18 promotes gonadal sheath cell differentiation and function required for meiotic maturation and ovulation in Caenorhabditis elegans.

    PubMed

    Rose, K L; Winfrey, V P; Hoffman, L H; Hall, D H; Furuta, T; Greenstein, D

    1997-12-01

    In Caenorhabditis elegans, specialized contractile myoepithelial cells of the somatic gonad, the gonadal sheath cells, are closely apposed to oocytes and are required for normal meiotic maturation and ovulation. Previously we found that mutations in the ceh-18 gene, which encodes a POU-class homeoprotein expressed in sheath cells, result in oocyte defects. To determine the basis for these oocyte defects, we have used time-lapse video Nomarski microscopy to observe meiotic maturation, ovulation, and early embryogenesis in ceh-18 mutants. In ceh-18 mutants sheath cell contractions are weaker, less frequent, and uncoordinated throughout the sequence of ovulation events, and ovulation is defective. Defective ovulation can result in the formation of endomitotic oocytes in the gonad, the formation of haploid embryos, and reversals in embryonic polarity. ceh-18 mutant oocytes exhibit defects prior to nuclear envelope breakdown, suggesting that they are physiologically different from the wild type. We observed delays in meiotic maturation, as well as maturation out of the normal spatial and temporal sequence, suggesting that proximal sheath cells directly or indirectly promote and spatially restrict meiotic maturation. Analysis of sheath cell differentiation in ceh-18 mutants using antibodies to proteins of the contractile apparatus reveals that although contractile proteins are expressed, the sheath cells appear disorganized. Transmission electron microscopy reveals that ceh-18 mutant sheath cells are morphologically irregular and only loosely cover oocytes. Taken together, these observations indicate that ceh-18 is a crucial determinant of sheath cell differentiation, a function required for normal meiotic maturation and ovulation.

  8. Meiotic DSB patterning: A multifaceted process.

    PubMed

    Cooper, Tim J; Garcia, Valerie; Neale, Matthew J

    2016-01-01

    Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this article we focus upon an emerging element of this control--spatial regulation--detailing recent advances made in understanding how DSBs are evenly distributed across the genome, and present a unified view of the underlying patterning mechanisms employed.

  9. Scaling and fractal behaviour underlying meiotic recombination.

    PubMed

    Waxman, D; Stoletzki, N

    2010-01-01

    In this paper we investigate some of the mathematical properties of meiotic recombination. Working within the framework of a genetic model with n loci, where alpha alleles are possible at each locus, we find that the proportion of all possible diploid parental genotypes that can produce a particular haploid gamete is exp[-n log(alpha(2)/[2alpha-1])]. We show that this proportion connects recombination with a fractal geometry of dimension log(2alpha-1)/log(alpha). The fractal dimension of a geometric object manifests itself when it is measured at increasingly smaller length scales. Decreasing the length scale of a geometric object is found to be directly analogous, in a genetics problem, to specifying a multilocus haplotype at a larger number of loci, and it is here that the fractal dimension reveals itself.

  10. Meiotic DSB patterning: A multifaceted process

    PubMed Central

    Cooper, Tim J.; Garcia, Valerie; Neale, Matthew J.

    2016-01-01

    Abstract Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this article we focus upon an emerging element of this control—spatial regulation—detailing recent advances made in understanding how DSBs are evenly distributed across the genome, and present a unified view of the underlying patterning mechanisms employed. PMID:26730703

  11. Meiotic behavior of Brachiaria decumbens hybrids.

    PubMed

    Souza, V F; Pagliarini, M S; Valle, C B; Bione, N C P; Menon, M U; Mendes-Bonato, A B

    2015-10-21

    Brachiaria decumbens is a forage grass of inestimable value for livestock in Brazil due to its production of good quality forage even when planted on acid and poor soils, although it is susceptible to pasture spittlebugs. Only one cultivar, cv. Basilisk, has been used as the pollen donor in crosses with Brachiaria ruziziensis since 1988 at Embrapa Gado de Corte Research Center. Breeding within the species only became possible from 2009 when sexual accessions were successfully tetraploidized using colchicine. Three sexual genotypes were obtained and hybridization within B. decumbens was finally achieved. Here, we evaluated microspore tetrads using conventional cytology and found meiotic indexes above 78% for all three female genitors (cD24-2, cD24-27, cD24-45), but a low meiotic index (<22%) in the natural apomictic genitor D62 (cv. Basilisk) and in 49 hybrids. Analysis of the relationship between abnormal tetrad frequency and non-viable pollen grains yielded a highly significant Pearson correlation coefficient. The t-test proved significant for the progeny of cD24-45 x D62, with lower abnormalities and pollen sterility when compared to the other two progenies resulting from cD24-2 and cD24-27 crossed to D62, but these two did not differ. Apomictic hybrids such as S036 and X030 with low pollen sterility have the potential for use in cultivar development, whereas the sexual hybrids T012, X072, and X078 might be of use as female genitors in polycross blocks if they display good agronomic traits.

  12. REORGANIZED SCIENCE CURRICULUM, K, KINDERGARTEN SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THIS VOLUME PROVIDES THE KINDERGARTEN TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. A CHART INDICATES CONCEPTS TO BE TAUGHT IN GRADES K-3 FOR EACH OF THE FOUR AREAS AROUND WHICH THE PROGRAM IS DESIGNED. THE AREAS ARE (1) THE…

  13. REORGANIZED SCIENCE CURRICULUM, 1, GRADE ONE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE SECOND IN A SERIES OF17 VOLUMES, THIS VOLUME PROVIDES THE FIRST GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. A CHART INDICATES CONCEPT TO BE TAUGHT IN GRADES K-3 FOR EACH OF THE FOUR AREAS AROUND WHICH THE PROGRAM…

  14. REORGANIZED SCIENCE CURRICULUM, 2, GRADE TWO SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE THIRD IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE SECOND GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. A CHART INDICATES CONCEPTS TO BE TAUGHT IN GRADES K-3, IN EACH OF THE FOUR AREAS AROUND WHICH THE PROGRAM…

  15. REORGANIZED SCIENCE CURRICULUM, 3, GRADE THREE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE FOURTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE THIRD GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. A CHART INDICATES CONCEPTS TO BE TAUGHT IN GRADES K-3 FOR EACH OF THE FOUR AREAS AROUND WHICH THE PROGRAM…

  16. COMMUNITY CONFLICT RELATED TO SCHOOL DISTRICT REORGANIZATION.

    ERIC Educational Resources Information Center

    JONASSEN, CHRISTEN T.

    NORMATIVE SOCIAL AND CULTURAL FACTORS RELATING TO THE PROCESS OF SCHOOL REDISTRICTING AND CONSOLIDATION WERE IDENTIFIED AND DESCRIBED, AND SOME OF THE INTERRELATIONSHIPS BETWEEN THESE FACTORS DETERMINED. SUCH DATA COULD BE USED DURING A SCHOOL DISTRICT REORGANIZATION PROCESS BY BOTH EDUCATORS AND ADMINISTRATORS TO MINIMIZE TENSION AND MITIGATE THE…

  17. Proteins involved in meiotic recombination: a role in male infertility?

    PubMed

    Sanderson, Matthew L; Hassold, Terry J; Carrell, Douglas T

    2008-01-01

    Meiotic recombination results in the formation of crossovers, by which genetic information is exchanged between homologous chromosomes during prophase I of meiosis. Recombination is a complex process involving many proteins. Alterations in the genes involved in recombination may result in infertility. Molecular studies have improved our understanding of the roles and mechanisms of the proteins and protein complexes involved in recombination, some of which have function in mitotic cells as well as meiotic cells. Human gene sequencing studies have been performed for some of these genes and have provided further information on the phenotypes observed in some infertile individuals. However, further studies are needed to help elucidate the particular role(s) of a given protein and to increase our understanding of these protein systems. This review will focus on our current understanding of proteins involved in meiotic recombination from a genomic perspective, summarizing our current understanding of known mutations and single nucleotide polymorphisms that may affect male fertility by altering meiotic recombination.

  18. Coevolutionary dynamics of polyandry and sex-linked meiotic drive.

    PubMed

    Holman, Luke; Price, Thomas A R; Wedell, Nina; Kokko, Hanna

    2015-03-01

    Segregation distorters located on sex chromosomes are predicted to sweep to fixation and cause extinction via a shortage of one sex, but in nature they are often found at low, stable frequencies. One potential resolution to this longstanding puzzle involves female multiple mating (polyandry). Because many meiotic drivers severely reduce the sperm competitive ability of their male carriers, females are predicted to evolve more frequent polyandry and thereby promote sperm competition when a meiotic driver invades. Consequently, the driving chromosome's relative fitness should decline, halting or reversing its spread. We used formal modeling to show that this initially appealing hypothesis cannot resolve the puzzle alone: other selective pressures (e.g., low fitness of drive homozygotes) are required to establish a stable meiotic drive polymorphism. However, polyandry and meiotic drive can strongly affect one another's frequency, and polyandrous populations may be resistant to the invasion of rare drive mutants.

  19. Upgrading the U.S. Workplace: Do Reorganization, Education Help?

    ERIC Educational Resources Information Center

    Bassi, Laurie J.

    1995-01-01

    Surveys of companies involved in reorganization found that firms that establish workplace education programs and reorganize work report noticeable improvements in their employees' abilities and the quality of their products. (Author)

  20. Meiotic behavior as a selection tool in silage corn breeding.

    PubMed

    Souza, V F; Pagliarini, M S; Scapim, C A; Rodovalho, M; Faria, M V

    2010-10-19

    In breeding programs, commercial hybrids are frequently used as a source of inbred lines to obtain new hybrids. Considering that maize production is dependent on viable gametes, the selection of populations to obtain inbred lines with high meiotic stability could contribute to the formation of new silage corn hybrids adapted to specific region. We evaluated the meiotic stability of five commercial hybrids of silage corn used in southern Brazil with conventional squashing methods. All of them showed meiotic abnormalities. Some abnormalities, such as abnormal chromosome segregation and absence of cytokinesis, occurred in all the genotypes, while others, including cytomixis and abnormal spindle orientation, were found only in some genotypes. The hybrid SG6010 had the lowest mean frequency of abnormal cells (21.27%); the highest frequency was found in the hybrid P30K64 (44.43%). However, the frequency of abnormal meiotic products was much lower in most genotypes, ranging from 7.63% in the hybrid CD304 to 43.86% in Garra. Taking into account the percentage of abnormal meiotic products and, hence, meiotic stability, only the hybrids CD304, P30K64, SG6010, and P30F53 are recommended to be retained in the breeding program to obtain inbred lines to create new hybrids.

  1. 12 CFR 575.4 - Grounds for disapproval of reorganizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... resources. Failure by a reorganizing association and any acquiree association to submit a business plan in connection with a Reorganization Notice, or submission of a business plan that projects activities that are... materially, from the business plan submitted in connection with the Reorganization Notice, unless...

  2. 12 CFR 239.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Mutual holding company reorganizations. 239.3... RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.3 Mutual holding company reorganizations. (a) A mutual savings association may not reorganize to become...

  3. 12 CFR 239.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Mutual holding company reorganizations. 239.3... RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.3 Mutual holding company reorganizations. (a) A mutual savings association may not reorganize to become...

  4. 12 CFR 239.3 - Mutual holding company reorganizations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Mutual holding company reorganizations. 239.3... RESERVE SYSTEM (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.3 Mutual holding company reorganizations. (a) A mutual savings association may not reorganize to become...

  5. Seafloor Spreading Reorganization South of Iceland

    NASA Astrophysics Data System (ADS)

    Hey, R. N.; Martinez, F.; Benediktsdottir, A.; Hoskuldsson, A.

    2011-12-01

    There is a major ongoing diachronous reorganization of North Atlantic seafloor spreading occurring at present south of Iceland, from an orthogonal ridge/transform geometry to the present oblique spreading geometry without transform faults on the Reykjanes Ridge. This reorganization is presently interpreted as a thermal phenomenon, with a pulse of warmer mantle expanding away from the Iceland plume causing a progressive change in subaxial mantle rheology from brittle to ductile, so that transform faults can no longer be maintained. Given that this is certainly the most obvious and arguably the type-example of active plate boundary reorganization, it is somewhat surprising that a thermal mechanism has near universal acceptance here whereas most if not all other seafloor spreading reorganizations are equally universally thought to result from the tectonic rift propagation mechanism. This suggests the possibility that either the thermal model might be wrong here, or that the propagating rift (PR) model might be wrong elsewhere. The reason the PR alternative was ignored here was that the younger seafloor record flanking the Reykjanes Ridge consisting of V-shaped ridges, troughs & scarps (VSRs) enclosed by the reorganization wake seemed to prove that there had been no rift propagation. It had long been thought that these VSRs were symmetric about the spreading axis, & if this conventional wisdom (that led directly to the pulsing Iceland plume model) were true, rift propagation, which must produce asymmetry, could not have occurred. However, our expedition collected marine geophysical data that showed that the VSRs actually have an asymmetric geometry consistent with rift propagation, not with previous pulsing plume models, & thus they can no longer be considered convincing proof of a pulsing Iceland plume. Although we had previously noted that plume pulses might drive the propagators away from Iceland, a significant new result (Benediktsdóttir et al., 2011) is that

  6. The incorporation of myo-inositol into phosphatidylinositol derivatives is stimulated during hormone-induced meiotic maturation of amphibian oocytes

    SciTech Connect

    Carrasco, D.; Allende, C.C.; Allende, J.E. )

    1990-12-01

    The incorporation of myo-({sup 3}H)inositol into phosphatidylinositol and its phosphorylated derivatives was studied by microinjection of the radioactive precursor into Xenopus laevis oocytes. Induction of meiotic maturation of the oocytes by treatment with either progesterone one or insulin resulted in a significant increase in the incorporation of myo-({sup 3}H)inositol into the phospholipid fraction. This increase occurred 3-6 h after hormonal treatment, a time coincident with the start of the breakdown of the nuclear envelope, and requires protein synthesis. The effect of progesterone and insulin contrasts with the effect of acetylcholine, which acts through a muscarinic receptor causing the activation of phospholipase C, since the latter effector causes an increase in myo-({sup 3}H)inositol incorporation, which is more rapid and does not require protein synthesis. These results suggest that the meiotic maturation process is connected with changes in inositol metabolism in the amphibian oocyte.

  7. DNase I-hypersensitive sites and transcription factor-binding motifs within the mouse E beta meiotic recombination hot spot.

    PubMed

    Shenkar, R; Shen, M H; Arnheim, N

    1991-04-01

    The second intron of the E beta gene in the mouse major histocompatibility complex is the site of a meiotic recombination hot spot. We detected two DNase I-hypersensitive sites in this intron in meiotic cells isolated from mouse testes. One site appears to be constitutive and is found in other tissues regardless of whether or not they express the E beta gene. Near this hypersensitive site are potential binding motifs for H2TF1/KBF1, NF kappa B, and octamer transcription factors. Gel retardation studies with mouse lymphoma cell nuclear extracts confirmed that each of these motifs is capable of binding protein. The binding of transcription factors may contribute to the enhancement of recombination potential by altering chromatin structure and increasing the accessibility of the DNA to the recombination machinery.

  8. Active biopolymers confer fast reorganization kinetics.

    PubMed

    Swanson, Douglas; Wingreen, Ned S

    2011-11-18

    Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime (or mean first-passage time, or MFPT) and mean length, MFPT∼, by analogy to 1D Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT∼(1/2). Since, to be biologically useful, structural biopolymers must typically be many monomers long yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify the active polymers' greater energy cost.

  9. Human X-linked Intellectual Disability Factor CUL4B Is Required for Post-meiotic Sperm Development and Male Fertility

    PubMed Central

    Lin, Chien-Yu; Chen, Chun-Yu; Yu, Chih-Hsiang; Yu, I-Shing; Lin, Shu-Rung; Wu, June-Tai; Lin, Ying-Hung; Kuo, Pao-Lin; Wu, Jui-Ching; Lin, Shu-Wha

    2016-01-01

    In this study, we demonstrate that an E3-ubiquitin ligase associated with human X-linked intellectual disability, CUL4B, plays a crucial role in post-meiotic sperm development. Initially, Cul4bΔ/Y male mice were found to be sterile and exhibited a progressive loss in germ cells, thereby leading to oligoasthenospermia. Adult Cul4b mutant epididymides also contained very low numbers of mature spermatozoa, and these spermatazoa exhibited pronounced morphological abnormalities. In post-meiotic spermatids, CUL4B was dynamically expressed and mitosis of spermatogonia and meiosis of spermatocytes both appeared unaffected. However, the spermatids exhibited significantly higher levels of apoptosis during spermiogenesis, particularly during the acrosome phase through the cap phase. Comparative proteomic analyses identified a large-scale shift between wild-type and Cul4b mutant testes during early post-meiotic sperm development. Ultrastructural pathology studies further detected aberrant acrosomes in spermatids and nuclear morphology. The protein levels of both canonical and non-canonical histones were also affected in an early spermatid stage in the absence of Cul4b. Thus, X-linked CUL4B appears to play a critical role in acrosomal formation, nuclear condensation, and in regulating histone dynamics during haploid male germ cell differentiation in relation to male fertility in mice. Thus, it is possible that CUL4B-selective substrates are required for post-meiotic sperm morphogenesis. PMID:26832838

  10. Human X-linked Intellectual Disability Factor CUL4B Is Required for Post-meiotic Sperm Development and Male Fertility.

    PubMed

    Lin, Chien-Yu; Chen, Chun-Yu; Yu, Chih-Hsiang; Yu, I-Shing; Lin, Shu-Rung; Wu, June-Tai; Lin, Ying-Hung; Kuo, Pao-Lin; Wu, Jui-Ching; Lin, Shu-Wha

    2016-02-02

    In this study, we demonstrate that an E3-ubiquitin ligase associated with human X-linked intellectual disability, CUL4B, plays a crucial role in post-meiotic sperm development. Initially, Cul4b(Δ)/Y male mice were found to be sterile and exhibited a progressive loss in germ cells, thereby leading to oligoasthenospermia. Adult Cul4b mutant epididymides also contained very low numbers of mature spermatozoa, and these spermatazoa exhibited pronounced morphological abnormalities. In post-meiotic spermatids, CUL4B was dynamically expressed and mitosis of spermatogonia and meiosis of spermatocytes both appeared unaffected. However, the spermatids exhibited significantly higher levels of apoptosis during spermiogenesis, particularly during the acrosome phase through the cap phase. Comparative proteomic analyses identified a large-scale shift between wild-type and Cul4b mutant testes during early post-meiotic sperm development. Ultrastructural pathology studies further detected aberrant acrosomes in spermatids and nuclear morphology. The protein levels of both canonical and non-canonical histones were also affected in an early spermatid stage in the absence of Cul4b. Thus, X-linked CUL4B appears to play a critical role in acrosomal formation, nuclear condensation, and in regulating histone dynamics during haploid male germ cell differentiation in relation to male fertility in mice. Thus, it is possible that CUL4B-selective substrates are required for post-meiotic sperm morphogenesis.

  11. Cortical Reorganization following Injury Early in Life

    PubMed Central

    Artzi, Moran; Shiran, Shelly Irene; Weinstein, Maya; Myers, Vicki; Tarrasch, Ricardo; Schertz, Mitchell; Fattal-Valevski, Aviva; Miller, Elka; Gordon, Andrew M.; Green, Dido; Ben Bashat, Dafna

    2016-01-01

    The brain has a remarkable capacity for reorganization following injury, especially during the first years of life. Knowledge of structural reorganization and its consequences following perinatal injury is sparse. Here we studied changes in brain tissue volume, morphology, perfusion, and integrity in children with hemiplegia compared to typically developing children, using MRI. Children with hemiplegia demonstrated reduced total cerebral volume, with increased cerebrospinal fluid (CSF) and reduced total white matter volumes, with no differences in total gray matter volume, compared to typically developing children. An increase in cortical thickness at the hemisphere contralateral to the lesion (CLH) was detected in motor and language areas, which may reflect compensation for the gray matter loss in the lesion area or retention of ipsilateral pathways. In addition, reduced cortical thickness, perfusion, and surface area were detected in limbic areas. Increased CSF volume and precentral cortical thickness and reduced white matter volume were correlated with worse motor performance. Brain reorganization of the gray matter within the CLH, while not necessarily indicating better outcome, is suggested as a response to neuronal deficits following injury early in life. PMID:27298741

  12. Mechanisms by which a lack of germinal vesicle (GV) material causes oocyte meiotic defects: a study using oocytes manipulated to replace GV with primary spermatocyte nuclei.

    PubMed

    Zhang, Jie; Cui, Wei; Li, Qing; Wang, Tian-Yang; Sui, Hong-Shu; Wang, Jun-Zuo; Luo, Ming-Jiu; Tan, Jing-He

    2013-10-01

    Oocytes with germinal vesicles (GVs) replaced with somatic nuclei exhibit meiotic abnormalities. Although this suggests an exclusive role for GV material in meiosis, mechanisms by which a lack of GV material causes meiotic defects are unknown. Knowledge of these mechanisms will help us to understand meiotic control, nuclear-cytoplasmic interactions, and cellular reprogramming. This study showed that although oocytes with prometaphase I chromosomes replaced with primary spermatocyte nuclei (PSN) did not, oocytes with GV replaced with PSN (PSG oocytes) did display meiotic defects. Among the defects, insufficient chromosome condensation with chromosome bridges was associated with spindle abnormalities. Abnormal spindle migration, cortical nonpolarization, and the aberrant spindle caused randomly positioning of cleavage furrows, leading to large first polar bodies (PB1) and unequal allocation of chromosomes and mitogen-activated protein kinases (MAPK) between oocyte and PB1. Spindle assembly checkpoint was activated but did not stop the incorrect division. The unequal MAPK allocation resulted in differences in pronuclear formation and PB1 degeneration; oocytes receiving more MAPK were more capable of forming pronuclear rudiments, whereas PB1 receiving more MAPK degenerated sooner than those that received less. Because none of the PSG oocytes or the enucleated GV oocytes injected with sperm heads showed cortical polarization in spite of chromosome localization close to the oolemma and because the PSG oocytes receiving more MAPK could form only pronuclear rudiments and not normal pronuclei, we suggest that the GV material plays essential roles in polarization and pronuclear formation on top of those played by chromosomes or MAPK. In conclusion, using PSG oocytes as models, this study has revealed the primary pathways by which a lack of GV material cause meiotic defects, laying a foundation for future research on the role of GV material in oocyte meiotic control.

  13. Analysis of meiotic segregation, using single-sperm typing: Meiotic drive at the myotonic dystrophy locus

    SciTech Connect

    Leeflang, E.P.; Arnheim, N.; McPeek, M.S.

    1996-10-01

    Meiotic drive at the myotonic dystrophy (DM) locus has recently been suggested as being responsible for maintaining the frequency, in the human population, of DM chromosomes capable of expansion to the disease state. In order to test this hypothesis, we have studied samples of single sperm from three individuals heterozygous at the DM locus, each with one allele larger and one allele smaller than 19 CTG repeats. To guard against the possible problem of differential PCR amplification rates based on the lengths of the alleles, the sperm were also typed at another closely linked marker whose allele size was unrelated to the allele size at the DM locus. Using statistical models specifically designed to study single-sperm segregation data, we find no evidence of meiotic segregation distortion. The upper limit of the two-sided 95% confidence interval for the estimate of the common segregation probability for the three donors is at or below .515 for all models considered, and no statistically significant difference from .5 is detected in any of the models. This suggests that any greater amount of segregation distortion at the myotonic dystrophy locus must result from events following sperm ejaculation. The mathematical models developed make it possible to study segregation distortion with high resolution by using sperm-typing data from any locus. 26 refs., 1 fig., 8 tabs.

  14. Meiotic recombination breakpoints are associated with open chromatin and enriched with repetitive DNA elements in potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meiotic recombination provides the framework for the genetic variation in natural and artificial populations of eukaryotes through the creation of novel haplotypes. Thus, determining the molecular characteristics of meiotic recombination remains essential for future plant breeding efforts, which hea...

  15. piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis.

    PubMed

    Goh, Wee Siong Sho; Falciatori, Ilaria; Tam, Oliver H; Burgess, Ralph; Meikar, Oliver; Kotaja, Noora; Hammell, Molly; Hannon, Gregory J

    2015-05-15

    MIWI catalytic activity is required for spermatogenesis, indicating that piRNA-guided cleavage is critical for germ cell development. To identify meiotic piRNA targets, we augmented the mouse piRNA repertoire by introducing a human meiotic piRNA cluster. This triggered a spermatogenesis defect by inappropriately targeting the piRNA machinery to mouse mRNAs essential for germ cell development. Analysis of such de novo targets revealed a signature for pachytene piRNA target recognition. This enabled identification of both transposable elements and meiotically expressed protein-coding genes as targets of native piRNAs. Cleavage of genic targets began at the pachytene stage and resulted in progressive repression through meiosis, driven at least in part via the ping-pong cycle. Our data support the idea that meiotic piRNA populations must be strongly selected to enable successful spermatogenesis, both driving the response away from essential genes and directing the pathway toward mRNA targets that are regulated by small RNAs in meiotic cells.

  16. Chromosomal abnormalities, meiotic behavior and fertility in domestic animals.

    PubMed

    Villagómez, D A F; Pinton, A

    2008-01-01

    Since the advent of the surface microspreading technique for synaptonemal complex analysis, increasing interest in describing the synapsis patterns of chromosome abnormalities associated with fertility of domestic animals has been noticed during the past three decades. In spite of the number of scientific reports describing the occurrence of structural chromosome abnormalities, their meiotic behavior and gametic products, little is known in domestic animal species about the functional effects of such chromosome aberrations in the germ cell line of carriers. However, some interesting facts gained from recent and previous studies on the meiotic behavior of chromosome abnormalities of domestic animals permit us to discuss, in the frame of recent knowledge emerging from mouse and human investigations, the possible mechanism implicated in the well known association between meiotic disruption and chromosome pairing failure. New cytogenetic techniques, based on molecular and immunofluorescent analyses, are allowing a better description of meiotic processes, including gamete production. The present communication reviews the knowledge of the meiotic consequences of chromosome abnormalities in domestic animals.

  17. Meiotic Consequences of Genetic Divergence Across the Murine Pseudoautosomal Region

    PubMed Central

    Dumont, Beth L.

    2017-01-01

    The production of haploid gametes during meiosis is dependent on the homology-driven processes of pairing, synapsis, and recombination. On the mammalian heterogametic sex chromosomes, these key meiotic activities are confined to the pseudoautosomal region (PAR), a short region of near-perfect sequence homology between the X and Y chromosomes. Despite its established importance for meiosis, the PAR is rapidly evolving, raising the question of how proper X/Y segregation is buffered against the accumulation of homology-disrupting mutations. Here, I investigate the interplay of PAR evolution and function in two interfertile house mouse subspecies characterized by structurally divergent PARs, Mus musculus domesticus and M. m. castaneus. Using cytogenetic methods to visualize the sex chromosomes at meiosis, I show that intersubspecific F1 hybrids harbor an increased frequency of pachytene spermatocytes with unsynapsed sex chromosomes. This high rate of asynapsis is due, in part, to the premature release of synaptic associations prior to completion of prophase I. Further, I show that when sex chromosomes do synapse in intersubspecific hybrids, recombination is reduced across the paired region. Together, these meiotic defects afflict ∼50% of spermatocytes from F1 hybrids and lead to increased apoptosis in meiotically dividing cells. Despite flagrant disruption of the meiotic program, a subset of spermatocytes complete meiosis and intersubspecific F1 males remain fertile. These findings cast light on the meiotic constraints that shape sex chromosome evolution and offer initial clues to resolve the paradox raised by the rapid evolution of this functionally significant locus. PMID:28100589

  18. Role of G-protein-coupled estrogen receptor (GPER/GPR30) in maintenance of meiotic arrest in fish oocytes.

    PubMed

    Thomas, Peter

    2017-03-01

    An essential role for GPER (formerly known as GPR30) in regulating mammalian reproduction has not been identified to date, although it has shown to be involved in the regulation a broad range of other estrogen-dependent functions. In contrast, an important reproductive role for GPER in the maintenance of oocyte meiotic arrest has been identified in teleost fishes, which is briefly reviewed here. Recent studies have clearly shown that ovarian follicle production of estradiol-17β (E2) maintains meiotic arrest in several teleost species through activation of GPER coupled to a stimulatory G protein (Gs) on oocyte plasma membranes resulting in stimulation of cAMP production and maintenance of elevated cAMP levels. Studies with denuded zebrafish oocytes and with microinjection of GPER antisense oligonucleotides into oocytes have demonstrated the requirement for both ovarian follicle production of estrogens and expression of GPER on the oocyte surface for maintenance of meiotic arrest. This inhibitory action of E2 on the resumption of meiosis is mimicked by the GPER-selective agonist G-1, by the GPER agonists and nuclear ER antagonists, ICI 182,780 and tamoxifen, and also by the xenoestrogen bisphenol-A (BPA) and related alkylphenols. GPER also maintains meiotic arrest of zebrafish oocytes through estrogen- and BPA-dependent GPER activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) signaling. Interestingly, progesterone receptor component 1 (PGRMC1) is also involved in estrogen maintenance of meiotic arrest through regulation of EGFR expression on the oocyte plasma membrane. The preovulatory surge in LH secretion induces the ovarian synthesis of progestin hormones that activate a membrane progestin receptor alpha (mPRα)/inhibitory G protein (Gi) pathway. It also increases ovarian synthesis of the catecholestrogen, 2-hydroxy-estradiol-17β (2-OHE2) which inhibits the GPER/Gs/adenylyl cyclase pathway. Both of these LH actions

  19. Dimethyl Sulfoxide Perturbs Cell Cycle Progression and Spindle Organization in Porcine Meiotic Oocytes

    PubMed Central

    Li, Xuan; Wang, Yan-Kui; Song, Zhi-Qiang; Du, Zhi-Qiang; Yang, Cai-Xia

    2016-01-01

    Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans. PMID:27348312

  20. Meiotic Recombination in Schizosaccharomyces pombe: A Paradigm for Genetic and Molecular Analysis

    PubMed Central

    Cromie, Gareth; Smith, Gerald R.

    2009-01-01

    The fission yeast Schizosaccharomyces pombe is especially well-suited for both genetic and biochemical analysis of meiotic recombination. Recent studies have revealed ~50 gene products and two DNA intermediates central to recombination, which we place into a pathway from parental to recombinant DNA. We divide recombination into three stages – chromosome alignment accompanying nuclear “horsetail” movement, formation of DNA breaks, and repair of those breaks – and we discuss the roles of the identified gene products and DNA intermediates in these stages. Although some aspects of recombination are similar to those in the distantly related budding yeast Saccharomyces cerevisiae, other aspects are distinctly different. In particular, many proteins required for recombination in one species have no clear ortholog in the other, and the roles of identified orthologs in regulating recombination often differ. Furthermore, in S. pombe the dominant joint DNA molecule intermediates contain single Holliday junctions, and intersister joint molecules are more frequent than interhomolog types, whereas in S. cerevisiae interhomolog double Holliday junctions predominate. We speculate that meiotic recombination in other organisms shares features of each of these yeasts. PMID:20157622

  1. Depletion of the LINC complex disrupts cytoskeleton dynamics and meiotic resumption in mouse oocytes

    PubMed Central

    Luo, Yibo; Lee, In-Won; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2016-01-01

    The SUN (Sad-1/UNC-84) and KASH (Klarsicht/ANC-1/Syne/homology) proteins constitute the linker of nucleoskeleton and cytoskeleton (LINC) complex on the nuclear envelope. To date, the SUN1/KASH5 complex is known to function as meiotic-specific factors. In this study, gene-silencing methods were used to explore the roles of SUN1 and KASH5 in mouse oocytes after prophase. SUN1 was detected throughout the nucleus; however, KASH5 was dispersed through the cell. After germinal vesicle breakdown (GVBD), SUN1 and KASH5 migrated during spindle formation and localized to the spindle poles at the MII stage. Most oocytes were arrested at the germinal vesicle (GV) stage after depletion of either SUN1 or KASH5. The DNA damage response was triggered in SUN1-depleted oocytes and thus gave rise to the G2/M checkpoint protein, p-CHK1. Oocytes that underwent GVBD had relatively small and abnormal spindles and lower levels of cytoplasm F-actin mesh. Immunofluorescence results also indicated the dislocation of pericentrin and P150Glued after SUN1 or KASH5 depletion. Furthermore, KASH5 localized exclusively near the oocyte cortex after SUN1 depletion, but SUN1 localization was unaffected in KASH5-depleted oocytes. Taken together, the results suggest that SUN1 and KASH5 are essential factors in the regulation of meiotic resumption and spindle formation. PMID:26842404

  2. Meiotic behavior and H3K4m distribution in B chromosomes of Characidium gomesi (Characiformes, Crenuchidae)

    PubMed Central

    Serrano, Érica Alves; Araya-Jaime, Cristian; Suárez-Villota, Elkin Y.; Oliveira, Claudio; Foresti, Fausto

    2016-01-01

    Abstract Characidium gomesi Travasso, 1956 specimens from the Pardo River have up to four heterochromatic supernumerary chromosomes, derived from the sex chromosomes. To access the meiotic behavior and distribution of an active chromatin marker, males and females of Characidium gomesi with two or three B chromosomes were analyzed. Mitotic chromosomes were characterized using C-banding and FISH with B chromosome probes. Meiocytes were subjected to immunofluorescence-FISH assay using anti-SYCP3, anti-H3K4m, and B chromosomes probes. Molecular homology of supernumeraries was confirmed by FISH and by its bivalent conformation in individuals with two of these chromosomes. In individuals with three Bs, these elements formed a bivalent and a univalent. Supernumerary and sex chromosomes exhibited H3K4m signals during pachytene contrasting with their heterochromatic and asynaptic nature, which suggest a more structural role than functional of this histone modification. The implications of this result are discussed in light of the homology, meiotic nuclear organization, and meiotic silencing of unsynapsed chomatin. PMID:27551347

  3. The role of meiotic drive in hybrid male sterility

    PubMed Central

    McDermott, Shannon R.; Noor, Mohamed A. F.

    2010-01-01

    Meiotic drive causes the distortion of allelic segregation away from Mendelian expected ratios, often also reducing fecundity and favouring the evolution of drive suppressors. If different species evolve distinct drive-suppressor systems, then hybrid progeny may be sterile as a result of negative interactions of these systems' components. Although the hypothesis that meiotic drive may contribute to hybrid sterility, and thus species formation, fell out of favour early in the 1990s, recent results showing an association between drive and sterility have resurrected this previously controversial idea. Here, we review the different forms of meiotic drive and their possible roles in speciation. We discuss the recent empirical evidence for a link between drive and hybrid male sterility, also suggesting a possible mechanistic explanation for this link in the context of chromatin remodelling. Finally, we revisit the population genetics of drive that allow it to contribute to speciation. PMID:20308102

  4. Cytogenetic analysis of meiotic cells obtained from stallion testes.

    PubMed

    Bugno-Poniewierska, Monika; Dardzińska, Aneta; Pawlina, Klaudia; Słota, Ewa

    2010-01-01

    A normal course of meiosis and the associated course of spermatogenesis in males are very significant from the viewpoint of animal breeding, in particular animal reproduction. This takes on special significance when studying late-maturing animals such as horses. The aim of the study was to analyse meiotic cells, with particular consideration of synaptonemal complexes obtained from the testes of young stallions and cryptorchids, based on observations of the X-Y bivalent. The analysis was performed in successive stages of meiotic division using the FISH technique. The greatest diversity and most advanced meiotic stages were observed in the normal testis of a unilateral cryptorchid. No abnormalities were observed that could have caused cryptorchidism in the analysed horses.

  5. Dynamic reorganization of the actin cytoskeleton

    PubMed Central

    Gressin, Laurène; Théry, Manuel; Blanchoin, Laurent

    2015-01-01

    Cellular processes, including morphogenesis, polarization, and motility, rely on a variety of actin-based structures. Although the biochemical composition and filament organization of these structures are different, they often emerge from a common origin. This is possible because the actin structures are highly dynamic. Indeed, they assemble, grow, and disassemble in a time scale of a second to a minute. Therefore, the reorganization of a given actin structure can promote the formation of another. Here, we discuss such transitions and illustrate them with computer simulations. PMID:26989473

  6. Evidence of cortical reorganization in hemiparetic patients

    SciTech Connect

    Brion, J.P.; Demeurisse, G.; Capon, A. )

    1989-08-01

    We studied the mechanisms underlying the recovery of motor function of the hand using a bidimensional xenon-133 inhalation technique to measure regional cerebral blood flow at rest and during the performance of a motor task (test condition). The regional cerebral blood flow patterns under rest and test conditions were compared in normal control and in stroke patients with either a cortico-subcortical or a deep-seated lesion. Functional recovery appears to depend upon cortical reorganization involving both hemispheres, particularly in both parietal regions in the subgroup of patients with cortico-subcortical lesions.

  7. 76 FR 71878 - Corporate Reorganizations; Allocation of Basis in “All Cash D” Reorganizations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... ``All Cash D'' Reorganizations AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final and... the issuing corporation. For example, assume that J owns all the stock of corporations X and Y, and X owns all of the stock of corporation T. X has a $150 basis in the T stock. The corporations do not...

  8. Regulation of transcription of meiotic cell cycle and terminal differentiation genes by the testis-specific Zn-finger protein matotopetli.

    PubMed

    Perezgasga, Lucia; Jiang, JianQiao; Bolival, Benjamin; Hiller, Mark; Benson, Elizabeth; Fuller, Margaret T; White-Cooper, Helen

    2004-04-01

    A robust developmentally regulated and cell type specific transcriptional programme is activated in primary spermatocytes in preparation for differentiation of the male gametes during spermatogenesis. Work in Drosophila is beginning to reveal the genetic networks that regulate this gene expression. The Drosophila aly-class meiotic arrest loci are essential for activation of transcription of many differentiation-specific genes, as well as several genes important for meiotic cell cycle progression, thus linking meiotic cell cycle progression to cellular differentiation during spermatogenesis. The three previously described aly-class proteins (aly, comr and achi/vis) form a complex and are associated with chromatin in primary spermatocytes. We identify, clone and characterize a new aly-class meiotic arrest gene, matotopetli (topi), which encodes a testis-specific Zn-finger protein that physically interacts with Comr. The topi mutant phenotype is most like achi/vis in that topi function is not required for the nuclear localization of Aly or Comr, but is required for their accumulation on chromatin. Most target genes in the transcriptional programme depend on both topi and achi/vis; however, a small subset of target genes are differentially sensitive to loss of topi or achi/vis, suggesting that these aly-class predicted DNA binding proteins can act independently in some contexts.

  9. Compressing bitmap indices by data reorganization

    SciTech Connect

    Pinar, Ali; Tao, Tao; Ferhatosmanoglu, Hakan

    2004-07-01

    Many scientific applications generate massive volumes of data through observations or computer simulations, bringing up the need for effective indexing methods for efficient storage and retrieval of scientific data. Unlike conventional databases, scientific data is mostly read-only and its volume can reach to the order of petabytes, making a compact index structure vital. Bit map indexing has been successfully applied to scientific databases by exploiting the fact that scientific data are enumerated or numerical. Bitmap indices can be compressed with variants of run length encoding for a compact index structure. However even this may not be enough for the enormous data generated in some applications such as high energy physics. In this paper, we study how to reorganize bitmap tables for improved compression rates. Our algorithms are used just as a preprocessing step, thus there is no need to revise the current indexing techniques and the query processing algorithms. We introduce the tuple reordering problem, which aims to reorganize database tuples for optimal compression rates. We propose Gray code ordering algorithm for this NP-Complete problem, which is an in-place algorithm, and runs in linear time in the order of the size of the database. We also discuss how the tuple reordering problem can be reduced to the traveling salesperson problem. Our experimental results on real data sets show that the compression ratio can be improved by a factor of 4 to 7.

  10. [Cortical cytoskeletal ring in prophase II leads to correction of abnormalities of the first meiotic division and to meiotic restitution of pollen mother cell nucleus].

    PubMed

    Shamina, N V; Zaporozhchenko, I A; Maksiutova, Iu R; Shatskaia, O A

    2007-01-01

    The deviation of prophase cytoskeletal ring formation was determined during meiotic division in 50% of pollen mother cells (PMCs) in maize haploid No 1498 (Zea mays). At prophase in both meiotic divisions the cytoskeletal ring is formed in cortical region of cytoplasm instead of perinuclear. Sometimes formation of both perinuclear and cortical rings is observed in the same cell. It has been shown that in multinucleate PMCs the cortical ring leads to the consolidation of chromosomes into common spindle and to meiotic restitution.

  11. Matefin/SUN-1 phosphorylation is part of a surveillance mechanism to coordinate chromosome synapsis and recombination with meiotic progression and chromosome movement.

    PubMed

    Woglar, Alexander; Daryabeigi, Anahita; Adamo, Adele; Habacher, Cornelia; Machacek, Thomas; La Volpe, Adriana; Jantsch, Verena

    2013-01-01

    Faithful chromosome segregation during meiosis I depends on the establishment of a crossover between homologous chromosomes. This requires induction of DNA double-strand breaks (DSBs), alignment of homologs, homolog association by synapsis, and repair of DSBs via homologous recombination. The success of these events requires coordination between chromosomal events and meiotic progression. The conserved SUN/KASH nuclear envelope bridge establishes transient linkages between chromosome ends and cytoskeletal forces during meiosis. In Caenorhabditis elegans, this bridge is essential for bringing homologs together and preventing nonhomologous synapsis. Chromosome movement takes place during synapsis and recombination. Concomitant with the onset of chromosome movement, SUN-1 clusters at chromosome ends associated with the nuclear envelope, and it is phosphorylated in a chk-2- and plk-2-dependent manner. Identification of all SUN-1 phosphomodifications at its nuclear N terminus allowed us to address their role in prophase I. Failures in recombination and synapsis led to persistent phosphorylations, which are required to elicit a delay in progression. Unfinished meiotic tasks elicited sustained recruitment of PLK-2 to chromosome ends in a SUN-1 phosphorylation-dependent manner that is required for continued chromosome movement and characteristic of a zygotene arrest. Furthermore, SUN-1 phosphorylation supported efficient synapsis. We propose that signals emanating from a failure to successfully finish meiotic tasks are integrated at the nuclear periphery to regulate chromosome end-led movement and meiotic progression. The single unsynapsed X chromosome in male meiosis is precluded from inducing a progression delay, and we found it was devoid of a population of phosphorylated SUN-1. This suggests that SUN-1 phosphorylation is critical to delaying meiosis in response to perturbed synapsis. SUN-1 may be an integral part of a checkpoint system to monitor establishment of the

  12. Meiotic breakpoint mapping of a proposed X linked visual loss susceptibility locus in Leber's hereditary optic neuropathy.

    PubMed Central

    Handoko, H Y; Wirapati, P J; Sudoyo, H A; Sitepu, M; Marzuki, S

    1998-01-01

    Leber's hereditary optic neuropathy (LHON) is a maternally inherited degenerative disorder characterised by an acute or subacute optic nerve degeneration resulting in visual failure. Mitochondrial DNA mutations have been reported and a nuclear modifier gene(s) on the X chromosome is thought to play an important role in the onset of this disorder. We analysed a LHON family with a novel and more accurate approach using 27 X chromosomal microsatellite markers. Meiotic breakpoint mapping and two point lod score did not point to any particular area on the X chromosome which might contain the X susceptibility locus. PMID:9719375

  13. [Meiotic chromosomes of the tree frog Smilisca baudinii (Anura: Hylidae)].

    PubMed

    Hernández-Guzmán, Javier; Arias-Rodriguez, Lenin; Indy, Jeane Rimber

    2011-03-01

    The Mexican tree frog Smilisca baudinii, is a very common frog in Central America. In spite their importance to keep the ecological equilibrium of the rainforest, its biology and genetics are poorly known. In order to contribute with its biological knowledge, we described the typical meiotic karyotype based in standard cytogenetic protocols to specimens collected in Tabasco, Mexico. The study was centered in the analysis of 131 chromosome spreads at meiotic stage from two adults of the species (one female and one male). The metaphase analysis allowed the establishment of the modal haploid number of 1n = 12 bivalent chromosomes. The chromosomic formulae from the haploid bivalent karyotype was integrated by 12 biarmed chromosomes characterized by twelve pairs of metacentric-submetacentric (msm) chromosomes. The meiotic counting gives the idea that diploid chromosome number is integrated by a complement of 2n = 24 biarmed chromosomes. The presence of sex chromosomes from female and male meiotic spreads was not observed. Current results suggest that S. baudinii chromosome structure is well shared among Hylidae family and "B" chromosomes are particular structures that have very important evolutionary consequences in species diversification.

  14. RPA homologs and ssDNA processing during meiotic recombination.

    PubMed

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2016-06-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.

  15. Chromosomal rearrangement interferes with meiotic X chromosome inactivation.

    PubMed

    Homolka, David; Ivanek, Robert; Capkova, Jana; Jansa, Petr; Forejt, Jiri

    2007-10-01

    Heterozygosity for certain mouse and human chromosomal rearrangements is characterized by the incomplete meiotic synapsis of rearranged chromosomes, by their colocalization with the XY body in primary spermatocytes, and by male-limited sterility. Previously, we argued that such X-autosomal associations could interfere with meiotic sex chromosome inactivation. Recently, supporting evidence has reported modifications of histones in rearranged chromosomes by a process called the meiotic silencing of unsynapsed chromatin (MSUC). Here, we report on the transcriptional down-regulation of genes within the unsynapsed region of the rearranged mouse chromosome 17, and on the subsequent disturbance of X chromosome inactivation. The partial transcriptional suppression of genes in the unsynapsed chromatin was most prominent prior to the mid-pachytene stage of primary spermatocytes. Later, during the mid-late pachytene, the rearranged autosomes colocalized with the XY body, and the X chromosome failed to undergo proper transcriptional silencing. Our findings provide direct evidence on the MSUC acting at the mRNA level, and implicate that autosomal asynapsis in meiosis may cause male sterility by interfering with meiotic sex chromosome inactivation.

  16. Does Stellate cause meiotic drive in Drosophila melanogaster?

    PubMed Central

    Belloni, Massimo; Tritto, Patrizia; Bozzetti, Maria Pia; Palumbo, Gioacchino; Robbins, Leonard G

    2002-01-01

    Drosophila melanogaster males deficient for the crystal (cry) locus of the Y chromosome that carry between 15 and 60 copies of the X-linked Stellate (Ste) gene are semisterile, have elevated levels of nondisjunction, produce distorted sperm genotype ratios (meiotic drive), and evince hyperactive transcription of Ste in the testes. Ste seems to be the active element in this system, and it has been proposed that the ancestral Ste gene was "selfish" and increased in frequency because it caused meiotic drive. This hypothetical evolutionary history is based on the idea that Ste overexpression, and not the lack of cry, causes the meiotic drive of cry(-) males. To test whether this is true, we have constructed a Ste-deleted X chromosome and examined the phenotype of Ste(-)/cry(-) males. If hyperactivity of Ste were necessary for the transmission defects seen in cry(-) males, cry(-) males completely deficient for Ste would be normal. Although it is impossible to construct a completely Ste(-) genotype, we find that Ste(-)/cry(-) males have exactly the same phenotype as Ste(+)/cry(-) males. The deletion of all X chromosome Ste copies not only does not eliminate meiotic drive and nondisjunction, but it also does not even reduce them below the levels produced when the X carries 15 copies of Ste. PMID:12196400

  17. ATM controls meiotic double-strand-break formation.

    PubMed

    Lange, Julian; Pan, Jing; Cole, Francesca; Thelen, Michael P; Jasin, Maria; Keeney, Scott

    2011-10-16

    In many organisms, developmentally programmed double-strand breaks (DSBs) formed by the SPO11 transesterase initiate meiotic recombination, which promotes pairing and segregation of homologous chromosomes. Because every chromosome must receive a minimum number of DSBs, attention has focused on factors that support DSB formation. However, improperly repaired DSBs can cause meiotic arrest or mutation; thus, having too many DSBs is probably as deleterious as having too few. Only a small fraction of SPO11 protein ever makes a DSB in yeast or mouse and SPO11 and its accessory factors remain abundant long after most DSB formation ceases, implying the existence of mechanisms that restrain SPO11 activity to limit DSB numbers. Here we report that the number of meiotic DSBs in mouse is controlled by ATM, a kinase activated by DNA damage to trigger checkpoint signalling and promote DSB repair. Levels of SPO11-oligonucleotide complexes, by-products of meiotic DSB formation, are elevated at least tenfold in spermatocytes lacking ATM. Moreover, Atm mutation renders SPO11-oligonucleotide levels sensitive to genetic manipulations that modulate SPO11 protein levels. We propose that ATM restrains SPO11 via a negative feedback loop in which kinase activation by DSBs suppresses further DSB formation. Our findings explain previously puzzling phenotypes of Atm-null mice and provide a molecular basis for the gonadal dysgenesis observed in ataxia telangiectasia, the human syndrome caused by ATM deficiency.

  18. Multiple roles of Spo11 in meiotic chromosome behavior.

    PubMed

    Celerin, M; Merino, S T; Stone, J E; Menzie, A M; Zolan, M E

    2000-06-01

    Spo11, a type II topoisomerase, is likely to be required universally for initiation of meiotic recombination. However, a dichotomy exists between budding yeast and the animals Caenorhabditis elegans and Drosophila melanogaster with respect to additional roles of Spo11 in meiosis. In Saccharomyces cerevisiae, Spo11 is required for homolog pairing, as well as axial element (AE) and synaptonemal complex (SC) formation. All of these functions are Spo11 independent in C.elegans and D.melanogaster. We examined Spo11 function in a multicellular fungus, Coprinus cinereus. The C.cinereus spo11-1 mutant shows high levels of homolog pairing and occasionally forms full-length AEs, but no SC. In C.cinereus, Spo11 is also required for maintenance of meiotic chromosome condensation and proper spindle formation. Meiotic progression in spo11-1 is aberrant; late in meiosis basidia undergo programmed cell death (PCD). To our knowledge, this is the first example of meiotic PCD outside the animal kingdom. Ionizing radiation can partially rescue spo11-1 for both AE and SC formation and viable spore production, suggesting that the double-strand break function of Spo11 is conserved and is required for these functions.

  19. Meiotic recombination cold spots in chromosomal cohesion sites.

    PubMed

    Ito, Masaru; Kugou, Kazuto; Fawcett, Jeffrey A; Mura, Sachiko; Ikeda, Sho; Innan, Hideki; Ohta, Kunihiro

    2014-05-01

    Meiotic chromosome architecture called 'axis-loop structures' and histone modifications have been shown to regulate the Spo11-dependent formation of DNA double-strand breaks (DSBs) that trigger meiotic recombination. Using genome-wide chromatin immunoprecipitation (ChIP) analyses followed by deep sequencing, we compared the genome-wide distribution of the axis protein Rec8 (the kleisin subunit of meiotic cohesin) with that of oligomeric DNA covalently bound to Spo11, indicative of DSB sites. The frequency of DSB sites is overall constant between Rec8 binding sites. However, DSB cold spots are observed in regions spanning ±0.8 kb around Rec8 binding sites. The axis-associated cold spots are not due to the exclusion of Spo11 localization from the axis, because ChIP experiments showed that substantial Spo11 persists at Rec8 binding sites during DSB formation. Spo11 fused with Gal4 DNA binding domain (Gal4BD-Spo11) tethered in close proximity (≤0.8 kb) to Rec8 binding sites hardly forms meiotic DSBs, in contrast with other regions. In addition, H3K4 trimethylation (H3K4me3) remarkably decreases at Rec8 binding sites. These results suggest that reduced histone H3K4me3 in combination with inactivation of Spo11 activity on the axis discourages DSB hot spot formation.

  20. Sex Chromosome Meiotic Drive in Stalk-Eyed Flies

    PubMed Central

    Presgraves, D. C.; Severance, E.; Wilkinson, G. S.

    1997-01-01

    Meiotically driven sex chromosomes can quickly spread to fixation and cause population extinction unless balanced by selection or suppressed by genetic modifiers. We report results of genetic analyses that demonstrate that extreme female-biased sex ratios in two sister species of stalk-eyed flies, Cyrtodiopsis dalmanni and C. whitei, are due to a meiotic drive element on the X chromosome (X(d)). Relatively high frequencies of X(d) in C. dalmanni and C. whitei (13-17% and 29%, respectively) cause female-biased sex ratios in natural populations of both species. Sex ratio distortion is associated with spermatid degeneration in male carriers of X(d). Variation in sex ratios is caused by Y-linked and autosomal factors that decrease the intensity of meiotic drive. Y-linked polymorphism for resistance to drive exists in C. dalmanni in which a resistant Y chromosome reduces the intensity and reverses the direction of meiotic drive. When paired with X(d), modifying Y chromosomes (Y(m)) cause the transmission of predominantly Y-bearing sperm, and on average, production of 63% male progeny. The absence of sex ratio distortion in closely related monomorphic outgroup species suggests that this meiotic drive system may predate the origin of C. whitei and C. dalmanni. We discuss factors likely to be involved in the persistence of these sex-linked polymorphisms and consider the impact of X(d) on the operational sex ratio and the intensity of sexual selection in these extremely sexually dimorphic flies. PMID:9383060

  1. 76 FR 26603 - Reorganization of Sector North Carolina; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... Macon, NC, with a Marine Safety Unit (MSU) in Wilmington, NC, responsible for the Cape Fear River Marine... the Cape Fear River Marine Inspection and COTP Zones. The Coast Guard has now reorganized Sector North... Fear River Marine Inspection and COTP Zones. This reorganization is intended to improve...

  2. School District Reorganization: Can Small Schools Compete? A Position Paper.

    ERIC Educational Resources Information Center

    Mack, David P.; Lederman, Alfred T.

    The following position statements regarding school reorganization are discussed in chapter-by-chapter sequence within the paper: (1) It is the responsibility of all schools, regardless of size, to prepare students adequately to live full and productive lives in a rapidly changing world. (2) In New York State, school district reorganization, while…

  3. Spatiotemporal Asymmetry of the Meiotic Program Underlies the Predominantly Distal Distribution of Meiotic Crossovers in Barley[W

    PubMed Central

    Higgins, James D.; Perry, Ruth M.; Barakate, Abdellah; Ramsay, Luke; Waugh, Robbie; Halpin, Claire; Armstrong, Susan J.; Franklin, F. Chris H.

    2012-01-01

    Meiosis involves reciprocal exchange of genetic information between homologous chromosomes to generate new allelic combinations. In cereals, the distribution of genetic crossovers, cytologically visible as chiasmata, is skewed toward the distal regions of the chromosomes. However, many genes are known to lie within interstitial/proximal regions of low recombination, creating a limitation for breeders. We investigated the factors underlying the pattern of chiasma formation in barley (Hordeum vulgare) and show that chiasma distribution reflects polarization in the spatiotemporal initiation of recombination, chromosome pairing, and synapsis. Consequently, meiotic progression in distal chromosomal regions occurs in coordination with the chromatin cycles that are a conserved feature of the meiotic program. Recombination initiation in interstitial and proximal regions occurs later than distal events, is not coordinated with the cycles, and rarely progresses to form chiasmata. Early recombination initiation is spatially associated with early replicating, euchromatic DNA, which is predominately found in distal regions. We demonstrate that a modest temperature shift is sufficient to alter meiotic progression in relation to the chromosome cycles. The polarization of the meiotic processes is reduced and is accompanied by a shift in chiasma distribution with an increase in interstitial and proximal chiasmata, suggesting a potential route to modify recombination in cereals. PMID:23104831

  4. The GTPase SPAG-1 orchestrates meiotic program by dictating meiotic resumption and cytoskeleton architecture in mouse oocytes

    PubMed Central

    Huang, Chunjie; Wu, Di; Khan, Faheem Ahmed; Jiao, Xiaofei; Guan, Kaifeng; Huo, Lijun

    2016-01-01

    In mammals, a finite population of oocytes is generated during embryogenesis, and proper oocyte meiotic divisions are crucial for fertility. Sperm-associated antigen 1 (SPAG-1) has been implicated in infertility and tumorigenesis; however, its relevance in cell cycle programs remains rudimentary. Here we explore a novel role of SPAG-1 during oocyte meiotic progression. SPAG-1 associated with meiotic spindles and its depletion severely compromised M-phase entry (germinal vesicle breakdown [GVBD]) and polar body extrusion. The GVBD defect observed was due to an increase in intraoocyte cAMP abundance and decrease in ATP production, as confirmed by the activation of AMP-dependent kinase (AMPK). SPAG-1 RNA interference (RNAi)–elicited defective spindle morphogenesis was evidenced by the dysfunction of γ-tubulin, which resulted from substantially reduced phosphorylation of MAPK and irregularly dispersed distribution of phospho-MAPK around spindles instead of concentration at spindle poles. Significantly, actin expression abruptly decreased and formation of cortical granule–free domains, actin caps, and contractile ring disrupted by SPAG-1 RNAi. In addition, the spindle assembly checkpoint remained functional upon SPAG-1 depletion. The findings broaden our knowledge of SPAG-1, showing that it exerts a role in oocyte meiotic execution via its involvement in AMPK and MAPK signaling pathways. PMID:27053660

  5. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice[OPEN

    PubMed Central

    Wang, Chong; Yu, Junping; Zong, Jie; Lu, Pingli

    2016-01-01

    F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression. PMID:27436711

  6. Subcortical functional reorganization due to early blindness.

    PubMed

    Coullon, Gaelle S L; Jiang, Fang; Fine, Ione; Watkins, Kate E; Bridge, Holly

    2015-04-01

    Lack of visual input early in life results in occipital cortical responses to auditory and tactile stimuli. However, it remains unclear whether cross-modal plasticity also occurs in subcortical pathways. With the use of functional magnetic resonance imaging, auditory responses were compared across individuals with congenital anophthalmia (absence of eyes), those with early onset (in the first few years of life) blindness, and normally sighted individuals. We find that the superior colliculus, a "visual" subcortical structure, is recruited by the auditory system in congenital and early onset blindness. Additionally, auditory subcortical responses to monaural stimuli were altered as a result of blindness. Specifically, responses in the auditory thalamus were equally strong to contralateral and ipsilateral stimulation in both groups of blind subjects, whereas sighted controls showed stronger responses to contralateral stimulation. These findings suggest that early blindness results in substantial reorganization of subcortical auditory responses.

  7. Postural reorganization induced by torso cutaneous covibration.

    PubMed

    Lee, Beom-Chan; Martin, Bernard J; Ho, Allison; Sienko, Kathleen H

    2013-05-01

    Cutaneous information from joints has been attributed proprioceptive properties similar to those of muscle spindles. This study aimed to assess whether vibration-induced changes in torso cutaneous information contribute to whole-body postural reorganization in humans. Ten healthy young adults stood in normal and Romberg stances with six vibrating actuators positioned on the torso in contact with the skin over the left and right external oblique, internal oblique, and erector spinae muscle locations at the L4/L5 vertebrae level. Vibrations around the torso were randomly applied at two locations simultaneously (covibration) or at all locations simultaneously. Kinematic analysis of the body segments indicated that covibration applied to the skin over the internal oblique muscles induced shifts of both the head and torso in the anterior direction (torso flexion) while the hips shifted in the posterior direction (ankle plantar flexion). Conversely, covibration applied to the skin over the erector spinae muscle locations produced opposite effects. However, covibration applied to the skin over the left internal oblique and left erector spinae, the right internal oblique and right erector spinae, or at all locations simultaneously did not induce any significant postural changes. In addition, the center of pressure position as measured by the force plate was unaffected by all covibration conditions tested. These results were independent of stance and suggest an integrated and coordinated reorganization of posture in response to vibration-induced changes in cutaneous information. In addition, combinations of vibrotactile stimuli over multiple locations exhibit directional summation properties in contrast to the individual responses we observed in our previous work.

  8. Language organization and reorganization in epilepsy

    PubMed Central

    Hamberger, Marla J.; Cole, Jeffrey

    2011-01-01

    The vast majority of healthy individuals are left hemisphere dominant for language; however, individuals with left hemisphere epilepsy have a higher likelihood of atypical language organization. The cerebral organization of language in epilepsy has been studied with invasive procedures such as Wada testing and electrical cortical stimulation mapping (ESM), and more recently, with noninvasive neuroimaging techniques such as functional magnetic resonance imaging (fMRI). Investigators have used these techniques to explore the influence of unique clinical features inherent in epilepsy that might contribute to the reorganization of language, such as location of seizure onset, age of seizure onset, and extent of interictal epileptiform activity. In this paper, we review the contribution of these and other clinical variables to the lateralization and localization of language in epilepsy, and how these patient-related variables affect the results from these three different, yet complementary methodologies. Unlike the abrupt language changes that occur following acute brain injury with disruption of established language circuits, converging evidence suggests that the chronic nature of epileptic activity can result in a developmental shift of language from the left to the right hemisphere or re-routing of language pathways from traditional to non-traditional areas within the dominant left hemisphere. Clinical variables have been shown to contribute to cerebral language reorganization in the setting of chronic seizure disorders, yet such factors have not been reliable predictors of altered language networks in individual patients, underscoring the need for language lateralization and localization procedures when definitive identification of language cortex is necessary for clinical care. PMID:21842185

  9. Functional role of the bovine oocyte-specific protein JY-1 in meiotic maturation, cumulus expansion, and subsequent embryonic development.

    PubMed

    Lee, Kyung-Bon; Wee, Gabbine; Zhang, Kun; Folger, Joseph K; Knott, Jason G; Smith, George W

    2014-03-01

    Oocyte-expressed genes regulate key aspects of ovarian follicular development and early embryogenesis. We previously demonstrated a requirement of the oocyte-specific protein JY-1 for bovine early embryogenesis. Given that JY-1 is present in oocytes throughout folliculogenesis, and oocyte-derived JY-1 mRNA is temporally regulated postfertilization, we hypothesized that JY-1 levels in oocytes impact nuclear maturation and subsequent early embryogenesis. A novel model system, whereby JY-1 small interfering RNA was microinjected into cumulus-enclosed germinal vesicle-stage oocytes and meiotic arrest maintained for 48 h prior to in vitro maturation (IVM), was validated and used to determine the effect of reduced oocyte JY-1 expression on nuclear maturation, cumulus expansion, and embryonic development after in vitro fertilization. Depletion of JY-1 protein during IVM effectively reduced cumulus expansion, percentage of oocytes progressing to metaphase II, proportion of embryos that cleaved early, total cleavage rates and development to 8- to 16-cell stage, and totally blocked development to the blastocyst stage relative to controls. Supplementation with JY-1 protein during oocyte culture rescued effects of JY-1 depletion on meiotic maturation, cumulus expansion, and early cleavage, but did not rescue development to 8- to 16-cell and blastocyst stages. However, effects of JY-1 depletion postfertilization on development to 8- to 16-cell and blastocyst stages were rescued by JY-1 supplementation during embryo culture. In conclusion, these results support an important functional role for oocyte-derived JY-1 protein during meiotic maturation in promoting progression to metaphase II, cumulus expansion, and subsequent embryonic development.

  10. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster.

    PubMed

    Baker, B S; Carpenter, A T

    1972-06-01

    A total of 209 ethyl methanesulfonate-treated X chromosomes were screened for meiotic mutants that either (1) increased sex or fourth chromosome nondisjunction at either meiotic division in males; (2) allowed recombination in such males; (3) increased nondisjunction of the X chromosome at either meiotic division in females; or (4) caused such females, when mated to males heterozygous for Segregation-Distorter (SD) and a sensitive homolog to alter the strength of meiotic drive in males.-Twenty male-specific meiotic mutants were found. Though the rates of nondisjunction differed, all twenty mutants were qualitatively similar in that (1) they alter the disjunction of the X chromosome from the Y chromosome; (2) among the recovered sex-chromosome exceptional progeny, there is a large excess of those derived from nullo-XY as compared to XY gametes; (3) there is a negative correlation between the frequency of sex-chromosome exceptional progeny and the frequency of males among the regular progeny. In their effects on meiosis these mutants are similar to In(1)sc(4L)sc(8R), which is deleted for the basal heterochromatin. These mutants, however, have normal phenotypes and viabilities when examined as X/0 males, and furthermore, a mapping of two of the mutants places them in the euchromatin of the X chromosome. It is suggested that these mutants are in genes whose products are involved in insuring the proper functioning of the basal pairing sites which are deleted in In(1)sc(4L)sc(8R), and in addition that there is a close connection, perhaps causal, between the disruption of normal X-Y pairing (and, therefore, disjunction) and the occurrence of meiotic drive in the male.-Eleven mutants were found which increased nondisjunction in females. These mutants were characterized as to (1) the division at which they acted; (2) their effect on recombination; (3) their dominance; (4) their effects on disjunction of all four chromosome pairs. Five female mutants caused a nonuniform

  11. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts

    PubMed Central

    Abby, Emilie; Tourpin, Sophie; Ribeiro, Jonathan; Daniel, Katrin; Messiaen, Sébastien; Moison, Delphine; Guerquin, Justine; Gaillard, Jean-Charles; Armengaud, Jean; Langa, Francina; Toth, Attila; Martini, Emmanuelle; Livera, Gabriel

    2016-01-01

    Sexual reproduction is crucially dependent on meiosis, a conserved, specialized cell division programme that is essential for the production of haploid gametes. Here we demonstrate that fertility and the implementation of the meiotic programme require a previously uncharacterized meiosis-specific protein, MEIOC. Meioc invalidation in mice induces early and pleiotropic meiotic defects in males and females. MEIOC prevents meiotic transcript degradation and interacts with an RNA helicase that binds numerous meiotic mRNAs. Our results indicate that proper engagement into meiosis necessitates the specific stabilization of meiotic transcripts, a previously little-appreciated feature in mammals. Remarkably, the upregulation of MEIOC at the onset of meiosis does not require retinoic acid and STRA8 signalling. Thus, we propose that the complete induction of the meiotic programme requires both retinoic acid-dependent and -independent mechanisms. The latter process involving post-transcriptional regulation likely represents an ancestral mechanism, given that MEIOC homologues are conserved throughout multicellular animals. PMID:26742488

  12. Modulation of meiotic homologous recombination by DNA helicases.

    PubMed

    Lorenz, Alexander

    2016-12-08

    DNA helicases are ATP-driven motor proteins which translocate along DNA capable of dismantling DNA-DNA interactions and/or removing proteins bound to DNA. These biochemical capabilities make DNA helicases main regulators of crucial DNA metabolic processes, including DNA replication, DNA repair, and genetic recombination. This budding topic will focus on reviewing the function of DNA helicases important for homologous recombination during meiosis, and discuss recent advances in how these modulators of meiotic recombination are themselves regulated. The emphasis is placed on work in the two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has vastly expanded our understanding of meiotic homologous recombination, a process whose correct execution is instrumental for healthy gamete formation, and thus functioning sexual reproduction. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Interplay between modifications of chromatin and meiotic recombination hotspots.

    PubMed

    Brachet, Elsa; Sommermeyer, Vérane; Borde, Valérie

    2012-02-01

    Meiotic recombination lies at the heart of sexual reproduction. It is essential for producing viable gametes with a normal haploid genomic content and its dysfunctions can be at the source of aneuploidies, such as the Down syndrome, or many genetic disorders. Meiotic recombination also generates genetic diversity that is transmitted to progeny by shuffling maternal and paternal alleles along chromosomes. Recombination takes place at non-random chromosomal sites called 'hotspots'. Recent evidence has shown that their location is influenced by properties of chromatin. In addition, many studies in somatic cells have highlighted the need for changes in chromatin dynamics to allow the process of recombination. In this review, we discuss how changes in the chromatin landscape may influence the recombination map, and reciprocally, how recombination events may lead to epigenetic modifications at sites of recombination, which could be transmitted to progeny.

  14. Control of meiotic recombination frequency in plant genomes.

    PubMed

    Henderson, Ian R

    2012-11-01

    Sexual eukaryotes reproduce via the meiotic cell division, where ploidy is halved and homologous chromosomes undergo reciprocal genetic exchange, termed crossover (CO). CO frequency has a profound effect on patterns of genetic variation and species evolution. Relative CO rates vary extensively both within and between plant genomes. Plant genome size varies by over 1000-fold, largely due to differential expansion of repetitive sequences, and increased genome size is associated with reduced CO frequency. Gene versus repeat sequences associate with distinct chromatin modifications, and evidence from plant genomes indicates that this epigenetic information influences CO patterns. This is consistent with data from diverse eukaryotes that demonstrate the importance of chromatin structure for control of meiotic recombination. In this review I will discuss CO frequency patterns in plant genomes and recent advances in understanding recombination distributions.

  15. Analysis of plant meiotic chromosomes by chromosome painting.

    PubMed

    Lysak, Martin A; Mandáková, Terezie

    2013-01-01

    Chromosome painting (CP) refers to visualization of large chromosome regions, entire chromosome arms, or entire chromosomes via fluorescence in situ hybridization (FISH). For CP in plants, contigs of chromosome-specific bacterial artificial chromosomes (BAC) from the target species or from a closely related species (comparative chromosome painting, CCP) are typically applied as painting probes. Extended pachytene chromosomes provide the highest resolution of CP in plants. CP enables identification and tracing of particular chromosome regions and/or entire chromosomes throughout all meiotic stages as well as corresponding chromosome territories in premeiotic interphase nuclei. Meiotic pairing and structural chromosome rearrangements (typically inversions and translocations) can be identified by CP. Here, we describe step-by-step protocols of CP and CCP in plant species including chromosome preparation, BAC DNA labeling, and multicolor FISH.

  16. Effects of clinostat rotation on mouse meiotic maturation in vitro

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1984-01-01

    The effects of microgravity on meiosis, fertilization, and early embryonic development in mammals are being examined by using a clinostat to reorient the cells with respect to the gravity vector. A clinostat capable of supporting mammalian cells in tissue culture has been developed. Initial studies have focused on examining the effects of clinostat rotation on meiotic maturation in mouse oocytes. Oocytes recovered from ovarian follicles were subjected to clinostat rotation on a horizontal or vertical axis or to static conditions for a 16 hr period. No gross morphological changes and no effects on germinal vesicle breakdown were observed under any rotation conditions (1/4, 1, 10, 30, 100 RPM). Success of meiotic progression to Metaphase II was comparable among experimental and control groups except at 100 RPM, where a slight inhibition was observed.

  17. SEX-RATIO MEIOTIC DRIVE AND INTERSPECIFIC COMPETITION

    PubMed Central

    Unckless, Robert L.; Clark, Andrew G.

    2014-01-01

    It has long been known that processes occurring within a species may impact the interactions between species. For example, since competitive ability is sensitive to parameters including reproductive rate, carrying capacity and competition efficiency, the outcome of interspecific competition may be influenced by any process that alters these attributes. While several such scenarios have been discussed, the influence of selfish genetic elements within one species on competition between species has not received theoretical treatment. We show that, with strong competition, sex-ratio meiotic drive systems can result in a significant shift in community composition because the effective birth rate in the population may be increased by a female-biased sex-ratio. Using empirical data we attempt to estimate the magnitude of this effect in several Drosophila species. We infer that meiotic drive elements, selfish genetic elements within species, can provide a substantial competitive advantage to that species within a community. PMID:24835887

  18. A computational model predicts Xenopus meiotic spindle organization.

    PubMed

    Loughlin, Rose; Heald, Rebecca; Nédélec, François

    2010-12-27

    The metaphase spindle is a dynamic bipolar structure crucial for proper chromosome segregation, but how microtubules (MTs) are organized within the bipolar architecture remains controversial. To explore MT organization along the pole-to-pole axis, we simulated meiotic spindle assembly in two dimensions using dynamic MTs, a MT cross-linking force, and a kinesin-5-like motor. The bipolar structures that form consist of antiparallel fluxing MTs, but spindle pole formation requires the addition of a NuMA-like minus-end cross-linker and directed transport of MT depolymerization activity toward minus ends. Dynamic instability and minus-end depolymerization generate realistic MT lifetimes and a truncated exponential MT length distribution. Keeping the number of MTs in the simulation constant, we explored the influence of two different MT nucleation pathways on spindle organization. When nucleation occurs throughout the spindle, the simulation quantitatively reproduces features of meiotic spindles assembled in Xenopus egg extracts.

  19. Regulation of meiotic chromatin loop size by chromosomal position.

    PubMed Central

    Heng, H H; Chamberlain, J W; Shi, X M; Spyropoulos, B; Tsui, L C; Moens, P B

    1996-01-01

    At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8610120

  20. Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans

    PubMed Central

    Heckmann, Stefan; Jankowska, Maja; Schubert, Veit; Kumke, Katrin; Ma, Wei; Houben, Andreas

    2014-01-01

    Holocentric chromosomes occur in a number of independent eukaryotic lineages. They form holokinetic kinetochores along the entire poleward chromatid surfaces, and owing to this alternative chromosome structure, species with holocentric chromosomes cannot use the two-step loss of cohesion during meiosis typical for monocentric chromosomes. Here we show that the plant Luzula elegans maintains a holocentric chromosome architecture and behaviour throughout meiosis, and in contrast to monopolar sister centromere orientation, the unfused holokinetic sister centromeres behave as two distinct functional units during meiosis I, resulting in sister chromatid separation. Homologous non-sister chromatids remain terminally linked after metaphase I, by satellite DNA-enriched chromatin threads, until metaphase II. They then separate at anaphase II. Thus, an inverted sequence of meiotic sister chromatid segregation occurs. This alternative meiotic process is most likely one possible adaptation to handle a holocentric chromosome architecture and behaviour during meiosis. PMID:25296379

  1. The role of ocean-atmosphere reorganizations in glacial cycles

    NASA Astrophysics Data System (ADS)

    Broecker, Wallace S.; Denton, George H.

    A case is made that glacial-to-interglacial transitions involve major reorganizations of the ocean-atmosphere system. Such reorganizations constitute jumps between stable modes of operation which cause changes in the greenhouse gas content and albedo of the atmosphere. Only in this way can the rapidity of glacial terminations, the hemispheric synchroneity and symmetry of mountain glaciation, and the large polar air temperature and dustiness variations be accounted for. If these reorganizations are driven in some fashion by orbitally induced seasonal insolation changes, then the connection between insolation and climate is most likely through impacts of fresh water transport on the ocean's salinity distribution.

  2. The role of ocean-atmosphere reorganizations is glacial cycles

    NASA Astrophysics Data System (ADS)

    Broecker, Wallace S.; Denton, George H.

    1989-10-01

    A case is made that glacial-to-interglacial transitions involve major reorganizations of the ocean-atmosphere system. Such reorganizations constitute jumps between stable modes of operation which cause changes in the greenhouse gas content and albedo of the atmosphere. Only in this way can the rapidity of glacial terminations, the hemispheric synchroneity and symmetry of mountain glaciation, and the large polar air temperature and dustiness variations be accounted for. If these reorganizations are driven in some fashion by orbitally induced seasonal insolation changes, then the connection between insolation and climate is most likely through impacts of fresh water transport on the ocean's salinity distribution.

  3. Evidence for meiotic drive at the myotonic dystrophy locus

    SciTech Connect

    Shaw, A.M.; Barnetson, R.A.; Phillips, M.F.

    1994-09-01

    Myotonic dystrophy (DM), an autosomal dominant disorder, is the most common form of adult muscular dystrophy, affecting at least 1 in 8000 of the population. It is a multisystemic disorder, primarily characterized by myotonia, muscle wasting and cataract. The molecular basis of DM is an expanded CTG repeat located within the 3{prime} untranslated region of a putative serine-threonine protein kinase on chromosome 19q13.3. DM exhibits anticipation, that is, with successive generations there is increasing disease severity and earlier age of onset. This mechanism and the fact that the origin of the disease has been attributed to one or a small number of founder chromosomes suggests that, in time, DM should die out. Meiotic drive has been described as a way in which certain alleles are transmitted to succeeding generations in preference to others: preferential transmission of large CTG alleles may account for their continued existence in the gene pool. There is evidence that a CTG allele with > 19 repeats may gradually increase in repeat number over many generations until it is sufficiently large to give a DM phenotype. We report a study of 495 transmissions from individuals heterozygous for the CTG repeat and with repeat numbers within the normal range (5-30). Alleles were simply classified as large or small relative to the other allele in an individual. Of 242 male meioses, 126 transmissions from parent to child were of the larger allele to their offspring (57.7%, p=0.014). This shows that there is strong evidence for meiotic drive favoring the transmission of the larger DM allele in unaffected individuals. Contrary to a previous report of meiotic drive in the male, we have shown that females preferentially transmit the larger DM allele. Taken together, the data suggest the occurrence of meiotic drive in both males and females in this locus.

  4. Molecular dissection of Neurospora Spore killer meiotic drive elements.

    PubMed

    Hammond, Thomas M; Rehard, David G; Xiao, Hua; Shiu, Patrick K T

    2012-07-24

    Meiotic drive is a non-Mendelian inheritance phenomenon in which certain selfish genetic elements skew sexual transmission in their own favor. In some cases, progeny or gametes carrying a meiotic drive element can survive preferentially because it causes the death or malfunctioning of those that do not carry it. In Neurospora, meiotic drive can be observed in fungal spore killing. In a cross of Spore killer (Sk) × WT (Sk-sensitive), the ascospores containing the Spore killer allele survive, whereas the ones with the sensitive allele degenerate. Sk-2 and Sk-3 are the most studied meiotic drive elements in Neurospora, and they each theoretically contain two essential components: a killer element and a resistance gene. Here we report the identification and characterization of the Sk resistance gene, rsk (resistant to Spore killer). rsk seems to be a fungal-specific gene, and its deletion in a killer strain leads to self-killing. Sk-2, Sk-3, and naturally resistant isolates all use rsk for resistance. In each killer system, rsk sequences from an Sk strain and a resistant isolate are highly similar, suggesting that they share the same origin. Sk-2, Sk-3, and sensitive rsk alleles differ from each other by their unique indel patterns. Contrary to long-held belief, the killer targets not only late but also early ascospore development. The WT RSK protein is dispensable for ascospore production and is not a target of the spore-killing mechanism. Rather, a resistant version of RSK likely neutralizes the killer element and prevents it from interfering with ascospore development.

  5. DNA polymerase beta is critical for mouse meiotic synapsis.

    PubMed

    Kidane, Dawit; Jonason, Alan S; Gorton, Timothy S; Mihaylov, Ivailo; Pan, Jing; Keeney, Scott; de Rooij, Dirk G; Ashley, Terry; Keh, Agnes; Liu, Yanfeng; Banerjee, Urmi; Zelterman, Daniel; Sweasy, Joann B

    2010-01-20

    We have shown earlier that DNA polymerase beta (Pol beta) localizes to the synaptonemal complex (SC) during Prophase I of meiosis in mice. Pol beta localizes to synapsed axes during zygonema and pachynema, and it associates with the ends of bivalents during late pachynema and diplonema. To test whether these localization patterns reflect a function for Pol beta in recombination and/or synapsis, we used conditional gene targeting to delete the PolB gene from germ cells. We find that Pol beta-deficient spermatocytes are defective in meiotic chromosome synapsis and undergo apoptosis during Prophase I. We also find that SPO11-dependent gammaH2AX persists on meiotic chromatin, indicating that Pol beta is critical for the repair of SPO11-induced double-strand breaks (DSBs). Pol beta-deficient spermatocytes yielded reduced steady-state levels of the SPO11-oligonucleotide complexes that are formed when SPO11 is removed from the ends of DSBs, and cytological experiments revealed that chromosome-associated foci of replication protein A (RPA), RAD51 and DMC1 are less abundant in Pol beta-deficient spermatocyte nuclei. Localization of Pol beta to meiotic chromosomes requires the formation of SPO11-dependent DSBs. Taken together, these findings strongly indicate that Pol beta is required at a very early step in the processing of meiotic DSBs, at or before the removal of SPO11 from DSB ends and the generation of the 3' single-stranded tails necessary for subsequent strand exchange. The chromosome synapsis defects and Prophase I apoptosis of Pol beta-deficient spermatocytes are likely a direct consequence of these recombination defects.

  6. Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster.

    PubMed Central

    Baker, B S; Boyd, J B; Carpenter, A T; Green, M M; Nguyen, T D; Ripoll, P; Smith, P D

    1976-01-01

    Recombination-defective meiotic mutants and mutagen-sensitive mutants of D. melanogaster have been examined for their effects on meiotic chromosome behavior, sensitivity to killing by mutagens, somatic chromosome integrity, and DNA repair processes. Several loci have been identified that specify functions that are necessary for both meiotic recombination and DNA repair processes, whereas mutants at combination and DNA repair processes, whereas mutants at other loci appear to be defective in only one pathway of DNA processing. PMID:825857

  7. ELECTRON MICROSCOPIC OBSERVATIONS ON THE SUBMICROSCOPIC MORPHOLOGY OF THE MEIOTIC NUCLEUS AND CHROMOSOMES

    PubMed Central

    De Robertis, E.

    1956-01-01

    Thin sections of the testicular follicles of the grasshopper Laplatacris dispar were studied under the electron microscope. In the primary spermatocytes, during meiotic prophase, three main regions can be recognized within the nucleus: (1) the nucleolus and associated nucleolar material; (2) the interchromosomal regions with the dense particles; and (3) the chromosomes. The nucleolus is generally compact and is surrounded by nucleolar bodies that comprise aggregations of dense round particles 100 to 250 A in diameter. A continuous transition can be observed between these particles and those found isolated or in short chains in the interchromosomal spaces. Particles of similar size (mean diameter of 160 A) can be found associated with the nuclear membrane and in the cytoplasm. The chromosomes show different degrees of condensation in different stages of meiotic prophase. The bulk of the chromosome appears to be made of very fine and irregularly coiled filaments of macromolecular dimensions. Their length cannot be determined because of the thinness of the section but some of them can be followed without interruption for about 1000 to 2000 A. The thickness of the chromosome filaments seems to vary with different stages of prophase and in metaphase. In early prophase, filaments vary between 28 ± 7 A and 84 ± 7 A with a mean of 47 A, in late prophase the mean is about 70 A. In metaphase the filaments vary between 60 and 170 A with a mean of about 100 A. Neither the prophase nor the metaphase chromosomes have a membrane or other inhomogeneities. The finding of a macromolecular filamentous component of chromosomes is discussed in relation to the physicochemical literature on nucleoproteins and nucleic acids and as a result it is suggested that the thinnest chromosome filaments (28 ± 7 A) probably represent single deoxyribonucleoprotein molecules. PMID:13398445

  8. Neonatal bisphenol A exposure induces meiotic arrest and apoptosis of spermatogenic cells

    PubMed Central

    Xie, Meina; Bu, Pengli; Li, Fengjie; Lan, Shijian; Wu, Hongjuan; Yuan, Lu; Wang, Ying

    2016-01-01

    Bisphenol A (BPA) is a widely used industrial plasticizer, which is ubiquitously present in the environment and organisms. As an endocrine disruptor, BPA has caused significant concerns regarding its interference with reproductive function. However, little is known about the impact of BPA exposure on early testicular development. The aim of the present study was to investigate the influence of neonatal BPA exposure on the first wave of spermatogenesis. Newborn male mice were subcutaneously injected with BPA (0.01, 0.1 and 5 mg/kg body weight) daily from postnatal day (PND) 1 to 21. Histological analysis of testes at PND 22 revealed that BPA-treated testes contained mostly spermatogonia and spermatocytes with markedly less round spermatids, indicating signs of meiotic arrest. Terminal dUTP nick-end labeling (TUNEL) assay showed that BPA treatment significantly increased the number of apoptotic germ cells per tubule, which corroborated the observation of meiotic arrest. In addition, BPA caused abnormal proliferation of germ cells as revealed by Proliferating Cell Nuclear Antigen (PCNA) immunohistochemical staining. Mechanistically, BPA-treated testes displayed a complete lack of BOULE expression, which is a conserved key regulator for spermatogenesis. Moreover, BPA significantly increased the expression of estrogen receptor (ER) α and β in the developing testis. The present study demonstrated that neonatal BPA exposure disrupted meiosis progression during the first wave of spermatogenesis, which may be, at least in part, due to inhibition of BOULE expression and/or up-regulation of ERα/β expression in BPA-exposed developing testis. PMID:26863571

  9. Reorganization of the human central nervous system.

    PubMed

    Schalow, G; Zäch, G A

    2000-10-01

    The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns

  10. Compensatory neural reorganization in Tourette syndrome.

    PubMed

    Jackson, Stephen R; Parkinson, Amy; Jung, Jeyoung; Ryan, Suzanne E; Morgan, Paul S; Hollis, Chris; Jackson, Georgina M

    2011-04-12

    Children with neurological disorders may follow unique developmental trajectories whereby they undergo compensatory neuroplastic changes in brain structure and function that help them gain control over their symptoms. We used behavioral and brain imaging techniques to investigate this conjecture in children with Tourette syndrome (TS). Using a behavioral task that induces high levels of intermanual conflict, we show that individuals with TS exhibit enhanced control of motor output. Then, using structural (diffusion-weighted imaging) brain imaging techniques, we demonstrate widespread differences in the white matter (WM) microstructure of the TS brain that include alterations in the corpus callosum and forceps minor (FM) WM that significantly predict tic severity in TS. Most importantly, we show that task performance for the TS group (but not for controls) is strongly predicted by the WM microstructure of the FM pathways that lead to the prefrontal cortex and by the functional magnetic resonance imaging blood oxygen level-dependent response in prefrontal areas connected by these tracts. These results provide evidence for compensatory brain reorganization that may underlie the increased self-regulation mechanisms that have been hypothesized to bring about the control of tics during adolescence.

  11. OsHUS1 facilitates accurate meiotic recombination in rice.

    PubMed

    Che, Lixiao; Wang, Kejian; Tang, Ding; Liu, Qiaoquan; Chen, Xiaojun; Li, Yafei; Hu, Qing; Shen, Yi; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan

    2014-06-01

    Meiotic recombination normally takes place between allelic sequences on homologs. This process can also occur between non-allelic homologous sequences. Such ectopic interaction events can lead to chromosome rearrangements and are normally avoided. However, much remains unknown about how these ectopic interaction events are sensed and eliminated. In this study, using a screen in rice, we characterized a homolog of HUS1 and explored its function in meiotic recombination. In Oshus1 mutants, in conjunction with nearly normal homologous pairing and synapsis, vigorous, aberrant ectopic interactions occurred between nonhomologous chromosomes, leading to multivalent formation and subsequent chromosome fragmentation. These ectopic interactions relied on programmed meiotic double strand breaks and were formed in a manner independent of the OsMER3-mediated interference-sensitive crossover pathway. Although early homologous recombination events occurred normally, the number of interference-sensitive crossovers was reduced in the absence of OsHUS1. Together, our results indicate that OsHUS1 might be involved in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex.

  12. Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe.

    PubMed

    Lorenz, Alexander; Estreicher, Anna; Kohli, Jürg; Loidl, Josef

    2006-08-01

    In fission yeast, meiotic prophase nuclei develop structures known as linear elements (LinEs), instead of a canonical synaptonemal complex. LinEs contain Rec10 protein. While Rec10 is essential for meiotic recombination, the precise role of LinEs in this process is unknown. Using in situ immunostaining, we show that Rec7 (which is required for meiosis-specific DNA double-strand break (DSB) formation) aggregates in foci on LinEs. The strand exchange protein Rad51, which is known to mark the sites of DSBs, also localizes to LinEs, although to a lesser degree. The number of Rec7 foci corresponds well with the average number of genetic recombination events per meiosis suggesting that Rec7 marks the sites of recombination. Rec7 and Rad51 foci do not co-localize, presumably because they act sequentially on recombination sites. The localization of Rec7 is dependent on Rec10 but independent of the DSB-inducing protein Rec12/Spo11. Neither Rec7 nor Rad51 localization depends on the LinE-associated proteins Hop1 and Mek1, but the formation of Rad51 foci depends on Rec10, Rec7, and, as expected, Rec12/Spo11. We propose that LinEs form around designated recombination sites before the induction of DSBs and that most, if not all, meiotic recombination initiates within the setting provided by LinEs.

  13. Homologue engagement controls meiotic DNA break number and distribution.

    PubMed

    Thacker, Drew; Mohibullah, Neeman; Zhu, Xuan; Keeney, Scott

    2014-06-12

    Meiotic recombination promotes genetic diversification as well as pairing and segregation of homologous chromosomes, but the double-strand breaks (DSBs) that initiate recombination are dangerous lesions that can cause mutation or meiotic failure. How cells control DSBs to balance between beneficial and deleterious outcomes is not well understood. Here we test the hypothesis that DSB control involves a network of intersecting negative regulatory circuits. Using multiple complementary methods, we show that DSBs form in greater numbers in Saccharomyces cerevisiae cells lacking ZMM proteins, a suite of recombination-promoting factors traditionally regarded as acting strictly downstream of DSB formation. ZMM-dependent DSB control is genetically distinct from a pathway tying break formation to meiotic progression through the Ndt80 transcription factor. These counterintuitive findings suggest that homologous chromosomes that have successfully engaged one another stop making breaks. Genome-wide DSB maps uncover distinct responses by different subchromosomal domains to the ZMM mutation zip3 (also known as cst9), and show that Zip3 is required for the previously unexplained tendency of DSB density to vary with chromosome size. Thus, feedback tied to ZMM function contributes in unexpected ways to spatial patterning of recombination.

  14. TDM1 Regulation Determines the Number of Meiotic Divisions

    PubMed Central

    Cifuentes, Marta; Jolivet, Sylvie; Cromer, Laurence; Harashima, Hirofumi; Bulankova, Petra; Renne, Charlotte; Crismani, Wayne; Nomura, Yuko; Nakagami, Hirofumi; Sugimoto, Keiko; Schnittger, Arp; Riha, Karel; Mercier, Raphael

    2016-01-01

    Cell cycle control must be modified at meiosis to allow two divisions to follow a single round of DNA replication, resulting in ploidy reduction. The mechanisms that ensure meiosis termination at the end of the second and not at the end of first division are poorly understood. We show here that Arabidopsis thaliana TDM1, which has been previously shown to be essential for meiotic termination, interacts directly with the Anaphase-Promoting Complex. Further, mutations in TDM1 in a conserved putative Cyclin-Dependant Kinase (CDK) phosphorylation site (T16-P17) dominantly provoked premature meiosis termination after the first division, and the production of diploid spores and gametes. The CDKA;1-CYCA1.2/TAM complex, which is required to prevent premature meiotic exit, phosphorylated TDM1 at T16 in vitro. Finally, while CYCA1;2/TAM was previously shown to be expressed only at meiosis I, TDM1 is present throughout meiosis. These data, together with epistasis analysis, lead us to propose that TDM1 is an APC/C component whose function is to ensure meiosis termination at the end of meiosis II, and whose activity is inhibited at meiosis I by CDKA;1-TAM-mediated phosphorylation to prevent premature meiotic exit. This provides a molecular mechanism for the differential decision of performing an additional round of division, or not, at the end of meiosis I and II, respectively. PMID:26871453

  15. Tet1 controls meiosis by regulating meiotic gene expression.

    PubMed

    Yamaguchi, Shinpei; Hong, Kwonho; Liu, Rui; Shen, Li; Inoue, Azusa; Diep, Dinh; Zhang, Kun; Zhang, Yi

    2012-12-20

    Meiosis is a germ-cell-specific cell division process through which haploid gametes are produced for sexual reproduction. Before the initiation of meiosis, mouse primordial germ cells undergo a series of epigenetic reprogramming steps, including the global erasure of DNA methylation at the 5-position of cytosine (5mC) in CpG-rich DNA. Although several epigenetic regulators, such as Dnmt3l and the histone methyltransferases G9a and Prdm9, have been reported to be crucial for meiosis, little is known about how the expression of meiotic genes is regulated and how their expression contributes to normal meiosis. Using a loss-of-function approach in mice, here we show that the 5mC-specific dioxygenase Tet1 has an important role in regulating meiosis in mouse oocytes. Tet1 deficiency significantly reduces female germ-cell numbers and fertility. Univalent chromosomes and unresolved DNA double-strand breaks are also observed in Tet1-deficient oocytes. Tet1 deficiency does not greatly affect the genome-wide demethylation that takes place in primordial germ cells, but leads to defective DNA demethylation and decreased expression of a subset of meiotic genes. Our study thus establishes a function for Tet1 in meiosis and meiotic gene activation in female germ cells.

  16. Tet1 controls meiosis by regulating meiotic gene expression

    PubMed Central

    Yamaguchi, Shinpei; Hong, Kwonho; Liu, Rui; Shen, Li; Inoue, Azusa; Diep, Dinh; Zhang, Kun; Zhang, Yi

    2012-01-01

    Meiosis is a germ cell-specific cell division process through which haploid gametes are produced for sexual reproduction1. Prior to initiation of meiosis, mouse primordial germ cells (PGCs) undergo a series of epigenetic reprogramming steps2,3, including global erasure of DNA methylation on the 5-position of cytosine (5mC) at CpG4,5. Although several epigenetic regulators, such as Dnmt3l, histone methyltransferases G9a and Prdm9, have been reported to be critical for meiosis6, little is known about how the expression of meiotic genes is regulated and how their expression contributes to normal meiosis. Using a loss of function approach, here we demonstrate that the 5mC-specific dioxygenase Tet1 plays an important role in regulating meiosis in mouse oocytes. Tet1 deficiency significantly reduces female germ cell numbers and fertility. Univalent chromosomes and unresolved DNA double strand breaks are also observed in Tet1-deficient oocytes. Tet1 deficiency does not greatly affect the genome-wide demethylation that takes place in PGCs but leads to defective DNA demethylation and decreased expression of a subset of meiotic genes. Our study thus establishes a function for Tet1 in meiosis and meiotic gene activation in female germ cells. PMID:23151479

  17. Preimplantation genetic diagnosis in patients with male meiotic abnormalities.

    PubMed

    Aran, B; Veiga, A; Vidal, F; Parriego, M; Vendrell, J M; Santaló, J; Egozcue, J; Barri, P N

    2004-04-01

    Indications and candidates for preimplantation genetic diagnosis (PGD) have increased in recent years. This study evaluates whether IVF-intracytoplasmic sperm injection (ICSI) results could be improved by selecting embryos through PGD-AS (aneuploidy screening) in couples in whom the male partner presents meiotic abnormalities. Two hundred and fifty-six embryos were biopsied and 183 were suitable for analysis (73.2%). Ninety-two embryos showed normal chromosomal analysis (50.3% of the analysed embryos and 57.5% of the diagnosed embryos). Pregnancy, abortion and implantation rates were compared with 66 IVF-ICSI cycles performed in 44 patients with meiotic abnormalities without PGD (control group). No statistically significant differences in the pregnancy rate (52 versus 43.9%), implantation rate (32.1 versus 23.5%) and miscarriage rate (15.4 versus 10.3%) were observed between the groups. Although the embryos obtained from men with meiotic abnormalities showed a high frequency of chromosome abnormalities, no improvements in pregnancy and implantation rates were obtained after PGD-AS in the series analysed.

  18. Actin-mediated motion of meiotic chromosomes

    PubMed Central

    Koszul, R.; Kim, K. P.; Prentiss, M.; Kleckner, N.; Kameoka, S.

    2008-01-01

    Summary Chromosome movement is prominent during meiosis. Here, using a combination of in vitro and in vivo approaches, we elucidate the basis for dynamic mid-prophase chromosome movement in budding yeast. Diverse finding reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope (NE) ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network. Other chromosomes move in concert with lead chromosome(s). The same process, in modulated form, explains the zygotene "bouquet" configuration in which, immediately preceding pachytene, chromosome ends colocalize dynamically in a restricted region of the NE. Mechanical properties of the system and biological roles of mid-prophase movement for meiosis, including recombination, are discussed. PMID:18585353

  19. Adult plasticity and cortical reorganization after peripheral lesions.

    PubMed

    Sammons, Rosanna P; Keck, Tara

    2015-12-01

    Following loss of input due to peripheral lesions, functional reorganization occurs in the deprived cortical region in adults. Over a period of hours to months, cells in the lesion projection zone (LPZ) begin to respond to novel stimuli. This reorganization is mediated by two processes: a reduction of inhibition in a gradient throughout the cortex and input remapping via sprouting of axonal arbors from cortical regions spatially adjacent to the LPZ, and strengthening of pre-existing subthreshold inputs. Together these inputs facilitate receptive field remapping of cells in the LPZ. Recent experiments have revealed time courses and potential interactions of the mechanisms associated with functional reorganization, suggesting that large scale reorganization in the adult may utilize plasticity mechanisms prominent during development.

  20. Administrative Control in Academic Departments and Response to Reorganization

    ERIC Educational Resources Information Center

    Ryan, Doris W.

    1970-01-01

    Studies the response of 15 academic departments at Ohio State University to reorganization. Implications of the study deal with methods of introducing change, the importance of group norms, and the link between informal norms and existing formal structure. (MK)

  1. Reorganization of the Yearbook Staffs for the 1980s.

    ERIC Educational Resources Information Center

    Vossen, Daniel L.

    1981-01-01

    A diagram of the reorganized yearbook staff, reflective of current emphasis on magazine-style layout designs, and adaptable for colleges, high schools, mid-high schools, and junior high schools. Listings of responsibilities for each integral staff member. (RL)

  2. Meiotic recombination initiated by a double-strand break in rad50{Delta} yeast cells otherwise unable to initiate meiotic recombination

    SciTech Connect

    Malkova, A.; Haber, J.E.; Dawson, D.

    1996-06-01

    Meiotic recombination in Saccharomyces cerevisiae is initiated by double-strand breaks (DSBs). We have developed a system to compare the properties of meiotic DSBs with those created by the site-specific HO endonuclease. HO endonuclease was expressed under the control of the meiotic-specific SPO13 promoter, creating a DSB at a single site on one of yeast`s 16 chromosomes. In Rad{sup +} strains the times of appearance of the HO-induced DSBs and of subsequent recombinants are coincident with those induced by normal meiotic DSBs. Physical monitoring of DNA showed that SPO13::HO induced gene conversions both in Rad{sup +} and in rad50{Delta} cells that cannot initiate normal meiotic DSBs. We find that the RAD50 gene is important, but not essential, for recombination even after a DSB has been created in a meiotic cell. In rad50{Delta} cells, some DSBs are not repaired until a broken chromosome has been packaged into a spore and is subsequently germinated. This suggests that a broken chromosome does not signal an arrest of progression through meiosis. The recombination defect in rad50{Delta} diploids is not, however, meiotic specific, as mitotic rad50 diploids, experiencing an HO-induced DSB, exhibit similar departures from wild-type recombination. 57 refs., 5 figs., 3 tabs.

  3. Cortical reorganization after spinal cord injury: always for good?

    PubMed Central

    Moxon, Karen A.; Oliviero, Antonio; Aguilar, Juan; Foffani, Guglielmo

    2015-01-01

    Plasticity constitutes the basis of behavioral changes as a result of experience. It refers to neural network shaping and re-shaping at the global level and to synaptic contacts remodeling at the local level, either during learning or memory encoding, or as a result of acute or chronic pathological conditions. ‘Plastic’ brain reorganization after central nervous system lesions has a pivotal role in the recovery and rehabilitation of sensory and motor dysfunction, but can also be “maladaptive”. Moreover, it is clear that brain reorganization it is not a “static” phenomenon but rather a very dynamic process. Spinal cord injury immediately initiates a change in brain state and starts cortical reorganization. In the long term, the impact of injury – with or without accompanying therapy – on the brain is a complex balance between supraspinal reorganization and spinal recovery. The degree of cortical reorganization after spinal cord injury is highly variable, and can range from no reorganization (i.e. “silencing”) to massive cortical remapping. This variability critically depends on the species, the age of the animal when the injury occurs, the time after the injury has occurred, and the behavioral activity and possible therapy regimes after the injury. We will briefly discuss these dependencies, trying to highlight their translational value. Overall, it is not only necessary to better understand how the brain can reorganize after injury with or without therapy, it is also necessary to clarify when and why brain reorganization can be either “good” or “bad” in terms of its clinical consequences. This information is critical in order to develop and optimize cost-effective therapies to maximize functional recovery while minimizing maladaptive states after spinal cord injury. PMID:24997269

  4. Transmission electron microscopy and serial reconstructions reveal novel meiotic phenotypes for the ahp2 mutant of Arabidopsis thaliana.

    PubMed

    Pathan, Nazia; Stronghill, Patti; Hasenkampf, Clare

    2013-03-01

    We have found novel phenotypes for the previously studied Arabidopsis thaliana (L.) Heynh. meiotic mutant ahp2. These phenotypes were revealed by analysis of reconstructions of normal and ahp2 nuclei that were imaged using transmission electron microscopy. Previous studies of the ahp2 mutant demonstrated that it has a general failure to form synaptonemal complexes, except for the nucleolus organizing regions, and it fails to complete reciprocal genetic exchange. Here, we show that even though the ahp2 chromosome axes have only 5% of the normal amount of synaptonemal complex formation, it nonetheless has slightly more than 40% of the axes involved in close alignment. We also observed two striking nuclear envelope associated abnormalities. Wild type nuclei contain two nucleoli, one nucleolus-like structure, and nuclear envelope associated structures that we refer to as nuclear envelope associated disks. The ahp2 nuclei have the two nucleoli, but they lack the third nucleolus-like structure and instead have a previously uncharacterized structure that spans the nuclear envelope. Additionally, ahp2 meiocytes have nuclear envelope associated disks that are narrower and more numerous (∼2×) than those seen in wild type, and unlike the wild type disks, they are in direct contact with the nuclear envelope.

  5. Autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast.

    PubMed

    Matsuhara, Hirotada; Yamamoto, Ayumu

    2016-01-01

    Autophagy is a conserved intracellular degradation system, which contributes to development and differentiation of various organisms. Yeast cells undergo meiosis under nitrogen-starved conditions and require autophagy for meiosis initiation. However, the precise roles of autophagy in meiosis remain unclear. Here, we show that autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Autophagy-defective strains bearing a mutation in the autophagy core factor gene atg1, atg7, or atg14 exhibit deformed nuclear structures during meiosis. These mutant cells require an extracellular nitrogen supply for meiosis progression following their entry into meiosis and show delayed meiosis progression even with a nitrogen supply. In addition, they show frequent chromosome dissociation from the spindle together with spindle overextension, forming extra nuclei. Furthermore, Aurora kinase, which regulates chromosome segregation and spindle elongation, is significantly increased at the centromere and spindle in the mutant cells. Aurora kinase down-regulation eliminated delayed initiation of meiosis I and II, chromosome dissociation, and spindle overextension, indicating that increased Aurora kinase activity may cause these aberrances in the mutant cells. Our findings show a hitherto unrecognized relationship of autophagy with the nuclear structure, regulation of cell cycle progression, and chromosome segregation in meiosis.

  6. Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse

    PubMed Central

    Dan, Jiameng; Kim, Soojin; Hardikar, Swanand; Hollowell, Debra; Lin, Kevin; Lu, Yue; Takata, Yoko; Shen, Jianjun; Chen, Taiping

    2016-01-01

    Oocyte meiotic progression and maternal-to-zygote transition are accompanied by dynamic epigenetic changes. The functional significance of these changes and the key epigenetic regulators involved are largely unknown. Here we show that Setdb1, a lysine methyltransferase, controls the global level of histone H3 lysine 9 di-methyl (H3K9me2) mark in growing oocytes. Conditional deletion of Setdb1 in developing oocytes leads to meiotic arrest at the germinal vesicle and meiosis I stages, resulting in substantially fewer mature eggs. Embryos derived from these eggs exhibit severe defects in cell cycle progression, progressive delays in preimplantation development, and degeneration before reaching the blastocyst stage. Rescue experiments by expressing wild-type or inactive Setdb1 in Setdb1-deficient oocytes suggest that the catalytic activity of Setdb1 is essential for meiotic progression and early embryogenesis. Mechanistically, up-regulation of Cdc14b, a dual-specificity phosphatase that inhibits meiotic progression, greatly contributes to the meiotic arrest phenotype. Setdb1 deficiency also leads to derepression of transposons and increased DNA damage in oocytes, which likely also contribute to meiotic defects. Thus, Setdb1 is a maternal-effect gene that controls meiotic progression and is essential for early embryogenesis. Our results uncover an important link between the epigenetic machinery and the major signaling pathway governing meiotic progression. PMID:27070551

  7. The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.).

    PubMed Central

    Golubovskaya, Inna N; Harper, Lisa C; Pawlowski, Wojciech P; Schichnes, Denise; Cande, W Zacheus

    2002-01-01

    The clustering of telomeres on the nuclear envelope (NE) during meiotic prophase to form the bouquet arrangement of chromosomes may facilitate homologous chromosome synapsis. The pam1 (plural abnormalities of meiosis 1) gene is the first maize gene that appears to be required for telomere clustering, and homologous synapsis is impaired in pam1. Telomere clustering on the NE is arrested or delayed at an intermediate stage in pam1. Telomeres associate with the NE during the leptotene-zygotene transition but cluster slowly if at all as meiosis proceeds. Intermediate stages in telomere clustering including miniclusters are observed in pam1 but not in wild-type meiocytes. The tight bouquet normally seen at zygotene is a rare event. In contrast, the polarization of centromeres vs. telomeres in the nucleus at the leptotene-zygotene transition is the same in mutant and wild-type cells. Defects in homologous chromosome synapsis include incomplete synapsis, nonhomologous synapsis, and unresolved interlocks. However, the number of RAD51 foci on chromosomes in pam1 is similar to that of wild type. We suggest that the defects in homologous synapsis and the retardation of prophase I arise from the irregularity of telomere clustering and propose that pam1 is involved in the control of bouquet formation and downstream meiotic prophase I events. PMID:12524364

  8. The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.).

    PubMed

    Golubovskaya, Inna N; Harper, Lisa C; Pawlowski, Wojciech P; Schichnes, Denise; Cande, W Zacheus

    2002-12-01

    The clustering of telomeres on the nuclear envelope (NE) during meiotic prophase to form the bouquet arrangement of chromosomes may facilitate homologous chromosome synapsis. The pam1 (plural abnormalities of meiosis 1) gene is the first maize gene that appears to be required for telomere clustering, and homologous synapsis is impaired in pam1. Telomere clustering on the NE is arrested or delayed at an intermediate stage in pam1. Telomeres associate with the NE during the leptotene-zygotene transition but cluster slowly if at all as meiosis proceeds. Intermediate stages in telomere clustering including miniclusters are observed in pam1 but not in wild-type meiocytes. The tight bouquet normally seen at zygotene is a rare event. In contrast, the polarization of centromeres vs. telomeres in the nucleus at the leptotene-zygotene transition is the same in mutant and wild-type cells. Defects in homologous chromosome synapsis include incomplete synapsis, nonhomologous synapsis, and unresolved interlocks. However, the number of RAD51 foci on chromosomes in pam1 is similar to that of wild type. We suggest that the defects in homologous synapsis and the retardation of prophase I arise from the irregularity of telomere clustering and propose that pam1 is involved in the control of bouquet formation and downstream meiotic prophase I events.

  9. Understanding and Manipulating Meiotic Recombination in Plants[OPEN

    PubMed Central

    2017-01-01

    Meiosis is a specialized cell division, essential in most reproducing organisms to halve the number of chromosomes, thereby enabling the restoration of ploidy levels during fertilization. A key step of meiosis is homologous recombination, which promotes homologous pairing and generates crossovers (COs) to connect homologous chromosomes until their separation at anaphase I. These CO sites, seen cytologically as chiasmata, represent a reciprocal exchange of genetic information between two homologous nonsister chromatids. This gene reshuffling during meiosis has a significant influence on evolution and also plays an essential role in plant breeding, because a successful breeding program depends on the ability to bring the desired combinations of alleles on chromosomes. However, the number and distribution of COs during meiosis is highly constrained. There is at least one CO per chromosome pair to ensure accurate segregation of homologs, but in most organisms, the CO number rarely exceeds three regardless of chromosome size. Moreover, their positions are not random on chromosomes but exhibit regional preference. Thus, genes in recombination-poor regions tend to be inherited together, hindering the generation of novel allelic combinations that could be exploited by breeding programs. Recently, much progress has been made in understanding meiotic recombination. In particular, many genes involved in the process in Arabidopsis (Arabidopsis thaliana) have been identified and analyzed. With the coming challenges of food security and climate change, and our enhanced knowledge of how COs are formed, the interest and needs in manipulating CO formation are greater than ever before. In this review, we focus on advances in understanding meiotic recombination and then summarize the attempts to manipulate CO formation. Last, we pay special attention to the meiotic recombination in polyploidy, which is a common genomic feature for many crop plants. PMID:28108697

  10. Genome-Wide Association Study of Meiotic Recombination Phenotypes

    PubMed Central

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G.; Sherman, Stephanie L.; Feingold, Eleanor

    2016-01-01

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9. By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2. This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events. PMID:27733454

  11. Genome-Wide Association Study of Meiotic Recombination Phenotypes.

    PubMed

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G; Sherman, Stephanie L; Feingold, Eleanor

    2016-12-07

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9 By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2 This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events.

  12. Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response

    PubMed Central

    Najor, Nicole A.; Weatherford, Layne; Brush, George S.

    2016-01-01

    In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs) are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control. PMID:27678521

  13. Chromosome numbers and meiotic analysis in the pre-breeding of Brachiaria decumbens (Poaceae).

    PubMed

    Ricci, Gléia Cristina Laverde; De Souza-Kaneshima, Alice Maria; Felismino, Mariana Ferrari; Mendes-Bonato, Andrea Beatriz; Pagliarini, Maria Suely; Do Valle, Cacilda Borges

    2011-08-01

    A total of 44 accessions of Brachiaria decumbens were analysed for chromosome count and meiotic behaviour in order to identify potential progenitors for crosses. Among them, 15 accessions presented 2n = 18; 27 accessions, 2n = 36; and 2 accessions, 2n = 45 chromosomes. Among the diploid accessions, the rate of meiotic abnormalities was low, ranging from 0.82% to 7.93%. In the 27 tetraploid accessions, the rate of meiotic abnormalities ranged from 18.41% to 65.83%. The most common meiotic abnormalities were related to irregular chromosome segregation, but chromosome stickiness and abnormal cytokinesis were observed in low frequency. All abnormalities can compromise pollen viability by generating unbalanced gametes. Based on the chromosome number and meiotic stability, the present study indicates the apomictic tetraploid accessions that can act as male genitor to produce interspecific hybrids with B. ruziziensis or intraspecific hybrids with recently artificially tetraploidized accessions.

  14. Reversible meiotic abnormalities in azoospermic men with bilateral varicocele after microsurgical correction.

    PubMed

    North, M O; Lellei, I; Rives, N; Erdei, E; Dittmar, A; Barbet, J P; Tritto, G

    2004-05-01

    Because of a possible relationship between microenvironmental disturbances and meiotic abnormalities and of a straight relationship between lower-quality semen in patient carrying a varicocele and first meiotic non-disjunction, bilateral bipolar testicular biopsies are realized according the thermic differential gradient described in varicocele. Systematic meiotic studies of multiple testicular biopsies from 65 azoospermic men with bilateral varicocele were done in a multi-centric study on microsurgical correction of bilateral varicocele with microthermic intra-operative evaluation using minimally invasive thermal microsensors (Betatherm 10K3MCD2). In the present study abnormal temperature raising, histomorphometric abnormalities (spermatocyte arrest) and meiotic abnormalities (class IIC) are strongly correlated. In the ten patients submitted to another testicular biopsy procedure six months after surgery for TESE, normal thermal differential is registered and no meiotic abnormalities recurrences are found.

  15. The mouse Spo11 gene is required for meiotic chromosome synapsis.

    PubMed

    Romanienko, P J; Camerini-Otero, R D

    2000-11-01

    The Spo11 protein initiates meiotic recombination by generating DNA double-strand breaks (DSBs) and is required for meiotic synapsis in S. cerevisiae. Surprisingly, Spo11 homologs are dispensable for synapsis in C. elegans and Drosophila yet required for meiotic recombination. Disruption of mouse Spo11 results in infertility. Spermatocytes arrest prior to pachytene with little or no synapsis and undergo apoptosis. We did not detect Rad51/Dmc1 foci in meiotic chromosome spreads, indicating DSBs are not formed. Cisplatin-induced DSBs restored Rad51/Dmc1 foci and promoted synapsis. Spo11 localizes to discrete foci during leptotene and to homologously synapsed chromosomes. Other mouse mutants that arrest during meiotic prophase (Atm -/-, Dmc1 -/-, mei1, and Morc(-/-)) showed altered Spo11 protein localization and expression. We speculate that there is an additional role for Spo11, after it generates DSBs, in synapsis.

  16. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance.

    PubMed

    Rosu, Simona; Zawadzki, Karl A; Stamper, Ericca L; Libuda, Diana E; Reese, Angela L; Dernburg, Abby F; Villeneuve, Anne M

    2013-01-01

    For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious

  17. Rotational reorganization of doped cholesteric liquid crystalline films.

    PubMed

    Eelkema, Rienk; Pollard, Michael M; Katsonis, Nathalie; Vicario, Javier; Broer, Dirk J; Feringa, Ben L

    2006-11-08

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric pitch. The direction of this reorganization is correlated to the sign of the change in helical twisting power of the dopant. The rotational reorganization of the liquid crystalline film was used to rotate microscopic objects 4 orders of magnitude larger than the bistable dopants in the film, which shows that molecular motors and switches can perform work. The surface of the doped cholesteric liquid crystalline films was found to possess a regular surface relief, whose periodicity coincides with typical cholesteric polygonal line textures. These surface features originate from the cholesteric superstructure in the liquid crystalline film, which in turn is the result of the presence of the chiral dopant. As such, the presence of the dopant is expressed in these distinct surface structures. A possible mechanism at the origin of the rotational reorganization of liquid crystalline films and the cholesteric surface relief is discussed.

  18. Excitation and inhibition jointly regulate cortical reorganization in adult rats.

    PubMed

    Benali, Alia; Weiler, Elke; Benali, Youssef; Dinse, Hubert R; Eysel, Ulf T

    2008-11-19

    The primary somatosensory cortex (SI) retains its capability for cortical reorganization after injury or differential use into adulthood. The plastic response of SI cells to peripheral stimulation is characterized by extension of cortical representations accompanied by changes of the receptive field size of neurons. We used intracortical microstimulation that is known to enforce local, intracortical synchronous activity, to induce cortical reorganization and applied immunohistochemical methods in the same individual animals to investigate how plasticity in the cortical topographic maps is linked to changes in the spatial layout of the inhibitory and excitatory neurotransmitter systems. The results reveal a differential spatiotemporal pattern of upregulation and downregulation of specific factors for an excitatory (glutamatergic) and an inhibitory (GABAergic) system, associated with changes of receptive field size and reorganization of the somatotopic map in the rat SI. Predominantly local mechanisms are the specific reduction of the calcium-binding protein parvalbumin in inhibitory neurons and the low expression of the activity marker c-Fos. Reorganization in the hindpaw representation and in the adjacent SI cortical areas (motor cortex and parietal cortex) is accompanied by a major increase of the excitatory transmitter glutamate and c-Fos. The spatial extent of the reorganization appears to be limited by an increase of glutamic acid decarboxylase and the inhibitory transmitter GABA. The local and medium-range net effects are excitatory and can facilitate receptive field enlargements and cortical map expansion. The longer-range increase of inhibition appears suited to limit these effects and to prevent neurons from pathological hyperexcitability.

  19. Meiotic recombination analysis in female ducks (Anas platyrhynchos).

    PubMed

    Pigozzi, M I; Del Priore, L

    2016-06-01

    Meiotic recombination in female ducks was directly studied by immunolocalization of MLH1 protein, a mismatch repair protein of mature recombination nodules. In total, 6820 crossovers were scored along the autosomal synaptonemal complexes in 122 meiotic nuclei. From this analysis we predict that the female map length of the duck is 2845 cM, with a genome wide recombination rate of 2 cM/Mb. MLH1-focus mapping along the six largest bivalents shows regional variations of recombination frequencies that can be linked to differences in chromosome morphology. From this MLH1 mapping it can be inferred that distally located markers will appear more separated in genetic maps than physically equidistant markers located near the centromeres on bivalents 1 and 2. Instead, markers at interstitial positions on the acrocentric bivalents 3-6 will appear more tightly linked than expected on the basis of their physical distance because recombination is comparatively lower at the mid region of these chromosomes. The present results provide useful information to complement linkage mapping in ducks and extend previous knowledge about the variation of recombination rates among domestic Galloanserae.

  20. Meiotic chromosome pairing in triploid and tetraploid Saccharomyces cerevisiae

    SciTech Connect

    Loidl, J.

    1995-04-01

    Meiotic chromosome pairing in isogenic triploid and tetraploid strains of yeast and the consequences of polyploidy on meiotic chromosome segregation are studied. Synaptonemal complex formation at pachytene was found to be different in the triploid and in the tetraploid. In the triploid, triple-synapsis, that is, the connection of three homologues at a given site, is common. It can even extend all the way along the chromosomes. In the tetraploid, homologous chromosomes mostly come in pairs of synapsed bivalents. Multiple synapsis, that is, synapsis of more than two homologues in one and the same region, was virtually absent in the tetraploid. About five quadrivalents per cell occurred due to the switching of pairing partners. From the frequency of pairing partner switches it can be deduced that in most chromosomes synapsis is initiated primarily at one end, occasionally at both ends and rarely at an additional intercalary position. In contrast to a considerably reduced spore viability ({approximately}40%) in the triploid, spore viability is only mildly affected in the tetraploid. The good spore viability is presumably due to the low frequency of quadrivalents and to the highly regular 2:2 segregation of the few quadrivalents that do occur. Occasionally, however, quadrivalents appear to be subject to 3:1 nondisjunction that leads to spore death in the second generation. 29 refs., 6 figs., 4 tabs.

  1. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    PubMed

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.

  2. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling

    PubMed Central

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  3. Meiotic Chromosome Pairing in Triploid and Tetraploid Saccharomyces Cerevisiae

    PubMed Central

    Loidl, J.

    1995-01-01

    Meiotic chromosome pairing in isogenic triploid and tetraploid strains of yeast and the consequences of polyploidy on meiotic chromosome segregation are studied. Synaptonemal complex formation at pachytene was found to be different in the triploid and in the tetraploid. In the triploid, triple-synapsis, that is, the connection of three homologues at a given site, is common. It can even extend all the way along the chromosomes. In the tetraploid, homologous chromosomes mostly come in pairs of synapsed bivalents. Multiple synapsis, that is, synapsis of more than two homologues in one and the same region, was virtually absent in the tetraploid. About five quadrivalents per cell occurred due to the switching of pairing partners. From the frequency of pairing partner switches it can be deduced that in most chromosomes synapsis is initiated primarily at one end, occasionally at both ends and rarely at an additional intercalary position. In contrast to a considerably reduced spore viability (~40%) in the triploid, spore viability is only mildly affected in the tetraploid. The good spore viability is presumably due to the low frequency of quadrivalents and to the highly regular 2:2 segregation of the few quadrivalents that do occur. Occasionally, however, quadrivalents appear to be subject to 3:1 nondisjunction that leads to spore death in the second generation. PMID:7789756

  4. Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion

    PubMed Central

    Laureau, Raphaëlle; Loeillet, Sophie; Salinas, Francisco; Bergström, Anders; Legoix-Né, Patricia; Liti, Gianni; Nicolas, Alain

    2016-01-01

    In somatic cells, recombination between the homologous chromosomes followed by equational segregation leads to loss of heterozygosity events (LOH), allowing the expression of recessive alleles and the production of novel allele combinations that are potentially beneficial upon Darwinian selection. However, inter-homolog recombination in somatic cells is rare, thus reducing potential genetic variation. Here, we explored the property of S. cerevisiae to enter the meiotic developmental program, induce meiotic Spo11-dependent double-strand breaks genome-wide and return to mitotic growth, a process known as Return To Growth (RTG). Whole genome sequencing of 36 RTG strains derived from the hybrid S288c/SK1 diploid strain demonstrates that the RTGs are bona fide diploids with mosaic recombined genome, derived from either parental origin. Individual RTG genome-wide genotypes are comprised of 5 to 87 homozygous regions due to the loss of heterozygous (LOH) events of various lengths, varying between a few nucleotides up to several hundred kilobases. Furthermore, we show that reiteration of the RTG process shows incremental increases of homozygosity. Phenotype/genotype analysis of the RTG strains for the auxotrophic and arsenate resistance traits validates the potential of this procedure of genome diversification to rapidly map complex traits loci (QTLs) in diploid strains without undergoing sexual reproduction. PMID:26828862

  5. Inventory and Phylogenetic Analysis of Meiotic Genes in Monogonont Rotifers

    PubMed Central

    2013-01-01

    A long-standing question in evolutionary biology is how sexual reproduction has persisted in eukaryotic lineages. As cyclical parthenogens, monogonont rotifers are a powerful model for examining this question, yet the molecular nature of sexual reproduction in this lineage is currently understudied. To examine genes involved in meiosis, we generated partial genome assemblies for 2 distantly related monogonont species, Brachionus calyciflorus and B. manjavacas. Here we present an inventory of 89 meiotic genes, of which 80 homologs were identified and annotated from these assemblies. Using phylogenetic analysis, we show that several meiotic genes have undergone relatively recent duplication events that appear to be specific to the monogonont lineage. Further, we compare the expression of “meiosis-specific” genes involved in recombination and all annotated copies of the cell cycle regulatory gene CDC20 between obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of B. calyciflorus. We show that “meiosis-specific” genes are expressed in both CP and OP strains, whereas the expression of one of the CDC20 genes is specific to cyclical parthenogenesis. The data presented here provide insights into mechanisms of cyclical parthenogenesis and establish expectations for studies of obligate asexual relatives of monogononts, the bdelloid rotifer lineage. PMID:23487324

  6. Time to reorganize federal Earth system science and technology?

    NASA Astrophysics Data System (ADS)

    Kisslinger, Carl

    My usual reaction to plans to reorganize activities in the federal government is that these are the last resort of a bureaucrat who is faced with a tough problem and has no idea how to solve it. However, this may be the time to consider seriously a reorganization that would assemble key elements of Earth-oriented science and technology into a single federal agency. This is not a new idea, as proposals to achieve this goal have been formulated in the past and wiring diagrams for a new agency have been developed. These proposals have faded away in the face of resistance to substantial structural change that characterizes the federal bureaucracy.

  7. Sisters Unbound Is Required for Meiotic Centromeric Cohesion in Drosophila melanogaster

    PubMed Central

    Krishnan, Badri; Thomas, Sharon E.; Yan, Rihui; Yamada, Hirotsugu; Zhulin, Igor B.; McKee, Bruce D.

    2014-01-01

    Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein. PMID:25194162

  8. Sisters unbound is required for meiotic centromeric cohesion in Drosophila melanogaster.

    PubMed

    Krishnan, Badri; Thomas, Sharon E; Yan, Rihui; Yamada, Hirotsugu; Zhulin, Igor B; McKee, Bruce D

    2014-11-01

    Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.

  9. Functional interactions between SPO11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae.

    PubMed

    Kee, Kehkooi; Keeney, Scott

    2002-01-01

    In Saccharomyces cerevisiae, formation of the DNA double-strand breaks (DSBs) that initiate meiotic recombination requires the products of at least 10 genes. Spo11p is thought to be the catalytic subunit of the DNA cleaving activity, but the roles of the other proteins, and the interactions among them, are not well understood. This study demonstrates genetic and physical interactions between the products of SPO11 and another early meiotic gene required for DSB formation, REC102. We found that epitope-tagged versions of SPO11 and REC102 that by themselves were capable of supporting normal or nearly normal levels of meiotic recombination conferred a severe synthetic cold-sensitive phenotype when combined in the same cells. DSB formation, meiotic gene conversion, and spore viability were drastically reduced in the doubly tagged strain at a nonpermissive temperature. This conditional defect could be partially rescued by expression of untagged SPO11, but not by expression of untagged REC102, indicating that tagged REC102 is fully dominant for this synthetic phenotype. Both tagged and wild-type Spo11p co-immunoprecipitated with tagged Rec102p from meiotic cell extracts, indicating that these proteins are present in a common complex in vivo. Tagged Rec102p localized to the nucleus in whole cells and to chromatin on spread meiotic chromosomes. Our results are consistent with the idea that a multiprotein complex that includes Spo11p and Rec102p promotes meiotic DSB formation.

  10. Telomeres and centromeres have interchangeable roles in promoting meiotic spindle formation

    PubMed Central

    Fennell, Alex; Fernández-Álvarez, Alfonso; Tomita, Kazunori

    2015-01-01

    Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere–centrosome contact instead of telomere–centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindle-generating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks. PMID:25688135

  11. The Role of Microfilaments in Early Meiotic Maturation of Mouse Oocytes

    NASA Astrophysics Data System (ADS)

    Calarco, Patricia G.

    2005-04-01

    Mouse oocyte microfilaments (MF) were perturbed by depolymerization (cytochalasin B) or stabilization (jasplakinolide) and correlated meiotic defects examined by confocal microscopy. MF, microtubules, and mitochondria were vitally stained; centrosomes ([gamma]-tubulin), after fixation. MF depolymerization by cytochalasin in culture medium did not affect central migration of centrosomes, mitochondria, or nuclear breakdown (GVBD); some MF signal was localized around the germinal vesicle (GV). In maturation-blocking medium (containing IBMX), central movement was curtailed and cortical MF aggregations made the plasma membrane wavy. Occasional long MF suggested that not all MF were depolymerized. MF stabilization by jasplakinolide led to MF aggregations throughout the cytoplasm. GVBD occurred (unless IBMX was present) but no spindle formed. Over time, most oocytes constricted creating a dumbbell shape with MF concentrated under one-half of the oocyte cortex and on either side of the constriction. In IBMX medium, the MF-containing half of the dumbbell over time sequestered the GV, MF, mitochondria, and one to two large cortical centrosomes; the non-MF half appeared empty. Cumulus processes contacted the oocyte surface (detected by microtubule content) and mirrored MF distribution. Results demonstrated that MF play an essential role in meiosis, primarily through cortically mediated events, including centrosome localization, spindle (or GV) movement to the periphery, activation of (polar body) constriction, and establishment of oocyte polarity. The presence of a cortical “organizing pole” is hypothesized.

  12. Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch.

    PubMed

    Schoenmakers, Sam; Wassenaar, Evelyne; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2010-06-01

    During male meiotic prophase in mammals, X and Y are in a largely unsynapsed configuration, which is thought to trigger meiotic sex chromosome inactivation (MSCI). In avian species, females are ZW, and males ZZ. Although Z and W in chicken oocytes show complete, largely heterologous synapsis, they too undergo MSCI, albeit only transiently. The W chromosome is already inactive in early meiotic prophase, and inactive chromatin marks may spread on to the Z upon synapsis. Mammalian MSCI is considered as a specialised form of the general meiotic silencing mechanism, named meiotic silencing of unsynapsed chromatin (MSUC). Herein, we studied the avian form of MSUC, by analysing the behaviour of the peculiar germline restricted chromosome (GRC) that is present as a single copy in zebra finch spermatocytes. In the female germline, this chromosome is present in two copies, which normally synapse and recombine. In contrast, during male meiosis, the single GRC is always eliminated. We found that the GRC in the male germline is silenced from early leptotene onwards, similar to the W chromosome in avian oocytes. The GRC remains largely unsynapsed throughout meiotic prophase I, although patches of SYCP1 staining indicate that part of the GRC may self-synapse. In addition, the GRC is largely devoid of meiotic double strand breaks. We observed a lack of the inner centromere protein INCENP on the GRC and elimination of the GRC following metaphase I. Subsequently, the GRC forms a micronucleus in which the DNA is fragmented. We conclude that in contrast to MSUC in mammals, meiotic silencing of this single chromosome in the avian germline occurs prior to, and independent of DNA double strand breaks and chromosome pairing, hence we have named this phenomenon meiotic silencing prior to synapsis (MSPS).

  13. X chromosome effect on maternal recombination and meiotic drive in the mouse.

    PubMed Central

    de La Casa-Esperón, Elena; Loredo-Osti, J Concepción; Pardo-Manuel de Villena, Fernando; Briscoe, Tammi L; Malette, Jan Michel; Vaughan, Joe E; Morgan, Kenneth; Sapienza, Carmen

    2002-01-01

    We observed that maternal meiotic drive favoring the inheritance of DDK alleles at the Om locus on mouse chromosome 11 was correlated with the X chromosome inactivation phenotype of (C57BL/6-Pgk1(a) x DDK)F(1) mothers. The basis for this unexpected observation appears to lie in the well-documented effect of recombination on meiotic drive that results from nonrandom segregation of chromosomes. Our analysis of genome-wide levels of meiotic recombination in females that vary in their X-inactivation phenotype indicates that an allelic difference at an X-linked locus is responsible for modulating levels of recombination in oocytes. PMID:12196408

  14. Roles for mismatch repair family proteins in promoting meiotic crossing over

    PubMed Central

    Manhart, Carol M.; Alani, Eric

    2015-01-01

    The mismatch repair (MMR) family complexes Msh4-Msh5 and Mlh1-Mlh3 act with Exo1 and Sgs1-Top3-Rmi1 in a meiotic double strand break repair pathway that results in the asymmetric cleavage of double Holliday junctions (dHJ) to form crossovers. This review discusses how meiotic roles for Msh4-Msh5 and Mlh1-Mlh3 do not fit paradigms established for post-replicative MMR. We also outline models used to explain how these factors promote the formation of meiotic crossovers required for the accurate segregation of chromosome homologs during the Meiosis I division. PMID:26686657

  15. Audio-Visual Space Reorganization Study. RDU-75-05.

    ERIC Educational Resources Information Center

    Baker, Martha

    Space layout and work flow patterns in the Audiovisual Center at Purdue University were studied with respect to effective space utilization and the need for planning space requirements in relationship to the activities being performed. Space and work areas were reorganized to facilitate the flow of work and materials between areas, and equipment…

  16. 16 CFR 802.10 - Stock dividends and splits; reorganizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Stock dividends and splits; reorganizations. 802.10 Section 802.10 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 EXEMPTION RULES § 802.10...

  17. 16 CFR 802.10 - Stock dividends and splits; reorganizations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Stock dividends and splits; reorganizations. 802.10 Section 802.10 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 EXEMPTION RULES § 802.10...

  18. 16 CFR 802.10 - Stock dividends and splits; reorganizations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Stock dividends and splits; reorganizations. 802.10 Section 802.10 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 EXEMPTION RULES § 802.10...

  19. 16 CFR 802.10 - Stock dividends and splits; reorganizations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Stock dividends and splits; reorganizations. 802.10 Section 802.10 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 EXEMPTION RULES § 802.10...

  20. 16 CFR 802.10 - Stock dividends and splits; reorganizations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Stock dividends and splits; reorganizations. 802.10 Section 802.10 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 EXEMPTION RULES § 802.10...

  1. Reorganizing U.S. Domestic Intelligence: Assessing the Options

    DTIC Science & Technology

    2008-01-01

    Terrorism and Deterrence,” Survival, Vol. 46, No. 4, November 2004, pp. 179–185. Sunstein , Cass R., “Terrorism and Probability Neglect,” Journal of Risk and...aspects of these attributes, see Fischoff et al. (2003), Huddy (2005), Davis and Silver (2004), and Sunstein (2003). 12 Reorganizing U.S

  2. Chinese and English Infants' Tone Perception: Evidence for Perceptual Reorganization

    ERIC Educational Resources Information Center

    Mattock, Karen; Burnham, Denis

    2006-01-01

    Over half the world's population speaks a tone language, yet infant speech perception research has typically focused on consonants and vowels. Very young infants can discriminate a wide range of native and nonnative consonants and vowels, and then in a process of "perceptual reorganization" over the 1st year, discrimination of most…

  3. Rural School District Reorganization on the Great Plains.

    ERIC Educational Resources Information Center

    Bryant, Miles

    2002-01-01

    Rural school district reorganization and school consolidation are put into perspective by reviewing the large population increases that fueled small-school growth in the Great Plains, 1870-1930. Since the Dust Bowl and Great Depression, population losses, improvements in transportation, and arguments advocating economies of scale and increased…

  4. 12 CFR 5.32 - Expedited procedures for certain reorganizations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Expedited procedures for certain reorganizations. 5.32 Section 5.32 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY RULES, POLICIES, AND PROCEDURES FOR CORPORATE ACTIVITIES Expansion of Activities § 5.32 Expedited procedures...

  5. 12 CFR 5.32 - Expedited procedures for certain reorganizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Expedited procedures for certain reorganizations. 5.32 Section 5.32 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY RULES, POLICIES, AND PROCEDURES FOR CORPORATE ACTIVITIES Expansion of Activities § 5.32 Expedited procedures...

  6. 12 CFR 5.32 - Expedited procedures for certain reorganizations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Expedited procedures for certain reorganizations. 5.32 Section 5.32 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY RULES, POLICIES, AND PROCEDURES FOR CORPORATE ACTIVITIES Expansion of Activities § 5.32 Expedited procedures...

  7. 12 CFR 5.32 - Expedited procedures for certain reorganizations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Expedited procedures for certain reorganizations. 5.32 Section 5.32 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY RULES, POLICIES, AND PROCEDURES FOR CORPORATE ACTIVITIES Expansion of Activities § 5.32 Expedited procedures...

  8. 12 CFR 5.32 - Expedited procedures for certain reorganizations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Expedited procedures for certain reorganizations. 5.32 Section 5.32 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY RULES, POLICIES, AND PROCEDURES FOR CORPORATE ACTIVITIES Expansion of Activities § 5.32 Expedited procedures...

  9. REORGANIZED SCIENCE CURRICULUM, 4A, FOURTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE FIFTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE FOURTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THERE IS A DETAILED OUTLINE OF THE CONTENT FOR GRADE 4 FOR EACH OF THE FOLLOWING MAJOR AREAS AROUND WHICH…

  10. REORGANIZED SCIENCE CURRICULUM, 6A, SIXTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE NINTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE SIXTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THE SIXTH GRADE SUPPLEMENT IS IN THREE VOLUMES. VOLUME 6A HAS A DETAILED OUTLINE OF THE SUBJECT MATTER FOR…

  11. REORGANIZED SCIENCE CURRICULUM, 7A, GRADE SEVEN SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE TWELFTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE SEVENTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THE SEVENTH GRADE SUPPLEMENT IS IN TWO VOLUMES. VOLUME 7A CONTAINS INTRODUCTORY MATERIAL, A BRIEF…

  12. REORGANIZED SCIENCE CURRICULUM, 5A, FIFTH GRADE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Minneapolis Special School District 1, Minn.

    THE SEVENTH IN A SERIES OF 17 VOLUMES, THIS VOLUME PROVIDES THE FIFTH GRADE TEACHER WITH A GUIDE TO THE REORGANIZED SCIENCE CURRICULUM OF THE MINNEAPOLIS PUBLIC SCHOOLS. THE MATERIALS ARE INTENDED TO BE AUGMENTED AND REVISED AS THE NEED ARISES. THERE IS A DETAILED OUTLINE OF SUBJECT MATTER FOR GRADE 5 FOR EACH OF THE FOLLOWING MAJOR AREAS AROUND…

  13. Solvent reorganization of electron transitions in viscous solvents

    SciTech Connect

    Ghorai, Pradip K.; Matyushov, Dmitry V.

    2006-04-14

    We develop a model of electron transfer reactions at conditions of nonergodicity when the time of solvent relaxation crosses the observation time window set up by the reaction rate. Solvent reorganization energy of intramolecular electron transfer in a charge-transfer molecule dissolved in water and acetonitrile is studied by molecular dynamics simulations at varying temperatures. We observe a sharp decrease of the reorganization energy at a temperature identified as the temperature of structural arrest due to cage effect, as discussed by the mode-coupling theory. This temperature also marks the onset of the enhancement of translational diffusion relative to rotational relaxation signaling the breakdown of the Stokes-Einstein relation. The change in the reorganization energy at the transition temperature reflects the dynamical arrest of the slow, collective relaxation of the solvent related to the relaxation of the solvent dipolar polarization. An analytical theory proposed to describe this effect agrees well with both the simulations and experimental Stokes shift data. The theory is applied to the analysis of charge-transfer kinetics in a low-temperature glass former. We show that the reorganization energy is substantially lower than its equilibrium value for the low-temperature portion of the data. The theory predicts the possibility of discontinuous changes in the dependence of the electron transfer rate on the free energy gap when the reaction switches between ergodic and nonergodic regimes.

  14. A Model for Reorganization Applying Quality Principles and Techniques.

    ERIC Educational Resources Information Center

    Brown, Lynne Branche; Stanley, Nancy Markle

    This paper chronicles ongoing alterations to the organizational structure of the acquisitions department at Pennsylvania State University using the tenets of total quality management (TQM). The movement toward reorganizing for process improvement began in late 1992 when the associate dean of libraries called the acquisitions department together to…

  15. East Texas Oilfield Schools: Expansion, Diminution and Reorganization

    ERIC Educational Resources Information Center

    LeCompte, Karon; Nicol, Tom

    2005-01-01

    This article describes the rise, diminution, and reorganization of East Texas Oilfield schools which was defined by the socio-economic conditions of the oil era, from the mid-nineteenth century until the third quarter of the twentieth century. Citizens of East Texas seized the opportunity at the time of oil discovery to provide superior school…

  16. Expediting Scientific Data Analysis with Reorganization of Data

    SciTech Connect

    Byna, Surendra; Wu, Kesheng

    2013-08-19

    Data producers typically optimize the layout of data files to minimize the write time. In most cases, data analysis tasks read these files in access patterns different from the write patterns causing poor read performance. In this paper, we introduce Scientific Data Services (SDS), a framework for bridging the performance gap between writing and reading scientific data. SDS reorganizes data to match the read patterns of analysis tasks and enables transparent data reads from the reorganized data. We implemented a HDF5 Virtual Object Layer (VOL) plugin to redirect the HDF5 dataset read calls to the reorganized data. To demonstrate the effectiveness of SDS, we applied two parallel data organization techniques: a sort-based organization on a plasma physics data and a transpose-based organization on mass spectrometry imaging data. We also extended the HDF5 data access API to allow selection of data based on their values through a query interface, called SDS Query. We evaluated the execution time in accessing various subsets of data through existing HDF5 Read API and SDS Query. We showed that reading the reorganized data using SDS is up to 55X faster than reading the original data.

  17. Aym1, a mouse meiotic gene identified by virtue of its ability to activate early meiotic genes in the yeast Saccharomyces cerevisiae.

    PubMed

    Malcov, Mira; Cesarkas, Karen; Stelzer, Gil; Shalom, Sarah; Dicken, Yosef; Naor, Yaniv; Goldstein, Ronald S; Sagee, Shira; Kassir, Yona; Don, Jeremy

    2004-12-01

    Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.

  18. 76 FR 80331 - Foreign-Trade Zone 99-Wilmington, DE; Application for Reorganization and Expansion Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Zone 99--Wilmington, DE; Application for Reorganization and Expansion Under Alternative Site Framework... reorganize and expand the zone under the alternative site framework (ASF) adopted by the Board (74 FR 1170,...

  19. A requirement for protein phosphorylation in regulating the meiotic and mitotic cell cycles in echinoderms.

    PubMed

    Néant, I; Charbonneau, M; Guerrier, P

    1989-04-01

    Populations of hormone-stimulated starfish oocytes and fertilized sea urchin eggs undergo synchronous meiotic and mitotic divisions. We have studied the requirement for protein phosphorylation during these events by testing the effects of 6-dimethylaminopurine (6-DMAP) upon the incorporation of [32P]orthophosphate. It was found that 6-DMAP blocked meiosis reinitiation and early cleavage and simultaneously inhibited protein phosphorylation, without changing the rate of [35S]methionine incorporation or pattern of protein synthesis. The protein, cyclin (54 kDa in starfish and 57 kDa in sea urchin), continues to be synthesized in the presence of 6-DMAP. This protein is destroyed at first and second cell cycles when 6-DMAP is added 30 min following fertilization but not when this drug is present before fertilization. Thus, cyclin breakdown does not depend on the completion of the nuclear events of M-phase, and its time of breakdown is set at an early step between fertilization and first cleavage. Using tubulin immunostaining, we found that 6-DMAP did not affect the cortical microtubules and resting female centrioles of prophase-arrested starfish oocytes, whereas it induced a precocious disappearance of spindle fibers when applied to hormone-stimulated oocytes. While an early addition of 6-DMAP precluded nuclear breakdown and spindle formation in both systems, a late treatment always allowed chromosome separation and centriole separation. Under these conditions pericentriolar tubulin persisted and could organize new spindles after the inhibitor was removed. It is suggested that (1) the assembly of cortical and centriolar-associated microtubules is not controlled by the same factors as spindle-associated tubulin; (2) specific proteins which are required for the cell to enter the following M-phase can become operative only via a process depending upon protein phosphorylation; (3) microtubule-associated kinases may play an important role in MPF function and spindle dynamics.

  20. Time course of the meiotic arrest in sheep cumulus-oocyte complexes treated with roscovitine.

    PubMed

    Crocomo, Letícia Ferrari; Marques Filho, Wolff Camargo; Ackermann, Camila Louise; Paschoal, Daniela Martins; Guastali, Midyan Daroz; Dias Maziero, Rosiára Rosária; Sudano, Mateus José; Landim-Alvarenga, Fernanda da Cruz; Bicudo, Sony Dimas

    2016-04-01

    Temporary meiosis arrest with cyclin-dependent kinases inhibitors has been proposed in order to improve the quality of in vitro matured oocytes. In sheep, however, this phenomenon has been rarely investigated. Therefore, the present study aimed to evaluate the effect of different incubation times with roscovitine on nuclear maturation and cumulus cell expansion of sheep cumulus-oocyte complexes (COCs). For this, COCs were cultured for 0, 6, 12 or 20 h in basic maturation medium (Control) containing 75 μM roscovitine (Rosco). After, they were in vitro matured (IVM) for 18 h in the presence of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). At the end of each treatment, cumulus cell expansion and nuclear maturation were assessed under a stereomicroscope and by Hoechst 33342 staining, respectively. In the Control and Rosco groups, the absence of cumulus cell expansion prevailed at 0, 6, 12 and 20 h. After IVM for 18 h, total cumulus cell expansion in the Rosco treatments was dependent on the exposure time to roscovitine. A significantly high percentage of oocytes treated with roscovitine for 6 h (87%), 12 h or 20 h (65%) were arrested at the germinal vesicle (GV) stage. In contrast, 23% GVBD, 54% metaphase I (MI) and 61% MII oocytes were observed in the Control groups at 6, 12 and 20 h, respectively. In all treatments, a significant percentage of oocytes reached MII after IVM for 18 h. Therefore, roscovitine reversibly arrested the meiosis of sheep oocytes during different culture times with the maximal efficiency of meiotic inhibition reached at 6 h. In addition, reversibility of its inhibitory action on cumulus cells was exposure-time dependent.

  1. Does MAX open up a new avenue for meiotic research?

    PubMed

    Suzuki, Ayumu; Hirasaki, Masataka; Okuda, Akihiko

    2017-02-01

    Meiosis is a central event of sexual reproduction. Like somatic cells, germ cells conduct mitosis to increase their cell number, but unlike somatic cells, germ cells switch their cell division mode from mitosis to meiosis at a certain point in gametogenesis. However, the molecular basis of this switch remains elusive. In this review article, we give an overview of the onset of mammalian meiosis, including our recent finding that MYC Associated Factor X (MAX) prevents ectopic and precocious meiosis in embryonic stem cells (ESCs) and germ cells, respectively. We present a hypothetical model of a MAX-centered molecular network that regulates meiotic entry in mammals and propose that inducible Max knockout ESCs provide an excellent platform for exploring the molecular mechanisms of meiosis initiation, while excluding other aspects of gametogenesis.

  2. Meiotic sex chromosome inactivation in the marsupial Monodelphis domestica.

    PubMed

    Hornecker, Jacey L; Samollow, Paul B; Robinson, Edward S; Vandeberg, John L; McCarrey, John R

    2007-11-01

    In eutherian mammals, the X and Y chromosomes undergo meiotic sex chromosome inactivation (MSCI) during spermatogenesis in males. However, following fertilization, both the paternally (Xp) and maternally (Xm) inherited X chromosomes are active in the inner cell mass of the female blastocyst, and then random inactivation of one X chromosome occurs in each cell, leading to a mosaic pattern of X-chromosome activity in adult female tissues. In contrast, marsupial females show a nonrandom pattern of X chromosome activity, with repression of the Xp in all somatic tissues. Here, we show that MSCI also occurs during spermatogenesis in marsupials in a manner similar to, but more stable than that in eutherians. These findings support the suggestion that MSCI may have provided the basis for an early dosage compensation mechanism in mammals based solely on gametogenic events, and that random X-chromosome inactivation during embryogenesis may have evolved subsequently in eutherian mammals.

  3. Confinement induces actin flow in a meiotic cytoplasm

    PubMed Central

    Pinot, Mathieu; Steiner, Villier; Dehapiot, Benoit; Yoo, Byung-Kuk; Chesnel, Franck; Blanchoin, Laurent; Kervrann, Charles; Gueroui, Zoher

    2012-01-01

    In vivo, F-actin flows are observed at different cell life stages and participate in various developmental processes during asymmetric divisions in vertebrate oocytes, cell migration, or wound healing. Here, we show that confinement has a dramatic effect on F-actin spatiotemporal organization. We reconstitute in vitro the spontaneous generation of F-actin flow using Xenopus meiotic extracts artificially confined within a geometry mimicking the cell boundary. Perturbations of actin polymerization kinetics or F-actin nucleation sites strongly modify the network flow dynamics. A combination of quantitative image analysis and biochemical perturbations shows that both spatial localization of F-actin nucleators and actin turnover play a decisive role in generating flow. Interestingly, our in vitro assay recapitulates several symmetry-breaking processes observed in oocytes and early embryonic cells. PMID:22753521

  4. Direct visualization reveals kinetics of meiotic chromosome synapsis

    SciTech Connect

    Rog, Ofer; Dernburg, Abby  F.

    2015-03-17

    The synaptonemal complex (SC) is a conserved protein complex that stabilizes interactions along homologous chromosomes (homologs) during meiosis. The SC regulates genetic exchanges between homologs, thereby enabling reductional division and the production of haploid gametes. Here, we directly observe SC assembly (synapsis) by optimizing methods for long-term fluorescence recording in C. elegans. We report that synapsis initiates independently on each chromosome pair at or near pairing centers—specialized regions required for homolog associations. Once initiated, the SC extends rapidly and mostly irreversibly to chromosome ends. Quantitation of SC initiation frequencies and extension rates reveals that initiation is a rate-limiting step in homolog interactions. Eliminating the dynein-driven chromosome movements that accompany synapsis severely retards SC extension, revealing a new role for these conserved motions. This work provides the first opportunity to directly observe and quantify key aspects of meiotic chromosome interactions and will enable future in vivo analysis of germline processes.

  5. Aberrant meiotic behavior in Agave tequilana Weber var. azul

    PubMed Central

    Ruvalcaba-Ruiz, Domingo; Rodríguez-Garay, Benjamin

    2002-01-01

    Background Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. Results The analysis of Pollen Mother Cells in anaphase I (A-I) showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB); 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00%) and 58.00 % viable pollen. Conclusion The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability. PMID:12396234

  6. Natriuretic peptides stimulate oocyte meiotic resumption in bovine.

    PubMed

    De Cesaro, Matheus P; Macedo, Mariana P; Santos, Joabel T; Rosa, Paulo R A; Ludke, Charles A; Rissi, Vitor B; Gasperin, Bernardo G; Gonçalves, Paulo B D

    2015-08-01

    The aim of the present study was to evaluate the expression of mRNA encoding natriuretic peptides (NPs) and their receptors in the cumulus-oocyte complex in cattle, a monovular mammalian species, and also to investigate the role of NPs in oocyte meiotic resumption in vitro. mRNA was observed for the NP precursor type-A (NPPA), type-C (NPPC), NP receptor-1 (NPR-1), receptor-2 (NPR-2) and receptor-3 (NPR-3) in bovine cumulus cells, and NPR-2 mRNA was observed in oocytes. These results are different from those obtained in mouse and pig models. The effects of NPPA, NP precursor type-B (NPPB) and NPPC on the resumption of arrested meiosis maintained by forskolin were studied at three different doses (10, 100 and 1000nM) with a 12h culture system. The germinal vesicle breakdown rates were greater (P≤0.05) in oocytes that were cultured in the presence of one or a combination of NPs (from 44% to 73%) than the negative control (from 24% to 27%). Additionally, it was demonstrated that the concentration of cyclic guanosine 3',5'-monophosphate (cGMP) is increased by NPPA and NPPC in oocytes and cumulus cells after 3h of in vitro maturation. However, in both groups, the concentration of cyclic adenosine 3',5'-monophosphate (cAMP) in the oocyte did not increase between 3 and 6h of culture, even when forskolin was used. In summary, we observed the presence of mRNA for NPs and their receptors in the bovine cumulus-oocyte complex and demonstrated that, in vitro, NPPA, NPPB and NPPC stimulate oocyte meiotic resumption in a monovular species.

  7. Mitotic and meiotic chromosome studies in silky anteater Cyclopes didactylus (Myrmecophagidae: Xenarthra).

    PubMed

    Jorge, W

    2000-01-01

    The karyotype of a male pigmy anteater, Cyclopes didactylus, an endangered species from the Amazon region, is described. The size and morphology of the X and Y chromosomes in mitotic and meiotic analyses is recorded and discussed.

  8. 29 CFR Appendix A to Part 24 - Your Rights Under the Energy Reorganization Act

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false Your Rights Under the Energy Reorganization Act A Appendix... ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Pt. 24, App. A Appendix A to Part 24—Your Rights Under the Energy Reorganization Act ER18JA11.003...

  9. 26 CFR 54.4980B-9 - Business reorganizations and employer withdrawals from multiemployer plans.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-9 Business reorganizations and employer withdrawals from multiemployer plans. The following... multiemployer plans: Q-1: For purposes of this section, what are a business reorganization, a stock sale, and an... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Business reorganizations and...

  10. 26 CFR 54.4980B-9 - Business reorganizations and employer withdrawals from multiemployer plans.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-9 Business reorganizations and employer withdrawals from multiemployer plans. The following... multiemployer plans: Q-1: For purposes of this section, what are a business reorganization, a stock sale, and an... 26 Internal Revenue 17 2011-04-01 2011-04-01 false Business reorganizations and...

  11. 29 CFR Appendix A to Part 24 - Your Rights Under the Energy Reorganization Act

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 1 2014-07-01 2013-07-01 true Your Rights Under the Energy Reorganization Act A Appendix A... ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Pt. 24, App. A Appendix A to Part 24—Your Rights Under the Energy Reorganization Act ER18JA11.003...

  12. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast.

    PubMed

    Hirota, Kouji; Steiner, Walter W; Shibata, Takehiko; Ohta, Kunihiro

    2007-11-01

    The ade6-M26 meiotic recombination hot spot of fission yeast is defined by a cyclic AMP-responsive element (CRE)-like heptanucleotide sequence, 5'-ATGACGT-3', which acts as a binding site for the Atf1/Pcr1 heterodimeric transcription factor required for hot spot activation. We previously demonstrated that the local chromatin around the M26 sequence motif alters to exhibit higher sensitivity to micrococcal nuclease before the initiation of meiotic recombination. In this study, we have examined whether or not such alterations in chromatin occur at natural meiotic DNA double-strand break (DSB) sites in Schizosaccharomyces pombe. At one of the most prominent DSB sites, mbs1 (meiotic break site 1), the chromatin structure has a constitutively accessible configuration at or near the DSB sites. The establishment of the open chromatin state and DSB formation are independent of the CRE-binding transcription factor, Atf1. Analysis of the chromatin configuration at CRE-dependent DSB sites revealed both differences from and similarities to mbs1. For example, the tdh1+ locus, which harbors a CRE consensus sequence near the DSB site, shows a meiotically induced open chromatin configuration, similar to ade6-M26. In contrast, the cds1+ locus is similar to mbs1 in that it exhibits a constitutive open configuration. Importantly, Atf1 is required for the open chromatin formation in both tdh1+ and cds1+. These results suggest that CRE-dependent meiotic chromatin changes are intrinsic processes related to DSB formation in fission yeast meiosis. In addition, the results suggest that the chromatin configuration in natural meiotic recombination hot spots can be classified into at least three distinct categories: (i) an Atf1-CRE-independent constitutively open chromatin configuration, (ii) an Atf1-CRE-dependent meiotically induced open chromatin configuration, and (iii) an Atf1-CRE-dependent constitutively open chromatin configuration.

  13. Aurora B inhibitor barasertib prevents meiotic maturation and subsequent embryo development in pig oocytes.

    PubMed

    Ju, Shiqiang; Peng, Xu; Yang, Xiaoliu; Sozar, Sparksi; Muneri, Caroline W; Xu, Yaping; Chen, Changchao; Cui, Panpan; Xu, Weichao; Rui, Rong

    2016-07-15

    Barasertib, a highly selective Aurora B inhibitor, has been widely used in a variety of cells to investigate the role of Aurora B kinase, which has been implicated in various functions in the mitotic process. However, effects of barasertib on the meiotic maturation process are not fully understood, particularly in porcine oocyte meiotic maturation. In the present study, the effects of barasertib on the meiotic maturation and developmental competence of pig oocytes were investigated, and the possible roles of Aurora B were also evaluated in porcine oocytes undergoing meiosis. Initially, we examined the expression and subcellular localization of Aurora B using Western blot analysis and immunofluorescent staining. Aurora B was found to express and exhibit specific dynamic intracellular localization during porcine oocyte meiotic maturation. Aurora B was observed around the chromosomes after germinal vesicle breakdown. Then it was transferred to the spindle region after metaphase I stage, and was particularly concentrated at the central spindles at telophase I stage. barasertib treatment resulted in the failure of polar body extrusion in pig oocytes, with a larger percentage of barasertib-treated oocytes remaining at the pro-metaphase I stage. Additional results reported that barasertib treatment had no effect on chromosome condensation but resulted in a significantly higher percentage of the treated oocytes with aberrant spindles and misaligned chromosomes during the first meiotic division. In addition, inhibition of Aurora B with lower concentrations of barasertib during pig oocyte meiotic maturation decreased the subsequent embryo developmental competence. Thus, these results illustrate that barasertib has significant effects on porcine oocyte meiotic maturation and subsequent development through Aurora B inhibition, and this regulation is related to its effects on spindle formation and chromosome alignment during the first meiotic division in porcine oocytes.

  14. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    PubMed

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-04-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.

  15. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse

    PubMed Central

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-01-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies. PMID:27104744

  16. Impact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae

    PubMed Central

    Cavero, Santiago; Herruzo, Esther; Ontoso, David; San-Segundo, Pedro A.

    2016-01-01

    In meiotic cells, the pachytene checkpoint or meiotic recombination checkpoint is a surveillance mechanism that monitors critical processes, such as recombination and chromosome synapsis, which are essential for proper distribution of chromosomes to the meiotic progeny. Failures in these processes lead to the formation of aneuploid gametes. Meiotic recombination occurs in the context of chromatin; in fact, the histone methyltransferase Dot1 and the histone deacetylase Sir2 are known regulators of the pachytene checkpoint in Saccharomyces cerevisiae. We report here that Sas2-mediated acetylation of histone H4 at lysine 16 (H4K16ac), one of the Sir2 targets, modulates meiotic checkpoint activity in response to synaptonemal complex defects. We show that, like sir2, the H4-K16Q mutation, mimicking constitutive acetylation of H4K16, eliminates the delay in meiotic cell cycle progression imposed by the checkpoint in the synapsis-defective zip1 mutant. We also demonstrate that, like in dot1, zip1-induced phosphorylation of the Hop1 checkpoint adaptor at threonine 318 and the ensuing Mek1 activation are impaired in H4-K16 mutants. However, in contrast to sir2 and dot1, the H4-K16R and H4-K16Q mutations have only a minor effect in checkpoint activation and localization of the nucleolar Pch2 checkpoint factor in ndt80-prophase-arrested cells. We also provide evidence for a cross-talk between Dot1-dependent H3K79 methylation and H4K16ac and show that Sir2 excludes H4K16ac from the rDNA region on meiotic chromosomes. Our results reveal that proper levels of H4K16ac orchestrate this meiotic quality control mechanism and that Sir2 impinges on additional targets to fully activate the checkpoint. PMID:28357333

  17. Sperm ultrastructure and meiotic segregation in an infertile 47, XYY man.

    PubMed

    Moretti, E; Anichini, C; Sartini, B; Collodel, G

    2007-12-01

    The majority of 47, XYY males are fertile and contribute to produce chromosomally normal children. In 47, XYY carriers, most meiotic studies indicated that the extra Y chromosomes were lost in the pre-meiotic stages, but in some cases the presence of one X and the two Y chromosomes has been detected during prophase I as an X univalent plus a YY bivalent. The aim of this study was to describe sperm parameters and meiotic segregation in a case of an infertile man with a 47, XYY karyotype. Sperm morphology was evaluated for the first time by transmission electron microscopy highlighting apoptosis and necrosis as the most frequent pathologies. Meiotic segregation was explored by fluorescence in situ hybridisation technique, which makes us capable of detecting aneuploidies of sex chromosomes. The fact that the frequency of 1818XY diploidy was very high reveals an error occurring during first meiotic division. Polymerase chain reaction analysis did not show any Y microdeletion. The combination of these two techniques led us to clarify the status of the spermatogenic process, showing an altered meiotic segregation concomitant with the presence of sperm apoptosis and necrosis in a patient 47, XYY.

  18. The Mek1 phosphorylation cascade plays a role in meiotic recombination of Schizosaccharomyces pombe

    PubMed Central

    Ohtaka, Ayami; Okuzaki, Daisuke; Saito, Takamune T; Russell, Paul

    2010-01-01

    Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe. PMID:21084840

  19. Meiotic behavior and chromosome number of Urochloa adspersa (Trin.) R. D. Webster from the Brazilian Chaco.

    PubMed

    Felismino, M F; Maior, R L S; Damasceno, G A; Pott, A; Pagliarini, M S

    2015-07-06

    This is the first report of meiotic division in Uro-chloa adspersa (Trin.) collected from the Brazilian Chaco. Meiotic analyses were performed on three specimens of U. adspersa named G10, G15, and G16. Inflorescences were collected and fixed in a mixture of ethanol and acetic acid (3:1, v/v) for 24 h and then stored in 70% alcohol. Diakinesis revealed different chromosome numbers and ploidy levels. All three plants were polyploids: G10 and G15 exhibited 2n = 6x = 54 chromosomes (arranged in 27 bivalents), while G16 exhibited 2n = 4x = 36 chromosomes (18 bivalents). Meiotic behavior was mainly normal in the hexaploid G15 and the tetraploid G16 (5.3 and 6.2% of the cells were abnormal, respective-ly), revealing only a few meiotic abnormalities that are common to polyploids, i.e., those related to irregular chromosome segregation. G10 exhibited other meiotic abnormalities during meiosis II, such as chromosome stickiness, irregular spindle orientation, and irregular cytokinesis, which led to the formation of a few triads, resulting in 16.9% of the cells being abnormal. The origin of these abnormalities is discussed, and we suggest that the genes that control meiotic steps may be present in the Urochloa gene pool.

  20. Bisphenol A exposure at an environmentally relevant dose induces meiotic abnormalities in adult male rats.

    PubMed

    Liu, Chuan; Duan, Weixia; Zhang, Lei; Xu, Shangcheng; Li, Renyan; Chen, Chunhai; He, Mindi; Lu, Yonghui; Wu, Hongjuan; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Whether environmental exposure to bisphenol A (BPA) may induce reproductive disorders is still controversial but certain studies have reported that BPA may cause meiotic abnormalities in C. elegans and female mice. However, little is known about the effect of BPA on meiosis in adult males. To determine whether BPA exposure at an environmentally relevant dose could induce meiotic abnormalities in adult male rats, we exposed 9-week-old male Wistar rats to BPA by gavage at 20 μg/kg body weight (bw)/day for 60 consecutive days. We found that BPA significantly increased the proportion of stage VII seminiferous epithelium and decreased the proportion of stage VIII. Consequently, spermiation was inhibited and spermatogenesis was disrupted. Further investigation revealed that BPA exposure delayed meiosis initiation in the early meiotic stage and induced the accumulation of chromosomal abnormalities and meiotic DNA double-strand breaks (DSBs) in the late meiotic stage. The latter event subsequently activated the phosphatidylinositol 3-kinase-related protein kinase (ATM). Our results suggest that long-term exposure to BPA may lead to continuous meiotic abnormalities and ultimately put mammalian reproductive health at risk.

  1. Most meiotic CAG repeat tract-length alterations in yeast are SPO11 dependent.

    PubMed

    Jankowski, C; Nag, Dilip K

    2002-03-01

    The expansion of trinucleotide repeat sequences associated with hereditary neurological diseases is believed from earlier studies to be due to errors in DNA replication. However, more recent studies have indicated that recombination may play a significant role in triplet repeat expansion. CAG repeat tracts have been shown to induce double-strand breaks (DSBs) during meiosis in yeast, and DSB formation is dependent on the meiotic recombination machinery. The rate of meiotic instability is several fold higher than mitotic instability. To determine whether DSB repair is responsible for the high rate of repeat tract-length alterations, the frequencies of meiotic repeat-tract instability were compared in wild-type and spo11 mutant strains. In the spo11 background, the rate of meiotic repeat-tract instability remained at the mitotic level, suggesting that meiotic alterations of CAG repeat tracts in yeast occur by the recombination mechanism. Several of these meiotic tract-length alterations are due to DSB repair involving use of the sister chromatid as a template.

  2. Therapy-induced brain reorganization patterns in aphasia.

    PubMed

    Abel, Stefanie; Weiller, Cornelius; Huber, Walter; Willmes, Klaus; Specht, Karsten

    2015-04-01

    Both hemispheres are engaged in recovery from word production deficits in aphasia. Lexical therapy has been shown to induce brain reorganization even in patients with chronic aphasia. However, the interplay of factors influencing reorganization patterns still remains unresolved. We were especially interested in the relation between lesion site, therapy-induced recovery, and beneficial reorganization patterns. Thus, we applied intensive lexical therapy, which was evaluated with functional magnetic resonance imaging, to 14 chronic patients with aphasic word retrieval deficits. In a group study, we aimed to illuminate brain reorganization of the naming network in comparison with healthy controls. Moreover, we intended to analyse the data with joint independent component analysis to relate lesion sites to therapy-induced brain reorganization, and to correlate resulting components with therapy gain. As a result, we found peri-lesional and contralateral activations basically overlapping with premorbid naming networks observed in healthy subjects. Reduced activation patterns for patients compared to controls before training comprised damaged left hemisphere language areas, right precentral and superior temporal gyrus, as well as left caudate and anterior cingulate cortex. There were decreasing activations of bilateral visuo-cognitive, articulatory, attention, and language areas due to therapy, with stronger decreases for patients in right middle temporal gyrus/superior temporal sulcus, bilateral precuneus as well as left anterior cingulate cortex and caudate. The joint independent component analysis revealed three components indexing lesion subtypes that were associated with patient-specific recovery patterns. Activation decreases (i) of an extended frontal lesion disconnecting language pathways occurred in left inferior frontal gyrus; (ii) of a small frontal lesion were found in bilateral inferior frontal gyrus; and (iii) of a large temporo-parietal lesion occurred in

  3. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover.

    PubMed

    Chen, Huei-Mei; Futcher, Bruce; Leatherwood, Janet

    2011-01-01

    The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/G)AAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.

  4. Axon substitution in the reorganization of developing neural connections.

    PubMed Central

    Bhide, P G; Frost, D O

    1992-01-01

    Insights into the mechanisms of normal and pathological neural development may be gained by studying the reorganization of developing neural connections, caused experimentally or by disease. Many reorganized connections are assumed to arise by the anomalous stabilization of transient connections that occur during normal development. We report that, although the retina projects transiently to the somatosensory system in normal developing hamsters, the permanent retinal projections to the somatosensory system that arise as a consequence of early brain lesions are not formed by the stabilization of the normally transient projection. Instead, the transient retinal axons are replaced by retinal axons that do not normally project to the somatosensory system. The distinction between anomalous stabilization and substitution is significant for determining the cellular mechanisms underlying the development of neural connectivity. Images PMID:1465409

  5. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  6. A self-reorganizing digital flight control system for aircraft

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Caglayan, A. K.

    1974-01-01

    This paper presents a design method for digital self-reorganizing control systems which is optimally tolerant of failures in aircraft sensors. The functions of this system are accomplished with software instead of the popular and costly technique of hardware duplication. The theoretical development, based on M-ary hypothesis testing, results in a bank of M Kalman filters operating in parallel in the failure detection logic. A moving window of the innovations of each Kalman filter drives the detection logic to decide the failure state of the system. The detection logic also selects the optimal state estimate (for control logic) from the bank of Kalman filters. The design process is applied to the design of a self-reorganizing control system for a current configuration of the space shuttle orbiter at Mach 5 and 120,000 feet. The failure detection capabilities of the system are demonstrated using a real-time simulation of the system with noisy sensors.

  7. Prevent, Counter, and Respond - A Strategic Plan to Reduce Global Nuclear Threats (FY 2016-FY2020)

    SciTech Connect

    2015-03-01

    NNSA’s second core mission is reducing global nuclear dangers by preventing the acquisition of nuclear weapons or weapons-usable materials, countering efforts to acquire such weapons or materials, and responding to nuclear or radiological incidents. In 2015, NNSA reorganized its nonproliferation activities based on core competencies and realigned its counterterrorism and counterproliferation functions to more efficiently address both current and emerging threats and challenges. The reorganization accompanied the March 2015 release of the first ever Prevent, Counter, and Respond – A Strategic Plan to Reduce Global Nuclear Threats. This report, which NNSA will update annually, highlights key nuclear threat trends and describes NNSA’s integrated threat reduction strategy.

  8. Disability, atrophy and cortical reorganization following spinal cord injury.

    PubMed

    Freund, Patrick; Weiskopf, Nikolaus; Ward, Nick S; Hutton, Chloe; Gall, Angela; Ciccarelli, Olga; Craggs, Michael; Friston, Karl; Thompson, Alan J

    2011-06-01

    The impact of traumatic spinal cord injury on structural integrity, cortical reorganization and ensuing disability is variable and may depend on a dynamic interaction between the severity of local damage and the capacity of the brain for plastic reorganization. We investigated trauma-induced anatomical changes in the spinal cord and brain, and explored their relationship to functional changes in sensorimotor cortex. Structural changes were assessed using cross-sectional cord area, voxel-based morphometry and voxel-based cortical thickness of T1-weighted images in 10 subjects with cervical spinal cord injury and 16 controls. Cortical activation in response to right-sided (i) handgrip; and (ii) median and tibial nerve stimulation were assessed using functional magnetic resonance imaging. Regression analyses explored associations between cord area, grey and white matter volume, cortical activations and thickness, and disability. Subjects with spinal cord injury had impaired upper and lower limb function bilaterally, a 30% reduced cord area, smaller white matter volume in the pyramids and left cerebellar peduncle, and smaller grey matter volume and cortical thinning in the leg area of the primary motor and sensory cortex compared with controls. Functional magnetic resonance imaging revealed increased activation in the left primary motor cortex leg area during handgrip and the left primary sensory cortex face area during median nerve stimulation in subjects with spinal cord injury compared with controls, but no increased activation following tibial nerve stimulation. A smaller cervical cord area was associated with impaired upper limb function and increased activations with handgrip and median nerve stimulation, but reduced activations with tibial nerve stimulation. Increased sensory deficits were associated with increased activations in the left primary sensory cortex face area due to median nerve stimulation. In conclusion, spinal cord injury leads to cord atrophy

  9. A reorganization cyberinfrastructure of history observing data in China

    NASA Astrophysics Data System (ADS)

    Lin, Ganghua; Ji, Haisheng; Lin, Jun; Tan, Chengmin; Du, Zhangle; Ding, Minde; Liu, Suo; Zhao, Cui; Yang, Xiao; Wang, Xiaofan; Deng, Yuanyong

    2016-08-01

    Astronomical data analysis depends on the accumulation of data, including integrity of data in observing location, time, and diversity of data. We are now developing a reorganization project of solar physics history data of China. There are 90 years, 44 kinds of solar observing data in China. In the project, we will finish imagination, digitalization and standardization of these data. This article introduces the project framework, data, data processing, and how to share.

  10. In Brief: Re-organization of NSF's Earth sciences

    NASA Astrophysics Data System (ADS)

    Jacobs, Judy

    2004-07-01

    The U.S. National Science Foundation announced July 16 that its Division of Earth Sciences would be re-organized into two new Sections. The Surface Earth Processes Section (SEP) will consists of the programs in hydrology (HS), education and human resources (EHR), sedimentary geology and paleobiology (SGP), geobiology and environmental geochemistry (GEG), and geomorphology and land use dynamics (GLD). The current budget for the new section is approximately $50 million per year.

  11. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury.

  12. A molecularly based theory for electron transfer reorganization energy.

    PubMed

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  13. A molecularly based theory for electron transfer reorganization energy

    SciTech Connect

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  14. High efficiency of meiotic gynogenesis in sea lamprey Petromyzon marinus

    USGS Publications Warehouse

    Rinchard, J.; Dabrowski, K.; Garcia-Abiado, M. -A.

    2006-01-01

    Induction of androgenesis and gynogenesis by applying a pressure (PS) or heat shock (HS) to double the haploid chromosomal set results in progenies possessing only chromosomes from a single parent. This has never been accomplished in representatives of Agnatha. The objective of this study was to induce gynogenesis and androgenesis in sea lamprey Petromyzon marinus. For gynogenesis experiments, ultraviolet (UV)-irradiated sperm was used to activate sea lamprey eggs and HS or PS were applied to inhibit the second meiotic division and consequently induce diploidy in the embryos. The UV irradiation of immobilized sperm was performed for 1 min at 1,719 J m-2. HS of 35 ?? 1??C for 2 min and PS of 9,000 psi for 4 min were applied at different times after egg activation (8, 12, 20, and 24 min or 8, 16, and 24 min for HS or PS, respectively). Regardless of the induction time of the HS, survivals at pre-hatching stage were similar. In contrast, PS applied 8 min after activation appears to increase survival rate of pre-hatched embryos in comparison to 16 and 24 min after activation. In control groups, without shock treatment (no diploidization), there were no survivors. All deformed, gynogenetic embryos were confirmed to be haploids and died prior to burying themselves in the sand. We confirmed by flow cytometry that progenies produced using both shock methods surviving to the next stage, burying in the substrate, were diploid gynogenetic. For the androgenesis experiments, UV-irradiated eggs (1,719 J m-2 for 1 min) were fertilized with non-treated sperm and HS was applied to restore diploidy of the eggs. Several attempts have been made to optimize the parameters used. HS of 35 ?? 1??C was applied 110, 140, 170, 200, and 230 min after activation for 2 min. Low yields of androgens were obtained and all animals died within a week after hatching. These techniques will allow to establish meiotic gynogenetic lines of sea lamprey for determining sex differentiation in this species

  15. A Quality Control Mechanism Coordinates Meiotic Prophase Events to Promote Crossover Assurance

    PubMed Central

    Deshong, Alison J.; Ye, Alice L.; Lamelza, Piero; Bhalla, Needhi

    2014-01-01

    Meiotic chromosome segregation relies on homologous chromosomes being linked by at least one crossover, the obligate crossover. Homolog pairing, synapsis and meiosis specific DNA repair mechanisms are required for crossovers but how they are coordinated to promote the obligate crossover is not well understood. PCH-2 is a highly conserved meiotic AAA+-ATPase that has been assigned a variety of functions; whether these functions reflect its conserved role has been difficult to determine. We show that PCH-2 restrains pairing, synapsis and recombination in C. elegans. Loss of pch-2 results in the acceleration of synapsis and homolog-dependent meiotic DNA repair, producing a subtle increase in meiotic defects, and suppresses pairing, synapsis and recombination defects in some mutant backgrounds. Some defects in pch-2 mutants can be suppressed by incubation at lower temperature and these defects increase in frequency in wildtype worms grown at higher temperature, suggesting that PCH-2 introduces a kinetic barrier to the formation of intermediates that support pairing, synapsis or crossover recombination. We hypothesize that this kinetic barrier contributes to quality control during meiotic prophase. Consistent with this possibility, defects in pch-2 mutants become more severe when another quality control mechanism, germline apoptosis, is abrogated or meiotic DNA repair is mildly disrupted. PCH-2 is expressed in germline nuclei immediately preceding the onset of stable homolog pairing and synapsis. Once chromosomes are synapsed, PCH-2 localizes to the SC and is removed in late pachytene, prior to SC disassembly, correlating with when homolog-dependent DNA repair mechanisms predominate in the germline. Indeed, loss of pch-2 results in premature loss of homolog access. Altogether, our data indicate that PCH-2 coordinates pairing, synapsis and recombination to promote crossover assurance. Specifically, we propose that the conserved function of PCH-2 is to destabilize pairing

  16. The evolution of meiotic sex and its alternatives

    PubMed Central

    Mirzaghaderi, Ghader

    2016-01-01

    Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and for all eukaryotes the shared component of sexual reproduction. The benefits and functions of meiosis, however, are still under discussion, especially considering the costs of meiotic sex. To get a novel view on this old problem, we filter out the most conserved elements of meiosis itself by reviewing the various modifications and alterations of modes of reproduction. Our rationale is that the indispensable steps of meiosis for viability of offspring would be maintained by strong selection, while dispensable steps would be variable. We review evolutionary origin and processes in normal meiosis, restitutional meiosis, polyploidization and the alterations of meiosis in forms of uniparental reproduction (apomixis, apomictic parthenogenesis, automixis, selfing) with a focus on plants and animals. This overview suggests that homologue pairing, double-strand break formation and homologous recombinational repair at prophase I are the least dispensable elements, and they are more likely optimized for repair of oxidative DNA damage rather than for recombination. Segregation, ploidy reduction and also a biparental genome contribution can be skipped for many generations. The evidence supports the theory that the primary function of meiosis is DNA restoration rather than recombination. PMID:27605505

  17. Meiotic Chromosome Analysis of the Giant Water Bug, Lethocerus indicus

    PubMed Central

    Wisoram, Wijit; Saengthong, Pradit; Ngernsiri, Lertluk

    2013-01-01

    The giant water bug, Lethocerus indicus (Lepeletier and Serville) (Heteroptera: Belostomatidae), a native species of Southeast Asia, is one of the largest insects belonging to suborder Heteroptera. In this study, the meiotic chromosome of L. indicus was studied in insect samples collected from Thailand, Myanmar, Loas, and Cambodia. Testicular cells stained with lacto-acetic orcein, Giemsa, DAPI, and silver nitrate were analyzed. The results revealed that the chromosome complement of L. indicus was 2n = 22A + neo-XY + 2m, which differed from that of previous reports. Each individual male contained testicular cells with three univalent patterns. The frequency of cells containing neo-XY chromosome univalent (∼5%) was a bit higher than that of cells with autosomal univalents (∼3%). Some cells (∼0.5%) had both sex chromosome univalents and a pair of autosomal univalents. None of the m-chromosome univalents were observed during prophase I. In addition, this report presents clear evidence about the existence of m-chromosomes in Belostomatidae. PMID:23895100

  18. Meiotic behaviour of individual chromosomes in allotriploid Alstroemeria hybrids.

    PubMed

    Kamstra, S A; de Jong, J H; Jacobsen, E; Ramanna, M S; Kuipers, A G J

    2004-07-01

    Chromosome association and chiasma formation were studied in pollen mother cells at metaphase I of four allotriplod BC1 plants (2n=3x=24) obtained from the backcross of the hybrid Alstroemeria aurea x A. inodora with its parent A. inodora. We distinguished the chromosomes of both parental species by genomic in situ hybridization (GISH), whereas the individual chromosomes were identified on the basis of their multicolour FISH banding patterns obtained after a second hybridization with two species-specific satellite repeats as probes. All the four BC1 plants possessed two genomes of A. inodora and one of A. aurea. Variable numbers of recombinant chromosomes, resulting from meiotic recombination in the interspecific hybrid, were present in these plants. The homologous A. inodora chromosomes generally formed bivalents, leaving the homoeologous A. aurea chromosomes unassociated. High frequencies of trivalents were observed for the chromosome sets that contained recombinant chromosomes, even when the recombinant segments were small. Chromosome associations in the trivalents were restricted to homologous segments. The implications of the absence of homoeologous chromosome pairing on gamete constitution and prospects for introgression in Alstroemeria are discussed.

  19. Analysis of chromatin structure at meiotic DSB sites in yeasts.

    PubMed

    Hirota, Kouji; Fukuda, Tomoyuki; Yamada, Takatomi; Ohta, Kunihiro

    2009-01-01

    One of the major features of meiosis is a high frequency of homologous recombination that not only confers genetic diversity to a successive generation but also ensures proper segregation of chromosomes. Meiotic recombination is initiated by DNA double-strand breaks that require many proteins including the catalytic core, Spo11. In this regard, like transcription and repair, etc., recombination is hindered by a compacted chromatin structure because trans-acting factors cannot easily access the DNA. Such inhibitory effects must be alleviated prior to recombination initiation. Indeed, a number of groups showed that chromatin around recombination hotspots is less condensed, by using nucleases as a probe to assess local DNA accessibility. Here we describe a method to analyze chromatin structure of a recombination hotspot in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This method, combining micrococcal nuclease (MNase) digestion ofchromatin DNA and subsequent Southern blotting, is expected to provide information as to chromatin context around a hotspot. Moreover, by virtue of MNase preferentially targeting linker DNA, positions of several nucleosomes surrounding a hotspot can also be determined. Our protocol is a very powerful way to analyze several-kb regions of interest and can be applied to other purposes.

  20. Non-meiotic chromosome instability in human immature oocytes

    PubMed Central

    Daina, Gemma; Ramos, Laia; Rius, Mariona; Obradors, Albert; del Rey, Javier; Giralt, Magda; Campillo, Mercedes; Velilla, Esther; Pujol, Aïda; Martinez-Pasarell, Olga; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Aneuploidy has been a major issue in human gametes and is closely related to fertility problems, as it is known to be present in cleavage stage embryos and gestational losses. Pre-meiotic chromosome abnormalities in women have been previously described. The aim of this study is to assess the whole-chromosome complement in immature oocytes to find those abnormalities caused by mitotic instability. For this purpose, a total of 157 oocytes at the germinal vesicle or metaphase I stage, and discarded from IVF cycles, were analysed by CGH. Fifty-six women, between 18 and 45 years old (mean 32.5 years), including 32 IVF patients (25–45 years of age) and 24 IVF oocyte donors (18–33 years of age), were included in the study. A total of 25/157 (15.9%) of the oocytes analysed, obtained from three IVF clinics, contained chromosome abnormalities, including both aneuploidy (24/157) and structural aberrations (9/157). Independently of the maternal age, the incidence of abnormal oocytes which originated before meiosis is 15.9%, and these imbalances were found in 33.9% of the females studied. This work sheds light on the relevance of mitotic instability responsible for the generation of the abnormalities present in human oocytes. PMID:23695274

  1. On the origin of sex chromosomes from meiotic drive.

    PubMed

    Úbeda, Francisco; Patten, Manus M; Wild, Geoff

    2015-01-07

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins.

  2. Non-meiotic chromosome instability in human immature oocytes.

    PubMed

    Daina, Gemma; Ramos, Laia; Rius, Mariona; Obradors, Albert; Del Rey, Javier; Giralt, Magda; Campillo, Mercedes; Velilla, Esther; Pujol, Aïda; Martinez-Pasarell, Olga; Benet, Jordi; Navarro, Joaquima

    2014-02-01

    Aneuploidy has been a major issue in human gametes and is closely related to fertility problems, as it is known to be present in cleavage stage embryos and gestational losses. Pre-meiotic chromosome abnormalities in women have been previously described. The aim of this study is to assess the whole-chromosome complement in immature oocytes to find those abnormalities caused by mitotic instability. For this purpose, a total of 157 oocytes at the germinal vesicle or metaphase I stage, and discarded from IVF cycles, were analysed by CGH. Fifty-six women, between 18 and 45 years old (mean 32.5 years), including 32 IVF patients (25-45 years of age) and 24 IVF oocyte donors (18-33 years of age), were included in the study. A total of 25/157 (15.9%) of the oocytes analysed, obtained from three IVF clinics, contained chromosome abnormalities, including both aneuploidy (24/157) and structural aberrations (9/157). Independently of the maternal age, the incidence of abnormal oocytes which originated before meiosis is 15.9%, and these imbalances were found in 33.9% of the females studied. This work sheds light on the relevance of mitotic instability responsible for the generation of the abnormalities present in human oocytes.

  3. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis.

    PubMed

    Melters, Daniël P; Paliulis, Leocadia V; Korf, Ian F; Chan, Simon W L

    2012-07-01

    In most eukaryotes, the kinetochore protein complex assembles at a single locus termed the centromere to attach chromosomes to spindle microtubules. Holocentric chromosomes have the unusual property of attaching to spindle microtubules along their entire length. Our mechanistic understanding of holocentric chromosome function is derived largely from studies in the nematode Caenorhabditis elegans, but holocentric chromosomes are found over a broad range of animal and plant species. In this review, we describe how holocentricity may be identified through cytological and molecular methods. By surveying the diversity of organisms with holocentric chromosomes, we estimate that the trait has arisen at least 13 independent times (four times in plants and at least nine times in animals). Holocentric chromosomes have inherent problems in meiosis because bivalents can attach to spindles in a random fashion. Interestingly, there are several solutions that have evolved to allow accurate meiotic segregation of holocentric chromosomes. Lastly, we describe how extensive genome sequencing and experiments in nonmodel organisms may allow holocentric chromosomes to shed light on general principles of chromosome segregation.

  4. Direct visualization reveals kinetics of meiotic chromosome synapsis

    DOE PAGES

    Rog, Ofer; Dernburg, Abby  F.

    2015-03-17

    The synaptonemal complex (SC) is a conserved protein complex that stabilizes interactions along homologous chromosomes (homologs) during meiosis. The SC regulates genetic exchanges between homologs, thereby enabling reductional division and the production of haploid gametes. Here, we directly observe SC assembly (synapsis) by optimizing methods for long-term fluorescence recording in C. elegans. We report that synapsis initiates independently on each chromosome pair at or near pairing centers—specialized regions required for homolog associations. Once initiated, the SC extends rapidly and mostly irreversibly to chromosome ends. Quantitation of SC initiation frequencies and extension rates reveals that initiation is a rate-limiting step inmore » homolog interactions. Eliminating the dynein-driven chromosome movements that accompany synapsis severely retards SC extension, revealing a new role for these conserved motions. This work provides the first opportunity to directly observe and quantify key aspects of meiotic chromosome interactions and will enable future in vivo analysis of germline processes.« less

  5. Rad3-Cds1 mediates coupling of initiation of meiotic recombination with DNA replication. Mei4-dependent transcription as a potential target of meiotic checkpoint.

    PubMed

    Ogino, Keiko; Masai, Hisao

    2006-01-20

    Premeiotic S-phase and meiotic recombination are known to be strictly coupled in Saccharomyces cerevisiae. However, the checkpoint pathway regulating this coupling has been largely unknown. In fission yeast, Rad3 is known to play an essential role in coordination of DNA replication and cell division during both mitotic growth and meiosis. Here we have examined whether the Rad3 pathway also regulates the coupling of DNA synthesis and recombination. Inhibition of premeiotic S-phase with hydroxyurea completely abrogates the progression of meiosis, including the formation of DNA double-strand breaks (DSBs). DSB formation is restored in rad3 mutant even in the presence of hydroxyurea, although repair of DSBs does not take place or is significantly delayed, indicating that the subsequent recombination steps may be still inhibited. Examination of the roles of downstream checkpoint kinases reveals that Cds1, but not Chk1 or Mek1, is required for suppression of DSB in the presence of hydroxyurea. Transcriptional induction of some rec+ genes essential for DSB occurs at a normal timing and to a normal level in the absence of DNA synthesis in both the wild-type and cds1delta cells. On the other hand, the transcriptional induction of the mei4+ transcription factor and cdc25+ phosphatase, which is significantly suppressed by hydroxyurea in the wild-type cells, occurs almost to a normal level in cds1delta cells even in the presence of hydroxyurea. These results show that the Rad3-Cds1 checkpoint pathway coordinates initiation of meiotic recombination and meiotic cell divisions with premeiotic DNA synthesis. Because mei4+ is known to be required for DSB formation and cdc25+ is required for activation of meiotic cell divisions, we propose an intriguing possibility that the Rad3-Cds1 meiotic checkpoint pathway may target transcription of these factors.

  6. Morphology, Conjugation, and Postconjugational Reorganization of Dileptus tirjakovae n. sp. (Ciliophora, Haptoria)

    PubMed Central

    VĎAČNÝ, PETER; FOISSNER, WILHELM

    2010-01-01

    We studied the morphology, conjugation, and postconjugational reorganization of a new haptorid ciliate, Dileptus tirjakovae n. sp., using conventional methods. Dileptus tirjakovae is characterized by two abutting, globular macronuclear nodules and scattered brush kinetids. Conjugation is similar to that in congeners, that is, it is temporary, heteropolar, and the partners unite bulge-to-bulge with the proboscis. Some peculiarities occur in the nuclear processes: there are two synkaryon divisions producing four synkaryon derivatives, of which two become macronuclear anlagen, one becomes the micronucleus, and one degenerates. Unlike spathidiids, D. tirjakovae shows massive changes in body shape and ciliary pattern before, during, and after conjugation: early and late conjugants as well as early exconjugants resemble Spathidium, while mid-conjugants resemble Enchelyodon. These data give support to the hypothesis that spathidiids evolved from a Dileptus-like ancestor by reduction of the proboscis. Dileptus tirjakovae exconjugants differ from vegetative cells by their smaller size, stouter body, shorter proboscis, and by the lower number of ciliary rows, suggesting one or several postconjugation divisions. Although 83% of the exconjugants have the vegetative nuclear pattern, some strongly deviating specimens occur and might be mistaken for distinct species, especially because exconjugants are less than half as long as vegetative cells. PMID:19017064

  7. Linking genomic reorganization to tumor initiation via the giant cell cycle

    PubMed Central

    Niu, N; Zhang, J; Zhang, N; Mercado-Uribe, I; Tao, F; Han, Z; Pathak, S; Multani, A S; Kuang, J; Yao, J; Bast, R C; Sood, A K; Hung, M-C; Liu, J

    2016-01-01

    To investigate the mechanisms underlying our recent paradoxical finding that mitotically incapacitated and genomically unstable polyploid giant cancer cells (PGCCs) are capable of tumor initiation, we labeled ovarian cancer cells with α-tubulin fused to green fluorescent protein, histone-2B fused to red fluorescent protein and FUCCI (fluorescent ubiquitination cell cycle indicator), and tracked the spatial and time-dependent change in spindle and chromosomal dynamics of PGCCs using live-cell fluorescence time-lapse recording. We found that single-dose (500 nm) treatment with paclitaxel paradoxically initiated endoreplication to form PGCCs after massive cell death. The resulting PGCCs continued self-renewal via endoreplication and further divided by nuclear budding or fragmentation; the small daughter nuclei then acquired cytoplasm, split off from the giant mother cells and acquired competency in mitosis. FUCCI showed that PGCCs divided via truncated endoreplication cell cycle (endocycle or endomitosis). Confocal microscopy showed that PGCCs had pronounced nuclear fragmentation and lacked expression of key mitotic proteins. PGCC-derived daughter cells were capable of long-term proliferation and acquired numerous new genome/chromosome alterations demonstrated by spectral karyotyping. These data prompt us to conceptualize a giant cell cycle composed of four distinct but overlapping phases, initiation, self-renewal, termination and stability. The giant cell cycle may represent a fundamental cellular mechanism to initiate genomic reorganization to generate new tumor-initiating cells in response to chemotherapy-induced stress and contributes to disease relapse. PMID:27991913

  8. Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role.

    PubMed

    Da Ines, Olivier; Degroote, Fabienne; Goubely, Chantal; Amiard, Simon; Gallego, Maria E; White, Charles I

    2013-01-01

    Recombination establishes the chiasmata that physically link pairs of homologous chromosomes in meiosis, ensuring their balanced segregation at the first meiotic division and generating genetic variation. The visible manifestation of genetic crossing-overs, chiasmata are the result of an intricate and tightly regulated process involving induction of DNA double-strand breaks and their repair through invasion of a homologous template DNA duplex, catalysed by RAD51 and DMC1 in most eukaryotes. We describe here a RAD51-GFP fusion protein that retains the ability to assemble at DNA breaks but has lost its DNA break repair capacity. This protein fully complements the meiotic chromosomal fragmentation and sterility of Arabidopsis rad51, but not rad51 dmc1 mutants. Even though DMC1 is the only active meiotic strand transfer protein in the absence of RAD51 catalytic activity, no effect on genetic map distance was observed in complemented rad51 plants. The presence of inactive RAD51 nucleofilaments is thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1. Our data demonstrate that RAD51 plays a supporting role for DMC1 in meiotic recombination in the flowering plant, Arabidopsis.

  9. Dynamics of male meiotic recombination frequency during plant development using Fluorescent Tagged Lines in Arabidopsis thaliana.

    PubMed

    Li, Fan; De Storme, Nico; Geelen, Danny

    2017-02-13

    Meiotic homologous recombination plays a central role in creating genetic variability, making it an essential biological process relevant to evolution and crop breeding. In this study, we used pollen-specific fluorescent tagged lines (FTLs) to measure male meiotic recombination frequency during the development of Arabidopsis thaliana. Interestingly, a subset of pollen grains consistently shows loss of fluorescence expression in tested lines. Using nine independent FTL intervals, the spatio-temporal dynamics of male recombination frequency was assessed during plant development, considering both shoot type and plant age as independent parameters. In most genomic intervals assayed, male meiotic recombination frequency is highly consistent during plant development, showing no significant change between different shoot types and during plant aging. However, in some genomic regions, such as I1a and I5a, a small but significant effect of either developmental position or plant age were observed, indicating that the meiotic CO frequency in those intervals varies during plant development. Furthermore, from an overall view of all nine genomic intervals assayed, both primary and tertiary shoots show a similar dynamics of increasing recombination frequency during development, while secondary and lateral shoots remain highly stable. Our results provide new insights in the dynamics of male meiotic recombination frequency during plant development.

  10. Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts.

    PubMed

    Petry, Sabine; Pugieux, Céline; Nédélec, François J; Vale, Ronald D

    2011-08-30

    Female meiotic spindles in many organisms form in the absence of centrosomes, the organelle typically associated with microtubule (MT) nucleation. Previous studies have proposed that these meiotic spindles arise from RanGTP-mediated MT nucleation in the vicinity of chromatin; however, whether this process is sufficient for spindle formation is unknown. Here, we investigated whether a recently proposed spindle-based MT nucleation pathway that involves augmin, an 8-subunit protein complex, also contributes to spindle morphogenesis. We used an assay system in which hundreds of meiotic spindles can be observed forming around chromatin-coated beads after introduction of Xenopus egg extracts. Spindles forming in augmin-depleted extracts showed reduced rates of MT formation and were predominantly multipolar, revealing a function of augmin in stabilizing the bipolar shape of the acentrosomal meiotic spindle. Our studies also have uncovered an apparent augmin-independent MT nucleation process from acentrosomal poles, which becomes increasingly active over time and appears to partially rescue the spindle defects that arise from augmin depletion. Our studies reveal that spatially and temporally distinct MT generation pathways from chromatin, spindle MTs, and acentrosomal poles all contribute to robust bipolar spindle formation in meiotic extracts.

  11. Meiotic chromosome mobility in fission yeast is resistant to environmental stress

    PubMed Central

    Illner, Doris; Lorenz, Alexander; Scherthan, Harry

    2016-01-01

    The formation of healthy gametes requires pairing of homologous chromosomes (homologs) as a prerequisite for their correct segregation during meiosis. Initially, homolog alignment is promoted by meiotic chromosome movements feeding into intimate homolog pairing by homologous recombination and/or synaptonemal complex formation. Meiotic chromosome movements in the fission yeast, Schizosaccharomyces pombe, depend on astral microtubule dynamics that drag the nucleus through the zygote; known as horsetail movement. The response of microtubule-led meiotic chromosome movements to environmental stresses such as ionizing irradiation (IR) and associated reactive oxygen species (ROS) is not known. Here, we show that, in contrast to budding yeast, the horsetail movement is largely radiation-resistant, which is likely mediated by a potent antioxidant defense. IR exposure of sporulating S. pombe cells induced misrepair and irreparable DNA double strand breaks causing chromosome fragmentation, missegregation and gamete death. Comparing radiation outcome in fission and budding yeast, and studying meiosis with poisoned microtubules indicates that the increased gamete death after IR is innate to fission yeast. Inhibition of meiotic chromosome mobility in the face of IR failed to influence the course of DSB repair, indicating that paralysis of meiotic chromosome mobility in a genotoxic environment is not a universal response among species. PMID:27074839

  12. Energy Status Characteristics of Porcine Oocytes During In Vitro Maturation is Influenced by Their Meiotic Competence.

    PubMed

    Milakovic, I; Jeseta, M; Hanulakova, S; Knitlova, D; Hanzalova, K; Hulinska, P; Machal, L; Kempisty, B; Antosik, P; Machatkova, M

    2015-10-01

    The characteristics of energy status in porcine oocytes as related to their meiotic competence and in vitro maturation were studied. Cycling pubertal gilts in the early luteal to early follicular phases of the ovarian cycle were used as oocyte donors. The oocytes recovered from medium (MF) or small follicles (SF) were considered meiotically more or less competent, respectively. A half of oocytes from each category was matured by the standard protocol. The oocytes were examined before or after maturation by confocal microscopy, a bioluminescent cell assay and Western blotting. Four experiments, each in triplicate, were performed to assess both SF and MF oocytes in terms of metabolic units formed by mitochondria and lipids, ATP and lipid consumption and lipid droplets with adipose differentiation-related protein (ADRP) expression. The proportion of oocytes with metabolic units, the mean ATP content and the number of lipid droplets per oocyte, and the relative number of lipid droplets with ADRP expression were significantly higher in the MF compared to SF oocytes before maturation. On the other hand, after maturation, there was an increase in the proportion of oocytes with metabolic units and the relative number of lipid droplets with ADRP expression in the SF compared to MF oocytes. In conclusion, specific differences in energy characteristics between porcine oocytes with different meiotic competence were found. Meiotically more competent oocytes are more advanced in terms of energy reserves before maturation, while meiotically less competent oocytes are more active in replenishing energy stores during maturation.

  13. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination

    PubMed Central

    Zamudio, Natasha; Barau, Joan; Teissandier, Aurélie; Walter, Marius; Borsos, Maté; Servant, Nicolas; Bourc'his, Déborah

    2015-01-01

    DNA methylation is essential for protecting the mammalian germline against transposons. When DNA methylation-based transposon control is defective, meiotic chromosome pairing is consistently impaired during spermatogenesis: How and why meiosis is vulnerable to transposon activity is unknown. Using two DNA methylation-deficient backgrounds, the Dnmt3L and Miwi2 mutant mice, we reveal that DNA methylation is largely dispensable for silencing transposons before meiosis onset. After this, it becomes crucial to back up to a developmentally programmed H3K9me2 loss. Massive retrotransposition does not occur following transposon derepression, but the meiotic chromatin landscape is profoundly affected. Indeed, H3K4me3 marks gained over transcriptionally active transposons correlate with formation of SPO11-dependent double-strand breaks and recruitment of the DMC1 repair enzyme in Dnmt3L−/− meiotic cells, whereas these features are normally exclusive to meiotic recombination hot spots. Here, we demonstrate that DNA methylation restrains transposons from adopting chromatin characteristics amenable to meiotic recombination, which we propose prevents the occurrence of erratic chromosomal events. PMID:26109049

  14. Four-dimensional visualization and quantitative analysis of meiotic spindle movements in live mouse oocytes.

    PubMed

    Tian, N; Zhang, L; Liu, B; Wang, P; Li, Y; Ma, W

    2012-09-01

    This paper made a different attempt of real-time observation of the meiotic spindle movements in living mouse oocyte using a convenient method. This method was based on an experimental phenomenon discovered in our work. In living mouse oocytes, a high concentration of calcium ions (Ca(2+)) was observed throughout the region occupied by the initial meiotic spindle. After Ca(2+) labelling with Fura-2, a weakly fluorescent area (WFA) appeared on each side of the chromosomes. The activities of the WFAs changed during spindle development. By real-time tracking of WFAs, we were able to indirectly observe the meiotic spindle movements. Occasionally, it was observed that the first meiotic spindle rotated from an orientation parallel to the cortex to become perpendicular, instead of migrating from the oocyte centre to the cortex along its axis. Moreover, we analysed this uncommon rotation of the first meiotic spindle and found that the whole rotation process can be divided into two phases: the early slow-speed rotation and the subsequent rapid-speed rotation. We further characterized this rotation with respect to rotational speed and acceleration at all the stages of development. By using a two-photon laser-scanning microscope in combination with Fura-2 dye that is nondamaging to oocytes, we provide a convenient method for indirect visualization and quantitative analysis of spindle movements by real-time tracking of WFAs. This method is easy to operate and master, and economical with time and effort.

  15. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination.

    PubMed

    Zamudio, Natasha; Barau, Joan; Teissandier, Aurélie; Walter, Marius; Borsos, Maté; Servant, Nicolas; Bourc'his, Déborah

    2015-06-15

    DNA methylation is essential for protecting the mammalian germline against transposons. When DNA methylation-based transposon control is defective, meiotic chromosome pairing is consistently impaired during spermatogenesis: How and why meiosis is vulnerable to transposon activity is unknown. Using two DNA methylation-deficient backgrounds, the Dnmt3L and Miwi2 mutant mice, we reveal that DNA methylation is largely dispensable for silencing transposons before meiosis onset. After this, it becomes crucial to back up to a developmentally programmed H3K9me2 loss. Massive retrotransposition does not occur following transposon derepression, but the meiotic chromatin landscape is profoundly affected. Indeed, H3K4me3 marks gained over transcriptionally active transposons correlate with formation of SPO11-dependent double-strand breaks and recruitment of the DMC1 repair enzyme in Dnmt3L(-/-) meiotic cells, whereas these features are normally exclusive to meiotic recombination hot spots. Here, we demonstrate that DNA methylation restrains transposons from adopting chromatin characteristics amenable to meiotic recombination, which we propose prevents the occurrence of erratic chromosomal events.

  16. Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals.

    PubMed

    Liu, Wei; Xin, Qiliang; Wang, Xiao; Wang, Sheng; Wang, Huarong; Zhang, Wenqiang; Yang, Ye; Zhang, Yanhao; Zhang, Zhiyuan; Wang, Chao; Xu, Yang; Duan, Enkui; Xia, Guoliang

    2017-03-09

    In mammals, oocytes are arrested at the diplotene stage of meiosis I until the pre-ovulatory luteinizing hormone (LH) surge triggers meiotic resumption through the signals in follicular granulosa cells. In this study, we show that the estradiol (E2)-estrogen receptors (ERs) system in follicular granulosa cells has a dominant role in controlling oocyte meiotic resumption in mammals. We found that the expression of ERs was controlled by gonadotropins under physiological conditions. E2-ERs system was functional in maintaining oocyte meiotic arrest by regulating the expression of natriuretic peptide C and natriuretic peptide receptor 2 (NPPC/NPR2), which was achieved through binding to the promoter regions of Nppc and Npr2 genes directly. In ER knockout mice, meiotic arrest was not sustained by E2 in most cumulus-oocyte complexes in vitro and meiosis resumed precociously in pre-ovulatory follicles in vivo. In human granulosa cells, similar conclusions are reached that ER levels were controlled by gonadotropins and E2-ERs regulated the expression of NPPC/NPR2 levels. In addition, our results revealed that the different regulating patterns of follicle-stimulating hormone and LH on ER levels in vivo versus in vitro determined their distinct actions on oocyte maturation. Taken together, these findings suggest a critical role of E2-ERs system during oocyte meiotic progression and may propose a novel approach for oocyte in vitro maturation treatment in clinical practice.

  17. Dynamics of male meiotic recombination frequency during plant development using Fluorescent Tagged Lines in Arabidopsis thaliana

    PubMed Central

    Li, Fan; De Storme, Nico; Geelen, Danny

    2017-01-01

    Meiotic homologous recombination plays a central role in creating genetic variability, making it an essential biological process relevant to evolution and crop breeding. In this study, we used pollen-specific fluorescent tagged lines (FTLs) to measure male meiotic recombination frequency during the development of Arabidopsis thaliana. Interestingly, a subset of pollen grains consistently shows loss of fluorescence expression in tested lines. Using nine independent FTL intervals, the spatio-temporal dynamics of male recombination frequency was assessed during plant development, considering both shoot type and plant age as independent parameters. In most genomic intervals assayed, male meiotic recombination frequency is highly consistent during plant development, showing no significant change between different shoot types and during plant aging. However, in some genomic regions, such as I1a and I5a, a small but significant effect of either developmental position or plant age were observed, indicating that the meiotic CO frequency in those intervals varies during plant development. Furthermore, from an overall view of all nine genomic intervals assayed, both primary and tertiary shoots show a similar dynamics of increasing recombination frequency during development, while secondary and lateral shoots remain highly stable. Our results provide new insights in the dynamics of male meiotic recombination frequency during plant development. PMID:28211906

  18. The Role of RING Box Protein 1 in Mouse Oocyte Meiotic Maturation

    PubMed Central

    Zhou, Lin; Yang, Ye; Zhang, Juanjuan; Guo, Xuejiang; Bi, Ye; Li, Xin; Zhang, Ping; Zhang, Junqiang; Lin, Min; Zhou, Zuomin; Shen, Rong; Guo, Xirong; Huo, Ran; Ling, Xiufeng; Sha, Jiahao

    2013-01-01

    RING box protein-1 (RBX1) is an essential component of Skp1-cullin-F-box protein (SCF) E3 ubiquitin ligase and participates in diverse cellular processes by targeting various substrates for degradation. However, the physiological function of RBX1 in mouse oocyte maturation remains unknown. Here, we examined the expression, localization and function of RBX1 during mouse oocyte meiotic maturation. Immunofluorescence analysis showed that RBX1 displayed dynamic distribution during the maturation process: it localized around and migrated along with the spindle and condensed chromosomes. Rbx1 knockdown with the appropriate siRNAs led to a decreased rate of first polar body extrusion and most oocytes were arrested at metaphase I. Moreover, downregulation of Rbx1 caused accumulation of Emi1, an inhibitor of the anaphase-promoting complex/cyclosome (APC/C), which is required for mouse meiotic maturation. In addition, we found apparently increased expression of the homologue disjunction-associated protein securin and cyclin B1, which are substrates of APC/C E3 ligase and need to be degraded for meiotic progression. These results indicate the essential role of the SCFβTrCP-EMI1-APC/C axis in mouse oocyte meiotic maturation. In conclusion, we provide evidence for the indispensable role of RBX1 in mouse oocyte meiotic maturation. PMID:23874827

  19. Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination.

    PubMed

    Sasanuma, Hiroyuki; Hirota, Kouji; Fukuda, Tomoyuki; Kakusho, Naoko; Kugou, Kazuto; Kawasaki, Yasuo; Shibata, Takehiko; Masai, Hisao; Ohta, Kunihiro

    2008-02-01

    Meiosis ensures genetic diversification of gametes and sexual reproduction. For successful meiosis, multiple events such as DNA replication, recombination, and chromosome segregation must occur coordinately in a strict regulated order. We investigated the meiotic roles of Cdc7 kinase in the initiation of meiotic recombination, namely, DNA double-strand breaks (DSBs) mediated by Spo11 and other coactivating proteins. Genetic analysis using bob1-1 cdc7Delta reveals that Cdc7 is essential for meiotic DSBs and meiosis I progression. We also demonstrate that the N-terminal region of Mer2, a Spo11 ancillary protein required for DSB formation and phosphorylated by cyclin-dependent kinase (CDK), contains two types of Cdc7-dependent phosphorylation sites near the CDK site (Ser30): One (Ser29) is essential for meiotic DSB formation, and the others exhibit a cumulative effect to facilitate DSB formation. Importantly, mutations on these sites confer severe defects in DSB formation even when the CDK phosphorylation is present at Ser30. Diploids of cdc7Delta display defects in the chromatin binding of not only Spo11 but also Rec114 and Mei4, other meiotic coactivators that may assist Spo11 binding to DSB hot spots. We thus propose that Cdc7, in concert with CDK, regulates Spo11 loading to DSB sites via Mer2 phosphorylation.

  20. Purification, folding, and characterization of Rec12 (Spo11) meiotic recombinase of fission yeast.

    PubMed

    Wu, Heng; Gao, Jun; Sharif, Wallace D; Davidson, Mari K; Wahls, Wayne P

    2004-11-01

    Meiotic recombination is initiated by controlled dsDNA breaks (DSBs). Rec12 (Spo11) protein of fission yeast is essential for the formation of meiotic DSBs in vivo, for meiotic recombination, and for segregation of chromosomes during meiosis I. Rec12 is orthologous to Top6A topoisomerase of Archaea and is likely the catalytic subunit of a meiotic recombinase that introduces recombinogenic DSBs. However, despite intensive effort, it has not been possible to produce Rec12 protein in a soluble form required to permit biochemical analyses of function. To obtain purified Rec12 protein for in vitro studies, a rec12(+) cDNA was generated, cloned into vector pET15b(+), and expressed in Escherichia coli. Rec12 protein was produced at moderate levels and it partitioned into insoluble fractions of whole-cell extracts. The protein was enriched based upon its differential solubility in two different denaturants and was further purified by column chromatography. A combinatorial, fractional, factorial approach was used to identify conditions under which Rec12 protein could be refolded. Four parameters were most important and, following optimization, soluble Rec12 protein was obtained. Gel filtration demonstrated that refolded Rec12 protein exists as a monomer in solution, suggesting that additional proteins may be required to assemble biologically-active Rec12 dimers, as inferred previously from genetic data [Cell Chromosome 1 (2002) 1]. The production of refolded Rec12 in a soluble form will allow for characterization in vitro of this key meiotic recombination enzyme.

  1. Episodic tectonic plate reorganizations driven by mantle convection

    NASA Astrophysics Data System (ADS)

    King, Scott D.; Lowman, Julian P.; Gable, Carl W.

    2002-10-01

    Periods of relatively uniform plate motion were interrupted several times throughout the Cenozoic and Mesozoic by rapid plate reorganization events [R. Hey, Geol. Soc. Am. Bull. 88 (1977) 1404-1420; P.A. Rona, E.S. Richardson, Earth Planet. Sci. Lett. 40 (1978) 1-11; D.C. Engebretson, A. Cox, R.G. Gordon, Geol. Soc. Am. Spec. Pap. 206 (1985); R.G. Gordon, D.M. Jurdy, J. Geophys. Res. 91 (1986) 12389-12406; D.A. Clague, G.B. Dalrymple, US Geol. Surv. Prof. Pap. 1350 (1987) 5-54; J.M. Stock, P. Molnar, Nature 325 (1987) 495-499; C. Lithgow-Bertelloni, M.A. Richards, Geophys. Res. Lett. 22 (1995) 1317-1320; M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. It has been proposed that changes in plate boundary forces are responsible for these events [M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. We present an alternative hypothesis: convection-driven plate motions are intrinsically unstable due to a buoyant instability that develops as a result of the influence of plates on an internally heated mantle. This instability, which has not been described before, is responsible for episodic reorganizations of plate motion. Numerical mantle convection experiments demonstrate that high-Rayleigh number convection with internal heating and surface plates is sufficient to induce plate reorganization events, changes in plate boundary forces, or plate geometry, are not required.

  2. Epiplakin attenuates experimental mouse liver injury by chaperoning keratin reorganization

    PubMed Central

    Szabo, Sandra; Wögenstein, Karl L.; Österreicher, Christoph H.; Guldiken, Nurdan; Chen, Yu; Doler, Carina; Wiche, Gerhard; Boor, Peter; Haybaeck, Johannes; Strnad, Pavel; Fuchs, Peter

    2015-01-01

    Background & Aims Epiplakin is a member of the plakin protein family and exclusively expressed in epithelial tissues where it binds to keratins. Epiplakin-deficient (Eppk1−/−) mice displayed no obvious spontaneous phenotype, but their keratinocytes showed a faster keratin network breakdown in response to stress. The role of epiplakin in the stressed liver remained to be elucidated. Methods Wild-type (WT) and Eppk1−/− mice were subjected to common bile duct ligation (CBDL) or fed with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. The importance of epiplakin during keratin reorganization was assessed in primary hepatocytes. Results Our experiments revealed that epiplakin is expressed in hepatocytes and cholangiocytes, and binds to keratin 8 (K8) and K18 via multiple domains. In several liver stress models epiplakin and K8 genes displayed identical expression patterns and transgenic K8 overexpression resulted in elevated hepatic epiplakin levels. After CBDL and DDC treatment, Eppk1−/− mice developed a more pronounced liver injury and their livers contained larger amounts of hepatocellular keratin granules, indicating impaired disease-induced keratin network reorganization. In line with these findings, primary Eppk1−/− hepatocytes showed increased formation of keratin aggregates after treatment with the phosphatase inhibitor okadaic acid, a phenotype which was rescued by the chemical chaperone trimethylamine N-oxide (TMAO). Finally, transfection experiments revealed that Eppk1−/− primary hepatocytes were less able to tolerate forced K8 overexpression and that TMAO treatment rescued this phenotype. Conclusion Our data indicate that epiplakin plays a protective role during experimental liver injuries by chaperoning disease-induced keratin reorganization. PMID:25617501

  3. Cortical reorganization in patients with cervical spondylotic myelopathy

    PubMed Central

    Holly, Langston T.; Dong, Yun; Albistegui-DuBois, Richard; Marehbian, Jonathan; Dobkin, Bruce

    2014-01-01

    Object Recent investigations have demonstrated that the cerebral cortex can reorganize as a result of spinal cord injury and may play a role in preserving neurological function. Reorganization of cortical representational maps in patients with cervical spondylotic myelopathy (CSM) has not been previously described. The authors sought to determine the feasibility of using functional magnetic resonance (fMR) imaging in patients with CSM to investigate changes in the cortical representation of the wrist and ankle before and after surgical intervention. Methods Four patients with clinical and imaging evidence of CSM were prospectively enrolled in this study. The patients underwent preoperative neurological examination, functional assessment, cervical imaging, and brain fMR imaging. The fMR imaging activation task undertaken was either wrist extension or ankle dorsiflexion, depending on whether the patient's primary impairment was hand dysfunction or gait difficulty. The cohort then underwent further evaluations at 6 weeks and 3 and 6 months postoperatively. In addition, five healthy volunteers underwent fMR imaging at two different time points and served as controls. In the healthy volunteers fMR imaging demonstrated areas of focal cortical activation limited to the contralateral primary motor area for the assigned motor tasks; the activation patterns were stable throughout repeated imaging. In comparison, in patients with CSM fMR imaging demonstrated expansion of the cortical representation of the affected extremity. Surgical decompression resulted in improvements in neurological function and reorganization of the representational map. Conclusions The findings of this preliminary study demonstrate the potential of fMR imaging to assess changes in cortical representation before and after surgical intervention in patients with CSM. A future study involving a larger cohort of patients as well as the stratification of patients with CSM, based on the aforementioned factors

  4. MEI4 – a central player in the regulation of meiotic DNA double-strand break formation in the mouse.

    PubMed

    Kumar, Rajeev; Ghyselinck, Norbert; Ishiguro, Kei-ichiro; Watanabe, Yoshinori; Kouznetsova, Anna; Höög, Christer; Strong, Edward; Schimenti, John; Daniel, Katrin; Toth, Attila; de Massy, Bernard

    2015-05-01

    The formation of programmed DNA double-strand breaks (DSBs) at the beginning of meiotic prophase marks the initiation of meiotic recombination. Meiotic DSB formation is catalyzed by SPO11 and their repair takes place on meiotic chromosome axes. The evolutionarily conserved MEI4 protein is required for meiotic DSB formation and is localized on chromosome axes. Here, we show that HORMAD1, one of the meiotic chromosome axis components, is required for MEI4 localization. Importantly, the quantitative correlation between the level of axis-associated MEI4 and DSB formation suggests that axis-associated MEI4 could be a limiting factor for DSB formation. We also show that MEI1, REC8 and RAD21L are important for proper MEI4 localization. These findings on MEI4 dynamics during meiotic prophase suggest that the association of MEI4 to chromosome axes is required for DSB formation, and that the loss of this association upon DSB repair could contribute to turning off meiotic DSB formation.

  5. A meiotic drive element in the maize pathogen Fusarium verticillioides is located within a 102-kb region of chromosome V

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (SkK) that causes nearly all surviving meiotic progeny f...

  6. Cortical reorganization in multiple sclerosis after intrathecal baclofen therapy.

    PubMed

    Guerrera, S; Morabito, R; Baglieri, A; Corallo, F; Ciurleo, R; De Luca, R; De Salvo, S; Marino, M A; Spadaro, L; Timpano, F; Bramanti, P; Marino, S

    2014-04-01

    Our objective was to assess the role of Intrathecal Baclofen Therapy (ITB) in the cortical reorganization in a patient affected by multiple sclerosis (MS) undergoing physical therapy. We reported a case of a woman affected by MS and severe spasticity, who performed an fMRI examination, before and after the ITB implantation. The subject showed controlateral motor cortex activation after motor task. After a month of ITB implantation, patient showed ipsilateral and controlateral motor cortex activation although with a broader extension. fMRI examination supported the hypothesis of a central influence in patients who undergo physiotherapy and therapy with ITB.

  7. Plasma membrane reorganization induced by chemical transformation in cultura

    SciTech Connect

    Packard, B.S.

    1984-04-01

    Induction of increased rigidity in the plasma membrane paralleling properties associated with a transformed state was suggested by two experiments. Fluorescence recovery after photobleaching (FRAP) indicated the induction of an environment in the plasma membrane where the synthetic fluorescent phospholipid collarein was immobile on the FRAP timescale. The other technique revealed the binding of epidermal growth factor (EGF) to a cryptic class of receptors which become accessible upon chemical transformation. These two lines of evidence are consistent with a reorganization of the plasma membrane induced by tumor promoters. 110 references, 38 figures, 4 tables.

  8. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    NASA Astrophysics Data System (ADS)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  9. Meiotic failure in cyclin A1-deficient mouse spermatocytes triggers apoptosis through intrinsic and extrinsic signaling pathways and 14-3-3 proteins

    PubMed Central

    Panigrahi, Sunil K.; Manterola, Marcia; Wolgemuth, Debra J.

    2017-01-01

    Cyclin A1 (Ccna1), a member of the mammalian A type cyclins, is most abundantly expressed in spermatocytes and is essential for spermatogenesis in the mouse. Ccna1- deficient spermatocytes arrest at late meiotic prophase and undergo apoptosis. To further delineate the mechanisms and key factors involved in this process, we have examined changes in expression of genes involved in both intrinsic and extrinsic signaling pathways that trigger apoptosis in the mutant spermatocytes. Our results show that both pathways are involved, and that the factors involved in the intrinsic pathway were expressed earlier than those involved in the extrinsic pathway. We have also begun to identify in vivo Ccna1-interacting proteins, using an unbiased biochemical approach, and identified 14-3-3, a key regulator of apoptosis, as a Ccna1-interacting protein. Expression levels of 14-3-3 proteins remain unchanged between wild type and mutant testes but there were differences in the subcellular distribution. In wild type control, 14-3-3 is detected in both cytosolic and nuclear fractions whereas it is restricted to the cytoplasm in mutant testes. This differential distribution of 14-3-3 may contribute to the induction of apoptosis in Ccna1-deficient spermatocytes. These results provide insight into the apoptotic mechanisms and pathways that are triggered when progression through the meiotic cell cycle is defective in male gametogenesis. PMID:28301569

  10. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase

    PubMed Central

    Lu, Lin-Yu; Yu, Xiaochun

    2015-01-01

    During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body. PMID:25565522

  11. The Rec102 Mutant of Yeast Is Defective in Meiotic Recombination and Chromosome Synapsis

    PubMed Central

    Bhargava, J.; Engebrecht, J. A.; Roeder, G. S.

    1992-01-01

    A mutation at the REC102 locus was identified in a screen for yeast mutants that produce inviable spores. rec102 spore lethality is rescued by a spo13 mutation, which causes cells to bypass the meiosis I division. The rec102 mutation completely eliminates meiotically induced gene conversion and crossing over but has no effect on mitotic recombination frequencies. Cytological studies indicate that the rec102 mutant makes axial elements (precursors to the synaptonemal complex), but homologous chromosomes fail to synapse. In addition, meiotic chromosome segregation is significantly delayed in rec102 strains. Studies of double and triple mutants indicate that the REC102 protein acts before the RAD52 gene product in the meiotic recombination pathway. The REC102 gene was cloned based on complementation of the mutant defect and the gene was mapped to chromosome XII between CDC25 and STE11. PMID:1732169

  12. Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination.

    PubMed

    Sansam, Christopher L; Pezza, Roberto J

    2015-07-01

    During prophase of meiosis I, homologous chromosomes interact and undergo recombination. Successful completion of these processes is required in order for the homologous chromosomes to mount the meiotic spindle as a pair. The organization of the chromosomes into pairs ensures orderly segregation to opposite poles of the dividing cell, such that each gamete receives one copy of each chromosome. Chiasmata, the cytological manifestation of crossover products of recombination, physically connect the homologs in pairs, providing a linkage that facilitates their segregation. Consequently, mutations that reduce the level of recombination are invariably associated with increased errors in meiotic chromosome segregation. In this review, we focus on recent biochemical and genetic advances in elucidating the mechanisms of meiotic DNA strand exchange catalyzed by the Dmc1 protein. We also discuss the mode by which two recombination mediators, Hop2 and Mnd1, facilitate rate-limiting steps of DNA strand exchange catalyzed by Dmc1.

  13. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants.

    PubMed

    Edlinger, Bernd; Schlögelhofer, Peter

    2011-03-01

    Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.

  14. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase.

    PubMed

    Lu, Lin-Yu; Yu, Xiaochun

    2015-01-01

    During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body.

  15. Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination

    PubMed Central

    Sansam, Christopher L; Pezza, Roberto J

    2015-01-01

    During prophase of meiosis I, homologous chromosomes interact and undergo recombination. Successful completion of these processes is required in order for the homologous chromosomes to mount the meiotic spindle as a pair. The organization of the chromosomes into pairs ensures orderly segregation to opposite poles of the dividing cell, such that each gamete receives one copy of each chromosome. Chiasmata, the cytological manifestation of crossover products of recombination, physically connect the homologs in pairs, providing a linkage that facilitates their segregation. Consequently, mutations that reduce the level of recombination are invariably associated with increased errors in meiotic chromosome segregation. In this review, we focus on recent biochemical and genetic advances in elucidating the mechanisms of meiotic DNA strand exchange catalyzed by the Dmc1 protein. We also discuss the mode by which two recombination mediators, Hop2 and Mnd1, facilitate rate-limiting steps of DNA strand exchange catalyzed by Dmc1. PMID:25953379

  16. Altered cohesin gene dosage affects Mammalian meiotic chromosome structure and behavior.

    PubMed

    Murdoch, Brenda; Owen, Nichole; Stevense, Michelle; Smith, Helen; Nagaoka, So; Hassold, Terry; McKay, Michael; Xu, Huiling; Fu, Jun; Revenkova, Ekaterina; Jessberger, Rolf; Hunt, Patricia

    2013-01-01

    Based on studies in mice and humans, cohesin loss from chromosomes during the period of protracted meiotic arrest appears to play a major role in chromosome segregation errors during female meiosis. In mice, mutations in meiosis-specific cohesin genes cause meiotic disturbances and infertility. However, the more clinically relevant situation, heterozygosity for mutations in these genes, has not been evaluated. We report here evidence from the mouse that partial loss of gene function for either Smc1b or Rec8 causes perturbations in the formation of the synaptonemal complex (SC) and affects both synapsis and recombination between homologs during meiotic prophase. Importantly, these defects increase the frequency of chromosomally abnormal eggs in the adult female. These findings have important implications for humans: they suggest that women who carry mutations or variants that affect cohesin function have an elevated risk of aneuploid pregnancies and may even be at increased risk of transmitting structural chromosome abnormalities.

  17. Processing of meiotic DNA double strand breaks requires cyclin-dependent kinase and multiple nucleases.

    PubMed

    Manfrini, Nicola; Guerini, Ilaria; Citterio, Andrea; Lucchini, Giovanna; Longhese, Maria Pia

    2010-04-09

    Meiotic recombination requires the formation of programmed Spo11-dependent DNA double strand breaks (DSBs). In Saccharomyces cerevisiae, the Sae2 protein and the Mre11-Rad50-Xrs2 complex are necessary to remove the covalently attached Spo11 protein from the DNA ends, which are then resected by so far unknown nucleases. Here, we demonstrate that phosphorylation of Sae2 Ser-267 by cyclin-dependent kinase 1 (Cdk1) is required to initiate meiotic DSB resection by allowing Spo11 removal from DSB ends. This finding suggests that Cdk1 activity is required for the processing of Spo11-induced DSBs, thus providing a mechanism for coordinating DSB resection with progression through meiotic prophase. Furthermore, the helicase Sgs1 and the nucleases Exo1 and Dna2 participate in lengthening the 5'-3' resection tracts during meiosis by controlling a step subsequent to Spo11 removal.

  18. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11.

    PubMed

    Baudat, F; Manova, K; Yuen, J P; Jasin, M; Keeney, S

    2000-11-01

    Spo11, a protein first identified in yeast, is thought to generate the chromosome breaks that initiate meiotic recombination. We now report that disruption of mouse Spo11 leads to severe gonadal abnormalities from defective meiosis. Spermatocytes suffer apoptotic death during early prophase; oocytes reach the diplotene/dictyate stage in nearly normal numbers, but most die soon after birth. Consistent with a conserved function in initiating meiotic recombination, Dmc1/Rad51 focus formation is abolished. Spo11(-/-) meiocytes also display homologous chromosome synapsis defects, similar to fungi but distinct from flies and nematodes. We propose that recombination initiation precedes and is required for normal synapsis in mammals. Our results also support the view that mammalian checkpoint responses to meiotic recombination and/or synapsis defects are sexually dimorphic.

  19. Meiotic chromosome pairing in Actinidia chinensis var. deliciosa.

    PubMed

    Mertten, D; Tsang, G K; Manako, K I; McNeilage, M A; Datson, P M

    2012-12-01

    Polyploids are defined as either autopolyploids or allopolyploids, depending on their mode of origin and/or chromosome pairing behaviour. Autopolyploids have chromosome sets that are the result of the duplication or combination of related genomes (e.g., AAAA), while allopolyploids result from the combination of sets of chromosomes from two or more different taxa (e.g., AABB, AABBCC). Allopolyploids are expected to show preferential pairing of homologous chromosomes from within each parental sub-genome, leading to disomic inheritance. In contrast, autopolyploids are expected to show random pairing of chromosomes (non-preferential pairing), potentially leading to polysomic inheritance. The two main cultivated taxa of Actinidia (kiwifruit) are A. chinensis (2x and 4x) and A. chinensis var. deliciosa (6x). There is debate whether A. chinensis var. deliciosa is an autopolyploid derived solely from A. chinensis or whether it is an allopolyploid derived from A. chinensis and one or two other Actinidia taxa. To investigate whether preferential or non-preferential chromosome pairing occurs in A. chinensis var. deliciosa, the inheritance of microsatellite alleles was analysed in the tetraploid progeny of a cross between A. chinensis var. deliciosa and the distantly related Actinidia eriantha Benth. (2x). The frequencies of inherited microsatellite allelic combinations in the hybrids suggested that non-preferential chromosome pairing had occurred in the A. chinensis var. deliciosa parent. Meiotic chromosome analysis showed predominantly bivalent formation in A. chinensis var. deliciosa, but a low frequency of quadrivalent chromosome formations was observed (1 observed in 20 pollen mother cells).

  20. Extensive Interallelic Polymorphisms Drive Meiotic Recombination into a Crossover Pathway

    PubMed Central

    Dooner, Hugo K.

    2002-01-01

    Recombinants isolated from most meiotic intragenic recombination experiments in maize, but not in yeast, are borne principally on crossover chromosomes. This excess of crossovers is not explained readily by the canonical double-strand break repair model of recombination, proposed to account for a large body of yeast data, which predicts that crossovers (COs) and noncrossovers (NCOs) should be recovered equally. An attempt has been made here to identify general rules governing the recovery of the CO and NCO classes of intragenic recombinants in maize. Recombination was analyzed in bz heterozygotes between a variety of mutations derived from the same or different progenitor alleles. The mutations include point mutations, transposon insertions, and transposon excision footprints. Consequently, the differences between the bz heteroalleles ranged from just two nucleotides to many nucleotides, indels, and insertions. In this article, allelic pairs differing at only two positions are referred to as dimorphic to distinguish them from polymorphic pairs, which differ at multiple positions. The present study has revealed the following effects at these bz heteroalleles: (1) recombination between polymorphic heteroalleles produces mostly CO chromosomes; (2) recombination between dimorphic heteroalleles produces both CO and NCO chromosomes, in ratios apparently dependent on the nature of the heteroalleles; and (3) in dimorphic heterozygotes, the two NCO classes are recovered in approximately equal numbers when the two mutations are point mutations but not when one or both mutations are insertions. These observations are discussed in light of a recent version of the double-strand break repair model of recombination that postulates separate pathways for the formation of CO and NCO products. PMID:12034905

  1. The Saccharomyces cerevisiae RDN1 locus is sequestered from interchromosomal meiotic ectopic recombination in a SIR2-dependent manner.

    PubMed Central

    Davis, E S; Shafer, B K; Strathern, J N

    2000-01-01

    Meiotic ectopic recombination occurs at similar frequencies among many sites in the yeast genome, suggesting that all loci are similarly accessible to homology searching. In contrast, we found that his3 sequences integrated in the RDN1 (rDNA) locus were unusually poor participants in meiotic recombination with his3 sequences at other sites. We show that the low rate of meiotic ectopic recombination resulted from the poor ability of RDN1::his3 to act as a donor sequence. SIR2 partially repressed interchromosomal meiotic ectopic recombination at RDN1, consistent with its role in regulating recombination, gene expression, and retrotransposition within RDN1. We propose that RDN1 is physically sequestered from meiotic homology searching mechanisms. PMID:10880466

  2. Acetyl CoA carboxylase inactivation and meiotic maturation in mouse oocytes.

    PubMed

    Valsangkar, Deepa S; Downs, Stephen M

    2015-09-01

    In mouse oocytes, meiotic induction by pharmacological activation of PRKA (adenosine monophosphate-activated protein kinase; formerly known as AMPK) or by hormones depends on stimulation of fatty acid oxidation (FAO). PRKA stimulates FAO by phosphorylating and inactivating acetyl CoA carboxylase (ACAC; formerly ACC), leading to decreased malonyl CoA levels and augmenting fatty-acid transport into mitochondria. We investigated a role for ACAC inactivation in meiotic resumption by testing the effect of two ACAC inhibitors, CP-640186 and Soraphen A, on mouse oocytes maintained in meiotic arrest in vitro. These inhibitors significantly stimulated the resumption of meiosis in arrested cumulus cell-enclosed oocytes, denuded oocytes, and follicle-enclosed oocytes. This stimulation was accompanied by an increase in FAO. Etomoxir, a malonyl CoA analogue, prevented meiotic resumption as well as the increase in FAO induced by ACAC inhibition. Citrate, an ACAC activator, and CBM-301106, an inhibitor of malonyl CoA decarboxylase, which converts malonyl CoA to acetyl CoA, suppressed both meiotic induction and FAO induced by follicle-stimulating hormone, presumably by maintaining elevated malonyl CoA levels. Mouse oocyte-cumulus cell complexes contain both isoforms of ACAC (ACACA and ACACB); when wild-type and Acacb(-/-) oocytes characteristics were compared, we found that these single-knockout oocytes showed a significantly higher FAO level and a reduced ability to maintain meiotic arrest, resulting in higher rates of germinal vesicle breakdown. Collectively, these data support the model that ACAC inactivation contributes to the maturation-promoting activity of PRKA through stimulation of FAO.

  3. A meiotic linkage map of the silver fox, aligned and compared to the canine genome.

    PubMed

    Kukekova, Anna V; Trut, Lyudmila N; Oskina, Irina N; Johnson, Jennifer L; Temnykh, Svetlana V; Kharlamova, Anastasiya V; Shepeleva, Darya V; Gulievich, Rimma G; Shikhevich, Svetlana G; Graphodatsky, Alexander S; Aguirre, Gustavo D; Acland, Gregory M

    2007-03-01

    A meiotic linkage map is essential for mapping traits of interest and is often the first step toward understanding a cryptic genome. Specific strains of silver fox (a variant of the red fox, Vulpes vulpes), which segregate behavioral and morphological phenotypes, create a need for such a map. One such strain, selected for docility, exhibits friendly dog-like responses to humans, in contrast to another strain selected for aggression. Development of a fox map is facilitated by the known cytogenetic homologies between the dog and fox, and by the availability of high resolution canine genome maps and sequence data. Furthermore, the high genomic sequence identity between dog and fox allows adaptation of canine microsatellites for genotyping and meiotic mapping in foxes. Using 320 such markers, we have constructed the first meiotic linkage map of the fox genome. The resulting sex-averaged map covers 16 fox autosomes and the X chromosome with an average inter-marker distance of 7.5 cM. The total map length corresponds to 1480.2 cM. From comparison of sex-averaged meiotic linkage maps of the fox and dog genomes, suppression of recombination in pericentromeric regions of the metacentric fox chromosomes was apparent, relative to the corresponding segments of acrocentric dog chromosomes. Alignment of the fox meiotic map against the 7.6x canine genome sequence revealed high conservation of marker order between homologous regions of the two species. The fox meiotic map provides a critical tool for genetic studies in foxes and identification of genetic loci and genes implicated in fox domestication.

  4. Gibberellin Induces Diploid Pollen Formation by Interfering with Meiotic Cytokinesis1[OPEN

    PubMed Central

    De Storme, Nico

    2017-01-01

    The plant hormone gibberellic acid (GA) controls many physiological processes, including cell differentiation, cell elongation, seed germination, and response to abiotic stress. In this study, we report that exogenous treatment of flowering Arabidopsis (Arabidopsis thaliana) plants with GA specifically affects the process of male meiotic cytokinesis leading to meiotic restitution and the production of diploid (2n) pollen grains. Similar defects in meiotic cell division and reproductive ploidy stability occur in Arabidopsis plants depleted of RGA and GAI, two members of the DELLA family that function as suppressor of GA signaling. Cytological analysis of the double rga-24 gai-t6 mutant revealed that defects in male meiotic cytokinesis are not caused by alterations in meiosis I (MI or meiosis II (MII) chromosome dynamics, but instead result from aberrations in the spatial organization of the phragmoplast-like radial microtubule arrays (RMAs) at the end of meiosis II. In line with a role for GA in the genetic regulation of the male reproductive system, we additionally show that DELLA downstream targets MYB33 and MYB65 are redundantly required for functional RMA biosynthesis and male meiotic cytokinesis. By analyzing the expression of pRGA::GFP-RGA in the wild-type Landsberg erecta background, we demonstrate that the GFP-RGA protein is specifically expressed in the anther cell layers surrounding the meiocytes and microspores, suggesting that appropriate GA signaling in the somatic anther tissue is critical for male meiotic cell wall formation and thus plays an important role in consolidating the male gametophytic ploidy consistency. PMID:27621423

  5. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana.

    PubMed

    De Muyt, Arnaud; Pereira, Lucie; Vezon, Daniel; Chelysheva, Liudmila; Gendrot, Ghislaine; Chambon, Aurélie; Lainé-Choinard, Sandrine; Pelletier, Georges; Mercier, Raphaël; Nogué, Fabien; Grelon, Mathilde

    2009-09-01

    Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.

  6. Reversible phosphorylation and regulation of mammalian oocyte meiotic chromatin remodeling and segregation.

    PubMed

    Swain, J E; Smith, G D

    2007-01-01

    The mammalian oocyte is notorious for high rates of chromosomal abnormalities. This results in subsequent embryonic aneuploidy, resulting in infertility and congenital defects. Therefore, understanding regulatory mechanisms involved in chromatin remodeling and chromosome segregation during oocyte meiotic maturation is imperative to fully understand the complex process and establish potential therapies. This review will focus on major events occurring during oocyte meiosis, critical to ensure proper cellular ploidy. Mechanistic and cellular events such as chromosome condensation, meiotic spindle formation, as well as cohesion of homologues and sister chromatids will be discussed, focusing on the role of reversible phosphorylation in control of these processes.

  7. Competition between Adjacent Meiotic Recombination Hotspots in the Yeast Saccharomyces Cerevisiae

    PubMed Central

    Fan, Q. Q.; Xu, F.; White, M. A.; Petes, T. D.

    1997-01-01

    In a wild-type strain of Saccharomyces cerevisiae, a hotspot for meiotic recombination is located upstream of the HIS4 gene. An insertion of a 49-bp telomeric sequence into the coding region of HIS4 strongly stimulates meiotic recombination and the local formation of meiosis-specific double-strand DNA breaks (DSBs). When strains are constructed in which both hotspots are heterozygous, hotspot activity is substantially less when the hotspots are on the same chromosome than when they are on opposite chromosomes. PMID:9055076

  8. Evolutionary conservation of meiotic DSB proteins: more than just Spo11.

    PubMed

    Cole, Francesca; Keeney, Scott; Jasin, Maria

    2010-06-15

    Meiotic recombination is initiated by programmed DNA double-strand breaks (DSBs) generated by the Spo11 protein. In budding yeast, five other meiotic-specific proteins are also required for DSB formation, but, with rare exception, orthologs had not been identified in other species. In this issue of Genes & Development, Kumar and colleagues (pp. 1266-1280) used a phylogenomic approach to identify two of these proteins across multiple clades, and confirmed that one of these, MEI4, is a functional ortholog in mouse.

  9. Self-repairing symmetry in jellyfish through mechanically driven reorganization

    PubMed Central

    Abrams, Michael J.; Basinger, Ty; Yuan, William; Guo, Chin-Lin; Goentoro, Lea

    2015-01-01

    What happens when an animal is injured and loses important structures? Some animals simply heal the wound, whereas others are able to regenerate lost parts. In this study, we report a previously unidentified strategy of self-repair, where moon jellyfish respond to injuries by reorganizing existing parts, and rebuilding essential body symmetry, without regenerating what is lost. Specifically, in response to arm amputation, the young jellyfish of Aurelia aurita rearrange their remaining arms, recenter their manubria, and rebuild their muscular networks, all completed within 12 hours to 4 days. We call this process symmetrization. We find that symmetrization is not driven by external cues, cell proliferation, cell death, and proceeded even when foreign arms were grafted on. Instead, we find that forces generated by the muscular network are essential. Inhibiting pulsation using muscle relaxants completely, and reversibly, blocked symmetrization. Furthermore, we observed that decreasing pulse frequency using muscle relaxants slowed symmetrization, whereas increasing pulse frequency by lowering the magnesium concentration in seawater accelerated symmetrization. A mathematical model that describes the compressive forces from the muscle contraction, within the context of the elastic response from the mesoglea and the ephyra geometry, can recapitulate the recovery of global symmetry. Thus, self-repair in Aurelia proceeds through the reorganization of existing parts, and is driven by forces generated by its own propulsion machinery. We find evidence for symmetrization across species of jellyfish (Chrysaora pacifica, Mastigias sp., and Cotylorhiza tuberculata). PMID:26080418

  10. Retinotopically specific reorganization of visual cortex for tactile pattern recognition

    PubMed Central

    Cheung, Sing-Hang; Fang, Fang; He, Sheng; Legge, Gordon E.

    2009-01-01

    Although previous studies have shown that Braille reading and other tactile-discrimination tasks activate the visual cortex of blind and sighted people [1–5], it is not known whether this kind of cross-modal reorganization is influenced by retinotopic organization. We have addressed this question by studying S, a visually impaired adult with the rare ability to read print visually and Braille by touch. S had normal visual development until age six years, and thereafter severe acuity reduction due to corneal opacification, but no evidence of visual-field loss. Functional magnetic resonance imaging (fMRI) revealed that, in S’s early visual areas, tactile information processing activated what would be the foveal representation for normally-sighted individuals, and visual information processing activated what would be the peripheral representation. Control experiments showed that this activation pattern was not due to visual imagery. S’s high-level visual areas which correspond to shape- and object-selective areas in normally-sighted individuals were activated by both visual and tactile stimuli. The retinotopically specific reorganization in early visual areas suggests an efficient redistribution of neural resources in the visual cortex. PMID:19361999

  11. From network structure to network reorganization: implications for adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Schneider-Mizell, Casey M.; Parent, Jack M.; Ben-Jacob, Eshel; Zochowski, Michal R.; Sander, Leonard M.

    2010-12-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.

  12. Dynamic reorganization of brain functional networks during cognition.

    PubMed

    Bola, Michał; Sabel, Bernhard A

    2015-07-01

    How does cognition emerge from neural dynamics? The dominant hypothesis states that interactions among distributed brain regions through phase synchronization give basis for cognitive processing. Such phase-synchronized networks are transient and dynamic, established on the timescale of milliseconds in order to perform specific cognitive operations. But unlike resting-state networks, the complex organization of transient cognitive networks is typically not characterized within the graph theory framework. Thus, it is not known whether cognitive processing merely changes the strength of functional connections or, conversely, requires qualitatively new topological arrangements of functional networks. To address this question, we recorded high-density EEG while subjects performed a visual discrimination task. We conducted an event-related network analysis (ERNA) where source-space weighted functional networks were characterized with graph measures. ERNA revealed rapid, transient, and frequency-specific reorganization of the network's topology during cognition. Specifically, cognitive networks were characterized by strong clustering, low modularity, and strong interactions between hub-nodes. Our findings suggest that dense and clustered connectivity between the hub nodes belonging to different modules is the "network fingerprint" of cognition. Such reorganization patterns might facilitate global integration of information and provide a substrate for a "global workspace" necessary for cognition and consciousness to occur. Thus, characterizing topology of the event-related networks opens new vistas to interpret cognitive dynamics in the broader conceptual framework of graph theory.

  13. A Gs-linked receptor maintains meiotic arrest in mouse oocytes, but luteinizing hormone does not cause meiotic resumption by terminating receptor-Gs signaling

    PubMed Central

    Norris, Rachael P.; Freudzon, Leon; Freudzon, Marina; Hand, Arthur R.; Mehlmann, Lisa M.; Jaffe, Laurinda A.

    2008-01-01

    The maintenance of meiotic prophase arrest in fully grown vertebrate oocytes depends on the activity of a Gs G-protein that activates adenylyl cyclase and elevates cAMP, and in the mouse oocyte, Gs is activated by a constitutively active orphan receptor, GPR3. To determine whether the action of luteinizing hormone (LH) on the mouse ovarian follicle causes meiotic resumption by inhibiting GPR3-Gs signaling, we examined the effect of LH on the localization of Gαs. Gs activation in response to stimulation of an exogenously expressed β2-adrenergic receptor causes Gαs to move from the oocyte plasma membrane into the cytoplasm, whereas Gs inactivation in response to inhibition of the β2-adrenergic receptor causes Gαs to move back to the plasma membrane. However, LH does not cause a change in Gαs localization, indicating that LH does not act by terminating receptor-Gs signaling. PMID:17850783

  14. Meiotic Recombination in Somatic Cell Nuclear Transfer Bulls and Their Offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In mammals, homologous chromosome pairing and recombination are essential events for meiosis. The generation of reciprocal exchanges of genetic material ensure both genetic diversity and the proper segregation of homologous chromosomes. With the advent of reproductive biotechnologies such as somat...

  15. Experiments on blocking and unblocking of first meiotic metaphase in eggs of the parthenogenetic stick insect Carausius morosus Br. (Phasmida, Insecta).

    PubMed

    Pijnacker, L P; Ferwerda, M A

    1976-10-01

    The eggs of the parthenogenetic stick insect Carausius morosus, which remain arrested in first meiotic metaphase until oviposition, must be activated in order to develop. The activating agent is oxygen from the air, which enters the egg cell through the micropyle. An exposure shorter than one minute is sufficient to release the blockage. In non-activated (micropyle-less) eggs the first metaphase chromsomes either degenerate or change into an interphase nucleus. This nucleus polyploidizes by endoreduplication, and then either degenerates or multiplies by amitosis. Similarly more generations of nuclei may arise resulting in a chaotic development. These nuclei survive better in the anterior region of the egg. The question of whether the cytoplasmic factors which control nuclear behaviour, also operate in eggs of C. morosus is discussed.

  16. PUF-8 Functions Redundantly with GLD-1 to Promote the Meiotic Progression of Spermatocytes in Caenorhabditis elegans

    PubMed Central

    Priti, Agarwal; Subramaniam, Kuppuswamy

    2015-01-01

    Successful meiotic progression of germ cells is crucial for gametogenesis. Defects in this process affect proper genetic transmission and sometimes lead to tumor formation in the germline. In Caenorhabditis elegans, the RNA-binding protein GLD-1 is essential for the meiotic development of oocytes. However, its role during spermatogenesis has not been understood. Here, we show that GLD-1 functions redundantly with the PUF family protein PUF-8 to ensure proper meiotic development of spermatocytes. When grown at 20°—the standard laboratory temperature for C. elegans growth—primary spermatocytes in both gld-1 and puf-8 single-mutant males and hermaphrodites complete the meiotic divisions normally. By contrast, some of the gld-1; puf-8 double-mutant spermatocytes exit meiosis and form germ cell tumors in both sexes. During larval development, gld-1; puf-8 double-mutant germ cells begin to express the meiotic marker HIM-3, lose P granules, and form the sperm-specific membranous organelle, which are characteristics of developing spermatocytes. However, some of these cells quickly lose HIM-3 and form germ cell tumors that lack membranous organelle but contain P granules. Mutations that block meiotic progression at late pachytene or diakinetic stage fail to arrest the tumorigenesis, suggesting that the gld-1; puf-8 double-mutant spermatocytes exit meiosis prior to the completion of pachytene. Together, results presented here uncover a novel function for gld-1 in the meiotic development of spermatocytes in both hermaphrodites and males. PMID:26068572

  17. PUF-8 Functions Redundantly with GLD-1 to Promote the Meiotic Progression of Spermatocytes in Caenorhabditis elegans.

    PubMed

    Priti, Agarwal; Subramaniam, Kuppuswamy

    2015-06-10

    Successful meiotic progression of germ cells is crucial for gametogenesis. Defects in this process affect proper genetic transmission and sometimes lead to tumor formation in the germline. In Caenorhabditis elegans, the RNA-binding protein GLD-1 is essential for the meiotic development of oocytes. However, its role during spermatogenesis has not been understood. Here, we show that GLD-1 functions redundantly with the PUF family protein PUF-8 to ensure proper meiotic development of spermatocytes. When grown at 20°-the standard laboratory temperature for C. elegans growth-primary spermatocytes in both gld-1 and puf-8 single-mutant males and hermaphrodites complete the meiotic divisions normally. By contrast, some of the gld-1; puf-8 double-mutant spermatocytes exit meiosis and form germ cell tumors in both sexes. During larval development, gld-1; puf-8 double-mutant germ cells begin to express the meiotic marker HIM-3, lose P granules, and form the sperm-specific membranous organelle, which are characteristics of developing spermatocytes. However, some of these cells quickly lose HIM-3 and form germ cell tumors that lack membranous organelle but contain P granules. Mutations that block meiotic progression at late pachytene or diakinetic stage fail to arrest the tumorigenesis, suggesting that the gld-1; puf-8 double-mutant spermatocytes exit meiosis prior to the completion of pachytene. Together, results presented here uncover a novel function for gld-1 in the meiotic development of spermatocytes in both hermaphrodites and males.

  18. Both conserved and non-conserved regions of Spo11 are essential for meiotic recombination initiation in yeast.

    PubMed

    Nag, Dilip K; Pata, Janice D; Sironi, Manuela; Flood, David R; Hart, Ashley M

    2006-10-01

    DNA double-strand breaks (DSBs) are the initiators of most meiotic recombination events. In Saccharomyces cerevisiae, at least ten genes are necessary for meiotic DSB formation. However, the molecular roles of these proteins are not clearly understood. The meiosis-specific Spo11 protein, which shows sequence similarity with a subunit of an archaeal topoisomerase, is believed to catalyze the meiotic DSB formation. Spo11 is also required for induction of meiotic DSBs at long inverted repeats and at large trinucleotide repeat tracts. Here we report the isolation and characterization of temperature-sensitive spo11-mutant alleles to better understand how Spo11 functions, and how meiotic DSBs are generated at various recombination hotspots. Analysis of mutation sites of isolated spo11-mutant alleles indicated that both N-terminal and C-terminal non-conserved residues of Spo11 are essential for the protein's function, possibly for interaction with other meiotic DSB enzymes. Several of the mutation sites within the conserved region are predicted to lie on the surface of the protein, suggesting that this region is required for activation of the meiotic initiation complex via protein-protein interaction. In addition to the conditional mutants, we isolated partially recombination-defective mutants; analysis of one of these mutants indicated that Ski8, as observed previously, interacts with Spo11 via the latter's C-terminal residues.

  19. Calcium Signaling During Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes.

    PubMed

    Tiwari, Meenakshi; Prasad, Shilpa; Shrivastav, Tulsidas G; Chaube, Shail K

    2017-05-01

    Calcium (Ca(++) ) is one of the major signal molecules that regulate various aspects of cell functions including cell cycle progression, arrest, and apoptosis in wide variety of cells. This review summarizes current knowledge on the differential roles of Ca(++) in meiotic cell cycle resumption, arrest, and apoptosis in mammalian oocytes. Release of Ca(++) from internal stores and/or Ca(++) influx from extracellular medium causes moderate increase of intracellular Ca(++) ([Ca(++) ]i) level and reactive oxygen species (ROS). Increase of Ca(++) as well as ROS levels under physiological range trigger maturation promoting factor (MPF) destabilization, thereby meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in oocytes. A sustained increase of [Ca(++) ]i level beyond physiological range induces generation of ROS sufficient enough to cause oxidative stress (OS) in aging oocytes. The increased [Ca(++) ]i triggers Fas ligand-mediated oocyte apoptosis. Further, OS triggers mitochondria-mediated oocyte apoptosis in several mammalian species. Thus, Ca(++) exerts differential roles on oocyte physiology depending upon its intracellular concentration. A moderate increase of [Ca(++) ]i as well as ROS mediate spontaneous resumption of meiosis from diplotene as well as M-II arrest, while their high levels cause meiotic cell cycle arrest and apoptosis by operating both mitochondria- as well as Fas ligand-mediated apoptotic pathways. Indeed, Ca(++) regulates cellular physiology by modulating meiotic cell cycle and apoptosis in mammalian oocytes. J. Cell. Physiol. 232: 976-981, 2017. © 2016 Wiley Periodicals, Inc.

  20. Bdf1 Bromodomains Are Essential for Meiosis and the Expression of Meiotic-Specific Genes

    PubMed Central

    Perot, Jonathan; Arlotto, Marie; Mietton, Flore; Boland, Anne; Deleuze, Jean-François; Ferro, Myriam; Govin, Jérôme

    2017-01-01

    Bromodomain and Extra-terminal motif (BET) proteins play a central role in transcription regulation and chromatin signalling pathways. They are present in unicellular eukaryotes and in this study, the role of the BET protein Bdf1 has been explored in Saccharomyces cerevisiae. Mutation of Bdf1 bromodomains revealed defects on both the formation of spores and the meiotic progression, blocking cells at the exit from prophase, before the first meiotic division. This phenotype is associated with a massive deregulation of the transcription of meiotic genes and Bdf1 bromodomains are required for appropriate expression of the key meiotic transcription factor NDT80 and almost all the Ndt80-inducible genes, including APC complex components. Bdf1 notably accumulates on the promoter of Ndt80 and its recruitment is dependent on Bdf1 bromodomains. In addition, the ectopic expression of NDT80 during meiosis partially bypasses this dependency. Finally, purification of Bdf1 partners identified two independent complexes with Bdf2 or the SWR complex, neither of which was required to complete sporulation. Taken together, our results unveil a new role for Bdf1 –working independently from its predominant protein partners Bdf2 and the SWR1 complex–as a regulator of meiosis-specific genes. PMID:28068333

  1. Shu1 Promotes Homolog Bias of Meiotic Recombination in Saccharomyces cerevisiae

    PubMed Central

    Hong, Soogil; Kim, Keun Pil

    2013-01-01

    Homologous recombination occurs closely between homologous chromatids with highly ordered recombinosomes through RecA homologs and mediators. The present study demonstrates this relationship during the period of “partner choice” in yeast meiotic recombination. We have examined the formation of recombination intermediates in the absence or presence of Shu1, a member of the PCSS complex, which also includes Psy3, Csm2, and Shu2. DNA physical analysis indicates that Shu1 is essential for promoting the establishment of homolog bias during meiotic homologous recombination, and the partner choice is switched by Mek1 kinase activity. Furthermore, Shu1 promotes both crossover (CO) and non-crossover (NCO) pathways of meiotic recombination. The inactivation of Mek1 kinase allows for meiotic recombination to progress efficiently, but is lost in homolog bias where most double-strand breaks (DSBs) are repaired via stable intersister joint molecules. Moreover, the Srs2 helicase deletion cells in the budding yeast show slightly reduced COs and NCOs, and Shu1 promotes homolog bias independent of Srs2. Our findings reveal that Shu1 and Mek1 kinase activity have biochemically distinct roles in partner choice, which in turn enhances the understanding of the mechanism associated with the precondition for homolog bias. PMID:24213600

  2. Polyploidization increases meiotic recombination frequency in Arabidopsis: a close look at statistical modeling and data analysis.

    PubMed

    Wang, Lin; Luo, Zewei

    2012-04-18

    This paper is a response to Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid, O: Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biology 2011, 9:24.See research article at http://www.biomedcentral.com/1741-7007/9/24.

  3. The epigenetic modifications and the anterior to posterior characterization of meiotic entry during mouse oogenesis.

    PubMed

    Fu, Xia-Fei; Yang, Fan; Cheng, Shun-Feng; Feng, Yan-Ni; Li, Lan; Dyce, Paul W; Shen, Wei; Sun, Xiao-Feng

    2017-02-24

    The meiotic initiation of mammalian oogonia is a critical step during the development of primordial germ cells (PGCs) to mature oocytes. In this study, a systematic investigation of epigenetic modifications and DAZL gene expression during oogonia meiotic entry were performed. We found that the expression of DAZL was epigenetically regulated by DNA methylation of CpG islands within its promoter region. During meiotic entry, a continuously increasing level of 5hmC, a stable epigenetic marker usually associated with the activation of gene expression, was observed from 11.5 to 16.5 dpc (days post coitum). Meanwhile trimethylation of lysine 27 on histone3 (H3K27me3), usually associated with repression of gene expression, had a sustainable increase from 12.5 to 16.5 dpc. Finally, by equally dividing the ovaries into three regions representing the anterior, the middle, and the posterior of the ovary and performing immunofluorescence and qRT-PCR on the individual regions, we provided further evidences that the meiotic entry and progression of female germ cells is in an anterior to posterior pattern.

  4. Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair.

    PubMed

    Ward, Jordan D; Muzzini, Diego M; Petalcorin, Mark I R; Martinez-Perez, Enrique; Martin, Julie S; Plevani, Paolo; Cassata, Giuseppe; Marini, Federica; Boulton, Simon J

    2010-01-29

    Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C. elegans helicase helq-1 and RAD-51 paralog rfs-1, which results in a block to meiotic DSB repair after strand invasion. Whereas RAD-51-ssDNA filaments assemble at meiotic DSBs with normal kinetics in helq-1, rfs-1 double mutants, persistence of RAD-51 foci and genetic interactions with rtel-1 suggest a failure to disassemble RAD-51 from strand invasion intermediates. Indeed, purified HELQ-1 and RFS-1 independently bind to and promote the disassembly of RAD-51 from double-stranded, but not single-stranded, DNA filaments via distinct mechanisms in vitro. These results indicate that two compensating activities are required to promote postsynaptic RAD-51 filament disassembly, which are collectively essential for completion of meiotic DSB repair.

  5. LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice

    PubMed Central

    Kim, Jeesun; Singh, Anup Kumar; Takata, Yoko; Lin, Kevin; Shen, Jianjun; Lu, Yue; Kerenyi, Marc A.; Orkin, Stuart H.; Chen, Taiping

    2015-01-01

    Mammalian oocytes are arrested at prophase I until puberty when hormonal signals induce the resumption of meiosis I and progression to meiosis II. Meiotic progression is controlled by CDK1 activity and is accompanied by dynamic epigenetic changes. Although the signalling pathways regulating CDK1 activity are well defined, the functional significance of epigenetic changes remains largely unknown. Here we show that LSD1, a lysine demethylase, regulates histone H3 lysine 4 di-methylation (H3K4me2) in mouse oocytes and is essential for meiotic progression. Conditional deletion of Lsd1 in growing oocytes results in precocious resumption of meiosis and spindle and chromosomal abnormalities. Consequently, most Lsd1-null oocytes fail to complete meiosis I and undergo apoptosis. Mechanistically, upregulation of CDC25B, a phosphatase that activates CDK1, is responsible for precocious meiotic resumption and also contributes to subsequent spindle and chromosomal defects. Our findings uncover a functional link between LSD1 and the major signalling pathway governing meiotic progression. PMID:26626423

  6. Sumoylation precedes accumulation of phosphorylated H2AX on sex chromosomes during their meiotic inactivation.

    PubMed

    Vigodner, Margarita

    2009-01-01

    During meiosis in male mammals, X and Y chromosomes undergo the process of meiotic sex chromosome inactivation (MSCI). A crucial role in MSCI has recently been reported for BRCA1, ATR kinase, and phosphorylated histone H2AX, but the exact mechanism remains to be determined. Small ubiquitin-like modifier (SUMO) proteins have recently been shown to localize to the sex body in mouse meiotic spermatocytes, but the role they play during MSCI is unknown. In this study, in order to better understand the molecular events of MSCI, we followed dynamic changes in gammaH2AX and SUMO localization patterns during MSCI. Using confocal laser scanning microscopy (CLSM) as an analytical tool for visualizing numerous spermatocytes from the same development stage and for consecutively following the meiotic progression, we were able to demonstrate a very early appearance of SUMO-1, which preceded gammaH2AX accumulation on the sex chromosomes during their meiotic inactivation. In contrast to SUMO-1, SUMO-2/3 was undetectable in zygotene spermatocytes, suggesting a possible specific role for SUMO-1 in the initiation of MSCI.

  7. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing.

    PubMed

    Royo, Hélène; Prosser, Haydn; Ruzankina, Yaroslava; Mahadevaiah, Shantha K; Cloutier, Jeffrey M; Baumann, Marek; Fukuda, Tomoyuki; Höög, Christer; Tóth, Attila; de Rooij, Dirk G; Bradley, Allan; Brown, Eric J; Turner, James M A

    2013-07-01

    In mammals, homologs that fail to synapse during meiosis are transcriptionally inactivated. This process, meiotic silencing, drives inactivation of the heterologous XY bivalent in male germ cells (meiotic sex chromosome inactivation [MSCI]) and is thought to act as a meiotic surveillance mechanism. The checkpoint protein ATM and Rad3-related (ATR) localizes to unsynapsed chromosomes, but its role in the initiation and maintenance of meiotic silencing is unknown. Here we show that ATR has multiple roles in silencing. ATR first regulates HORMA (Hop1, Rev7, and Mad2) domain protein HORMAD1/2 phosphorylation and localization of breast cancer I (BRCA1) and ATR cofactors ATR-interacting peptide (ATRIP)/topoisomerase 2-binding protein 1 (TOPBP1) at unsynapsed axes. Later, it acts as an adaptor, transducing signaling at unsynapsed axes into surrounding chromatin in a manner that requires interdependence with mediator of DNA damage checkpoint 1 (MDC1) and H2AFX. Finally, ATR catalyzes histone H2AFX phosphorylation, the epigenetic event leading to gene inactivation. Using a novel genetic strategy in which MSCI is used to silence a chosen gene in pachytene, we show that ATR depletion does not disrupt the maintenance of silencing and that silencing comprises two phases: The first is dynamic and reversible, and the second is stable and irreversible. Our work identifies a role for ATR in the epigenetic regulation of gene expression and presents a new technique for ablating gene function in the germline.

  8. Many X-linked microRNAs escape meiotic sex chromosome inactivation.

    PubMed

    Song, Rui; Ro, Seungil; Michaels, Jason D; Park, Chanjae; McCarrey, John R; Yan, Wei

    2009-04-01

    Meiotic sex chromosome inactivation (MSCI) during spermatogenesis is characterized by transcriptional silencing of genes on both the X and Y chromosomes in mid-to-late pachytene spermatocytes. MSCI is believed to result from meiotic silencing of unpaired DNA because the X and Y chromosomes remain largely unpaired throughout first meiotic prophase. However, unlike X-chromosome inactivation in female embryonic cells, where 25-30% of X-linked structural genes have been reported to escape inactivation, previous microarray- and RT-PCR-based studies of expression of >364 X-linked mRNA-encoding genes during spermatogenesis have failed to reveal any X-linked gene that escapes the silencing effects of MSCI in primary spermatocytes. Here we show that many X-linked miRNAs are transcribed and processed in pachytene spermatocytes. This unprecedented escape from MSCI by these X-linked miRNAs suggests that they may participate in a critical function at this stage of spermatogenesis, including the possibility that they contribute to the process of MSCI itself, or that they may be essential for post-transcriptional regulation of autosomal mRNAs during the late meiotic and early postmeiotic stages of spermatogenesis.

  9. The contribution of female meiotic drive to the evolution of neo-sex chromosomes.

    PubMed

    Yoshida, Kohta; Kitano, Jun

    2012-10-01

    Sex chromosomes undergo rapid turnover in certain taxonomic groups. One of the mechanisms of sex chromosome turnover involves fusions between sex chromosomes and autosomes. Sexual antagonism, heterozygote advantage, and genetic drift have been proposed as the drivers for the fixation of this evolutionary event. However, all empirical patterns of the prevalence of multiple sex chromosome systems across different taxa cannot be simply explained by these three mechanisms. In this study, we propose that female meiotic drive may contribute to the evolution of neo-sex chromosomes. The results of this study showed that in mammals, the XY(1) Y(2) sex chromosome system is more prevalent in species with karyotypes of more biarmed chromosomes, whereas the X(1) X(2) Y sex chromosome system is more prevalent in species with predominantly acrocentric chromosomes. In species where biarmed chromosomes are favored by female meiotic drive, X-autosome fusions (XY(1) Y(2) sex chromosome system) will be also favored by female meiotic drive. In contrast, in species with more acrocentric chromosomes, Y-autosome fusions (X(1) X(2) Y sex chromosome system) will be favored just because of the biased mutation rate toward chromosomal fusions. Further consideration should be given to female meiotic drive as a mechanism in the fixation of neo-sex chromosomes.

  10. THE CONTRIBUTION OF FEMALE MEIOTIC DRIVE TO THE EVOLUTION OF NEO-SEX CHROMOSOMES

    PubMed Central

    Yoshida, Kohta; Kitano, Jun

    2012-01-01

    Sex chromosomes undergo rapid turnover in certain taxonomic groups. One of the mechanisms of sex chromosome turnover involves fusions between sex chromosomes and autosomes. Sexual antagonism, heterozygote advantage, and genetic drift have been proposed as the drivers for the fixation of this evolutionary event. However, all empirical patterns of the prevalence of multiple sex chromosome systems across different taxa cannot be simply explained by these three mechanisms. In this study, we propose that female meiotic drive may contribute to the evolution of neo-sex chromosomes. The results of this study showed that in mammals, the XY1Y2 sex chromosome system is more prevalent in species with karyotypes of more biarmed chromosomes, whereas the X1X2Y sex chromosome system is more prevalent in species with predominantly acrocentric chromosomes. In species where biarmed chromosomes are favored by female meiotic drive, X-autosome fusions (XY1Y2 sex chromosome system) will be also favored by female meiotic drive. In contrast, in species with more acrocentric chromosomes, Y-autosome fusions (X1X2Y sex chromosome system) will be favored just because of the biased mutation rate toward chromosomal fusions. Further consideration should be given to female meiotic drive as a mechanism in the fixation of neo-sex chromosomes. PMID:23025609

  11. Meiotic recombination errors, the origin of sperm aneuploidy and clinical recommendations.

    PubMed

    Tempest, Helen G

    2011-02-01

    Since the early 1990s male infertility has successfully been treated by intracytoplasmic sperm injection (ICSI), nevertheless concerns have been raised regarding the genetic risk of ICSI. Chromosome aneuploidy (the presence of extra or missing chromosomes) is the leading cause of pregnancy loss and mental retardation in humans. While the majority of chromosome aneuploidies are maternal in origin, the paternal contribution to aneuploidy is clinically relevant particularly for the sex chromosomes. Given that it is difficult to study female gametes investigations are predominantly conducted in male meiotic recombination and sperm aneuploidy. Research suggests that infertile men have increased levels of sperm aneuploidy and that this is likely due to increased errors in meiotic recombination and chromosome synapsis within these individuals. It is perhaps counterintuitive but there appears to be no selection against chromosomally aneuploid sperm at fertilization. In fact the frequency of aneuploidy in sperm appears to be mirrored in conceptions. Given this information this review will cover our current understanding of errors in meiotic recombination and chromosome synapsis and how these may contribute to increased sperm aneuploidy. Frequencies of sperm aneuploidy in infertile men and individuals with constitutional karyotypic abnormalities are reviewed, and based on these findings, indications for clinical testing of sperm aneuploidy are discussed. In addition, the application of single nucleotide arrays for the analysis of meiotic recombination and identification of parental origin of aneuploidy are considered.

  12. Abnormal meiotic recombination in infertile men and its association with sperm aneuploidy.

    PubMed

    Ferguson, Kyle A; Wong, Edgar Chan; Chow, Victor; Nigro, Mark; Ma, Sai

    2007-12-01

    Defects in early meiotic events are thought to play a critical role in male infertility; however, little is known regarding the relationship between early meiotic events and the chromosomal constitution of human sperm. Thus, we analyzed testicular tissue from 26 men (9 fertile and 17 infertile men), using immunofluorescent techniques to examine meiotic chromosomes, and fluorescent in situ hybridization to assess sperm aneuploidy. Based on a relatively small sample size, we observed that 42% (5/12) of men with impaired spermatogenesis displayed reduced genome-wide recombination when compared to the fertile men. Analysis of individual chromosomes showed chromosome-specific defects in recombination: chromosome 13 and 18 bivalents with only a single crossover and chromosome 21 bivalents lacking a crossover were more frequent among the infertile men. We identified two infertile men who displayed a novel meiotic defect in which the sex chromosomes failed to recombine: one man had an absence of sperm in the testes, while the other displayed increased sex chromosome aneuploidy in the sperm, resulting in a 45,X abortus after intracytoplasmic sperm injection. When all men were pooled, we observed an inverse correlation between the frequency of sex chromosome recombination and XY disomy in the sperm. Recombination between the sex chromosomes may be a useful indicator for identifying men at risk of producing chromosomally abnormal sperm. An understanding of the molecular mechanisms that contribute to sperm aneuploidy in infertile men could aid in risk assessment for couples undergoing assisted reproduction.

  13. LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice.

    PubMed

    Kim, Jeesun; Singh, Anup Kumar; Takata, Yoko; Lin, Kevin; Shen, Jianjun; Lu, Yue; Kerenyi, Marc A; Orkin, Stuart H; Chen, Taiping

    2015-12-02

    Mammalian oocytes are arrested at prophase I until puberty when hormonal signals induce the resumption of meiosis I and progression to meiosis II. Meiotic progression is controlled by CDK1 activity and is accompanied by dynamic epigenetic changes. Although the signalling pathways regulating CDK1 activity are well defined, the functional significance of epigenetic changes remains largely unknown. Here we show that LSD1, a lysine demethylase, regulates histone H3 lysine 4 di-methylation (H3K4me2) in mouse oocytes and is essential for meiotic progression. Conditional deletion of Lsd1 in growing oocytes results in precocious resumption of meiosis and spindle and chromosomal abnormalities. Consequently, most Lsd1-null oocytes fail to complete meiosis I and undergo apoptosis. Mechanistically, upregulation of CDC25B, a phosphatase that activates CDK1, is responsible for precocious meiotic resumption and also contributes to subsequent spindle and chromosomal defects. Our findings uncover a functional link between LSD1 and the major signalling pathway governing meiotic progression.

  14. The kinase VRK1 is required for normal meiotic progression in mammalian oogenesis.

    PubMed

    Schober, Carolyn S; Aydiner, Fulya; Booth, Carmen J; Seli, Emre; Reinke, Valerie

    2011-01-01

    The kinase VRK1 has been implicated in mitotic and meiotic progression in invertebrate species, but whether it mediates these events during mammalian gametogenesis is not completely understood. Previous work has demonstrated a role for mammalian VRK1 in proliferation of male spermatogonia, yet whether VRK1 plays a role in meiotic progression, as seen in Drosophila, has not been determined. Here, we have established a mouse strain bearing a gene trap insertion in the VRK1 locus that disrupts Vrk1 expression. In addition to the male proliferation defects, we find that reduction of VRK1 activity causes a delay in meiotic progression during oogenesis, results in the presence of lagging chromosomes during formation of the metaphase plate, and ultimately leads to the failure of oocytes to be fertilized. The activity of at least one phosphorylation substrate of VRK1, p53, is not required for these defects. These results are consistent with previously defined functions of VRK1 in meiotic progression in Drosophila oogenesis, and indicate a conserved role for VRK1 in coordinating proper chromosomal configuration in female meiosis.

  15. Meiotic exchange within and between chromosomes requires a common Rec function in Saccharomyces cerevisiae.

    PubMed Central

    Wagstaff, J E; Klapholz, S; Waddell, C S; Jensen, L; Esposito, R E

    1985-01-01

    We used haploid yeast cells that express both the MATa and MAT alpha mating-type alleles and contain the spo13-1 mutation to characterize meiotic recombination within single, unpaired chromosomes in Rec+ and Rec- Saccharomyces cerevisiae. In Rec+ haploids, as in diploids, intrachromosomal recombination in the ribosomal DNA was detected in 2 to 6% of meiotic divisions, and most events were unequal reciprocal sister chromatid exchange (SCE). By contrast, intrachromosomal recombination between duplicated copies of the his4 locus occurred in approximately 30% of haploid meiotic divisions, a frequency much higher than that reported in diploids; only about one-half of the events were unequal reciprocal SCE. The spo11-1 mutation, which virtually eliminates meiotic exchange between homologs in diploid meiosis, reduced the frequency of intrachromosomal recombination in both the ribosomal DNA and the his4 duplication during meiosis by 10- to greater than 50-fold. This Rec- mutation affected all forms of recombination within chromosomes: unequal reciprocal SCE, reciprocal intrachromatid exchange, and gene conversion. Intrachromosomal recombination in spo11-1 haploids was restored by transformation with a plasmid containing the wild-type SPO11 gene. Mitotic intrachromosomal recombination frequencies were unaffected by spo11-1. This is the first demonstration of a gene product required for recombination between homologs as well as recombination within chromosomes during meiosis. Images PMID:3915779

  16. Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots.

    PubMed

    Getun, Irina V; Wu, Zhen; Fallahi, Mohammad; Ouizem, Souad; Liu, Qin; Li, Weimin; Costi, Roberta; Roush, William R; Cleveland, John L; Bois, Philippe R J

    2017-02-01

    Meiotic recombination initiates following the formation of DNA double-strand breaks (DSBs) by the Spo11 endonuclease early in prophase I, at discrete regions in the genome coined "hot spots." In mammals, meiotic DSB site selection is directed in part by sequence-specific binding of PRDM9, a polymorphic histone H3 (H3K4Me3) methyltransferase. However, other chromatin features needed for meiotic hot spot specification are largely unknown. Here we show that the recombinogenic cores of active hot spots in mice harbor several histone H3 and H4 acetylation and methylation marks that are typical of open, active chromatin. Further, deposition of these open chromatin-associated histone marks is dynamic and is manifest at spermatogonia and/or pre-leptotene-stage cells, which facilitates PRDM9 binding and access for Spo11 to direct the formation of DSBs, which are initiated at the leptotene stage. Importantly, manipulating histone acetylase and deacetylase activities established that histone acetylation marks are necessary for both hot spot activity and crossover resolution. We conclude that there are functional roles for histone acetylation marks at mammalian meiotic recombination hot spots.

  17. Identification of novel Drosophila meiotic genes recovered in a P-element screen.

    PubMed

    Sekelsky, J J; McKim, K S; Messina, L; French, R L; Hurley, W D; Arbel, T; Chin, G M; Deneen, B; Force, S J; Hari, K L; Jang, J K; Laurençon, A C; Madden, L D; Matthies, H J; Milliken, D B; Page, S L; Ring, A D; Wayson, S M; Zimmerman, C C; Hawley, R S

    1999-06-01

    The segregation of homologous chromosomes from one another is the essence of meiosis. In many organisms, accurate segregation is ensured by the formation of chiasmata resulting from crossing over. Drosophila melanogaster females use this type of recombination-based system, but they also have mechanisms for segregating achiasmate chromosomes with high fidelity. We describe a P-element mutagenesis and screen in a sensitized genetic background to detect mutations that impair meiotic chromosome pairing, recombination, or segregation. Our screen identified two new recombination-deficient mutations: mei-P22, which fully eliminates meiotic recombination, and mei-P26, which decreases meiotic exchange by 70% in a polar fashion. We also recovered an unusual allele of the ncd gene, whose wild-type product is required for proper structure and function of the meiotic spindle. However, the screen yielded primarily mutants specifically defective in the segregation of achiasmate chromosomes. Although most of these are alleles of previously undescribed genes, five were in the known genes alphaTubulin67C, CycE, push, and Trl. The five mutations in known genes produce novel phenotypes for those genes.

  18. Searching for a Spore killer: A meiotic drive element in Neurospora fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mendelian inheritance predicts that different alleles of the same gene will have an equal chance of being transmitted to the next generation. However, meiotic drive is a phenomenon where certain alleles evolve the ability to bias transmission in their own favor. In this study we are investigating a ...

  19. Gene expression profiles of Spo11-/- mouse testes with spermatocytes arrested in meiotic prophase I.

    PubMed

    Smirnova, Natalya A; Romanienko, Peter J; Khil, Pavel P; Camerini-Otero, R Daniel

    2006-07-01

    Spo11, a meiosis-specific protein, introduces double-strand breaks on chromosomal DNA and initiates meiotic recombination in a wide variety of organisms. Mouse null Spo11 spermatocytes fail to synapse chromosomes and progress beyond the zygotene stage of meiosis. We analyzed gene expression profiles in Spo11(-/ -)adult and juvenile wild-type testis to describe genes expressed before and after the meiotic arrest resulting from the knocking out of Spo11. These genes were characterized using the Gene Ontology data base. To focus on genes involved in meiosis, we performed comparative gene expression analysis of Spo11(-/ -)and wild-type testes from 15-day mice, when spermatocytes have just entered pachytene. We found that the knockout of Spo11 causes dramatic changes in the level of expression of genes that participate in meiotic recombination (Hop2, Brca2, Mnd1, FancG) and in the meiotic checkpoint (cyclin B2, Cks2), but does not affect genes encoding protein components of the synaptonemal complex. Finally, we discovered unknown genes that are affected by the disruption of the Spo11 gene and therefore may be specifically involved in meiosis and spermatogenesis.

  20. Dbl2 Regulates Rad51 and DNA Joint Molecule Metabolism to Ensure Proper Meiotic Chromosome Segregation

    PubMed Central

    Hyppa, Randy W.; Benko, Zsigmond; Misova, Ivana; Schleiffer, Alexander; Smith, Gerald R.; Gregan, Juraj

    2016-01-01

    To identify new proteins required for faithful meiotic chromosome segregation, we screened a Schizosaccharomyces pombe deletion mutant library and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analyses of both live and fixed cells showed that dbl2Δ mutant cells frequently failed to segregate homologous chromosomes to opposite poles during meiosis I. Removing Rec12 (Spo11 homolog) to eliminate meiotic DNA double-strand breaks (DSBs) suppressed the segregation defect in dbl2Δ cells, indicating that Dbl2 acts after the initiation of meiotic recombination. Analyses of DSBs and Holliday junctions revealed no significant defect in their formation or processing in dbl2Δ mutant cells, although some Rec12-dependent DNA joint molecules persisted late in meiosis. Failure to segregate chromosomes in the absence of Dbl2 correlated with persistent Rad51 foci, and deletion of rad51 or genes encoding Rad51 mediators also suppressed the segregation defect of dbl2Δ. Formation of foci of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments, was impaired in dbl2Δ cells. Our results suggest that Dbl2 is a novel regulator of Fbh1 and thereby Rad51-dependent DSB repair required for proper meiotic chromosome segregation and viable sex cell formation. The wide conservation of these proteins suggests that our results apply to many species. PMID:27304859

  1. 29 CFR Appendix A to Part 24 - Your Rights Under the Energy Reorganization Act

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 1 2012-07-01 2012-07-01 false Your Rights Under the Energy Reorganization Act A Appendix A to Part 24 Labor Office of the Secretary of Labor PROCEDURES FOR THE HANDLING OF RETALIATION... ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Pt. 24, App. A Appendix A to Part 24—Your Rights Under...

  2. 29 CFR Appendix A to Part 24 - Your Rights Under the Energy Reorganization Act

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Your Rights Under the Energy Reorganization Act A Appendix A to Part 24 Labor Office of the Secretary of Labor PROCEDURES FOR THE HANDLING OF RETALIATION... the Energy Reorganization Act ER10AU07.000...

  3. 26 CFR 1.167(l)-3 - Multiple regulation, asset acquisitions, reorganizations, etc.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., reorganizations, etc. 1.167(l)-3 Section 1.167(l)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... and Corporations § 1.167(l)-3 Multiple regulation, asset acquisitions, reorganizations, etc. (a... uses a method of depreciation other than a subsection (l) method of depreciation is required by...

  4. 26 CFR 1.167(l)-3 - Multiple regulation, asset acquisitions, reorganizations, etc.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., reorganizations, etc. 1.167(l)-3 Section 1.167(l)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... and Corporations § 1.167(l)-3 Multiple regulation, asset acquisitions, reorganizations, etc. (a... uses a method of depreciation other than a subsection (l) method of depreciation is required by...

  5. 26 CFR 1.167(l)-3 - Multiple regulation, asset acquisitions, reorganizations, etc.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., reorganizations, etc. 1.167(l)-3 Section 1.167(l)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... and Corporations § 1.167(l)-3 Multiple regulation, asset acquisitions, reorganizations, etc. (a... uses a method of depreciation other than a subsection (l) method of depreciation is required by...

  6. 26 CFR 1.167(l)-3 - Multiple regulation, asset acquisitions, reorganizations, etc.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., reorganizations, etc. 1.167(l)-3 Section 1.167(l)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... and Corporations § 1.167(l)-3 Multiple regulation, asset acquisitions, reorganizations, etc. (a... uses a method of depreciation other than a subsection (l) method of depreciation is required by...

  7. 26 CFR 1.167(l)-3 - Multiple regulation, asset acquisitions, reorganizations, etc.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., reorganizations, etc. 1.167(l)-3 Section 1.167(l)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... and Corporations § 1.167(l)-3 Multiple regulation, asset acquisitions, reorganizations, etc. (a... uses a method of depreciation other than a subsection (l) method of depreciation is required by...

  8. 75 FR 17692 - Foreign-Trade Zone 75 -- Phoenix, Arizona, Application for Reorganization under Alternative Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... Foreign-Trade Zones Board Foreign-Trade Zone 75 -- Phoenix, Arizona, Application for Reorganization under...) by the City of the Phoenix, grantee of FTZ 75, requesting authority to reorganize the zone under the...-acre Phoenix Sky Harbor Center and adjacent air cargo terminal at the Phoenix Sky Harbor...

  9. 77 FR 65361 - Reorganization/Expansion of Foreign-z Under Alternative Site Framework; Galveston, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ...; Galveston, TX Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended (19 U... or reorganization of zones; Whereas, the Board of Trustees of the Galveston Wharves, grantee of... authority to reorganize under the ASF with a service area of Galveston County, Texas, within and adjacent...

  10. Strategies for Reorganization in Allied Health and Nursing Programs: The Endless Metamorphosis.

    ERIC Educational Resources Information Center

    Scigliano, Virginia; Scigliano, John A.

    Four alternative organizational structures are discussed with regard to their applicability to the reorganization of community college allied health programs. After introductory material noting the complexities, multiple interfaces, and high costs that make allied health and nursing programs prime targets for reorganization, the four models of…

  11. 78 FR 60695 - Regulatory Reorganization; Administrative Changes to Regulations Due to the Consolidation of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Reorganization; Administrative Changes to Regulations Due to the Consolidation of the Financial Management... consolidated the bureaus formerly known as the Financial Management Service (``FMS'') and the Bureau of the... consolidation requires reorganization of, and administrative changes to, title 31 of the Code of...

  12. 77 FR 6059 - Reorganization of Foreign-Trade Zone 275 Under Alternative Site Framework; Lansing, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Foreign-Trade Zones Board Reorganization of Foreign-Trade Zone 275 Under Alternative Site Framework... Board adopted the alternative site framework (ASF) (74 FR 1170, 01/12/09; correction 74 FR 3987, 01/22... to reorganize FTZ 275 under the alternative site framework is approved, subject to the FTZ Act...

  13. 77 FR 6058 - Reorganization of Foreign-Trade Zone 118 Under Alternative Site Framework, Ogdensburg, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Foreign-Trade Zones Board Reorganization of Foreign-Trade Zone 118 Under Alternative Site Framework... Board adopted the alternative site framework (ASF) (74 FR 1170, 01/12/2009; correction 74 FR 3987, 01/22... to reorganize FTZ 118 under the alternative site framework is approved, subject to the FTZ Act...

  14. A theoretical description of charge reorganization energies in molecular organic P-type semiconductors.

    PubMed

    Brückner, Charlotte; Engels, Bernd

    2016-06-05

    Charge transport properties of materials composed of small organic molecules are important for numerous optoelectronic applications. A material's ability to transport charges is considerably influenced by the charge reorganization energies of the composing molecules. Hence, predictions about charge-transport properties of organic materials deserve reliable statements about these charge reorganization energies. However, using density functional theory which is mostly used for the predictions, the computed reorganization energies depend strongly on the chosen functional. To gain insight, a benchmark of various density functionals for the accurate calculation of charge reorganization energies is presented. A correlation between the charge reorganization energies and the ionization potentials is found which suggests applying IP-tuning to obtain reliable values for charge reorganization energies. According to benchmark investigations with IP-EOM-CCSD single-point calculations, the tuned functionals provide indeed more reliable charge reorganization energies. Among the standard functionals, ωB97X-D and SOGGA11X yield accurate charge reorganization energies in comparison with IP-EOM-CCSD values. © 2016 Wiley Periodicals, Inc.

  15. 26 CFR 1.358-6 - Stock basis in certain triangular reorganizations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... purposes of this section— (i) P is a corporation— (A) That is a party to a reorganization, (B) That is in... reorganization, and (B) That is controlled by P. (iii) T is a corporation that is another party to the...) directly from T in a transaction in which P's basis in the T assets was determined under section...

  16. 26 CFR 1.358-6 - Stock basis in certain triangular reorganizations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... purposes of this section— (i) P is a corporation— (A) That is a party to a reorganization, (B) That is in... reorganization, and (B) That is controlled by P. (iii) T is a corporation that is another party to the...) directly from T in a transaction in which P's basis in the T assets was determined under section...

  17. 26 CFR 1.358-6 - Stock basis in certain triangular reorganizations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... purposes of this section— (i) P is a corporation— (A) That is a party to a reorganization, (B) That is in... reorganization, and (B) That is controlled by P. (iii) T is a corporation that is another party to the...) directly from T in a transaction in which P's basis in the T assets was determined under section...

  18. 29 CFR 24.114 - District court jurisdiction of retaliation complaints under the Energy Reorganization Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Provisions § 24.114 District court jurisdiction of retaliation complaints under the Energy Reorganization Act... 29 Labor 1 2010-07-01 2010-07-01 true District court jurisdiction of retaliation complaints under the Energy Reorganization Act. 24.114 Section 24.114 Labor Office of the Secretary of Labor...

  19. Modeling meiotic chromosomes indicates a size dependent contribution of telomere clustering and chromosome rigidity to homologue juxtaposition.

    PubMed

    Penfold, Christopher A; Brown, Paul E; Lawrence, Neil D; Goldman, Alastair S H

    2012-01-01

    Meiosis is the cell division that halves the genetic component of diploid cells to form gametes or spores. To achieve this, meiotic cells undergo a radical spatial reorganisation of chromosomes. This reorganisation is a prerequisite for the pairing of parental homologous chromosomes and the reductional division, which halves the number of chromosomes in daughter cells. Of particular note is the change from a centromere clustered layout (Rabl configuration) to a telomere clustered conformation (bouquet stage). The contribution of the bouquet structure to homologous chromosome pairing is uncertain. We have developed a new in silico model to represent the chromosomes of Saccharomyces cerevisiae in space, based on a worm-like chain model constrained by attachment to the nuclear envelope and clustering forces. We have asked how these constraints could influence chromosome layout, with particular regard to the juxtaposition of homologous chromosomes and potential nonallelic, ectopic, interactions. The data support the view that the bouquet may be sufficient to bring short chromosomes together, but the contribution to long chromosomes is less. We also find that persistence length is critical to how much influence the bouquet structure could have, both on pairing of homologues and avoiding contacts with heterologues. This work represents an important development in computer modeling of chromosomes, and suggests new explanations for why elucidating the functional significance of the bouquet by genetics has been so difficult.

  20. Modeling Meiotic Chromosomes Indicates a Size Dependent Contribution of Telomere Clustering and Chromosome Rigidity to Homologue Juxtaposition

    PubMed Central

    Penfold, Christopher A.; Brown, Paul E.; Lawrence, Neil D.; Goldman, Alastair S. H.

    2012-01-01

    Meiosis is the cell division that halves the genetic component of diploid cells to form gametes or spores. To achieve this, meiotic cells undergo a radical spatial reorganisation of chromosomes. This reorganisation is a prerequisite for the pairing of parental homologous chromosomes and the reductional division, which halves the number of chromosomes in daughter cells. Of particular note is the change from a centromere clustered layout (Rabl configuration) to a telomere clustered conformation (bouquet stage). The contribution of the bouquet structure to homologous chromosome pairing is uncertain. We have developed a new in silico model to represent the chromosomes of Saccharomyces cerevisiae in space, based on a worm-like chain model constrained by attachment to the nuclear envelope and clustering forces. We have asked how these constraints could influence chromosome layout, with particular regard to the juxtaposition of homologous chromosomes and potential nonallelic, ectopic, interactions. The data support the view that the bouquet may be sufficient to bring short chromosomes together, but the contribution to long chromosomes is less. We also find that persistence length is critical to how much influence the bouquet structure could have, both on pairing of homologues and avoiding contacts with heterologues. This work represents an important development in computer modeling of chromosomes, and suggests new explanations for why elucidating the functional significance of the bouquet by genetics has been so difficult. PMID:22570605

  1. Hunting promotes spatial reorganization and sexually selected infanticide

    PubMed Central

    Leclerc, M.; Frank, S. C.; Zedrosser, A.; Swenson, J. E.; Pelletier, F.

    2017-01-01

    Harvest can affect the ecology and evolution of wild species. The removal of key individuals, such as matriarchs or dominant males, can disrupt social structure and exacerbate the impact of hunting on population growth. We do not know, however, how and when the spatiotemporal reorganization takes place after removal and if such changes can be the mechanism that explain a decrease in population growth. Detailed behavioral information from individually monitored brown bears, in a population where hunting increases sexually selected infanticide, revealed that adult males increased their use of home ranges of hunter-killed neighbors in the second year after their death. Use of a hunter-killed male’s home range was influenced by the survivor’s as well as the hunter-killed male’s age, population density, and hunting intensity. Our results emphasize that hunting can have long-term indirect effects which can affect population viability. PMID:28332613

  2. Reorganization between preparatory and movement population responses in motor cortex

    PubMed Central

    Elsayed, Gamaleldin F.; Lara, Antonio H.; Kaufman, Matthew T.; Churchland, Mark M.; Cunningham, John P.

    2016-01-01

    Neural populations can change the computation they perform on very short timescales. Although such flexibility is common, the underlying computational strategies at the population level remain unknown. To address this gap, we examined population responses in motor cortex during reach preparation and movement. We found that there exist exclusive and orthogonal population-level subspaces dedicated to preparatory and movement computations. This orthogonality yielded a reorganization in response correlations: the set of neurons with shared response properties changed completely between preparation and movement. Thus, the same neural population acts, at different times, as two separate circuits with very different properties. This finding is not predicted by existing motor cortical models, which predict overlapping preparation-related and movement-related subspaces. Despite orthogonality, responses in the preparatory subspace were lawfully related to subsequent responses in the movement subspace. These results reveal a population-level strategy for performing separate but linked computations. PMID:27807345

  3. Reorganization of a granular medium around a localized transformation.

    PubMed

    Merceron, Aymeric; Sauret, Alban; Jop, Pierre

    2016-06-01

    Physical and chemical transformation processes in reactive granular media involve the reorganization of the structure. In this paper, we study experimentally the rearrangements of a two-dimensional (2D) granular packing undergoing a localized transformation. We track the position and evolution of all the disks that constitute the granular packing when either a large intruder shrinks in size or is pulled out of the granular structure. In the two situations the displacements at long time are similar to 2D quasistatic silo flows whereas the short-time dynamic is heterogeneous in both space and time. We observe an avalanchelike behavior with power-law distributed events uncorrelated in time. In addition, the instantaneous evolutions of the local solid fraction exhibit self-similar distributions. The averages and the standard deviations of the solid fraction variations can be rescaled, suggesting a single mechanism of rearrangement.

  4. Reorganization of a granular medium around a localized transformation

    NASA Astrophysics Data System (ADS)

    Merceron, Aymeric; Sauret, Alban; Jop, Pierre

    2016-06-01

    Physical and chemical transformation processes in reactive granular media involve the reorganization of the structure. In this paper, we study experimentally the rearrangements of a two-dimensional (2D) granular packing undergoing a localized transformation. We track the position and evolution of all the disks that constitute the granular packing when either a large intruder shrinks in size or is pulled out of the granular structure. In the two situations the displacements at long time are similar to 2D quasistatic silo flows whereas the short-time dynamic is heterogeneous in both space and time. We observe an avalanchelike behavior with power-law distributed events uncorrelated in time. In addition, the instantaneous evolutions of the local solid fraction exhibit self-similar distributions. The averages and the standard deviations of the solid fraction variations can be rescaled, suggesting a single mechanism of rearrangement.

  5. Exposure therapy triggers lasting reorganization of neural fear processing.

    PubMed

    Hauner, Katherina K; Mineka, Susan; Voss, Joel L; Paller, Ken A

    2012-06-05

    A single session of exposure therapy can eliminate recalcitrant and disabling fear of phobogenic objects or situations. We studied neural mechanisms of this remarkable outcome by monitoring changes in brain activity as a result of successful 2-h treatment. Before treatment, phobogenic images excited activity in a network of regions, including amygdala, insula, and cingulate cortex, relative to neutral images. Successful therapy dampened responsiveness in this fear-sensitive network while concomitantly heightening prefrontal involvement. Six months later, dampened fear-network activity persisted but without prefrontal engagement. Additionally, individual differences in the magnitude of visual cortex activations recorded shortly after therapy predicted therapeutic outcomes 6 mo later, which involved persistently diminished visual responsiveness to phobogenic images. Successful therapy thus entailed stable reorganization of neural responses to initially feared stimuli. These effects were linked to fear-extinction mechanisms identified in animal models, thus opening new opportunities for the treatment and prevention of debilitating anxiety disorders.

  6. Dipole solvation in nondipolar solvents: Experimental studies of reorganization energies and solvation dynamics

    SciTech Connect

    Reynolds, L.; Gardecki, J.A.; Frankland, S.J.V.; Horng, M.L.; Maroncelli, M.

    1996-06-13

    Steady-state and time-resolved emission measurements of the solvatochromic probe coumarin 153 are used to study solvation of a dipolar solute in nondipolar solvents such as benzene and 1,4-dioxane. Contrary to the predictions of dielectric continuum theories, the Stokes shifts (or nuclear reorganization energies) that accompany electronic excitation of this solute are substantial in such solvents (nearly 1000 cm{sup -1}). The magnitudes of the shifts observed in both nondipolar and dipolar solvents can be consistently understood in terms of the relative strength of the interactions between the permanent charge distributions of the solute and solvent molecules. (Information concerning these charge distributions is derived from extensive ab initio calculations on the solute and 31 common solvents). The dynamics of solvation in nondipolar solvents, as reflected in the time dependence of the Stokes shifts, is qualitatively like that observed in polar solvents. But, whereas the dynamics in polar solvents can be rather simply modeled using the solvents dielectric response as empirical input, no simple theories of this sort are currently capable of predicting the solvation dynamics in nondipolar solvents 52 refs., 14 figs., 4 tabs.

  7. Thalamic Reorganization in Chronic Patients With Intracerebral Hemorrhage

    PubMed Central

    Jang, Sung Ho; Chang, Chul Hoon; Kim, Seong Ho; Jung, Young Jin; Hong, Ji Heon

    2015-01-01

    Abstract The aim of this study was to investigate changes of synaptic area of the spinothalamic tract and its thalamocortical pathway (STT) in the thalamus in chronic patients with putaminal hemorrhage. Twenty four patients with a lesion in the ventral posterior lateral nucleus (VPL) of the thalamus following putaminal hemorrhage were recruited for this study. The subscale for tactile sensation of the Nottingham Sensory Assessment (NSA) was used for the determination of somatosensory function. Diffusion tensor tractography of the STT was reconstructed using the Functional Magnetic Resonance Imaging of the Brain Software Library. We classified patients according to 2 groups: the VPL group, patients whose STTs were synapsed in the VPL; and the non-VPL group, patients whose STTs were synapsed in other thalamic areas, except for the VPL. Thirteen patients belonged to the VPL group, and 8 patients belonged to the non-VPL group. Three patients were excluded from grouping due to interrupted integrity of the STTs. The tactile sensation score of the NSA in the non-VPL group (10.50 ± 0.93) was significantly decreased compared with that of the VPL group (19.45 ± 1.33) (P < 0.05). We found that 2 types of patient had recovered via the VPL area or other areas of the STT. It appears that patients who showed shifting of the thalamic synaptic area of the STT might have recovered by the process of thalamic reorganization following thalamic injury. In addition, thalamic reorganization appears to be related to poorer somatosensory outcome. PMID:26313781

  8. Correlation between cerebral reorganization and motor recovery after subcortical infarcts.

    PubMed

    Loubinoux, Isabelle; Carel, Christophe; Pariente, Jérémie; Dechaumont, Sophie; Albucher, Jean-François; Marque, Philippe; Manelfe, Claude; Chollet, François

    2003-12-01

    Our objective was to investigate correlations between clinical motor scores and cerebral sensorimotor activation to demonstrate that this reorganization is the neural substratum of motor recovery. Correlation analyses identified reorganization processes shared by all patients. Nine patients with first-time corticospinal tract lacuna were clinically evaluated using the NIH stroke scale, the motricity index, and the Barthel index. Patients were strictly selected for pure motor deficits. They underwent a first fMRI session (E1) 11 days after stroke, and then a second (E2) 4 weeks later. The task used was a calibrated repetitive passive flexion/extension of the paretic wrist. The control task was rest. Six healthy subjects followed the same protocol. Patients were also clinically evaluated 4 and 12 months after stroke. All patients improved significantly between E1 and E2. For E1 and E2, the ipsilesional primary sensorimotor and premotor cortex, supplementary motor area (SMA), and bilateral Broadmann area (BA) 40 were activated. Activation intensity was greater at the second examination except in the ipsilesional superior BA 40. Magnitude of activation was lower than that of controls except for well-recovered patients. E1 clinical hand motor score and E1 cerebral activation correlated in the SMA proper and inferior ipsilesional BA 40. Thus, we demonstrated early functionality of the sensorimotor system. The whole sensorimotor network activation correlated with motor status at E2, indicating a recovery of its function when activated. Moreover, the activation pattern in the acute phase (E1) had a predictive value: early recruitment and high activation of the SMA and inferior BA 40 were correlated with a faster or better motor recovery. On the contrary, activation of the contralesional hemisphere (prefrontal cortex and BA 39-40) and of the posterior cingulate/precuneus (BA 7-31) predicted a slower recovery.

  9. Large-Scale Functional Brain Network Reorganization During Taoist Meditation.

    PubMed

    Jao, Tun; Li, Chia-Wei; Vértes, Petra E; Wu, Changwei Wesley; Achard, Sophie; Hsieh, Chao-Hsien; Liou, Chien-Hui; Chen, Jyh-Horng; Bullmore, Edward T

    2016-02-01

    Meditation induces a distinct and reversible mental state that provides insights into brain correlates of consciousness. We explored brain network changes related to meditation by graph theoretical analysis of resting-state functional magnetic resonance imaging data. Eighteen Taoist meditators with varying levels of expertise were scanned using a within-subjects counterbalanced design during resting and meditation states. State-related differences in network topology were measured globally and at the level of individual nodes and edges. Although measures of global network topology, such as small-worldness, were unchanged, meditation was characterized by an extensive and expertise-dependent reorganization of the hubs (highly connected nodes) and edges (functional connections). Areas of sensory cortex, especially the bilateral primary visual and auditory cortices, and the bilateral temporopolar areas, which had the highest degree (or connectivity) during the resting state, showed the biggest decrease during meditation. Conversely, bilateral thalamus and components of the default mode network, mainly the bilateral precuneus and posterior cingulate cortex, had low degree in the resting state but increased degree during meditation. Additionally, these changes in nodal degree were accompanied by reorganization of anatomical orientation of the edges. During meditation, long-distance longitudinal (antero-posterior) edges increased proportionally, whereas orthogonal long-distance transverse (right-left) edges connecting bilaterally homologous cortices decreased. Our findings suggest that transient changes in consciousness associated with meditation introduce convergent changes in the topological and spatial properties of brain functional networks, and the anatomical pattern of integration might be as important as the global level of integration when considering the network basis for human consciousness.

  10. Multibeam investigation of the active North Atlantic plate boundary reorganization tip

    NASA Astrophysics Data System (ADS)

    Hey, Richard; Martinez, Fernando; Höskuldsson, Ármann; Eason, Deborah E.; Sleeper, Jonathan; Thordarson, Sigvaldi; Benediktsdóttir, Ásdís; Merkuryev, Sergey

    2016-02-01

    The previous orthogonal ridge/transform staircase geometry south of Iceland is being progressively changed to the present continuous oblique Reykjanes Ridge spreading geometry as North America-Eurasia transform faults are successively eliminated from north to south. This reorganization is commonly interpreted as a thermal phenomenon, caused by warmer Iceland plume mantle progressively interacting with the ridge, although other diachronous seafloor spreading reorganizations are thought to result from tectonic rift propagation. New marine geophysical data covering our reinterpretation of the reorganization tip near 57°N show successive transform eliminations at a propagation velocity of ∼110 km/Myr, ten times the spreading half rate, followed by abrupt reorganization slowing at the Modred transform as it was converted to a migrating non-transform offset. Neither the simple thermal model nor the simple propagating rift model appears adequate to explain the complicated plate boundary reorganization process.

  11. Nuclear Regulatory Commission: more aggressive leadership needed

    SciTech Connect

    Staats, E.B.

    1980-01-15

    The Energy Reorganization Act of 1974 which established the Nuclear Regulatory Commission required GAO to evaluate the Commission's performance by January 18, 1980. This report responds to that requirement. GAO concluded that, although improvements have been made, the Commission's nuclear regulatory performance can be characterized best as slow, indecisive, cautious - in a word, complacent. This has largely resulted from a lack of aggressive leadership as evidenced by the Commissioners' failure to establish regulatory goals, control policymaking, and most importantly, clearly define their roles in nuclear regulation.

  12. Nuclear compartmentalization is abolished during fission yeast meiosis.

    PubMed

    Arai, Kunio; Sato, Masamitsu; Tanaka, Kayoko; Yamamoto, Masayuki

    2010-11-09

    In eukaryotic cells, the nuclear envelope partitions the nucleus from the cytoplasm. The fission yeast Schizosaccharomyces pombe undergoes closed mitosis in which the nuclear envelope persists rather than being broken down, as in higher eukaryotic cells. It is therefore assumed that nucleocytoplasmic transport continues during the cell cycle. Here we show that nuclear transport is, in fact, abolished specifically during anaphase of the second meiotic nuclear division. During that time, both nucleoplasmic and cytoplasmic proteins disperse throughout the cell, reminiscent of the open mitosis of higher eukaryotes, but the architecture of the S. pombe nuclear envelope itself persists. This functional alteration of the nucleocytoplasmic barrier is likely induced by spore wall formation, because ectopic induction of sporulation signaling leads to premature dispersion of nucleoplasmic proteins. A photobleaching assay demonstrated that nuclear envelope permeability increases abruptly at the onset of anaphase of the second meiotic division. The permeability was not altered when sporulation was inhibited by blocking the trafficking of forespore-membrane vesicles from the endoplasmic reticulum to the Golgi. The evidence indicates that yeast gametogenesis produces vesicle transport-mediated forespore membranes by inducing nuclear envelope permeabilization.

  13. Php4 Is a Key Player for Iron Economy in Meiotic and Sporulating Cells

    PubMed Central

    Brault, Ariane; Rallis, Charalampos; Normant, Vincent; Garant, Jean-Michel; Bähler, Jürg; Labbé, Simon

    2016-01-01

    Meiosis is essential for sexually reproducing organisms, including the fission yeast Schizosaccharomyces pombe. In meiosis, chromosomes replicate once in a diploid precursor cell (zygote), and then segregate twice to generate four haploid meiotic products, named spores in yeast. In S. pombe, Php4 is responsible for the transcriptional repression capability of the heteromeric CCAAT-binding factor to negatively regulate genes encoding iron-using proteins under low-iron conditions. Here, we show that the CCAAT-regulatory subunit Php4 is required for normal progression of meiosis under iron-limiting conditions. Cells lacking Php4 exhibit a meiotic arrest at metaphase I. Microscopic analyses of cells expressing functional GFP-Php4 show that it colocalizes with chromosomal material at every stage of meiosis under low concentrations of iron. In contrast, GFP-Php4 fluorescence signal is lost when cells undergo meiosis under iron-replete conditions. Global gene expression analysis of meiotic cells using DNA microarrays identified 137 genes that are regulated in an iron- and Php4-dependent manner. Among them, 18 genes are expressed exclusively during meiosis and constitute new putative Php4 target genes, which include hry1+ and mug14+. Further analysis validates that Php4 is required for maximal and timely repression of hry1+ and mug14+ genes. Using a chromatin immunoprecipitation approach, we show that Php4 specifically associates with hry1+ and mug14+ promoters in vivo. Taken together, the results reveal that in iron-starved meiotic cells, Php4 is essential for completion of the meiotic program since it participates in global gene expression reprogramming to optimize the use of limited available iron. PMID:27466270

  14. Meiotic recombination counteracts male-biased mutation (male-driven evolution)

    PubMed Central

    Mawaribuchi, Shuuji; Ito, Michihiko; Ogata, Mitsuaki; Oota, Hiroki; Katsumura, Takafumi; Takamatsu, Nobuhiko; Miura, Ikuo

    2016-01-01

    Meiotic recombination is believed to produce greater genetic variation despite the fact that deoxyribonucleic acid (DNA)-replication errors are a major source of mutations. In some vertebrates, mutation rates are higher in males than in females, which developed the theory of male-driven evolution (male-biased mutation). However, there is little molecular evidence regarding the relationships between meiotic recombination and male-biased mutation. Here we tested the theory using the frog Rana rugosa, which has both XX/XY- and ZZ/ZW-type sex-determining systems within the species. The male-to-female mutation-rate ratio (α) was calculated from homologous sequences on the X/Y or Z/W sex chromosomes, which supported male-driven evolution. Surprisingly, each α value was notably higher in the XX/XY-type group than in the ZZ/ZW-type group, although α should have similar values within a species. Interestingly, meiotic recombination between homologous chromosomes did not occur except at terminal regions in males of this species. Then, by subdividing α into two new factors, a replication-based male-to-female mutation-rate ratio (β) and a meiotic recombination-based XX-to-XY/ZZ-to-ZW mutation-rate ratio (γ), we constructed a formula describing the relationship among a nucleotide-substitution rate and the two factors, β and γ. Intriguingly, the β- and γ-values were larger and smaller than 1, respectively, indicating that meiotic recombination might reduce male-biased mutations. PMID:26791621

  15. Meiotic recombination counteracts male-biased mutation (male-driven evolution).

    PubMed

    Mawaribuchi, Shuuji; Ito, Michihiko; Ogata, Mitsuaki; Oota, Hiroki; Katsumura, Takafumi; Takamatsu, Nobuhiko; Miura, Ikuo

    2016-01-27

    Meiotic recombination is believed to produce greater genetic variation despite the fact that deoxyribonucleic acid (DNA)-replication errors are a major source of mutations. In some vertebrates, mutation rates are higher in males than in females, which developed the theory of male-driven evolution (male-biased mutation). However, there is little molecular evidence regarding the relationships between meiotic recombination and male-biased mutation. Here we tested the theory using the frog Rana rugosa, which has both XX/XY- and ZZ/ZW-type sex-determining systems within the species. The male-to-female mutation-rate ratio (α) was calculated from homologous sequences on the X/Y or Z/W sex chromosomes, which supported male-driven evolution. Surprisingly, each α value was notably higher in the XX/XY-type group than in the ZZ/ZW-type group, although α should have similar values within a species. Interestingly, meiotic recombination between homologous chromosomes did not occur except at terminal regions in males of this species. Then, by subdividing α into two new factors, a replication-based male-to-female mutation-rate ratio (β) and a meiotic recombination-based XX-to-XY/ZZ-to-ZW mutation-rate ratio (γ), we constructed a formula describing the relationship among a nucleotide-substitution rate and the two factors, β and γ. Intriguingly, the β- and γ-values were larger and smaller than 1, respectively, indicating that meiotic recombination might reduce male-biased mutations.

  16. Meiotic behavior of aneuploid chromatin in mouse models of Down syndrome.

    PubMed

    Reinholdt, Laura G; Czechanski, Anne; Kamdar, Sonya; King, Benjamin L; Sun, Fengyun; Handel, Mary Ann

    2009-12-01

    Aneuploidy, which leads to unpaired chromosomal axes during meiosis, is frequently accompanied by infertility. We previously showed, using three mouse models of Down syndrome, that it is an extra chromosome, but not extra gene dose, that is associated with male infertility and virtual absence of post-meiotic gem cells. Here, we test the hypothesis that aneuploid segments are differentially modified and expressed during meiosis, depending on whether they are present as an extra chromosome or not. In all three models examined, the trisomic region lacks a pairing partner, but in one case, spermatocytes have an extra (and unpaired) chromosome, while the two other models involve translocation of the trisomic region rather than an extra chromosome. An extra unpaired chromosome was always modified by phosphorylation of histone H2AX and lacked RNA PolII. But in the case of trisomic regions attached to a paired chromosome, assembly of these protein modifications was affected by the position of a trisomic region relative to a centromere and the physical extent of the unpaired chromatin. Analysis of gene expression in testes revealed that extra copy number alone was not sufficient for meiotic upregulation of genes in the trisomic interval. Additionally and unexpectedly, presence of meiotic gene silencing chromatin modifications was not sufficient for downregulation of genes in unpaired trisomic chromatin. Thus, the meiotic chromatin modifications that are cytologically visible are unlikely to be directly involved in sterility versus fertility of DS models. Finally, the presence of an extra unpaired chromosome, but not the presence of extra (trisomic) genes, caused global deregulation of transcription in spermatocytes. These results reveal mechanisms by which an extra chromosome, but not trisomic gene dose, impact on meiotic progress and infertility.

  17. The synaptonemal complex and meiotic recombination in humans: new approaches to old questions.

    PubMed

    Vallente, Rhea U; Cheng, Edith Y; Hassold, Terry J

    2006-06-01

    Meiotic prophase serves as an arena for the interplay of two important cellular activities, meiotic recombination and synapsis of homologous chromosomes. Synapsis is mediated by the synaptonemal complex (SC), originally characterized as a structure linked to pairing of meiotic chromosomes (Moses (1958) J Biophys Biochem Cytol 4:633-638). In 1975, the first electron micrographs of human pachytene stage SCs were presented (Moses et al. (1975) Science 187:363-365) and over the next 15 years the importance of the SC to normal meiotic progression in human males and females was established (Jhanwar and Chaganti (1980) Hum Genet 54:405-408; Pathak and Elder (1980) Hum Genet 54:171-175; Solari (1980) Chromosoma 81:315-337; Speed (1984) Hum Genet 66:176-180; Wallace and Hulten (1985) Ann Hum Genet 49(Pt 3):215-226). Further, these studies made it clear that abnormalities in the assembly or maintenance of the SC were an important contributor to human infertility (Chaganti et al. (1980) Am J Hum Genet 32:833-848; Vidal et al. (1982) Hum Genet 60:301-304; Bojko (1983) Carlsberg Res Commun 48:285-305; Bojko (1985) Carlsberg Res Commun 50:43-72; Templado et al. (1984) Hum Genet 67:162-165; Navarro et al. (1986) Hum Reprod 1:523-527; Garcia et al. (1989) Hum Genet 2:147-53). However, the utility of these early studies was limited by lack of information on the structural composition of the SC and the identity of other SC-associated proteins. Fortunately, studies of the past 15 years have gone a long way toward remedying this problem. In this minireview, we highlight the most important of these advances as they pertain to human meiosis, focusing on temporal aspects of SC assembly, the relationship between the SC and meiotic recombination, and the contribution of SC abnormalities to human infertility.

  18. Ionizing irradiation-induced radical stress stalls live meiotic chromosome movements by altering the actin cytoskeleton

    PubMed Central

    Illner, Doris; Scherthan, Harry

    2013-01-01

    Meiosis generates haploid cells or spores for sexual reproduction. As a prelude to haploidization, homologous chromosomes pair and recombine to undergo segregation during the first meiotic division. During the entire meiotic prophase of the yeast Saccharomyces cerevisiae, chromosomes perform rapid movements that are suspected to contribute to the regulation of recombination. Here, we investigated the impact of ionizing radiation (IR) on movements of GFP–tagged bivalents in live pachytene cells. We find that exposure of sporulating cultures with >40 Gy (4-krad) X-rays stalls pachytene chromosome movements. This identifies a previously undescribed acute radiation response in yeast meiosis, which contrasts with its reported radioresistance of up to 1,000 Gy in survival assays. A modified 3′-end labeling assay disclosed IR-induced dsDNA breaks (DSBs) in pachytene cells at a linear dose relationship of one IR-induced DSB per cell per 5 Gy. Dihydroethidium staining revealed formation of reactive oxygen species (ROS) in irradiated cells. Immobility of fuzzy-appearing irradiated bivalents was rescued by addition of radical scavengers. Hydrogen peroxide-induced ROS did reduce bivalent mobility similar to 40 Gy X IR, while they failed to induce DSBs. IR- and H2O2-induced ROS were found to decompose actin cables that are driving meiotic chromosome mobility, an effect that could be rescued by antioxidant treatment. Hence, it appears that the meiotic actin cytoskeleton is a radical-sensitive system that inhibits bivalent movements in response to IR- and oxidant-induced ROS. This may be important to prevent motility-driven unfavorable chromosome interactions when meiotic recombination has to proceed in genotoxic environments. PMID:24046368

  19. Association of poly-purine/poly-pyrimidine sequences with meiotic recombination hot spots

    PubMed Central

    Bagshaw, Andrew TM; Pitt, Joel PW; Gemmell, Neil J

    2006-01-01

    Background Meiotic recombination events have been found to concentrate in 1–2.5 kilo base regions, but these recombination hot spots do not share a consensus sequence and why they occur at specific sites is not fully understood. Some previous evidence suggests that poly-purine/poly-pyrimidine (poly-pu/py) tracts (PPTs), a class of sequence with distinctive biochemical properties, could be involved in recombination, but no general association of PPTs with meiotic recombination hot spots has previously been reported. Results We used computational methods to investigate in detail the relationship between PPTs and hot spots. We show statistical associations of PPT frequency with hot spots of meiotic recombination initiating lesions, double-strand breaks, in the genome of the yeast S. cerevisiae and with experimentally well characterized human meiotic recombination hot spots. Supporting a possible role of poly-pu/py-rich sequences in hot spot recombination, we also found that all three single nucleotide polymorphisms previously shown to be associated with human hot spot activity changes occur within sequence contexts of 14 bp or longer that are 85% or more poly-pu/py and at least 70% G/C. These polymorphisms are all close to the hot spot mid points. Comparing the sequences of experimentally characterized human hot spots with the orthologous regions of the chimpanzee genome previously shown not to contain hot spots, we found that in all five cases in which comparisons for the hot spot central regions are possible with publicly available sequence data, there are differences near the human hot spot mid points within sequences 14 bp or longer consisting of more than 80% poly-pu/py and at least 50% G/C. Conclusion Our results, along with previous evidence for the unique biochemical properties and recombination-stimulating potential of poly-pu/py-rich sequences, suggest that the possible functional involvement of this type of sequence in meiotic recombination hot spots

  20. SPO11-independent DNA repair foci and their role in meiotic silencing.

    PubMed

    Carofiglio, Fabrizia; Inagaki, Akiko; de Vries, Sandra; Wassenaar, Evelyne; Schoenmakers, Sam; Vermeulen, Christie; van Cappellen, Wiggert A; Sleddens-Linkels, Esther; Grootegoed, J Anton; Te Riele, Hein P J; de Massy, Bernard; Baarends, Willy M

    2013-06-01

    In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11(YF/YF)), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11(YF/YF) and Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number of repair foci increased during oocyte development, indicating the induction of S phase-independent, de novo DNA damage. In wild type pachytene oocytes we observed meiotic silencing in two types of pseudo XY bodies, one type containing DMC1 and RAD51 foci on unsynapsed axes, and another type containing only RAD51 foci, mainly on synapsed axes. Taken together, our results indicate that in addition to asynapsis, persistent SPO11-induced DSBs are important for the initiation of MSCI and MSUC, and that SPO11-independent DNA repair foci contribute to the MSUC response in oocytes.

  1. 77 FR 48959 - Foreign-Trade Zone 133-Quad-Cities, Iowa/Illinois Application for Reorganization Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Reorganization Under Alternative Site Framework An application has been submitted to the Foreign-Trade Zones (FTZ... reorganize the zone under the alternative site framework (ASF) adopted by the Board (15 CFR 400.2(c))....

  2. 76 FR 76934 - Foreign-Trade Zone 89-Las Vegas, NV; Application for Reorganization and Expansion Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... Reorganization and Expansion Under Alternative Site Framework An application has been submitted to the Foreign... authority to reorganize and expand the zone under the alternative site framework (ASF) adopted by the...

  3. Ploidy-Dependent Unreductional Meiotic Cell Division in Polyploid Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meiosis includes one round of DNA replication and two successive nuclear divisions, i.e. meiosis I (reductional) and meiosis II (equational). This specialized cell division reduces chromosomes in half and generates haploid gametes in sexual reproduction of eukaryotes. It ensures faithful transmiss...

  4. 26 CFR 1.6046-3 - Returns as to formation or reorganization of foreign corporations prior to September 15, 1960.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 13 2012-04-01 2012-04-01 false Returns as to formation or reorganization of...) Information Returns § 1.6046-3 Returns as to formation or reorganization of foreign corporations prior to... advises in, or with respect to, the formation, organization, or reorganization of any foreign...

  5. 26 CFR 1.6046-3 - Returns as to formation or reorganization of foreign corporations prior to September 15, 1960.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 13 2013-04-01 2013-04-01 false Returns as to formation or reorganization of...) Information Returns § 1.6046-3 Returns as to formation or reorganization of foreign corporations prior to... advises in, or with respect to, the formation, organization, or reorganization of any foreign...

  6. 26 CFR 1.6046-3 - Returns as to formation or reorganization of foreign corporations prior to September 15, 1960.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Returns as to formation or reorganization of... Returns § 1.6046-3 Returns as to formation or reorganization of foreign corporations prior to September 15... with respect to, the formation, organization, or reorganization of any foreign corporation shall...

  7. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER

    PubMed Central

    Baker, Bruce S.; Carpenter, Adelaide T. C.; Ripoll, P.

    1978-01-01

    To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by UV and X rays.—Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells.—The chromosome instability produced by mei-41 alleles is the consequence of chromosome breakage, that of mei-9 alleles is primarily due to chromosome breakage and, to a lesser extent, to an elevated frequency of mitotic recombination, whereas no predominant mechanism responsible for the instability caused by c(3)G alleles is discernible. Since these three loci are defective in their responses to mutagen damage, their effects on chromosome stability in nonmutagenized cells are interpreted as resulting from an inability to repair spontaneous lesions. Both mei-W68 and mei-S282 increase mitotic recombination (and in mei-W68, to a lesser extent, chromosome loss) in the abdomen but not the wing. In the abdomen, the primary effect on chromosome stability occurs during the larval period when the abdominal histoblasts

  8. Y-autosome translocation interferes with meiotic sex inactivation and expression of autosomal genes: a case study in the pig.

    PubMed

    Barasc, H; Mary, N; Letron, R; Calgaro, A; Dudez, A M; Bonnet, N; Lahbib-Mansais, Y; Yerle, M; Ducos, A; Pinton, A

    2012-01-01

    Y-autosome translocations are rare in humans and pigs. In both species, these rearrangements can be responsible for meiotic arrest and subsequent infertility. Chromosome pairing abnormalities on the SSCX, SSCY and SSC1 chromatin domains were identified by analyzing pachytene spermatocytes from a boar carrying a (Y;1) translocation by immunolocalization of specific meiotic protein combined with FISH. Disturbance of the meiotic sex chromosome inactivation (MSCI) was observed by Cot-RNA-FISH and analysis of ZFY gene expression by sequential RNA- and DNA-FISH on spermatocytes. We hypothesized that the meiotic arrest observed in this boar might be due to the silencing of critical autosomal genes and/or the reactivation of some sex chromosome genes.

  9. The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation.

    PubMed

    Robert, T; Nore, A; Brun, C; Maffre, C; Crimi, B; Bourbon, H-M; de Massy, B

    2016-02-26

    Meiotic recombination is induced by the formation of DNA double-strand breaks (DSBs) catalyzed by SPO11, the ortholog of subunit A of TopoVI DNA topoisomerase (TopoVIA). TopoVI activity requires the interaction between A and B subunits. We identified a conserved family of plant and animal proteins [the TOPOVIB-Like (TOPOVIBL) family] that share strong structural similarity to the TopoVIB subunit of TopoVI DNA topoisomerase. We further characterize the meiotic recombination proteins Rec102 (Saccharomyces cerevisiae), Rec6 (Schizosaccharomyces pombe), and MEI-P22 (Drosophila melanogaster) as homologs to the transducer domain of TopoVIB. We demonstrate that the mouse TOPOVIBL protein interacts and forms a complex with SPO11 and is required for meiotic DSB formation. We conclude that meiotic DSBs are catalyzed by a complex involving SPO11 and TOPOVIBL.

  10. Porous silicon reorganization: Influence on the structure, surface roughness and strain

    NASA Astrophysics Data System (ADS)

    Milenkovic, N.; Drießen, M.; Weiss, C.; Janz, S.

    2015-12-01

    Porous silicon and epitaxial thickening is a lift-off approach for silicon foil fabrication to avoid kerf losses and produce foils with thicknesses less than 50 μm. The crystal quality of the epitaxial silicon film strongly depends on the porous silicon template, which can be adapted through a reorganization process prior to epitaxy. In this work, we investigated the influence of reorganization on the structure of etched porous silicon layers. The reorganization processes were carried out in a quasi-inline Atmospheric Pressure Chemical Vapor Deposition reactor. Variations on the temperatures and process durations for the reorganization step were examined. The cross-sections showed that porous silicon requires temperatures of approximately 1150 °C to produce an excellent template for epitaxy. Atomic Force Microscopy measurements on the samples annealed at different temperatures showed the evolution of the pores from as-etched to a closed surface. These measurements confirm that the surface is not yet closed after 30 min of reorganization at 1000 °C. Different durations of the reorganization step at a fixed temperature of 1150 °C all lead to a closed surface with a comparable roughness of less than 0.5 nm. X-ray diffraction measurements show a change in the strain in the porous layer from tensile to compressive when the reorganization temperature is increased from 800 °C to 1150 °C. A longer reorganization at a fixed temperature of 1150 °C leads to a reduction in the strain without reducing the quality of the surface roughness. Defect density measurements on silicon layers deposited on those templates confirm an improvement of the template for longer reorganization times. This study shows that our porous silicon templates achieve lower surface roughness and strain values than those reported in other publications.

  11. Cortical reorganization after macroreplantation at the upper extremity: a magnetoencephalographic study.

    PubMed

    Blume, Kathrin R; Dietrich, Caroline; Huonker, Ralph; Götz, Theresa; Sens, Elisabeth; Friedel, Reinhard; Hofmann, Gunther O; Miltner, Wolfgang H R; Weiss, Thomas

    2014-03-01

    With the development of microsurgical techniques, replantation has become a feasible alternative to stump treatment after the amputation of an extremity. It is known that amputation often induces phantom limb pain and cortical reorganization within the corresponding somatosensory areas. However, whether replantation reduces the risk of comparable persisting pain phenomena as well as reorganization of the primary somatosensory cortex is still widely unknown. Therefore, the present study aimed to investigate the potential development of persistent pain and cortical reorganization of the hand and lip areas within the sensory cortex by means of magnetoencephalographic dipole analyses after replantation of a traumatically amputated upper limb proximal to the radiocarpal joint. Cortical reorganization was investigated in 13 patients with limb replantation using air puff stimulation of the phalanges of both thumbs and both corners of the lower lip. Displacement of the centre of gravity of lip and thumb representations and increased cortical activity were found in the limb and face areas of the primary somatosensory cortex contralateral to the replanted arm when compared to the ipsilateral hemisphere. Thus, cortical reorganization in the primary somatosensory cortex also occurs after replantation of the upper extremity. Patients' reports of pain in the replanted body part were negatively correlated with the amount of cortical reorganization, i.e. the more pain the patients reported, the less reorganization of the subjects' hand representation within the primary somatosensory cortex was observed. Longitudinal studies in patients after macroreplantation are necessary to assess whether the observed reorganization in the primary somatosensory cortex is a result of changes within the representation of the replanted arm and/or neighbouring representations and to assess the relationship between the development of persistent pain and reorganization.

  12. Proof that univalent chromosomes undergoing equational division at anaphase I are not lost during the second meiotic division

    SciTech Connect

    Weber, D. F.

    1980-01-01

    Monosomics in a diploid organism are ideal for characterizing the behavior of univalent chromosomes because each meiotic cell contains a univalent chromosome. We have isolated microsporocyte samples from all monosomic types except monosomics 3 and 5 and have carried out extensive analyses of the meiotic behavior in each of the different available monosomic types. It is demonstrated that univalent chromosomes can undergo equational division at the first anaphase and the resultant monads are not lost during the remainder of meiosis.

  13. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82

    SciTech Connect

    Szent-Gyorgyi, C.

    1995-12-01

    This report seeks to characterize the activation of meiotic gene in terms of cis-acting DNA elements and their associated factors in Saccharomyces cerevisiae. It was found that vegetative repression and meiotic induction depend on interactions of the promoter-proximal heat shock element with a nearby bipartite repression element. The experiments described explore how two different regulatory pathways induce transcription by stimulating a single classical activation element, a nonspecific heat shock element. 81 refs., 10 figs., 1 tab.

  14. Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line.

    PubMed

    Jaramillo-Lambert, Aimee; Ellefson, Marina; Villeneuve, Anne M; Engebrecht, JoAnne

    2007-08-01

    The replication of chromosomes in meiosis is an important first step for subsequent chromosomal interactions that promote accurate disjunction in the first of two segregation events to generate haploid gametes. We have developed an assay to monitor DNA replication in vivo in mitotic and meiotic germline nuclei of the nematode Caenorhabditis elegans. Using mutants that affect the mitosis/meiosis switch, we show that meiotic S phase is at least twice as long as mitotic S phase in C. elegans germ cell nuclei. Furthermore, our assay reveals that different regions of the genome replicate at different times, with the heterochromatic-like X chromosomes replicating at a distinct time from the autosomes. Finally, we have exploited S-phase labeling to monitor the timing of progression through meiotic prophase. Meiotic prophase for oocyte production in hermaphrodites lasts 54-60 h. Further, we find that the duration of the pachytene sub-stage is modulated by the presence of sperm. On the other hand, meiotic prophase for sperm production in males is completed by 20-24 h. Possible sources for the sex-specific differences in meiotic prophase kinetics are discussed.

  15. Supervillin Reorganizes the Actin Cytoskeleton and Increases Invadopodial Efficiency

    PubMed Central

    Crowley, Jessica L.; Smith, Tara C.; Fang, Zhiyou; Takizawa, Norio

    2009-01-01

    Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation of enhanced green fluorescent protein (EGFP)-SV induced punctae. SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases average numbers of ECM holes per cell; RNA interference-mediated knockdown of SV decreases these numbers. Although SV knockdown alone has no effect, simultaneous down-regulation of SV and the closely related protein gelsolin reduces invasion through ECM. Together, our results show that SV is a component of podosomes and invadopodia and that SV plays a role in invadopodial function, perhaps as a mediator of cortactin localization, activation state, and/or dynamics of metalloproteinases at the ventral cell surface. PMID:19109420

  16. Integrated molecular mechanism directing nucleosome reorganization by human FACT.

    PubMed

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-03-15

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT-histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3-H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid-H2A steric collision on the H2A-docking surface of the H3-H4 tetramer within the nucleosome induces H2A-H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone.

  17. Behavioral Consequences and Cortical Reorganization in Homonymous Hemianopia

    PubMed Central

    Chokron, Sylvie; Perez, Céline; Peyrin, Carole

    2016-01-01

    The most common visual defect to follow a lesion of the retrochiasmal pathways is homonymous hemianopia (HH), whereby, in each eye, patients are blind to the contralesional visual field. From a behavioral perspective, in addition to exhibiting a severe deficit in their contralesional visual field, hemianopic patients can also present implicit residual capacities, now usually referred to collectively as blindsight. It was recently demonstrated that HH patients can also suffer from a subtle deficit in their ipsilesional visual field, called sightblindness (the reverse case of blindsight). Furthermore, the nature of the visual deficit in the contralesional and ipsilesional visual fields, as well as the pattern of functional reorganization in the occipital lobe of HH patients after stroke, all appear to depend on the lesion side. In addition to their contralesional and ipsilesional visual deficits, and to their residual capacities, HH patients can also experience visual hallucinations in their blind field, the physiopathological mechanisms of which remain poorly understood. Herein we review blindsight in terms of its better-known aspects as well as its less-studied clinical signs such as sightblindness, hemispheric specialization and visual hallucinations. We also discuss the implications of recent experimental findings for rehabilitation of visual field defects in hemianopic patients. PMID:27445717

  18. Mechanism of filopodia initiation by reorganization of a dendritic network

    PubMed Central

    Svitkina, Tatyana M.; Bulanova, Elena A.; Chaga, Oleg Y.; Vignjevic, Danijela M.; Kojima, Shin-ichiro; Vasiliev, Jury M.; Borisy, Gary G.

    2003-01-01

    Afilopodium protrudes by elongation of bundled actin filaments in its core. However, the mechanism of filopodia initiation remains unknown. Using live-cell imaging with GFP-tagged proteins and correlative electron microscopy, we performed a kinetic-structural analysis of filopodial initiation in B16F1 melanoma cells. Filopodial bundles arose not by a specific nucleation event, but by reorganization of the lamellipodial dendritic network analogous to fusion of established filopodia but occurring at the level of individual filaments. Subsets of independently nucleated lamellipodial filaments elongated and gradually associated with each other at their barbed ends, leading to formation of cone-shaped structures that we term Λ-precursors. An early marker of initiation was the gradual coalescence of GFP-vasodilator-stimulated phosphoprotein (GFP-VASP) fluorescence at the leading edge into discrete foci. The GFP-VASP foci were associated with Λ-precursors, whereas Arp2/3 was not. Subsequent recruitment of fascin to the clustered barbed ends of Λ-precursors initiated filament bundling and completed formation of the nascent filopodium. We propose a convergent elongation model of filopodia initiation, stipulating that filaments within the lamellipodial dendritic network acquire privileged status by binding a set of molecules (including VASP) to their barbed ends, which protect them from capping and mediate association of barbed ends with each other. PMID:12566431

  19. Mechanism of filopodia initiation by reorganization of a dendritic network.

    PubMed

    Svitkina, Tatyana M; Bulanova, Elena A; Chaga, Oleg Y; Vignjevic, Danijela M; Kojima, Shin-ichiro; Vasiliev, Jury M; Borisy, Gary G

    2003-02-03

    Afilopodium protrudes by elongation of bundled actin filaments in its core. However, the mechanism of filopodia initiation remains unknown. Using live-cell imaging with GFP-tagged proteins and correlative electron microscopy, we performed a kinetic-structural analysis of filopodial initiation in B16F1 melanoma cells. Filopodial bundles arose not by a specific nucleation event, but by reorganization of the lamellipodial dendritic network analogous to fusion of established filopodia but occurring at the level of individual filaments. Subsets of independently nucleated lamellipodial filaments elongated and gradually associated with each other at their barbed ends, leading to formation of cone-shaped structures that we term Lambda-precursors. An early marker of initiation was the gradual coalescence of GFP-vasodilator-stimulated phosphoprotein (GFP-VASP) fluorescence at the leading edge into discrete foci. The GFP-VASP foci were associated with Lambda-precursors, whereas Arp2/3 was not. Subsequent recruitment of fascin to the clustered barbed ends of Lambda-precursors initiated filament bundling and completed formation of the nascent filopodium. We propose a convergent elongation model of filopodia initiation, stipulating that filaments within the lamellipodial dendritic network acquire privileged status by binding a set of molecules (including VASP) to their barbed ends, which protect them from capping and mediate association of barbed ends with each other.

  20. An improved algorithm of fiber tractography demonstrates postischemic cerebral reorganization

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-dong; Lu, Jie; Yao, Li; Li, Kun-cheng; Zhao, Xiao-jie

    2008-03-01

    In vivo white matter tractography by diffusion tensor imaging (DTI) accurately represents the organizational architecture of white matter in the vicinity of brain lesions and especially ischemic brain. In this study, we suggested an improved fiber tracking algorithm based on TEND, called TENDAS, for tensor deflection with adaptive stepping, which had been introduced a stepping framework for interpreting the algorithm behavior as a function of the tensor shape (linear-shaped or not) and tract history. The propagation direction at each step was given by the deflection vector. TENDAS tractography was used to examine a 17-year-old recovery patient with congenital right hemisphere artery stenosis combining with fMRI. Meaningless picture location was used as spatial working memory task in this study. We detected the shifted functional localization to the contralateral homotypic cortex and more prominent and extensive left-sided parietal and medial frontal cortical activations which were used directly as seed mask for tractography for the reconstruction of individual spatial parietal pathways. Comparing with the TEND algorithms, TENDAS shows smoother and less sharp bending characterization of white matter architecture of the parietal cortex. The results of this preliminary study were twofold. First, TENDAS may provide more adaptability and accuracy in reconstructing certain anatomical features, whereas it is very difficult to verify tractography maps of white matter connectivity in the living human brain. Second, our study indicates that combination of TENDAS and fMRI provide a unique image of functional cortical reorganization and structural modifications of postischemic spatial working memory.

  1. Integrated molecular mechanism directing nucleosome reorganization by human FACT

    PubMed Central

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-01-01

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT–histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3–H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid–H2A steric collision on the H2A-docking surface of the H3–H4 tetramer within the nucleosome induces H2A–H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247

  2. Reorganization of the North Atlantic Oscillation during early Holocene deglaciation

    NASA Astrophysics Data System (ADS)

    Wassenburg, Jasper A.; Dietrich, Stephan; Fietzke, Jan; Fohlmeister, Jens; Jochum, Klaus Peter; Scholz, Denis; Richter, Detlev K.; Sabaoui, Abdellah; Spötl, Christoph; Lohmann, Gerrit; Andreae, Meinrat O.; Immenhauser, Adrian

    2016-08-01

    The North Atlantic Oscillation is the dominant atmospheric pressure mode in the North Atlantic region and affects winter temperature and precipitation in the Mediterranean, northwest Europe, Greenland, and Asia. The index that describes the sea-level pressure difference between Iceland and the Azores is correlated with a dipole precipitation pattern over northwest Europe and northwest Africa. How the North Atlantic Oscillation will develop as the Greenland ice sheet melts is unclear. A potential past analogue is the early Holocene, during which melting ice sheets around the North Atlantic freshened surface waters, affecting the strength of the meridional overturning circulation. Here we present a Holocene rainfall record from northwest Africa based on speleothem δ18O and compare it against a speleothem-based rainfall record from Europe. The two records are positively correlated during the early Holocene, followed by a shift to an anti-correlation, similar to the modern record, during the mid-Holocene. On the basis of our simulations with an Earth system model, we suggest the shift to the anti-correlation reflects a large-scale atmospheric and oceanic reorganization in response to the demise of the Laurentide ice sheet and a strong reduction of meltwater flux to the North Atlantic, pointing to a potential sensitivity of the North Atlantic Oscillation to the melting of ice sheets.

  3. Intermediate filament reorganization dynamically influences cancer cell alignment and migration

    PubMed Central

    Holle, Andrew W.; Kalafat, Melih; Ramos, Adria Sales; Seufferlein, Thomas; Kemkemer, Ralf; Spatz, Joachim P.

    2017-01-01

    The interactions between a cancer cell and its extracellular matrix (ECM) have been the focus of an increasing amount of investigation. The role of the intermediate filament keratin in cancer has also been coming into focus of late, but more research is needed to understand how this piece fits in the puzzle of cytoskeleton-mediated invasion and metastasis. In Panc-1 invasive pancreatic cancer cells, keratin phosphorylation in conjunction with actin inhibition was found to be sufficient to reduce cell area below either treatment alone. We then analyzed intersecting keratin and actin fibers in the cytoskeleton of cyclically stretched cells and found no directional correlation. The role of keratin organization in Panc-1 cellular morphological adaptation and directed migration was then analyzed by culturing cells on cyclically stretched polydimethylsiloxane (PDMS) substrates, nanoscale grates, and rigid pillars. In general, the reorganization of the keratin cytoskeleton allows the cell to become more ‘mobile’- exhibiting faster and more directed migration and orientation in response to external stimuli. By combining keratin network perturbation with a variety of physical ECM signals, we demonstrate the interconnected nature of the architecture inside the cell and the scaffolding outside of it, and highlight the key elements facilitating cancer cell-ECM interactions. PMID:28338091

  4. Stimulus Dependent Dynamic Reorganization of the Human Face Processing Network.

    PubMed

    Rosenthal, Gideon; Sporns, Olaf; Avidan, Galia

    2016-09-12

    Using the "face inversion effect", a hallmark of face perception, we examined network mechanisms supporting face representation by tracking functional magnetic resonance imaging (fMRI) stimulus-dependent dynamic functional connectivity within and between brain networks associated with the processing of upright and inverted faces. We developed a novel approach adapting the general linear model (GLM) framework classically used for univariate fMRI analysis to capture stimulus-dependent fMRI dynamic connectivity of the face network. We show that under the face inversion manipulation, the face and non-face networks have complementary roles that are evident in their stimulus-dependent dynamic connectivity patterns as assessed by network decomposition into components or communities. Moreover, we show that connectivity patterns are associated with the behavioral face inversion effect. Thus, we establish "a network-level signature" of the face inversion effect and demonstrate how a simple physical transformation of the face stimulus induces a dramatic functional reorganization across related brain networks. Finally, we suggest that the dynamic GLM network analysis approach, developed here for the face network, provides a general framework for modeling the dynamics of blocked stimulus-dependent connectivity experimental designs and hence can be applied to a host of neuroimaging studies.

  5. Reorganization of human motor cortex after hand replantation.

    PubMed

    Röricht, S; Machetanz, J; Irlbacher, K; Niehaus, L; Biemer, E; Meyer, B U

    2001-08-01

    In 10 patients, reorganizational changes of the motor cortex contralateral to a replanted hand (MCreplant) were studied one to 14 years after complete traumatic amputation and consecutive successful replantation of the hand. The organizational state of MCreplant was assessed for the deafferentated and peripherally deefferentated hand-associated motor cortex and the adjacent motor representation of the proximal arm. For this, response maps were established for the first dorsal interosseus and biceps brachii muscle using focal transcranial magnetic stimulation (TMS) on a skull surface grid. Characteristics of the maps were center of gravity (COG), number of effective stimulation sites, amplitude sum, and amplitudes and response threshold at the optimal stimulation point. The COG is defined by the spatial distribution of response amplitudes on the map and lies over the cortex region with the most excitable corticospinal neurones supplying the recorded muscle. The COG of the biceps map in MCreplant was shifted laterally by 9.8 +/- 3.6 mm (range 5.0-15.7 mm). The extension of the biceps map in MCreplant was increased and the responses were enlarged and had lowered thresholds. For the muscles of the replanted hand, the pattern of reorganization was different: Response amplitudes were enlarged but thresholds, COG, and area of the cortical response map were normal. The different reorganizational phenomena observed for the motor cortical areas supplying the replanted hand and the biceps brachii of the same arm may be influenced by a different extent of deafferentation and by their different role in hand motor control.

  6. Reorganization of the brain and heart rhythm during autogenic meditation.

    PubMed

    Kim, Dae-Keun; Rhee, Jyoo-Hi; Kang, Seung Wan

    2014-01-13

    The underlying changes in heart coherence that are associated with reported EEG changes in response to meditation have been explored. We measured EEG and heart rate variability (HRV) before and during autogenic meditation. Fourteen subjects participated in the study. Heart coherence scores were significantly increased during meditation compared to the baseline. We found near significant decrease in high beta absolute power, increase in alpha relative power and significant increases in lower (alpha) and higher (above beta) band coherence during 3~min epochs of heart coherent meditation compared to 3~min epochs of heart non-coherence at baseline. The coherence and relative power increase in alpha band and absolute power decrease in high beta band could reflect relaxation state during the heart coherent meditation. The coherence increase in the higher (above beta) band could reflect cortico-cortical local integration and thereby affect cognitive reorganization, simultaneously with relaxation. Further research is still needed for a confirmation of heart coherence as a simple window for the meditative state.

  7. Membrane indentation triggers clathrin lattice reorganization and fluidization.

    PubMed

    Cordella, Nicholas; Lampo, Thomas J; Melosh, Nicholas; Spakowitz, Andrew J

    2015-01-21

    Clathrin-mediated endocytosis involves the coordinated assembly of clathrin cages around membrane indentations, necessitating fluid-like reorganization followed by solid-like stabilization. This apparent duality in clathrin's in vivo behavior provides some indication that the physical interactions between clathrin triskelia and the membrane effect a local response that triggers fluid-solid transformations within the clathrin lattice. We develop a computational model to study the response of clathrin protein lattices to spherical deformations of the underlying flexible membrane. These deformations are similar to the shapes assumed during intracellular trafficking of nanoparticles. Through Monte Carlo simulations of clathrin-on-membrane systems, we observe that these membrane indentations give rise to a greater than normal defect density within the overlaid clathrin lattice. In many cases, the bulk surrounding lattice remains in a crystalline phase, and the extra defects are localized to the regions of large curvature. This can be explained by the fact that the in-plane elastic stress in the clathrin lattice are reduced by coupling defects to highly curved regions. The presence of defects brought about by indentation can result in the fluidization of a lattice that would otherwise be crystalline, resulting in an indentation-driven, defect-mediated phase transition. Altering subunit elasticity or membrane properties is shown to drive a similar transition, and we present phase diagrams that map out the combined effects of these parameters on clathrin lattice properties.

  8. Increased spatial variance accompanies reorganization of two continental shelf ecosystems.

    PubMed

    Litzow, Michael A; Urban, J Daniel; Laurel, Benjamin J

    2008-09-01

    Phase transitions between alternate stable states in marine ecosystems lead to disruptive changes in ecosystem services, especially fisheries productivity. We used trawl survey data spanning phase transitions in the North Pacific (Gulf of Alaska) and the North Atlantic (Scotian Shelf) to test for increases in ecosystem variability that might provide early warning of such transitions. In both time series, elevated spatial variability in a measure of community composition (ratio of cod [Gadus sp.] abundance to prey abundance) accompanied transitions between ecosystem states, and variability was negatively correlated with distance from the ecosystem transition point. In the Gulf of Alaska, where the phase transition was apparently the result of a sudden perturbation (climate regime shift), variance increased one year before the transition in mean state occurred. On the Scotian Shelf, where ecosystem reorganization was the result of persistent overfishing, a significant increase in variance occurred three years before the transition in mean state was detected. However, we could not reject the alternate explanation that increased variance may also have simply been inherent to the final stable state in that ecosystem. Increased variance has been previously observed around transition points in models, but rarely in real ecosystems, and our results demonstrate the possible management value in tracking the variance of key parameters in exploited ecosystems.

  9. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    PubMed

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  10. The yeast genome undergoes significant topological reorganization in quiescence

    PubMed Central

    Rutledge, Mark T.; Russo, Mariano; Belton, Jon-Matthew; Dekker, Job; Broach, James R.

    2015-01-01

    We have examined the three-dimensional organization of the yeast genome during quiescence by a chromosome capture technique as a means of understanding how genome organization changes during development. For exponentially growing cells we observe high levels of inter-centromeric interaction but otherwise a predominance of intrachromosomal interactions over interchromosomal interactions, consistent with aggregation of centromeres at the spindle pole body and compartmentalization of individual chromosomes within the nucleoplasm. Three major changes occur in the organization of the quiescent cell genome. First, intrachromosomal associations increase at longer distances in quiescence as compared to growing cells. This suggests that chromosomes undergo condensation in quiescence, which we confirmed by microscopy by measurement of the intrachromosomal distances between two sites on one chromosome. This compaction in quiescence requires the condensin complex. Second, inter-centromeric interactions decrease, consistent with prior data indicating that centromeres disperse along an array of microtubules during quiescence. Third, inter-telomeric interactions significantly increase in quiescence, an observation also confirmed by direct measurement. Thus, survival during quiescence is associated with substantial topological reorganization of the genome. PMID:26202961

  11. Local awakening: regional reorganizations of brain oscillations after sleep.

    PubMed

    Tsai, Pei-Jung; Chen, Sharon Chia-Ju; Hsu, Chun-Yao; Wu, Changwei W; Wu, Yu-Chin; Hung, Ching-Sui; Yang, Albert C; Liu, Po-Yu; Biswal, Bharat; Lin, Ching-Po

    2014-11-15

    Brain functions express rhythmic fluctuations accompanied by sleep and wakefulness each day, but how sleep regulates brain rhythms remains unclear. Following the dose-dependent local sleep concept, two succeeding questions emerge: (1) is the sleep regulation a network-specific process; and (2) is the awakening state dependent on the previous sleep stages? To answer the questions, we conducted simultaneous EEG and fMRI recordings over 22 healthy male participants, along pre-sleep, nocturnal sleep and awakening. Using paired comparisons between awakening and pre-sleep conditions, three scenarios of the regional specificity were demonstrated on awakening: (1) the default-mode and hippocampal networks maintained similar connectivity and spectral power; (2) the sensorimotor network presented reduced connectivity and spectral power; and (3) the thalamus demonstrated substantially enhanced connectivity to the neo-cortex with decreased spectral power. With regard to the stage effect, the deep sleep group had significant changes in both functional connectivity and spectral power on awakening, whereas the indices of light sleep group remained relatively quiescent after sleep. The phenomena implied that slow-wave sleep could be key to rebooting the BOLD fluctuations after sleep. In conclusion, the regional specificity and the stage effect were verified in support of the local awakening concept, indicating that sleep regulation leads to the reorganization of brain networks upon awakening.

  12. Sleep after spatial learning promotes covert reorganization of brain activity.

    PubMed

    Orban, Pierre; Rauchs, Géraldine; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Maquet, Pierre; Peigneux, Philippe

    2006-05-02

    Sleep promotes the integration of recently acquired spatial memories into cerebral networks for the long term. In this study, we examined how sleep deprivation hinders this consolidation process. Using functional MRI, we mapped regional cerebral activity during place-finding navigation in a virtual town, immediately after learning and 3 days later, in subjects either allowed regular sleep (RS) or totally sleep-deprived (TSD) on the first posttraining night. At immediate and delayed retrieval, place-finding navigation elicited increased brain activity in an extended hippocampo-neocortical network in both RS and TSD subjects. Behavioral performance was equivalent between groups. However, striatal navigation-related activity increased more at delayed retrieval in RS than in TSD subjects. Furthermore, correlations between striatal response and behavioral performance, as well as functional connectivity between the striatum and the hippocampus, were modulated by posttraining sleep. These data suggest that brain activity is restructured during sleep in such a way that navigation in the virtual environment, initially related to a hippocampus-dependent spatial strategy, becomes progressively contingent in part on a response-based strategy mediated by the striatum. Both neural strategies eventually relate to equivalent performance levels, indicating that covert reorganization of brain patterns underlying navigation after sleep is not necessarily accompanied by overt changes in behavior.

  13. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  14. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome

    PubMed Central

    MacMillan, Heath A.; Knee, Jose M.; Dennis, Alice B.; Udaka, Hiroko; Marshall, Katie E.; Merritt, Thomas J. S.; Sinclair, Brent J.

    2016-01-01

    Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography – mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na+-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca2+ signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance. PMID:27357258

  15. Measuring Meiotic Crossovers via Multi-Locus Genotyping of Single Pollen Grains in Barley.

    PubMed

    Dreissig, Steven; Fuchs, Jörg; Cápal, Petr; Kettles, Nicola; Byrne, Ed; Houben, Andreas

    2015-01-01

    The detection of meiotic crossovers in crop plants currently relies on scoring DNA markers in a segregating population or cytological visualization. We investigated the feasibility of using flow-sorted haploid nuclei, Phi29 DNA polymerase-based whole-genome-amplification (WGA) and multi-locus KASP-genotyping to measure meiotic crossovers in individual barley pollen grains. To demonstrate the proof of concept, we used 24 gene-based physically mapped single nucleotide polymorphisms to genotype the WGA products of 50 single pollen nuclei. The number of crossovers per chromosome, recombination frequencies along chromosome 3H and segregation distortion were analysed and compared to a doubled haploid (DH) population of the same genotype. The number of crossovers and chromosome wide recombination frequencies show that this approach is able to produce results that resemble those obtained from other methods in a biologically meaningful way. Only the segregation distortion was found to be lower in the pollen population than in DH plants.

  16. Epsin2 promotes polarity establishment and meiotic division through activating Cdc42 in mouse oocyte

    PubMed Central

    Zhang, Jiaqi; Liu, Xiaohui; Ma, Rujun; Hou, Xiaojing; Ge, Juan; Wang, Qiang

    2016-01-01

    Epsins are a conserved family of endocytic adaptors essential for diverse biological events. However, its role in oocytes remains completely unknown. Here, we report that specific depletion of Epsin2 in mouse oocytes significantly disrupts meiotic progression. Confocal microscopy reveals that Epsin2 knockdown results in the failure of actin cap formation and polar body extrusion during meiosis, indicative of the importance of Epsin2 in polarity establishment and cytokinesis. In addition, spindle defects and chromosome misalignment are readily observed in oocytes depleted of Epsin2. Moreover, we find that Epsin2 knockdown markedly decreases the activity of Cdc42 in oocytes and importantly, that the dominant-positive mutant of Cdc42 (Cdc42Q61L) is capable of partially rescuing the deficient phenotypes of Epsin2-knockdown oocytes. Together, our data identify Epsin2 as a novel player in regulating oocyte maturation, and demonstrate that Epsin2 promotes polarity establishment and meiotic division via activating Cdc42. PMID:27463009

  17. Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells.

    PubMed

    Suzuki, Ayumu; Hirasaki, Masataka; Hishida, Tomoaki; Wu, Jun; Okamura, Daiji; Ueda, Atsushi; Nishimoto, Masazumi; Nakachi, Yutaka; Mizuno, Yosuke; Okazaki, Yasushi; Matsui, Yasuhisa; Izpisua Belmonte, Juan Carlos; Okuda, Akihiko

    2016-03-30

    Meiosis is a unique process that allows the generation of reproductive cells. It remains largely unknown how meiosis is initiated in germ cells and why non-germline cells do not undergo meiosis. We previously demonstrated that knockdown of Max expression, a gene encoding a partner of MYC family proteins, strongly activates expression of germ cell-related genes in ESCs. Here we find that complete ablation of Max expression in ESCs results in profound cytological changes reminiscent of cells undergoing meiotic cell division. Furthermore, our analyses uncovers that Max expression is transiently attenuated in germ cells undergoing meiosis in vivo and its forced reduction induces meiosis-like cytological changes in cultured germline stem cells. Mechanistically, Max depletion alterations are, in part, due to impairment of the function of an atypical PRC1 complex (PRC1.6), in which MAX is one of the components. Our data highlight MAX as a new regulator of meiotic onset.

  18. Kinesin-1 Prevents Capture of the Oocyte Meiotic Spindle by the Sperm Aster

    PubMed Central

    McNally, Karen L.P.; Fabritius, Amy S.; Ellefson, Marina L.; Flynn, Jonathan R.; Milan, Jennifer A.; McNally, Francis J.

    2012-01-01

    Centrioles are lost during oogenesis and inherited from the sperm at fertilization. In the zygote, the centrioles recruit pericentriolar proteins from the egg to form a mature centrosome that nucleates a sperm aster. The sperm aster then captures the female pronucleus to join the maternal and paternal genomes. Because fertilization occurs before completion of female meiosis, some mechanism must prevent capture of the meiotic spindle by the sperm aster. Here we show that in wild-type Caenorhabditis elegans zygotes, maternal pericentriolar proteins are not recruited to the sperm centrioles until after completion of meiosis. Depletion of kinesin-1 heavy chain or its binding partner resulted in premature centrosome maturation during meiosis and growth of a sperm aster that could capture the oocyte meiotic spindle. Kinesin prevents recruitment of pericentriolar proteins by coating the sperm DNA and centrioles and thus prevents triploidy by a non-motor mechanism. PMID:22465668

  19. Meiotic behavior of a nonaploid accession endorses x = 6 for Brachiaria humidicola (Poaceae).

    PubMed

    Boldrini, K R; Pagliarini, M S; Valle, C B

    2009-12-01

    Brachiaria humidicola (Poaceae), originally from Africa, is an economically important pasture plant in tropical South America. An accession of B. humidicola (H038) collected from the wild African savanna (Mbeya, Tanzania) showed irregular microsporogenesis. This meiotic behavior was consistent with an allopolyploid origin. Multivalent chromosome association at diakinesis gave tri- to octavalents, associated with two nucleoli in some cells. Six non-congregated univalents in metaphase I and anaphase I, along with previous lines of evidence for x = 6 in B. humidicola, confirm H038 as a nonaploid accession, 2n = 9x = 54. Asynchrony in the genome during microsporogenesis also corroborated this assumption. Its putative origin could be a cross between two related species with different rhythms in meiosis. The meiotic behavior of this accession reinforces the hypothesis of the existence of a new basic chromosome number (x = 6) for Brachiaria. The use of this accession in the breeding of this important forage grass for the tropics is discussed.

  20. Mancozeb adversely affects meiotic spindle organization and fertilization in mouse oocytes.

    PubMed

    Rossi, Gianna; Palmerini, Maria Grazia; Macchiarelli, Guido; Buccione, Roberto; Cecconi, Sandra

    2006-07-01

    In this study the effects of mancozeb, a widely used ethylenebisdithiocarbamate fungicide, on mouse oocyte meiotic maturation and fertilization were analyzed. Oocyte cumulus cell-complexes were matured in vitro with or without increasing concentrations of the fungicide (from 0.001 to 1 microg/ml) that, due to its different stability in organic solvents and in water, was resuspended either in dimethyl sulfoxide or in culture medium. Although, about 95% of oocytes reached the metaphase II stage; mancozeb-exposed oocytes showed a dose-dependent increase of alterations in spindle morphology, and this negative effect was more evident when the fungicide was resuspended in culture medium. Under the latter culture condition, oocytes matured in the presence of 0.1 and 1 microg/ml mancozeb showed a significant reduction also in the formation of male and female pronuclei. These results indicate that mancozeb can adversely affect mammalian reproductive performance, likely by perturbing microtubular organization during meiotic maturation.

  1. Impairment of pachytene spermatogenesis in Dmrt7 deficient mice, possibly causing meiotic arrest.

    PubMed

    Date, Shiori; Nozawa, Osamu; Inoue, Hiroaki; Hidema, Shizu; Nishimori, Katsuhiko

    2012-01-01

    Although Dmrt7 has been reported to be essential for male spermatogenesis, the molecular mechanism underlying pachytene spermatogenesis by Dmrt7 is not known. In the present study, by detailed analysis of Dmrt7 protein distribution in spermatocytes in the first wave of spermatogenesis, we clarified the profile of Dmrt7 expression and localization in pachytene spermatogenesis. Dmrt7-deficient spermatocytes were arrested in the pachytene stage, followed by apoptosis. We analyzed to determine whether every event in the spermatogenesis at the Dmrt7-deficient mice progressed normally, because in several gene knockout mice with spermatogenic arrest described in the previous reports impairments of these events often appeared. Mutant mice showed normal synapsis and XY body formation, while impairment of meiotic sex chromosome inactivation (MSCI), decreased expression of backup genes, and increased expression of retrotransposons indicated incomplete meiotic recombination.

  2. Roles of CDK and DDK in Genome Duplication and Maintenance: Meiotic Singularities

    PubMed Central

    Gómez-Escoda, Blanca; Wu, Pei-Yun Jenny

    2017-01-01

    Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs) and the Dbf4-dependent kinase (DDK). CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism. PMID:28335524

  3. Meiotic exchange and segregation in female mice heterozygous for paracentric inversions.

    PubMed Central

    Koehler, Kara E; Millie, Elise A; Cherry, Jonathan P; Schrump, Stefanie E; Hassold, Terry J

    2004-01-01

    Inversion heterozygosity has long been noted for its ability to suppress the transmission of recombinant chromosomes, as well as for altering the frequency and location of recombination events. In our search for meiotic situations with enrichment for nonexchange and/or single distal-exchange chromosome pairs, exchange configurations that are at higher risk for nondisjunction in humans and other organisms, we examined both exchange and segregation patterns in 2728 oocytes from mice heterozygous for paracentric inversions, as well as controls. We found dramatic alterations in exchange position in the heterozygotes, including an increased frequency of distal exchanges for two of the inversions studied. However, nondisjunction was not significantly increased in oocytes heterozygous for any inversion. When data from all inversion heterozygotes were pooled, meiotic nondisjunction was slightly but significantly higher in inversion heterozygotes (1.2%) than in controls (0%), although the frequency was still too low to justify the use of inversion heterozygotes as a model of human nondisjunction. PMID:15082541

  4. DAF-2 and ERK couple nutrient availability to meiotic progression during Caenorhabditis elegans oogenesis.

    PubMed

    Lopez, Andrew L; Chen, Jessica; Joo, Hyoe-Jin; Drake, Melanie; Shidate, Miri; Kseib, Cedric; Arur, Swathi

    2013-10-28

    Coupling the production of mature gametes and fertilized zygotes to favorable nutritional conditions improves reproductive success. In invertebrates, the proliferation of female germline stem cells is regulated by nutritional status. However, in mammals, the number of female germline stem cells is set early in development, with oocytes progressing through meiosis later in life. Mechanisms that couple later steps of oogenesis to environmental conditions remain largely undefined. We show that, in the presence of food, the DAF-2 insulin-like receptor signals through the RAS-ERK pathway to drive meiotic prophase I progression and oogenesis; in the absence of food, the resultant inactivation of insulin-like signaling leads to downregulation of the RAS-ERK pathway, and oogenesis is stalled. Thus, the insulin-like signaling pathway couples nutrient sensing to meiotic I progression and oocyte production in C. elegans, ensuring that oocytes are only produced under conditions favorable for the survival of the resulting zygotes.

  5. Meiotic studies in some species of tribe Cichorieae (Asteraceae) from Western Himalayas.

    PubMed

    Gupta, Raghbir Chand; Goyal, Henna; Singh, Vijay; Goel, Rajesh Kumar

    2014-01-01

    The present paper deals with meiotic studies in 15 species belonging to 6 genera of the tribe Cichorieae from various localities of Western Himalayas. The chromosome number has been reported for the first time in Hieracium crocatum (2n = 10) and Lactuca lessertiana (2n = 2x = 16). Further, intraspecific variability has been reported for the first time in H. umbellatum (2n = 2x = 10 and 2n = 6x = 54), Tragopogon dubius (2n = 2x = 14 and 2n = 4x = 28), and T. gracilis (2n = 2x = 14). The chromosome report of 2n = 2x = 10 in Youngia tenuifolia is made for the first time in India. Maximum numbers of the populations show laggards, chromosome stickiness, and cytomixis from early prophase to telophase-II, leading to the formation of aneuploid cells or meiocytes with double chromosome number. Such meiotic abnormalities produce unreduced pollen grains and the reduced pollen viability.

  6. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice.

    PubMed

    Baudat, F; Buard, J; Grey, C; Fledel-Alon, A; Ober, C; Przeworski, M; Coop, G; de Massy, B

    2010-02-12

    Meiotic recombination events cluster into narrow segments of the genome, defined as hotspots. Here, we demonstrate that a major player for hotspot specification is the Prdm9 gene. First, two mouse strains that differ in hotspot usage are polymorphic for the zinc finger DNA binding array of PRDM9. Second, the human consensus PRDM9 allele is predicted to recognize the 13-mer motif enriched at human hotspots; this DNA binding specificity is verified by in vitro studies. Third, allelic variants of PRDM9 zinc fingers are significantly associated with variability in genome-wide hotspot usage among humans. Our results provide a molecular basis for the distribution of meiotic recombination in mammals, in which the binding of PRDM9 to specific DNA sequences targets the initiation of recombination at specific locations in the genome.

  7. The rate of meiotic gene conversion varies by sex and age

    PubMed Central

    Halldorsson, Bjarni V.; Hardarson, Marteinn T.; Kehr, Birte; Styrkarsdottir, Unnur; Gylfason, Arnaldur; Thorleifsson, Gudmar; Zink, Florian; Jonasdottir, Adalbjorg; Jonasdottir, Aslaug; Sulem, Patrick; Masson, Gisli; Thorsteinsdottir, Unnur; Helgason, Agnar; Kong, Augustine; Gudbjartsson, Daniel F.; Stefansson, Kari

    2016-01-01

    Meiotic recombination involves a combination of gene conversion and crossover events that along with mutations produce germline genetic diversity. Here, we report the discovery of 3,176 SNP and 61 indel gene conversions. Our estimate of the non-crossover (NCO) gene conversion rate (G) is 7.0 for SNPs and 5.8 for indels per Mb per generation, and the GC bias is 67.6%. For indels we demonstrate a 65.6% preference for the shorter allele. NCO gene conversions from mothers are longer than those from fathers and G is 2.17 times greater in mothers. Notably, G increases with the age of mothers, but not fathers. A disproportionate number of NCO gene conversions in older mothers occur outside double strand break (DSB) regions and in regions with relatively low GC content. This points to age-related changes in the mechanisms of meiotic gene conversions in oocytes. PMID:27643539

  8. Meiotic Studies in Some Species of Tribe Cichorieae (Asteraceae) from Western Himalayas

    PubMed Central

    Gupta, Raghbir Chand; Goyal, Henna; Singh, Vijay; Goel, Rajesh Kumar

    2014-01-01

    The present paper deals with meiotic studies in 15 species belonging to 6 genera of the tribe Cichorieae from various localities of Western Himalayas. The chromosome number has been reported for the first time in Hieracium crocatum (2n = 10) and Lactuca lessertiana (2n = 2x = 16). Further, intraspecific variability has been reported for the first time in H. umbellatum (2n = 2x = 10 and 2n = 6x = 54), Tragopogon dubius (2n = 2x = 14 and 2n = 4x = 28), and T. gracilis (2n = 2x = 14). The chromosome report of 2n = 2x = 10 in Youngia tenuifolia is made for the first time in India. Maximum numbers of the populations show laggards, chromosome stickiness, and cytomixis from early prophase to telophase-II, leading to the formation of aneuploid cells or meiocytes with double chromosome number. Such meiotic abnormalities produce unreduced pollen grains and the reduced pollen viability. PMID:25489603

  9. Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells

    PubMed Central

    Suzuki, Ayumu; Hirasaki, Masataka; Hishida, Tomoaki; Wu, Jun; Okamura, Daiji; Ueda, Atsushi; Nishimoto, Masazumi; Nakachi, Yutaka; Mizuno, Yosuke; Okazaki, Yasushi; Matsui, Yasuhisa; Belmonte, Juan Carlos Izpisua; Okuda, Akihiko

    2016-01-01

    Meiosis is a unique process that allows the generation of reproductive cells. It remains largely unknown how meiosis is initiated in germ cells and why non-germline cells do not undergo meiosis. We previously demonstrated that knockdown of Max expression, a gene encoding a partner of MYC family proteins, strongly activates expression of germ cell-related genes in ESCs. Here we find that complete ablation of Max expression in ESCs results in profound cytological changes reminiscent of cells undergoing meiotic cell division. Furthermore, our analyses uncovers that Max expression is transiently attenuated in germ cells undergoing meiosis in vivo and its forced reduction induces meiosis-like cytological changes in cultured germline stem cells. Mechanistically, Max depletion alterations are, in part, due to impairment of the function of an atypical PRC1 complex (PRC1.6), in which MAX is one of the components. Our data highlight MAX as a new regulator of meiotic onset. PMID:27025988

  10. The meiotic stage of nondisjunction in trisomy 21: Determination by using DNA polymorphisms

    PubMed Central

    Antonarakis, Stylianos E.; Petersen, Michael B.; McInnis, Melvin G.; Adelsberger, Patricia A.; Schinzel, Albert A.; Binkert, Franz; Pangalos, Constantine; Raoul, Odile; Slaugenhaupt, Susan A.; Hafez, Mohamed; Cohen, Maimon M.; Roulson, Diane; Schwartz, Stuart; Mikkelsen, Margareta; Tranebjaerg, Lisbeth; Greenberg, Frank; Hoar, David I.; Rudd, Noreen L.; Warren, Andrew C.; Metaxotou, Caterina; Bartsocas, Christos; Chakravarti, Aravinda

    1992-01-01

    We have studied DNA polymorphisms at loci in the pericentromeric region on the long arm of chromosome 21 in 200 families with trisomy 21, in order to determine the meiotic origin of nondisjunction. Maintenance of heterozygosity for parental markers in the individual with trisomy 21 was interpreted as resulting from a meiosis I error, while reduction to homozygosity was attributed to a meiosis II error. Nondisjunction was paternal in 9 cases and was maternal in 188 cases, as reported earlier. Among the 188 maternal cases, nondisjunction occurred in meiosis I in 128 cases and in meiosis II in 38 cases; in 22 cases the DNA markers used were uninformative. Therefore meiosis I was responsible for 77.1% and meiosis II for 22.9% of maternal nondisjunction. Among the 9 paternal nondisjunction cases the error occurred in meiosis I in 2 cases (22.2%) and in meiosis II in 7 (77.8%) cases. Since there was no significant difference in the distribution of maternal ages between maternal I error versus maternal II error, it is unlikely that an error at a particular meiotic stage contributes significantly to the increasing incidence of Down syndrome with advancing maternal age. Although the DNA polymorphisms used were at loci which map close to the centromere, it is likely that rare errors in meiotic-origin assignments may have occurred because of a small number of crossovers between the markers and the centromere. Analysis of these polymorphisms may provide a more accurate understanding of the meiotic stage of nondisjunction in trisomy 21 than that previously provided by chromosomal heteromorphisms. ImagesFigure 1 PMID:1347192

  11. Mek1/Mre4 is a master regulator of meiotic recombination in budding yeast

    PubMed Central

    Hollingsworth, Nancy M.

    2016-01-01

    Sexually reproducing organisms create gametes with half the somatic cell chromosome number so that fusion of gametes at fertilization does not change the ploidy of the cell. This reduction in chromosome number occurs by the specialized cell division of meiosis in which two rounds of chromosome segregation follow a single round of chromosome duplication. Meiotic crossovers formed between the non-sister chromatids of homologous chromosomes, combined with sister chromatid cohesion, physically connect homologs, thereby allowing proper segregation at the first meiotic division. Meiotic recombination is initiated by programmed double strand breaks (DSBs) whose repair is highly regulated such that (1) there is a bias for recombination with homologs rather than sister chromatids, (2) crossovers are distributed throughout the genome by a process called interference, (3) crossover homeostasis regulates the balance between crossover and non-crossover repair to maintain a critical number of crossovers and (4) each pair of homologs receives at least one crossover. It was previously known that the imposition of interhomolog bias in budding yeast requires meiosis-specific modifications to the DNA damage response and the local activation of the meiosis-specific Mek1/Mre4 (hereafter Mek1) kinase at DSBs. However, because inactivation of Mek1 results in intersister, rather than interhomolog DSB repair, whether Mek1 had a role in interhomolog pathway choice was unknown. A recent study by Chen et al. (2015) reveals that Mek1 indirectly regulates the crossover/non-crossover decision between homologs as well as genetic interference. It does this by enabling phosphorylation of Zip1, the meiosis-specific transverse filament protein of the synaptonemal complex (SC), by the conserved cell cycle kinase, Cdc7-Dbf4 (DDK). These results suggest that Mek1 is a “master regulator” of meiotic recombination in budding yeast.

  12. Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes.

    PubMed

    Kelliher, Timothy; Walbot, Virginia

    2014-02-01

    In flowering plants, anthers are the site of de novo germinal cell specification, male meiosis, and pollen development. Atypically, anthers lack a meristem. Instead, both germinal and somatic cell types differentiate from floral stem cells packed into anther lobes. To better understand anther cell fate specification and to provide a resource for the reproductive biology community, we isolated cohorts of germinal and somatic initials from maize anthers within 36 h of fate acquisition, identifying 815 specific and 1714 significantly enriched germinal transcripts, plus 2439 specific and 2112 significantly enriched somatic transcripts. To clarify transcripts involved in cell differentiation, we contrasted these profiles to anther primordia prior to fate specification and to msca1 anthers arrested in the first step of fate specification and hence lacking normal cell types. The refined cell-specific profiles demonstrated that both germinal and somatic cell populations differentiate quickly and express unique transcription factor sets; a subset of transcript localizations was validated by in situ hybridization. Surprisingly, germinal initials starting 5 days of mitotic divisions were enriched significantly in >100 transcripts classified in meiotic processes that included recombination and synapsis, along with gene sets involved in RNA metabolism, redox homeostasis, and cytoplasmic ATP generation. Enrichment of meiotic-specific genes in germinal initials challenges current dogma that the mitotic to meiotic transition occurs later in development during pre-meiotic S phase. Expression of cytoplasmic energy generation genes suggests that male germinal cells accommodate hypoxia by diverting carbon away from mitochondrial respiration into alternative pathways that avoid producing reactive oxygen species (ROS).

  13. Exo1 and Mre11 execute meiotic DSB end resection in the protist Tetrahymena.

    PubMed

    Lukaszewicz, Agnieszka; Shodhan, Anura; Loidl, Josef

    2015-11-01

    The resection of 5'-DNA ends at a double-strand break (DSB) is an essential step in recombinational repair, as it exposes 3' single-stranded DNA (ssDNA) tails for interaction with a repair template. In mitosis, Exo1 and Sgs1 have a conserved function in the formation of long ssDNA tails, whereas this step in the processing of programmed meiotic DSBs is less well-characterized across model organisms. In budding yeast, which has been most intensely studied in this respect, Exo1 is a major meiotic nuclease. In addition, it exerts a nuclease-independent function later in meiosis in the conversion of DNA joint molecules into ZMM-dependent crossovers. In order to gain insight into the diverse meiotic roles of Exo1, we investigated the effect of Exo1 deletion in the ciliated protist Tetrahymena. We found that Exo1 together with Mre11, but without the help of Sgs1, promotes meiotic DSB end resection. Resection is completely eliminated only if both Mre11 and Exo1 are missing. This is consistent with the yeast model where Mre11 promotes resection in the 3'-5' direction and Exo1 in the opposite 5'-3' direction. However, while the endonuclease activity of Mre11 is essential to create an entry site for exonucleases and hence to start resection in budding yeast, Tetrahymena Exo1 is able to create single-stranded DNA in the absence of Mre11. Excluding a possible contribution of the Mre11 cofactor Sae2 (Com1) as an autonomous endonuclease, we conclude that there exists another unknown nuclease that initiates DSB processing in Tetrahymena. Consistent with the absence of the ZMM crossover pathway in Tetrahymena, crossover formation is independent of Exo1.

  14. G beta gamma signaling reduces intracellular cAMP to promote meiotic progression in mouse oocytes.

    PubMed

    Gill, Arvind; Hammes, Stephen R

    2007-02-01

    In nearly every vertebrate species, elevated intracellular cAMP maintains oocytes in prophase I of meiosis. Prior to ovulation, gonadotropins trigger various intra-ovarian processes, including the breakdown of gap junctions, the activation of EGF receptors, and the secretion of steroids. These events in turn decrease intracellular cAMP levels in select oocytes to allow meiotic progression, or maturation, to resume. Studies suggest that cAMP levels are kept elevated in resting oocytes by constitutive G protein signaling, and that the drop in intracellular cAMP that accompanies maturation may be due in part to attenuation of this inhibitory G protein-mediated signaling. Interestingly, one of these G protein regulators of meiotic arrest is the Galpha(s) protein, which stimulates adenylyl cyclase to raise intracellular cAMP in two important animal models of oocyte development: Xenopus leavis frogs and mice. In addition to G(alpha)(s), constitutive Gbetagamma activity similarly stimulates adenylyl cyclase to raise cAMP and prevent maturation in Xenopus oocytes; however, the role of Gbetagamma in regulating meiosis in mouse oocytes has not been examined. Here we show that Gbetagamma does not contribute to the maintenance of murine oocyte meiotic arrest. In fact, contrary to observations in frog oocytes, Gbetagamma signaling in mouse oocytes reduces cAMP and promotes oocyte maturation, suggesting that Gbetagamma might in fact play a positive role in promoting oocyte maturation. These observations emphasize that, while many general concepts and components of meiotic regulation are conserved from frogs to mice, specific differences exist that may lead to important insights regarding ovarian development in vertebrates.

  15. New observations on the meiotic process in the marine dinoflagellate Noctiluca scintillans (Noctilucales, dinophyceae)

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng-Xu; Yan, Xiao-Jun

    2002-03-01

    The meiotic process in Noctiluca scintillans were observed under light microscope. Some abnormal cell divisions, incompletely separated “zoospores” and the changes of the zoospores are described in this paper. Together with the findings of field samplings and the previous results by other researcher, the process of meiosis in N. scintillans was supposed to be a pathway to reduce the extra high density of NH3-N within the cell in order to ensure normal population growth.

  16. Ex-vivo assessment of chronic toxicity of low levels of cadmium on testicular meiotic cells.

    PubMed

    Geoffroy-Siraudin, Cendrine; Perrard, Marie-Hélène; Ghalamoun-Slaimi, Rahma; Ali, Sazan; Chaspoul, Florence; Lanteaume, André; Achard, Vincent; Gallice, Philippe; Durand, Philippe; Guichaoua, Marie-Roberte

    2012-08-01

    Using a validated model of culture of rat seminiferous tubules, we assessed the effects of 0.1, 1 and 10 μg/L cadmium (Cd) on spermatogenic cells over a 2-week culture period. With concentrations of 1 and 10 μg/L in the culture medium, the Cd concentration in the cells, determined by ICP-MS, increased with concentration in the medium and the day of culture. Flow cytometric analysis enabled us to evaluate changes in the number of Sertoli cells and germ cells during the culture period. The number of Sertoli cells did not appear to be affected by Cd. By contrast, spermatogonia and meiotic cells were decreased by 1 and 10 μg/L Cd in a time and dose dependent manner. Stage distribution of the meiotic prophase I and qualitative study of the synaptonemal complexes (SC) at the pachytene stage were performed by immunocytochemistry with an anti SCP3 antibody. Cd caused a time-and-dose-dependent increase of total abnormalities, of fragmented SC and of asynapsis from concentration of 0.1 μg/L. Additionally, we observed a new SC abnormality, the "motheaten" SC. This abnormality is frequently associated with asynapsis and SC widening which increased with both the Cd concentration and the duration of exposure. This abnormality suggests that Cd disrupts the structure and function of proteins involved in pairing and/or meiotic recombination. These results show that Cd induces dose-and-time-dependent alterations of the meiotic process of spermatogenesis ex-vivo, and that the lowest metal concentration, which induces an adverse effect, may vary with the cell parameter studied.

  17. Segregation of yeast polymorphic STA genes in meiotic recombinants and analysis of glucoamylase production.

    PubMed

    Balogh, I; Maráz, A

    1996-12-01

    Hybrid yeast strains were constructed using haploid Saccharomyces cerevisiae and Saccharomyces cerevisiae var. diastaticus strains to get haploid meiotic recombinants having more than one copy of STA1, STA2, and STA3 genes. STA genes were localized on the chromosomes by pulsed field gel electrophoresis. Working gene dosage effects were found among STA genes in liquid starch medium, indicating low levels of glucose repression. Growth of strains, however, was not influenced by their STA copy number.

  18. Persistence of histone H2AX phosphorylation after meiotic chromosome synapsis and abnormal centromere cohesion in Poly (ADP-ribose) polymerase (Parp-1) null oocytes

    PubMed Central

    Yang, Feikun; Baumann, Claudia; De La Fuente, Rabindranath

    2009-01-01

    In spite of the impact of aneuploidy on human health little is known concerning the molecular mechanisms involved in the formation of structural or numerical chromosome abnormalities during meiosis. Here, we provide novel evidence indicating that lack of PARP-1 function during oogenesis predisposes the female gamete to genome instability. During prophase I of meiosis, a high proportion of Parp-1 (−/−) mouse oocytes exhibit a spectrum of meiotic defects including incomplete homologous chromosome synapsis or persistent histone H2AX phosphorylation in fully synapsed chromosomes at the late pachytene stage. Moreover, the X chromosome bivalent is also prone to exhibit persistent double strand DNA breaks (DSBs). In striking contrast, such defects were not detected in mutant pachytene spermatocytes. In fully-grown wild type oocytes at the germinal vesicle stage, PARP-1 protein associates with nuclear speckles and upon meiotic resumption, undergoes a striking re-localization towards spindle poles as well as pericentric heterochromatin domains at the metaphase II stage. Notably, a high proportion of in vivo matured Parp-1 (−/−) oocytes show lack of recruitment of the kinetochore-associated protein BUB3 to centromeric domains and fail to maintain metaphase II arrest. Defects in chromatin modifications in the form of persistent histone H2AX phosphorylation during prophase I of meiosis and deficient sister chromatid cohesion during metaphase II predispose mutant oocytes to premature anaphase II onset upon removal from the oviductal environment. Our results indicate that PARP-1 plays a critical role in the maintenance of chromosome stability at key stages of meiosis in the female germ line. Moreover, in the metaphase II stage oocyte PARP-1 is required for the regulation of centromere structure and function through a mechanism that involves the recruitment of BUB3 protein to centromeric domains. PMID:19463809

  19. Virtual breakdown of the nuclear envelope in fission yeast meiosis.

    PubMed

    Asakawa, Haruhiko; Kojidani, Tomoko; Mori, Chie; Osakada, Hiroko; Sato, Mamiko; Ding, Da-Qiao; Hiraoka, Yasushi; Haraguchi, Tokuko

    2010-11-09

    Asymmetric localization of Ran regulators (RanGAP1 and RanGEF/RCC1) produces a gradient of RanGTP across the nuclear envelope. In higher eukaryotes, the nuclear envelope breaks down as the cell enters mitosis (designated "open" mitosis). This nuclear envelope breakdown (NEBD) leads to collapse of the RanGTP gradient and the diffusion of nuclear and cytoplasmic macromolecules in the cell, resulting in irreversible progression of the cell cycle. On the other hand, in many fungi, chromosome segregation takes place without NEBD (designated "closed" mitosis). Here we report that in the fission yeast Schizosaccharomyces pombe, despite the nuclear envelope and the nuclear pore complex remaining intact throughout both the meiotic and mitotic cell cycles, nuclear proteins diffuse into the cytoplasm transiently for a few minutes at the onset of anaphase of meiosis II. We also found that nuclear protein diffusion into the cytoplasm occurred coincidently with nuclear localization of Rna1, an S. pombe RanGAP1 homolog that is usually localized in the cytoplasm. These results suggest that nuclear localization of RanGAP1 and depression of RanGTP activity in the nucleus may be mechanistically tied to meiosis-specific diffusion of nuclear proteins into the cytoplasm. This nucleocytoplasmic shuffling of RanGAP1 and nuclear proteins represents virtual breakdown of the nuclear envelope.

  20. 29 CFR 24.114 - District court jurisdiction of retaliation complaints under the Energy Reorganization Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL STATUTES AND SECTION 211 OF THE ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Miscellaneous... faith of the complainant, the complainant may bring an action at law or equity for de novo review in...

  1. 29 CFR 24.114 - District court jurisdiction of retaliation complaints under the Energy Reorganization Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL STATUTES AND SECTION 211 OF THE ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Miscellaneous... faith of the complainant, the complainant may bring an action at law or equity for de novo review in...

  2. 29 CFR 24.114 - District court jurisdiction of retaliation complaints under the Energy Reorganization Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL STATUTES AND SECTION 211 OF THE ENERGY REORGANIZATION ACT OF 1974, AS AMENDED Miscellaneous... faith of the complainant, the complainant may bring an action at law or equity for de novo review in...

  3. Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair

    PubMed Central

    Subramanian, Vijayalakshmi V.; MacQueen, Amy J.; Vader, Gerben; Shinohara, Miki; Sanchez, Aurore; Borde, Valérie; Shinohara, Akira; Hochwagen, Andreas

    2016-01-01

    Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression. PMID:26870961

  4. Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive.

    PubMed Central

    LeMaire-Adkins, R; Hunt, P A

    2000-01-01

    A fundamental principle of Mendelian inheritance is random segregation of alleles to progeny; however, examples of distorted transmission either of specific alleles or of whole chromosomes have been described in a variety of species. In humans and mice, a distortion in chromosome transmission is often associated with a chromosome abnormality. One such example is the fertile XO female mouse. A transmission distortion effect that results in an excess of XX over XO daughters among the progeny of XO females has been recognized for nearly four decades. Utilizing contemporary methodology that combines immunofluorescence, FISH, and three-dimensional confocal microscopy, we have readdressed the meiotic segregation behavior of the single X chromosome in oocytes from XO females produced on two different inbred backgrounds. Our studies demonstrate that segregation of the univalent X chromosome at the first meiotic division is nonrandom, with preferential retention of the X chromosome in the oocyte in approximately 60% of cells. We propose that this deviation from Mendelian expectations is facilitated by a spindle-mediated mechanism. This mechanism, which appears to be a general feature of the female meiotic process, has implications for the frequency of nondisjunction in our species. PMID:11014823

  5. An analysis of meiotic impairment and of sex chromosome associations throughout meiosis in XYY mice.

    PubMed

    Mahadevaiah, S K; Evans, E P; Burgoyne, P S

    2000-01-01

    The existing XYY meiotic data for mice present a very heterogeneous picture with respect to the relative frequencies of different sex chromosome associations, both at pachytene and diakinesis/metaphase I. Furthermore, where both pachytene and diakinesis/MI data are available for the same males, the frequencies of the different configurations at the two stages are very different. In the present paper we utilise "XYY" and "XY/XYY" mosaic mice with cytologically distinguishable Y chromosomes to investigate the factors responsible for this heterogeneity between different males and between the two meiotic stages. It is concluded (1) that the initial pattern of synapsis is driven by the relatedness of the three pseudoautosomal regions (PARs); (2) that the order and extent of PAR synapsis within radial trivalents are also affected by PAR relatedness and that this leads to chiasmata being preferentially formed between closely related PARs; (3) that trivalents with a single chiasma resolve into a bivalent + univalent by the diakinesis stage; (4) that although many spermatocytes with asynapsed sex chromosomes are eliminated between pachytene and diakinesis, those that survive this phase of elimination progress to the first meiotic metaphase (MI) and accumulate in large numbers, leading to an over-representation of those with univalents as compared to radial trivalents; and (5) that the arrested MI cells are eventually eliminated, so that very few "XYY" cells contribute products to MII.

  6. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination.

    PubMed

    Reddy, Kirthi C; Villeneuve, Anne M

    2004-08-20

    Initiation of meiotic recombination by double-strand breaks (DSBs) must occur in a controlled fashion to avoid jeopardizing genome integrity. Here, we identify chromatin-associated protein HIM-17 as a link between chromatin state and DSB formation during C. elegans meiosis. Dependencies of several meiotic prophase events on HIM-17 parallel those seen for DSB-generating enzyme SPO-11: HIM-17 is essential for DSB formation but dispensable for homolog synapsis. Crossovers and chiasmata are eliminated in him-17 null mutants but are restored by artificially induced DSBs, indicating that all components required to convert DSBs into chiasmata are present. Unlike SPO-11, HIM-17 is also required for proper accumulation of histone H3 methylation at lysine 9 on meiotic prophase chromosomes. HIM-17 shares structural features with three proteins that interact genetically with LIN-35/Rb, a known component of chromatin-modifying complexes. Furthermore, DSB levels and incidence of chiasmata can be modulated by loss of LIN-35/Rb. These and other data suggest that chromatin state governs the timing of DSB competence.

  7. The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana

    PubMed Central

    Wijnker, Erik; Velikkakam James, Geo; Ding, Jia; Becker, Frank; Klasen, Jonas R; Rawat, Vimal; Rowan, Beth A; de Jong, Daniël F; de Snoo, C Bastiaan; Zapata, Luis; Huettel, Bruno; de Jong, Hans; Ossowski, Stephan; Weigel, Detlef; Koornneef, Maarten; Keurentjes, Joost JB; Schneeberger, Korbinian

    2013-01-01

    Knowledge of the exact distribution of meiotic crossovers (COs) and gene conversions (GCs) is essential for understanding many aspects of population genetics and evolution, from haplotype structure and long-distance genetic linkage to the generation of new allelic variants of genes. To this end, we resequenced the four products of 13 meiotic tetrads along with 10 doubled haploids derived from Arabidopsis thaliana hybrids. GC detection through short reads has previously been confounded by genomic rearrangements. Rigid filtering for misaligned reads allowed GC identification at high accuracy and revealed an ∼80-kb transposition, which undergoes copy-number changes mediated by meiotic recombination. Non-crossover associated GCs were extremely rare most likely due to their short average length of ∼25–50 bp, which is significantly shorter than the length of CO-associated GCs. Overall, recombination preferentially targeted non-methylated nucleosome-free regions at gene promoters, which showed significant enrichment of two sequence motifs. DOI: http://dx.doi.org/10.7554/eLife.01426.001 PMID:24347547

  8. Kif2a regulates spindle organization and cell cycle progression in meiotic oocytes

    PubMed Central

    Yi, Zi-Yun; Ma, Xue-Shan; Liang, Qiu-Xia; Zhang, Teng; Xu, Zhao-Yang; Meng, Tie-Gang; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan; Quan, Song

    2016-01-01

    Kif2a is a member of the Kinesin-13 microtubule depolymerases. Here, we report the expression, subcellular localization and functions of Kif2a during mouse oocyte meiotic maturation. Immunoblotting analysis showed that Kif2a was gradually increased form GV to the M I stages, and then decreased slightly at the M II stage. Confocal microscopy identified that Kif2a localized to the meiotic spindle, especially concentrated at the spindle poles and inner centromeres in metaphase and translocated to the midbody at telophase. Kif2a depletion by siRNA microinjection generated severely defective spindles and misaligned chromosomes, reduced microtubule depolymerization, which led to significant pro-M I/M Iarrest and failure of first polar body (PB1) extrusion. Kif2a-depleted oocytes were also defective in spindle pole localization of γ-tubulin and showed spindle assembly checkpoint (SAC) protein Bub3 at the kinetochores even after 10 hr extended culture. These results demonstrate that Kif2a may act as a microtubule depolymerase, regulating microtubule dynamics, spindle assembly and chromosome congression, and thus cell cycle progression during mouse oocyte meiotic maturation. PMID:27991495

  9. akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic prophase I.

    PubMed

    Clemons, Amy M; Brockway, Heather M; Yin, Yizhi; Kasinathan, Bhavatharini; Butterfield, Yaron S; Jones, Steven J M; Colaiácovo, Monica P; Smolikove, Sarit

    2013-04-01

    During meiosis, evolutionarily conserved mechanisms regulate chromosome remodeling, leading to the formation of a tight bivalent structure. This bivalent, a linked pair of homologous chromosomes, is essential for proper chromosome segregation in meiosis. The formation of a tight bivalent involves chromosome condensation and restructuring around the crossover. The synaptonemal complex (SC), which mediates homologous chromosome association before crossover formation, disassembles concurrently with increased condensation during bivalent remodeling. Both chromosome condensation and SC disassembly are likely critical steps in acquiring functional bivalent structure. The mechanisms controlling SC disassembly, however, remain unclear. Here we identify akir-1 as a gene involved in key events of meiotic prophase I in Caenorhabditis elegans. AKIR-1 is a protein conserved among metazoans that lacks any previously known function in meiosis. We show that akir-1 mutants exhibit severe meiotic defects in late prophase I, including improper disassembly of the SC and aberrant chromosome condensation, independently of the condensin complexes. These late-prophase defects then lead to aberrant reconfiguring of the bivalent. The meiotic divisions are delayed in akir-1 mutants and are accompanied by lagging chromosomes. Our analysis therefore provides evidence for an important role of proper SC disassembly in configuring a functional bivalent structure.

  10. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination

    PubMed Central

    Kim, Keun P.; Weiner, Beth M.; Zhang, Liangran; Jordan, Amy; Dekker, Job; Kleckner, Nancy

    2010-01-01

    SUMMARY Meiotic recombination occurs between one chromatid of each maternal and paternal homolog (homolog bias) versus between sister chromatids (sister bias). Physical DNA analysis reveals that meiotic cohesin/axis component Rec8 promotes sister bias, likely via its cohesion activity. Two meiosis-specific axis components, Red1/Mek1kinase, counteract this effect. With this precondition satisfied, other molecules directly specify homolog bias per se. Rec8 also acts positively to maintain homolog bias during crossover recombination. These observations point to sequential release of double-strand break ends from association with their sister. Red1 and Rec8 are found to play distinct roles for sister cohesion, DSB formation and recombination progression kinetics. Also, the two components are enriched in spatially distinct domains of axial structure that develop prior to DSB formation. We propose that Red1 and Rec8 domains provide functionally complementary environments whereby inputs evolved from DSB repair and late-stage chromosome morphogenesis are integrated to give the complete meiotic chromosomal program. PMID:21145459

  11. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites.

    PubMed

    Borde, Valérie; Robine, Nicolas; Lin, Waka; Bonfils, Sandrine; Géli, Vincent; Nicolas, Alain

    2009-01-21

    The function of histone modifications in initiating and regulating the chromosomal events of the meiotic prophase remains poorly understood. In Saccharomyces cerevisiae, we examined the genome-wide localization of histone H3 lysine 4 trimethylation (H3K4me3) along meiosis and its relationship to gene expression and position of the programmed double-strand breaks (DSBs) that initiate interhomologue recombination, essential to yield viable haploid gametes. We find that the level of H3K4me3 is constitutively higher close to DSB sites, independently of local gene expression levels. Without Set1, the H3K4 methylase, 84% of the DSB sites exhibit a severely reduced DSB frequency, the reduction being quantitatively correlated with the local level of H3K4me3 in wild-type cells. Further, we show that this differential histone mark is already established in vegetative cells, being higher in DSB-prone regions than in regions with no or little DSB. Taken together, our results demonstrate that H3K4me3 is a prominent and preexisting mark of active meiotic recombination initiation sites. Novel perspectives to dissect the various layers of the controls of meiotic DSB formation are discussed.

  12. Stag3 regulates microtubule stability to maintain euploidy during mouse oocyte meiotic maturation

    PubMed Central

    Zhang, Mianqun; Dai, Xiaoxin; Sun, Yalu; Lu, Yajuan; Zhou, Changyin; Miao, Yilong; Wang, Ying; Xiong, Bo

    2017-01-01

    Stag3, a meiosis-specific subunit of cohesin complex, has been demonstrated to function in both male and female reproductive systems in mammals. However, its roles during oocyte meiotic maturation have not been fully defined. In the present study, we report that Stag3 uniquely accumulates on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Depletion of Stag3 by gene-targeting morpholino disrupts normal spindle assembly and chromosome alignment in oocytes. We also find that depletion of Stag3 reduces the acetylated level of tubulin and microtubule resistance to microtubule depolymerizing drug, suggesting that Stag3 is required for microtubule stability. Consistent with these observations, kinetochore-microtubule attachment, an important mechanism controlling chromosome alignment, is severely impaired in Stag3-depleted oocytes, resultantly causing the significantly increased incidence of aneuploid eggs. Collectively, our data reveal that Stag3 is a novel regulator of microtubule dynamics to ensure euploidy during moue oocyte meiotic maturation. PMID:27906670

  13. Evolutionary Rate Covariation in Meiotic Proteins Results from Fluctuating Evolutionary Pressure in Yeasts and Mammals

    PubMed Central

    Clark, Nathan L.; Alani, Eric; Aquadro, Charles F.

    2013-01-01

    Evolutionary rates of functionally related proteins tend to change in parallel over evolutionary time. Such evolutionary rate covariation (ERC) is a sequence-based signature of coevolution and a potentially useful signature to infer functional relationships between proteins. One major hypothesis to explain ERC is that fluctuations in evolutionary pressure acting on entire pathways cause parallel rate changes for functionally related proteins. To explore this hypothesis we analyzed ERC within DNA mismatch repair (MMR) and meiosis proteins over phylogenies of 18 yeast species and 22 mammalian species. We identified a strong signature of ERC between eight yeast proteins involved in meiotic crossing over, which seems to have resulted from relaxation of constraint specifically in Candida glabrata. These and other meiotic proteins in C. glabrata showed marked rate acceleration, likely due to its apparently clonal reproductive strategy and the resulting infrequent use of meiotic proteins. This correlation between change of reproductive mode and change in constraint supports an evolutionary pressure origin for ERC. Moreover, we present evidence for similar relaxations of constraint in additional pathogenic yeast species. Mammalian MMR and meiosis proteins also showed statistically significant ERC; however, there was not strong ERC between crossover proteins, as observed in yeasts. Rather, mammals exhibited ERC in different pathways, such as piRNA-mediated defense against transposable elements. Overall, if fluctuation in evolutionary pressure is responsible for ERC, it could reveal functional relationships within entire protein pathways, regardless of whether they physically interact or not, so long as there was variation in constraint on that pathway. PMID:23183665

  14. Meiotic recombination at the Lmp2 hotspot tolerates minor sequence divergence between homologous chromosomes

    SciTech Connect

    Yoshino, Masayasu; Sagai, Tomoko; Shiroishi, Toshihiko

    1996-06-01

    Recombination is widely considered to linearly depend on the length of the homologous sequences. An 11% mismatch decreases the rate of phage-plasmid recombination 240-fold. Two single nucleotide mismatches, which reduce the longest uninterrupted stretch of similarity from 232 base pairs (bp) to 134 bp, reduce gene conversion in mouse L cells 20-fold. The efficiency of gene targeting through homologous recombination in mouse embryonic stem cells can be increased by using an isogenic, rather than a non-isogenic, DNA construct. In this study we asked whether a high degree of sequence identity between homologous mouse chromosomes enhances meiotic recombination at a hotspot. Sites of meiotic recombination in the mouse major histocompatibility complex (MHC) class II region are not randomly distributed but are almost all clustered within short segments known as recombinational hotspots. The wm7 MHC haplotype, derived from Japanese wild mice Mus musculus molossinus, enhances meiotic recombination at a hotspot near the Lmp2 gene. Heterozygotes between the wm7 haplotype and the b or k haplotypes have yielded a high frequency of recombination (2.1%) in 1.3 kilobase kb segment of this hotspot. 20 refs., 2 figs.

  15. Population dynamics of a meiotic/mitotic expansion model for the fragile X syndrome

    SciTech Connect

    Ashley, A.E.; Sherman, S.L.

    1995-12-01

    A model to explain the mutational process and population dynamics of the fragile X syndrome is presented. The mutational mechanism was assumed to be a multi-pathway, multistep process. Expansion of CGG repeats was based on an underlying biological process and was assumed to occur at two time points: meiosis and early embryonic development (mitosis). Meiotic expansion was assumed to occur equally in oogenesis and spermatogenesis, while mitotic expansion was restricted to somatic, or constitutional, alleles of maternal origin. Testable hypotheses were predicted by this meiotic/mitotic model. First, parental origin of mutation is predicted to be associated with the risk of a woman to have a full-mutation child. Second, {open_quotes}contractions{close_quotes} seen in premutation male transmissions are predicted not to be true contractions in repeat size, but a consequence of the lack of mitotic expansion in paternally derived alleles. Third, a portion of full-mutation males should have full-mutation alleles in their sperm, due to the lack of complete selection against the full-mutation female. Fourth, a specific premutation-allele frequency distribution is predicted and differs from that based on models assuming only meiotic expansion. Last, it is predicted that {approximately}65 generations are required to achieve equilibrium, but this depends greatly on the expansion probabilities. 42 refs., 4 figs., 4 tabs.

  16. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast

    PubMed Central

    Zanders, Sarah E; Eickbush, Michael T; Yu, Jonathan S; Kang, Ji-Won; Fowler, Kyle R; Smith, Gerald R; Malik, Harmit Singh

    2014-01-01

    Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation. DOI: http://dx.doi.org/10.7554/eLife.02630.001 PMID:24963140

  17. Self-Organization of Meiotic Recombination Initiation: General Principles and Molecular Pathways

    PubMed Central

    Keeney, Scott; Lange, Julian; Mohibullah, Neeman

    2015-01-01

    Recombination in meiosis is a fascinating case study for the coordination of chromosomal duplication, repair, and segregation with each other and with progression through a cell-division cycle. Meiotic recombination initiates with formation of developmentally programmed DNA double-strand breaks (DSBs) at many places across the genome. DSBs are important for successful meiosis but are also dangerous lesions that can mutate or kill, so cells ensure that DSBs are made only at the right times, places, and amounts. This review examines the complex web of pathways that accomplish this control. We explore how chromosome breakage is integrated with meiotic progression and how feedback mechanisms spatially pattern DSB formation and make it homeostatic, robust, and error-correcting. Common regulatory themes recur in different organisms or in different contexts in the same organism. We review this evolutionary and mechanistic conservation but also highlight where control modules have diverged. The framework that emerges helps explain how meiotic chromosomes behave as a self-organizing system. PMID:25421598

  18. Transcription reactivation during the first meiotic prophase in bugs is not dependent on synapsis.

    PubMed

    Viera, Alberto; Parra, María Teresa; Rufas, Julio S; Page, Jesús

    2016-02-22

    During meiosis, transcription is precisely regulated in relation to the process of chromosome synapsis. In mammals, transcription is very low until the completion of synapsis in early pachytene, and then reactivates during mid pachytene, up to the end of diplotene. Moreover, chromosomes or chromosomal regions that do not achieve synapsis undergo a specific process of inactivation called meiotic silencing of unpaired chromatin (MSUC). Sex chromosomes, which are mostly unsynapsed, present a special case of inactivation named meiotic sex chromosome inactivation (MSCI). Although processes that are similar to MSUC/MSCI have been described in other species like Sordaria and Caenorhabditis elegans, very few studies have been developed in insects. We present a study on the relationships between synapsis and transcription in two hemipteran species (Graphosoma italicum and Carpocoris fuscispinus) that possess holocentric chromosomes but develop different synaptic patterns. We have found that transcription, revealed by the presence of RNA polymerase II, is very low at the beginning of meiosis, but robustly increases during zygotene, long before the completion of synapsis, excepting in the sex chromosomes. In fact, we show that histone H3 methylation at lysine 9 (H3K9me3) may be present in the sex chromosomes at leptotene, thus acting as a likely epigenetic mark for this inactive state. Our results suggest that the meiotic transcription in these two species is differently regulated from that of mammals and, therefore, offer new opportunities to understand the relationship between synapsis and transcription and the mechanisms that govern MSUC/MSCI processes.

  19. Genetically enhanced asynapsis of autosomal chromatin promotes transcriptional dysregulation and meiotic failure.

    PubMed

    Homolka, David; Jansa, Petr; Forejt, Jiri

    2012-02-01

    During meiosis, pairing of homologous chromosomes and their synapsis are essential prerequisites for normal male gametogenesis. Even limited autosomal asynapsis often leads to spermatogenic impairment, the mechanism of which is not fully understood. The present study was aimed at deliberately increasing the size of partial autosomal asynapsis and analysis of its impact on male meiosis. For this purpose, we studied the effect of t(12) haplotype encompassing four inversions on chromosome 17 on mouse autosomal translocation T(16;17)43H (abbreviated T43H). The T43H/T43H homozygotes were fully fertile in both sexes, while +/T43H heterozygous males, but not females, were sterile with meiotic arrest at late pachynema. Inclusion of the t(12) haplotype in trans to the T43H translocation resulted in enhanced asynapsis of the translocated autosome, ectopic phosphorylation of histone H2AX, persistence of RAD51 foci, and increased gene silencing around the translocation break. Increase was also on colocalization of unsynapsed chromatin with sex body. Remarkably, we found that transcriptional silencing of the unsynapsed autosomal chromatin precedes silencing of sex chromosomes. Based on the present knowledge, we conclude that interference of meiotic silencing of unsynapsed autosomes with meiotic sex chromosome inactivation is the most likely cause of asynapsis-related male sterility.

  20. The Mouse INO80 Chromatin-Remodeling Complex Is an Essential Meiotic Factor for Spermatogenesis1

    PubMed Central

    Serber, Daniel W.; Runge, John S.; Menon, Debashish U.; Magnuson, Terry

    2015-01-01

    The ability to faithfully transmit genetic information across generations via the germ cells is a critical aspect of mammalian reproduction. The process of germ cell development requires a number of large-scale modulations of chromatin within the nucleus. One such occasion arises during meiotic recombination, when hundreds of DNA double-strand breaks are induced and subsequently repaired, enabling the transfer of genetic information between homologous chromosomes. The inability to properly repair DNA damage is known to lead to an arrest in the developing germ cells and sterility within the animal. Chromatin-remodeling activity, and in particular the BRG1 subunit of the SWI/SNF complex, has been shown to be required for successful completion of meiosis. In contrast, remodeling complexes of the ISWI and CHD families are required for postmeiotic processes. Little is known regarding the contribution of the INO80 family of chromatin-remodeling complexes, which is a particularly interesting candidate due to its well described functions during DNA double-strand break repair. Here we show that INO80 is expressed in developing spermatocytes during the early stages of meiotic prophase I. Based on this information, we used a conditional allele to delete the INO80 core ATPase subunit, thereby eliminating INO80 chromatin-remodeling activity in this lineage. The loss of INO80 resulted in an arrest during meiosis associated with a failure to repair DNA damage during meiotic recombination. PMID:26607718