Science.gov

Sample records for meiotic recombination hotspots

  1. Interplay between modifications of chromatin and meiotic recombination hotspots.

    PubMed

    Brachet, Elsa; Sommermeyer, Vérane; Borde, Valérie

    2012-02-01

    Meiotic recombination lies at the heart of sexual reproduction. It is essential for producing viable gametes with a normal haploid genomic content and its dysfunctions can be at the source of aneuploidies, such as the Down syndrome, or many genetic disorders. Meiotic recombination also generates genetic diversity that is transmitted to progeny by shuffling maternal and paternal alleles along chromosomes. Recombination takes place at non-random chromosomal sites called 'hotspots'. Recent evidence has shown that their location is influenced by properties of chromatin. In addition, many studies in somatic cells have highlighted the need for changes in chromatin dynamics to allow the process of recombination. In this review, we discuss how changes in the chromatin landscape may influence the recombination map, and reciprocally, how recombination events may lead to epigenetic modifications at sites of recombination, which could be transmitted to progeny.

  2. The spatial regulation of meiotic recombination hotspots: are all DSB hotspots crossover hotspots?

    PubMed

    Serrentino, Maria-Elisabetta; Borde, Valérie

    2012-07-15

    A key step for the success of meiosis is programmed homologous recombination, during which crossovers, or exchange of chromosome arms, take place. Crossovers increase genetic diversity but their main function is to ensure accurate chromosome segregation. Defects in crossover number and position produce aneuploidies that represent the main cause of miscarriages and chromosomal abnormalities such as Down's syndrome. Recombination is initiated by the formation of programmed double strand breaks (DSBs), which occur preferentially at places called DSB hotspots. Among all DSBs generated, only a small fraction is repaired by crossover, the other being repaired by other homologous recombination pathways. Crossover maps have been generated in a number of organisms, defining crossover hotspots. With the availability of genome-wide maps of DSBs as well as the ability to measure genetically the repair outcome at several hotspots, it is becoming more and more clear that not all DSB hotspots behave the same for crossover formation, suggesting that chromosomal features distinguish different types of hotspots.

  3. Competition between Adjacent Meiotic Recombination Hotspots in the Yeast Saccharomyces Cerevisiae

    PubMed Central

    Fan, Q. Q.; Xu, F.; White, M. A.; Petes, T. D.

    1997-01-01

    In a wild-type strain of Saccharomyces cerevisiae, a hotspot for meiotic recombination is located upstream of the HIS4 gene. An insertion of a 49-bp telomeric sequence into the coding region of HIS4 strongly stimulates meiotic recombination and the local formation of meiosis-specific double-strand DNA breaks (DSBs). When strains are constructed in which both hotspots are heterozygous, hotspot activity is substantially less when the hotspots are on the same chromosome than when they are on opposite chromosomes. PMID:9055076

  4. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice.

    PubMed

    Baudat, F; Buard, J; Grey, C; Fledel-Alon, A; Ober, C; Przeworski, M; Coop, G; de Massy, B

    2010-02-12

    Meiotic recombination events cluster into narrow segments of the genome, defined as hotspots. Here, we demonstrate that a major player for hotspot specification is the Prdm9 gene. First, two mouse strains that differ in hotspot usage are polymorphic for the zinc finger DNA binding array of PRDM9. Second, the human consensus PRDM9 allele is predicted to recognize the 13-mer motif enriched at human hotspots; this DNA binding specificity is verified by in vitro studies. Third, allelic variants of PRDM9 zinc fingers are significantly associated with variability in genome-wide hotspot usage among humans. Our results provide a molecular basis for the distribution of meiotic recombination in mammals, in which the binding of PRDM9 to specific DNA sequences targets the initiation of recombination at specific locations in the genome.

  5. Factors influencing recombination frequency and distribution in a human meiotic crossover hotspot.

    PubMed

    Jeffreys, Alec J; Neumann, Rita

    2005-08-01

    Little is known about the factors that influence the frequency and distribution of meiotic recombination events within human crossover hotspots. We now describe the detailed analysis of sperm recombination in the NID1 hotspot. Like the neighbouring MS32 hotspot, the NID1 hotspot is associated with a minisatellite, suggesting that hotspots predispose DNA to tandem repetition. Unlike MS32, crossover resolution breakpoints in NID1 avoid the minisatellite, producing a cold spot within the hotspot. This avoidance may be related to the palindromic nature of the minisatellite interfering with the generation and/or processing of recombination intermediates. The NID1 hotspot also contains a single nucleotide polymorphism (SNP) close to the centre, which appears to directly influence the frequency of crossover initiation. Quantitative gene conversion assays show that this SNP affects the frequency of gene conversion and crossover to a very similar extent, providing evidence that conversions and crossovers are triggered by the same recombination initiating events. The recombination-suppressing allele is over-transmitted to recombinant progeny, and provides the most dramatic example to date of recombination-mediated meiotic drive, of a magnitude sufficient to virtually guarantee that the recombination suppressor will eventually replace the more active allele in human populations.

  6. ARG-walker: inference of individual specific strengths of meiotic recombination hotspots by population genomics analysis

    PubMed Central

    2015-01-01

    Background Meiotic recombination hotspots play important roles in various aspects of genomics, but the underlying mechanisms for regulating the locations and strengths of recombination hotspots are not yet fully revealed. Most existing algorithms for estimating recombination rates from sequence polymorphism data can only output average recombination rates of a population, although there is evidence for the heterogeneity in recombination rates among individuals. For genome-wide association studies (GWAS) of recombination hotspots, an efficient algorithm that estimates the individualized strengths of recombination hotspots is highly desirable. Results In this work, we propose a novel graph mining algorithm named ARG-walker, based on random walks on ancestral recombination graphs (ARG), to estimate individual-specific recombination hotspot strengths. Extensive simulations demonstrate that ARG-walker is able to distinguish the hot allele of a recombination hotspot from the cold allele. Integrated with output of ARG-walker, we performed GWAS on the phased haplotype data of the 22 autosome chromosomes of the HapMap Asian population samples of Chinese and Japanese (JPT+CHB). Significant cis-regulatory signals have been detected, which is corroborated by the enrichment of the well-known 13-mer motif CCNCCNTNNCCNC of PRDM9 protein. Moreover, two new DNA motifs have been identified in the flanking regions of the significantly associated SNPs (single nucleotide polymorphisms), which are likely to be new cis-regulatory elements of meiotic recombination hotspots of the human genome. Conclusions Our results on both simulated and real data suggest that ARG-walker is a promising new method for estimating the individual recombination variations. In the future, it could be used to uncover the mechanisms of recombination regulation and human diseases related with recombination hotspots. PMID:26679564

  7. Meiotic recombination at the Lmp2 hotspot tolerates minor sequence divergence between homologous chromosomes

    SciTech Connect

    Yoshino, Masayasu; Sagai, Tomoko; Shiroishi, Toshihiko

    1996-06-01

    Recombination is widely considered to linearly depend on the length of the homologous sequences. An 11% mismatch decreases the rate of phage-plasmid recombination 240-fold. Two single nucleotide mismatches, which reduce the longest uninterrupted stretch of similarity from 232 base pairs (bp) to 134 bp, reduce gene conversion in mouse L cells 20-fold. The efficiency of gene targeting through homologous recombination in mouse embryonic stem cells can be increased by using an isogenic, rather than a non-isogenic, DNA construct. In this study we asked whether a high degree of sequence identity between homologous mouse chromosomes enhances meiotic recombination at a hotspot. Sites of meiotic recombination in the mouse major histocompatibility complex (MHC) class II region are not randomly distributed but are almost all clustered within short segments known as recombinational hotspots. The wm7 MHC haplotype, derived from Japanese wild mice Mus musculus molossinus, enhances meiotic recombination at a hotspot near the Lmp2 gene. Heterozygotes between the wm7 haplotype and the b or k haplotypes have yielded a high frequency of recombination (2.1%) in 1.3 kilobase kb segment of this hotspot. 20 refs., 2 figs.

  8. Trans-regulation of mouse meiotic recombination hotspots by Rcr1.

    PubMed

    Parvanov, Emil D; Ng, Siemon H S; Petkov, Petko M; Paigen, Kenneth

    2009-02-17

    Meiotic recombination is required for the orderly segregation of chromosomes during meiosis and for providing genetic diversity among offspring. Among mammals, as well as yeast and higher plants, recombination preferentially occurs at highly delimited chromosomal sites 1-2 kb long known as hotspots. Although considerable progress has been made in understanding the roles various proteins play in carrying out the molecular events of the recombination process, relatively little is understood about the factors controlling the location and relative activity of mammalian recombination hotspots. To search for trans-acting factors controlling the positioning of recombination events, we compared the locations of crossovers arising in an 8-Mb segment of a 100-Mb region of mouse Chromosome 1 (Chr 1) when the longer region was heterozygous C57BL/6J (B6) x CAST/EiJ (CAST) and the remainder of the genome was either similarly heterozygous or entirely homozygous B6. The lack of CAST alleles in the remainder of the genome resulted in profound changes in hotspot activity in both females and males. Recombination activity was lost at several hotspots; new, previously undetected hotspots appeared; and still other hotspots remained unaffected, indicating the presence of distant trans-acting gene(s) whose CAST allele(s) activate or suppress the activity of specific hotspots. Testing the activity of three activated hotspots in sperm samples from individual male progeny of two genetic crosses, we identified a single trans-acting regulator of hotspot activity, designated Rcr1, that is located in a 5.30-Mb interval (11.74-17.04 Mb) on Chr 17. Using an Escherichia coli cloning assay to characterize the molecular products of recombination at two of these hotspots, we found that Rcr1 controls the appearance of both crossover and noncrossover gene conversion events, indicating that it likely controls the sites of the double-strand DNA breaks that initiate the recombination process.

  9. The mouse Eb meiotic recombination hotspot contains a tissue-specific transcriptional enhancer.

    PubMed

    Ling, X; Shenkar, R; Sakai, D; Arnheim, N

    1993-01-01

    A meiotic recombination hotspot exists within the second intron of the mouse major histocompatibility complex (MHC) gene, Eb. In the present study, a small fragment from the intron which contains two potential transcriptional regulatory elements was cloned into an expression vector and its effect on transcription was tested. This fragment was found to contain tissue-specific transcriptional enhancer activity. An octamer-like sequence and a B motif may contribute to this enhancer activity. Similar regulatory sequences with the same orientation and distance from one another are found in another mouse MHC recombination hotspot.

  10. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination.

    PubMed

    Myers, Simon; Bowden, Rory; Tumian, Afidalina; Bontrop, Ronald E; Freeman, Colin; MacFie, Tammie S; McVean, Gil; Donnelly, Peter

    2010-02-12

    Although present in both humans and chimpanzees, recombination hotspots, at which meiotic crossover events cluster, differ markedly in their genomic location between the species. We report that a 13-base pair sequence motif previously associated with the activity of 40% of human hotspots does not function in chimpanzees and is being removed by self-destructive drive in the human lineage. Multiple lines of evidence suggest that the rapidly evolving zinc-finger protein PRDM9 binds to this motif and that sequence changes in the protein may be responsible for hotspot differences between species. The involvement of PRDM9, which causes histone H3 lysine 4 trimethylation, implies that there is a common mechanism for recombination hotspots in eukaryotes but raises questions about what forces have driven such rapid change.

  11. Enrichment of meiotic recombination hotspot sequences by avidin capture technology2

    PubMed Central

    Teixeira, Daniel Camara; Malkaram, Sridhar A.

    2013-01-01

    About 40% of the hotspots for meiotic recombination contain the degenerate consensus sequence 5’-CCNCCNTNNCCNC-3’. Here we present a novel protocol for enriching hotspot sequences from digested genomic DNA by using biotinylated oligonucleotides and streptavidin-coated magnetic beads. The captured hotspots can be released by simple digestion with restriction enzymes for subsequent characterization by second generation sequencing or PCR. The capture protocol specifically enriches hotspot sequences, judged by using fluorophore-conjugated synthetic oligonucleotides and synthetic double-stranded oligonucleotides in combination with PCR. The capture protocol enriches single stranded DNA, denatured double-stranded DNA, and large fragments (>3,000 bp) of digested plasmid DNA with good efficacy. No false positive and false negatives were detected when enriching digested DNA from human cell cultures and primary human cells. The protocol can probably be adapted to enriching sequences other than the hotspot sequence by altering the sequence in the capture oligonucleotide. We intend to apply this protocol in studies assessing effects of micronutrient status on meiotic recombination events in human sperm. PMID:23270922

  12. Meiotic Recombination Hotspots of Fission Yeast Are Directed to Loci that Express Non-Coding RNA

    PubMed Central

    Wahls, Wayne P.; Siegel, Eric R.; Davidson, Mari K.

    2008-01-01

    Background Polyadenylated, mRNA-like transcripts with no coding potential are abundant in eukaryotes, but the functions of these long non-coding RNAs (ncRNAs) are enigmatic. In meiosis, Rec12 (Spo11) catalyzes the formation of dsDNA breaks (DSBs) that initiate homologous recombination. Most meiotic recombination is positioned at hotspots, but knowledge of the mechanisms is nebulous. In the fission yeast genome DSBs are located within 194 prominent peaks separated on average by 65-kbp intervals of DNA that are largely free of DSBs. Methodology/Principal Findings We compared the genome-wide distribution of DSB peaks to that of polyadenylated ncRNA molecules of the prl class. DSB peaks map to ncRNA loci that may be situated within ORFs, near the boundaries of ORFs and intergenic regions, or most often within intergenic regions. Unconditional statistical tests revealed that this colocalization is non-random and robust (P≤5.5×10−8). Furthermore, we tested and rejected the hypothesis that the ncRNA loci and DSB peaks localize preferentially, but independently, to a third entity on the chromosomes. Conclusions/Significance Meiotic DSB hotspots are directed to loci that express polyadenylated ncRNAs. This reveals an unexpected, possibly unitary mechanism for what directs meiotic recombination to hotspots. It also reveals a likely biological function for enigmatic ncRNAs. We propose specific mechanisms by which ncRNA molecules, or some aspect of RNA metabolism associated with ncRNA loci, help to position recombination protein complexes at DSB hotspots within chromosomes. PMID:18682829

  13. The control of Spo11's interaction with meiotic recombination hotspots.

    PubMed

    Prieler, Silvia; Penkner, Alexandra; Borde, Valérie; Klein, Franz

    2005-01-15

    Programmed double-strand breaks (DSBs), which initiate meiotic recombination, arise through the activity of the evolutionary conserved topoisomerase homolog Spo11. Spo11 is believed to catalyze the DNA cleavage reaction in the initial step of DSB formation, while at least a further 11 factors assist in Saccharomyces cerevisiae. Using chromatin-immunoprecipitation (ChIP), we detected the transient, noncovalent association of Spo11 with meiotic hotspots in wild-type cells. The establishment of this association requires Rec102, Rec104, and Rec114, while the timely removal of Spo11 from chromatin depends on several factors, including Mei4 and Ndt80. In addition, at least one further component, namely, Red1, is responsible for locally restricting Spo11's interaction to the core region of the hotspot. In chromosome spreads, we observed meiosis-specific Spo11-Myc foci, independent of DSB formation, from leptotene until pachytene. In both rad50S and com1Delta/sae2Delta mutants, we observed a novel reaction intermediate between Spo11 and hotspots, which leads to the detection of full-length hotspot DNA by ChIP in the absence of artificial cross-linking. Although this DNA does not contain a break, its recovery requires Spo11's catalytic residue Y135. We propose that detection of uncross-linked full-length hotspot DNA is only possible during the reversible stage of the Spo11 cleavage reaction, in which rad50S and com1Delta/sae2Delta mutants transiently arrest.

  14. Evolutionary dynamics of meiotic recombination hotspots regulator PRDM9 in bovids.

    PubMed

    Ahlawat, Sonika; De, Sachinandan; Sharma, Priyanka; Sharma, Rekha; Arora, Reena; Kataria, R S; Datta, T K; Singh, R K

    2017-02-01

    Hybrid sterility or reproductive isolation in mammals has been attributed to allelic incompatibilities in a DNA-binding protein PRDM9. Not only is PRDM9 exceptional in being the only known 'speciation gene' in vertebrates, but it is also considered to be the fastest evolving gene in the genome. The terminal zinc finger (ZF) domain of PRDM9 specifies genome-wide meiotic recombination hotspot locations in mammals. Intriguingly, PRDM9 ZF domain is highly variable between as well as within species, possibly activating different recombination hotspots. The present study characterized the full-length coding sequence of PRDM9 in cattle and buffalo and explored the diversity of the ZF array in 514 samples from different bovids (cattle, yak, mithun, and buffalo). Substantial numerical and sequence variability were observed in the ZFs, with the number of repeats ranging from 6 to 9 in different bovines. Sequence analysis revealed the presence of 37 different ZFs in cattle, 3 in mithun, 4 in yak, and 13 in buffaloes producing 41 unique PRDM9 alleles in these species. The posterior mean of dN/dS or omega values calculated using Codeml tool of PAMLX identified sites -5, -1, +2, +3, +4, +5, and +6 in the ZF domain to be evolving positively in the studied species. Concerted evolution which typifies the evolution of this gene was consistently evident in all bovines. Our results demonstrate the extraordinary diversity of PRDM9 ZF array across bovines, reinforcing similar observations in other metazoans. The high variability is suggestive of unique repertoire of meiotic recombination hotspots in each species.

  15. PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination.

    PubMed

    Baker, Christopher L; Kajita, Shimpei; Walker, Michael; Saxl, Ruth L; Raghupathy, Narayanan; Choi, Kwangbom; Petkov, Petko M; Paigen, Kenneth

    2015-01-01

    Meiotic recombination generates new genetic variation and assures the proper segregation of chromosomes in gametes. PRDM9, a zinc finger protein with histone methyltransferase activity, initiates meiotic recombination by binding DNA at recombination hotspots and directing the position of DNA double-strand breaks (DSB). The DSB repair mechanism suggests that hotspots should eventually self-destruct, yet genome-wide recombination levels remain constant, a conundrum known as the hotspot paradox. To test if PRDM9 drives this evolutionary erosion, we measured activity of the Prdm9Cst allele in two Mus musculus subspecies, M.m. castaneus, in which Prdm9Cst arose, and M.m. domesticus, into which Prdm9Cst was introduced experimentally. Comparing these two strains, we find that haplotype differences at hotspots lead to qualitative and quantitative changes in PRDM9 binding and activity. Using Mus spretus as an outlier, we found most variants affecting PRDM9Cst binding arose and were fixed in M.m. castaneus, suppressing hotspot activity. Furthermore, M.m. castaneus×M.m. domesticus F1 hybrids exhibit novel hotspots, with large haplotype biases in both PRDM9 binding and chromatin modification. These novel hotspots represent sites of historic evolutionary erosion that become activated in hybrids due to crosstalk between one parent's Prdm9 allele and the opposite parent's chromosome. Together these data support a model where haplotype-specific PRDM9 binding directs biased gene conversion at hotspots, ultimately leading to hotspot erosion.

  16. PRDM9 Drives Evolutionary Erosion of Hotspots in Mus musculus through Haplotype-Specific Initiation of Meiotic Recombination

    PubMed Central

    Baker, Christopher L.; Kajita, Shimpei; Walker, Michael; Saxl, Ruth L.; Raghupathy, Narayanan; Choi, Kwangbom; Petkov, Petko M.; Paigen, Kenneth

    2015-01-01

    Meiotic recombination generates new genetic variation and assures the proper segregation of chromosomes in gametes. PRDM9, a zinc finger protein with histone methyltransferase activity, initiates meiotic recombination by binding DNA at recombination hotspots and directing the position of DNA double-strand breaks (DSB). The DSB repair mechanism suggests that hotspots should eventually self-destruct, yet genome-wide recombination levels remain constant, a conundrum known as the hotspot paradox. To test if PRDM9 drives this evolutionary erosion, we measured activity of the Prdm9 Cst allele in two Mus musculus subspecies, M.m. castaneus, in which Prdm9Cst arose, and M.m. domesticus, into which Prdm9Cst was introduced experimentally. Comparing these two strains, we find that haplotype differences at hotspots lead to qualitative and quantitative changes in PRDM9 binding and activity. Using Mus spretus as an outlier, we found most variants affecting PRDM9Cst binding arose and were fixed in M.m. castaneus, suppressing hotspot activity. Furthermore, M.m. castaneus×M.m. domesticus F1 hybrids exhibit novel hotspots, with large haplotype biases in both PRDM9 binding and chromatin modification. These novel hotspots represent sites of historic evolutionary erosion that become activated in hybrids due to crosstalk between one parent's Prdm9 allele and the opposite parent's chromosome. Together these data support a model where haplotype-specific PRDM9 binding directs biased gene conversion at hotspots, ultimately leading to hotspot erosion. PMID:25568937

  17. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans.

    PubMed

    Berg, Ingrid L; Neumann, Rita; Lam, Kwan-Wood G; Sarbajna, Shriparna; Odenthal-Hesse, Linda; May, Celia A; Jeffreys, Alec J

    2010-10-01

    PRDM9 has recently been identified as a likely trans regulator of meiotic recombination hot spots in humans and mice. PRDM9 contains a zinc finger array that, in humans, can recognize a short sequence motif associated with hot spots, with binding to this motif possibly triggering hot-spot activity via chromatin remodeling. We now report that human genetic variation at the PRDM9 locus has a strong effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Subtle changes within the zinc finger array can create hot-spot nonactivating or enhancing variants and can even trigger the appearance of a new hot spot, suggesting that PRDM9 is a major global regulator of hot spots in humans. Variation at the PRDM9 locus also influences aspects of genome instability-specifically, a megabase-scale rearrangement underlying two genomic disorders as well as minisatellite instability-implicating PRDM9 as a risk factor for some pathological genome rearrangements.

  18. Variants of the protein PRDM9 differentially regulate a set of human meiotic recombination hotspots highly active in African populations.

    PubMed

    Berg, Ingrid L; Neumann, Rita; Sarbajna, Shriparna; Odenthal-Hesse, Linda; Butler, Nicola J; Jeffreys, Alec J

    2011-07-26

    PRDM9 is a major specifier of human meiotic recombination hotspots, probably via binding of its zinc-finger repeat array to a DNA sequence motif associated with hotspots. However, our view of PRDM9 regulation, in terms of motifs defined and hotspots studied, has a strong bias toward the PRDM9 A variant particularly common in Europeans. We show that population diversity can reveal a second class of hotspots specifically activated by PRDM9 variants common in Africans but rare in Europeans. These African-enhanced hotspots nevertheless share very similar properties with their counterparts activated by the A variant. The specificity of hotspot activation is such that individuals with differing PRDM9 genotypes, even within the same population, can use substantially if not completely different sets of hotspots. Each African-enhanced hotspot is activated by a distinct spectrum of PRDM9 variants, despite the fact that all are predicted to bind the same sequence motif. This differential activation points to complex interactions between the zinc-finger array and hotspots and identifies features of the array that might be important in controlling hotspot activity.

  19. Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients.

    PubMed

    Reiter, L T; Hastings, P J; Nelis, E; De Jonghe, P; Van Broeckhoven, C; Lupski, J R

    1998-05-01

    The HNPP (hereditary neuropathy with liability to pressure palsies) deletion and CMT1A (Charcot-Marie-Tooth disease type 1A) duplication are the reciprocal products of homologous recombination events between misaligned flanking CMT1A-REP repeats on chromosome 17p11. 2-p12. A 1.7-kb hotspot for homologous recombination was previously identified wherein the relative risk of an exchange event is 50 times higher than in the surrounding 98.7% identical sequence shared by the CMT1A-REPs. To refine the region of exchange further, we designed a PCR strategy to amplify the recombinant CMT1A-REP from HNPP patients as well as the proximal and distal CMT1A-REPs from control individuals. By comparing the sequences across recombinant CMT1A-REPs to that of the proximal and distal CMT1A-REPs, the exchange was mapped to a 557-bp region within the previously identified 1.7-kb hotspot in 21 of 23 unrelated HNPP deletion patients. Two patients had recombined sequences suggesting an exchange event closer to the mariner-like element previously identified near the hotspot. Five individuals also had interspersed patches of proximal or distal repeat specific DNA sequence indicating potential gene conversion during the exchange of genetic material. Our studies provide a direct observation of human meiotic recombination products. These results are consistent with the hypothesis that minimum efficient processing segments, which have been characterized in Escherichia coli, yeast, and cultured mammalian cells, may be required for efficient homologous meiotic recombination in humans.

  20. Initiation of meiotic recombination in chromatin structure.

    PubMed

    Yamada, Takatomi; Ohta, Kunihiro

    2013-08-01

    Meiotic homologous recombination is markedly activated during meiotic prophase to play central roles in faithful chromosome segregation and conferring genetic diversity to gametes. It is initiated by programmed DNA double-strand breaks (DSBs) by the conserved protein Spo11, and preferentially occurs at discrete sites called hotspots. Since the functions of Spo11 are influenced by both of local chromatin at hotspots and higher-order chromosome structures, formation of meiotic DSBs is under regulation of chromatin structure. Therefore, investigating features and roles of meiotic chromatin is crucial to elucidate the in vivo mechanism of meiotic recombination initiation. Recent progress in genome-wide chromatin analyses tremendously improved our understanding on this point, but many critical questions are left unaddressed. In this review, we summarize current knowledge in the field, and also discuss the future problems that must be solved to understand the role of chromatin structure in meiotic recombination.

  1. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo.

    PubMed

    Powers, Natalie R; Parvanov, Emil D; Baker, Christopher L; Walker, Michael; Petkov, Petko M; Paigen, Kenneth

    2016-06-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we

  2. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo

    PubMed Central

    Powers, Natalie R.; Parvanov, Emil D.; Baker, Christopher L.; Walker, Michael; Petkov, Petko M.; Paigen, Kenneth

    2016-01-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we

  3. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast.

    PubMed

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-04-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast.

  4. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast

    PubMed Central

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-01-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast. PMID:23382177

  5. Stable recombination hotspots in birds.

    PubMed

    Singhal, Sonal; Leffler, Ellen M; Sannareddy, Keerthi; Turner, Isaac; Venn, Oliver; Hooper, Daniel M; Strand, Alva I; Li, Qiye; Raney, Brian; Balakrishnan, Christopher N; Griffith, Simon C; McVean, Gil; Przeworski, Molly

    2015-11-20

    The DNA-binding protein PRDM9 has a critical role in specifying meiotic recombination hotspots in mice and apes, but it appears to be absent from other vertebrate species, including birds. To study the evolution and determinants of recombination in species lacking the gene that encodes PRDM9, we inferred fine-scale genetic maps from population resequencing data for two bird species: the zebra finch, Taeniopygia guttata, and the long-tailed finch, Poephila acuticauda. We found that both species have recombination hotspots, which are enriched near functional genomic elements. Unlike in mice and apes, most hotspots are shared between the two species, and their conservation seems to extend over tens of millions of years. These observations suggest that in the absence of PRDM9, recombination targets functional features that both enable access to the genome and constrain its evolution.

  6. Prdm9, a major determinant of meiotic recombination hotspots, is not functional in dogs and their wild relatives, wolves and coyotes.

    PubMed

    Muñoz-Fuentes, Violeta; Di Rienzo, Anna; Vilà, Carles

    2011-01-01

    Meiotic recombination is a fundamental process needed for the correct segregation of chromosomes during meiosis in sexually reproducing organisms. In humans, 80% of crossovers are estimated to occur at specific areas of the genome called recombination hotspots. Recently, a protein called PRDM9 was identified as a major player in determining the location of genome-wide meiotic recombination hotspots in humans and mice. The origin of this protein seems to be ancient in evolutionary time, as reflected by its fairly conserved structure in lineages that diverged over 700 million years ago. Despite its important role, there are many animal groups in which Prdm9 is absent (e.g. birds, reptiles, amphibians, diptera) and it has been suggested to have disruptive mutations and thus to be a pseudogene in dogs. Because of the dog's history through domestication and artificial selection, we wanted to confirm the presence of a disrupted Prdm9 gene in dogs and determine whether this was exclusive of this species or whether it also occurred in its wild ancestor, the wolf, and in a close relative, the coyote. We sequenced the region in the dog genome that aligned to the last exon of the human Prdm9, containing the entire zinc finger domain, in 4 dogs, 17 wolves and 2 coyotes. Our results show that the three canid species possess mutations that likely make this gene non functional. Because these mutations are shared across the three species, they must have appeared prior to the split of the wolf and the coyote, millions of years ago, and are not related to domestication. In addition, our results suggest that in these three canid species recombination does not occur at hotspots or hotspot location is controlled through a mechanism yet to be determined.

  7. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  8. Epigenetic control of meiotic recombination in plants.

    PubMed

    Yelina, Natasha; Diaz, Patrick; Lambing, Christophe; Henderson, Ian R

    2015-03-01

    Meiotic recombination is a deeply conserved process within eukaryotes that has a profound effect on patterns of natural genetic variation. During meiosis homologous chromosomes pair and undergo DNA double strand breaks generated by the Spo11 endonuclease. These breaks can be repaired as crossovers that result in reciprocal exchange between chromosomes. The frequency of recombination along chromosomes is highly variable, for example, crossovers are rarely observed in heterochromatin and the centromeric regions. Recent work in plants has shown that crossover hotspots occur in gene promoters and are associated with specific chromatin modifications, including H2A.Z. Meiotic chromosomes are also organized in loop-base arrays connected to an underlying chromosome axis, which likely interacts with chromatin to organize patterns of recombination. Therefore, epigenetic information exerts a major influence on patterns of meiotic recombination along chromosomes, genetic variation within populations and evolution of plant genomes.

  9. Initiation of Meiotic Recombination in Mammals

    PubMed Central

    Kumar, Rajeev; de Massy, Bernard

    2010-01-01

    Meiotic recombination is initiated by the induction of programmed DNA double strand breaks (DSBs). DSB repair promotes homologous interactions and pairing and leads to the formation of crossovers (COs), which are required for the proper reductional segregation at the first meiotic division. In mammals, several hundred DSBs are generated at the beginning of meiotic prophase by the catalytic activity of SPO11. Currently it is not well understood how the frequency and timing of DSB formation and their localization are regulated. Several approaches in humans and mice have provided an extensive description of the localization of initiation events based on CO mapping, leading to the identification and characterization of preferred sites (hotspots) of initiation. This review presents the current knowledge about the proteins known to be involved in this process, the sites where initiation takes place, and the factors that control hotspot localization. PMID:24710101

  10. Recombination hotspots: Models and tools for detection.

    PubMed

    Paul, Prosenjit; Nag, Debjyoti; Chakraborty, Supriyo

    2016-04-01

    Recombination hotspots are the regions within the genome where the rate, and the frequency of recombination are optimum with a size varying from 1 to 2kb. The recombination event is mediated by the double-stranded break formation, guided by the combined enzymatic action of DNA topoisomerase and Spo 11 endonuclease. These regions are distributed non-uniformly throughout the human genome and cause distortions in the genetic map. Numerous lines of evidence suggest that the number of hotspots known in humans has increased manifold in recent years. A few facts about the hotspot evolutions were also put forward, indicating the differences in the hotspot position between chimpanzees and humans. In mice, recombination hot spots were found to be clustered within the major histocompatibility complex (MHC) region. Several models, that help explain meiotic recombination has been proposed. Moreover, scientists also developed some computational tools to locate the hotspot position and estimate their recombination rate in humans is of great interest to population and medical geneticists. Here we reviewed the molecular mechanisms, models and in silico prediction techniques of hot spot residues.

  11. Spatiotemporal regulation of meiotic recombination by Liaisonin

    PubMed Central

    Miyoshi, Tomoichiro; Ito, Masaru; Ohta, Kunihiro

    2013-01-01

    Sexual reproduction involves diversification of genetic information in successive generations. Meiotic recombination, which substantially contributes to the increase in genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) catalyzed by the evolutionarily conserved Spo11 protein. Spo11 requires additional partner proteins for its DNA cleavage reaction. DSBs are preferentially introduced at defined chromosomal sites called “recombination hotspots.” Recent studies have revealed that meiotically established higher-order chromosome structures, such as chromosome axes and loops, are also crucial in the control of DSB formation. Most of the DSB sites are located within chromatin loop regions, while many of the proteins involved in DSB formation reside on chromosomal axes. Hence, DSB proteins and DSB sites seem to be distantly located. To resolve this paradox, we conducted comprehensive proteomics and ChIP-chip analyses on Spo11 partners in Schizosaccharomyces pombe, in combination with mutant studies. We identified two distinct DSB complexes, the “DSBC (DSB Catalytic core)“ and “SFT (Seven-Fifteen-Twenty four; Rec7-Rec15-Rec24)” subcomplexes. The DSBC subcomplex contains Spo11 and functions as the catalytic core for the DNA cleavage reaction. The SFT subcomplex is assumed to execute regulatory functions. To activate the DSBC subcomplex, the SFT subcomplex tethers hotspots to axes via its interaction with Mde2, which can interact with proteins in both DSBC and SFT subcomplexes. Thus, Mde2 is likely to bridge these two subcomplexes, forming a “tethered loop-axis complex.” It should be noted that Mde2 expression is strictly regulated by S phase checkpoint monitoring of the completion of DNA replication. From these observations, we proposed that Mde2 is a central coupler for meiotic recombination initiation to establish a tethered loop-axis complex in liaison with the S phase checkpoint. PMID:23572041

  12. Spatiotemporal regulation of meiotic recombination by Liaisonin.

    PubMed

    Miyoshi, Tomoichiro; Ito, Masaru; Ohta, Kunihiro

    2013-01-01

    Sexual reproduction involves diversification of genetic information in successive generations. Meiotic recombination, which substantially contributes to the increase in genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) catalyzed by the evolutionarily conserved Spo11 protein. Spo11 requires additional partner proteins for its DNA cleavage reaction. DSBs are preferentially introduced at defined chromosomal sites called "recombination hotspots." Recent studies have revealed that meiotically established higher-order chromosome structures, such as chromosome axes and loops, are also crucial in the control of DSB formation. Most of the DSB sites are located within chromatin loop regions, while many of the proteins involved in DSB formation reside on chromosomal axes. Hence, DSB proteins and DSB sites seem to be distantly located. To resolve this paradox, we conducted comprehensive proteomics and ChIP-chip analyses on Spo11 partners in Schizosaccharomyces pombe, in combination with mutant studies. We identified two distinct DSB complexes, the "DSBC (DSB Catalytic core)" and "SFT (Seven-Fifteen-Twenty four; Rec7-Rec15-Rec24)" subcomplexes. The DSBC subcomplex contains Spo11 and functions as the catalytic core for the DNA cleavage reaction. The SFT subcomplex is assumed to execute regulatory functions. To activate the DSBC subcomplex, the SFT subcomplex tethers hotspots to axes via its interaction with Mde2, which can interact with proteins in both DSBC and SFT subcomplexes. Thus, Mde2 is likely to bridge these two subcomplexes, forming a "tethered loop-axis complex." It should be noted that Mde2 expression is strictly regulated by S phase checkpoint monitoring of the completion of DNA replication. From these observations, we proposed that Mde2 is a central coupler for meiotic recombination initiation to establish a tethered loop-axis complex in liaison with the S phase checkpoint.

  13. A Discrete Class of Intergenic DNA Dictates Meiotic DNA Break Hotspots in Fission Yeast

    PubMed Central

    Cam, Hugh P; Farah, Joseph A; Grewal, Shiv I. S; Smith, Gerald R

    2007-01-01

    Meiotic recombination is initiated by DNA double-strand breaks (DSBs) made by Spo11 (Rec12 in fission yeast), which becomes covalently linked to the DSB ends. Like recombination events, DSBs occur at hotspots in the genome, but the genetic factors responsible for most hotspots have remained elusive. Here we describe in fission yeast the genome-wide distribution of meiosis-specific Rec12-DNA linkages, which closely parallel DSBs measured by conventional Southern blot hybridization. Prominent DSB hotspots are located ∼65 kb apart, separated by intervals with little or no detectable breakage. Most hotspots lie within exceptionally large intergenic regions. Thus, the chromosomal architecture responsible for hotspots in fission yeast is markedly different from that of budding yeast, in which DSB hotspots are much more closely spaced and, in many regions of the genome, occur at each promoter. Our analysis in fission yeast reveals a clearly identifiable chromosomal feature that can predict the majority of recombination hotspots across a whole genome and provides a basis for searching for the chromosomal features that dictate hotspots of meiotic recombination in other organisms, including humans. PMID:17722984

  14. Genome-Wide Association Study of Meiotic Recombination Phenotypes

    PubMed Central

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G.; Sherman, Stephanie L.; Feingold, Eleanor

    2016-01-01

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9. By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2. This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events. PMID:27733454

  15. Genome-Wide Association Study of Meiotic Recombination Phenotypes.

    PubMed

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G; Sherman, Stephanie L; Feingold, Eleanor

    2016-12-07

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9 By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2 This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events.

  16. Meiotic Recombination: The Essence of Heredity.

    PubMed

    Hunter, Neil

    2015-10-28

    The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.

  17. Prdm9 controls activation of mammalian recombination hotspots.

    PubMed

    Parvanov, Emil D; Petkov, Petko M; Paigen, Kenneth

    2010-02-12

    Mammalian meiotic recombination, which preferentially occurs at specialized sites called hotspots, ensures the orderly segregation of meiotic chromosomes and creates genetic variation among offspring. A locus on mouse chromosome 17, which controls activation of recombination at multiple distant hotspots, has been mapped within a 181-kilobase interval, three of whose genes can be eliminated as candidates. The remaining gene, Prdm9, codes for a zinc finger containing histone H3K4 trimethylase that is expressed in early meiosis and whose deficiency results in sterility in both sexes. Mus musculus exhibits five alleles of Prdm9; human populations exhibit two predominant alleles and multiple minor alleles. The identification of Prdm9 as a protein regulating mammalian recombination hotspots initiates molecular studies of this important biological control system.

  18. PRDM9 sticks its zinc fingers into recombination hotspots and between species.

    PubMed

    Sandovici, Ionel; Sapienza, Carmen

    2010-05-24

    Meiotic recombination events typically cluster within narrow regions of the genome termed hotspots. A series of recent papers reveals that PRDM9, a C2H2-type zinc-finger protein with histone H3 lysine 4 methyltransferase activity, plays a major role in the specification of hotspots. The zinc fingers that contact DNA in a sequence-dependent manner evolve rapidly and are under positive selection, leading to differences in the location of recombination hotspots as well as hybrid sterility.

  19. Mechanism and Regulation of Meiotic Recombination Initiation

    PubMed Central

    Lam, Isabel; Keeney, Scott

    2015-01-01

    Meiotic recombination involves the formation and repair of programmed DNA double-strand breaks (DSBs) catalyzed by the conserved Spo11 protein. This review summarizes recent studies pertaining to the formation of meiotic DSBs, including the mechanism of DNA cleavage by Spo11, proteins required for break formation, and mechanisms that control the location, timing, and number of DSBs. Where appropriate, findings in different organisms are discussed to highlight evolutionary conservation or divergence. PMID:25324213

  20. A positive but complex association between meiotic double-strand break hotspots and open chromatin in Saccharomyces cerevisiae

    PubMed Central

    Berchowitz, Luke E.; Hanlon, Sean E.; Lieb, Jason D.; Copenhaver, Gregory P.

    2009-01-01

    During meiosis, chromatin undergoes extensive changes to facilitate recombination, homolog pairing, and chromosome segregation. To investigate the relationship between chromatin organization and meiotic processes, we used formaldehyde-assisted isolation of regulatory elements (FAIRE) to map open chromatin during the transition from mitosis to meiosis in the budding yeast Saccharomyces cerevisiae. We found that meiosis-induced opening of chromatin is associated with meiotic DSB hotpots. The positive association between open chromatin and DSB hotspots is most prominent 3 h into meiosis, when the early meiotic genes DMC1 and HOP1 exhibit maximum transcription and the early recombination genes SPO11 and RAD51 are strongly up-regulated. While the degree of chromatin openness is positively associated with the occurrence of recombination hotspots, many hotspots occur outside of open chromatin. Of particular interest, many DSB hotspots that fell outside of meiotic open chromatin nonetheless occurred in chromatin that had recently been open during mitotic growth. Finally, we find evidence for meiosis-specific opening of chromatin at the regions adjacent to boundaries of subtelomeric sequences, which exhibit specific crossover control patterns hypothesized to be regulated by chromatin. PMID:19801530

  1. A positive but complex association between meiotic double-strand break hotspots and open chromatin in Saccharomyces cerevisiae.

    PubMed

    Berchowitz, Luke E; Hanlon, Sean E; Lieb, Jason D; Copenhaver, Gregory P

    2009-12-01

    During meiosis, chromatin undergoes extensive changes to facilitate recombination, homolog pairing, and chromosome segregation. To investigate the relationship between chromatin organization and meiotic processes, we used formaldehyde-assisted isolation of regulatory elements (FAIRE) to map open chromatin during the transition from mitosis to meiosis in the budding yeast Saccharomyces cerevisiae. We found that meiosis-induced opening of chromatin is associated with meiotic DSB hotpots. The positive association between open chromatin and DSB hotspots is most prominent 3 h into meiosis, when the early meiotic genes DMC1 and HOP1 exhibit maximum transcription and the early recombination genes SPO11 and RAD51 are strongly up-regulated. While the degree of chromatin openness is positively associated with the occurrence of recombination hotspots, many hotspots occur outside of open chromatin. Of particular interest, many DSB hotspots that fell outside of meiotic open chromatin nonetheless occurred in chromatin that had recently been open during mitotic growth. Finally, we find evidence for meiosis-specific opening of chromatin at the regions adjacent to boundaries of subtelomeric sequences, which exhibit specific crossover control patterns hypothesized to be regulated by chromatin.

  2. A Glance at Recombination Hotspots in the Domestic Cat.

    PubMed

    Alhaddad, Hasan; Zhang, Chi; Rannala, Bruce; Lyons, Leslie A

    2016-01-01

    Recombination has essential roles in increasing genetic variability within a population and in ensuring successful meiotic events. The objective of this study is to (i) infer the population-scaled recombination rate (ρ), and (ii) identify and characterize regions of increased recombination rate for the domestic cat, Felis silvestris catus. SNPs (n = 701) were genotyped in twenty-two East Asian feral cats (random bred). The SNPs covered ten different chromosomal regions (A1, A2, B3, C2, D1, D2, D4, E2, F2, X) with an average region size of 850 Kb and an average SNP density of 70 SNPs/region. The Bayesian method in the program inferRho was used to infer regional population recombination rates and hotspots localities. The regions exhibited variable population recombination rates and four decisive recombination hotspots were identified on cat chromosome A2, D1, and E2 regions. As a description of the identified hotspots, no correlation was detected between the GC content and the locality of recombination spots, and the hotspots enclosed L2 LINE elements and MIR and tRNA-Lys SINE elements.

  3. A Glance at Recombination Hotspots in the Domestic Cat

    PubMed Central

    Alhaddad, Hasan; Zhang, Chi; Rannala, Bruce; Lyons, Leslie A.

    2016-01-01

    Recombination has essential roles in increasing genetic variability within a population and in ensuring successful meiotic events. The objective of this study is to (i) infer the population-scaled recombination rate (ρ), and (ii) identify and characterize regions of increased recombination rate for the domestic cat, Felis silvestris catus. SNPs (n = 701) were genotyped in twenty-two East Asian feral cats (random bred). The SNPs covered ten different chromosomal regions (A1, A2, B3, C2, D1, D2, D4, E2, F2, X) with an average region size of 850 Kb and an average SNP density of 70 SNPs/region. The Bayesian method in the program inferRho was used to infer regional population recombination rates and hotspots localities. The regions exhibited variable population recombination rates and four decisive recombination hotspots were identified on cat chromosome A2, D1, and E2 regions. As a description of the identified hotspots, no correlation was detected between the GC content and the locality of recombination spots, and the hotspots enclosed L2 LINE elements and MIR and tRNA-Lys SINE elements. PMID:26859385

  4. Polyploidization increases meiotic recombination frequency in Arabidopsis

    PubMed Central

    2011-01-01

    Background Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. Results Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. Conclusions The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence. PMID:21510849

  5. Transmission distortion affecting human noncrossover but not crossover recombination: a hidden source of meiotic drive.

    PubMed

    Odenthal-Hesse, Linda; Berg, Ingrid L; Veselis, Amelia; Jeffreys, Alec J; May, Celia A

    2014-02-01

    Meiotic recombination ensures the correct segregation of homologous chromosomes during gamete formation and contributes to DNA diversity through both large-scale reciprocal crossovers and very localised gene conversion events, also known as noncrossovers. Considerable progress has been made in understanding factors such as PRDM9 and SNP variants that influence the initiation of recombination at human hotspots but very little is known about factors acting downstream. To address this, we simultaneously analysed both types of recombinant molecule in sperm DNA at six highly active hotspots, and looked for disparity in the transmission of allelic variants indicative of any cis-acting influences. At two of the hotspots we identified a novel form of biased transmission that was exclusive to the noncrossover class of recombinant, and which presumably arises through differences between crossovers and noncrossovers in heteroduplex formation and biased mismatch repair. This form of biased gene conversion is not predicted to influence hotspot activity as previously noted for SNPs that affect recombination initiation, but does constitute a powerful and previously undetected source of recombination-driven meiotic drive that by extrapolation may affect thousands of recombination hotspots throughout the human genome. Intriguingly, at both of the hotspots described here, this drive favours strong (G/C) over weak (A/T) base pairs as might be predicted from the well-established correlations between high GC content and recombination activity in mammalian genomes.

  6. Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing

    SciTech Connect

    Hellsten, Uffe; Wright, Kevin M.; Jenkins, Jerry; Shu, Shengqiang; Yuan, Yao-Wu; Wessler, Susan R.; Schmutz, Jeremy; Willis, John H.; Rokhsar, Daniel S.

    2013-11-13

    Meiotic recombination rates can vary widely across genomes, with hotspots of intense activity interspersed among cold regions. In yeast, hotspots tend to occur in promoter regions of genes, whereas in humans and mice hotspots are largely defined by binding sites of the PRDM9 protein. To investigate the detailed recombination pattern in a flowering plant we use shotgun resequencing of a wild population of the monkeyflower Mimulus guttatus to precisely locate over 400,000 boundaries of historic crossovers or gene conversion tracts. Their distribution defines some 13,000 hotspots of varying strengths, interspersed with cold regions of undetectably low recombination. Average recombination rates peak near starts of genes and fall off sharply, exhibiting polarity. Within genes, recombination tracts are more likely to terminate in exons than in introns. The general pattern is similar to that observed in yeast, as well as in PRDM9-knockout mice, suggesting that recombination initiation described here in Mimulus may reflect ancient and conserved eukaryotic mechanisms

  7. Meiotic recombination in mammals: localization and regulation.

    PubMed

    Baudat, Frédéric; Imai, Yukiko; de Massy, Bernard

    2013-11-01

    During meiosis, a programmed induction of DNA double-strand breaks (DSBs) leads to the exchange of genetic material between homologous chromosomes. These exchanges increase genome diversity and are essential for proper chromosome segregation at the first meiotic division. Recent findings have highlighted an unexpected molecular control of the distribution of meiotic DSBs in mammals by a rapidly evolving gene, PR domain-containing 9 (PRDM9), and genome-wide analyses have facilitated the characterization of meiotic DSB sites at unprecedented resolution. In addition, the identification of new players in DSB repair processes has allowed the delineation of recombination pathways that have two major outcomes, crossovers and non-crossovers, which have distinct mechanistic roles and consequences for genome evolution.

  8. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    PubMed

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-04-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.

  9. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse

    PubMed Central

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-01-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies. PMID:27104744

  10. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila

    PubMed Central

    Smukowski Heil, Caiti S.; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A.F.

    2015-01-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human–chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. PMID:26430062

  11. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila.

    PubMed

    Smukowski Heil, Caiti S; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A F

    2015-10-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms.

  12. Scaling and fractal behaviour underlying meiotic recombination.

    PubMed

    Waxman, D; Stoletzki, N

    2010-01-01

    In this paper we investigate some of the mathematical properties of meiotic recombination. Working within the framework of a genetic model with n loci, where alpha alleles are possible at each locus, we find that the proportion of all possible diploid parental genotypes that can produce a particular haploid gamete is exp[-n log(alpha(2)/[2alpha-1])]. We show that this proportion connects recombination with a fractal geometry of dimension log(2alpha-1)/log(alpha). The fractal dimension of a geometric object manifests itself when it is measured at increasingly smaller length scales. Decreasing the length scale of a geometric object is found to be directly analogous, in a genetics problem, to specifying a multilocus haplotype at a larger number of loci, and it is here that the fractal dimension reveals itself.

  13. Proteins involved in meiotic recombination: a role in male infertility?

    PubMed

    Sanderson, Matthew L; Hassold, Terry J; Carrell, Douglas T

    2008-01-01

    Meiotic recombination results in the formation of crossovers, by which genetic information is exchanged between homologous chromosomes during prophase I of meiosis. Recombination is a complex process involving many proteins. Alterations in the genes involved in recombination may result in infertility. Molecular studies have improved our understanding of the roles and mechanisms of the proteins and protein complexes involved in recombination, some of which have function in mitotic cells as well as meiotic cells. Human gene sequencing studies have been performed for some of these genes and have provided further information on the phenotypes observed in some infertile individuals. However, further studies are needed to help elucidate the particular role(s) of a given protein and to increase our understanding of these protein systems. This review will focus on our current understanding of proteins involved in meiotic recombination from a genomic perspective, summarizing our current understanding of known mutations and single nucleotide polymorphisms that may affect male fertility by altering meiotic recombination.

  14. Bayesian inference of shared recombination hotspots between humans and chimpanzees.

    PubMed

    Wang, Ying; Rannala, Bruce

    2014-12-01

    Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies.

  15. A DNA topoisomerase VI-like complex initiates meiotic recombination.

    PubMed

    Vrielynck, Nathalie; Chambon, Aurélie; Vezon, Daniel; Pereira, Lucie; Chelysheva, Liudmila; De Muyt, Arnaud; Mézard, Christine; Mayer, Claudine; Grelon, Mathilde

    2016-02-26

    The SPO11 protein catalyzes the formation of meiotic DNA double strand breaks (DSBs) and is homologous to the A subunit of an archaeal topoisomerase (topo VI). Topo VI are heterotetrameric enzymes comprising two A and two B subunits; however, no topo VIB involved in meiotic recombination had been identified. We characterized a structural homolog of the archaeal topo VIB subunit [meiotic topoisomerase VIB-like (MTOPVIB)], which is essential for meiotic DSB formation. It forms a complex with the two Arabidopsis thaliana SPO11 orthologs required for meiotic DSB formation (SPO11-1 and SPO11-2) and is absolutely required for the formation of the SPO11-1/SPO11-2 heterodimer. These findings suggest that the catalytic core complex responsible for meiotic DSB formation in eukaryotes adopts a topo VI-like structure.

  16. New paradigms for conserved, multifactorial, cis-acting regulation of meiotic recombination

    PubMed Central

    Wahls, Wayne P.; Davidson, Mari K.

    2012-01-01

    How do cells position the Spo11 (Rec12)-dependent initiation of meiotic recombination at hotspots? The mechanisms are poorly understood and a prevailing view is that they differ substantially between phylogenetic groups. However, recent work discovered that individual species have multiple different DNA sequence-specific, protein–DNA complexes that regulate (and are essential for the activation of) recombination hotspots. The cis-acting elements function combinatorially with documented examples of synergism, antagonism and redundancy. Furthermore, we provide evidence that all currently well-defined modules of this multifactorial, cis-acting regulation are conserved functionally between taxa whose latest common ancestor occurred more than 1 billion years ago. Functionally conserved components include the ATF/CREB-family heterodimer Atf1-Pcr1 and its CRE-like DNA site M26, the CCAAT-box-binding complex Php2-Php3-Php5 and the CCAAT-box, and the zinc-finger protein Rst2 and its Oligo-C motif. The newfound multiplicity, functional redundancy and conservation of cis-acting controls constitute a paradigm shift with broad implications. They provide compelling evidence that most meiotic recombination is, like transcription, regulated by sequence-specific protein–DNA complexes. And the new findings provide important mechanistic insight, such as a solution to the conundrum that Prdm9 is a ‘master regulator’ of—yet is dispensable for—hotspot activity in mammals. PMID:22904082

  17. Both conserved and non-conserved regions of Spo11 are essential for meiotic recombination initiation in yeast.

    PubMed

    Nag, Dilip K; Pata, Janice D; Sironi, Manuela; Flood, David R; Hart, Ashley M

    2006-10-01

    DNA double-strand breaks (DSBs) are the initiators of most meiotic recombination events. In Saccharomyces cerevisiae, at least ten genes are necessary for meiotic DSB formation. However, the molecular roles of these proteins are not clearly understood. The meiosis-specific Spo11 protein, which shows sequence similarity with a subunit of an archaeal topoisomerase, is believed to catalyze the meiotic DSB formation. Spo11 is also required for induction of meiotic DSBs at long inverted repeats and at large trinucleotide repeat tracts. Here we report the isolation and characterization of temperature-sensitive spo11-mutant alleles to better understand how Spo11 functions, and how meiotic DSBs are generated at various recombination hotspots. Analysis of mutation sites of isolated spo11-mutant alleles indicated that both N-terminal and C-terminal non-conserved residues of Spo11 are essential for the protein's function, possibly for interaction with other meiotic DSB enzymes. Several of the mutation sites within the conserved region are predicted to lie on the surface of the protein, suggesting that this region is required for activation of the meiotic initiation complex via protein-protein interaction. In addition to the conditional mutants, we isolated partially recombination-defective mutants; analysis of one of these mutants indicated that Ski8, as observed previously, interacts with Spo11 via the latter's C-terminal residues.

  18. Meiotic and mitotic recombination in meiosis.

    PubMed

    Kohl, Kathryn P; Sekelsky, Jeff

    2013-06-01

    Meiotic crossovers facilitate the segregation of homologous chromosomes and increase genetic diversity. The formation of meiotic crossovers was previously posited to occur via two pathways, with the relative use of each pathway varying between organisms; however, this paradigm could not explain all crossovers, and many of the key proteins involved were unidentified. Recent studies that identify some of these proteins reinforce and expand the model of two meiotic crossover pathways. The results provide novel insights into the evolutionary origins of the pathways, suggesting that one is similar to a mitotic DNA repair pathway and the other evolved to incorporate special features unique to meiosis.

  19. Meiotic recombination, synapsis, meiotic inactivation and sperm aneuploidy in a chromosome 1 inversion carrier.

    PubMed

    Kirkpatrick, Gordon; Chow, Victor; Ma, Sai

    2012-01-01

    Disrupted meiotic behaviour of inversion carriers may be responsible for suboptimal sperm parameters in these carriers. This study investigated meiotic recombination, synapsis, transcriptional silencing and chromosome segregation effects in a pericentric inv(1) carrier. Recombination (MLH1), synapsis (SYCP1, SYCP3) and transcriptional inactivation (γH2AX, BRCA1) were examined by fluorescence immunostaining. Chromosome specific rates of recombination were determined by fluorescence in-situ hybridization. Furthermore, testicular sperm was examined for aneuploidy and segregation of the inv(1). Our findings showed that global recombination rates were similar to controls. Recombination on the inv(1) and the sex chromosomes were reduced. The inv(1) associated with the XY body in 43.4% of cells, in which XY recombination was disproportionately absent, and 94.3% of cells displayed asynapsed regions which displayed meiotic silencing regardless of their association with the XY body. Furthermore, a low frequency of chromosomal imbalance was observed in spermatozoa (3.4%). Our results suggest that certain inversion carriers may display unimpaired global recombination and impaired recombination on the involved and the sex chromosomes during meiosis. Asynapsis or inversion-loop formation in the inverted region may be responsible for impaired spermatogenesis and may prevent sperm-chromosome imbalance.

  20. Meiotic recombination breakpoints are associated with open chromatin and enriched with repetitive DNA elements in potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meiotic recombination provides the framework for the genetic variation in natural and artificial populations of eukaryotes through the creation of novel haplotypes. Thus, determining the molecular characteristics of meiotic recombination remains essential for future plant breeding efforts, which hea...

  1. RPA homologs and ssDNA processing during meiotic recombination.

    PubMed

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2016-06-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.

  2. DNA intermediates of meiotic recombination in synchronous S. pombe at optimal temperature

    PubMed Central

    Hyppa, Randy W.; Fowler, Kyle R.; Cipak, Lubos; Gregan, Juraj; Smith, Gerald R.

    2014-01-01

    Crossovers formed by recombination between homologous chromosomes are important for proper homolog segregation during meiosis and for generation of genetic diversity. Optimal molecular analysis of DNA intermediates of recombination requires synchronous cultures. We previously described a mutant, pat1-as2, of the fission yeast Schizosaccharomyces pombe that undergoes synchronous meiosis at 25°C when an ATP analog is added to the culture. Here, we compare recombination intermediates in pat1-as2 at 25°C with those in the widely used pat1-114 temperature-sensitive mutant at 34°C, a temperature higher than optimal. DNA double-strand breaks at most hotspots are similarly abundant in the two conditions but, remarkably, a few hotspots are distinctly deficient at 25°C. In both conditions, Holliday junctions at DNA break hotspots form more frequently between sister chromatids than between homologs, but a novel species, perhaps arising from invasion by only one end of broken DNA, is more readily observed at 25°C. Our results confirm the validity of previous assays of recombination intermediates in S. pombe and provide new information on the mechanism of meiotic recombination. PMID:24089141

  3. Meiotic Recombination Initiation in and around Retrotransposable Elements in Saccharomyces cerevisiae

    PubMed Central

    Sasaki, Mariko; Keeney, Scott

    2013-01-01

    Meiotic recombination is initiated by large numbers of developmentally programmed DNA double-strand breaks (DSBs), ranging from dozens to hundreds per cell depending on the organism. DSBs formed in single-copy sequences provoke recombination between allelic positions on homologous chromosomes, but DSBs can also form in and near repetitive elements such as retrotransposons. When they do, they create a risk for deleterious genome rearrangements in the germ line via recombination between non-allelic repeats. A prior study in budding yeast demonstrated that insertion of a Ty retrotransposon into a DSB hotspot can suppress meiotic break formation, but properties of Ty elements in their most common physiological contexts have not been addressed. Here we compile a comprehensive, high resolution map of all Ty elements in the rapidly and efficiently sporulating S. cerevisiae strain SK1 and examine DSB formation in and near these endogenous retrotransposable elements. SK1 has 30 Tys, all but one distinct from the 50 Tys in S288C, the source strain for the yeast reference genome. From whole-genome DSB maps and direct molecular assays, we find that DSB levels and chromatin structure within and near Tys vary widely between different elements and that local DSB suppression is not a universal feature of Ty presence. Surprisingly, deletion of two Ty elements weakened adjacent DSB hotspots, revealing that at least some Ty insertions promote rather than suppress nearby DSB formation. Given high strain-to-strain variability in Ty location and the high aggregate burden of Ty-proximal DSBs, we propose that meiotic recombination is an important component of host-Ty interactions and that Tys play critical roles in genome instability and evolution in both inbred and outcrossed sexual cycles. PMID:24009525

  4. Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain.

    PubMed Central

    Kirkpatrick, D T; Fan, Q; Petes, T D

    1999-01-01

    The DNA sequences located upstream of the yeast HIS4 represent a very strong meiotic recombination hotspot. Although the activity of this hotspot requires the transcription activator Rap1p, the level of HIS4 transcription is not directly related to the level of recombination. We find that the recombination-stimulating activity of Rap1p requires the transcription activation domain of the protein. We show that a hybrid protein with the Gal4p DNA-binding domain and the Rap1p activation domain can stimulate recombination in a strain in which Gal4p-binding sites are inserted upstream of HIS4. In addition, we find recombination hotspot activity associated with the Gal4p DNA-binding sites that is independent of known transcription factors. We suggest that yeast cells have two types of recombination hotspots, alpha (transcription factor dependent) and beta (transcription factor independent). PMID:10224246

  5. Modulation of meiotic homologous recombination by DNA helicases.

    PubMed

    Lorenz, Alexander

    2016-12-08

    DNA helicases are ATP-driven motor proteins which translocate along DNA capable of dismantling DNA-DNA interactions and/or removing proteins bound to DNA. These biochemical capabilities make DNA helicases main regulators of crucial DNA metabolic processes, including DNA replication, DNA repair, and genetic recombination. This budding topic will focus on reviewing the function of DNA helicases important for homologous recombination during meiosis, and discuss recent advances in how these modulators of meiotic recombination are themselves regulated. The emphasis is placed on work in the two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has vastly expanded our understanding of meiotic homologous recombination, a process whose correct execution is instrumental for healthy gamete formation, and thus functioning sexual reproduction. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe.

    PubMed

    Lorenz, Alexander; Estreicher, Anna; Kohli, Jürg; Loidl, Josef

    2006-08-01

    In fission yeast, meiotic prophase nuclei develop structures known as linear elements (LinEs), instead of a canonical synaptonemal complex. LinEs contain Rec10 protein. While Rec10 is essential for meiotic recombination, the precise role of LinEs in this process is unknown. Using in situ immunostaining, we show that Rec7 (which is required for meiosis-specific DNA double-strand break (DSB) formation) aggregates in foci on LinEs. The strand exchange protein Rad51, which is known to mark the sites of DSBs, also localizes to LinEs, although to a lesser degree. The number of Rec7 foci corresponds well with the average number of genetic recombination events per meiosis suggesting that Rec7 marks the sites of recombination. Rec7 and Rad51 foci do not co-localize, presumably because they act sequentially on recombination sites. The localization of Rec7 is dependent on Rec10 but independent of the DSB-inducing protein Rec12/Spo11. Neither Rec7 nor Rad51 localization depends on the LinE-associated proteins Hop1 and Mek1, but the formation of Rad51 foci depends on Rec10, Rec7, and, as expected, Rec12/Spo11. We propose that LinEs form around designated recombination sites before the induction of DSBs and that most, if not all, meiotic recombination initiates within the setting provided by LinEs.

  7. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots

    PubMed Central

    Baker, Christopher L.; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M.; Paigen, Kenneth

    2015-01-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9 +/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape. PMID:26368021

  8. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots.

    PubMed

    Baker, Christopher L; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M; Paigen, Kenneth

    2015-09-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape.

  9. Targeted induction of meiotic double-strand breaks reveals chromosomal domain-dependent regulation of Spo11 and interactions among potential sites of meiotic recombination.

    PubMed

    Fukuda, Tomoyuki; Kugou, Kazuto; Sasanuma, Hiroyuki; Shibata, Takehiko; Ohta, Kunihiro

    2008-02-01

    Meiotic recombination is initiated by programmed DNA double-strand break (DSB) formation mediated by Spo11. DSBs occur with frequency in chromosomal regions called hot domains but are seldom seen in cold domains. To obtain insights into the determinants of the distribution of meiotic DSBs, we examined the effects of inducing targeted DSBs during yeast meiosis using a UAS-directed form of Spo11 (Gal4BD-Spo11) and a meiosis-specific endonuclease, VDE (PI-SceI). Gal4BD-Spo11 cleaved its target sequence (UAS) integrated in hot domains but rarely in cold domains. However, Gal4BD-Spo11 did bind to UAS and VDE efficiently cleaved its recognition sequence in either context, suggesting that a cold domain is not a region of inaccessible or uncleavable chromosome structure. Importantly, self-association of Spo11 occurred at UAS in a hot domain but not in a cold domain, raising the possibility that Spo11 remains in an inactive intermediate state in cold domains. Integration of UAS adjacent to known DSB hotspots allowed us to detect competitive interactions among hotspots for activation. Moreover, the presence of VDE-introduced DSB repressed proximal hotspot activity, implicating DSBs themselves in interactions among hotspots. Thus, potential sites for Spo11-mediated DSB are subject to domain-specific and local competitive regulations during and after DSB formation.

  10. Molecular characterization of the Pb recombination hotspot in the mouse major histocompatibility complex class II region.

    PubMed

    Isobe, Taku; Yoshino, Masayasu; Mizuno, Ken-Ichi; Lindahl, Kirsten Fischer; Koide, Tsuyoshi; Gaudieri, Silvana; Gojobori, Takashi; Shiroishi, Toshihiko

    2002-08-01

    In the mouse major histocompatibility complex (MHC) class II region, meiotic recombination breakpoints are clustered in four specific sites known as hotspots. Here we reveal the primary structure of a hotspot near the Pb gene. A total of 12 crossover points were found to be confined to a 15-kb DNA segment of the Pb pseudogene. Moreover, the crossover points are concentrated in a 341-bp segment, which includes a part of exon 4 and intron 4 of the Pb gene. All four MHC hotspots appear to be located within genes or at the 3' end of genes, contrasting with characterized hotspots in budding yeast, which are mostly located at the 5'-promoter regions of genes. The Pb hotspot has several consensus motifs, an octamer transcription factor-binding sequence, the B-motif-like transcription factor-binding sequence, and tandem repeats of tetramer sequence-all of which are shared by the other three hotspots. Systematic analysis of the public database demonstrated that the full motif set occurs rarely in the nucleotide sequence of the entire MHC class II region. All results suggest that the motif set has an indispensable role in determining their site specificity.

  11. Recombination hotspots rather than population history dominate linkage disequilibrium in the MHC class II region.

    PubMed

    Kauppi, Liisa; Sajantila, Antti; Jeffreys, Alec J

    2003-01-01

    Recombination, demographic history, drift and selection influence the extent of linkage disequilibrium (LD) in the human genome, but their relative contributions remain unclear. To investigate the effect of meiotic recombination versus population history on LD, three populations with different demographic histories (UK north Europeans, Saami and Zimbabweans) were genotyped for high-frequency single-nucleotide polymorphisms (SNPs) across a 75 kb DNA segment of the MHC class II region. This region spans three well-characterized recombination hotspots and a 60 kb long LD block. Despite a high level of underlying haplotype diversity and considerable divergence in haplotype composition between populations, all three populations showed very similar patterns of LD. Surprisingly, the entire 60 kb LD block was present even in Africans, although it was relatively difficult to detect owing to a systematic deficiency of high frequency SNPs. In contrast, DNA within recombination hotspots did not show this low nucleotide diversity in Africans. Thus, while population history has some influence on LD, our findings suggest that recombination hotspots play a major global role in shaping LD patterns as well as helping to maintain localized SNP diversity in this region of the MHC.

  12. Control of meiotic recombination frequency in plant genomes.

    PubMed

    Henderson, Ian R

    2012-11-01

    Sexual eukaryotes reproduce via the meiotic cell division, where ploidy is halved and homologous chromosomes undergo reciprocal genetic exchange, termed crossover (CO). CO frequency has a profound effect on patterns of genetic variation and species evolution. Relative CO rates vary extensively both within and between plant genomes. Plant genome size varies by over 1000-fold, largely due to differential expansion of repetitive sequences, and increased genome size is associated with reduced CO frequency. Gene versus repeat sequences associate with distinct chromatin modifications, and evidence from plant genomes indicates that this epigenetic information influences CO patterns. This is consistent with data from diverse eukaryotes that demonstrate the importance of chromatin structure for control of meiotic recombination. In this review I will discuss CO frequency patterns in plant genomes and recent advances in understanding recombination distributions.

  13. Meiotic recombination analysis in female ducks (Anas platyrhynchos).

    PubMed

    Pigozzi, M I; Del Priore, L

    2016-06-01

    Meiotic recombination in female ducks was directly studied by immunolocalization of MLH1 protein, a mismatch repair protein of mature recombination nodules. In total, 6820 crossovers were scored along the autosomal synaptonemal complexes in 122 meiotic nuclei. From this analysis we predict that the female map length of the duck is 2845 cM, with a genome wide recombination rate of 2 cM/Mb. MLH1-focus mapping along the six largest bivalents shows regional variations of recombination frequencies that can be linked to differences in chromosome morphology. From this MLH1 mapping it can be inferred that distally located markers will appear more separated in genetic maps than physically equidistant markers located near the centromeres on bivalents 1 and 2. Instead, markers at interstitial positions on the acrocentric bivalents 3-6 will appear more tightly linked than expected on the basis of their physical distance because recombination is comparatively lower at the mid region of these chromosomes. The present results provide useful information to complement linkage mapping in ducks and extend previous knowledge about the variation of recombination rates among domestic Galloanserae.

  14. OsHUS1 facilitates accurate meiotic recombination in rice.

    PubMed

    Che, Lixiao; Wang, Kejian; Tang, Ding; Liu, Qiaoquan; Chen, Xiaojun; Li, Yafei; Hu, Qing; Shen, Yi; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan

    2014-06-01

    Meiotic recombination normally takes place between allelic sequences on homologs. This process can also occur between non-allelic homologous sequences. Such ectopic interaction events can lead to chromosome rearrangements and are normally avoided. However, much remains unknown about how these ectopic interaction events are sensed and eliminated. In this study, using a screen in rice, we characterized a homolog of HUS1 and explored its function in meiotic recombination. In Oshus1 mutants, in conjunction with nearly normal homologous pairing and synapsis, vigorous, aberrant ectopic interactions occurred between nonhomologous chromosomes, leading to multivalent formation and subsequent chromosome fragmentation. These ectopic interactions relied on programmed meiotic double strand breaks and were formed in a manner independent of the OsMER3-mediated interference-sensitive crossover pathway. Although early homologous recombination events occurred normally, the number of interference-sensitive crossovers was reduced in the absence of OsHUS1. Together, our results indicate that OsHUS1 might be involved in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex.

  15. PRDM9 interactions with other proteins provide a link between recombination hotspots and the chromosomal axis in meiosis.

    PubMed

    Parvanov, Emil D; Tian, Hui; Billings, Timothy; Saxl, Ruth L; Spruce, Catrina; Aithal, Rakesh; Krejci, Lumir; Paigen, Kenneth; Petkov, Petko M

    2017-02-01

    In mammals, meiotic recombination occurs at 1- to 2-kb genomic regions termed hotspots, whose positions and activities are determined by PRDM9, a DNA-binding histone methyltransferase. We show that the KRAB domain of PRDM9 forms complexes with additional proteins to allow hotspots to proceed into the next phase of recombination. By a combination of yeast-two hybrid assay, in vitro binding, and coimmunoprecipitation from mouse spermatocytes, we identified four proteins that directly interact with PRDM9's KRAB domain, namely CXXC1, EWSR1, EHMT2, and CDYL. These proteins are coexpressed in spermatocytes at the early stages of meiotic prophase I, the limited period when PRDM9 is expressed. We also detected association of PRDM9-bound complexes with the meiotic cohesin REC8 and the synaptonemal complex proteins SYCP3 and SYCP1. Our results suggest a model in which PRDM9-bound hotspot DNA is brought to the chromosomal axis by the action of these proteins, ensuring the proper chromatin and spatial environment for subsequent recombination events.

  16. Meiotic recombination cold spots in chromosomal cohesion sites.

    PubMed

    Ito, Masaru; Kugou, Kazuto; Fawcett, Jeffrey A; Mura, Sachiko; Ikeda, Sho; Innan, Hideki; Ohta, Kunihiro

    2014-05-01

    Meiotic chromosome architecture called 'axis-loop structures' and histone modifications have been shown to regulate the Spo11-dependent formation of DNA double-strand breaks (DSBs) that trigger meiotic recombination. Using genome-wide chromatin immunoprecipitation (ChIP) analyses followed by deep sequencing, we compared the genome-wide distribution of the axis protein Rec8 (the kleisin subunit of meiotic cohesin) with that of oligomeric DNA covalently bound to Spo11, indicative of DSB sites. The frequency of DSB sites is overall constant between Rec8 binding sites. However, DSB cold spots are observed in regions spanning ±0.8 kb around Rec8 binding sites. The axis-associated cold spots are not due to the exclusion of Spo11 localization from the axis, because ChIP experiments showed that substantial Spo11 persists at Rec8 binding sites during DSB formation. Spo11 fused with Gal4 DNA binding domain (Gal4BD-Spo11) tethered in close proximity (≤0.8 kb) to Rec8 binding sites hardly forms meiotic DSBs, in contrast with other regions. In addition, H3K4 trimethylation (H3K4me3) remarkably decreases at Rec8 binding sites. These results suggest that reduced histone H3K4me3 in combination with inactivation of Spo11 activity on the axis discourages DSB hot spot formation.

  17. Unique properties of multiple tandem copies of the M26 recombination hotspot in mitosis and meiosis in Schizosaccharomyces pombe.

    PubMed

    Steiner, Walter W; Recor, Chelsea L; Zakrzewski, Bethany M

    2016-11-15

    The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles.

  18. Understanding and Manipulating Meiotic Recombination in Plants[OPEN

    PubMed Central

    2017-01-01

    Meiosis is a specialized cell division, essential in most reproducing organisms to halve the number of chromosomes, thereby enabling the restoration of ploidy levels during fertilization. A key step of meiosis is homologous recombination, which promotes homologous pairing and generates crossovers (COs) to connect homologous chromosomes until their separation at anaphase I. These CO sites, seen cytologically as chiasmata, represent a reciprocal exchange of genetic information between two homologous nonsister chromatids. This gene reshuffling during meiosis has a significant influence on evolution and also plays an essential role in plant breeding, because a successful breeding program depends on the ability to bring the desired combinations of alleles on chromosomes. However, the number and distribution of COs during meiosis is highly constrained. There is at least one CO per chromosome pair to ensure accurate segregation of homologs, but in most organisms, the CO number rarely exceeds three regardless of chromosome size. Moreover, their positions are not random on chromosomes but exhibit regional preference. Thus, genes in recombination-poor regions tend to be inherited together, hindering the generation of novel allelic combinations that could be exploited by breeding programs. Recently, much progress has been made in understanding meiotic recombination. In particular, many genes involved in the process in Arabidopsis (Arabidopsis thaliana) have been identified and analyzed. With the coming challenges of food security and climate change, and our enhanced knowledge of how COs are formed, the interest and needs in manipulating CO formation are greater than ever before. In this review, we focus on advances in understanding meiotic recombination and then summarize the attempts to manipulate CO formation. Last, we pay special attention to the meiotic recombination in polyploidy, which is a common genomic feature for many crop plants. PMID:28108697

  19. Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination.

    PubMed

    Panizza, Silvia; Mendoza, Marco A; Berlinger, Marc; Huang, Lingzhi; Nicolas, Alain; Shirahige, Katsuhiko; Klein, Franz

    2011-08-05

    Meiotic recombination between homologous chromosomes initiates via programmed DNA double-strand breaks (DSBs), generated by complexes comprising Spo11 transesterase plus accessory proteins. DSBs arise concomitantly with the development of axial chromosome structures, where the coalescence of axis sites produces linear arrays of chromatin loops. Recombining DNA sequences map to loops, but are ultimately tethered to the underlying axis. How and when such tethering occurs is currently unclear. Using ChIPchip in yeast, we show that Spo11-accessory proteins Rec114, Mer2, and Mei4 stably interact with chromosome axis sequences, upon phosphorylation of Mer2 by S phase Cdk. This axis tethering requires meiotic axis components (Red1/Hop1) and is modulated in a domain-specific fashion by cohesin. Loss of Rec114, Mer2, and Mei4 binding correlates with loss of DSBs. Our results strongly suggest that hotspot sequences become tethered to axis sites by the DSB machinery prior to DSB formation.

  20. Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response

    PubMed Central

    Najor, Nicole A.; Weatherford, Layne; Brush, George S.

    2016-01-01

    In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs) are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control. PMID:27678521

  1. Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion

    PubMed Central

    Laureau, Raphaëlle; Loeillet, Sophie; Salinas, Francisco; Bergström, Anders; Legoix-Né, Patricia; Liti, Gianni; Nicolas, Alain

    2016-01-01

    In somatic cells, recombination between the homologous chromosomes followed by equational segregation leads to loss of heterozygosity events (LOH), allowing the expression of recessive alleles and the production of novel allele combinations that are potentially beneficial upon Darwinian selection. However, inter-homolog recombination in somatic cells is rare, thus reducing potential genetic variation. Here, we explored the property of S. cerevisiae to enter the meiotic developmental program, induce meiotic Spo11-dependent double-strand breaks genome-wide and return to mitotic growth, a process known as Return To Growth (RTG). Whole genome sequencing of 36 RTG strains derived from the hybrid S288c/SK1 diploid strain demonstrates that the RTGs are bona fide diploids with mosaic recombined genome, derived from either parental origin. Individual RTG genome-wide genotypes are comprised of 5 to 87 homozygous regions due to the loss of heterozygous (LOH) events of various lengths, varying between a few nucleotides up to several hundred kilobases. Furthermore, we show that reiteration of the RTG process shows incremental increases of homozygosity. Phenotype/genotype analysis of the RTG strains for the auxotrophic and arsenate resistance traits validates the potential of this procedure of genome diversification to rapidly map complex traits loci (QTLs) in diploid strains without undergoing sexual reproduction. PMID:26828862

  2. Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster.

    PubMed Central

    Baker, B S; Boyd, J B; Carpenter, A T; Green, M M; Nguyen, T D; Ripoll, P; Smith, P D

    1976-01-01

    Recombination-defective meiotic mutants and mutagen-sensitive mutants of D. melanogaster have been examined for their effects on meiotic chromosome behavior, sensitivity to killing by mutagens, somatic chromosome integrity, and DNA repair processes. Several loci have been identified that specify functions that are necessary for both meiotic recombination and DNA repair processes, whereas mutants at combination and DNA repair processes, whereas mutants at other loci appear to be defective in only one pathway of DNA processing. PMID:825857

  3. Meiotic recombination initiated by a double-strand break in rad50{Delta} yeast cells otherwise unable to initiate meiotic recombination

    SciTech Connect

    Malkova, A.; Haber, J.E.; Dawson, D.

    1996-06-01

    Meiotic recombination in Saccharomyces cerevisiae is initiated by double-strand breaks (DSBs). We have developed a system to compare the properties of meiotic DSBs with those created by the site-specific HO endonuclease. HO endonuclease was expressed under the control of the meiotic-specific SPO13 promoter, creating a DSB at a single site on one of yeast`s 16 chromosomes. In Rad{sup +} strains the times of appearance of the HO-induced DSBs and of subsequent recombinants are coincident with those induced by normal meiotic DSBs. Physical monitoring of DNA showed that SPO13::HO induced gene conversions both in Rad{sup +} and in rad50{Delta} cells that cannot initiate normal meiotic DSBs. We find that the RAD50 gene is important, but not essential, for recombination even after a DSB has been created in a meiotic cell. In rad50{Delta} cells, some DSBs are not repaired until a broken chromosome has been packaged into a spore and is subsequently germinated. This suggests that a broken chromosome does not signal an arrest of progression through meiosis. The recombination defect in rad50{Delta} diploids is not, however, meiotic specific, as mitotic rad50 diploids, experiencing an HO-induced DSB, exhibit similar departures from wild-type recombination. 57 refs., 5 figs., 3 tabs.

  4. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica).

    PubMed

    Mary, Nicolas; Barasc, Harmonie; Ferchaud, Stéphane; Billon, Yvon; Meslier, Frédéric; Robelin, David; Calgaro, Anne; Loustau-Dudez, Anne-Marie; Bonnet, Nathalie; Yerle, Martine; Acloque, Hervé; Ducos, Alain; Pinton, Alain

    2014-01-01

    For the first time in the domestic pig, meiotic recombination along the 18 porcine autosomes was directly studied by immunolocalization of MLH1 protein. In total, 7,848 synaptonemal complexes from 436 spermatocytes were analyzed, and 13,969 recombination sites were mapped. Individual chromosomes for 113 of the 436 cells (representing 2,034 synaptonemal complexes) were identified by immunostaining and fluorescence in situ hybridization (FISH). The average total length of autosomal synaptonemal complexes per cell was 190.3 µm, with 32.0 recombination sites (crossovers), on average, per cell. The number of crossovers and the lengths of the autosomal synaptonemal complexes showed significant intra- (i.e. between cells) and inter-individual variations. The distributions of recombination sites within each chromosomal category were similar: crossovers in metacentric and submetacentric chromosomes were concentrated in the telomeric regions of the p- and q-arms, whereas two hotspots were located near the centromere and in the telomeric region of acrocentrics. Lack of MLH1 foci was mainly observed in the smaller chromosomes, particularly chromosome 18 (SSC18) and the sex chromosomes. All autosomes displayed positive interference, with a large variability between the chromosomes.

  5. Detecting Recombination Hotspots from Patterns of Linkage Disequilibrium

    PubMed Central

    Wall, Jeffrey D.; Stevison, Laurie S.

    2016-01-01

    With recent advances in DNA sequencing technologies, it has become increasingly easy to use whole-genome sequencing of unrelated individuals to assay patterns of linkage disequilibrium (LD) across the genome. One type of analysis that is commonly performed is to estimate local recombination rates and identify recombination hotspots from patterns of LD. One method for detecting recombination hotspots, LDhot, has been used in a handful of species to further our understanding of the basic biology of recombination. For the most part, the effectiveness of this method (e.g., power and false positive rate) is unknown. In this study, we run extensive simulations to compare the effectiveness of three different implementations of LDhot. We find large differences in the power and false positive rates of these different approaches, as well as a strong sensitivity to the window size used (with smaller window sizes leading to more accurate estimation of hotspot locations). We also compared our LDhot simulation results with comparable simulation results obtained from a Bayesian maximum-likelihood approach for identifying hotspots. Surprisingly, we found that the latter computationally intensive approach had substantially lower power over the parameter values considered in our simulations. PMID:27226166

  6. Extensive Interallelic Polymorphisms Drive Meiotic Recombination into a Crossover Pathway

    PubMed Central

    Dooner, Hugo K.

    2002-01-01

    Recombinants isolated from most meiotic intragenic recombination experiments in maize, but not in yeast, are borne principally on crossover chromosomes. This excess of crossovers is not explained readily by the canonical double-strand break repair model of recombination, proposed to account for a large body of yeast data, which predicts that crossovers (COs) and noncrossovers (NCOs) should be recovered equally. An attempt has been made here to identify general rules governing the recovery of the CO and NCO classes of intragenic recombinants in maize. Recombination was analyzed in bz heterozygotes between a variety of mutations derived from the same or different progenitor alleles. The mutations include point mutations, transposon insertions, and transposon excision footprints. Consequently, the differences between the bz heteroalleles ranged from just two nucleotides to many nucleotides, indels, and insertions. In this article, allelic pairs differing at only two positions are referred to as dimorphic to distinguish them from polymorphic pairs, which differ at multiple positions. The present study has revealed the following effects at these bz heteroalleles: (1) recombination between polymorphic heteroalleles produces mostly CO chromosomes; (2) recombination between dimorphic heteroalleles produces both CO and NCO chromosomes, in ratios apparently dependent on the nature of the heteroalleles; and (3) in dimorphic heterozygotes, the two NCO classes are recovered in approximately equal numbers when the two mutations are point mutations but not when one or both mutations are insertions. These observations are discussed in light of a recent version of the double-strand break repair model of recombination that postulates separate pathways for the formation of CO and NCO products. PMID:12034905

  7. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss.

    PubMed Central

    Chambers, S R; Hunter, N; Louis, E J; Borts, R H

    1996-01-01

    Efficient genetic recombination requires near-perfect homology between participating molecules. Sequence divergence reduces the frequency of recombination, a process that is dependent on the activity of the mismatch repair system. The effects of chromosomal divergence in diploids of Saccharomyces cerevisiae in which one copy of chromosome III is derived from a closely related species, Saccharomyces paradoxus, have been examined. Meiotic recombination between the diverged chromosomes is decreased by 25-fold. Spore viability is reduced with an observable increase in the number of tetrads with only two or three viable spores. Asci with only two viable spores are disomic for chromosome III, consistent with meiosis I nondisjunction of the homeologs. Asci with three viable spores are highly enriched for recombinants relative to tetrads with four viable spores. In 96% of the class with three viable spores, only one spore possesses a recombinant chromosome III, suggesting that the recombination process itself contributes to meiotic death. This phenomenon is dependent on the activities of the mismatch repair genes PMS1 and MSH2. A model of mismatch-stimulated chromosome loss is proposed to account for this observation. As expected, crossing over is increased in pms1 and msh2 mutants. Furthermore, genetic exchange in pms1 msh2 double mutants is affected to a greater extent than in either mutant alone, suggesting that the two proteins act independently to inhibit homeologous recombination. All mismatch repair-deficient strains exhibited reductions in the rate of chromosome III nondisjunction. PMID:8887641

  8. X chromosome effect on maternal recombination and meiotic drive in the mouse.

    PubMed Central

    de La Casa-Esperón, Elena; Loredo-Osti, J Concepción; Pardo-Manuel de Villena, Fernando; Briscoe, Tammi L; Malette, Jan Michel; Vaughan, Joe E; Morgan, Kenneth; Sapienza, Carmen

    2002-01-01

    We observed that maternal meiotic drive favoring the inheritance of DDK alleles at the Om locus on mouse chromosome 11 was correlated with the X chromosome inactivation phenotype of (C57BL/6-Pgk1(a) x DDK)F(1) mothers. The basis for this unexpected observation appears to lie in the well-documented effect of recombination on meiotic drive that results from nonrandom segregation of chromosomes. Our analysis of genome-wide levels of meiotic recombination in females that vary in their X-inactivation phenotype indicates that an allelic difference at an X-linked locus is responsible for modulating levels of recombination in oocytes. PMID:12196408

  9. Mouse PRDM9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination.

    PubMed

    Grey, Corinne; Barthès, Pauline; Chauveau-Le Friec, Gaëlle; Langa, Francina; Baudat, Frédéric; de Massy, Bernard

    2011-10-01

    Meiotic recombination generates reciprocal exchanges between homologous chromosomes (also called crossovers, COs) that are essential for proper chromosome segregation during meiosis and are a major source of genome diversity by generating new allele combinations. COs have two striking properties: they occur at specific sites, called hotspots, and these sites evolve rapidly. In mammals, the Prdm9 gene, which encodes a meiosis-specific histone H3 methyltransferase, has recently been identified as a determinant of CO hotspots. Here, using transgenic mice, we show that the sole modification of PRDM9 zinc fingers leads to changes in hotspot activity, histone H3 lysine 4 trimethylation (H3K4me3) levels, and chromosome-wide distribution of COs. We further demonstrate by an in vitro assay that the PRDM9 variant associated with hotspot activity binds specifically to DNA sequences located at the center of the three hotspots tested. Remarkably, we show that mutations in cis located at hotspot centers and associated with a decrease of hotspot activity affect PRDM9 binding. Taken together, these results provide the direct demonstration that Prdm9 is a master regulator of hotspot localization through the DNA binding specificity of its zinc finger array and that binding of PRDM9 at hotspots promotes local H3K4me3 enrichment.

  10. Fine-scale maps of recombination rates and hotspots in the mouse genome.

    PubMed

    Brunschwig, Hadassa; Levi, Liat; Ben-David, Eyal; Williams, Robert W; Yakir, Benjamin; Shifman, Sagiv

    2012-07-01

    Recombination events are not uniformly distributed and often cluster in narrow regions known as recombination hotspots. Several studies using different approaches have dramatically advanced our understanding of recombination hotspot regulation. Population genetic data have been used to map and quantify hotspots in the human genome. Genetic variation in recombination rates and hotspots usage have been explored in human pedigrees, mouse intercrosses, and by sperm typing. These studies pointed to the central role of the PRDM9 gene in hotspot modulation. In this study, we used single nucleotide polymorphisms (SNPs) from whole-genome resequencing and genotyping studies of mouse inbred strains to estimate recombination rates across the mouse genome and identified 47,068 historical hotspots--an average of over 2477 per chromosome. We show by simulation that inbred mouse strains can be used to identify positions of historical hotspots. Recombination hotspots were found to be enriched for the predicted binding sequences for different alleles of the PRDM9 protein. Recombination rates were on average lower near transcription start sites (TSS). Comparing the inferred historical recombination hotspots with the recent genome-wide mapping of double-strand breaks (DSBs) in mouse sperm revealed a significant overlap, especially toward the telomeres. Our results suggest that inbred strains can be used to characterize and study the dynamics of historical recombination hotspots. They also strengthen previous findings on mouse recombination hotspots, and specifically the impact of sequence variants in Prdm9.

  11. Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome

    PubMed Central

    Fowler, Kyle R.; Sasaki, Mariko; Milman, Neta

    2014-01-01

    Fission yeast Rec12 (Spo11 homolog) initiates meiotic recombination by forming developmentally programmed DNA double-strand breaks (DSBs). DSB distributions influence patterns of heredity and genome evolution, but the basis of the highly nonrandom choice of Rec12 cleavage sites is poorly understood, largely because available maps are of relatively low resolution and sensitivity. Here, we determined DSBs genome-wide at near-nucleotide resolution by sequencing the oligonucleotides attached to Rec12 following DNA cleavage. The single oligonucleotide size class allowed us to deeply sample all break events. We find strong evidence across the genome for differential DSB repair accounting for crossover invariance (constant cM/kb in spite of DSB hotspots). Surprisingly, about half of all crossovers occur in regions where DSBs occur at low frequency and are widely dispersed in location from cell to cell. These previously undetected, low-level DSBs thus play an outsized and crucial role in meiosis. We further find that the influence of underlying nucleotide sequence and chromosomal architecture differs in multiple ways from that in budding yeast. DSBs are not strongly restricted to nucleosome-depleted regions, as they are in budding yeast, but are nevertheless spatially influenced by chromatin structure. Our analyses demonstrate that evolutionarily fluid factors contribute to crossover initiation and regulation. PMID:25024163

  12. Dynamics of male meiotic recombination frequency during plant development using Fluorescent Tagged Lines in Arabidopsis thaliana.

    PubMed

    Li, Fan; De Storme, Nico; Geelen, Danny

    2017-02-13

    Meiotic homologous recombination plays a central role in creating genetic variability, making it an essential biological process relevant to evolution and crop breeding. In this study, we used pollen-specific fluorescent tagged lines (FTLs) to measure male meiotic recombination frequency during the development of Arabidopsis thaliana. Interestingly, a subset of pollen grains consistently shows loss of fluorescence expression in tested lines. Using nine independent FTL intervals, the spatio-temporal dynamics of male recombination frequency was assessed during plant development, considering both shoot type and plant age as independent parameters. In most genomic intervals assayed, male meiotic recombination frequency is highly consistent during plant development, showing no significant change between different shoot types and during plant aging. However, in some genomic regions, such as I1a and I5a, a small but significant effect of either developmental position or plant age were observed, indicating that the meiotic CO frequency in those intervals varies during plant development. Furthermore, from an overall view of all nine genomic intervals assayed, both primary and tertiary shoots show a similar dynamics of increasing recombination frequency during development, while secondary and lateral shoots remain highly stable. Our results provide new insights in the dynamics of male meiotic recombination frequency during plant development.

  13. Dynamics of male meiotic recombination frequency during plant development using Fluorescent Tagged Lines in Arabidopsis thaliana

    PubMed Central

    Li, Fan; De Storme, Nico; Geelen, Danny

    2017-01-01

    Meiotic homologous recombination plays a central role in creating genetic variability, making it an essential biological process relevant to evolution and crop breeding. In this study, we used pollen-specific fluorescent tagged lines (FTLs) to measure male meiotic recombination frequency during the development of Arabidopsis thaliana. Interestingly, a subset of pollen grains consistently shows loss of fluorescence expression in tested lines. Using nine independent FTL intervals, the spatio-temporal dynamics of male recombination frequency was assessed during plant development, considering both shoot type and plant age as independent parameters. In most genomic intervals assayed, male meiotic recombination frequency is highly consistent during plant development, showing no significant change between different shoot types and during plant aging. However, in some genomic regions, such as I1a and I5a, a small but significant effect of either developmental position or plant age were observed, indicating that the meiotic CO frequency in those intervals varies during plant development. Furthermore, from an overall view of all nine genomic intervals assayed, both primary and tertiary shoots show a similar dynamics of increasing recombination frequency during development, while secondary and lateral shoots remain highly stable. Our results provide new insights in the dynamics of male meiotic recombination frequency during plant development. PMID:28211906

  14. Recombination Hotspots and Population Structure in Plasmodium falciparum

    PubMed Central

    Mu, Jianbing; Duan, Junhui; McGee, Kate M; Joy, Deirdre A; McVean, Gilean A. T

    2005-01-01

    Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasite's short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations. Indeed, extensive LD surrounding drug-resistant genes has been observed, indicating that recombination and selection play important roles in shaping recent parasite genome evolution. These studies, however, provide only limited information about haplotype variation at local scales. Here we describe the first (to our knowledge) chromosome-wide SNP haplotype and population recombination maps for a global collection of malaria parasites, including the 3D7 isolate, whose genome has been sequenced previously. The parasites are clustered according to continental origin, but alternative groupings were obtained using SNPs at 37 putative transporter genes that are potentially under selection. Geographic isolation and highly variable multiple infection rates are the major factors affecting haplotype structure. Variation in effective recombination rates is high, both among populations and along the chromosome, with recombination hotspots conserved among populations at chromosome ends. This study supports the feasibility of genome-wide association studies in some parasite populations. PMID:16144426

  15. Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination.

    PubMed

    Sansam, Christopher L; Pezza, Roberto J

    2015-07-01

    During prophase of meiosis I, homologous chromosomes interact and undergo recombination. Successful completion of these processes is required in order for the homologous chromosomes to mount the meiotic spindle as a pair. The organization of the chromosomes into pairs ensures orderly segregation to opposite poles of the dividing cell, such that each gamete receives one copy of each chromosome. Chiasmata, the cytological manifestation of crossover products of recombination, physically connect the homologs in pairs, providing a linkage that facilitates their segregation. Consequently, mutations that reduce the level of recombination are invariably associated with increased errors in meiotic chromosome segregation. In this review, we focus on recent biochemical and genetic advances in elucidating the mechanisms of meiotic DNA strand exchange catalyzed by the Dmc1 protein. We also discuss the mode by which two recombination mediators, Hop2 and Mnd1, facilitate rate-limiting steps of DNA strand exchange catalyzed by Dmc1.

  16. Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination

    PubMed Central

    Sansam, Christopher L; Pezza, Roberto J

    2015-01-01

    During prophase of meiosis I, homologous chromosomes interact and undergo recombination. Successful completion of these processes is required in order for the homologous chromosomes to mount the meiotic spindle as a pair. The organization of the chromosomes into pairs ensures orderly segregation to opposite poles of the dividing cell, such that each gamete receives one copy of each chromosome. Chiasmata, the cytological manifestation of crossover products of recombination, physically connect the homologs in pairs, providing a linkage that facilitates their segregation. Consequently, mutations that reduce the level of recombination are invariably associated with increased errors in meiotic chromosome segregation. In this review, we focus on recent biochemical and genetic advances in elucidating the mechanisms of meiotic DNA strand exchange catalyzed by the Dmc1 protein. We also discuss the mode by which two recombination mediators, Hop2 and Mnd1, facilitate rate-limiting steps of DNA strand exchange catalyzed by Dmc1. PMID:25953379

  17. Functional interactions between SPO11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae.

    PubMed

    Kee, Kehkooi; Keeney, Scott

    2002-01-01

    In Saccharomyces cerevisiae, formation of the DNA double-strand breaks (DSBs) that initiate meiotic recombination requires the products of at least 10 genes. Spo11p is thought to be the catalytic subunit of the DNA cleaving activity, but the roles of the other proteins, and the interactions among them, are not well understood. This study demonstrates genetic and physical interactions between the products of SPO11 and another early meiotic gene required for DSB formation, REC102. We found that epitope-tagged versions of SPO11 and REC102 that by themselves were capable of supporting normal or nearly normal levels of meiotic recombination conferred a severe synthetic cold-sensitive phenotype when combined in the same cells. DSB formation, meiotic gene conversion, and spore viability were drastically reduced in the doubly tagged strain at a nonpermissive temperature. This conditional defect could be partially rescued by expression of untagged SPO11, but not by expression of untagged REC102, indicating that tagged REC102 is fully dominant for this synthetic phenotype. Both tagged and wild-type Spo11p co-immunoprecipitated with tagged Rec102p from meiotic cell extracts, indicating that these proteins are present in a common complex in vivo. Tagged Rec102p localized to the nucleus in whole cells and to chromatin on spread meiotic chromosomes. Our results are consistent with the idea that a multiprotein complex that includes Spo11p and Rec102p promotes meiotic DSB formation.

  18. Sites of strong Rec12/Spo11 binding in the fission yeast genome are associated with meiotic recombination and with centromeres

    PubMed Central

    Ludin, Katja; Mata, Juan; Watt, Stephen; Lehmann, Elisabeth; Bähler, Jürg; Kohli, Jürg

    2013-01-01

    Meiotic recombination arises from Rec12/Spo11-dependent formation of DNA double-strand breaks (DSBs) and their subsequent repair. We identified Rec12-binding peaks across the S. pombe genome using chromatin immunoprecipitation after reversible formaldehyde cross-linking combined with whole-genome DNA microarrays. Strong Rec12-binding coincided with previously identified DSBs at the recombination hotspots ura4A, mbs1, and mbs2, and correlated with DSB formation at a new site. In addition, Rec12-binding corresponded to eight novel conversion hotspots and correlated with crossover density in segments of chromosome I. Notably, Rec12-binding inversely correlated with GC content, contrary to findings in S. cerevisiae. Although both replication origins and Rec12-binding sites preferred AT-rich gene-free regions, they seemed to exclude each other. We also uncovered a connection between binding sites of Rec12 and meiotic cohesin Rec8. Rec12-binding peaks lay often within 2.5 kb of a Rec8-binding peak. Rec12-binding showed preference for large intergenic regions and was found to bind preferentially near to genes expressed strongly in meiosis. Surprisingly, Rec12-binding was also detected in centromeric core regions, which raises the intriguing possibility that Rec12 plays additional roles in meiotic chromosome dynamics. PMID:18449558

  19. Sites of strong Rec12/Spo11 binding in the fission yeast genome are associated with meiotic recombination and with centromeres.

    PubMed

    Ludin, Katja; Mata, Juan; Watt, Stephen; Lehmann, Elisabeth; Bähler, Jürg; Kohli, Jürg

    2008-10-01

    Meiotic recombination arises from Rec12/Spo11-dependent formation of DNA double-strand breaks (DSBs) and their subsequent repair. We identified Rec12-binding peaks across the Schizosaccharomyces pombe genome using chromatin immunoprecipitation after reversible formaldehyde cross-linking combined with whole-genome DNA microarrays. Strong Rec12 binding coincided with previously identified DSBs at the recombination hotspots ura4A, mbs1, and mbs2 and correlated with DSB formation at a new site. In addition, Rec12 binding corresponded to eight novel conversion hotspots and correlated with crossover density in segments of chromosome I. Notably, Rec12 binding inversely correlated with guanine-cytosine (GC) content, contrary to findings in Saccharomyces cerevisiae. Although both replication origins and Rec12-binding sites preferred AT-rich gene-free regions, they seemed to exclude each other. We also uncovered a connection between binding sites of Rec12 and meiotic cohesin Rec8. Rec12-binding peaks lay often within 2.5 kb of a Rec8-binding peak. Rec12 binding showed preference for large intergenic regions and was found to bind preferentially near to genes expressed strongly in meiosis. Surprisingly, Rec12 binding was also detected in centromeric core regions, which raises the intriguing possibility that Rec12 plays additional roles in meiotic chromosome dynamics.

  20. The Mek1 phosphorylation cascade plays a role in meiotic recombination of Schizosaccharomyces pombe

    PubMed Central

    Ohtaka, Ayami; Okuzaki, Daisuke; Saito, Takamune T; Russell, Paul

    2010-01-01

    Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe. PMID:21084840

  1. Unequal exchange at the Charcot-Marie-Tooth disease type 1A recombination hot-spot is not elevated above the genome average rate.

    PubMed

    Han, L L; Keller, M P; Navidi, W; Chance, P F; Arnheim, N

    2000-07-22

    An increasing number of human diseases and syndromes are being found to result from micro-duplications or microdeletions arising from meiotic recombination between homologous repeats on the same chromosome. The first microduplication syndrome delineated, Charcot-Marie-Tooth disease type 1A (CMT1A), results from unequal crossing over between two >98% identical 24 kb repeats (CMT1A-REPs) on chromosome 17. In addition to its medical significance, the CMT1A region has features that make it a unique resource for detailed analysis of human unequal recombination. Previous studies of CMT1A patients showed that the majority of unequal crossovers occurred within a small region (<1 kb) of the REPs suggesting the presence of a recombination hot-spot. We directly measured the frequency of unequal recombination in the hot-spot region using sperm from four normal individuals. Surprisingly, unequal recombination between the REPs occurs at a rate no greater than the average rate for the male genome (approximately 1 cM/Mb) and is the same as that expected for equally aligned REPs. This conclusion extends to humans the findings in yeast that recombination between repeated sequences far apart on the same chromosome may occur at similar frequencies to allelic recombination. Finally, the CMT1A hot-spot stands in sharp contrast to the human MS32 mini-satellite-associated hot-spot that exhibits highly enhanced recombination initiation in addition to positional specificity. One possibility is that the CMT1A hot-spot may consist of a region with genome average recombination potential embedded within a recombination cold-spot.

  2. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast.

    PubMed

    Hirota, Kouji; Steiner, Walter W; Shibata, Takehiko; Ohta, Kunihiro

    2007-11-01

    The ade6-M26 meiotic recombination hot spot of fission yeast is defined by a cyclic AMP-responsive element (CRE)-like heptanucleotide sequence, 5'-ATGACGT-3', which acts as a binding site for the Atf1/Pcr1 heterodimeric transcription factor required for hot spot activation. We previously demonstrated that the local chromatin around the M26 sequence motif alters to exhibit higher sensitivity to micrococcal nuclease before the initiation of meiotic recombination. In this study, we have examined whether or not such alterations in chromatin occur at natural meiotic DNA double-strand break (DSB) sites in Schizosaccharomyces pombe. At one of the most prominent DSB sites, mbs1 (meiotic break site 1), the chromatin structure has a constitutively accessible configuration at or near the DSB sites. The establishment of the open chromatin state and DSB formation are independent of the CRE-binding transcription factor, Atf1. Analysis of the chromatin configuration at CRE-dependent DSB sites revealed both differences from and similarities to mbs1. For example, the tdh1+ locus, which harbors a CRE consensus sequence near the DSB site, shows a meiotically induced open chromatin configuration, similar to ade6-M26. In contrast, the cds1+ locus is similar to mbs1 in that it exhibits a constitutive open configuration. Importantly, Atf1 is required for the open chromatin formation in both tdh1+ and cds1+. These results suggest that CRE-dependent meiotic chromatin changes are intrinsic processes related to DSB formation in fission yeast meiosis. In addition, the results suggest that the chromatin configuration in natural meiotic recombination hot spots can be classified into at least three distinct categories: (i) an Atf1-CRE-independent constitutively open chromatin configuration, (ii) an Atf1-CRE-dependent meiotically induced open chromatin configuration, and (iii) an Atf1-CRE-dependent constitutively open chromatin configuration.

  3. Impact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae

    PubMed Central

    Cavero, Santiago; Herruzo, Esther; Ontoso, David; San-Segundo, Pedro A.

    2016-01-01

    In meiotic cells, the pachytene checkpoint or meiotic recombination checkpoint is a surveillance mechanism that monitors critical processes, such as recombination and chromosome synapsis, which are essential for proper distribution of chromosomes to the meiotic progeny. Failures in these processes lead to the formation of aneuploid gametes. Meiotic recombination occurs in the context of chromatin; in fact, the histone methyltransferase Dot1 and the histone deacetylase Sir2 are known regulators of the pachytene checkpoint in Saccharomyces cerevisiae. We report here that Sas2-mediated acetylation of histone H4 at lysine 16 (H4K16ac), one of the Sir2 targets, modulates meiotic checkpoint activity in response to synaptonemal complex defects. We show that, like sir2, the H4-K16Q mutation, mimicking constitutive acetylation of H4K16, eliminates the delay in meiotic cell cycle progression imposed by the checkpoint in the synapsis-defective zip1 mutant. We also demonstrate that, like in dot1, zip1-induced phosphorylation of the Hop1 checkpoint adaptor at threonine 318 and the ensuing Mek1 activation are impaired in H4-K16 mutants. However, in contrast to sir2 and dot1, the H4-K16R and H4-K16Q mutations have only a minor effect in checkpoint activation and localization of the nucleolar Pch2 checkpoint factor in ndt80-prophase-arrested cells. We also provide evidence for a cross-talk between Dot1-dependent H3K79 methylation and H4K16ac and show that Sir2 excludes H4K16ac from the rDNA region on meiotic chromosomes. Our results reveal that proper levels of H4K16ac orchestrate this meiotic quality control mechanism and that Sir2 impinges on additional targets to fully activate the checkpoint. PMID:28357333

  4. Association of poly-purine/poly-pyrimidine sequences with meiotic recombination hot spots

    PubMed Central

    Bagshaw, Andrew TM; Pitt, Joel PW; Gemmell, Neil J

    2006-01-01

    Background Meiotic recombination events have been found to concentrate in 1–2.5 kilo base regions, but these recombination hot spots do not share a consensus sequence and why they occur at specific sites is not fully understood. Some previous evidence suggests that poly-purine/poly-pyrimidine (poly-pu/py) tracts (PPTs), a class of sequence with distinctive biochemical properties, could be involved in recombination, but no general association of PPTs with meiotic recombination hot spots has previously been reported. Results We used computational methods to investigate in detail the relationship between PPTs and hot spots. We show statistical associations of PPT frequency with hot spots of meiotic recombination initiating lesions, double-strand breaks, in the genome of the yeast S. cerevisiae and with experimentally well characterized human meiotic recombination hot spots. Supporting a possible role of poly-pu/py-rich sequences in hot spot recombination, we also found that all three single nucleotide polymorphisms previously shown to be associated with human hot spot activity changes occur within sequence contexts of 14 bp or longer that are 85% or more poly-pu/py and at least 70% G/C. These polymorphisms are all close to the hot spot mid points. Comparing the sequences of experimentally characterized human hot spots with the orthologous regions of the chimpanzee genome previously shown not to contain hot spots, we found that in all five cases in which comparisons for the hot spot central regions are possible with publicly available sequence data, there are differences near the human hot spot mid points within sequences 14 bp or longer consisting of more than 80% poly-pu/py and at least 50% G/C. Conclusion Our results, along with previous evidence for the unique biochemical properties and recombination-stimulating potential of poly-pu/py-rich sequences, suggest that the possible functional involvement of this type of sequence in meiotic recombination hot spots

  5. Shu1 Promotes Homolog Bias of Meiotic Recombination in Saccharomyces cerevisiae

    PubMed Central

    Hong, Soogil; Kim, Keun Pil

    2013-01-01

    Homologous recombination occurs closely between homologous chromatids with highly ordered recombinosomes through RecA homologs and mediators. The present study demonstrates this relationship during the period of “partner choice” in yeast meiotic recombination. We have examined the formation of recombination intermediates in the absence or presence of Shu1, a member of the PCSS complex, which also includes Psy3, Csm2, and Shu2. DNA physical analysis indicates that Shu1 is essential for promoting the establishment of homolog bias during meiotic homologous recombination, and the partner choice is switched by Mek1 kinase activity. Furthermore, Shu1 promotes both crossover (CO) and non-crossover (NCO) pathways of meiotic recombination. The inactivation of Mek1 kinase allows for meiotic recombination to progress efficiently, but is lost in homolog bias where most double-strand breaks (DSBs) are repaired via stable intersister joint molecules. Moreover, the Srs2 helicase deletion cells in the budding yeast show slightly reduced COs and NCOs, and Shu1 promotes homolog bias independent of Srs2. Our findings reveal that Shu1 and Mek1 kinase activity have biochemically distinct roles in partner choice, which in turn enhances the understanding of the mechanism associated with the precondition for homolog bias. PMID:24213600

  6. The Saccharomyces cerevisiae RDN1 locus is sequestered from interchromosomal meiotic ectopic recombination in a SIR2-dependent manner.

    PubMed Central

    Davis, E S; Shafer, B K; Strathern, J N

    2000-01-01

    Meiotic ectopic recombination occurs at similar frequencies among many sites in the yeast genome, suggesting that all loci are similarly accessible to homology searching. In contrast, we found that his3 sequences integrated in the RDN1 (rDNA) locus were unusually poor participants in meiotic recombination with his3 sequences at other sites. We show that the low rate of meiotic ectopic recombination resulted from the poor ability of RDN1::his3 to act as a donor sequence. SIR2 partially repressed interchromosomal meiotic ectopic recombination at RDN1, consistent with its role in regulating recombination, gene expression, and retrotransposition within RDN1. We propose that RDN1 is physically sequestered from meiotic homology searching mechanisms. PMID:10880466

  7. Allele-dependent recombination frequency: homology requirement in meiotic recombination at the hot spot in the mouse major histocompatibility complex.

    PubMed

    Yoshino, M; Sagai, T; Lindahl, K F; Toyoda, Y; Moriwaki, K; Shiroishi, T

    1995-05-20

    Meiotic recombination break joints in the mouse major histocompatibility complex (MHC) are clustered within short segments known as hot spots. We systematically investigated the requirement for sequence homology between two chromosomes for recombination activity at the hot spot next to the Lmp2 gene. The results indicated that a high rate of recombination required a high degree of similarity of overall genome structure at the hot spot. In particular, the same copy number of repetitive sequences within the hot spot was essential for a high frequency of recombination, suggesting that recombination in mouse meiosis is more sensitive to heterozygous deletion or insertion of DNA than to mismatches of single-base substitutions.

  8. Abnormal meiotic recombination in infertile men and its association with sperm aneuploidy.

    PubMed

    Ferguson, Kyle A; Wong, Edgar Chan; Chow, Victor; Nigro, Mark; Ma, Sai

    2007-12-01

    Defects in early meiotic events are thought to play a critical role in male infertility; however, little is known regarding the relationship between early meiotic events and the chromosomal constitution of human sperm. Thus, we analyzed testicular tissue from 26 men (9 fertile and 17 infertile men), using immunofluorescent techniques to examine meiotic chromosomes, and fluorescent in situ hybridization to assess sperm aneuploidy. Based on a relatively small sample size, we observed that 42% (5/12) of men with impaired spermatogenesis displayed reduced genome-wide recombination when compared to the fertile men. Analysis of individual chromosomes showed chromosome-specific defects in recombination: chromosome 13 and 18 bivalents with only a single crossover and chromosome 21 bivalents lacking a crossover were more frequent among the infertile men. We identified two infertile men who displayed a novel meiotic defect in which the sex chromosomes failed to recombine: one man had an absence of sperm in the testes, while the other displayed increased sex chromosome aneuploidy in the sperm, resulting in a 45,X abortus after intracytoplasmic sperm injection. When all men were pooled, we observed an inverse correlation between the frequency of sex chromosome recombination and XY disomy in the sperm. Recombination between the sex chromosomes may be a useful indicator for identifying men at risk of producing chromosomally abnormal sperm. An understanding of the molecular mechanisms that contribute to sperm aneuploidy in infertile men could aid in risk assessment for couples undergoing assisted reproduction.

  9. The Rec102 Mutant of Yeast Is Defective in Meiotic Recombination and Chromosome Synapsis

    PubMed Central

    Bhargava, J.; Engebrecht, J. A.; Roeder, G. S.

    1992-01-01

    A mutation at the REC102 locus was identified in a screen for yeast mutants that produce inviable spores. rec102 spore lethality is rescued by a spo13 mutation, which causes cells to bypass the meiosis I division. The rec102 mutation completely eliminates meiotically induced gene conversion and crossing over but has no effect on mitotic recombination frequencies. Cytological studies indicate that the rec102 mutant makes axial elements (precursors to the synaptonemal complex), but homologous chromosomes fail to synapse. In addition, meiotic chromosome segregation is significantly delayed in rec102 strains. Studies of double and triple mutants indicate that the REC102 protein acts before the RAD52 gene product in the meiotic recombination pathway. The REC102 gene was cloned based on complementation of the mutant defect and the gene was mapped to chromosome XII between CDC25 and STE11. PMID:1732169

  10. Brca2-Pds5 complexes mobilize persistent meiotic recombination sites to the nuclear envelope.

    PubMed

    Kusch, Thomas

    2015-02-15

    Homologous recombination is required for reciprocal exchange between homologous chromosome arms during meiosis. Only select meiotic recombination events become chromosomal crossovers; the majority of recombination outcomes are noncrossovers. Growing evidence suggests that crossovers are repaired after noncrossovers. Here, I report that persisting recombination sites are mobilized to the nuclear envelope of Drosophila pro-oocytes during mid-pachytene. Their number correlates with the average crossover rate per meiosis. Proteomic and interaction studies reveal that the recombination mediator Brca2 associates with lamin and the cohesion factor Pds5 to secure persistent recombination sites at the nuclear envelope. In Rad51(-/-) females, all persistent DNA breaks are directed to the nuclear envelope. By contrast, a reduction of Pds5 or Brca2 levels abolishes the movement and has a negative impact on crossover rates. The data suggest that persistent meiotic DNA double-strand breaks might correspond to crossovers, which are mobilized to the nuclear envelope for their repair. The identification of Brca2-Pds5 complexes as key mediators of this process provides a first mechanistic explanation for the contribution of lamins and cohesins to meiotic recombination.

  11. Polyploidization increases meiotic recombination frequency in Arabidopsis: a close look at statistical modeling and data analysis.

    PubMed

    Wang, Lin; Luo, Zewei

    2012-04-18

    This paper is a response to Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid, O: Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biology 2011, 9:24.See research article at http://www.biomedcentral.com/1741-7007/9/24.

  12. Meiotic recombination errors, the origin of sperm aneuploidy and clinical recommendations.

    PubMed

    Tempest, Helen G

    2011-02-01

    Since the early 1990s male infertility has successfully been treated by intracytoplasmic sperm injection (ICSI), nevertheless concerns have been raised regarding the genetic risk of ICSI. Chromosome aneuploidy (the presence of extra or missing chromosomes) is the leading cause of pregnancy loss and mental retardation in humans. While the majority of chromosome aneuploidies are maternal in origin, the paternal contribution to aneuploidy is clinically relevant particularly for the sex chromosomes. Given that it is difficult to study female gametes investigations are predominantly conducted in male meiotic recombination and sperm aneuploidy. Research suggests that infertile men have increased levels of sperm aneuploidy and that this is likely due to increased errors in meiotic recombination and chromosome synapsis within these individuals. It is perhaps counterintuitive but there appears to be no selection against chromosomally aneuploid sperm at fertilization. In fact the frequency of aneuploidy in sperm appears to be mirrored in conceptions. Given this information this review will cover our current understanding of errors in meiotic recombination and chromosome synapsis and how these may contribute to increased sperm aneuploidy. Frequencies of sperm aneuploidy in infertile men and individuals with constitutional karyotypic abnormalities are reviewed, and based on these findings, indications for clinical testing of sperm aneuploidy are discussed. In addition, the application of single nucleotide arrays for the analysis of meiotic recombination and identification of parental origin of aneuploidy are considered.

  13. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen.

    PubMed

    Croll, Daniel; Lendenmann, Mark H; Stewart, Ethan; McDonald, Bruce A

    2015-11-01

    Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host.

  14. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen

    PubMed Central

    Croll, Daniel; Lendenmann, Mark H.; Stewart, Ethan; McDonald, Bruce A.

    2015-01-01

    Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host. PMID:26392286

  15. Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role.

    PubMed

    Da Ines, Olivier; Degroote, Fabienne; Goubely, Chantal; Amiard, Simon; Gallego, Maria E; White, Charles I

    2013-01-01

    Recombination establishes the chiasmata that physically link pairs of homologous chromosomes in meiosis, ensuring their balanced segregation at the first meiotic division and generating genetic variation. The visible manifestation of genetic crossing-overs, chiasmata are the result of an intricate and tightly regulated process involving induction of DNA double-strand breaks and their repair through invasion of a homologous template DNA duplex, catalysed by RAD51 and DMC1 in most eukaryotes. We describe here a RAD51-GFP fusion protein that retains the ability to assemble at DNA breaks but has lost its DNA break repair capacity. This protein fully complements the meiotic chromosomal fragmentation and sterility of Arabidopsis rad51, but not rad51 dmc1 mutants. Even though DMC1 is the only active meiotic strand transfer protein in the absence of RAD51 catalytic activity, no effect on genetic map distance was observed in complemented rad51 plants. The presence of inactive RAD51 nucleofilaments is thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1. Our data demonstrate that RAD51 plays a supporting role for DMC1 in meiotic recombination in the flowering plant, Arabidopsis.

  16. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination

    PubMed Central

    Zamudio, Natasha; Barau, Joan; Teissandier, Aurélie; Walter, Marius; Borsos, Maté; Servant, Nicolas; Bourc'his, Déborah

    2015-01-01

    DNA methylation is essential for protecting the mammalian germline against transposons. When DNA methylation-based transposon control is defective, meiotic chromosome pairing is consistently impaired during spermatogenesis: How and why meiosis is vulnerable to transposon activity is unknown. Using two DNA methylation-deficient backgrounds, the Dnmt3L and Miwi2 mutant mice, we reveal that DNA methylation is largely dispensable for silencing transposons before meiosis onset. After this, it becomes crucial to back up to a developmentally programmed H3K9me2 loss. Massive retrotransposition does not occur following transposon derepression, but the meiotic chromatin landscape is profoundly affected. Indeed, H3K4me3 marks gained over transcriptionally active transposons correlate with formation of SPO11-dependent double-strand breaks and recruitment of the DMC1 repair enzyme in Dnmt3L−/− meiotic cells, whereas these features are normally exclusive to meiotic recombination hot spots. Here, we demonstrate that DNA methylation restrains transposons from adopting chromatin characteristics amenable to meiotic recombination, which we propose prevents the occurrence of erratic chromosomal events. PMID:26109049

  17. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination.

    PubMed

    Zamudio, Natasha; Barau, Joan; Teissandier, Aurélie; Walter, Marius; Borsos, Maté; Servant, Nicolas; Bourc'his, Déborah

    2015-06-15

    DNA methylation is essential for protecting the mammalian germline against transposons. When DNA methylation-based transposon control is defective, meiotic chromosome pairing is consistently impaired during spermatogenesis: How and why meiosis is vulnerable to transposon activity is unknown. Using two DNA methylation-deficient backgrounds, the Dnmt3L and Miwi2 mutant mice, we reveal that DNA methylation is largely dispensable for silencing transposons before meiosis onset. After this, it becomes crucial to back up to a developmentally programmed H3K9me2 loss. Massive retrotransposition does not occur following transposon derepression, but the meiotic chromatin landscape is profoundly affected. Indeed, H3K4me3 marks gained over transcriptionally active transposons correlate with formation of SPO11-dependent double-strand breaks and recruitment of the DMC1 repair enzyme in Dnmt3L(-/-) meiotic cells, whereas these features are normally exclusive to meiotic recombination hot spots. Here, we demonstrate that DNA methylation restrains transposons from adopting chromatin characteristics amenable to meiotic recombination, which we propose prevents the occurrence of erratic chromosomal events.

  18. Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination.

    PubMed

    Sasanuma, Hiroyuki; Hirota, Kouji; Fukuda, Tomoyuki; Kakusho, Naoko; Kugou, Kazuto; Kawasaki, Yasuo; Shibata, Takehiko; Masai, Hisao; Ohta, Kunihiro

    2008-02-01

    Meiosis ensures genetic diversification of gametes and sexual reproduction. For successful meiosis, multiple events such as DNA replication, recombination, and chromosome segregation must occur coordinately in a strict regulated order. We investigated the meiotic roles of Cdc7 kinase in the initiation of meiotic recombination, namely, DNA double-strand breaks (DSBs) mediated by Spo11 and other coactivating proteins. Genetic analysis using bob1-1 cdc7Delta reveals that Cdc7 is essential for meiotic DSBs and meiosis I progression. We also demonstrate that the N-terminal region of Mer2, a Spo11 ancillary protein required for DSB formation and phosphorylated by cyclin-dependent kinase (CDK), contains two types of Cdc7-dependent phosphorylation sites near the CDK site (Ser30): One (Ser29) is essential for meiotic DSB formation, and the others exhibit a cumulative effect to facilitate DSB formation. Importantly, mutations on these sites confer severe defects in DSB formation even when the CDK phosphorylation is present at Ser30. Diploids of cdc7Delta display defects in the chromatin binding of not only Spo11 but also Rec114 and Mei4, other meiotic coactivators that may assist Spo11 binding to DSB hot spots. We thus propose that Cdc7, in concert with CDK, regulates Spo11 loading to DSB sites via Mer2 phosphorylation.

  19. Meiotic recombination counteracts male-biased mutation (male-driven evolution)

    PubMed Central

    Mawaribuchi, Shuuji; Ito, Michihiko; Ogata, Mitsuaki; Oota, Hiroki; Katsumura, Takafumi; Takamatsu, Nobuhiko; Miura, Ikuo

    2016-01-01

    Meiotic recombination is believed to produce greater genetic variation despite the fact that deoxyribonucleic acid (DNA)-replication errors are a major source of mutations. In some vertebrates, mutation rates are higher in males than in females, which developed the theory of male-driven evolution (male-biased mutation). However, there is little molecular evidence regarding the relationships between meiotic recombination and male-biased mutation. Here we tested the theory using the frog Rana rugosa, which has both XX/XY- and ZZ/ZW-type sex-determining systems within the species. The male-to-female mutation-rate ratio (α) was calculated from homologous sequences on the X/Y or Z/W sex chromosomes, which supported male-driven evolution. Surprisingly, each α value was notably higher in the XX/XY-type group than in the ZZ/ZW-type group, although α should have similar values within a species. Interestingly, meiotic recombination between homologous chromosomes did not occur except at terminal regions in males of this species. Then, by subdividing α into two new factors, a replication-based male-to-female mutation-rate ratio (β) and a meiotic recombination-based XX-to-XY/ZZ-to-ZW mutation-rate ratio (γ), we constructed a formula describing the relationship among a nucleotide-substitution rate and the two factors, β and γ. Intriguingly, the β- and γ-values were larger and smaller than 1, respectively, indicating that meiotic recombination might reduce male-biased mutations. PMID:26791621

  20. Meiotic recombination counteracts male-biased mutation (male-driven evolution).

    PubMed

    Mawaribuchi, Shuuji; Ito, Michihiko; Ogata, Mitsuaki; Oota, Hiroki; Katsumura, Takafumi; Takamatsu, Nobuhiko; Miura, Ikuo

    2016-01-27

    Meiotic recombination is believed to produce greater genetic variation despite the fact that deoxyribonucleic acid (DNA)-replication errors are a major source of mutations. In some vertebrates, mutation rates are higher in males than in females, which developed the theory of male-driven evolution (male-biased mutation). However, there is little molecular evidence regarding the relationships between meiotic recombination and male-biased mutation. Here we tested the theory using the frog Rana rugosa, which has both XX/XY- and ZZ/ZW-type sex-determining systems within the species. The male-to-female mutation-rate ratio (α) was calculated from homologous sequences on the X/Y or Z/W sex chromosomes, which supported male-driven evolution. Surprisingly, each α value was notably higher in the XX/XY-type group than in the ZZ/ZW-type group, although α should have similar values within a species. Interestingly, meiotic recombination between homologous chromosomes did not occur except at terminal regions in males of this species. Then, by subdividing α into two new factors, a replication-based male-to-female mutation-rate ratio (β) and a meiotic recombination-based XX-to-XY/ZZ-to-ZW mutation-rate ratio (γ), we constructed a formula describing the relationship among a nucleotide-substitution rate and the two factors, β and γ. Intriguingly, the β- and γ-values were larger and smaller than 1, respectively, indicating that meiotic recombination might reduce male-biased mutations.

  1. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana.

    PubMed

    De Muyt, Arnaud; Pereira, Lucie; Vezon, Daniel; Chelysheva, Liudmila; Gendrot, Ghislaine; Chambon, Aurélie; Lainé-Choinard, Sandrine; Pelletier, Georges; Mercier, Raphaël; Nogué, Fabien; Grelon, Mathilde

    2009-09-01

    Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.

  2. The Meiotic Recombination Checkpoint Suppresses NHK-1 Kinase to Prevent Reorganisation of the Oocyte Nucleus in Drosophila

    PubMed Central

    Lancaster, Oscar M.; Breuer, Manuel; Cullen, C. Fiona; Ito, Takashi; Ohkura, Hiroyuki

    2010-01-01

    The meiotic recombination checkpoint is a signalling pathway that blocks meiotic progression when the repair of DNA breaks formed during recombination is delayed. In comparison to the signalling pathway itself, however, the molecular targets of the checkpoint that control meiotic progression are not well understood in metazoans. In Drosophila, activation of the meiotic checkpoint is known to prevent formation of the karyosome, a meiosis-specific organisation of chromosomes, but the molecular pathway by which this occurs remains to be identified. Here we show that the conserved kinase NHK-1 (Drosophila Vrk-1) is a crucial meiotic regulator controlled by the meiotic checkpoint. An nhk-1 mutation, whilst resulting in karyosome defects, does so independent of meiotic checkpoint activation. Rather, we find unrepaired DNA breaks formed during recombination suppress NHK-1 activity (inferred from the phosphorylation level of one of its substrates) through the meiotic checkpoint. Additionally DNA breaks induced by X-rays in cultured cells also suppress NHK-1 kinase activity. Unrepaired DNA breaks in oocytes also delay other NHK-1 dependent nuclear events, such as synaptonemal complex disassembly and condensin loading onto chromosomes. Therefore we propose that NHK-1 is a crucial regulator of meiosis and that the meiotic checkpoint suppresses NHK-1 activity to prevent oocyte nuclear reorganisation until DNA breaks are repaired. PMID:21060809

  3. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER

    PubMed Central

    Baker, Bruce S.; Carpenter, Adelaide T. C.; Ripoll, P.

    1978-01-01

    To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by UV and X rays.—Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells.—The chromosome instability produced by mei-41 alleles is the consequence of chromosome breakage, that of mei-9 alleles is primarily due to chromosome breakage and, to a lesser extent, to an elevated frequency of mitotic recombination, whereas no predominant mechanism responsible for the instability caused by c(3)G alleles is discernible. Since these three loci are defective in their responses to mutagen damage, their effects on chromosome stability in nonmutagenized cells are interpreted as resulting from an inability to repair spontaneous lesions. Both mei-W68 and mei-S282 increase mitotic recombination (and in mei-W68, to a lesser extent, chromosome loss) in the abdomen but not the wing. In the abdomen, the primary effect on chromosome stability occurs during the larval period when the abdominal histoblasts

  4. Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution

    PubMed Central

    2011-01-01

    Background Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae), the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Results Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots - of the breakpoints

  5. Meiotic Recombination in Schizosaccharomyces pombe: A Paradigm for Genetic and Molecular Analysis

    PubMed Central

    Cromie, Gareth; Smith, Gerald R.

    2009-01-01

    The fission yeast Schizosaccharomyces pombe is especially well-suited for both genetic and biochemical analysis of meiotic recombination. Recent studies have revealed ~50 gene products and two DNA intermediates central to recombination, which we place into a pathway from parental to recombinant DNA. We divide recombination into three stages – chromosome alignment accompanying nuclear “horsetail” movement, formation of DNA breaks, and repair of those breaks – and we discuss the roles of the identified gene products and DNA intermediates in these stages. Although some aspects of recombination are similar to those in the distantly related budding yeast Saccharomyces cerevisiae, other aspects are distinctly different. In particular, many proteins required for recombination in one species have no clear ortholog in the other, and the roles of identified orthologs in regulating recombination often differ. Furthermore, in S. pombe the dominant joint DNA molecule intermediates contain single Holliday junctions, and intersister joint molecules are more frequent than interhomolog types, whereas in S. cerevisiae interhomolog double Holliday junctions predominate. We speculate that meiotic recombination in other organisms shares features of each of these yeasts. PMID:20157622

  6. Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots.

    PubMed

    Getun, Irina V; Wu, Zhen; Fallahi, Mohammad; Ouizem, Souad; Liu, Qin; Li, Weimin; Costi, Roberta; Roush, William R; Cleveland, John L; Bois, Philippe R J

    2017-02-01

    Meiotic recombination initiates following the formation of DNA double-strand breaks (DSBs) by the Spo11 endonuclease early in prophase I, at discrete regions in the genome coined "hot spots." In mammals, meiotic DSB site selection is directed in part by sequence-specific binding of PRDM9, a polymorphic histone H3 (H3K4Me3) methyltransferase. However, other chromatin features needed for meiotic hot spot specification are largely unknown. Here we show that the recombinogenic cores of active hot spots in mice harbor several histone H3 and H4 acetylation and methylation marks that are typical of open, active chromatin. Further, deposition of these open chromatin-associated histone marks is dynamic and is manifest at spermatogonia and/or pre-leptotene-stage cells, which facilitates PRDM9 binding and access for Spo11 to direct the formation of DSBs, which are initiated at the leptotene stage. Importantly, manipulating histone acetylase and deacetylase activities established that histone acetylation marks are necessary for both hot spot activity and crossover resolution. We conclude that there are functional roles for histone acetylation marks at mammalian meiotic recombination hot spots.

  7. Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics.

    PubMed

    Cole, Francesca; Baudat, Frédéric; Grey, Corinne; Keeney, Scott; de Massy, Bernard; Jasin, Maria

    2014-10-01

    The ability to examine all chromatids from a single meiosis in yeast tetrads has been indispensable for defining the mechanisms of homologous recombination initiated by DNA double-strand breaks (DSBs). Using a broadly applicable strategy for the analysis of chromatids from a single meiosis at two recombination hotspots in mouse oocytes and spermatocytes, we demonstrate here the unidirectional transfer of information-gene conversion-in both crossovers and noncrossovers. Whereas gene conversion in crossovers is associated with reciprocal exchange, the unbroken chromatid is not altered in noncrossover gene conversion events, providing strong evidence that noncrossovers arise from a distinct pathway. Gene conversion frequently spares the binding site of the hotspot-specifying protein PRDM9, with the result that erosion of the hotspot is slowed. Thus, mouse tetrad analysis demonstrates how unique aspects of mammalian recombination mechanisms shape hotspot evolutionary dynamics.

  8. Meiotic recombination in normal and cloned bulls and their offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homologous chromosome pairing and recombination are essential components of meiosis and sexual reproduction. The reshuffling of genetic material through breakage and reunion of chromatids ensure proper segregation of homologous chromosomes in reduction division and genetic diversity in the progeny....

  9. Segregation of yeast polymorphic STA genes in meiotic recombinants and analysis of glucoamylase production.

    PubMed

    Balogh, I; Maráz, A

    1996-12-01

    Hybrid yeast strains were constructed using haploid Saccharomyces cerevisiae and Saccharomyces cerevisiae var. diastaticus strains to get haploid meiotic recombinants having more than one copy of STA1, STA2, and STA3 genes. STA genes were localized on the chromosomes by pulsed field gel electrophoresis. Working gene dosage effects were found among STA genes in liquid starch medium, indicating low levels of glucose repression. Growth of strains, however, was not influenced by their STA copy number.

  10. The synaptonemal complex and meiotic recombination in humans: new approaches to old questions.

    PubMed

    Vallente, Rhea U; Cheng, Edith Y; Hassold, Terry J

    2006-06-01

    Meiotic prophase serves as an arena for the interplay of two important cellular activities, meiotic recombination and synapsis of homologous chromosomes. Synapsis is mediated by the synaptonemal complex (SC), originally characterized as a structure linked to pairing of meiotic chromosomes (Moses (1958) J Biophys Biochem Cytol 4:633-638). In 1975, the first electron micrographs of human pachytene stage SCs were presented (Moses et al. (1975) Science 187:363-365) and over the next 15 years the importance of the SC to normal meiotic progression in human males and females was established (Jhanwar and Chaganti (1980) Hum Genet 54:405-408; Pathak and Elder (1980) Hum Genet 54:171-175; Solari (1980) Chromosoma 81:315-337; Speed (1984) Hum Genet 66:176-180; Wallace and Hulten (1985) Ann Hum Genet 49(Pt 3):215-226). Further, these studies made it clear that abnormalities in the assembly or maintenance of the SC were an important contributor to human infertility (Chaganti et al. (1980) Am J Hum Genet 32:833-848; Vidal et al. (1982) Hum Genet 60:301-304; Bojko (1983) Carlsberg Res Commun 48:285-305; Bojko (1985) Carlsberg Res Commun 50:43-72; Templado et al. (1984) Hum Genet 67:162-165; Navarro et al. (1986) Hum Reprod 1:523-527; Garcia et al. (1989) Hum Genet 2:147-53). However, the utility of these early studies was limited by lack of information on the structural composition of the SC and the identity of other SC-associated proteins. Fortunately, studies of the past 15 years have gone a long way toward remedying this problem. In this minireview, we highlight the most important of these advances as they pertain to human meiosis, focusing on temporal aspects of SC assembly, the relationship between the SC and meiotic recombination, and the contribution of SC abnormalities to human infertility.

  11. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination

    PubMed Central

    Kim, Keun P.; Weiner, Beth M.; Zhang, Liangran; Jordan, Amy; Dekker, Job; Kleckner, Nancy

    2010-01-01

    SUMMARY Meiotic recombination occurs between one chromatid of each maternal and paternal homolog (homolog bias) versus between sister chromatids (sister bias). Physical DNA analysis reveals that meiotic cohesin/axis component Rec8 promotes sister bias, likely via its cohesion activity. Two meiosis-specific axis components, Red1/Mek1kinase, counteract this effect. With this precondition satisfied, other molecules directly specify homolog bias per se. Rec8 also acts positively to maintain homolog bias during crossover recombination. These observations point to sequential release of double-strand break ends from association with their sister. Red1 and Rec8 are found to play distinct roles for sister cohesion, DSB formation and recombination progression kinetics. Also, the two components are enriched in spatially distinct domains of axial structure that develop prior to DSB formation. We propose that Red1 and Rec8 domains provide functionally complementary environments whereby inputs evolved from DSB repair and late-stage chromosome morphogenesis are integrated to give the complete meiotic chromosomal program. PMID:21145459

  12. H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation

    PubMed Central

    Xu, Zhiliang; Song, Zhenhua; Li, Guoping; Tu, Huayu; Liu, Weixiao; Liu, Yujiao; Wang, Pan; Wang, Yuanting; Cui, Xiuhong; Liu, Chao; Shang, Yongliang; de Rooij, Dirk G.; Gao, Fei; Li, Wei

    2016-01-01

    Meiotic recombination is essential for fertility in most sexually reproducing species, but the molecular mechanisms underlying this process remain poorly understood in mammals. Here, we show that RNF20-mediated H2B ubiquitination is required for meiotic recombination. A germ cell-specific knockout of the H2B ubiquitination E3 ligase RNF20 results in complete male infertility. The Stra8-Rnf20−/− spermatocytes arrest at the pachytene stage because of impaired programmed double-strand break (DSB) repair. Further investigations reveal that the depletion of RNF20 in the germ cells affects chromatin relaxation, thus preventing programmed DSB repair factors from being recruited to proper positions on the chromatin. The gametogenetic defects of the H2B ubiquitination deficient cells could be partially rescued by forced chromatin relaxation. Taken together, our results demonstrate that RNF20/Bre1p-mediated H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation, and suggest an old drug may provide a new way to treat some oligo- or azoospermia patients with chromatin relaxation disorders. PMID:27431324

  13. Meiotic prophase roles of Rec8 in crossover recombination and chromosome structure

    PubMed Central

    Yoon, Sang-Wook; Lee, Min-Su; Xaver, Martin; Zhang, Liangran; Hong, Soo-Gil; Kong, Yoon-Ju; Cho, Hong-Rae; Kleckner, Nancy; Kim, Keun P.

    2016-01-01

    Rec8 is a prominent component of the meiotic prophase chromosome axis that mediates sister chromatid cohesion, homologous recombination and chromosome synapsis. Here, we explore the prophase roles of Rec8. (i) During the meiotic divisions, Rec8 phosphorylation mediates its separase-mediated cleavage. We show here that such cleavage plays no detectable role for chromosomal events of prophase. (ii) We have analyzed in detail three rec8 phospho-mutants, with 6, 24 or 29 alanine substitutions. A distinct ‘separation of function’ phenotype is revealed. In the mutants, axis formation and recombination initiation are normal, as is non-crossover recombination; in contrast, crossover (CO)-related events are defective. Moreover, the severities of these defects increase coordinately with the number of substitution mutations, consistent with the possibility that global phosphorylation of Rec8 is important for these effects. (iii) We have analyzed the roles of three kinases that phosphorylate Rec8 during prophase. Timed inhibition of Dbf4-dependent Cdc7 kinase confers defects concordant with rec8 phospho-mutant phenotypes. Inhibition of Hrr25 or Cdc5/polo-like kinase does not. Our results suggest that Rec8's prophase function, independently of cohesin cleavage, contributes to CO-specific events in conjunction with the maintenance of homolog bias at the leptotene/zygotene transition of meiotic prophase. PMID:27484478

  14. Mek1/Mre4 is a master regulator of meiotic recombination in budding yeast

    PubMed Central

    Hollingsworth, Nancy M.

    2016-01-01

    Sexually reproducing organisms create gametes with half the somatic cell chromosome number so that fusion of gametes at fertilization does not change the ploidy of the cell. This reduction in chromosome number occurs by the specialized cell division of meiosis in which two rounds of chromosome segregation follow a single round of chromosome duplication. Meiotic crossovers formed between the non-sister chromatids of homologous chromosomes, combined with sister chromatid cohesion, physically connect homologs, thereby allowing proper segregation at the first meiotic division. Meiotic recombination is initiated by programmed double strand breaks (DSBs) whose repair is highly regulated such that (1) there is a bias for recombination with homologs rather than sister chromatids, (2) crossovers are distributed throughout the genome by a process called interference, (3) crossover homeostasis regulates the balance between crossover and non-crossover repair to maintain a critical number of crossovers and (4) each pair of homologs receives at least one crossover. It was previously known that the imposition of interhomolog bias in budding yeast requires meiosis-specific modifications to the DNA damage response and the local activation of the meiosis-specific Mek1/Mre4 (hereafter Mek1) kinase at DSBs. However, because inactivation of Mek1 results in intersister, rather than interhomolog DSB repair, whether Mek1 had a role in interhomolog pathway choice was unknown. A recent study by Chen et al. (2015) reveals that Mek1 indirectly regulates the crossover/non-crossover decision between homologs as well as genetic interference. It does this by enabling phosphorylation of Zip1, the meiosis-specific transverse filament protein of the synaptonemal complex (SC), by the conserved cell cycle kinase, Cdc7-Dbf4 (DDK). These results suggest that Mek1 is a “master regulator” of meiotic recombination in budding yeast.

  15. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites.

    PubMed

    Borde, Valérie; Robine, Nicolas; Lin, Waka; Bonfils, Sandrine; Géli, Vincent; Nicolas, Alain

    2009-01-21

    The function of histone modifications in initiating and regulating the chromosomal events of the meiotic prophase remains poorly understood. In Saccharomyces cerevisiae, we examined the genome-wide localization of histone H3 lysine 4 trimethylation (H3K4me3) along meiosis and its relationship to gene expression and position of the programmed double-strand breaks (DSBs) that initiate interhomologue recombination, essential to yield viable haploid gametes. We find that the level of H3K4me3 is constitutively higher close to DSB sites, independently of local gene expression levels. Without Set1, the H3K4 methylase, 84% of the DSB sites exhibit a severely reduced DSB frequency, the reduction being quantitatively correlated with the local level of H3K4me3 in wild-type cells. Further, we show that this differential histone mark is already established in vegetative cells, being higher in DSB-prone regions than in regions with no or little DSB. Taken together, our results demonstrate that H3K4me3 is a prominent and preexisting mark of active meiotic recombination initiation sites. Novel perspectives to dissect the various layers of the controls of meiotic DSB formation are discussed.

  16. Self-Organization of Meiotic Recombination Initiation: General Principles and Molecular Pathways

    PubMed Central

    Keeney, Scott; Lange, Julian; Mohibullah, Neeman

    2015-01-01

    Recombination in meiosis is a fascinating case study for the coordination of chromosomal duplication, repair, and segregation with each other and with progression through a cell-division cycle. Meiotic recombination initiates with formation of developmentally programmed DNA double-strand breaks (DSBs) at many places across the genome. DSBs are important for successful meiosis but are also dangerous lesions that can mutate or kill, so cells ensure that DSBs are made only at the right times, places, and amounts. This review examines the complex web of pathways that accomplish this control. We explore how chromosome breakage is integrated with meiotic progression and how feedback mechanisms spatially pattern DSB formation and make it homeostatic, robust, and error-correcting. Common regulatory themes recur in different organisms or in different contexts in the same organism. We review this evolutionary and mechanistic conservation but also highlight where control modules have diverged. The framework that emerges helps explain how meiotic chromosomes behave as a self-organizing system. PMID:25421598

  17. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination.

    PubMed

    Stacey, Nicola J; Kuromori, Takashi; Azumi, Yoshitaka; Roberts, Gethin; Breuer, Christian; Wada, Takuji; Maxwell, Anthony; Roberts, Keith; Sugimoto-Shirasu, Keiko

    2006-10-01

    The Spo11 protein is a eukaryotic homologue of the archaeal DNA topoisomerase VIA subunit (topo VIA). In archaea it is involved, together with its B subunit (topo VIB), in DNA replication. However, most eukaryotes, including yeasts, insects and vertebrates, instead have a single gene for Spo11/topo VIA and no homologues for topo VIB. In these organisms, Spo11 mediates DNA double-strand breaks that initiate meiotic recombination. Many plant species, in contrast to other eukaryotes, have three homologues for Spo11/topo VIA and one for topo VIB. The homologues in Arabidopsis, AtSPO11-1, AtSPO11-2 and AtSPO11-3, all share 20-30% sequence similarity with other Spo11/topo VIA proteins, but their functional relationship during meiosis or other processes is not well understood. Previous genetic evidence suggests that AtSPO11-1 is a true orthologue of Spo11 in other eukaryotes and is required for meiotic recombination, whereas AtSPO11-3 is involved in DNA endo-reduplication as a part of the topo VI complex. In this study, we show that plants homozygous for atspo11-2 exhibit a severe sterility phenotype. Both male and female meiosis are severely disrupted in the atspo11-2 mutant, and this is associated with severe defects in synapsis during the first meiotic division and reduced meiotic recombination. Further genetic analysis revealed that AtSPO11-1 and AtSPO11-2 genetically interact, i.e. plants heterozygous for both atspo11-1 and atspo11-2 are also sterile, suggesting that AtSPO11-1 and AtSPO11-2 have largely overlapping functions. Thus, the three Arabidopsis Spo11 homologues appear to function in two discrete processes, i.e. AtSPO11-1 and AtSPO11-2 in meiotic recombination and AtSPO11-3 in DNA replication.

  18. Rad3-Cds1 mediates coupling of initiation of meiotic recombination with DNA replication. Mei4-dependent transcription as a potential target of meiotic checkpoint.

    PubMed

    Ogino, Keiko; Masai, Hisao

    2006-01-20

    Premeiotic S-phase and meiotic recombination are known to be strictly coupled in Saccharomyces cerevisiae. However, the checkpoint pathway regulating this coupling has been largely unknown. In fission yeast, Rad3 is known to play an essential role in coordination of DNA replication and cell division during both mitotic growth and meiosis. Here we have examined whether the Rad3 pathway also regulates the coupling of DNA synthesis and recombination. Inhibition of premeiotic S-phase with hydroxyurea completely abrogates the progression of meiosis, including the formation of DNA double-strand breaks (DSBs). DSB formation is restored in rad3 mutant even in the presence of hydroxyurea, although repair of DSBs does not take place or is significantly delayed, indicating that the subsequent recombination steps may be still inhibited. Examination of the roles of downstream checkpoint kinases reveals that Cds1, but not Chk1 or Mek1, is required for suppression of DSB in the presence of hydroxyurea. Transcriptional induction of some rec+ genes essential for DSB occurs at a normal timing and to a normal level in the absence of DNA synthesis in both the wild-type and cds1delta cells. On the other hand, the transcriptional induction of the mei4+ transcription factor and cdc25+ phosphatase, which is significantly suppressed by hydroxyurea in the wild-type cells, occurs almost to a normal level in cds1delta cells even in the presence of hydroxyurea. These results show that the Rad3-Cds1 checkpoint pathway coordinates initiation of meiotic recombination and meiotic cell divisions with premeiotic DNA synthesis. Because mei4+ is known to be required for DSB formation and cdc25+ is required for activation of meiotic cell divisions, we propose an intriguing possibility that the Rad3-Cds1 meiotic checkpoint pathway may target transcription of these factors.

  19. The Drosophila Meiotic Recombination Gene Mei-9 Encodes a Homologue of the Yeast Excision Repair Protein Rad1

    PubMed Central

    Sekelsky, J. J.; McKim, K. S.; Chin, G. M.; Hawley, R. S.

    1995-01-01

    Meiotic recombination and DNA repair are mediated by overlapping sets of genes. In the yeast Saccharomyces cerevisiae, many genes required to repair DNA double-strand breaks are also required for meiotic recombination. In contrast, mutations in genes required for nucleotide excision repair (NER) have no detectable effects on meiotic recombination in S. cerevisiae. The Drosophila melanogaster mei-9 gene is unique among known recombination genes in that it is required for both meiotic recombination and NER. We have analyzed the mei-9 gene at the molecular level and found that it encodes a homologue of the S. cerevisiae excision repair protein Rad1, the probable homologue of mammalian XPF/ERCC4. Hence, the predominant process of meiotic recombination in Drosophila proceeds through a pathway that is at least partially distinct from that of S. cerevisiae, in that it requires an NER protein. The biochemical properties of the Rad1 protein allow us to explain the observation that mei-9 mutants suppress reciprocal exchange without suppressing the frequency of gene conversion. PMID:8647398

  20. Abnormal meiotic recombination with complex chromosomal rearrangement in an azoospermic man.

    PubMed

    Wang, Liu; Iqbal, Furhan; Li, Guangyuan; Jiang, Xiaohua; Bukhari, Ihtisham; Jiang, Hanwei; Yang, Qingling; Zhong, Liangwen; Zhang, Yuanwei; Hua, Juan; Cooke, Howard J; Shi, Qinghua

    2015-06-01

    Spermatocyte spreading and immunostaining were applied to detect meiotic prophase I progression, homologous chromosome pairing, synapsis and recombination in an azoospermic reciprocal translocation 46, XY, t(5;7;9;13)(5q11;7p11;7p15;9q12;13p12) carrier. Histological examination of the haematoxylin and eosin stained testicular sections revealed reduced germ cells with no spermatids or sperm in the patient. TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labelling assay showed apoptotic cells in testicular sections of translocation carrier. Immnunofluorescence analysis indicated the presence of an octavalent in all the pachytene spermatocytes analysed in the patient. Meiotic progression was disturbed, as an increase in zygotene (P < 0.001) and decrease in the pachytene spermatocytes (P < 0.001) were observed in the t(5;7;9;13) carrier compared with controls. It was further observed that 93% of octavalents were found partially asynapsed between homologous chromosomes. A significant decrease in the recombination frequency was observed on 5p, 5q, 7q, 9p and 13q in the translocation carrier compared with the reported controls. A significant reduction in XY recombination frequency was also found in the participants. Our results indicated that complex chromosomal rearrangements can impair synaptic integrity of translocated chromosomes, which may reduce chromosomal recombination on translocated as well as non-translocated chromosomes, a phenomenon commonly known as interchromosomal effect.

  1. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis.

    PubMed

    Yelina, Nataliya E; Lambing, Christophe; Hardcastle, Thomas J; Zhao, Xiaohui; Santos, Bruno; Henderson, Ian R

    2015-10-15

    During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes.

  2. DNA recombination. Recombination initiation maps of individual human genomes.

    PubMed

    Pratto, Florencia; Brick, Kevin; Khil, Pavel; Smagulova, Fatima; Petukhova, Galina V; Camerini-Otero, R Daniel

    2014-11-14

    DNA double-strand breaks (DSBs) are introduced in meiosis to initiate recombination and generate crossovers, the reciprocal exchanges of genetic material between parental chromosomes. Here, we present high-resolution maps of meiotic DSBs in individual human genomes. Comparing DSB maps between individuals shows that along with DNA binding by PRDM9, additional factors may dictate the efficiency of DSB formation. We find evidence for both GC-biased gene conversion and mutagenesis around meiotic DSB hotspots, while frequent colocalization of DSB hotspots with chromosome rearrangement breakpoints implicates the aberrant repair of meiotic DSBs in genomic disorders. Furthermore, our data indicate that DSB frequency is a major determinant of crossover rate. These maps provide new insights into the regulation of meiotic recombination and the impact of meiotic recombination on genome function.

  3. Fine-Structure Mapping of Meiosis-Specific Double-Strand DNA Breaks at a Recombination Hotspot Associated with an Insertion of Telomeric Sequences Upstream of the His4 Locus in Yeast

    PubMed Central

    Xu, F.; Petes, T. D.

    1996-01-01

    Meiotic recombination in Saccharomyces cerevisiae is initiated by double-strand DNA breaks (DSBs). Using two approaches, we mapped the position of DSBs associated with a recombination hotspot created by insertion of telomeric sequences into the region upstream of HIS4. We found that the breaks have no obvious sequence specificity and localize to a region of ~50 bp adjacent to the telomeric insertion. By mapping the breaks and by studies of the exonuclease III sensitivity of the broken ends, we conclude that most of the broken DNA molecules have blunt ends with 3'-hydroxyl groups. PMID:8807286

  4. Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis

    PubMed Central

    Francis, Kirk E.; Lam, Sandy Y.; Harrison, Benjamin D.; Bey, Alexandra L.; Berchowitz, Luke E.; Copenhaver, Gregory P.

    2007-01-01

    Recombination, in the form of cross-overs (COs) and gene conversion (GC), is a highly conserved feature of meiosis from fungi to mammals. Recombination helps ensure chromosome segregation and promotes allelic diversity. Lesions in the recombination machinery are often catastrophic for meiosis, resulting in sterility. We have developed a visual assay capable of detecting Cos and GCs and measuring CO interference in Arabidopsis thaliana. This flexible assay utilizes transgene constructs encoding pollen-expressed fluorescent proteins of three different colors in the qrt1 mutant background. By observing the segregation of the fluorescent alleles in 92,489 pollen tetrads, we demonstrate (i) a correlation between developmental position and CO frequency, (ii) a temperature dependence for CO frequency, (iii) the ability to detect meiotic GC events, and (iv) the ability to rapidly assess CO interference. PMID:17360452

  5. Probing Meiotic Recombination and Aneuploidy of Single Sperm Cells by Whole Genome Sequencing

    PubMed Central

    Lu, Sijia; Zong, Chenghang; Fan, Wei; Yang, Mingyu; Li, Jinsen; Chapman, Alec R.; Zhu, Ping; Hu, Xuesong; Xu, Liya; Yan, Liying; Bai, Fan; Qiao, Jie; Tang, Fuchou; Li, Ruiqiang; Xie, X. Sunney

    2013-01-01

    Meiotic recombination creates genetic diversity and ensures segregation of homologous chromosomes. Previous population analyses yielded results averaged among individuals and impacted by evolutionary pressures. Here we sequenced 99 sperm from an Asian male using the newly developed amplification method—Multiple Annealing and Looping-Based Amplification Cycles (MALBAC)—to phase the personal genome and map at high resolution recombination events, which are non-uniformly distributed across the genome in the absence of selection pressure. The paucity of recombination near transcription start sites observed in individual sperm indicates such a phenomenon is intrinsic to the molecular mechanism of meiosis. Interestingly, a decreased crossover frequency in companion with an increase of autosomal aneuploidy is observable on a global per-sperm basis. PMID:23258895

  6. Identification of New Genes Required for Meiotic Recombination in Saccharomyces Cerevisiae

    PubMed Central

    Ajimura, M.; Leem, S. H.; Ogawa, H.

    1993-01-01

    Mutants defective in meiotic recombination were isolated from a disomic haploid strain of Saccharomyces cerevisiae by examining recombination within the leu2 and his4 heteroalleles located on chromosome III. The mutants were classified into two new complementation groups (MRE2 and MRE11) and eight previously identified groups, which include SPO11, HOP1, REC114, MRE4/MEK1 and genes in the RAD52 epistasis group. All of the mutants, in which the mutations in the new complementation groups are homozygous and diploid, can undergo premeiotic DNA synthesis and produce spores. The spores are, however, not viable. The mre2 and mre11 mutants produce viable spores in a spo13 background, in which meiosis I is bypassed, suggesting that these mutants are blocked at an early step in meiotic recombination. The mre2 mutant does not exhibit any unusual phenotype during mitosis and it is, thus, considered to have a mutation in a meiosis-specific gene. By contrast, the mre11 mutant is sensitive to damage to DNA by methyl methanesulfonate and exhibits a hyperrecombination phenotype in mitosis. Among six alleles of HOP1 that were isolated, an unusual pattern of intragenic complementation was observed. PMID:8417989

  7. Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination.

    PubMed

    Qiao, Huanyu; Prasada Rao, H B D; Yang, Ye; Fong, Jared H; Cloutier, Jeffrey M; Deacon, Dekker C; Nagel, Kathryn E; Swartz, Rebecca K; Strong, Edward; Holloway, J Kim; Cohen, Paula E; Schimenti, John; Ward, Jeremy; Hunter, Neil

    2014-02-01

    Crossover recombination facilitates the accurate segregation of homologous chromosomes during meiosis. In mammals, poorly characterized regulatory processes ensure that every pair of chromosomes obtains at least one crossover, even though most recombination sites yield non-crossovers. Designation of crossovers involves selective localization of the SUMO ligase RNF212 to a minority of recombination sites, where it stabilizes pertinent factors such as MutSγ (ref. 4). Here we show that the ubiquitin ligase HEI10 (also called CCNB1IP1) is essential for this crossover/non-crossover differentiation process. In HEI10-deficient mice, RNF212 localizes to most recombination sites, and dissociation of both RNF212 and MutSγ from chromosomes is blocked. Consequently, recombination is impeded, and crossing over fails. In wild-type mice, HEI10 accumulates at designated crossover sites, suggesting that it also has a late role in implementing crossing over. As with RNF212, dosage sensitivity for HEI10 indicates that it is a limiting factor for crossing over. We suggest that SUMO and ubiquitin have antagonistic roles during meiotic recombination that are balanced to effect differential stabilization of recombination factors at crossover and non-crossover sites.

  8. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination.

    PubMed

    Reddy, Kirthi C; Villeneuve, Anne M

    2004-08-20

    Initiation of meiotic recombination by double-strand breaks (DSBs) must occur in a controlled fashion to avoid jeopardizing genome integrity. Here, we identify chromatin-associated protein HIM-17 as a link between chromatin state and DSB formation during C. elegans meiosis. Dependencies of several meiotic prophase events on HIM-17 parallel those seen for DSB-generating enzyme SPO-11: HIM-17 is essential for DSB formation but dispensable for homolog synapsis. Crossovers and chiasmata are eliminated in him-17 null mutants but are restored by artificially induced DSBs, indicating that all components required to convert DSBs into chiasmata are present. Unlike SPO-11, HIM-17 is also required for proper accumulation of histone H3 methylation at lysine 9 on meiotic prophase chromosomes. HIM-17 shares structural features with three proteins that interact genetically with LIN-35/Rb, a known component of chromatin-modifying complexes. Furthermore, DSB levels and incidence of chiasmata can be modulated by loss of LIN-35/Rb. These and other data suggest that chromatin state governs the timing of DSB competence.

  9. The MRE4 gene encodes a novel protein kinase homologue required for meiotic recombination in Saccharomyces cerevisiae.

    PubMed Central

    Leem, S H; Ogawa, H

    1992-01-01

    The MRE4 gene was cloned by complementation of the defects of meiotic recombination and haploidization in an mre4-1 mutant. Disruption of MRE4 resulted in reduced meiotic recombination and spore inviability. The mre4 spore lethality can be suppressed by spo13, a mutation that causes cells to bypass the reductional division. Analysis of meiotic DNA extracted from the mre4 mutant cells revealed that double-strand breaks occurred at the two sites of the HIS4-LEU2 recombination hot spot, but at a frequency of about 10-20% of the wild type. Northern blot analysis indicated that the MRE4 gene produces four transcripts of 1.63, 3.2, 4.0 and 6.2 kb. All of these transcripts are absent from mitotic cells and are meiotically induced. The DNA sequence of the MRE4 open reading frame predicts a 497-amino acids protein with a molecular mass of 56.8 kDa. The Mre4 protein contains highly conserved amino acid sequences found specifically in serine-threonine protein kinases. These results suggest that protein phosphorylation is required directly or indirectly for meiotic recombination. Images PMID:1741279

  10. Phosphorylation of cohesin Rec11/SA3 by casein kinase 1 promotes homologous recombination by assembling the meiotic chromosome axis.

    PubMed

    Sakuno, Takeshi; Watanabe, Yoshinori

    2015-01-26

    In meiosis, cohesin is required for sister chromatid cohesion, as well as meiotic chromosome axis assembly and recombination. However, mechanisms underlying the multifunctional nature of cohesin remain elusive. Here, we show that fission yeast casein kinase 1 (CK1) plays a crucial role in assembling the meiotic chromosome axis (so-called linear element: LinE) and promoting recombination. An in vitro phosphorylation screening assay identified meiotic cohesin subunit Rec11/SA3 as an excellent substrate of CK1. The phosphorylation of Rec11 by CK1 mediates the interaction with the Rec10/Red1/SCP2 axis component, a key step in meiotic chromosome axis assembly, and is dispensable for sister chromatid cohesion. Crucially, the expression of Rec11-Rec10 fusion protein nearly completely bypasses the requirement for CK1 or cohesin phosphorylation for LinE assembly and recombination. This study uncovers a central mechanism of the cohesin-dependent assembly of the meiotic chromosome axis and recombination apparatus that acts independently of sister chromatid cohesion.

  11. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation

    PubMed Central

    de Vries, Femke A.T.; de Boer, Esther; van den Bosch, Mike; Baarends, Willy M.; Ooms, Marja; Yuan, Li; Liu, Jian-Guo; van Zeeland, Albert A.; Heyting, Christa; Pastink, Albert

    2005-01-01

    In meiotic prophase, synaptonemal complexes (SCs) closely appose homologous chromosomes (homologs) along their length. SCs are assembled from two axial elements (AEs), one along each homolog, which are connected by numerous transverse filaments (TFs). We disrupted the mouse gene encoding TF protein Sycp1 to analyze the role of TFs in meiotic chromosome behavior and recombination. Sycp1-/- mice are infertile, but otherwise healthy. Sycp1-/- spermatocytes form normal AEs, which align homologously, but do not synapse. Most Sycp1-/- spermatocytes arrest in pachynema, whereas a small proportion reaches diplonema, or, exceptionally, metaphase I. In leptotene Sycp1-/- spermatocytes, γH2AX (indicative of DNA damage, including double-strand breaks) appears normal. In pachynema, Sycp1-/- spermatocytes display a number of discrete γH2AX domains along each chromosome, whereas γH2AX disappears from autosomes in wild-type spermatocytes. RAD51/DMC1, RPA, and MSH4 foci (which mark early and intermediate steps in pairing/recombination) appear in similar numbers as in wild type, but do not all disappear, and MLH1 and MLH3 foci (which mark late steps in crossing over) are not formed. Crossovers were rare in metaphase I of Sycp1-/- mice. We propose that SYCP1 has a coordinating role, and ensures formation of crossovers. Unexpectedly, Sycp1-/- spermatocytes did not form XY bodies. PMID:15937223

  12. Vilya, a component of the recombination nodule, is required for meiotic double-strand break formation in Drosophila.

    PubMed

    Lake, Cathleen M; Nielsen, Rachel J; Guo, Fengli; Unruh, Jay R; Slaughter, Brian D; Hawley, R Scott

    2015-10-09

    Meiotic recombination begins with the induction of programmed double-strand breaks (DSBs). In most organisms only a fraction of DSBs become crossovers. Here we report a novel meiotic gene, vilya, which encodes a protein with homology to Zip3-like proteins shown to determine DSB fate in other organisms. Vilya is required for meiotic DSB formation, perhaps as a consequence of its interaction with the DSB accessory protein Mei-P22, and localizes to those DSB sites that will mature into crossovers. In early pachytene Vilya localizes along the central region of the synaptonemal complex and to discrete foci. The accumulation of Vilya at foci is dependent on DSB formation. Immuno-electron microscopy demonstrates that Vilya is a component of recombination nodules, which mark the sites of crossover formation. Thus Vilya links the mechanism of DSB formation to either the selection of those DSBs that will become crossovers or to the actual process of crossing over.

  13. Meiotic recombination between yeast artificial chromosomes yields a single clone containing the entire BCL2 protooncogene.

    PubMed Central

    Silverman, G A; Green, E D; Young, R L; Jockel, J I; Domer, P H; Korsmeyer, S J

    1990-01-01

    The common translocation found in human follicular lymphoma, t(14;18)(q32;q21), results in deregulation of the BCL2 protoonocogene. The isolation of the intact gene would provide an essential substrate to analyze the molecular basis of this malignancy. Pulsed-field gel electrophoresis suggested that this three-exon gene was several hundred kilobases (kb) long. Therefore, a library of yeast artificial chromosome (YAC) clones was screened to isolate the intact BCL2 gene. Two clones, yA85B6 (200 kb) and yB206A6 (700 kb), were isolated by using polymerase chain reaction (PCR) assays specific for exon I/II and exon III, respectively. However, neither YAC contained the entire BCL2 locus. Since the two YACs were found to overlap by 60 kb, we sought to take advantage of the high recombination frequency in yeast and induce physical recombination between the two clones. Cells containing each YAC were mated and induced to undergo meiotic division and sporulation. Analysis of the resulting tetrads revealed a spore containing a single recombinant YAC of 800 kb. PCR assays and Southern blotting demonstrated that this recombined YAC contained the entire approximately 230-kb BCL2 gene. Furthermore, probe order was conserved and there was no evidence of overt rearrangements or deletions. These results indicate the feasibility of reconstructing large genomic segments with overlapping YAC clones to study genes spanning hundreds of kilobases. Images PMID:2263642

  14. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors

    PubMed Central

    Rog, Ofer; Köhler, Simone; Dernburg, Abby F

    2017-01-01

    The synaptonemal complex (SC) is a polymer that spans ~100 nm between paired homologous chromosomes during meiosis. Its striated, periodic appearance in electron micrographs led to the idea that transverse filaments within this structure ‘crosslink’ the axes of homologous chromosomes, stabilizing their pairing. SC proteins can also form polycomplexes, three-dimensional lattices that recapitulate the periodic structure of SCs but do not associate with chromosomes. Here we provide evidence that SCs and polycomplexes contain mobile subunits and that their assembly is promoted by weak hydrophobic interactions, indicative of a liquid crystalline phase. We further show that in the absence of recombination intermediates, polycomplexes recapitulate the dynamic localization of pro-crossover factors during meiotic progression, revealing how the SC might act as a conduit to regulate chromosome-wide crossover distribution. Properties unique to liquid crystals likely enable long-range signal transduction along meiotic chromosomes and underlie the rapid evolution of SC proteins. DOI: http://dx.doi.org/10.7554/eLife.21455.001 PMID:28045371

  15. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing.

    PubMed

    Becherel, Olivier J; Yeo, Abrey J; Stellati, Alissa; Heng, Evelyn Y H; Luff, John; Suraweera, Amila M; Woods, Rick; Fleming, Jean; Carrie, Dianne; McKinney, Kristine; Xu, Xiaoling; Deng, Chuxia; Lavin, Martin F

    2013-04-01

    Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2), plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI). Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops), and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

  16. PHS1 regulates meiotic recombination and homologous chromosome pairing by controlling the transport of RAD50 to the nucleus.

    PubMed

    Ronceret, Arnaud; Doutriaux, Marie-Pascale; Golubovskaya, Inna N; Pawlowski, Wojciech P

    2009-11-24

    Recombination and pairing of homologous chromosomes are critical for bivalent formation in meiotic prophase. In many organisms, including yeast, mammals, and plants, pairing and recombination are intimately interconnected. The POOR HOMOLOGOUS SYNAPSIS1 (PHS1) gene acts in coordination of chromosome pairing and early recombination steps in plants, ensuring pairing fidelity and proper repair of meiotic DNA double-strand-breaks. In phs1 mutants, chromosomes exhibit early recombination defects and frequently associate with non-homologous partners, instead of pairing with their proper homologs. Here, we show that the product of the PHS1 gene is a cytoplasmic protein that functions by controlling transport of RAD50 from cytoplasm to the nucleus. RAD50 is a component of the MRN protein complex that processes meiotic double-strand-breaks to produce single-stranded DNA ends, which act in the homology search and recombination. We demonstrate that PHS1 plays the same role in homologous pairing in both Arabidopsis and maize, whose genomes differ dramatically in size and repetitive element content. This suggests that PHS1 affects pairing of the gene-rich fraction of the genome rather than preventing pairing between repetitive DNA elements. We propose that PHS1 is part of a system that regulates the progression of meiotic prophase by controlling entry of meiotic proteins into the nucleus. We also document that in phs1 mutants in Arabidopsis, centromeres interact before pairing commences along chromosome arms. Centromere coupling was previously observed in yeast and polyploid wheat while our data suggest that it may be a more common feature of meiosis.

  17. Nuclear Localization of PRDM9 and Its Role in Meiotic Chromatin Modifications and Homologous Synapsis

    PubMed Central

    Sun, Fengyun; Fujiwara, Yasuhiro; Reinholdt, Laura G.; Hu, Jianjun; Saxl, Ruth L.; Baker, Christopher L.; Petkov, Petko M.; Paigen, Kenneth; Handel, Mary Ann

    2015-01-01

    Developmental progress of germ cells through meiotic phases is closely tied to ongoing meiotic recombination. In mammals, recombination preferentially occurs in genomic regions known as hotspots; the protein that activates these hotspots is PRDM9, containing a genetically variable zinc-finger domain and a PR-SET domain with histone H3K4 trimethyltransferase activity. PRDM9 is required for fertility in mice, but little is known about its localization and developmental dynamics. Application of spermatogenic stage-specific markers demonstrates that PRDM9 accumulates in male germ-cell nuclei at pre-leptonema to early leptonema, but is no longer detectable in nuclei by late zygonema. By the pachytene stage, PRDM9-dependent histone H3K4 trimethyl marks on hotspots also disappear. PRDM9 localizes to nuclei concurrently with the deposition of meiotic cohesin complexes, but is not required for incorporation of cohesin complex proteins into chromosomal axial elements, or accumulation of normal numbers of RAD51 foci on meiotic chromatin by late zygonema. Germ cells lacking PRDM9 exhibit inefficient homology recognition and synapsis, with aberrant repair of meiotic DNA double-strand breaks and transcriptional abnormalities characteristic of meiotic silencing of unsynapsed chromatin. Together, these results on the developmental time course for nuclear localization of PRDM9 establish its direct window of function, and demonstrate the independence of chromosome axial element formation from the concurrent PRDM9-mediated activation of recombination hotspots. PMID:25894966

  18. Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis.

    PubMed

    Sun, Fengyun; Fujiwara, Yasuhiro; Reinholdt, Laura G; Hu, Jianjun; Saxl, Ruth L; Baker, Christopher L; Petkov, Petko M; Paigen, Kenneth; Handel, Mary Ann

    2015-09-01

    Developmental progress of germ cells through meiotic phases is closely tied to ongoing meiotic recombination. In mammals, recombination preferentially occurs in genomic regions known as hotspots; the protein that activates these hotspots is PRDM9, containing a genetically variable zinc finger (ZNF) domain and a PR-SET domain with histone H3K4 trimethyltransferase activity. PRDM9 is required for fertility in mice, but little is known about its localization and developmental dynamics. Application of spermatogenic stage-specific markers demonstrates that PRDM9 accumulates in male germ cell nuclei at pre-leptonema to early leptonema but is no longer detectable in nuclei by late zygonema. By the pachytene stage, PRDM9-dependent histone H3K4 trimethyl marks on hotspots also disappear. PRDM9 localizes to nuclei concurrently with the deposition of meiotic cohesin complexes, but is not required for incorporation of cohesin complex proteins into chromosomal axial elements, or accumulation of normal numbers of RAD51 foci on meiotic chromatin by late zygonema. Germ cells lacking PRDM9 exhibit inefficient homology recognition and synapsis, with aberrant repair of meiotic DNA double-strand breaks and transcriptional abnormalities characteristic of meiotic silencing of unsynapsed chromatin. Together, these results on the developmental time course for nuclear localization of PRDM9 establish its direct window of function and demonstrate the independence of chromosome axial element formation from the concurrent PRDM9-mediated activation of recombination hotspots.

  19. Immunofluorescent characterization of meiotic recombination in human males with variable spermatogenesis.

    PubMed

    de Vries, M; Ramos, L; de Boer, P

    2013-03-01

    Homologous recombination is the key to meiotic functioning. The basis of this process is provided by numerous SPO11-induced DNA double-strand breaks. Repair of these breaks occurs via the crossover (CO) and non-crossover (NCO) pathways. By means of immunofluorescence staining of Replication protein A (RPA) and MutL homolog 1 (MLH1) in combination with the DNA damage marker γH2AX, we studied transitional (CO and NCO) and late (CO) recombination nodules, respectively. Testicular samples were from non-obstructive azoospermic probands (testicular spermatozoa were found) and probands that had a history of normal fertility prior to a vasectomy. All probands were ICSI candidates. γH2AX foci mostly colocalized with delayed transitional nodules (RPA) for which variation was found among probands. Highest incidences of colocalization were found in patients. The level of MLH1 signal intensity was lower in probands who showed more frequent γH2AX RPA colocalization in late pachytene, suggesting communication between the CO and NCO pathways. Our results suggest the presence of a genetic risk pathway for children conceived from non-obstructive azoospermic probands and urge for follow-up studies investigating the level of recombination involved de novo mutations in these children.

  20. Identification of DSB-1, a protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover assurance checkpoint.

    PubMed

    Stamper, Ericca L; Rodenbusch, Stacia E; Rosu, Simona; Ahringer, Julie; Villeneuve, Anne M; Dernburg, Abby F

    2013-01-01

    Meiotic recombination, an essential aspect of sexual reproduction, is initiated by programmed DNA double-strand breaks (DSBs). DSBs are catalyzed by the widely-conserved Spo11 enzyme; however, the activity of Spo11 is regulated by additional factors that are poorly conserved through evolution. To expand our understanding of meiotic regulation, we have characterized a novel gene, dsb-1, that is specifically required for meiotic DSB formation in the nematode Caenorhabditis elegans. DSB-1 localizes to chromosomes during early meiotic prophase, coincident with the timing of DSB formation. DSB-1 also promotes normal protein levels and chromosome localization of DSB-2, a paralogous protein that plays a related role in initiating recombination. Mutations that disrupt crossover formation result in prolonged DSB-1 association with chromosomes, suggesting that nuclei may remain in a DSB-permissive state. Extended DSB-1 localization is seen even in mutants with defects in early recombination steps, including spo-11, suggesting that the absence of crossover precursors triggers the extension. Strikingly, failure to form a crossover precursor on a single chromosome pair is sufficient to extend the localization of DSB-1 on all chromosomes in the same nucleus. Based on these observations we propose a model for crossover assurance that acts through DSB-1 to maintain a DSB-permissive state until all chromosome pairs acquire crossover precursors. This work identifies a novel component of the DSB machinery in C. elegans, and sheds light on an important pathway that regulates DSB formation for crossover assurance.

  1. CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination.

    PubMed

    Marjanović, Marko; Sánchez-Huertas, Carlos; Terré, Berta; Gómez, Rocío; Scheel, Jan Frederik; Pacheco, Sarai; Knobel, Philip A; Martínez-Marchal, Ana; Aivio, Suvi; Palenzuela, Lluís; Wolfrum, Uwe; McKinnon, Peter J; Suja, José A; Roig, Ignasi; Costanzo, Vincenzo; Lüders, Jens; Stracker, Travis H

    2015-07-09

    CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63-deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death, and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63-deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination.

  2. DNase I-hypersensitive sites and transcription factor-binding motifs within the mouse E beta meiotic recombination hot spot.

    PubMed

    Shenkar, R; Shen, M H; Arnheim, N

    1991-04-01

    The second intron of the E beta gene in the mouse major histocompatibility complex is the site of a meiotic recombination hot spot. We detected two DNase I-hypersensitive sites in this intron in meiotic cells isolated from mouse testes. One site appears to be constitutive and is found in other tissues regardless of whether or not they express the E beta gene. Near this hypersensitive site are potential binding motifs for H2TF1/KBF1, NF kappa B, and octamer transcription factors. Gel retardation studies with mouse lymphoma cell nuclear extracts confirmed that each of these motifs is capable of binding protein. The binding of transcription factors may contribute to the enhancement of recombination potential by altering chromatin structure and increasing the accessibility of the DNA to the recombination machinery.

  3. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes

    PubMed Central

    Norman, Paul J.; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A.; Moesta, Achim K.; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L.; Guethlein, Lisbeth A.; Carrington, Christine V.F.; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A.; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M.; Ramdath, D. Dan; Shiau, Ming-Yuh; Stephens, Henry A.F.; Struik, Siske; Tyan, Dolly; Verity, David H.; Vaughan, Robert W.; Davis, Ronald W.; Fraser, Patricia A.; Riley, Eleanor M.; Ronaghi, Mostafa; Parham, Peter

    2009-01-01

    Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric “half” was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600

  4. Gradual implementation of the meiotic recombination program via checkpoint pathways controlled by global DSB levels.

    PubMed

    Joshi, Neeraj; Brown, M Scott; Bishop, Douglas K; Börner, G Valentin

    2015-03-05

    During meiosis, Spo11-induced double-strand breaks (DSBs) are processed into crossovers, ensuring segregation of homologous chromosomes (homologs). Meiotic DSB processing entails 5' end resection and preferred strand exchange with the homolog rather than the sister chromatid (homolog bias). In many organisms, DSBs appear gradually along the genome. Here we report unexpected effects of global DSB levels on local recombination events. Early-occurring, low-abundance "scout" DSBs lack homolog bias. Their resection and interhomolog processing are controlled by the conserved checkpoint proteins Tel1(ATM) kinase and Pch2(TRIP13) ATPase. Processing pathways controlled by Mec1(ATR) kinase take over these functions only above a distinct DSB threshold, resulting in progressive strengthening of the homolog bias. We conclude that Tel1(ATM)/Pch2 and Mec1(ATR) DNA damage response pathways are sequentially activated during wild-type meiosis because of their distinct sensitivities to global DSB levels. Moreover, relative DSB order controls the DSB repair pathway choice and, ultimately, recombination outcome.

  5. ATM modulates the loading of recombination proteins onto a chromosomal translocation breakpoint hotspot.

    PubMed

    Sun, Jiying; Oma, Yukako; Harata, Masahiko; Kono, Kazuteru; Shima, Hiroki; Kinomura, Aiko; Ikura, Tsuyoshi; Suzuki, Hidekazu; Mizutani, Shuki; Kanaar, Roland; Tashiro, Satoshi

    2010-10-27

    Chromosome translocations induced by DNA damaging agents, such as ionizing radiation and certain chemotherapies, alter genetic information resulting in malignant transformation. Abrogation or loss of the ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, increases the incidence of chromosome translocations. However, how ATM protects cells from chromosome translocations is still unclear. Chromosome translocations involving the MLL gene on 11q23 are the most frequent chromosome abnormalities in secondary leukemias associated with chemotherapy employing etoposide, a topoisomerase II poison. Here we show that ATM deficiency results in the excessive binding of the DNA recombination protein RAD51 at the translocation breakpoint hotspot of 11q23 chromosome translocation after etoposide exposure. Binding of Replication protein A (RPA) and the chromatin remodeler INO80, which facilitate RAD51 loading on damaged DNA, to the hotspot were also increased by ATM deficiency. Thus, in addition to activating DNA damage signaling, ATM may avert chromosome translocations by preventing excessive loading of recombinational repair proteins onto translocation breakpoint hotspots.

  6. Punctuated Distribution of Recombination Hotspots and Demarcation of Pericentromeric Regions in Phaseolus vulgaris L.

    PubMed Central

    Bhakta, Mehul S.; Jones, Valerie A.; Vallejos, C. Eduardo

    2015-01-01

    High density genetic maps are a reliable tool for genetic dissection of complex plant traits. Mapping resolution is often hampered by the variable crossover and non-crossover events occurring across the genome, with pericentromeric regions (pCENR) showing highly suppressed recombination rates. The efficiency of linkage mapping can further be improved by characterizing and understanding the distribution of recombinational activity along individual chromosomes. In order to evaluate the genome wide recombination rate in common beans (Phaseolus vulgaris L.) we developed a SNP-based linkage map using the genotype-by-sequencing approach with a 188 recombinant inbred line family generated from an inter gene pool cross (Andean x Mesoamerican). We identified 1,112 SNPs that were subsequently used to construct a robust linkage map with 11 groups, comprising 513 recombinationally unique marker loci spanning 943 cM (LOD 3.0). Comparative analysis showed that the linkage map spanned >95% of the physical map, indicating that the map is almost saturated. Evaluation of genome-wide recombination rate indicated that at least 45% of the genome is highly recombinationally suppressed, and allowed us to estimate locations of pCENRs. We observed an average recombination rate of 0.25 cM/Mb in pCENRs as compared to the rest of genome that showed 3.72 cM/Mb. However, several hot spots of recombination were also detected with recombination rates reaching as high as 34 cM/Mb. Hotspots were mostly found towards the end of chromosomes, which also happened to be gene-rich regions. Analyzing relationships between linkage and physical map indicated a punctuated distribution of recombinational hot spots across the genome. PMID:25629314

  7. Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice

    PubMed Central

    de Boer, Esther; Jasin, Maria; Keeney, Scott

    2015-01-01

    Meiotic recombination initiated by programmed double-strand breaks (DSBs) yields two types of interhomolog recombination products, crossovers and noncrossovers, but what determines whether a DSB will yield a crossover or noncrossover is not understood. In this study, we analyzed the influence of sex and chromosomal location on mammalian recombination outcomes by constructing fine-scale recombination maps in both males and females at two mouse hot spots located in different regions of the same chromosome. These include the most comprehensive maps of recombination hot spots in oocytes to date. One hot spot, located centrally on chromosome 1, behaved similarly in male and female meiosis: Crossovers and noncrossovers formed at comparable levels and ratios in both sexes. In contrast, at a distal hot spot, crossovers were recovered only in males even though noncrossovers were obtained at similar frequencies in both sexes. These findings reveal an example of extreme sex-specific bias in recombination outcome. We further found that estimates of relative DSB levels are surprisingly poor predictors of relative crossover frequencies between hot spots in males. Our results demonstrate that the outcome of mammalian meiotic recombination can be biased, that this bias can vary depending on location and cellular context, and that DSB frequency is not the only determinant of crossover frequency. PMID:26251527

  8. Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice.

    PubMed

    de Boer, Esther; Jasin, Maria; Keeney, Scott

    2015-08-15

    Meiotic recombination initiated by programmed double-strand breaks (DSBs) yields two types of interhomolog recombination products, crossovers and noncrossovers, but what determines whether a DSB will yield a crossover or noncrossover is not understood. In this study, we analyzed the influence of sex and chromosomal location on mammalian recombination outcomes by constructing fine-scale recombination maps in both males and females at two mouse hot spots located in different regions of the same chromosome. These include the most comprehensive maps of recombination hot spots in oocytes to date. One hot spot, located centrally on chromosome 1, behaved similarly in male and female meiosis: Crossovers and noncrossovers formed at comparable levels and ratios in both sexes. In contrast, at a distal hot spot, crossovers were recovered only in males even though noncrossovers were obtained at similar frequencies in both sexes. These findings reveal an example of extreme sex-specific bias in recombination outcome. We further found that estimates of relative DSB levels are surprisingly poor predictors of relative crossover frequencies between hot spots in males. Our results demonstrate that the outcome of mammalian meiotic recombination can be biased, that this bias can vary depending on location and cellular context, and that DSB frequency is not the only determinant of crossover frequency.

  9. Detection of the CMT1A/HNPP recombination hotspot in unrelated patients of European descent.

    PubMed Central

    Timmerman, V; Rautenstrauss, B; Reiter, L T; Koeuth, T; Löfgren, A; Liehr, T; Nelis, E; Bathke, K D; De Jonghe, P; Grehl, H; Martin, J J; Lupski, J R; Van Broeckhoven, C

    1997-01-01

    Charcot-Marie-Tooth type 1 disease (CMT1) and hereditary neuropathy with liability to pressure palsies (HNPP) are common inherited disorders of the peripheral nervous system. The majority of CMT1 patients have a 1.5Mb tandem duplication (CMT1A) in chromosome 17p11.2 while most HNPP patients have a deletion of the same 1.5 Mb region. The CMT1A duplication and HNPP deletion are the reciprocal products of an unequal crossing over event between misaligned flanking CMT1A-REP elements. We analysed 162 unrelated CMT1A duplication patients and HNPP deletion patients from 11 different countries for the presence of a recombination hotspot in the CMT1A-REP sequences. A hotspot for unequal crossing over between the misaligned flanking CMT1A-REP elements was observed through the detection of novel junction fragments in 76.9% of 130 unrelated CMT1A patients and in 71.9% of 32 unrelated HNPP patients. This recombination hotspot was also detected in eight out of 10 de novo CMT1A duplication and in two de novo HNPP deletion patients. These data indicate that the hotspot of unequal crossing over occurs in several populations independently of ethnic background and is directly involved in the pathogenesis of CMT1A and HNPP. We conclude that the detection of junction fragments from the CMT1A-REP element on Southern blot analysis is a simple and reliable DNA diagnostic tool for the identification of the CMT1A duplication and HNPP deletion in most patients. Images PMID:9032649

  10. Detection of the CMT1A/HNPP recombination hotspot in unrelated patients of European descent.

    PubMed

    Timmerman, V; Rautenstrauss, B; Reiter, L T; Koeuth, T; Löfgren, A; Liehr, T; Nelis, E; Bathke, K D; De Jonghe, P; Grehl, H; Martin, J J; Lupski, J R; Van Broeckhoven, C

    1997-01-01

    Charcot-Marie-Tooth type 1 disease (CMT1) and hereditary neuropathy with liability to pressure palsies (HNPP) are common inherited disorders of the peripheral nervous system. The majority of CMT1 patients have a 1.5Mb tandem duplication (CMT1A) in chromosome 17p11.2 while most HNPP patients have a deletion of the same 1.5 Mb region. The CMT1A duplication and HNPP deletion are the reciprocal products of an unequal crossing over event between misaligned flanking CMT1A-REP elements. We analysed 162 unrelated CMT1A duplication patients and HNPP deletion patients from 11 different countries for the presence of a recombination hotspot in the CMT1A-REP sequences. A hotspot for unequal crossing over between the misaligned flanking CMT1A-REP elements was observed through the detection of novel junction fragments in 76.9% of 130 unrelated CMT1A patients and in 71.9% of 32 unrelated HNPP patients. This recombination hotspot was also detected in eight out of 10 de novo CMT1A duplication and in two de novo HNPP deletion patients. These data indicate that the hotspot of unequal crossing over occurs in several populations independently of ethnic background and is directly involved in the pathogenesis of CMT1A and HNPP. We conclude that the detection of junction fragments from the CMT1A-REP element on Southern blot analysis is a simple and reliable DNA diagnostic tool for the identification of the CMT1A duplication and HNPP deletion in most patients.

  11. RecBCD Enzyme "Chi Recognition" Mutants Recognize Chi Recombination Hotspots in the Right DNA Context.

    PubMed

    Amundsen, Susan K; Sharp, Jake W; Smith, Gerald R

    2016-09-01

    RecBCD enzyme is a complex, three-subunit protein machine essential for the major pathway of DNA double-strand break repair and homologous recombination in Escherichia coli Upon encountering a Chi recombination-hotspot during DNA unwinding, RecBCD nicks DNA to produce a single-stranded DNA end onto which it loads RecA protein. Conformational changes that regulate RecBCD's helicase and nuclease activities are induced upon its interaction with Chi, defined historically as 5' GCTGGTGG 3'. Chi is thought to be recognized as single-stranded DNA passing through a tunnel in RecC. To define the Chi recognition-domain in RecC and thus the mechanism of the RecBCD-Chi interaction, we altered by random mutagenesis eight RecC amino acids lining the tunnel. We screened for loss of Chi activity with Chi at one site in bacteriophage λ. The 25 recC mutants analyzed thoroughly had undetectable or strongly reduced Chi-hotspot activity with previously reported Chi sites. Remarkably, most of these mutants had readily detectable, and some nearly wild-type, activity with Chi at newly generated Chi sites. Like wild-type RecBCD, these mutants had Chi activity that responded dramatically (up to fivefold, equivalent to Chi's hotspot activity) to nucleotide changes flanking 5' GCTGGTGG 3'. Thus, these and previously published RecC mutants thought to be Chi-recognition mutants are actually Chi context-dependence mutants. Our results fundamentally alter the view that Chi is a simple 8-bp sequence recognized by the RecC tunnel. We propose that Chi hotspots have dual nucleotide sequence interactions, with both the RecC tunnel and the RecB nuclease domain.

  12. Coordination of Recombination with Meiotic Progression in the Caenorhabditis elegans Germline by KIN-18, a TAO Kinase That Regulates the Timing of MPK-1 Signaling.

    PubMed

    Yin, Yizhi; Donlevy, Sean; Smolikove, Sarit

    2016-01-01

    Meiosis is a tightly regulated process requiring coordination of diverse events. A conserved ERK/MAPK-signaling cascade plays an essential role in the regulation of meiotic progression. The Thousand And One kinase (TAO) kinase is a MAPK kinase kinase, the meiotic role of which is unknown. We have analyzed the meiotic functions of KIN-18, the homolog of mammalian TAO kinases, in Caenorhabditis elegans. We found that KIN-18 is essential for normal meiotic progression; mutants exhibit accelerated meiotic recombination as detected both by analysis of recombination intermediates and by crossover outcome. In addition, ectopic germ-cell differentiation and enhanced levels of apoptosis were observed in kin-18 mutants. These defects correlate with ectopic activation of MPK-1 that includes premature, missing, and reoccurring MPK-1 activation. Late progression defects in kin-18 mutants are suppressed by inhibiting an upstream activator of MPK-1 signaling, KSR-2. However, the acceleration of recombination events observed in kin-18 mutants is largely MPK-1-independent. Our data suggest that KIN-18 coordinates meiotic progression by modulating the timing of MPK-1 activation and the progression of recombination events. The regulation of the timing of MPK-1 activation ensures the proper timing of apoptosis and is required for the formation of functional oocytes. Meiosis is a conserved process; thus, revealing that KIN-18 is a novel regulator of meiotic progression in C. elegans would help to elucidate TAO kinase's role in germline development in higher eukaryotes.

  13. A Recombinational Hotspot at the Triplo-Lethal Locus of Drosophila Melanogaster

    PubMed Central

    Dorer, D. R.; Christensen, A. C.

    1989-01-01

    In the genome of Drosophila melanogaster there is only one locus, Tpl, that is triplo-lethal; it is also haplo-lethal. Previous work has identified 3 hypomorphic alleles of Tpl which rescue animals carrying a duplication of Tpl, but which are not dominant lethals as null mutations or deficiencies would be. We have found that all three hypomorphic alleles act as site-specific hotspots for recombination when heterozygous with a wild-type homolog. Recombination between the flanking markers ri and Ki is increased 6.5-10.5-fold in the presence of Tpl hypomorphic alleles. The increased recombination was found to occur between Tpl and Ki, while recombination in other adjacent regions is unchanged. The use of isogenic Tpl(+) controls, and the use of flanking intervals in the mutant chromosomes allows us to rule out the interchromosomal effect as a cause. We have also observed premeiotic recombination occurring at the Tpl hypomorphic alleles in male heterozygotes. We hypothesize that transposons are responsible for both the hypomorphic phenotype and the high frequency of recombination. PMID:2548923

  14. Decreased XY recombination and disturbed meiotic prophase I progression in an infertile 48, XYY, +sSMC man.

    PubMed

    Wang, Liu; Xu, Zhipeng; Iqbal, Furhan; Zhong, Liangwen; Zhang, Yuanwei; Wu, Caiyun; Zhou, Guixiang; Jiang, Hanwei; Bukhari, Ihtisham; Cooke, Howard J; Shi, Qinghua

    2015-06-01

    Small supernumerary marker chromosomes (sSMCs) are structurally abnormal rare chromosomes, difficult to characterize by karyotyping, and have been associated with minor dysmorphic features, azoospermia, and recurrent miscarriages. However, sSMC with a gonosomal trisomy has never been reported. Spermatocyte spreading and immunostaining were applied to detect meiotic prophase I progression, homologous chromosome pairing, synapsis, and recombination. In all the analyzed spermatocytes of the patient, the extra Y chromosome was not detected while the sSMC was present. The recombination frequency on autosomes was not affected, while the recombination frequencies on XY chromosome was significantly lower in the patient than in the controls. The meiotic prophase I progression was disturbed with significantly increased proportion of zygotene and decreased pachytene spermatocytes in the patients as compared with the controls. These findings highlight the importance of studies on meiotic behaviors in patients with an abnormal chromosomal constitution and provide an important framework for future studies, which may elucidate the impairment caused by sSMC in mammalian meiosis and fertility.

  15. Correlations between Synaptic Initiation and Meiotic Recombination: A Study of Humans and Mice

    PubMed Central

    Gruhn, Jennifer R.; Al-Asmar, Nasser; Fasnacht, Rachael; Maylor-Hagen, Heather; Peinado, Vanessa; Rubio, Carmen; Broman, Karl W.; Hunt, Patricia A.; Hassold, Terry

    2016-01-01

    Meiotic recombination is initiated by programmed double strand breaks (DSBs), only a small subset of which are resolved into crossovers (COs). The mechanism determining the location of these COs is not well understood. Studies in plants, fungi, and insects indicate that the same genomic regions are involved in synaptic initiation and COs, suggesting that early homolog alignment is correlated with the eventual resolution of DSBs as COs. It is generally assumed that this relationship extends to mammals, but little effort has been made to test this idea. Accordingly, we conducted an analysis of synaptic initiation sites (SISs) and COs in human and mouse spermatocytes and oocytes. In contrast to our expectation, we observed remarkable sex- and species-specific differences, including pronounced differences between human males and females in both the number and chromosomal location of SISs. Further, the combined data from our studies in mice and humans suggest that the relationship between SISs and COs in mammals is a complex one that is not dictated by the sites of synaptic initiation as reported in other organisms, although it is clearly influenced by them. PMID:26749305

  16. A Test of the Double-Strand Break Repair Model for Meiotic Recombination in Saccharomyces Cerevisiae

    PubMed Central

    Gilbertson, L. A.; Stahl, F. W.

    1996-01-01

    We tested predictions of the double-strand break repair (DSBR) model for meiotic recombination by examining the segregation patterns of small palindromic insertions, which frequently escape mismatch repair when in heteroduplex DNA. The palindromes flanked a well characterized DSB site at the ARG4 locus. The ``canonical'' DSBR model, in which only 5' ends are degraded and resolution of the four-stranded intermediate is by Holliday junction resolvase, predicts that hDNA will frequently occur on both participating chromatids in a single event. Tetrads reflecting this configuration of hDNA were rare. In addition, a class of tetrads not predicted by the canonical DSBR model was identified. This class represented events that produced hDNA in a ``trans'' configuration, on opposite strands of the same duplex on the two sides of the DSB site. Whereas most classes of convertant tetrads had typical frequencies of associated crossovers, tetrads with trans hDNA were parental for flanking markers. Modified versions of the DSBR model, including one that uses a topoisomerase to resolve the canonical DSBR intermediate, are supported by these data. PMID:8878671

  17. The red queen model of recombination hotspots evolution in the light of archaic and modern human genomes.

    PubMed

    Lesecque, Yann; Glémin, Sylvain; Lartillot, Nicolas; Mouchiroud, Dominique; Duret, Laurent

    2014-11-01

    Recombination is an essential process in eukaryotes, which increases diversity by disrupting genetic linkage between loci and ensures the proper segregation of chromosomes during meiosis. In the human genome, recombination events are clustered in hotspots, whose location is determined by the PRDM9 protein. There is evidence that the location of hotspots evolves rapidly, as a consequence of changes in PRDM9 DNA-binding domain. However, the reasons for these changes and the rate at which they occur are not known. In this study, we investigated the evolution of human hotspot loci and of PRDM9 target motifs, both in modern and archaic human lineages (Denisovan) to quantify the dynamic of hotspot turnover during the recent period of human evolution. We show that present-day human hotspots are young: they have been active only during the last 10% of the time since the divergence from chimpanzee, starting to be operating shortly before the split between Denisovans and modern humans. Surprisingly, however, our analyses indicate that Denisovan recombination hotspots did not overlap with modern human ones, despite sharing similar PRDM9 target motifs. We further show that high-affinity PRDM9 target motifs are subject to a strong self-destructive drive, known as biased gene conversion (BGC), which should lead to the loss of the majority of them in the next 3 MYR. This depletion of PRDM9 genomic targets is expected to decrease fitness, and thereby to favor new PRDM9 alleles binding different motifs. Our refined estimates of the age and life expectancy of human hotspots provide empirical evidence in support of the Red Queen hypothesis of recombination hotspots evolution.

  18. The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants.

    PubMed

    Knoll, Alexander; Puchta, Holger

    2011-03-01

    DNA helicases are enzymes that are able to unwind DNA by the use of the energy-equivalent ATP. They play essential roles in DNA replication, DNA repair, and DNA recombination in all organisms. As homologous recombination occurs in somatic and meiotic cells, the same proteins may participate in both processes, albeit not necessarily with identical functions. DNA helicases involved in genome stability and meiotic recombination are the focus of this review. The role of these enzymes and their characterized interaction partners in plants will be summarized. Although most factors are conserved in eukaryotes, plant-specific features are becoming apparent. In the RecQ helicase family, Arabidopsis thaliana RECQ4A has been shown before to be the functional homologue of the well-researched baker's yeast Sgs1 and human BLM proteins. It was surprising to find that its interaction partners AtRMI1 and AtTOP3α are absolutely essential for meiotic recombination in plants, where they are central factors of a formerly underappreciated dissolution step of recombination intermediates. In the expanding group of anti-recombinases, future analysis of plant helicases is especially promising. While no FBH1 homologue is present, the Arabidopsis genome contains homologues of both SRS2 and RTEL1. Yeast and mammals, on the other hand. only possess homologues of either one or the other of these helicases. Plants also contain several other classes of helicases that are known from other organisms to be involved in the preservation of genome stability: FANCM is conserved with parts of the human Fanconi anaemia proteins, as are homologues of the Swi2/Snf2 family and of PIF1.

  19. Vilya, a component of the recombination nodule, is required for meiotic double-strand break formation in Drosophila

    PubMed Central

    Lake, Cathleen M; Nielsen, Rachel J; Guo, Fengli; Unruh, Jay R; Slaughter, Brian D; Hawley, R Scott

    2015-01-01

    Meiotic recombination begins with the induction of programmed double-strand breaks (DSBs). In most organisms only a fraction of DSBs become crossovers. Here we report a novel meiotic gene, vilya, which encodes a protein with homology to Zip3-like proteins shown to determine DSB fate in other organisms. Vilya is required for meiotic DSB formation, perhaps as a consequence of its interaction with the DSB accessory protein Mei-P22, and localizes to those DSB sites that will mature into crossovers. In early pachytene Vilya localizes along the central region of the synaptonemal complex and to discrete foci. The accumulation of Vilya at foci is dependent on DSB formation. Immuno-electron microscopy demonstrates that Vilya is a component of recombination nodules, which mark the sites of crossover formation. Thus Vilya links the mechanism of DSB formation to either the selection of those DSBs that will become crossovers or to the actual process of crossing over. DOI: http://dx.doi.org/10.7554/eLife.08287.001 PMID:26452093

  20. The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis.

    PubMed

    Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J Julian; Gartner, Anton

    2016-03-01

    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.

  1. Variation in meiotic recombination frequencies between allelic transgenes inserted at different sites in the Drosophila melanogaster genome.

    PubMed

    McMahan, Susan; Kohl, Kathryn P; Sekelsky, Jeff

    2013-08-07

    Meiotic crossovers are distributed nonrandomly across the genome. Classic studies in Drosophila suggest that the position of a gene along a chromosome arm can affect the outcome of the recombination process, with proximity to the centromere being associated with lower crossing over. To examine this phenomenon molecularly, we developed an assay that measures meiotic crossovers and noncrossover gene conversions between allelic transgenes inserted into different genomic positions. To facilitate collecting a large number of virgin females, we developed a useful genetic system that kills males and undesired classes of females. We found that the recombination frequency at a site in the middle of the X chromosome, where crossovers are normally frequent, was similar to the frequency at the centromere-proximal end of the euchromatin, where crossovers are normally infrequent. In contrast, we recovered no recombinants--crossovers or noncrossovers--at a site on chromosome 4 and at a site toward the distal end of the X chromosome. These results suggest that local sequence or chromatin features have a stronger impact on recombination rates in this transgene assay than position along the chromosome arm.

  2. Complex relationship between meiotic recombination frequency and autosomal synaptonemal complex length per cell in normal human males.

    PubMed

    Pan, Zhenzhen; Yang, Qingling; Ye, Nan; Wang, Liu; Li, Jianhua; Yu, Dexin; Cooke, Howard J; Shi, Qinghua

    2012-03-01

    Although the relationship between meiotic recombination frequency and synaptonemal complex (SC) length has been of interest for a long time, how recombination frequency is related to SC length has not been carefully explored. To address this question, we have measured the meiotic recombination frequency as represented by MLH1 foci in 889 pachytene spermatocytes and measured the length of 19,558 autosomal SCs from 10 human males. A complex relationship between the number of MLH1 foci and total autosomal SC length per cell was observed. A positive correlation with significant correlation coefficients between the two variables was found in eight of the ten donors examined, with three donors showing weak correlation, and five showing moderate correlation. Two donors who did not show any correlation between the two variables were identified for the first time. Moreover, most cells with similar total autosomal SC length showed very different numbers of MLH1 foci both between individuals and even within an individual, and vice versa. Our data provide the first evidence for a complex relationship between the recombination frequency and total length of autosomal SCs per cell in human males.

  3. Evidence for positive selection and recombination hotspots in Deformed wing virus (DWV)

    PubMed Central

    Dalmon, A.; Desbiez, C.; Coulon, M.; Thomasson, M.; Le Conte, Y.; Alaux, C.; Vallon, J.; Moury, B.

    2017-01-01

    Deformed wing virus (DWV) is considered one of the most damaging pests in honey bees since the spread of its vector, Varroa destructor. In this study, we sequenced the whole genomes of two virus isolates and studied the evolutionary forces that act on DWV genomes. The isolate from a Varroa-tolerant bee colony was characterized by three recombination breakpoints between DWV and the closely related Varroa destructor virus-1 (VDV-1), whereas the variant from the colony using conventional Varroa management was similar to the originally described DWV. From the complete sequence dataset, nine independent DWV-VDV-1 recombination breakpoints were detected, and recombination hotspots were found in the 5′ untranslated region (5′ UTR) and the conserved region encoding the helicase. Partial sequencing of the 5′ UTR and helicase-encoding region in 41 virus isolates suggested that most of the French isolates were recombinants. By applying different methods based on the ratio between non-synonymous (dN) and synonymous (dS) substitution rates, we identified four positions that showed evidence of positive selection. Three of these positions were in the putative leader protein (Lp), and one was in the polymerase. These findings raise the question of the putative role of the Lp in viral evolution. PMID:28120868

  4. Together yes, but not coupled: new insights into the roles of RAD51 and DMC1 in plant meiotic recombination.

    PubMed

    Pradillo, Mónica; López, Eva; Linacero, Rosario; Romero, Concepción; Cuñado, Nieves; Sánchez-Morán, Eugenio; Santos, Juan L

    2012-03-01

    The eukaryotic recombinases RAD51 and DMC1 are essential for DNA strand-exchange between homologous chromosomes during meiosis. RAD51 is also expressed during mitosis, and mediates homologous recombination (HR) between sister chromatids. It has been suggested that DMC1 might be involved in the switch from intersister chromatid recombination in somatic cells to interhomolog meiotic recombination. At meiosis, the Arabidopsis Atrad51 null mutant fails to synapse and has extensive chromosome fragmentation. The Atdmc1 null mutant is also asynaptic, but in this case chromosome fragmentation is absent. Thus in plants, AtDMC1 appears to be indispensable for interhomolog homologous recombination, whereas AtRAD51 seems to be more involved in intersister recombination. In this work, we have studied a new AtRAD51 knock-down mutant, Atrad51-2, which expresses only a small quantity of RAD51 protein. Atrad51-2 mutant plants are sterile and hypersensitive to DNA double-strand break induction, but their vegetative development is apparently normal. The meiotic phenotype of the mutant consists of partial synapsis, an elevated frequency of univalents, a low incidence of chromosome fragmentation and multivalent chromosome associations. Surprisingly, non-homologous chromosomes are involved in 51% of bivalents. The depletion of AtDMC1 in the Atrad51-2 background results in the loss of bivalents and in an increase of chromosome fragmentation. Our results suggest that a critical level of AtRAD51 is required to ensure the fidelity of HR during interchromosomal exchanges. Assuming the existence of asymmetrical DNA strand invasion during the initial steps of recombination, we have developed a working model in which the initial step of strand invasion is mediated by AtDMC1, with AtRAD51 required to check the fidelity of this process.

  5. Meiotic recombination involving heterozygous large insertions in Saccharomyces cerevisiae: formation and repair of large, unpaired DNA loops.

    PubMed Central

    Kearney, H M; Kirkpatrick, D T; Gerton, J L; Petes, T D

    2001-01-01

    Meiotic recombination in Saccharomyces cerevisiae involves the formation of heteroduplexes, duplexes containing DNA strands derived from two different homologues. If the two strands of DNA differ by an insertion or deletion, the heteroduplex will contain an unpaired DNA loop. We found that unpaired loops as large as 5.6 kb can be accommodated within a heteroduplex. Repair of these loops involved the nucleotide excision repair (NER) enzymes Rad1p and Rad10p and the mismatch repair (MMR) proteins Msh2p and Msh3p, but not several other NER (Rad2p and Rad14p) and MMR (Msh4p, Msh6p, Mlh1p, Pms1p, Mlh2p, Mlh3p) proteins. Heteroduplexes were also formed with DNA strands derived from alleles containing two different large insertions, creating a large "bubble"; repair of this substrate was dependent on Rad1p. Although meiotic recombination events in yeast are initiated by double-strand DNA breaks (DSBs), we showed that DSBs occurring within heterozygous insertions do not stimulate interhomologue recombination. PMID:11514439

  6. Top3-Rmi1 DNA single-strand decatenase is integral to the formation and resolution of meiotic recombination intermediates.

    PubMed

    Kaur, Hardeep; De Muyt, Arnaud; Lichten, Michael

    2015-02-19

    The topoisomerase III (Top3)-Rmi1 heterodimer, which catalyzes DNA single-strand passage, forms a conserved complex with the Bloom's helicase (BLM, Sgs1 in budding yeast). This complex has been proposed to regulate recombination by disassembling double Holliday junctions in a process called dissolution. Top3-Rmi1 has been suggested to act at the end of this process, resolving hemicatenanes produced by earlier BLM/Sgs1 activity. We show here that, to the contrary, Top3-Rmi1 acts in all meiotic recombination functions previously associated with Sgs1, most notably as an early recombination intermediate chaperone, promoting regulated crossover and noncrossover recombination and preventing aberrant recombination intermediate accumulation. In addition, we show that Top3-Rmi1 has important Sgs1-independent functions that ensure complete recombination intermediate resolution and chromosome segregation. These findings indicate that Top3-Rmi1 activity is important throughout recombination to resolve strand crossings that would otherwise impede progression through both early steps of pathway choice and late steps of intermediate resolution.

  7. Activation of an alternative, rec12 (spo11)-independent pathway of fission yeast meiotic recombination in the absence of a DNA flap endonuclease.

    PubMed

    Farah, Joseph A; Cromie, Gareth; Davis, Luther; Steiner, Walter W; Smith, Gerald R

    2005-12-01

    Spo11 or a homologous protein appears to be essential for meiotic DNA double-strand break (DSB) formation and recombination in all organisms tested. We report here the first example of an alternative, mutationally activated pathway for meiotic recombination in the absence of Rec12, the Spo11 homolog of Schizosaccharomyces pombe. Rad2, a FEN-1 flap endonuclease homolog, is involved in processing Okazaki fragments. In its absence, meiotic recombination and proper segregation of chromosomes were restored in rec12Delta mutants to nearly wild-type levels. Although readily detectable in wild-type strains, meiosis-specific DSBs were undetectable in recombination-proficient rad2Delta rec12Delta strains. On the basis of the biochemical properties of Rad2, we propose that meiotic recombination by this alternative (Rec*) pathway can be initiated by non-DSB lesions, such as nicks and gaps, which accumulate during premeiotic DNA replication in the absence of Okazaki fragment processing. We compare the Rec* pathway to alternative pathways of homologous recombination in other organisms.

  8. Bivalent Formation 1, a plant-conserved gene, encodes an OmpH/coiled-coil motif-containing protein required for meiotic recombination in rice.

    PubMed

    Zhou, Lian; Han, Jingluan; Chen, Yuanling; Wang, Yingxiang; Liu, Yao-Guang

    2017-03-24

    Meiosis is essential for eukaryotic sexual reproduction and plant fertility. In comparison with over 80 meiotic genes identified in Arabidopsis, there are only ~30 meiotic genes characterized in rice (Oryza sativa L.). Many genes involved in the regulation of meiotic progression remain to be determined. In this study, we identified a sterile rice mutant and cloned a new meiotic gene, OsBVF1 (Bivalent Formation 1) by map-based cloning. Molecular genetics and cytological approaches were carried out to address the function of OsBVF1 in meiosis. Phylogenetic analyses were used to study the evolution of OsBVF1 and its homologs in plant species. Here we showed that the bvf1 male meiocytes were defective in formation of meiotic double strand break, thereby resulting in a failure of bivalent formation in diakinesis and unequal chromosome segregation in anaphase I. The causal gene, OsBVF1, encodes a unique OmpH/coiled-coil motif-containing protein and its homologs are highly conserved in the plant kingdom and seem to be a single-copy gene in the majority of plant species. Our study demonstrates that OsBVF1 is a novel plant-conserved factor involved in meiotic recombination in rice, providing a new insight into understanding of meiotic progression regulation.

  9. Recombination spots prediction using DNA physical properties in the saccharomyces cerevisiae genome

    NASA Astrophysics Data System (ADS)

    Guo, Shou-Hui; Xu, Li-Qin; Chen, Wei; Liu, Guo-Qing; Lin, Hao

    2012-09-01

    The prediction of meiotic recombination is difficult and current available methods are limited. In this study, we propose a novel method for discriminating between recombination hotspots and coldspots using support vector machine(SVM) with the DNA physical properties. Results of optimized pseudo-tetranucleotide show overall accuracy of 83.1% by using 5-fold cross-validation. High predictive successful rate exhibit that this model can be applied for discriminating between recombination hotspots and coldspots.

  10. The Fanconi anemia ortholog FANCM ensures ordered homologous recombination in both somatic and meiotic cells in Arabidopsis.

    PubMed

    Knoll, Alexander; Higgins, James D; Seeliger, Katharina; Reha, Sarah J; Dangel, Natalie J; Bauknecht, Markus; Schröpfer, Susan; Franklin, F Christopher H; Puchta, Holger

    2012-04-01

    The human hereditary disease Fanconi anemia leads to severe symptoms, including developmental defects and breakdown of the hematopoietic system. It is caused by single mutations in the FANC genes, one of which encodes the DNA translocase FANCM (for Fanconi anemia complementation group M), which is required for the repair of DNA interstrand cross-links to ensure replication progression. We identified a homolog of FANCM in Arabidopsis thaliana that is not directly involved in the repair of DNA lesions but suppresses spontaneous somatic homologous recombination via a RecQ helicase (At-RECQ4A)-independent pathway. In addition, it is required for double-strand break-induced homologous recombination. The fertility of At-fancm mutant plants is compromised. Evidence suggests that during meiosis At-FANCM acts as antirecombinase to suppress ectopic recombination-dependent chromosome interactions, but this activity is antagonized by the ZMM pathway to enable the formation of interference-sensitive crossovers and chromosome synapsis. Surprisingly, mutation of At-FANCM overcomes the sterility phenotype of an At-MutS homolog4 mutant by apparently rescuing a proportion of crossover-designated recombination intermediates via a route that is likely At-MMS and UV sensitive81 dependent. However, this is insufficient to ensure the formation of an obligate crossover. Thus, At-FANCM is not only a safeguard for genome stability in somatic cells but is an important factor in the control of meiotic crossover formation.

  11. Mcp7, a meiosis-specific coiled-coil protein of fission yeast, associates with Meu13 and is required for meiotic recombination

    PubMed Central

    Saito, Takamune T.; Tougan, Takahiro; Kasama, Takashi; Okuzaki, Daisuke; Nojima, Hiroshi

    2004-01-01

    We previously showed that Meu13 of Schizosaccharomyces pombe functions in homologous pairing and recombination at meiosis I. Here we show that a meiosis-specific gene encodes a coiled-coil protein that complexes with Meu13 during meiosis in vivo. This gene denoted as mcp7+ (after meiotic coiled-coil protein) is an ortholog of Mnd1 of Saccharomyces cerevisiae. Mcp7 proteins are detected on meiotic chromatin. The phenotypes of mcp7Δ cells are similar to those of meu13Δ cells as they show reduced recombination rates and spore viability and produce spores with abnormal morphology. However, a delay in initiation of meiosis I chromosome segregation of mcp7Δ cells is not so conspicuous as meu13Δ cells, and no meiotic delay is observed in mcp7Δmeu13Δ cells. Mcp7 and Meu13 proteins depend on each other differently; Mcp7 becomes more stable in meu13Δ cells, whereas Meu13 becomes less stable in mcp7Δ cells. Genetic analysis shows that Mcp7 acts in the downstream of Dmc1, homologs of Escherichia coli RecA protein, for both recombination and subsequent sporulation. Taken together, we conclude that Mcp7 associates with Meu13 and together they play a key role in meiotic recombination. PMID:15210864

  12. Mcp7, a meiosis-specific coiled-coil protein of fission yeast, associates with Meu13 and is required for meiotic recombination.

    PubMed

    Saito, Takamune T; Tougan, Takahiro; Kasama, Takashi; Okuzaki, Daisuke; Nojima, Hiroshi

    2004-01-01

    We previously showed that Meu13 of Schizosaccharomyces pombe functions in homologous pairing and recombination at meiosis I. Here we show that a meiosis-specific gene encodes a coiled-coil protein that complexes with Meu13 during meiosis in vivo. This gene denoted as mcp7+ (after meiotic coiled-coil protein) is an ortholog of Mnd1 of Saccharomyces cerevisiae. Mcp7 proteins are detected on meiotic chromatin. The phenotypes of mcp7Delta cells are similar to those of meu13Delta cells as they show reduced recombination rates and spore viability and produce spores with abnormal morphology. However, a delay in initiation of meiosis I chromosome segregation of mcp7Delta cells is not so conspicuous as meu13Delta cells, and no meiotic delay is observed in mcp7Deltameu13Delta cells. Mcp7 and Meu13 proteins depend on each other differently; Mcp7 becomes more stable in meu13Delta cells, whereas Meu13 becomes less stable in mcp7Delta cells. Genetic analysis shows that Mcp7 acts in the downstream of Dmc1, homologs of Escherichia coli RecA protein, for both recombination and subsequent sporulation. Taken together, we conclude that Mcp7 associates with Meu13 and together they play a key role in meiotic recombination.

  13. Solution structure and DNA-binding properties of the winged helix domain of the meiotic recombination HOP2 protein.

    PubMed

    Moktan, Hem; Guiraldelli, Michel F; Eyster, Craig A; Zhao, Weixing; Lee, Chih-Ying; Mather, Timothy; Camerini-Otero, R Daniel; Sung, Patrick; Zhou, Donghua H; Pezza, Roberto J

    2014-05-23

    The HOP2 protein is required for efficient double-strand break repair which ensures the proper synapsis of homologous chromosomes and normal meiotic progression. We previously showed that in vitro HOP2 shows two distinctive activities: when it is incorporated into a HOP2-MND1 heterodimer, it stimulates DMC1 and RAD51 recombination activities, and the purified HOP2 alone is proficient in promoting strand invasion. The structural and biochemical basis of HOP2 action in recombination are poorly understood; therefore, they are the focus of this work. Herein, we present the solution structure of the amino-terminal portion of mouse HOP2, which contains a typical winged helix DNA-binding domain. Together with NMR spectral changes in the presence of double-stranded DNA, protein docking on DNA, and mutation analysis to identify the amino acids involved in DNA coordination, our results on the three-dimensional structure of HOP2 provide key information on the fundamental structural and biochemical requirements directing the interaction of HOP2 with DNA. These results, in combination with mutational experiments showing the role of a coiled-coil structural feature involved in HOP2 self-association, allow us to explain important aspects of the function of HOP2 in recombination.

  14. Analysis of chromatin structure at meiotic DSB sites in yeasts.

    PubMed

    Hirota, Kouji; Fukuda, Tomoyuki; Yamada, Takatomi; Ohta, Kunihiro

    2009-01-01

    One of the major features of meiosis is a high frequency of homologous recombination that not only confers genetic diversity to a successive generation but also ensures proper segregation of chromosomes. Meiotic recombination is initiated by DNA double-strand breaks that require many proteins including the catalytic core, Spo11. In this regard, like transcription and repair, etc., recombination is hindered by a compacted chromatin structure because trans-acting factors cannot easily access the DNA. Such inhibitory effects must be alleviated prior to recombination initiation. Indeed, a number of groups showed that chromatin around recombination hotspots is less condensed, by using nucleases as a probe to assess local DNA accessibility. Here we describe a method to analyze chromatin structure of a recombination hotspot in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This method, combining micrococcal nuclease (MNase) digestion ofchromatin DNA and subsequent Southern blotting, is expected to provide information as to chromatin context around a hotspot. Moreover, by virtue of MNase preferentially targeting linker DNA, positions of several nucleosomes surrounding a hotspot can also be determined. Our protocol is a very powerful way to analyze several-kb regions of interest and can be applied to other purposes.

  15. Chi hotspots trigger a conformational change in the helicase-like domain of AddAB to activate homologous recombination

    PubMed Central

    Gilhooly, Neville S.; Carrasco, Carolina; Gollnick, Benjamin; Wilkinson, Martin; Wigley, Dale B.; Moreno-Herrero, Fernando; Dillingham, Mark S.

    2016-01-01

    In bacteria, the repair of double-stranded DNA breaks is modulated by Chi sequences. These are recognised by helicase-nuclease complexes that process DNA ends for homologous recombination. Chi activates recombination by changing the biochemical properties of the helicase-nuclease, transforming it from a destructive exonuclease into a recombination-promoting repair enzyme. This transition is thought to be controlled by the Chi-dependent opening of a molecular latch, which enables part of the DNA substrate to evade degradation beyond Chi. Here, we show that disruption of the latch improves Chi recognition efficiency and stabilizes the interaction of AddAB with Chi, even in mutants that are impaired for Chi binding. Chi recognition elicits a structural change in AddAB that maps to a region of AddB which resembles a helicase domain, and which harbours both the Chi recognition locus and the latch. Mutation of the latch potentiates the change and moderately reduces the duration of a translocation pause at Chi. However, this mutant displays properties of Chi-modified AddAB even in the complete absence of bona fide hotspot sequences. The results are used to develop a model for AddAB regulation in which allosteric communication between Chi binding and latch opening ensures quality control during recombination hotspot recognition. PMID:26762979

  16. Enhancement of spontaneous mitotic recombination by the meiotic mutant spo11-1 in Saccharomyces cerevisiae

    SciTech Connect

    Bruschi, C.V.; Esposito, M.S.

    1983-12-01

    Both nonreciprocal and reciprocal mitotic recombination are enhanced by the recessive mutant spo11-1, which was previously shown to affect meiosis by decreasing recombination and increasing nondisjunction. The mitotic effects are not distributed equally in all chromosomal regions. The genotypes of mitotic recombinants in spo11-1/spo11-1 diploid cells provide further evidence that widely spaced chromosomal markers undergo coincident conversion in mitosis.

  17. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays.

    PubMed

    Zheng, Linlin; McMullen, Michael D; Bauer, Eva; Schön, Chris-Carolin; Gierl, Alfons; Frey, Monika

    2015-07-01

    Benzoxazinoids represent preformed protective and allelopathic compounds. The main benzoxazinoid in maize (Zea mays L.) is 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). DIMBOA confers resistance to herbivores and microbes. Protective concentrations are found predominantly in young plantlets. We made use of the genetic diversity present in the maize nested association mapping (NAM) panel to identify lines with significant benzoxazinoid concentrations at later developmental stages. At 24 d after imbibition (dai), only three lines, including Mo17, showed effective DIMBOA concentrations of 1.5mM or more; B73, by contrast, had low a DIMBOA content. Mapping studies based on Mo17 and B73 were performed to reveal mechanisms that influence the DIMBOA level in 24 dai plants. A major quantitative trait locus mapped to the Bx gene cluster located on the short arm of chromosome 4, which encodes the DIMBOA biosynthetic genes. Mo17 was distinguished from all other NAM lines by high transcriptional expression of the Bx1 gene at later developmental stages. Bx1 encodes the signature enzyme of the pathway. In Mo17×B73 hybrids at 24 dai, only the Mo17 Bx1 allele transcript was detected. A 3.9kb cis-element, termed DICE (distal cis-element), that is located in the Bx gene cluster approximately 140 kb upstream of Bx1, was required for high Bx1 transcript levels during later developmental stages in Mo17. The DICE region was a hotspot of meiotic recombination. Genetic analysis revealed that high 24 dai DIMBOA concentrations were not strictly dependent on high Bx1 transcript levels. However, constitutive expression of Bx1 in transgenics increased DIMBOA levels at 24 dai, corroborating a correlation between DIMBOA content and Bx1 transcription.

  18. Three Additional Linkage Groups That Repress Transcription and Meiotic Recombination in the Mating-Type Region of Schizosaccharomyces Pombe

    PubMed Central

    Thon, G.; Cohen, A.; Klar, A. J.

    1994-01-01

    The mating-type genes of Schizosaccharomyces pombe are found at three locations in the same chromosomal region. These genes are in an active configuration at the mat1 locus and in an inactive configuration at the mat2 and mat3 loci. The mechanism that represses transcription of mat2 and mat3 also inactivates other promoters introduced nearby and is accompanied by a block to meiotic recombination in the mat2-mat3 interval, suggesting that this mechanism involves a particular chromatin structure. We present evidence that the transcription and recombination blocks require three newly defined trans-acting loci, clr2, clr3 and clr4, in addition to the previously identified clr1, rik1 and swi6 loci. We also investigated the role of mat2 cis-acting sequences in silencing. Four cis-acting elements that repress mat2 in a plasmid context were previously identified. Deletion of two of these elements proved to have little effect in a chromosomal context. However, when combined with mutations in trans-acting genes, deletion of the same two elements greatly enhanced mat2 expression. The observed cumulative effects suggest a redundancy in the silencing mechanism. PMID:8001791

  19. Position- and orientation-independent activity of the Schizosaccharomyces pombe meiotic recombination hot spot M26

    PubMed Central

    Fox, Mary E.; Virgin, Jeffrey B.; Metzger, Jens; Smith, Gerald R.

    1997-01-01

    The activity of the M26 meiotic recombination hot spot of Schizosaccharomyces pombe depends on the presence of the heptamer 5′-ATGACGT-3′. Transplacement of DNA fragments containing the ade6-M26 gene to other chromosomal loci has previously demonstrated that the heptamer functions in some, but not all, transplacements, suggesting that hot spot activity depends on chromosomal context. In this study, hot spot activity was tested in the absence of gross DNA changes by using site-directed mutagenesis to create the heptamer sequence at novel locations in the genome. When created by mutagenesis of 1–4 bp in the ade6 and ura4 genes, the heptamer was active as a recombination hot spot, in an orientation-independent manner, at all locations tested. Thus, the heptamer sequence can create an active hot spot in other chromosomal contexts, provided that the gross chromosomal structure is not altered; this result is consistent with the hypothesis that a specific higher-order chromatin structure is required for M26 hot spot activity. PMID:9207111

  20. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved.

    PubMed

    McKim, K S; Hayashi-Hagihara, A

    1998-09-15

    Meiotic recombination requires the action of several gene products in both Saccharomyces cerevisiae and Drosophila melanogaster. Genetic studies in D. melanogaster have shown that the mei-W68 gene is required for all meiotic gene conversion and crossing-over. We cloned mei-W68 using a new genetic mapping method in which P elements are used to promote crossing-over at their insertion sites. This resulted in the high-resolution mapping of mei-W68 to a <18-kb region that contains a homolog of the S. cerevisiae spo11 gene. Molecular analysis of several mutants confirmed that mei-W68 encodes an spo11 homolog. Spo11 and MEI-W68 are members of a family of proteins similar to a novel type II topoisomerase. On the basis of this and other lines of evidence, Spo11 has been proposed to be the enzymatic activity that creates the double-strand breaks needed to initiate meiotic recombination. This raises the possibility that recombination in Drosophila is also initiated by double-strand breaks. Although these homologous genes are required absolutely for recombination in both species, their roles differ in other respects. In contrast to spo11, mei-W68 is not required for synaptonemal complex formation and does have a mitotic role.

  1. Evidence for human meiotic recombination interference obtained through construction of a short tandem repeat-polymorphism linkage map of chromosome 19

    SciTech Connect

    Weber, J.L.; Wang, Z.; Hansen, K.; Stephenson, M.; Kappel, C.; Salzman, S.; Wilkie, P.J. ); Keats, B. ); Dracopoli, N.C. ); Brandriff, B.F.; Olsen, A.S. )

    1993-11-01

    An improved linkage map for human chromosome 19 containing 35 short tandem repeat polymorphisms (STRPs) and one VNTR (D19S20) was constructed. The map included 12 new (GATA)[sub n] tetranucleotide STRPs. Although total lengths of the male (114 cM) and female (128 cM) maps were similar, at both ends of the chromosome male recombination exceeded female recombination, while in the interior portion of the map female recombination was in excess. Cosmid clones containing the STRP sequences were identified and were positioned along the chromosome by fluorescent in situ hybridization. Four rounds of careful checking and removal of genotyping errors allowed biologically relevant conclusions to be made concerning the numbers and distributions of recombination events on chromosome 19. The average numbers of recombinations per chromosome matched closely the lengths of the genetic maps computed by using the program CRIMAP. Significant numbers of chromosomes with zero, one, two, or three recombinations were detected as products of both female and male meioses. On the basis of the total number of observed pairs of recombination events in which only a single informative marker was situated between the two recombinations, a maximal estimate for the rate of meiotic STRP [open quotes]gene[close quotes] conversion without recombination was calculated as 3 [times] 10[sup [minus]4]/meiosis. For distances up to 30 cM between recombinations, many fewer chromosomes which had undergone exactly two recombinations were observed than were expected on the basis of the assumption of independent recombination locations. This strong new evidence for human meiotic interference will help to improve the accuracy of interpretation of clinical DNA test results involving polymorphisms flanking a genetic abnormality. 61 refs., 2 figs., 5 tabs.

  2. Meiotic Recombination in Somatic Cell Nuclear Transfer Bulls and Their Offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In mammals, homologous chromosome pairing and recombination are essential events for meiosis. The generation of reciprocal exchanges of genetic material ensure both genetic diversity and the proper segregation of homologous chromosomes. With the advent of reproductive biotechnologies such as somat...

  3. Molecular mapping of a recombination hotspot located in the second intron of the human TAP2 locus

    SciTech Connect

    Cullen, M.; Carrington, M.; Erlich, H.

    1995-06-01

    Recombination across the HLA class II region is not randomly distributed, as indicated by both strong linkage disequilibrium within the 100 kb encompassing the DRB1-DQA1-DQB1 loci and complete equilibrium between TAP1 and TAP2, the closest variant sites of which are <15 kb. In an attempt to explain these observations, 39 novel polymorphic markers in a region encompassing the TAP, LMP, and DOB genes were used to delineate the site of crossover in 11 class II recombinant chromosomes. SSCP demonstrated that two recombination events occurred within an 850-bp interval in the second intron of TAP2, which separates the variant sites of TAP1 and TAP2. These data indicate the presence of a recombination hotspot, the first to be identified from the analysis of familial transmission in the human major histocompatibility complex. The region of crossover was cloned and sequenced from one of the recombinants, further defining the crossover site to a 138-bp segment nested within the 850-bp region. This represents the most precisely defined region of recombination in the human genome. 44 refs., 3 figs., 2 tabs.

  4. Recombinational landscape of porcine X chromosome and individual variation in female meiotic recombination associated with haplotypes of Chinese pigs

    PubMed Central

    2010-01-01

    Background Variations in recombination fraction (θ) among chromosomal regions, individuals and families have been observed and have an important impact on quantitative trait loci (QTL) mapping studies. Such variations on porcine chromosome X (SSC-X) and on other mammalian chromosome X are rarely explored. The emerging assembly of pig sequence provides exact physical location of many markers, facilitating the study of a fine-scale recombination landscape of the pig genome by comparing a clone-based physical map to a genetic map. Using large offspring of F1 females from two large-scale resource populations (Large White ♂ × Chinese Meishan ♀, and White Duroc ♂ × Chinese Erhualian ♀), we were able to evaluate the heterogeneity in θ for a specific interval among individual F1 females. Results Alignments between the cytogenetic map, radiation hybrid (RH) map, genetic maps and clone map of SSC-X with the physical map of human chromosome X (HSA-X) are presented. The most likely order of 60 markers on SSC-X is inferred. The average recombination rate across SSC-X is of ~1.27 cM/Mb. However, almost no recombination occurred in a large region of ~31 Mb extending from the centromere to Xq21, whereas in the surrounding regions and in the Xq telomeric region a recombination rate of 2.8-3.3 cM/Mb was observed, more than twice the chromosome-wide average rate. Significant differences in θ among F1 females within each population were observed for several chromosomal intervals. The largest variation was observed in both populations in the interval UMNP71-SW1943, or more precisely in the subinterval UMNP891-UMNP93. The individual variation in θ over this subinterval was found associated with F1 females' maternal haplotypes (Chinese pig haplotypes) and independent of paternal haplotype (European pig haplotypes). The θ between UMNP891 and UMNP93 for haplotype 1122 and 4311 differed by more than fourteen-fold (10.3% vs. 0.7%). Conclusions This study reveals marked

  5. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination

    PubMed Central

    Ziolkowski, Piotr A.; Underwood, Charles J.; Lambing, Christophe; Martinez-Garcia, Marina; Lawrence, Emma J.; Ziolkowska, Liliana; Griffin, Catherine; Choi, Kyuha; Franklin, F. Chris H.; Martienssen, Robert A.; Henderson, Ian R.

    2017-01-01

    During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection. PMID:28223312

  6. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae.

    PubMed Central

    Kato, R; Ogawa, H

    1994-01-01

    A new mutant, which was sensitive to both methyl-methanesulfonate (MMS) and ultra-violet light (UV) and defective in meiotic recombination, was isolated from Saccharomyces cerevisiae. The gene, ESR1, was cloned by complementation of the MMS sensitivity of the mutant and found to be essential for cell growth, as the deleted haploid strain was lethal. The ESR1 gene was adjacent to the CKS1 gene on chromosome II and encoded a putative 2368-amino acid protein with a molecular weight of 273 k. The ESR1 transcript was 8.0 kb long and was induced during meiosis. The predicted Esr1 protein had a mosaic structure composed of homologous regions and showed amino acid sequence similarities to Schizosaccharomyces pombe rad3+ protein, which monitors completion of DNA repair synthesis, and cut1+ protein, which is required for spindle pole body (SPB) duplication. The Esr1 protein was also similar to phosphatidylinositol (PI) 3-kinases, including Saccharomyces cerevisiae TOR2 (and DRR1), which are involved in G1 progression. These results suggest that ESR1 is multi-functional throughout mitosis and meiosis. Images PMID:8065923

  7. Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11.

    PubMed

    Nichols, M D; DeAngelis, K; Keck, J L; Berger, J M

    1999-11-01

    In all organisms, type II DNA topoisomerases are essential for untangling chromosomal DNA. We have determined the structure of the DNA-binding core of the Methanococcus jannaschii DNA topoisomerase VI A subunit at 2.0 A resolution. The overall structure of this subunit is unique, demonstrating that archaeal type II enzymes are distinct from other type II topoisomerases. However, the core structure contains a pair of domains that are also found in type IA and classic type II topoisomerases. Together, these regions may form the basis of a DNA cleavage mechanism shared among these enzymes. The core A subunit is a dimer that contains a deep groove that spans both protomers. The dimer architecture suggests that DNA is bound in the groove, across the A subunit interface, and that the two monomers separate during DNA transport. The A subunit of topoisomerase VI is homologous to the meiotic recombination factor, Spo11, and this structure can serve as a template for probing Spo11 function in eukaryotes.

  8. Matefin/SUN-1 phosphorylation is part of a surveillance mechanism to coordinate chromosome synapsis and recombination with meiotic progression and chromosome movement.

    PubMed

    Woglar, Alexander; Daryabeigi, Anahita; Adamo, Adele; Habacher, Cornelia; Machacek, Thomas; La Volpe, Adriana; Jantsch, Verena

    2013-01-01

    Faithful chromosome segregation during meiosis I depends on the establishment of a crossover between homologous chromosomes. This requires induction of DNA double-strand breaks (DSBs), alignment of homologs, homolog association by synapsis, and repair of DSBs via homologous recombination. The success of these events requires coordination between chromosomal events and meiotic progression. The conserved SUN/KASH nuclear envelope bridge establishes transient linkages between chromosome ends and cytoskeletal forces during meiosis. In Caenorhabditis elegans, this bridge is essential for bringing homologs together and preventing nonhomologous synapsis. Chromosome movement takes place during synapsis and recombination. Concomitant with the onset of chromosome movement, SUN-1 clusters at chromosome ends associated with the nuclear envelope, and it is phosphorylated in a chk-2- and plk-2-dependent manner. Identification of all SUN-1 phosphomodifications at its nuclear N terminus allowed us to address their role in prophase I. Failures in recombination and synapsis led to persistent phosphorylations, which are required to elicit a delay in progression. Unfinished meiotic tasks elicited sustained recruitment of PLK-2 to chromosome ends in a SUN-1 phosphorylation-dependent manner that is required for continued chromosome movement and characteristic of a zygotene arrest. Furthermore, SUN-1 phosphorylation supported efficient synapsis. We propose that signals emanating from a failure to successfully finish meiotic tasks are integrated at the nuclear periphery to regulate chromosome end-led movement and meiotic progression. The single unsynapsed X chromosome in male meiosis is precluded from inducing a progression delay, and we found it was devoid of a population of phosphorylated SUN-1. This suggests that SUN-1 phosphorylation is critical to delaying meiosis in response to perturbed synapsis. SUN-1 may be an integral part of a checkpoint system to monitor establishment of the

  9. Effects of trans-acting Genetic Modifiers on Meiotic Recombination Across the a1–sh2 Interval of Maize

    PubMed Central

    Yandeau-Nelson, Marna D.; Nikolau, Basil J.; Schnable, Patrick S.

    2006-01-01

    Meiotic recombination rates are potentially affected by cis- and trans-acting factors, i.e., genotype-specific modifiers that do or do not reside in the recombining interval, respectively. Effects of trans modifiers on recombination across the ∼140-kb maize a1–sh2 interval of chromosome 3L were studied in the absence of polymorphic cis factors in three genetically diverse backgrounds into which a sequence-identical a1–sh2 interval had been introgressed. Genetic distances across a1–sh2 varied twofold among genetic backgrounds. Although the existence of regions exhibiting high and low rates of recombination (hot and cold spots, respectively) was conserved across backgrounds, the absolute rates of recombination in these sequence-identical regions differed significantly among backgrounds. In addition, an intergenic hot spot had a higher rate of recombination as compared to the genome average rate of recombination in one background and not in another. Recombination rates across two genetic intervals on chromosome 1 did not exhibit the same relationships among backgrounds as was observed in a1–sh2. This suggests that at least some detected trans-acting factors do not equally affect recombination across the genome. This study establishes that trans modifier(s) polymorphic among genetic backgrounds can increase and decrease recombination in both genic and intergenic regions over relatively small genetic and physical intervals. PMID:16816431

  10. Evidence that meiotic pairing starts at the telomeres: Molecular analysis of recombination in a family with a pericentric X chromosome inversion

    SciTech Connect

    Shashi, V.; Allinson, P.S.; Golden, W.L.; Kelly, T.E.

    1994-09-01

    Recent studies in yeast have shown that telomeres rather than centromeres lead in chromosome movement just prior to meiosis and may have a role in recombination. Cytological studies of meiosis in Drosophila and mice have shown that in pericentric inversion heterozygotes there is lack of loop formation, with recobmination seen only outside the inversion. In a family with Duchenne muscular dystrophy (DMD) we recognized that only affected males and carrier females had a pericentric X chromosome inversion (inv X(p11.4;q26)). Since the short arm inversion breakpoint was proximal to the DMD locus, it could not be implicated in the mutational event causing DMD. There was no history of infertility, recurrent miscarriages or liveborn unbalanced females to suggest there was recombination within the inversion. We studied 22 members over three generations to understand the pattern of meiotic recombination between the normal and the inverted X chromosome. In total, 17 meioses involving the inverted X chromosome in females were studied by cytogenetic analysis and 16 CA repeat polymorphisms along the length of the X chromosome. Results: (a) There was complete concordance between the segregation of the DMD mutation and the inverted X chromosome. (b) On DNA analysis, there was complete absence of recombination within the inverted segment. We also found no recombination at the DMD locus. Recombination was seen only at Xp22 and Xq27-28. (c) Recombination was seen in the same individual at both Xp22 and Xq27-28 without recombination otherwise. Conclusions: (1) Pericentric X inversions reduce the genetic map length of the chromosome, with the physical map length being normal. (2) Meiotic X chromosome pairing in this family is initiated at the telomeres. (3) Following telomeric pairing in pericentric X chromosome inversions, there is inhibition of recombination within the inversion and adjacent regions.

  11. The beta -globin recombinational hotspot reduces the effects of strong selection around HbC, a recently arisen mutation providing resistance to malaria.

    PubMed

    Wood, Elizabeth T; Stover, Daryn A; Slatkin, Montgomery; Nachman, Michael W; Hammer, Michael F

    2005-10-01

    Recombination is expected to reduce the effect of selection on the extent of linkage disequilibrium (LD), but the impact that recombinational hotspots have on sites linked to selected mutations has not been investigated. We empirically determine chromosomal linkage phase for 5.2 kb spanning the beta -globin gene and hotspot. We estimate that the HbC mutation, which is positively selected because of malaria, originated <5,000 years ago and that selection coefficients are 0.04-0.09. Despite strong selection and the recent origin of the HbC allele, recombination (crossing-over or gene conversion) is observed within 1 kb 5' of the selected site on more than one-third of the HbC chromosomes sampled. The rapid decay in LD upstream of the HbC allele demonstrates the large effect the ss-globin hotspot has in mitigating the effects of positive selection on linked variation.

  12. Meiotic Recombination Analyses in Pigs Carrying Different Balanced Structural Chromosomal Rearrangements

    PubMed Central

    Mary, Nicolas; Barasc, Harmonie; Ferchaud, Stéphane; Priet, Aurélia; Calgaro, Anne; Loustau-Dudez, Anne-Marie; Bonnet, Nathalie; Yerle, Martine; Ducos, Alain; Pinton, Alain

    2016-01-01

    Correct pairing, synapsis and recombination between homologous chromosomes are essential for normal meiosis. All these events are strongly regulated, and our knowledge of the mechanisms involved in this regulation is increasing rapidly. Chromosomal rearrangements are known to disturb these processes. In the present paper, synapsis and recombination (number and distribution of MLH1 foci) were studied in three boars (Sus scrofa domestica) carrying different chromosomal rearrangements. One (T34he) was heterozygote for the t(3;4)(p1.3;q1.5) reciprocal translocation, one (T34ho) was homozygote for that translocation, while the third (T34Inv) was heterozygote for both the translocation and a pericentric inversion inv(4)(p1.4;q2.3). All three boars were normal for synapsis and sperm production. This particular situation allowed us to rigorously study the impact of rearrangements on recombination. Overall, the rearrangements induced only minor modifications of the number of MLH1 foci (per spermatocyte or per chromosome) and of the length of synaptonemal complexes for chromosomes 3 and 4. The distribution of MLH1 foci in T34he was comparable to that of the controls. Conversely, the distributions of MLH1 foci on chromosome 4 were strongly modified in boar T34Inv (lack of crossover in the heterosynaptic region of the quadrivalent, and crossover displaced to the chromosome extremities), and also in boar T34ho (two recombination peaks on the q-arms compared with one of higher magnitude in the controls). Analyses of boars T34he and T34Inv showed that the interference was propagated through the breakpoints. A different result was obtained for boar T34ho, in which the breakpoints (transition between SSC3 and SSC4 chromatin on the bivalents) seemed to alter the transmission of the interference signal. Our results suggest that the number of crossovers and crossover interference could be regulated by partially different mechanisms. PMID:27124413

  13. Recombination hotspots and single-stranded DNA binding proteins couple DNA translocation to DNA unwinding by the AddAB helicase-nuclease.

    PubMed

    Yeeles, Joseph T P; van Aelst, Kara; Dillingham, Mark S; Moreno-Herrero, Fernando

    2011-06-24

    AddAB is a helicase-nuclease that processes double-stranded DNA breaks for repair by homologous recombination. This process is modulated by Chi recombination hotspots: specific DNA sequences that attenuate the nuclease activity of the translocating AddAB complex to promote downstream recombination. Using a combination of kinetic and imaging techniques, we show that AddAB translocation is not coupled to DNA unwinding in the absence of single-stranded DNA binding proteins because nascent single-stranded DNA immediately re-anneals behind the moving enzyme. However, recognition of recombination hotspot sequences during translocation activates unwinding by coupling these activities, thereby ensuring the downstream formation of single-stranded DNA that is required for RecA-mediated recombinational repair. In addition to their implications for the mechanism of double-stranded DNA break repair, these observations may affect our implementation and interpretation of helicase assays and our understanding of helicase mechanisms in general.

  14. The case of the fickle fingers: how the PRDM9 zinc finger protein specifies meiotic recombination hotspots in humans.

    PubMed

    Ségurel, Laure; Leffler, Ellen Miranda; Przeworski, Molly

    2011-12-01

    During mammalian meiosis, double-strand breaks are deliberately made throughout the genome and then repaired, leading to the exchange of genetic material between copies of chromosomes. How the locations of breaks are specified was largely unknown until a fortuitous confluence of statistical genetics and molecular biology uncovered the role of PRDM9, a DNA binding protein. Many properties of this protein remain mysterious, however, including how it binds to DNA, how it contributes to male infertility-both in humans, and in hybrid mice-and why, in spite of its fundamental function in meiosis, its binding domain varies extensively among humans and across mammals. We present a brief summary of what has recently been learned about PRDM9 in different fields, focusing on the puzzles yet to be resolved.

  15. Non-paradoxical evolutionary stability of the recombination initiation landscape in yeast†

    PubMed Central

    Lam, Isabel; Keeney, Scott

    2015-01-01

    The nonrandom distribution of meiotic recombination shapes heredity and genetic diversification. Theoretically, hotspots — favored sites of recombination initiation — either evolve rapidly toward extinction or are conserved, especially if they are chromosomal features under selective constraint, such as promoters. We tested these theories by comparing genome-wide recombination initiation maps from widely divergent Saccharomyces species. We find that hotspots frequently overlap with promoters in the species tested and, consequently, hotspot positions are well conserved. Remarkably, the relative strength of individual hotspots is also highly conserved, as are larger-scale features of the distribution of recombination initiation. This stability, not predicted by prior models, suggests that the particular shape of the yeast recombination landscape is adaptive, and helps in understanding evolutionary dynamics of recombination in other species. PMID:26586758

  16. The dual role of HOP2 in mammalian meiotic homologous recombination

    PubMed Central

    Pezza, Roberto J.; Voloshin, Oleg N.; Volodin, Alexander A.; Boateng, Kingsley A.; Bellani, Marina A.; Mazin, Alexander V.; Camerini-Otero, R. Daniel

    2014-01-01

    Deletion of Hop2 in mice eliminates homologous chromosome synapsis and disrupts double-strand break (DSB) repair through homologous recombination. HOP2 in vitro shows two distinctive activities: when it is incorporated into a HOP2–MND1 complex it stimulates DMC1 and RAD51 recombination activities and the purified HOP2 alone is proficient in promoting strand invasion. We observed that a fraction of Mnd1−/− spermatocytes, which express HOP2 but apparently have inactive DMC1 and RAD51 due to lack of the HOP2–MND1 complex, exhibits a high level of chromosome synapsis and that most DSBs in these spermatocytes are repaired. This suggests that DSB repair catalyzed solely by HOP2 supports homologous chromosome pairing and synapsis. In addition, we show that in vitro HOP2 promotes the co-aggregation of ssDNA with duplex DNA, binds to ssDNA leading to unstacking of the bases, and promotes the formation of a three-strand synaptic intermediate. However, HOP2 shows distinctive mechanistic signatures as a recombinase. Namely, HOP2-mediated strand exchange does not require ATP and, in contrast to DMC1, joint molecules formed by HOP2 are more sensitive to mismatches and are efficiently dissociated by RAD54. We propose that HOP2 may act as a recombinase with specific functions in meiosis. PMID:24304900

  17. Chromosome pairing and meiotic recombination in Neurospora crassa spo11 mutants.

    PubMed

    Bowring, Frederick J; Yeadon, P Jane; Stainer, Russell G; Catcheside, David E A

    2006-08-01

    Some organisms, such as mammals, green plants and fungi, require double-strand breaks in DNA (DSBs) for synapsis of homologous chromosomes at pachynema. Drosophila melanogaster and Caenorhabditis elegans are exceptions, achieving synapsis independently of DSB. SPO11 is responsible for generating DSBs and perhaps for the initiation of recombination in all organisms. Although it was previously suggested that Neurospora may not require DSBs for synapsis, we report here that mutation of Neurospora spo11 disrupts meiosis, abolishing synapsis of homologous chromosomes during pachynema and resulting in ascospores that are frequently aneuploid and rarely viable. Alignment of homologues is partially restored after exposure of spo11 perithecia to ionising radiation. Crossing over in a spo11 mutant is reduced in two regions of the Neurospora genome as expected, but is unaffected in a third.

  18. Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independently of synapsis, and is distinct from DSB-independent pairing contacts

    PubMed Central

    Peoples, Tamara L.; Dean, Eric; Gonzalez, Oscar; Lambourne, Lindsey; Burgess, Sean M.

    2002-01-01

    A site-specific recombination system that probes the relative probabilities that pairs of chromosomal loci collide with one another in living cells of budding yeast was used to explore the relative contributions of pairing, recombination, synaptonemal complex formation, and telomere clustering to the close juxtaposition of homologous chromosome pairs during meiosis. The level of Cre-mediated recombination between a pair of loxP sites located at an allelic position on homologous chromosomes was 13-fold greater than that between a pair of loxP sites located at ectopic positions on nonhomologous chromosomes. Mutations affecting meiotic recombination initiation and the processing of DNA double-strand breaks (DSBs) into single-end invasions (SEIs) reduced the levels of allelic Cre-mediated recombination levels by three- to sixfold. The severity of Cre/loxP phenotypes is presented in contrast to relatively weak DSB-independent pairing defects as assayed using fluorescence in situ hybridization for these mutants. Mutations affecting synaptonemal complex (SC) formation or crossover control gave wild-type levels of allelic Cre-mediated recombination. A delay in attaining maximum levels of allelic Cre-mediated recombination was observed for a mutant defective in telomere clustering. None of the mutants affected ectopic levels of recombination. These data suggest that stable, close homolog juxtaposition in yeast is distinct from pre-DSB pairing interactions, requires both DSB and SEI formation, but does not depend on crossovers or SC. PMID:12101126

  19. Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle.

    PubMed

    Sandor, Cynthia; Li, Wanbo; Coppieters, Wouter; Druet, Tom; Charlier, Carole; Georges, Michel

    2012-01-01

    We use >250,000 cross-over events identified in >10,000 bovine sperm cells to perform an extensive characterization of meiotic recombination in male cattle. We map Quantitative Trait Loci (QTL) influencing genome-wide recombination rate, genome-wide hotspot usage, and locus-specific recombination rate. We fine-map three QTL and present strong evidence that genetic variants in REC8 and RNF212 influence genome-wide recombination rate, while genetic variants in PRDM9 influence genome-wide hotspot usage.

  20. [Analysis of the meiotic recombination frequency in transgenic tomato hybrids expressing recA and NLS-recA-licBM3 genes].

    PubMed

    Komakhin, R A; Komakhina, V V; Miliukova, N A; Zhuchenko, A A

    2012-01-01

    To study and induce meiotic recombination in plants, we generated and analyzed transgenic tomato hybrids F1-RecA and F1-NLS-recA-LicBM3 expressing, respectively, the recA gene of Escherichia coli and the NLS-recA-licBM3 gene. It was found that the recA and NLS-recA-licBM3 genes are inherited through the maternal and paternal lineages, they have no selective influence on the pollen and are contained in tomato F1-RecA and F1-NLS-RecA-LicBM3 hybrids outside the second chromosome in the hemizygous state. The comparative analysis of the meiotic recombination frequency (rf) in the progenies of the transgenic and nontransgenic hybrids showed that only the expression of the recA gene of E. coli in cells of the F1-RecA plants produced a 1.2-1.5-fold increase in the frequency of recombination between some linked marker genes of the second chromosome of tomato.

  1. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data.

    PubMed Central

    Li, Na; Stephens, Matthew

    2003-01-01

    We introduce a new statistical model for patterns of linkage disequilibrium (LD) among multiple SNPs in a population sample. The model overcomes limitations of existing approaches to understanding, summarizing, and interpreting LD by (i) relating patterns of LD directly to the underlying recombination process; (ii) considering all loci simultaneously, rather than pairwise; (iii) avoiding the assumption that LD necessarily has a "block-like" structure; and (iv) being computationally tractable for huge genomic regions (up to complete chromosomes). We examine in detail one natural application of the model: estimation of underlying recombination rates from population data. Using simulation, we show that in the case where recombination is assumed constant across the region of interest, recombination rate estimates based on our model are competitive with the very best of current available methods. More importantly, we demonstrate, on real and simulated data, the potential of the model to help identify and quantify fine-scale variation in recombination rate from population data. We also outline how the model could be useful in other contexts, such as in the development of more efficient haplotype-based methods for LD mapping. PMID:14704198

  2. A DNA binding motif of meiotic recombinase Rec12 (Spo11) defined by essential glycine-202, and persistence of Rec12 protein after completion of recombination.

    PubMed

    DeWall, K Mark; Davidson, Mari K; Sharif, Wallace D; Wiley, Charla A; Wahls, Wayne P

    2005-08-15

    The Rec12 (Spo11) protein of the fission yeast Schizosaccharomyces pombe is a meiosis-specific ortholog of the catalytic subunit of type VI topoisomerases and is thought to catalyze double-strand DNA breaks that initiate recombination. We tested the hypothesis that the rec12-117 allele affects the choice of pathways by which recombination is resolved. DNA sequence analysis revealed a single missense mutation in the coding region (rec12-G202E). The corresponding glycine-202 residue of Rec12 protein is strictly conserved in proteins of the Rec12/Spo11/Top6A family. It maps to the base of the DNA binding pocket in the crystal structure of the archaeal ortholog, Top6A. The rec12-G202E mutants lacked crossover and non-crossover recombination, demonstrating that rec12-G202E does not affect choice of resolution pathway. Like rec12-D15 null mutants, the rec12-G202E mutants suffered chromosome segregation errors in meiosis I. The Rec12-G202E protein was as stable as wild-type Rec12, demonstrating that glycine-202 is essential for a biochemical activity of Rec12 protein, rather than for its stability. These findings suggest that Rec12 facilitates binding of the meiotic recombinase to its substrate, DNA. Interestingly, the bulk of Rec12 protein persisted until the time of anaphase I, and a portion of Rec12 protein persisted until the time of anaphase II, after which it was undetectable. This suggests that Rec12 protein has additional meiotic functions after completion of recombination in prophase, as inferred previously from genetic studies [Sharif, W.D., Glick, G.G., Davidson, M.K., Wahls, W.P., 2002. Distinct functions of S. pombe Rec12 (Spo11) protein and Rec12-dependent crossover recombination (chiasmata) in meiosis I; and a requirement for Rec12 in meiosis II. Cell Chromo. 1, 1].

  3. The HIV-1 repeated sequence R as a robust hot-spot for copy-choice recombination

    PubMed Central

    Moumen, Abdeladim; Polomack, Lucette; Roques, Bernard; Buc, Henri; Negroni, Matteo

    2001-01-01

    Template switching during reverse transcription is crucial for retroviral replication. While strand transfer on the terminal repeated sequence R is essential to achieve reverse transcription, template switching from internal regions of the genome (copy choice) leads to genetic recombination. We have developed an experimental system to study copy-choice recombination in vitro along the HIV-1 genome. We identify here several genomic regions, including the R sequence, where copy choice occurred at high rates. The frequency of copy choice occurring in a given region of template was strongly influenced by the surrounding sequences, an observation that suggests a pivotal role of the folding of template RNA in the process. The sequence R, instead, constituted an exception to this rule since it was a strong hot-spot for copy choice in the different sequence contexts tested. We suggest therefore that the structure of this region has been optimised during viral evolution to ensure efficient template switching independently from the sequences that might surround it. PMID:11557813

  4. A DNA binding motif of meiotic recombinase Rec12 (Spo11) defined by essential glycine-202, and persistence of Rec12 protein after completion of recombination

    PubMed Central

    DeWall, K. Mark; Davidson, Mari K.; Sharif, Wallace D.; Wiley, Charla A.; Wahls, Wayne P.

    2011-01-01

    The Rec12 (Spo11) protein of the fission yeast Schizosaccharomyces pombe is a meiosis-specific ortholog of the catalytic subunit of type VI topoisomerases and is thought to catalyze double-strand DNA breaks that initiate recombination. We tested the hypothesis that the rec12-117 allele affects the choice of pathways by which recombination is resolved. DNA sequence analysis revealed a single missense mutation in the coding region (rec12-G202E). The corresponding glycine-202 residue of Rec12 protein is strictly conserved in proteins of the Rec12/Spo11/Top6A family. It maps to the base of the DNA binding pocket in the crystal structure of the archaeal ortholog, Top6A. The rec12-G202E mutants lacked crossover and non-crossover recombination, demonstrating that rec12-G202E does not affect choice of resolution pathway. Like rec12-D15 null mutants, the rec12-G202E mutants suffered chromosome segregation errors in meiosis I. The Rec12-G202E protein was as stable as wild-type Rec12, demonstrating that glycine-202 is essential for a biochemical activity of Rec12 protein, rather than for its stability. These findings suggest that Rec12 facilitates binding of the meiotic recombinase to its substrate, DNA. Interestingly, the bulk of Rec12 protein persisted until the time of anaphase I, and a portion of Rec12 protein persisted until the time of anaphase II, after which it was undetectable. This suggests that Rec12 protein has additional meiotic functions after completion of recombination in prophase, as inferred previously from genetic studies. PMID:16009511

  5. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    PubMed

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  6. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes

    PubMed Central

    Serra, Heïdi; Ziolkowski, Piotr A.; Yelina, Nataliya E.; Jackson, Matthew; Mézard, Christine; McVean, Gil; Henderson, Ian R.

    2016-01-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity. PMID:27415776

  7. The rates of de novo meiotic deletions and duplications causing several genomic disorders in the male germline

    PubMed Central

    Turner, Daniel J.; Miretti, Marcos; Rajan, Diana; Fiegler, Heike; Carter, Nigel P.; Blayney, Martyn L; Beck, Stephan; Hurles, Matthew E.

    2009-01-01

    Meiotic recombination between highly-similar duplicated sequences (non-allelic homologous recombination, NAHR) generates deletions, duplications, inversions, and translocations, and is responsible for genetic diseases known as ‘genomic disorders’, most of which are caused by altered copy number of dosage sensitive genes. NAHR Hotspots have been identified within some duplicated sequences. We have developed sperm-based assays to measure the de novo rate of reciprocal deletions and duplications at 4 NAHR hotspots. We used these assays to dissect the relative rates of NAHR between different pairs of duplicated sequences. We show that: (i) these NAHR hotspots are specific to meiosis, (ii) deletions are generated at a higher rate than their reciprocal duplications in the male germline and (iii) some of these genomic disorders are likely to have been under-ascertained clinically, most notably the duplication of 7q11, the reciprocal of the Williams-Beuren Syndrome deletion. PMID:18059269

  8. Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion

    PubMed Central

    Duroc, Yann; Kumar, Rajeev; Ranjha, Lepakshi; Adam, Céline; Guérois, Raphaël; Md Muntaz, Khan; Marsolier-Kergoat, Marie-Claude; Dingli, Florent; Laureau, Raphaëlle; Loew, Damarys; Llorente, Bertrand; Charbonnier, Jean-Baptiste; Cejka, Petr; Borde, Valérie

    2017-01-01

    Gene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLβ complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition. This recruitment is essential to limit gene conversion tract lengths genome-wide, without affecting crossover formation. Contrary to expectations, Mer3 helicase activity, proposed to extend the displacement loop (D-loop) recombination intermediate, does not influence the length of gene conversion events, revealing non-catalytical roles of Mer3. In addition, both purified Mer3 and MutLβ preferentially recognize D-loops, providing a mechanism for limiting gene conversion in vivo. These findings show that MutLβ is an integral part of a new regulatory step of meiotic recombination, which has implications to prevent rapid allele fixation and hotspot erosion in populations. DOI: http://dx.doi.org/10.7554/eLife.21900.001 PMID:28051769

  9. Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion.

    PubMed

    Duroc, Yann; Kumar, Rajeev; Ranjha, Lepakshi; Adam, Céline; Guérois, Raphaël; Md Muntaz, Khan; Marsolier-Kergoat, Marie-Claude; Dingli, Florent; Laureau, Raphaëlle; Loew, Damarys; Llorente, Bertrand; Charbonnier, Jean-Baptiste; Cejka, Petr; Borde, Valérie

    2017-01-04

    Gene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLβ complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition. This recruitment is essential to limit gene conversion tract lengths genome-wide, without affecting crossover formation. Contrary to expectations, Mer3 helicase activity, proposed to extend the displacement loop (D-loop) recombination intermediate, does not influence the length of gene conversion events, revealing non-catalytical roles of Mer3. In addition, both purified Mer3 and MutLβ preferentially recognize D-loops, providing a mechanism for limiting gene conversion in vivo. These findings show that MutLβ is an integral part of a new regulatory step of meiotic recombination, which has implications to prevent rapid allele fixation and hotspot erosion in populations.

  10. Pair-wise linkage disequilibrium decay among linked loci suggests meiotic recombination in natural populations of Sclerotinia sclerotiorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both clonal and recombining population structures have been reported in Sclerotinia sclerotiorum populations around the world. Association of independent and putatively unlinked markers indicates clonal population structure, whereas random association of the markers suggests recombination and outcro...

  11. High-Resolution Global Analysis of the Influences of Bas1 and Ino4 Transcription Factors on Meiotic DNA Break Distributions in Saccharomyces cerevisiae.

    PubMed

    Zhu, Xuan; Keeney, Scott

    2015-10-01

    Meiotic recombination initiates with DNA double-strand breaks (DSBs) made by Spo11. In Saccharomyces cerevisiae, many DSBs occur in "hotspots" coinciding with nucleosome-depleted gene promoters. Transcription factors (TFs) stimulate DSB formation in some hotspots, but TF roles are complex and variable between locations. Until now, available data for TF effects on global DSB patterns were of low spatial resolution and confined to a single TF. Here, we examine at high resolution the contributions of two TFs to genome-wide DSB distributions: Bas1, which was known to regulate DSB activity at some loci, and Ino4, for which some binding sites were known to be within strong DSB hotspots. We examined fine-scale DSB distributions in TF mutant strains by deep sequencing oligonucleotides that remain covalently bound to Spo11 as a byproduct of DSB formation, mapped Bas1 and Ino4 binding sites in meiotic cells, evaluated chromatin structure around DSB hotspots, and measured changes in global messenger RNA levels. Our findings show that binding of these TFs has essentially no predictive power for DSB hotspot activity and definitively support the hypothesis that TF control of DSB numbers is context dependent and frequently indirect. TFs often affected the fine-scale distributions of DSBs within hotspots, and when seen, these effects paralleled effects on local chromatin structure. In contrast, changes in DSB frequencies in hotspots did not correlate with quantitative measures of chromatin accessibility, histone H3 lysine 4 trimethylation, or transcript levels. We also ruled out hotspot competition as a major source of indirect TF effects on DSB distributions. Thus, counter to prevailing models, roles of these TFs on DSB hotspot strength cannot be simply explained via chromatin "openness," histone modification, or compensatory interactions between adjacent hotspots.

  12. Absence of SUN-domain protein Slp1 blocks karyogamy and switches meiotic recombination and synapsis from homologs to sister chromatids

    PubMed Central

    Vasnier, Christelle; de Muyt, Arnaud; Zhang, Liangran; Tessé, Sophie; Kleckner, Nancy E.; Zickler, Denise; Espagne, Eric

    2014-01-01

    Karyogamy, the process of nuclear fusion is required for two haploid gamete nuclei to form a zygote. Also, in haplobiontic organisms, karyogamy is required to produce the diploid nucleus/cell that then enters meiosis. We identify sun like protein 1 (Slp1), member of the mid–Sad1p, UNC-84–domain ubiquitous family, as essential for karyogamy in the filamentous fungus Sordaria macrospora, thus uncovering a new function for this protein family. Slp1 is required at the last step, nuclear fusion, not for earlier events including nuclear movements, recognition, and juxtaposition. Correspondingly, like other family members, Slp1 localizes to the endoplasmic reticulum and also to its extensions comprising the nuclear envelope. Remarkably, despite the absence of nuclear fusion in the slp1 null mutant, meiosis proceeds efficiently in the two haploid “twin” nuclei, by the same program and timing as in diploid nuclei with a single dramatic exception: the normal prophase program of recombination and synapsis between homologous chromosomes, including loading of recombination and synaptonemal complex proteins, occurs instead between sister chromatids. Moreover, the numbers of recombination-initiating double-strand breaks (DSBs) and ensuing recombinational interactions, including foci of the essential crossover factor Homo sapiens enhancer of invasion 10 (Hei10), occur at half the diploid level in each haploid nucleus, implying per-chromosome specification of DSB formation. Further, the distribution of Hei10 foci shows interference like in diploid meiosis. Centromere and spindle dynamics, however, still occur in the diploid mode during the two meiotic divisions. These observations imply that the prophase program senses absence of karyogamy and/or absence of a homolog partner and adjusts the interchromosomal interaction program accordingly. PMID:25210014

  13. Absence of SUN-domain protein Slp1 blocks karyogamy and switches meiotic recombination and synapsis from homologs to sister chromatids.

    PubMed

    Vasnier, Christelle; de Muyt, Arnaud; Zhang, Liangran; Tessé, Sophie; Kleckner, Nancy E; Zickler, Denise; Espagne, Eric

    2014-09-23

    Karyogamy, the process of nuclear fusion is required for two haploid gamete nuclei to form a zygote. Also, in haplobiontic organisms, karyogamy is required to produce the diploid nucleus/cell that then enters meiosis. We identify sun like protein 1 (Slp1), member of the mid-Sad1p, UNC-84-domain ubiquitous family, as essential for karyogamy in the filamentous fungus Sordaria macrospora, thus uncovering a new function for this protein family. Slp1 is required at the last step, nuclear fusion, not for earlier events including nuclear movements, recognition, and juxtaposition. Correspondingly, like other family members, Slp1 localizes to the endoplasmic reticulum and also to its extensions comprising the nuclear envelope. Remarkably, despite the absence of nuclear fusion in the slp1 null mutant, meiosis proceeds efficiently in the two haploid "twin" nuclei, by the same program and timing as in diploid nuclei with a single dramatic exception: the normal prophase program of recombination and synapsis between homologous chromosomes, including loading of recombination and synaptonemal complex proteins, occurs instead between sister chromatids. Moreover, the numbers of recombination-initiating double-strand breaks (DSBs) and ensuing recombinational interactions, including foci of the essential crossover factor Homo sapiens enhancer of invasion 10 (Hei10), occur at half the diploid level in each haploid nucleus, implying per-chromosome specification of DSB formation. Further, the distribution of Hei10 foci shows interference like in diploid meiosis. Centromere and spindle dynamics, however, still occur in the diploid mode during the two meiotic divisions. These observations imply that the prophase program senses absence of karyogamy and/or absence of a homolog partner and adjusts the interchromosomal interaction program accordingly.

  14. Analysis of four microsatellite markers on the long arm of chromosome 9 by meiotic recombination in flow-sorted single sperm

    SciTech Connect

    Furlong, R.A.; Goudie, D.R.; Carter, N.P.; Lyall, J.E.W.; Affara, N.A.; Ferguson-Smith, M.A. )

    1993-06-01

    Meiotic recombination in flow-sorted single sperm was used to analyze four highly polymorphic microsatellite markers on the long arm of chromosome 9. The microsatellites comprised three tightly linked markers: 9CMP1 (D9S109), 9CMP2 (D9S127), and D9S53, which map to 9q31, and a reference marker, ASS, which is located in 9q34.1. Haplotypes of single sperm were assessed by using PCR in a single-step multiplex reaction to amplify each locus. Recombinant haplotypes were identified by their relative infrequency and were analyzed using THREELOC, a maximum-likelihood-analysis program, and an adaptation of CRI-MAP. The most likely order of these markers was cen-D9S109-D9S127-D9S53-ASS-tel with D9S109, D9S127, and D9S53 being separated by a genetic distance of approximately 3%. The order of the latter three markers did not however achieve statistical significance using the THREELOC program. 21 refs., 2 figs., 4 tabs.

  15. Indistinguishable Landscapes of Meiotic DNA Breaks in rad50+ and rad50S Strains of Fission Yeast Revealed by a Novel rad50+ Recombination Intermediate

    PubMed Central

    Hyppa, Randy W.; Cromie, Gareth A.; Smith, Gerald R.

    2008-01-01

    The fission yeast Schizosaccharomyces pombe Rec12 protein, the homolog of Spo11 in other organisms, initiates meiotic recombination by creating DNA double-strand breaks (DSBs) and becoming covalently linked to the DNA ends of the break. This protein–DNA linkage has previously been detected only in mutants such as rad50S in which break repair is impeded and DSBs accumulate. In the budding yeast Saccharomyces cerevisiae, the DSB distribution in a rad50S mutant is markedly different from that in wild-type (RAD50) meiosis, and it was suggested that this might also be true for other organisms. Here, we show that we can detect Rec12-DNA linkages in Sc. pombe rad50+ cells, which are proficient for DSB repair. In contrast to the results from Sa. cerevisiae, genome-wide microarray analysis of Rec12-DNA reveals indistinguishable meiotic DSB distributions in rad50+ and rad50S strains of Sc. pombe. These results confirm our earlier findings describing the occurrence of widely spaced DSBs primarily in large intergenic regions of DNA and demonstrate the relevance and usefulness of fission yeast studies employing rad50S. We propose that the differential behavior of rad50S strains reflects a major difference in DSB regulation between the two species—specifically, the requirement for the Rad50-containing complex for DSB formation in budding yeast but not in fission yeast. Use of rad50S and related mutations may be a useful method for DSB analysis in other species. PMID:19023408

  16. An alternative splicing event which occurs in mouse pachytene spermatocytes generates a form of DNA ligase III with distinct biochemical properties that may function in meiotic recombination.

    PubMed Central

    Mackey, Z B; Ramos, W; Levin, D S; Walter, C A; McCarrey, J R; Tomkinson, A E

    1997-01-01

    Three mammalian genes encoding DNA ligases have been identified. However, the role of each of these enzymes in mammalian DNA metabolism has not been established. In this study, we show that two forms of mammalian DNA ligase III, alpha and beta, are produced by a conserved tissue-specific alternative splicing mechanism involving exons encoding the C termini of the polypeptides. DNA ligase III-alpha cDNA, which encodes a 103-kDa polypeptide, is expressed in all tissues and cells, whereas DNA ligase III-beta cDNA, which encodes a 96-kDa polypeptide, is expressed only in the testis. During male germ cell differentiation, elevated expression of DNA ligase III-beta mRNA is restricted, beginning only in the latter stages of meiotic prophase and ending in the round spermatid stage. In 96-kDa DNA ligase III-beta, the C-terminal 77 amino acids of DNA ligase III-alpha are replaced by a different 17- to 18-amino acid sequence. As reported previously, the 103-kDa DNA ligase III-alpha interacts with the DNA strand break repair protein encoded by the human XRCC1 gene. In contrast, the 96-kDa DNA ligase III-beta does not interact with XRCC1, indicating that DNA ligase III-beta may play a role in cellular functions distinct from the DNA repair pathways involving the DNA ligase III-alpha x XRCC1 complex. The distinct biochemical properties of DNA ligase III-beta, in combination with the tissue- and cell-type-specific expression of DNA ligase III-beta mRNA, suggest that this form of DNA ligase III is specifically involved in the completion of homologous recombination events that occur during meiotic prophase. PMID:9001252

  17. Cis-effects on Meiotic Recombination Across Distinct a1-sh2 Intervals in a Common Zea Genetic Background

    PubMed Central

    Yao, Hong; Schnable, Patrick S.

    2005-01-01

    Genetic distances across the a1-sh2 interval varied threefold in three near-isogenic stocks that carry structurally distinct teosinte A1 Sh2 haplotypes (from Z. mays spp. mexicana Chalco, Z. mays spp. parviglumis, and Z. luxurians) and a common maize a1::rdt sh2 haplotype. In each haplotype >85% of recombination events resolved in the proximal 10% of the ∼130-kb a1-sh2 interval. Even so, significant differences in the distributions of recombination breakpoints were observed across subintervals among haplotypes. Each of the three previously detected recombination hot spots was detected in at least one of the three teosinte haplotypes and two of these hot spots were not detected in at least one teosinte haplotype. Moreover, novel hot spots were detected in two teosinte haplotypes. Due to the near-isogenic nature of the three stocks, the observed variation in the distribution of recombination events is the consequence of cis-modifications. Although generally negatively correlated with rates of recombination per megabase, levels of sequence polymorphisms do not fully account for the nonrandom distribution of recombination breakpoints. This study also suggests that estimates of linkage disequilibrium must be interpreted with caution when considering whether a gene has been under selection. PMID:15937141

  18. Smc5/6 Coordinates Formation and Resolution of Joint Molecules with Chromosome Morphology to Ensure Meiotic Divisions

    PubMed Central

    Blitzblau, Hannah G.; Newcombe, Sonya; Chan, Andrew Chi-ho; Newnham, Louise; Li, Zhaobo; Gray, Stephen; Herbert, Alex D.; Arumugam, Prakash; Hochwagen, Andreas; Hunter, Neil; Hoffmann, Eva

    2013-01-01

    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe. PMID:24385939

  19. Suppression of genetic recombination in the pseudoautosomal region and at subtelomeres in mice with a hypomorphic Spo11 allele

    PubMed Central

    2013-01-01

    Background Homologous recombination is the key process that generates genetic diversity and drives evolution. SPO11 protein triggers recombination by introducing DNA double stranded breaks at discreet areas of the genome called recombination hotspots. The hotspot locations are largely determined by the DNA binding specificity of the PRDM9 protein in human, mice and most other mammals. In budding yeast Saccharomyces cerevisae, which lacks a Prdm9 gene, meiotic breaks are formed opportunistically in the regions of accessible chromatin, primarily at gene promoters. The genome-wide distribution of hotspots in this organism can be altered by tethering Spo11 protein to Gal4 recognition sequences in the strain expressing Spo11 attached to the DNA binding domain of the Gal4 transcription factor. To establish whether similar re-targeting of meiotic breaks can be achieved in PRDM9-containing organisms we have generated a Gal4BD-Spo11 mouse that expresses SPO11 protein joined to the DNA binding domain of yeast Gal4. Results We have mapped the genome-wide distribution of the recombination initiation sites in the Gal4BD-Spo11 mice. More than two hundred of the hotspots in these mice were novel and were likely defined by Gal4BD, as the Gal4 consensus motif was clustered around the centers in these hotspots. Surprisingly, meiotic DNA breaks in the Gal4BD-Spo11 mice were significantly depleted near the ends of chromosomes. The effect is particularly striking at the pseudoautosomal region of the X and Y chromosomes – normally the hottest region in the genome. Conclusions Our data suggest that specific, yet-unidentified factors influence the initiation of meiotic recombination at subtelomeric chromosomal regions. PMID:23870400

  20. HO endonuclease-induced recombination in yeast meiosis resembles Spo11-induced events.

    PubMed

    Malkova, A; Klein, F; Leung, W Y; Haber, J E

    2000-12-19

    In meiosis, gene conversions are accompanied by higher levels of crossing over than in mitotic cells. To determine whether the special properties of meiotic recombination can be attributed to the way in which Spo11p creates double-strand breaks (DSBs) at special hot spots in Saccharomyces cerevisiae, we expressed the site-specific HO endonuclease in meiotic cells. We could therefore compare HO-induced recombination in a well-defined region both in mitosis and meiosis, as well as compare Spo11p- and HO-induced meiotic events. HO-induced gene conversions in meiosis were accompanied by crossovers at the same high level (52%) as Spo11p-induced events. Moreover, HO-induced crossovers were reduced 3-fold by a msh4Delta mutation that similarly affects Spo11p-promoted events. In a spo11Delta diploid, where the only DSB is made by HO, crossing over was significantly higher (27%) than in mitotic cells (meiotic DSB failed to induce the formation of a synaptonemal complex. We also show that HO-induced gene conversion tract lengths are shorter in meiotic than in mitotic cells. We conclude that a hallmark of meiotic recombination, the production of crossovers, is independent of the nature of Spo11p-generated DSBs at special hotspots, but some functions of Spo11p are required in trans to achieve maximum crossing over.

  1. Chromosome choreography: the meiotic ballet.

    PubMed

    Page, Scott L; Hawley, R Scott

    2003-08-08

    The separation of homologous chromosomes during meiosis in eukaryotes is the physical basis of Mendelian inheritance. The core of the meiotic process is a specialized nuclear division (meiosis I) in which homologs pair with each other, recombine, and then segregate from each other. The processes of chromosome alignment and pairing allow for homolog recognition. Reciprocal meiotic recombination ensures meiotic chromosome segregation by converting sister chromatid cohesion into mechanisms that hold homologous chromosomes together. Finally, the ability of sister kinetochores to orient to a single pole at metaphase I allows the separation of homologs to two different daughter cells. Failures to properly accomplish this elegant chromosome dance result in aneuploidy, a major cause of miscarriage and birth defects in human beings.

  2. The Third Exon of the Budding Yeast Meiotic Recombination Gene HOP2 Is Required for Calcium-dependent and Recombinase Dmc1-specific Stimulation of Homologous Strand Assimilation*

    PubMed Central

    Chan, Yuen-Ling; Brown, M. Scott; Qin, Daoming; Handa, Naofumi; Bishop, Douglas K.

    2014-01-01

    During meiosis in Saccharomyces cerevisiae, the HOP2 and MND1 genes are essential for recombination. A previous biochemical study has shown that budding yeast Hop2-Mnd1 stimulates the activity of the meiosis-specific strand exchange protein ScDmc1 only 3-fold, whereas analogous studies using mammalian homologs show >30-fold stimulation. The HOP2 gene was recently discovered to contain a second intron that lies near the 3′-end. We show that both HOP2 introns are efficiently spliced during meiosis, forming a predominant transcript that codes for a protein with a C-terminal sequence different from that of the previously studied version of the protein. Using the newly identified HOP2 open reading frame to direct synthesis of wild type Hop2 protein, we show that the Hop2-Mnd1 heterodimer stimulated Dmc1 D-loop activity up to 30-fold, similar to the activity of mammalian Hop2-Mnd1. ScHop2-Mnd1 stimulated ScDmc1 activity in the presence of physiological (micromolar) concentrations of Ca2+ ions, as long as Mg2+ was also present at physiological concentrations, leading us to hypothesize that ScDmc1 protomers bind both cations in the active Dmc1 filament. Co-factor requirements and order-of-addition experiments suggested that Hop2-Mnd1-mediated stimulation of Dmc1 involves a process that follows the formation of functional Dmc1-ssDNA filaments. In dramatic contrast to mammalian orthologs, the stimulatory activity of budding yeast Hop2-Mnd1 appeared to be specific to Dmc1; we observed no Hop2-Mnd1-mediated stimulation of the other budding yeast strand exchange protein Rad51. Together, these results support previous genetic experiments indicating that Hop2-Mnd1 specifically stimulates Dmc1 during meiotic recombination in budding yeast. PMID:24798326

  3. The third exon of the budding yeast meiotic recombination gene HOP2 is required for calcium-dependent and recombinase Dmc1-specific stimulation of homologous strand assimilation.

    PubMed

    Chan, Yuen-Ling; Brown, M Scott; Qin, Daoming; Handa, Naofumi; Bishop, Douglas K

    2014-06-27

    During meiosis in Saccharomyces cerevisiae, the HOP2 and MND1 genes are essential for recombination. A previous biochemical study has shown that budding yeast Hop2-Mnd1 stimulates the activity of the meiosis-specific strand exchange protein ScDmc1 only 3-fold, whereas analogous studies using mammalian homologs show >30-fold stimulation. The HOP2 gene was recently discovered to contain a second intron that lies near the 3'-end. We show that both HOP2 introns are efficiently spliced during meiosis, forming a predominant transcript that codes for a protein with a C-terminal sequence different from that of the previously studied version of the protein. Using the newly identified HOP2 open reading frame to direct synthesis of wild type Hop2 protein, we show that the Hop2-Mnd1 heterodimer stimulated Dmc1 D-loop activity up to 30-fold, similar to the activity of mammalian Hop2-Mnd1. ScHop2-Mnd1 stimulated ScDmc1 activity in the presence of physiological (micromolar) concentrations of Ca(2+) ions, as long as Mg(2+) was also present at physiological concentrations, leading us to hypothesize that ScDmc1 protomers bind both cations in the active Dmc1 filament. Co-factor requirements and order-of-addition experiments suggested that Hop2-Mnd1-mediated stimulation of Dmc1 involves a process that follows the formation of functional Dmc1-ssDNA filaments. In dramatic contrast to mammalian orthologs, the stimulatory activity of budding yeast Hop2-Mnd1 appeared to be specific to Dmc1; we observed no Hop2-Mnd1-mediated stimulation of the other budding yeast strand exchange protein Rad51. Together, these results support previous genetic experiments indicating that Hop2-Mnd1 specifically stimulates Dmc1 during meiotic recombination in budding yeast.

  4. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  5. The 14-kDa Dynein Light Chain-Family Protein Dlc1 Is Required for Regular Oscillatory Nuclear Movement and Efficient Recombination during Meiotic Prophase in Fission Yeast

    PubMed Central

    Miki, Futaba; Okazaki, Koei; Shimanuki, Mizuki; Yamamoto, Ayumu; Hiraoka, Yasushi; Niwa, Osami

    2002-01-01

    A Schizosaccharomyces pombe spindle pole body (SPB) protein interacts in a two-hybrid system with Dlc1, which belongs to the 14-kDa Tctex-1 dynein light chain family. Green fluorescent protein-tagged Dlc1 accumulated at the SPB throughout the life cycle. During meiotic prophase, Dlc1 was present along astral microtubules and microtubule-anchoring sites on the cell cortex, reminiscent of the cytoplasmic dynein heavy chain Dhc1. In a dlc1-null mutant, Dhc1-dependent nuclear movement in meiotic prophase became irregular in its duration and direction. Dhc1 protein was displaced from the cortex anchors and the formation of microtubule bundle(s) that guide nuclear movement was impaired in the mutant. Meiotic recombination in the dlc1 mutant was reduced to levels similar to that in the dhc1 mutant. Dlc1 and Dhc1 also have roles in karyogamy and rDNA relocation during the sexual phase. Strains mutated in both the dlc1 and dhc1 loci displayed more severe defects in recombination, karyogamy, and sporulation than in either single mutant alone, suggesting that Dlc1 is involved in nuclear events that are independent of Dhc1. S. pombe contains a homolog of the 8-kDa dynein light chain, Dlc2. This class of dynein light chain, however, is not essential in either the vegetative or sexual phases. PMID:11907273

  6. Recombination regulator PRDM9 influences the instability of its own coding sequence in humans.

    PubMed

    Jeffreys, Alec J; Cotton, Victoria E; Neumann, Rita; Lam, Kwan-Wood Gabriel

    2013-01-08

    PRDM9 plays a key role in specifying meiotic recombination hotspot locations in humans and mice via recognition of hotspot sequence motifs by a variable tandem-repeat zinc finger domain in the protein. We now explore germ-line instability of this domain in humans. We show that repeat turnover is driven by mitotic and meiotic mutation pathways, the latter frequently resulting in substantial remodeling of zinc fingers. Turnover dynamics predict frequent allele switches in populations with correspondingly fast changes of the recombination landscape, fully consistent with the known rapid evolution of hotspot locations. We found variation in meiotic instability between men that correlated with PRDM9 status. One particular "destabilizer" variant caused hyperinstability not only of itself but also of otherwise-stable alleles in heterozygotes. PRDM9 protein thus appears to regulate the instability of its own coding sequence. However, destabilizer variants are strongly self-limiting in populations and probably have little impact on the evolution of the recombination landscape.

  7. The Landscape of Mouse Meiotic Double-Strand Break Formation, Processing, and Repair.

    PubMed

    Lange, Julian; Yamada, Shintaro; Tischfield, Sam E; Pan, Jing; Kim, Seoyoung; Zhu, Xuan; Socci, Nicholas D; Jasin, Maria; Keeney, Scott

    2016-10-20

    Heritability and genome stability are shaped by meiotic recombination, which is initiated via hundreds of DNA double-strand breaks (DSBs). The distribution of DSBs throughout the genome is not random, but mechanisms molding this landscape remain poorly understood. Here, we exploit genome-wide maps of mouse DSBs at unprecedented nucleotide resolution to uncover previously invisible spatial features of recombination. At fine scale, we reveal a stereotyped hotspot structure-DSBs occur within narrow zones between methylated nucleosomes-and identify relationships between SPO11, chromatin, and the histone methyltransferase PRDM9. At large scale, DSB formation is suppressed on non-homologous portions of the sex chromosomes via the DSB-responsive kinase ATM, which also shapes the autosomal DSB landscape at multiple size scales. We also provide a genome-wide analysis of exonucleolytic DSB resection lengths and elucidate spatial relationships between DSBs and recombination products. Our results paint a comprehensive picture of features governing successive steps in mammalian meiotic recombination.

  8. Meiotic Development in Caenorhabditis elegans

    PubMed Central

    Lui, Doris Y.

    2013-01-01

    Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans. PMID:22872477

  9. Recombination in diverse maize is stable, predictable, and associated with genetic load.

    PubMed

    Rodgers-Melnick, Eli; Bradbury, Peter J; Elshire, Robert J; Glaubitz, Jeffrey C; Acharya, Charlotte B; Mitchell, Sharon E; Li, Chunhui; Li, Yongxiang; Buckler, Edward S

    2015-03-24

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favorable allele introgression. The consequences of low recombination also theoretically extend to the species-wide scale by decreasing the power of selection relative to genetic drift, and thereby hindering the purging of deleterious mutations. In this study, we used genotyping-by-sequencing (GBS) to identify 136,000 recombination breakpoints at high resolution within US and Chinese maize nested association mapping populations. We find that the pattern of cross-overs is highly predictable on the broad scale, following the distribution of gene density and CpG methylation. Several large inversions also suppress recombination in distinct regions of several families. We also identify recombination hotspots ranging in size from 1 kb to 30 kb. We find these hotspots to be historically stable and, compared with similar regions with low recombination, to have strongly differentiated patterns of DNA methylation and GC content. We also provide evidence for the historical action of GC-biased gene conversion in recombination hotspots. Finally, using genomic evolutionary rate profiling (GERP) to identify putative deleterious polymorphisms, we find evidence for reduced genetic load in hotspot regions, a phenomenon that may have considerable practical importance for breeding programs worldwide.

  10. Complex haplotype structure of the human GNAS gene identifies a recombination hotspot centred on a single nucleotide polymorphism widely used in association studies.

    PubMed

    Yang, Wanling; White, Brook; Spicer, Eleanor K; Weinstein, Benjamin L; Hildebrandt, John D

    2004-11-01

    The alpha subunit of the heterotrimeric G protein Gs (Gsalpha) is involved in numerous physiological processes and is a primary determinant of cellular responses to extracellular signals. Genetic variations in the Gsalpha gene may play an important role in complex diseases and drug responses. To characterize the genetic diversity in this locus, we resequenced exons and flanking introns of the gene in 44 genomic samples and analysed the haplotype structure of the gene in an additional 50 African-Americans and 50 Caucasians. Significant differences in allele frequency for nearly all the genotyped single nucleotide polymorphism (SNPs) were detected between the two ethnic groups. Linkage disequilibrium (LD) analysis of this locus revealed two haplotype blocks characterized by strong LD and reduced haplotype diversity, especially in Caucasians. Between the two blocks is a narrow (approximately 3 kb) recombination hotspot centred on exons 4 and 5, and a widely used genetic marker in association studies in this region (rs7121) was in linkage equilibrium with the rest of the gene. The haplotype structure of the GNAS locus warrants reevaluation of previous association studies that used marker rs7121 and affects choice of SNP markers to be used in future studies of this locus.

  11. Meiotic process and aneuploidy

    SciTech Connect

    Grell, R.F.

    1985-01-01

    The process of meiosis is analyzed by dissecting it into its component parts using the early oocyte of Drosophila as a model. Entrance of the oocytes into premeiotic interphase signals initiation of DNA replication which continues for 30 h. Coincidentally, extensive synaptonemal complexes appear, averaging 50 ..mu..m (132 h), peaking at 75 ..mu..m (144 h) and continuing into early vitellarial stages. Recombinational response to heat, evidenced by enhancement or induction of exchange, is limited to the S-phase with a peak at 144 h coinciding with maximal extension of the SC. Coincidence of synapsis and recombination response with S at premeiotic interphase is contrary to their conventional localization at meiotic prophase. The interrelationship between exchange and nondisjunction has been clarified by the Distributive Pairing Model of meiosis. Originally revealed through high frequencies of nonrandom assortment of nonhomologous chromosomes, distributive pairing has been shown to follow and to be noncompetitive with exchange, to be based on size-recognition, not homology, and as a raison d'etre, to provide a segregational mechanism for noncrossover homologues. Rearrangements, recombination mutants and aneuploids may contribute noncrossover chromosomes to the distributive pool and so promote the nonhomologous associations responsible for nondisjunction of homologues and regular segregation of nonhomologues. 38 references, 15 figures. (ACR)

  12. Cattle Sex-Specific Recombination and Genetic Control from a Large Pedigree Analysis.

    PubMed

    Ma, Li; O'Connell, Jeffrey R; VanRaden, Paul M; Shen, Botong; Padhi, Abinash; Sun, Chuanyu; Bickhart, Derek M; Cole, John B; Null, Daniel J; Liu, George E; Da, Yang; Wiggans, George R

    2015-11-01

    Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.

  13. Fine-scale recombination rate differences between sexes, populations and individuals.

    PubMed

    Kong, Augustine; Thorleifsson, Gudmar; Gudbjartsson, Daniel F; Masson, Gisli; Sigurdsson, Asgeir; Jonasdottir, Aslaug; Walters, G Bragi; Jonasdottir, Adalbjorg; Gylfason, Arnaldur; Kristinsson, Kari Th; Gudjonsson, Sigurjon A; Frigge, Michael L; Helgason, Agnar; Thorsteinsdottir, Unnur; Stefansson, Kari

    2010-10-28

    Meiotic recombinations contribute to genetic diversity by yielding new combinations of alleles. Recently, high-resolution recombination maps were inferred from high-density single-nucleotide polymorphism (SNP) data using linkage disequilibrium (LD) patterns that capture historical recombination events. The use of these maps has been demonstrated by the identification of recombination hotspots and associated motifs, and the discovery that the PRDM9 gene affects the proportion of recombinations occurring at hotspots. However, these maps provide no information about individual or sex differences. Moreover, locus-specific demographic factors like natural selection can bias LD-based estimates of recombination rate. Existing genetic maps based on family data avoid these shortcomings, but their resolution is limited by relatively few meioses and a low density of markers. Here we used genome-wide SNP data from 15,257 parent-offspring pairs to construct the first recombination maps based on directly observed recombinations with a resolution that is effective down to 10 kilobases (kb). Comparing male and female maps reveals that about 15% of hotspots in one sex are specific to that sex. Although male recombinations result in more shuffling of exons within genes, female recombinations generate more new combinations of nearby genes. We discover novel associations between recombination characteristics of individuals and variants in the PRDM9 gene and we identify new recombination hotspots. Comparisons of our maps with two LD-based maps inferred from data of HapMap populations of Utah residents with ancestry from northern and western Europe (CEU) and Yoruba in Ibadan, Nigeria (YRI) reveal population differences previously masked by noise and map differences at regions previously described as targets of natural selection.

  14. Gene Evolutionary Trajectories and GC Patterns Driven by Recombination in Zea mays

    PubMed Central

    Sundararajan, Anitha; Dukowic-Schulze, Stefanie; Kwicklis, Madeline; Engstrom, Kayla; Garcia, Nathan; Oviedo, Oliver J.; Ramaraj, Thiruvarangan; Gonzales, Michael D.; He, Yan; Wang, Minghui; Sun, Qi; Pillardy, Jaroslaw; Kianian, Shahryar F.; Pawlowski, Wojciech P.; Chen, Changbin; Mudge, Joann

    2016-01-01

    Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another intriguing GC pattern exists. Maize genes show a bimodal GC content distribution that has been attributed to nucleotide bias in the third, or wobble, position of the codon. Recombination may be an underlying driving force given that recombination sites are often associated with high GC content. Here we explore the relationship between recombination and genomic GC patterns by comparing GC gene content at each of the three codon positions (GC1, GC2, and GC3, collectively termed GCx) to instances of a variable GC-rich motif that underlies double strand break (DSB) hotspots and to meiocyte-specific gene expression. Surprisingly, GCx bimodality in maize cannot be fully explained by the codon wobble hypothesis. High GCx genes show a strong overlap with the DSB hotspot motif, possibly providing a mechanism for the high evolutionary rates seen in these genes. On the other hand, genes that are turned on in meiosis (early prophase I) are biased against both high GCx genes and genes with the DSB hotspot motif, possibly allowing important meiotic genes to avoid DSBs. Our data suggests a strong link between the GC-rich motif underlying DSB hotspots and high GCx genes. PMID:27713757

  15. A mutation in the FHA domain of Coprinus cinereus Nbs1 Leads to Spo11-independent meiotic recombination and chromosome segregation.

    PubMed

    Crown, K Nicole; Savytskyy, Oleksandr P; Malik, Shehre-Banoo; Logsdon, John; Williams, R Scott; Tainer, John A; Zolan, Miriam E

    2013-11-06

    Nbs1, a core component of the Mre11-Rad50-Nbs1 complex, plays an essential role in the cellular response to DNA double-strand breaks (DSBs) and poorly understood roles in meiosis. We used the basidiomycete Coprinus cinereus to examine the meiotic roles of Nbs1. We identified the C. cinereus nbs1 gene and demonstrated that it corresponds to a complementation group previously known as rad3. One allele, nbs1-2, harbors a point mutation in the Nbs1 FHA domain and has a mild spore viability defect, increased frequency of meiosis I nondisjunction, and an altered crossover distribution. The nbs1-2 strain enters meiosis with increased levels of phosphorylated H2AX, which we hypothesize represent unrepaired DSBs formed during premeiotic replication. In nbs1-2, there is no apparent induction of Spo11-dependent DSBs during prophase. We propose that replication-dependent DSBs, resulting from defective replication fork protection and processing by the Mre11-Rad50-Nbs1 complex, are competent to form meiotic crossovers in C. cinereus, and that these crossovers lead to high levels of faithful chromosome segregation. In addition, although crossover distribution is altered in nbs1-2, the majority of crossovers were found in subtelomeric regions, as in wild-type. Therefore, the location of crossovers in C. cinereus is maintained when DSBs are induced via a Spo11-independent mechanism.

  16. Meiotic abnormalities in infertile males.

    PubMed

    Egozcue, J; Sarrate, Z; Codina-Pascual, M; Egozcue, S; Oliver-Bonet, M; Blanco, J; Navarro, J; Benet, J; Vidal, F

    2005-01-01

    Meiotic anomalies, as reviewed here, are synaptic chromosome abnormalities, limited to germ cells that cannot be detected through the study of the karyotype. Although the importance of synaptic errors has been underestimated for many years, their presence is related to many cases of human male infertility. Synaptic anomalies can be studied by immunostaining of synaptonemal complexes (SCs), but in this case their frequency is probably underestimated due to the phenomenon of synaptic adjustment. They can also be studied in classic meiotic preparations, which, from a clinical point of view, is still the best approach, especially if multiplex fluorescence in situ hybridization is at hand to solve difficult cases. Sperm chromosome FISH studies also provide indirect evidence of their presence. Synaptic anomalies can affect the rate of recombination of all bivalents, produce achiasmate small univalents, partially achiasmate medium-sized or large bivalents, or affect all bivalents in the cell. The frequency is variable, interindividually and intraindividually. The baseline incidence of synaptic anomalies is 6-8%, which may be increased to 17.6% in males with a severe oligozoospermia, and to 27% in normozoospermic males with one or more previous IVF failures. The clinical consequences are the production of abnormal spermatozoa that will produce a higher number of chromosomally abnormal embryos. The indications for a meiotic study in testicular biopsy are provided.

  17. Residual recombination in Neurospora crassa spo11 deletion homozygotes occurs during meiosis.

    PubMed

    Bowring, F J; Yeadon, P J; Catcheside, D E A

    2013-09-01

    Spo11 is considered responsible for initiation of meiotic recombination in higher organisms, but previous analysis using spo11 (RIP) mutants suggests that the his-3 region of Neurospora crassa experiences spo11-independent recombination. However, despite possessing several stop codons, it is conceivable that the mutants are not completely null. Also, since lack of spo11 interferes with chromosomal pairing and proper segregation at Meiosis I, spores can be partially diploid for a period after meiosis. Thus, it is possible that the recombination observed could be an abnormal event, occurring during the period of aneuploidy rather than during meiosis. To test the former hypothesis, we generated spo11 deletion homozygotes. Using crosses heteroallelic for his-3 mutations, we showed that His(+) progeny are generated in spo11 deletion homozygotes at a frequency at least as high as in wild type and, as in the spo11 (RIP) mutants, local crossing over is not reduced. To test the latter hypothesis, we utilised mutations in either end of a histone H1-GFP fusion gene, inserted between the recombination hotspot cog and his-3, in which GFP(+) spores arise as a result of recombination in a cross between the two GFP alleles. In a control cross homozygous for spo11 (+), the frequency at which GFP(+) spores arise is comparable to the frequency of His(+) spores and glowing nuclei first appear during prophase, prior to metaphase I, as expected for a product of meiotic recombination. Similarly in spo11 deletion homozygotes, GFP(+) spores arise at high frequency and glowing nuclei are first seen before metaphase, indicating that allelic recombination occurs during meiosis in the absence of spo11. We have therefore shown that spo11 is not essential for either his-3 allelic recombination or crossing over in the vicinity of his-3, and that spo11-independent allelic recombination is meiotic, indicating that there is a spo11-independent mechanism for initiation of recombination in Neurospora.

  18. Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation.

    PubMed

    Mahadevaiah, Shantha K; Bourc'his, Déborah; de Rooij, Dirk G; Bestor, Timothy H; Turner, James M A; Burgoyne, Paul S

    2008-07-28

    Chromosome synapsis during zygotene is a prerequisite for the timely homologous recombinational repair of meiotic DNA double-strand breaks (DSBs). Unrepaired DSBs are thought to trigger apoptosis during midpachytene of male meiosis if synapsis fails. An early pachytene response to asynapsis is meiotic silencing of unsynapsed chromatin (MSUC), which, in normal males, silences the X and Y chromosomes (meiotic sex chromosome inactivation [MSCI]). In this study, we show that MSUC occurs in Spo11-null mouse spermatocytes with extensive asynapsis but lacking meiotic DSBs. In contrast, three mutants (Dnmt3l, Msh5, and Dmc1) with high levels of asynapsis and numerous persistent unrepaired DSBs have a severely impaired MSUC response. We suggest that MSUC-related proteins, including the MSUC initiator BRCA1, are sequestered at unrepaired DSBs. All four mutants fail to silence the X and Y chromosomes (MSCI failure), which is sufficient to explain the midpachytene apoptosis. Apoptosis does not occur in mice with a single additional asynapsed chromosome with unrepaired meiotic DSBs and no disturbance of MSCI.

  19. Female meiotic sex chromosome inactivation in chicken.

    PubMed

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2009-05-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  20. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination

    PubMed Central

    Lorenz, Alexander; Mehats, Alizée; Osman, Fekret; Whitby, Matthew C.

    2014-01-01

    During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved. PMID:25414342

  1. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination.

    PubMed

    Lorenz, Alexander; Mehats, Alizée; Osman, Fekret; Whitby, Matthew C

    2014-12-16

    During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.

  2. A Link between Meiotic Prophase Progression and CrossoverControl

    SciTech Connect

    Carlton, Peter M.; Farruggio, Alfonso P.; Dernburg, Abby F.

    2005-07-06

    During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.

  3. A new light on the meiotic DSB catalytic complex.

    PubMed

    Robert, Thomas; Vrielynck, Nathalie; Mézard, Christine; de Massy, Bernard; Grelon, Mathilde

    2016-06-01

    Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs). More than 15 years ago, Spo11 was identified as the protein responsible for meiotic DSB formation, notably because of its striking similarities with the A subunit of topoisomerase VI (TopoVI). TopoVI are enzymes that modify DNA topology by generating transient DSBs and are active as heterotetramers, composed of two A and two B subunits. A2 dimers catalyse the DNA cleavage reaction, whereas the B subunits regulate A2 conformation, DNA capture, cleavage and re-ligation. The recent identification in plants and mammals of a B-like TopoVI subunit that interacts with SPO11 and is required for meiotic DSB formation makes us to reconsider our understanding of the meiotic DSB catalytic complex. We provide here an overview of the knowledge on TopoVI structure and mode of action and we compare them with their meiotic counterparts. This allows us to discuss the nature, structure and functions of the meiotic TopoVI-like complex during meiotic DSB formation.

  4. Numerical and spatial patterning of yeast meiotic DNA breaks by Tel1.

    PubMed

    Mohibullah, Neeman; Keeney, Scott

    2017-02-01

    The Spo11-generated double-strand breaks (DSBs) that initiate meiotic recombination are dangerous lesions that can disrupt genome integrity, so meiotic cells regulate their number, timing, and distribution. Mechanisms of this regulation remain poorly understood. Here, we use Spo11-oligonucleotide complexes, a byproduct of DSB formation, to reveal aspects of the contribution of the Saccharomyces cerevisiae DNA damage-responsive kinase Tel1 (ortholog of mammalian ATM). A tel1Δ mutant has globally increased amounts of Spo11-oligonucleotide complexes and altered Spo11-oligonucleotide lengths, consistent with conserved roles for Tel1 in control of DSB number and processing. A kinase-dead tel1 mutation similarly increases Spo11-oligonucleotide levels but mutating known Tel1 phosphotargets on Hop1 and Rec114 does not, implicating Tel1 kinase activity and clarifying roles of Tel1 phosphorylation substrates. Deep sequencing of Spo11 oligonucleotides demonstrates that Tel1 shapes the genome-wide DSB landscape in unexpected ways. Early in meiosis, Tel1 absence causes widespread changes in DSB distributions across large chromosomal domains. Many of these changes are erased as meiosis proceeds, however, illustrating homeostatic behavior of DSB regulatory systems. We further find that effects of Tel1 are distinct but partially overlapping with previously described contributions of the recombination regulator Cst9 (also known as Zip3). Finally, we provide evidence indicating that Tel1-dependent DSB interference influences the population-average DSB landscape but also demonstrate that locally inhibitory effects of an artificial hotspot insertion can be both Tel1-independent and chromosomal context-dependent. Our findings delineate Tel1 roles in regulating number and location of DSBs and illuminate the complex interplay between Tel1 and other pathways for DSB control.

  5. Meiotic sex chromosome inactivation.

    PubMed

    Turner, James M A

    2007-05-01

    X chromosome inactivation is most commonly studied in the context of female mammalian development, where it performs an essential role in dosage compensation. However, another form of X-inactivation takes place in the male, during spermatogenesis, as germ cells enter meiosis. This second form of X-inactivation, called meiotic sex chromosome inactivation (MSCI) has emerged as a novel paradigm for studying the epigenetic regulation of gene expression. New studies have revealed that MSCI is a special example of a more general mechanism called meiotic silencing of unsynapsed chromatin (MSUC), which silences chromosomes that fail to pair with their homologous partners and, in doing so, may protect against aneuploidy in subsequent generations. Furthermore, failure in MSCI is emerging as an important etiological factor in meiotic sterility.

  6. Meiotic chromosome abnormalities in human spermatogenesis.

    PubMed

    Martin, Renée H

    2006-08-01

    The last few years have witnessed an explosion in the information about chromosome abnormalities in human sperm and the meiotic events that predispose to these abnormalities. We have determined that all chromosomes are susceptible to nondisjunction, but chromosomes 21 and 22 and, especially, the sex chromosomes have an increased frequency of aneuploidy. Studies are just beginning on the effects of potential mutagens on the chromosomal constitution of human sperm. The effects of pesticides and cancer therapeutic agents have been reviewed. In the last decade, there has been a great impetus to study chromosome abnormalities in sperm from infertile men because the advent of intracytoplasmic sperm injection (ICSI) made it possible for these men to father pregnancies. A large number of studies have demonstrated that infertile men have an increased frequency of chromosomally abnormal sperm and children, even when they have a normal somatic karyotype. Meiotic studies on the pachytene stage of spermatogenesis have demonstrated that infertile men have impaired chromosome synapsis, a significantly decreased frequency of recombination, and an increased frequency of chromosomes completely lacking a recombination site. Such errors make these cells susceptible to meiotic arrest and the production of aneuploid gametes.

  7. The Many Landscapes of Recombination in Drosophila melanogaster

    PubMed Central

    Comeron, Josep M.; Ratnappan, Ramesh; Bailin, Samuel

    2012-01-01

    Recombination is a fundamental biological process with profound evolutionary implications. Theory predicts that recombination increases the effectiveness of selection in natural populations. Yet, direct tests of this prediction have been restricted to qualitative trends due to the lack of detailed characterization of recombination rate variation across genomes and within species. The use of imprecise recombination rates can also skew population genetic analyses designed to assess the presence and mode of selection across genomes. Here we report the first integrated high-resolution description of genomic and population variation in recombination, which also distinguishes between the two outcomes of meiotic recombination: crossing over (CO) and gene conversion (GC). We characterized the products of 5,860 female meioses in Drosophila melanogaster by genotyping a total of 139 million informative SNPs and mapped 106,964 recombination events at a resolution down to 2 kilobases. This approach allowed us to generate whole-genome CO and GC maps as well as a detailed description of variation in recombination among individuals of this species. We describe many levels of variation in recombination rates. At a large-scale (100 kb), CO rates exhibit extreme and highly punctuated variation along chromosomes, with hot and coldspots. We also show extensive intra-specific variation in CO landscapes that is associated with hotspots at low frequency in our sample. GC rates are more uniformly distributed across the genome than CO rates and detectable in regions with reduced or absent CO. At a local scale, recombination events are associated with numerous sequence motifs and tend to occur within transcript regions, thus suggesting that chromatin accessibility favors double-strand breaks. All these non-independent layers of variation in recombination across genomes and among individuals need to be taken into account in order to obtain relevant estimates of recombination rates, and should

  8. Spatiotemporal Asymmetry of the Meiotic Program Underlies the Predominantly Distal Distribution of Meiotic Crossovers in Barley[W

    PubMed Central

    Higgins, James D.; Perry, Ruth M.; Barakate, Abdellah; Ramsay, Luke; Waugh, Robbie; Halpin, Claire; Armstrong, Susan J.; Franklin, F. Chris H.

    2012-01-01

    Meiosis involves reciprocal exchange of genetic information between homologous chromosomes to generate new allelic combinations. In cereals, the distribution of genetic crossovers, cytologically visible as chiasmata, is skewed toward the distal regions of the chromosomes. However, many genes are known to lie within interstitial/proximal regions of low recombination, creating a limitation for breeders. We investigated the factors underlying the pattern of chiasma formation in barley (Hordeum vulgare) and show that chiasma distribution reflects polarization in the spatiotemporal initiation of recombination, chromosome pairing, and synapsis. Consequently, meiotic progression in distal chromosomal regions occurs in coordination with the chromatin cycles that are a conserved feature of the meiotic program. Recombination initiation in interstitial and proximal regions occurs later than distal events, is not coordinated with the cycles, and rarely progresses to form chiasmata. Early recombination initiation is spatially associated with early replicating, euchromatic DNA, which is predominately found in distal regions. We demonstrate that a modest temperature shift is sufficient to alter meiotic progression in relation to the chromosome cycles. The polarization of the meiotic processes is reduced and is accompanied by a shift in chiasma distribution with an increase in interstitial and proximal chiasmata, suggesting a potential route to modify recombination in cereals. PMID:23104831

  9. The mouse Spo11 gene is required for meiotic chromosome synapsis.

    PubMed

    Romanienko, P J; Camerini-Otero, R D

    2000-11-01

    The Spo11 protein initiates meiotic recombination by generating DNA double-strand breaks (DSBs) and is required for meiotic synapsis in S. cerevisiae. Surprisingly, Spo11 homologs are dispensable for synapsis in C. elegans and Drosophila yet required for meiotic recombination. Disruption of mouse Spo11 results in infertility. Spermatocytes arrest prior to pachytene with little or no synapsis and undergo apoptosis. We did not detect Rad51/Dmc1 foci in meiotic chromosome spreads, indicating DSBs are not formed. Cisplatin-induced DSBs restored Rad51/Dmc1 foci and promoted synapsis. Spo11 localizes to discrete foci during leptotene and to homologously synapsed chromosomes. Other mouse mutants that arrest during meiotic prophase (Atm -/-, Dmc1 -/-, mei1, and Morc(-/-)) showed altered Spo11 protein localization and expression. We speculate that there is an additional role for Spo11, after it generates DSBs, in synapsis.

  10. Meiotic Consequences of Genetic Divergence Across the Murine Pseudoautosomal Region

    PubMed Central

    Dumont, Beth L.

    2017-01-01

    The production of haploid gametes during meiosis is dependent on the homology-driven processes of pairing, synapsis, and recombination. On the mammalian heterogametic sex chromosomes, these key meiotic activities are confined to the pseudoautosomal region (PAR), a short region of near-perfect sequence homology between the X and Y chromosomes. Despite its established importance for meiosis, the PAR is rapidly evolving, raising the question of how proper X/Y segregation is buffered against the accumulation of homology-disrupting mutations. Here, I investigate the interplay of PAR evolution and function in two interfertile house mouse subspecies characterized by structurally divergent PARs, Mus musculus domesticus and M. m. castaneus. Using cytogenetic methods to visualize the sex chromosomes at meiosis, I show that intersubspecific F1 hybrids harbor an increased frequency of pachytene spermatocytes with unsynapsed sex chromosomes. This high rate of asynapsis is due, in part, to the premature release of synaptic associations prior to completion of prophase I. Further, I show that when sex chromosomes do synapse in intersubspecific hybrids, recombination is reduced across the paired region. Together, these meiotic defects afflict ∼50% of spermatocytes from F1 hybrids and lead to increased apoptosis in meiotically dividing cells. Despite flagrant disruption of the meiotic program, a subset of spermatocytes complete meiosis and intersubspecific F1 males remain fertile. These findings cast light on the meiotic constraints that shape sex chromosome evolution and offer initial clues to resolve the paradox raised by the rapid evolution of this functionally significant locus. PMID:28100589

  11. Fine Characterisation of a Recombination Hotspot at the DPY19L2 Locus and Resolution of the Paradoxical Excess of Duplications over Deletions in the General Population

    PubMed Central

    Coutton, Charles; Abada, Farid; Karaouzene, Thomas; Sanlaville, Damien; Satre, Véronique; Lunardi, Joël; Jouk, Pierre-Simon; Arnoult, Christophe; Thierry-Mieg, Nicolas; Ray, Pierre F.

    2013-01-01

    We demonstrated previously that 75% of infertile men with round, acrosomeless spermatozoa (globozoospermia) had a homozygous 200-Kb deletion removing the totality of DPY19L2. We showed that this deletion occurred by Non-Allelic Homologous Recombination (NAHR) between two homologous 28-Kb Low Copy Repeats (LCRs) located on each side of the gene. The accepted NAHR model predicts that inter-chromatid and inter-chromosome NAHR create a deleted and a duplicated recombined allele, while intra-chromatid events only generate deletions. Therefore more deletions are expected to be produced de novo. Surprisingly, array CGH data show that, in the general population, DPY19L2 duplicated alleles are approximately three times as frequent as deleted alleles. In order to shed light on this paradox, we developed a sperm-based assay to measure the de novo rates of deletions and duplications at this locus. As predicted by the NAHR model, we identified an excess of de novo deletions over duplications. We calculated that the excess of de novo deletion was compensated by evolutionary loss, whereas duplications, not subjected to selection, increased gradually. Purifying selection against sterile, homozygous deleted men may be sufficient for this compensation, but heterozygously deleted men might also suffer a small fitness penalty. The recombined alleles were sequenced to pinpoint the localisation of the breakpoints. We analysed a total of 15 homozygous deleted patients and 17 heterozygous individuals carrying either a deletion (n = 4) or a duplication (n = 13). All but two alleles fell within a 1.2-Kb region central to the 28-Kb LCR, indicating that >90% of the NAHR took place in that region. We showed that a PRDM9 13-mer recognition sequence is located right in the centre of that region. Our results therefore strengthen the link between this consensus sequence and the occurrence of NAHR. PMID:23555282

  12. Fine characterisation of a recombination hotspot at the DPY19L2 locus and resolution of the paradoxical excess of duplications over deletions in the general population.

    PubMed

    Coutton, Charles; Abada, Farid; Karaouzene, Thomas; Sanlaville, Damien; Satre, Véronique; Lunardi, Joël; Jouk, Pierre-Simon; Arnoult, Christophe; Thierry-Mieg, Nicolas; Ray, Pierre F

    2013-03-01

    We demonstrated previously that 75% of infertile men with round, acrosomeless spermatozoa (globozoospermia) had a homozygous 200-Kb deletion removing the totality of DPY19L2. We showed that this deletion occurred by Non-Allelic Homologous Recombination (NAHR) between two homologous 28-Kb Low Copy Repeats (LCRs) located on each side of the gene. The accepted NAHR model predicts that inter-chromatid and inter-chromosome NAHR create a deleted and a duplicated recombined allele, while intra-chromatid events only generate deletions. Therefore more deletions are expected to be produced de novo. Surprisingly, array CGH data show that, in the general population, DPY19L2 duplicated alleles are approximately three times as frequent as deleted alleles. In order to shed light on this paradox, we developed a sperm-based assay to measure the de novo rates of deletions and duplications at this locus. As predicted by the NAHR model, we identified an excess of de novo deletions over duplications. We calculated that the excess of de novo deletion was compensated by evolutionary loss, whereas duplications, not subjected to selection, increased gradually. Purifying selection against sterile, homozygous deleted men may be sufficient for this compensation, but heterozygously deleted men might also suffer a small fitness penalty. The recombined alleles were sequenced to pinpoint the localisation of the breakpoints. We analysed a total of 15 homozygous deleted patients and 17 heterozygous individuals carrying either a deletion (n = 4) or a duplication (n = 13). All but two alleles fell within a 1.2-Kb region central to the 28-Kb LCR, indicating that >90% of the NAHR took place in that region. We showed that a PRDM9 13-mer recognition sequence is located right in the centre of that region. Our results therefore strengthen the link between this consensus sequence and the occurrence of NAHR.

  13. The west side story: MEFV haplotype in Spanish FMF patients and controls, and evidence of high LD and a recombination "hot-spot" at the MEFV locus.

    PubMed

    Aldea, Anna; Calafell, Francesc; Aróstegui, Juan I; Lao, Oscar; Rius, Josefa; Plaza, Susana; Masó, Montserrat; Vives, Jordi; Buades, Joan; Yagüe, Jordi

    2004-04-01

    Mutations at the MEFV gene cause, with various degrees of penetrance, familial Mediterranean fever (FMF). This disease is more prevalent in the Middle East than elsewhere, and most studies have focused on those populations. However, FMF occurs also in the Western Mediterranean and these populations should be taken into account for a complete view of FMF. We have analyzed intragenic MEFV SNPs in Spanish and Chueta (descendants of converted Jews) FMF patients and controls, and this constitutes the first systematic survey of normal MEFV SNP haplotype structure and variability. Our findings have allowed us to systematize the nomenclature of MEFV haplotypes and show that there is strong linkage disequilibrium (LD) at the MEFV locus and an intragenic recombination hot spot. The high local LD, regardless the recombination hot spot, is responsible for the limited diversity of the MEFV control haplotypes found in the Spanish population and it suggests that it may be a common feature to all Mediterranean populations. The MEFV mutation spectrum in Spain is quite diverse, and similar to those of France and Italy. On the contrary, the Chueta spectrum was poorer and closer to that of North African Jews, suggesting a direct connection with the Jewish diaspora.

  14. Hotspots for Vitamin-Steroid-Thyroid Hormone Response Elements Within Switch Regions of Immunoglobulin Heavy Chain Loci Predict a Direct Influence of Vitamins and Hormones on B Cell Class Switch Recombination.

    PubMed

    Hurwitz, Julia L; Penkert, Rhiannon R; Xu, Beisi; Fan, Yiping; Partridge, Janet F; Maul, Robert W; Gearhart, Patricia J

    2016-03-01

    Vitamin A deficiencies are common throughout the world and have a significant negative influence on immune protection against viral infections. Mouse models demonstrate that the production of IgA, a first line of defense against viruses at mucosal sites, is inhibited in the context of vitamin A deficiency. In vitro, the addition of vitamin A to activated B cells can enhance IgA expression, but downregulate IgE. Previous reports have demonstrated that vitamin A modifies cytokine patterns, and in so doing may influence antibody isotype expression by an indirect mechanism. However, we have now discovered hundreds of potential response elements among Sμ, Sɛ, and Sα switch sites within immunoglobulin heavy chain loci. These hotspots appear in both mouse and human loci and include targets for vitamin receptors and related proteins (e.g., estrogen receptors) in the nuclear receptor superfamily. Full response elements with direct repeats are relatively infrequent or absent in Sγ regions although half-sites are present. Based on these results, we pose a hypothesis that nuclear receptors have a direct effect on the immunoglobulin heavy chain class switch recombination event. We propose that vitamin A may alter S site accessibility to activation-induced deaminase and nonhomologous end-joining machinery, thereby influencing the isotype switch, antibody production, and protection against viral infections at mucosal sites.

  15. Primate evolution of the recombination regulator PRDM9.

    PubMed

    Schwartz, Jerrod J; Roach, David J; Thomas, James H; Shendure, Jay

    2014-07-08

    The PRDM9 gene encodes a protein with a highly variable tandem-repeat zinc finger (ZF) DNA-binding domain that plays a key role in determining sequence-specific hotspots of meiotic recombination genome wide. Here we survey the diversity of the PRDM9 ZF domain by sequencing this region in 64 primates from 18 species, revealing 68 unique alleles across all groups. We report ubiquitous positive selection at nucleotide positions corresponding to DNA contact residues and the expansion of ZFs within clades, which confirms the rapid evolution of the ZF domain throughout the primate lineage. Alignment of Neandertal and Denisovan sequences suggests that PRDM9 in archaic hominins was closely related to present-day human alleles that are rare and specific to African populations. In the context of its role in reproduction, our results are consistent with variation in PRDM9 contributing to speciation events in primates.

  16. Genetics of meiosis and recombination in mice.

    PubMed

    Bolcun-Filas, Ewelina; Schimenti, John C

    2012-01-01

    Meiosis is one of the most critical developmental processes in sexually reproducing organisms. One round of DNA replication followed by two rounds of cell divisions results in generation of haploid gametes (sperm and eggs in mammals). Meiotic failure typically leads to infertility in mammals. In the process of meiotic recombination, maternal and paternal genomes are shuffled, creating new allelic combinations and thus genetic variety. However, in order to achieve this, meiotic cells must self-inflict DNA damage in the form of programmed double-strand breaks (DSBs). Complex processes evolved to ensure proper DSB repair, and to do so in a way that favors interhomolog reciprocal recombination and crossovers. The hallmark of meiosis, a structurally conserved proteinaceous structure called the synaptonemal complex, is found only in meiotic cells. Conversely, meiotic homologous recombination is an adaptation of the mitotic DNA repair process but involving specialized proteins. In this chapter, we summarize current developments in mammalian meiosis enabled by genetically modified mice.

  17. Meiotic exchange within and between chromosomes requires a common Rec function in Saccharomyces cerevisiae.

    PubMed Central

    Wagstaff, J E; Klapholz, S; Waddell, C S; Jensen, L; Esposito, R E

    1985-01-01

    We used haploid yeast cells that express both the MATa and MAT alpha mating-type alleles and contain the spo13-1 mutation to characterize meiotic recombination within single, unpaired chromosomes in Rec+ and Rec- Saccharomyces cerevisiae. In Rec+ haploids, as in diploids, intrachromosomal recombination in the ribosomal DNA was detected in 2 to 6% of meiotic divisions, and most events were unequal reciprocal sister chromatid exchange (SCE). By contrast, intrachromosomal recombination between duplicated copies of the his4 locus occurred in approximately 30% of haploid meiotic divisions, a frequency much higher than that reported in diploids; only about one-half of the events were unequal reciprocal SCE. The spo11-1 mutation, which virtually eliminates meiotic exchange between homologs in diploid meiosis, reduced the frequency of intrachromosomal recombination in both the ribosomal DNA and the his4 duplication during meiosis by 10- to greater than 50-fold. This Rec- mutation affected all forms of recombination within chromosomes: unequal reciprocal SCE, reciprocal intrachromatid exchange, and gene conversion. Intrachromosomal recombination in spo11-1 haploids was restored by transformation with a plasmid containing the wild-type SPO11 gene. Mitotic intrachromosomal recombination frequencies were unaffected by spo11-1. This is the first demonstration of a gene product required for recombination between homologs as well as recombination within chromosomes during meiosis. Images PMID:3915779

  18. A non-sister act: recombination template choice during meiosis.

    PubMed

    Humphryes, Neil; Hochwagen, Andreas

    2014-11-15

    Meiotic recombination has two key functions: the faithful assortment of chromosomes into gametes and the creation of genetic diversity. Both processes require that meiotic recombination occurs between homologous chromosomes, rather than sister chromatids. Accordingly, a host of regulatory factors are activated during meiosis to distinguish sisters from homologs, suppress recombination between sister chromatids and promote the chromatids of the homologous chromosome as the preferred recombination partners. Here, we discuss the recent advances in our understanding of the mechanistic basis of meiotic recombination template choice, focusing primarily on developments in the budding yeast, Saccharomyces cerevisiae, where the regulation is currently best understood.

  19. Effect of sex, age, and breed on genetic recombination features in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meiotic recombination is a fundamental biological process which generates genetic diversity, affects fertility, and influences evolvability. Here we investigate the roles of sex, age, and breed in cattle recombination features, including recombination rate, location and crossover interference. Usin...

  20. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11.

    PubMed

    Baudat, F; Manova, K; Yuen, J P; Jasin, M; Keeney, S

    2000-11-01

    Spo11, a protein first identified in yeast, is thought to generate the chromosome breaks that initiate meiotic recombination. We now report that disruption of mouse Spo11 leads to severe gonadal abnormalities from defective meiosis. Spermatocytes suffer apoptotic death during early prophase; oocytes reach the diplotene/dictyate stage in nearly normal numbers, but most die soon after birth. Consistent with a conserved function in initiating meiotic recombination, Dmc1/Rad51 focus formation is abolished. Spo11(-/-) meiocytes also display homologous chromosome synapsis defects, similar to fungi but distinct from flies and nematodes. We propose that recombination initiation precedes and is required for normal synapsis in mammals. Our results also support the view that mammalian checkpoint responses to meiotic recombination and/or synapsis defects are sexually dimorphic.

  1. Homologue engagement controls meiotic DNA break number and distribution.

    PubMed

    Thacker, Drew; Mohibullah, Neeman; Zhu, Xuan; Keeney, Scott

    2014-06-12

    Meiotic recombination promotes genetic diversification as well as pairing and segregation of homologous chromosomes, but the double-strand breaks (DSBs) that initiate recombination are dangerous lesions that can cause mutation or meiotic failure. How cells control DSBs to balance between beneficial and deleterious outcomes is not well understood. Here we test the hypothesis that DSB control involves a network of intersecting negative regulatory circuits. Using multiple complementary methods, we show that DSBs form in greater numbers in Saccharomyces cerevisiae cells lacking ZMM proteins, a suite of recombination-promoting factors traditionally regarded as acting strictly downstream of DSB formation. ZMM-dependent DSB control is genetically distinct from a pathway tying break formation to meiotic progression through the Ndt80 transcription factor. These counterintuitive findings suggest that homologous chromosomes that have successfully engaged one another stop making breaks. Genome-wide DSB maps uncover distinct responses by different subchromosomal domains to the ZMM mutation zip3 (also known as cst9), and show that Zip3 is required for the previously unexplained tendency of DSB density to vary with chromosome size. Thus, feedback tied to ZMM function contributes in unexpected ways to spatial patterning of recombination.

  2. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster.

    PubMed

    Baker, B S; Carpenter, A T

    1972-06-01

    A total of 209 ethyl methanesulfonate-treated X chromosomes were screened for meiotic mutants that either (1) increased sex or fourth chromosome nondisjunction at either meiotic division in males; (2) allowed recombination in such males; (3) increased nondisjunction of the X chromosome at either meiotic division in females; or (4) caused such females, when mated to males heterozygous for Segregation-Distorter (SD) and a sensitive homolog to alter the strength of meiotic drive in males.-Twenty male-specific meiotic mutants were found. Though the rates of nondisjunction differed, all twenty mutants were qualitatively similar in that (1) they alter the disjunction of the X chromosome from the Y chromosome; (2) among the recovered sex-chromosome exceptional progeny, there is a large excess of those derived from nullo-XY as compared to XY gametes; (3) there is a negative correlation between the frequency of sex-chromosome exceptional progeny and the frequency of males among the regular progeny. In their effects on meiosis these mutants are similar to In(1)sc(4L)sc(8R), which is deleted for the basal heterochromatin. These mutants, however, have normal phenotypes and viabilities when examined as X/0 males, and furthermore, a mapping of two of the mutants places them in the euchromatin of the X chromosome. It is suggested that these mutants are in genes whose products are involved in insuring the proper functioning of the basal pairing sites which are deleted in In(1)sc(4L)sc(8R), and in addition that there is a close connection, perhaps causal, between the disruption of normal X-Y pairing (and, therefore, disjunction) and the occurrence of meiotic drive in the male.-Eleven mutants were found which increased nondisjunction in females. These mutants were characterized as to (1) the division at which they acted; (2) their effect on recombination; (3) their dominance; (4) their effects on disjunction of all four chromosome pairs. Five female mutants caused a nonuniform

  3. A Pedigree-Based Map of Recombination in the Domestic Dog Genome

    PubMed Central

    Campbell, Christopher L.; Bhérer, Claude; Morrow, Bernice E.; Boyko, Adam R.; Auton, Adam

    2016-01-01

    Meiotic recombination in mammals has been shown to largely cluster into hotspots, which are targeted by the chromatin modifier PRDM9. The canid family, including wolves and dogs, has undergone a series of disrupting mutations in this gene, rendering PRDM9 inactive. Given the importance of PRDM9, it is of great interest to learn how its absence in the dog genome affects patterns of recombination placement. We have used genotypes from domestic dog pedigrees to generate sex-specific genetic maps of recombination in this species. On a broad scale, we find that placement of recombination events in dogs is consistent with that in mice and apes, in that the majority of recombination occurs toward the telomeres in males, while female crossing over is more frequent and evenly spread along chromosomes. It has been previously suggested that dog recombination is more uniform in distribution than that of humans; however, we found that recombination in dogs is less uniform than in humans. We examined the distribution of recombination within the genome, and found that recombination is elevated immediately upstream of the transcription start site and around CpG islands, in agreement with previous studies, but that this effect is stronger in male dogs. We also found evidence for positive crossover interference influencing the spacing between recombination events in dogs, as has been observed in other species including humans and mice. Overall our data suggests that dogs have similar broad scale properties of recombination to humans, while fine scale recombination is similar to other species lacking PRDM9. PMID:27591755

  4. A Pedigree-Based Map of Recombination in the Domestic Dog Genome.

    PubMed

    Campbell, Christopher L; Bhérer, Claude; Morrow, Bernice E; Boyko, Adam R; Auton, Adam

    2016-09-02

    Meiotic recombination in mammals has been shown to largely cluster into hotspots, which are targeted by the chromatin modifier PRDM9. The canid family, including wolves and dogs, has undergone a series of disrupting mutations in this gene, rendering PRDM9 inactive. Given the importance of PRDM9 it is of great interest to learn how its absence in the dog genome affects patterns of recombination placement. We have used genotypes from domestic dog pedigrees to generate sex-specific genetic maps of recombination in this species. On a broad scale, we find that placement of recombination events in dogs is consistent with that in mice and apes, in that the majority of recombination occurs toward the telomeres in males, while female crossing over is more frequent and evenly spread along chromosomes. It has been previously suggested that dog recombination is more uniform in distribution than that of humans, however, we found that recombination in dogs is less uniform than humans. We examined the distribution of recombination within the genome, and find that recombination is elevated immediately upstream of the transcription start site, and around CpG islands, in agreement with previous studies, but find that this effect is stronger in male dogs. We also find evidence for positive crossover interference influencing the spacing between recombination events in dogs, as has been observed in other species including humans and mice. Overall our data suggests that dogs have similar broad scale properties of recombination to humans, while fine-scale recombination is similar to other species lacking PRDM9.

  5. Most meiotic CAG repeat tract-length alterations in yeast are SPO11 dependent.

    PubMed

    Jankowski, C; Nag, Dilip K

    2002-03-01

    The expansion of trinucleotide repeat sequences associated with hereditary neurological diseases is believed from earlier studies to be due to errors in DNA replication. However, more recent studies have indicated that recombination may play a significant role in triplet repeat expansion. CAG repeat tracts have been shown to induce double-strand breaks (DSBs) during meiosis in yeast, and DSB formation is dependent on the meiotic recombination machinery. The rate of meiotic instability is several fold higher than mitotic instability. To determine whether DSB repair is responsible for the high rate of repeat tract-length alterations, the frequencies of meiotic repeat-tract instability were compared in wild-type and spo11 mutant strains. In the spo11 background, the rate of meiotic repeat-tract instability remained at the mitotic level, suggesting that meiotic alterations of CAG repeat tracts in yeast occur by the recombination mechanism. Several of these meiotic tract-length alterations are due to DSB repair involving use of the sister chromatid as a template.

  6. A Quality Control Mechanism Coordinates Meiotic Prophase Events to Promote Crossover Assurance

    PubMed Central

    Deshong, Alison J.; Ye, Alice L.; Lamelza, Piero; Bhalla, Needhi

    2014-01-01

    Meiotic chromosome segregation relies on homologous chromosomes being linked by at least one crossover, the obligate crossover. Homolog pairing, synapsis and meiosis specific DNA repair mechanisms are required for crossovers but how they are coordinated to promote the obligate crossover is not well understood. PCH-2 is a highly conserved meiotic AAA+-ATPase that has been assigned a variety of functions; whether these functions reflect its conserved role has been difficult to determine. We show that PCH-2 restrains pairing, synapsis and recombination in C. elegans. Loss of pch-2 results in the acceleration of synapsis and homolog-dependent meiotic DNA repair, producing a subtle increase in meiotic defects, and suppresses pairing, synapsis and recombination defects in some mutant backgrounds. Some defects in pch-2 mutants can be suppressed by incubation at lower temperature and these defects increase in frequency in wildtype worms grown at higher temperature, suggesting that PCH-2 introduces a kinetic barrier to the formation of intermediates that support pairing, synapsis or crossover recombination. We hypothesize that this kinetic barrier contributes to quality control during meiotic prophase. Consistent with this possibility, defects in pch-2 mutants become more severe when another quality control mechanism, germline apoptosis, is abrogated or meiotic DNA repair is mildly disrupted. PCH-2 is expressed in germline nuclei immediately preceding the onset of stable homolog pairing and synapsis. Once chromosomes are synapsed, PCH-2 localizes to the SC and is removed in late pachytene, prior to SC disassembly, correlating with when homolog-dependent DNA repair mechanisms predominate in the germline. Indeed, loss of pch-2 results in premature loss of homolog access. Altogether, our data indicate that PCH-2 coordinates pairing, synapsis and recombination to promote crossover assurance. Specifically, we propose that the conserved function of PCH-2 is to destabilize pairing

  7. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants.

    PubMed

    Edlinger, Bernd; Schlögelhofer, Peter

    2011-03-01

    Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.

  8. iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components.

    PubMed

    Qiu, Wang-Ren; Xiao, Xuan; Chou, Kuo-Chen

    2014-01-24

    Meiosis and recombination are the two opposite aspects that coexist in a DNA system. As a driving force for evolution by generating natural genetic variations, meiotic recombination plays a very important role in the formation of eggs and sperm. Interestingly, the recombination does not occur randomly across a genome, but with higher probability in some genomic regions called "hotspots", while with lower probability in so-called "coldspots". With the ever-increasing amount of genome sequence data in the postgenomic era, computational methods for effectively identifying the hotspots and coldspots have become urgent as they can timely provide us with useful insights into the mechanism of meiotic recombination and the process of genome evolution as well. To meet the need, we developed a new predictor called "iRSpot-TNCPseAAC", in which a DNA sample was formulated by combining its trinucleotide composition (TNC) and the pseudo amino acid components (PseAAC) of the protein translated from the DNA sample according to its genetic codes. The former was used to incorporate its local or short-rage sequence order information; while the latter, its global and long-range one. Compared with the best existing predictor in this area, iRSpot-TNCPseAAC achieved higher rates in accuracy, Mathew's correlation coefficient, and sensitivity, indicating that the new predictor may become a useful tool for identifying the recombination hotspots and coldspots, or, at least, become a complementary tool to the existing methods. It has not escaped our notice that the aforementioned novel approach to incorporate the DNA sequence order information into a discrete model may also be used for many other genome analysis problems. The web-server for iRSpot-TNCPseAAC is available at http://www.jci-bioinfo.cn/iRSpot-TNCPseAAC. Furthermore, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the current web server to obtain their desired

  9. Meiotic DSB patterning: A multifaceted process.

    PubMed

    Cooper, Tim J; Garcia, Valerie; Neale, Matthew J

    2016-01-01

    Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this article we focus upon an emerging element of this control--spatial regulation--detailing recent advances made in understanding how DSBs are evenly distributed across the genome, and present a unified view of the underlying patterning mechanisms employed.

  10. Meiotic DSB patterning: A multifaceted process

    PubMed Central

    Cooper, Tim J.; Garcia, Valerie; Neale, Matthew J.

    2016-01-01

    Abstract Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this article we focus upon an emerging element of this control—spatial regulation—detailing recent advances made in understanding how DSBs are evenly distributed across the genome, and present a unified view of the underlying patterning mechanisms employed. PMID:26730703

  11. ATM controls meiotic double-strand-break formation.

    PubMed

    Lange, Julian; Pan, Jing; Cole, Francesca; Thelen, Michael P; Jasin, Maria; Keeney, Scott

    2011-10-16

    In many organisms, developmentally programmed double-strand breaks (DSBs) formed by the SPO11 transesterase initiate meiotic recombination, which promotes pairing and segregation of homologous chromosomes. Because every chromosome must receive a minimum number of DSBs, attention has focused on factors that support DSB formation. However, improperly repaired DSBs can cause meiotic arrest or mutation; thus, having too many DSBs is probably as deleterious as having too few. Only a small fraction of SPO11 protein ever makes a DSB in yeast or mouse and SPO11 and its accessory factors remain abundant long after most DSB formation ceases, implying the existence of mechanisms that restrain SPO11 activity to limit DSB numbers. Here we report that the number of meiotic DSBs in mouse is controlled by ATM, a kinase activated by DNA damage to trigger checkpoint signalling and promote DSB repair. Levels of SPO11-oligonucleotide complexes, by-products of meiotic DSB formation, are elevated at least tenfold in spermatocytes lacking ATM. Moreover, Atm mutation renders SPO11-oligonucleotide levels sensitive to genetic manipulations that modulate SPO11 protein levels. We propose that ATM restrains SPO11 via a negative feedback loop in which kinase activation by DSBs suppresses further DSB formation. Our findings explain previously puzzling phenotypes of Atm-null mice and provide a molecular basis for the gonadal dysgenesis observed in ataxia telangiectasia, the human syndrome caused by ATM deficiency.

  12. Multiple roles of Spo11 in meiotic chromosome behavior.

    PubMed

    Celerin, M; Merino, S T; Stone, J E; Menzie, A M; Zolan, M E

    2000-06-01

    Spo11, a type II topoisomerase, is likely to be required universally for initiation of meiotic recombination. However, a dichotomy exists between budding yeast and the animals Caenorhabditis elegans and Drosophila melanogaster with respect to additional roles of Spo11 in meiosis. In Saccharomyces cerevisiae, Spo11 is required for homolog pairing, as well as axial element (AE) and synaptonemal complex (SC) formation. All of these functions are Spo11 independent in C.elegans and D.melanogaster. We examined Spo11 function in a multicellular fungus, Coprinus cinereus. The C.cinereus spo11-1 mutant shows high levels of homolog pairing and occasionally forms full-length AEs, but no SC. In C.cinereus, Spo11 is also required for maintenance of meiotic chromosome condensation and proper spindle formation. Meiotic progression in spo11-1 is aberrant; late in meiosis basidia undergo programmed cell death (PCD). To our knowledge, this is the first example of meiotic PCD outside the animal kingdom. Ionizing radiation can partially rescue spo11-1 for both AE and SC formation and viable spore production, suggesting that the double-strand break function of Spo11 is conserved and is required for these functions.

  13. Warfare in biodiversity hotspots.

    PubMed

    Hanson, Thor; Brooks, Thomas M; Da Fonseca, Gustavo A B; Hoffmann, Michael; Lamoreux, John F; Machlis, Gary; Mittermeier, Cristina G; Mittermeier, Russell A; Pilgrim, John D

    2009-06-01

    Conservation efforts are only as sustainable as the social and political context within which they take place. The weakening or collapse of sociopolitical frameworks during wartime can lead to habitat destruction and the erosion of conservation policies, but in some cases, may also confer ecological benefits through altered settlement patterns and reduced resource exploitation. Over 90% of the major armed conflicts between 1950 and 2000 occurred within countries containing biodiversity hotspots, and more than 80% took place directly within hotspot areas. Less than one-third of the 34 recognized hotspots escaped significant conflict during this period, and most suffered repeated episodes of violence. This pattern was remarkably consistent over these 5 decades. Evidence from the war-torn Eastern Afromontane hotspot suggests that biodiversity conservation is improved when international nongovernmental organizations support local protected area staff and remain engaged throughout the conflict. With biodiversity hotspots concentrated in politically volatile regions, the conservation community must maintain continuous involvement during periods of war, and biodiversity conservation should be incorporated into military, reconstruction, and humanitarian programs in the world's conflict zones.

  14. [Diagnosticum of abnormalities of plant meiotic division].

    PubMed

    Shamina, N V

    2006-01-01

    Abnormalities of plant meiotic division leading to abnormal meiotic products are summarized schematically in the paper. Causes of formation of monads, abnormal diads, triads, pentads, polyads, etc. have been observed in meiosis with both successive and simultaneous cytokinesis.

  15. Observed climate change hotspots

    NASA Astrophysics Data System (ADS)

    Turco, M.; Palazzi, E.; Hardenberg, J.; Provenzale, A.

    2015-05-01

    We quantify climate change hotspots from observations, taking into account the differences in precipitation and temperature statistics (mean, variability, and extremes) between 1981-2010 and 1951-1980. Areas in the Amazon, the Sahel, tropical West Africa, Indonesia, and central eastern Asia emerge as primary observed hotspots. The main contributing factors are the global increase in mean temperatures, the intensification of extreme hot-season occurrence in low-latitude regions and the decrease of precipitation over central Africa. Temperature and precipitation variability have been substantially stable over the past decades, with only a few areas showing significant changes against the background climate variability. The regions identified from the observations are remarkably similar to those defined from projections of global climate models under a "business-as-usual" scenario, indicating that climate change hotspots are robust and persistent over time. These results provide a useful background to develop global policy decisions on adaptation and mitigation priorities over near-time horizons.

  16. Hotspot swells revisited

    NASA Astrophysics Data System (ADS)

    King, Scott D.; Adam, Claudia

    2014-10-01

    The first attempts to quantify the width and height of hotspot swells were made more than 30 years ago. Since that time, topography, ocean-floor age, and sediment thickness datasets have improved considerably. Swell heights and widths have been used to estimate the heat flow from the core-mantle boundary, constrain numerical models of plumes, and as an indicator of the origin of hotspots. In this paper, we repeat the analysis of swell geometry and buoyancy flux for 54 hotspots, including the 37 considered by Sleep (1990) and the 49 considered by Courtillot et al. (2003), using the latest and most accurate data. We are able to calculate swell geometry for a number of hotspots that Sleep was only able to estimate by comparison with other swells. We find that in spite of the increased resolution in global bathymetry models there is significant uncertainty in our calculation of buoyancy fluxes due to differences in our measurement of the swells’ width and height, the integration method (volume integration or cross-sectional area), and the variations of the plate velocities between HS2-Nuvel1a (Gripp and Gordon, 1990) and HS3-Nuvel1a (Gripp and Gordon, 2002). We also note that the buoyancy flux for Pacific hotspots is in general larger than for Eurasian, North American, African and Antarctic hotspots. Considering that buoyancy flux is linearly related to plate velocity, we speculate that either the calculation of buoyancy flux using plate velocity over-estimates the actual vertical flow of material from the deep mantle or that convection in the Pacific hemisphere is more vigorous than the Atlantic hemisphere.

  17. Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch.

    PubMed

    Schoenmakers, Sam; Wassenaar, Evelyne; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2010-06-01

    During male meiotic prophase in mammals, X and Y are in a largely unsynapsed configuration, which is thought to trigger meiotic sex chromosome inactivation (MSCI). In avian species, females are ZW, and males ZZ. Although Z and W in chicken oocytes show complete, largely heterologous synapsis, they too undergo MSCI, albeit only transiently. The W chromosome is already inactive in early meiotic prophase, and inactive chromatin marks may spread on to the Z upon synapsis. Mammalian MSCI is considered as a specialised form of the general meiotic silencing mechanism, named meiotic silencing of unsynapsed chromatin (MSUC). Herein, we studied the avian form of MSUC, by analysing the behaviour of the peculiar germline restricted chromosome (GRC) that is present as a single copy in zebra finch spermatocytes. In the female germline, this chromosome is present in two copies, which normally synapse and recombine. In contrast, during male meiosis, the single GRC is always eliminated. We found that the GRC in the male germline is silenced from early leptotene onwards, similar to the W chromosome in avian oocytes. The GRC remains largely unsynapsed throughout meiotic prophase I, although patches of SYCP1 staining indicate that part of the GRC may self-synapse. In addition, the GRC is largely devoid of meiotic double strand breaks. We observed a lack of the inner centromere protein INCENP on the GRC and elimination of the GRC following metaphase I. Subsequently, the GRC forms a micronucleus in which the DNA is fragmented. We conclude that in contrast to MSUC in mammals, meiotic silencing of this single chromosome in the avian germline occurs prior to, and independent of DNA double strand breaks and chromosome pairing, hence we have named this phenomenon meiotic silencing prior to synapsis (MSPS).

  18. Purification, folding, and characterization of Rec12 (Spo11) meiotic recombinase of fission yeast.

    PubMed

    Wu, Heng; Gao, Jun; Sharif, Wallace D; Davidson, Mari K; Wahls, Wayne P

    2004-11-01

    Meiotic recombination is initiated by controlled dsDNA breaks (DSBs). Rec12 (Spo11) protein of fission yeast is essential for the formation of meiotic DSBs in vivo, for meiotic recombination, and for segregation of chromosomes during meiosis I. Rec12 is orthologous to Top6A topoisomerase of Archaea and is likely the catalytic subunit of a meiotic recombinase that introduces recombinogenic DSBs. However, despite intensive effort, it has not been possible to produce Rec12 protein in a soluble form required to permit biochemical analyses of function. To obtain purified Rec12 protein for in vitro studies, a rec12(+) cDNA was generated, cloned into vector pET15b(+), and expressed in Escherichia coli. Rec12 protein was produced at moderate levels and it partitioned into insoluble fractions of whole-cell extracts. The protein was enriched based upon its differential solubility in two different denaturants and was further purified by column chromatography. A combinatorial, fractional, factorial approach was used to identify conditions under which Rec12 protein could be refolded. Four parameters were most important and, following optimization, soluble Rec12 protein was obtained. Gel filtration demonstrated that refolded Rec12 protein exists as a monomer in solution, suggesting that additional proteins may be required to assemble biologically-active Rec12 dimers, as inferred previously from genetic data [Cell Chromosome 1 (2002) 1]. The production of refolded Rec12 in a soluble form will allow for characterization in vitro of this key meiotic recombination enzyme.

  19. A Western Pacific Hotspot?

    NASA Astrophysics Data System (ADS)

    MacPherson, C. G.; Hall, R.

    2003-04-01

    The petrology of volcanic rocks from the St. Andrew Strait and helium isotope ratios of backarc lavas from the Manus Basin have been used to propose the existence of an active hotspot beneath the eastern Bismarck Sea (Johnson et al., 1978; Macpherson et al., 1998). The past influence of this hotspot can be assessed by mapping its present location onto a plate tectonic reconstruction of the western Pacific (Macpherson and Hall, 2001). During the Middle Eocene the nascent Izu-Bonin-Mariana (IBM) arc lay above the hotspot. The volume of magma emplaced at the IBM arc at that time substantially exceeds the average magma production rate for mature island arcs. Furthermore, the ultramafic (boninitic) character of much of this magmatism requires elevated temperatures. The geochemistry of contemporaneous magmatism in the backarc resembles ocean island basalts and much of the backarc region experienced significant uplift at that time. All of these features can be explained by the influx of hot, buoyant, chemically distinct mantle beneath the IBM and its hinterland. The lithosphere lying above the hotspot during the later Eocene was subsequently subducted. During the Oligo-Miocene the hotspot was traversed by parts of the Caroline Plate where the Euripik Rise is found. This is an aseismic rise that possesses the geophysical characteristics of thickened oceanic crust formed by excess, basaltic magmatism and is the type of structure that would result from the passage of relatively young oceanic lithosphere over a mantle hotspot. Plate reconstruction for the western Pacific predicts a hotspot trail that is consistent with the Middle Eocene and Oligo-Miocene geology of the IBM and Caroline Plates, respectively (Macpherson and Hall, 2001). Parts of the trail have been disrupted by subsequent sea-floor spreading or lost through subduction but the remaining vestiges are consistent with the action of a thermal anomaly throughout much of the Cenozoic. More speculatively, buoyancy

  20. Hotspots in Hindsight

    NASA Astrophysics Data System (ADS)

    Julian, B. R.; Foulger, G. R.; Hatfield, O.; Jackson, S.; Simpson, E.; Einbeck, J.; Moore, A.

    2014-12-01

    Torsvik et al. [2006] suggest that the original locations of large igneous provinces ("LIPs") and kimberlites, and current locations of melting anomalies (hot-spots) lie preferentially above the margins of two Large Lower-Mantle Shear Velocity Provinces" (LLSVPs), at the base of the mantle, and that the correlation has a high significance level (> 99.9999%). They conclude the LLSVP margins are Plume-Generation Zones, and deep-mantle plumes cause hotspots and LIPs. This conclusion raises questions about what physical processes could be responsible, because, for example the LLSVPs are likely dense and not abnormally hot [Trampert et al., 2004]. The supposed LIP-hotspot-LLSVP correlations probably are examples of the "Hindsight Heresy" [Acton, 1959], of basing a statistical test upon the same data sample that led to the initial formulation of a hypothesis. In doing this, many competing hypotheses will have been considered and rejected, but this fact will not be taken into account in statistical assessments. Furthermore, probabilities will be computed for many subsets and combinations of the data, and the best-correlated cases will be cited, but this fact will not be taken into account either. Tests using independent hot-spot catalogs and mantle models suggest that the actual significance levels of the correlations are two or three orders of magnitude smaller than claimed. These tests also show that hot spots correlate well with presumably shallowly rooted features such as spreading plate boundaries. Consideration of the kimberlite dataset in the context of geological setting suggests that their apparent association with the LLSVP margins results from the fact that the Kaapvaal craton, the site of most of the kimberlites considered, lies in Southern Africa. These observations raise questions about the distinction between correlation and causation and underline the necessity to take geological factors into account. Fig: Left: Cumulative distributions of distances from

  1. The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation.

    PubMed

    Robert, T; Nore, A; Brun, C; Maffre, C; Crimi, B; Bourbon, H-M; de Massy, B

    2016-02-26

    Meiotic recombination is induced by the formation of DNA double-strand breaks (DSBs) catalyzed by SPO11, the ortholog of subunit A of TopoVI DNA topoisomerase (TopoVIA). TopoVI activity requires the interaction between A and B subunits. We identified a conserved family of plant and animal proteins [the TOPOVIB-Like (TOPOVIBL) family] that share strong structural similarity to the TopoVIB subunit of TopoVI DNA topoisomerase. We further characterize the meiotic recombination proteins Rec102 (Saccharomyces cerevisiae), Rec6 (Schizosaccharomyces pombe), and MEI-P22 (Drosophila melanogaster) as homologs to the transducer domain of TopoVIB. We demonstrate that the mouse TOPOVIBL protein interacts and forms a complex with SPO11 and is required for meiotic DSB formation. We conclude that meiotic DSBs are catalyzed by a complex involving SPO11 and TOPOVIBL.

  2. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase

    PubMed Central

    Lu, Lin-Yu; Yu, Xiaochun

    2015-01-01

    During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body. PMID:25565522

  3. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase.

    PubMed

    Lu, Lin-Yu; Yu, Xiaochun

    2015-01-01

    During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body.

  4. MEI4 – a central player in the regulation of meiotic DNA double-strand break formation in the mouse.

    PubMed

    Kumar, Rajeev; Ghyselinck, Norbert; Ishiguro, Kei-ichiro; Watanabe, Yoshinori; Kouznetsova, Anna; Höög, Christer; Strong, Edward; Schimenti, John; Daniel, Katrin; Toth, Attila; de Massy, Bernard

    2015-05-01

    The formation of programmed DNA double-strand breaks (DSBs) at the beginning of meiotic prophase marks the initiation of meiotic recombination. Meiotic DSB formation is catalyzed by SPO11 and their repair takes place on meiotic chromosome axes. The evolutionarily conserved MEI4 protein is required for meiotic DSB formation and is localized on chromosome axes. Here, we show that HORMAD1, one of the meiotic chromosome axis components, is required for MEI4 localization. Importantly, the quantitative correlation between the level of axis-associated MEI4 and DSB formation suggests that axis-associated MEI4 could be a limiting factor for DSB formation. We also show that MEI1, REC8 and RAD21L are important for proper MEI4 localization. These findings on MEI4 dynamics during meiotic prophase suggest that the association of MEI4 to chromosome axes is required for DSB formation, and that the loss of this association upon DSB repair could contribute to turning off meiotic DSB formation.

  5. DNA polymerase beta is critical for mouse meiotic synapsis.

    PubMed

    Kidane, Dawit; Jonason, Alan S; Gorton, Timothy S; Mihaylov, Ivailo; Pan, Jing; Keeney, Scott; de Rooij, Dirk G; Ashley, Terry; Keh, Agnes; Liu, Yanfeng; Banerjee, Urmi; Zelterman, Daniel; Sweasy, Joann B

    2010-01-20

    We have shown earlier that DNA polymerase beta (Pol beta) localizes to the synaptonemal complex (SC) during Prophase I of meiosis in mice. Pol beta localizes to synapsed axes during zygonema and pachynema, and it associates with the ends of bivalents during late pachynema and diplonema. To test whether these localization patterns reflect a function for Pol beta in recombination and/or synapsis, we used conditional gene targeting to delete the PolB gene from germ cells. We find that Pol beta-deficient spermatocytes are defective in meiotic chromosome synapsis and undergo apoptosis during Prophase I. We also find that SPO11-dependent gammaH2AX persists on meiotic chromatin, indicating that Pol beta is critical for the repair of SPO11-induced double-strand breaks (DSBs). Pol beta-deficient spermatocytes yielded reduced steady-state levels of the SPO11-oligonucleotide complexes that are formed when SPO11 is removed from the ends of DSBs, and cytological experiments revealed that chromosome-associated foci of replication protein A (RPA), RAD51 and DMC1 are less abundant in Pol beta-deficient spermatocyte nuclei. Localization of Pol beta to meiotic chromosomes requires the formation of SPO11-dependent DSBs. Taken together, these findings strongly indicate that Pol beta is required at a very early step in the processing of meiotic DSBs, at or before the removal of SPO11 from DSB ends and the generation of the 3' single-stranded tails necessary for subsequent strand exchange. The chromosome synapsis defects and Prophase I apoptosis of Pol beta-deficient spermatocytes are likely a direct consequence of these recombination defects.

  6. Meiotic functions of RAD18.

    PubMed

    Inagaki, Akiko; Sleddens-Linkels, Esther; Wassenaar, Evelyne; Ooms, Marja; van Cappellen, Wiggert A; Hoeijmakers, Jan H J; Seibler, Jost; Vogt, Thomas F; Shin, Myung K; Grootegoed, J Anton; Baarends, Willy M

    2011-08-15

    RAD18 is an ubiquitin ligase that is involved in replication damage bypass and DNA double-strand break (DSB) repair processes in mitotic cells. Here, we investigated the testicular phenotype of Rad18-knockdown mice to determine the function of RAD18 in meiosis, and in particular, in the repair of meiotic DSBs induced by the meiosis-specific topoisomerase-like enzyme SPO11. We found that RAD18 is recruited to a specific subfraction of persistent meiotic DSBs. In addition, RAD18 is recruited to the chromatin of the XY chromosome pair, which forms the transcriptionally silent XY body. At the XY body, RAD18 mediates the chromatin association of its interaction partners, the ubiquitin-conjugating enzymes HR6A and HR6B. Moreover, RAD18 was found to regulate the level of dimethylation of histone H3 at Lys4 and maintain meiotic sex chromosome inactivation, in a manner similar to that previously observed for HR6B. Finally, we show that RAD18 and HR6B have a role in the efficient repair of a small subset of meiotic DSBs.

  7. A Western Pacific Hotspot?

    NASA Astrophysics Data System (ADS)

    MacPherson, C. G.; Hall, R.

    2002-12-01

    The petrology of volcanic rocks from the St. Andrew Strait and helium isotope ratios of backarc lavas from the Manus Basin have been used to propose the existence of an active hotspot beneath the eastern Bismarck Sea [1,2]. The possible influence of this hotspot can be assessed by mapping its present location onto a plate tectonic reconstruction of the western Pacific [3,4]. During the Middle Eocene the nascent Izu-Bonin-Mariana (IBM) arc lay above the hotspot. The volume of magma emplaced at the IBM arc at that time substantially exceeds the average magma production rate for mature island arcs. Furthermore, the ultramafic (boninitic) character of much of this magmatism requires elevated temperatures in the mantle. The geochemistry of contemporaneous magmatism in the backarc resembles melts usually found at ocean islands and much of the backarc region experienced significant uplift at that time. All of these features can be explained by the influx of hot, buoyant, chemically distinct mantle beneath the IBM and its hinterland. The plates lying above the hotspot during the later Eocene were subsequently subducted, but plate reconstruction suggests that during the Oligo-Miocene it was crossed by parts of the Caroline Plate where the Euripik Rise is found. This is an aseismic rise that possesses the geophysical characteristics of thickened oceanic crust formed by excess, basaltic magmatism and is the type of structure that would result from the passage of relatively young oceanic lithosphere over a mantle hotspot. Plate reconstruction for the western Pacific predicts a hotspot trail that is consistent with the Middle Eocene and Oligo-Miocene geology of the IBM and Caroline Plates, respectively. Parts of the trail have been disrupted by subsequent sea-floor spreading or lost through subduction but the remaining vestiges are consistent with the action of a thermal anomaly throughout much of the Cenozoic. More speculatively, the difference in buoyancy between the IBM

  8. The fission yeast meiotic checkpoint kinase Mek1 regulates nuclear localization of Cdc25 by phosphorylation.

    PubMed

    Pérez-Hidalgo, Livia; Moreno, Sergio; San-Segundo, Pedro A

    2008-12-01

    In eukaryotic cells, fidelity in transmission of genetic information during cell division is ensured by the action of cell cycle checkpoints. Checkpoints are surveillance mechanisms that arrest or delay cell cycle progression when critical cellular processes are defective or when the genome is damaged. During meiosis, the so-called meiotic recombination checkpoint blocks entry into meiosis I until recombination has been completed, thus avoiding aberrant chromosome segregation and the formation of aneuploid gametes. One of the key components of the meiotic recombination checkpoint is the meiosis-specific Mek1 kinase, which belongs to the family of Rad53/Cds1/Chk2 checkpoint kinases containing forkhead-associated domains. In fission yeast, several lines of evidence suggest that Mek1 targets the critical cell cycle regulator Cdc25 to delay meiotic cell cycle progression. Here, we investigate in more detail the molecular mechanism of action of the fission yeast Mek1 protein. We demonstrate that Mek1 acts independently of Cds1 to phosphorylate Cdc25, and this phosphorylation is required to trigger cell cycle arrest. Using ectopic overexpression of mek1(+) as a tool to induce in vivo activation of Mek1, we find that Mek1 promotes cytoplasmic accumulation of Cdc25 and results in prolonged phosphorylation of Cdc2 at tyrosine 15. We propose that at least one of the mechanisms contributing to the cell cycle delay when the meiotic recombination checkpoint is activated in fission yeast is the nuclear exclusion of the Cdc25 phosphatase by Mek1-dependent phosphorylation.

  9. Identification of novel Drosophila meiotic genes recovered in a P-element screen.

    PubMed

    Sekelsky, J J; McKim, K S; Messina, L; French, R L; Hurley, W D; Arbel, T; Chin, G M; Deneen, B; Force, S J; Hari, K L; Jang, J K; Laurençon, A C; Madden, L D; Matthies, H J; Milliken, D B; Page, S L; Ring, A D; Wayson, S M; Zimmerman, C C; Hawley, R S

    1999-06-01

    The segregation of homologous chromosomes from one another is the essence of meiosis. In many organisms, accurate segregation is ensured by the formation of chiasmata resulting from crossing over. Drosophila melanogaster females use this type of recombination-based system, but they also have mechanisms for segregating achiasmate chromosomes with high fidelity. We describe a P-element mutagenesis and screen in a sensitized genetic background to detect mutations that impair meiotic chromosome pairing, recombination, or segregation. Our screen identified two new recombination-deficient mutations: mei-P22, which fully eliminates meiotic recombination, and mei-P26, which decreases meiotic exchange by 70% in a polar fashion. We also recovered an unusual allele of the ncd gene, whose wild-type product is required for proper structure and function of the meiotic spindle. However, the screen yielded primarily mutants specifically defective in the segregation of achiasmate chromosomes. Although most of these are alleles of previously undescribed genes, five were in the known genes alphaTubulin67C, CycE, push, and Trl. The five mutations in known genes produce novel phenotypes for those genes.

  10. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples.

    PubMed

    Kabir, Muhammad; Hayat, Maqsood

    2016-02-01

    Meiotic recombination is vital for maintaining the sequence diversity in human genome. Meiosis and recombination are considered the essential phases of cell division. In meiosis, the genome is divided into equal parts for sexual reproduction whereas in recombination, the diverse genomes are combined to form new combination of genetic variations. Recombination process does not occur randomly across the genomes, it targets specific areas called recombination "hotspots" and "coldspots". Owing to huge exploration of polygenetic sequences in data banks, it is impossible to recognize the sequences through conventional methods. Looking at the significance of recombination spots, it is indispensable to develop an accurate, fast, robust, and high-throughput automated computational model. In this model, the numerical descriptors are extracted using two sequence representation schemes namely: dinucleotide composition and trinucleotide composition. The performances of seven classification algorithms were investigated. Finally, the predicted outcomes of individual classifiers are fused to form ensemble classification, which is formed through majority voting and genetic algorithm (GA). The performance of GA-based ensemble model is quite promising compared to individual classifiers and majority voting-based ensemble model. iRSpot-GAEnsC has achieved 84.46 % accuracy. The empirical results revealed that the performance of iRSpot-GAEnsC is not only higher than the examined algorithms but also better than existing methods in the literature developed so far. It is anticipated that the proposed model might be helpful for research community, academia and for drug discovery.

  11. A large-scale screen in S. pombe identifies seven novel genes required for critical meiotic events

    PubMed Central

    Martín-Castellanos, Cristina; Blanco, Miguel; Rozalén, Ana E.; Pérez-Hidalgo, Livia; García, Ana I.; Conde, Francisco; Mata, Juan; Ellermeier, Chad; Davis, Luther; San-Segundo, Pedro; Smith, Gerald R.; Moreno, Sergio

    2009-01-01

    Summary Meiosis is a specialized form of cell division by which sexually reproducing diploid organisms generate haploid gametes. During a long prophase, telomeres cluster into the bouquet configuration to aid chromosome pairing, and DNA replication is followed by high levels of recombination between homologous chromosomes (homologs). This recombination is important for the reductional segregation of homologs at the first meiotic division; without further replication a second meiotic division yields haploid nuclei. In the fission yeast Schizosaccharomyces pombe we have deleted 175 meiotically upregulated genes and found seven genes not previously reported to be critical for meiotic events. Three mutants (rec24, rec25, and rec27) had strongly reduced meiosis-specific DNA double-strand breakage and recombination. One mutant (tht2) was deficient in karyogamy, and two (bqt1 and bqt2) in telomere clustering, explaining their defects in recombination and segregation. The moa1 mutant was delayed in premeiotic S-phase progression and nuclear divisions. Further analysis of these mutants will help elucidate the complex machinery governing the special behavior of meiotic chromosomes. PMID:16303567

  12. A large-scale screen in S. pombe identifies seven novel genes required for critical meiotic events.

    PubMed

    Martín-Castellanos, Cristina; Blanco, Miguel; Rozalén, Ana E; Pérez-Hidalgo, Livia; García, Ana I; Conde, Francisco; Mata, Juan; Ellermeier, Chad; Davis, Luther; San-Segundo, Pedro; Smith, Gerald R; Moreno, Sergio

    2005-11-22

    Meiosis is a specialized form of cell division by which sexually reproducing diploid organisms generate haploid gametes. During a long prophase, telomeres cluster into the bouquet configuration to aid chromosome pairing, and DNA replication is followed by high levels of recombination between homologous chromosomes (homologs). This recombination is important for the reductional segregation of homologs at the first meiotic division; without further replication, a second meiotic division yields haploid nuclei. In the fission yeast Schizosaccharomyces pombe, we have deleted 175 meiotically upregulated genes and found seven genes not previously reported to be critical for meiotic events. Three mutants (rec24, rec25, and rec27) had strongly reduced meiosis-specific DNA double-strand breakage and recombination. One mutant (tht2) was deficient in karyogamy, and two (bqt1 and bqt2) were deficient in telomere clustering, explaining their defects in recombination and segregation. The moa1 mutant was delayed in premeiotic S phase progression and nuclear divisions. Further analysis of these mutants will help elucidate the complex machinery governing the special behavior of meiotic chromosomes.

  13. Evolutionary conservation of meiotic DSB proteins: more than just Spo11.

    PubMed

    Cole, Francesca; Keeney, Scott; Jasin, Maria

    2010-06-15

    Meiotic recombination is initiated by programmed DNA double-strand breaks (DSBs) generated by the Spo11 protein. In budding yeast, five other meiotic-specific proteins are also required for DSB formation, but, with rare exception, orthologs had not been identified in other species. In this issue of Genes & Development, Kumar and colleagues (pp. 1266-1280) used a phylogenomic approach to identify two of these proteins across multiple clades, and confirmed that one of these, MEI4, is a functional ortholog in mouse.

  14. Altered cohesin gene dosage affects Mammalian meiotic chromosome structure and behavior.

    PubMed

    Murdoch, Brenda; Owen, Nichole; Stevense, Michelle; Smith, Helen; Nagaoka, So; Hassold, Terry; McKay, Michael; Xu, Huiling; Fu, Jun; Revenkova, Ekaterina; Jessberger, Rolf; Hunt, Patricia

    2013-01-01

    Based on studies in mice and humans, cohesin loss from chromosomes during the period of protracted meiotic arrest appears to play a major role in chromosome segregation errors during female meiosis. In mice, mutations in meiosis-specific cohesin genes cause meiotic disturbances and infertility. However, the more clinically relevant situation, heterozygosity for mutations in these genes, has not been evaluated. We report here evidence from the mouse that partial loss of gene function for either Smc1b or Rec8 causes perturbations in the formation of the synaptonemal complex (SC) and affects both synapsis and recombination between homologs during meiotic prophase. Importantly, these defects increase the frequency of chromosomally abnormal eggs in the adult female. These findings have important implications for humans: they suggest that women who carry mutations or variants that affect cohesin function have an elevated risk of aneuploid pregnancies and may even be at increased risk of transmitting structural chromosome abnormalities.

  15. Processing of meiotic DNA double strand breaks requires cyclin-dependent kinase and multiple nucleases.

    PubMed

    Manfrini, Nicola; Guerini, Ilaria; Citterio, Andrea; Lucchini, Giovanna; Longhese, Maria Pia

    2010-04-09

    Meiotic recombination requires the formation of programmed Spo11-dependent DNA double strand breaks (DSBs). In Saccharomyces cerevisiae, the Sae2 protein and the Mre11-Rad50-Xrs2 complex are necessary to remove the covalently attached Spo11 protein from the DNA ends, which are then resected by so far unknown nucleases. Here, we demonstrate that phosphorylation of Sae2 Ser-267 by cyclin-dependent kinase 1 (Cdk1) is required to initiate meiotic DSB resection by allowing Spo11 removal from DSB ends. This finding suggests that Cdk1 activity is required for the processing of Spo11-induced DSBs, thus providing a mechanism for coordinating DSB resection with progression through meiotic prophase. Furthermore, the helicase Sgs1 and the nucleases Exo1 and Dna2 participate in lengthening the 5'-3' resection tracts during meiosis by controlling a step subsequent to Spo11 removal.

  16. Backcrossing to increase meiotic stability in triticale.

    PubMed

    Giacomin, R M; Assis, R; Brammer, S P; Nascimento Junior, A; Da-Silva, P R

    2015-09-22

    Triticale (X Triticosecale Wittmack) is an intergeneric hybrid derived from a cross between wheat and rye. As a newly created allopolyploid, the plant shows instabilities during the meiotic process, which may result in the loss of fertility. This genomic instability has hindered the success of triticale-breeding programs. Therefore, strategies should be developed to obtain stable triticale lines for use in breeding. In some species, backcrossing has been effective in increasing the meiotic stability of lineages. To assess whether backcrossing has the same effect in triticale, indices of meiotic abnormalities, meiotic index, and pollen viability were determined in genotypes from multiple generations of triticale (P1, P2, F1, F2, BC1a, and BC1b). All analyzed genotypes exhibited instability during meiosis, and their meiotic index values were all lower than normal. However, the backcrosses BC1a and BC1b showed the lowest mean meiotic abnormalities and the highest meiotic indices, demonstrating higher stability. All genotypes showed a high rate of pollen viability, with the backcrosses BC1a and BC1b again exhibiting the best values. Statistical analyses confirmed that backcrossing positively affects the meiotic stability of triticale. Our results show that backcrossing should be considered by breeders aiming to obtain triticale lines with improved genomic stability.

  17. Meiotic chromosome mobility in fission yeast is resistant to environmental stress

    PubMed Central

    Illner, Doris; Lorenz, Alexander; Scherthan, Harry

    2016-01-01

    The formation of healthy gametes requires pairing of homologous chromosomes (homologs) as a prerequisite for their correct segregation during meiosis. Initially, homolog alignment is promoted by meiotic chromosome movements feeding into intimate homolog pairing by homologous recombination and/or synaptonemal complex formation. Meiotic chromosome movements in the fission yeast, Schizosaccharomyces pombe, depend on astral microtubule dynamics that drag the nucleus through the zygote; known as horsetail movement. The response of microtubule-led meiotic chromosome movements to environmental stresses such as ionizing irradiation (IR) and associated reactive oxygen species (ROS) is not known. Here, we show that, in contrast to budding yeast, the horsetail movement is largely radiation-resistant, which is likely mediated by a potent antioxidant defense. IR exposure of sporulating S. pombe cells induced misrepair and irreparable DNA double strand breaks causing chromosome fragmentation, missegregation and gamete death. Comparing radiation outcome in fission and budding yeast, and studying meiosis with poisoned microtubules indicates that the increased gamete death after IR is innate to fission yeast. Inhibition of meiotic chromosome mobility in the face of IR failed to influence the course of DSB repair, indicating that paralysis of meiotic chromosome mobility in a genotoxic environment is not a universal response among species. PMID:27074839

  18. Predictive Models of Recombination Rate Variation across the Drosophila melanogaster Genome

    PubMed Central

    Adrian, Andrew B.; Corchado, Johnny Cruz; Comeron, Josep M.

    2016-01-01

    In all eukaryotic species examined, meiotic recombination, and crossovers in particular, occur non‐randomly along chromosomes. The cause for this non-random distribution remains poorly understood but some specific DNA sequence motifs have been shown to be enriched near crossover hotspots in a number of species. We present analyses using machine learning algorithms to investigate whether DNA motif distribution across the genome can be used to predict crossover variation in Drosophila melanogaster, a species without hotspots. Our study exposes a combinatorial non-linear influence of motif presence able to account for a significant fraction of the genome-wide variation in crossover rates at all genomic scales investigated, from 20% at 5-kb to almost 70% at 2,500-kb scale. The models are particularly predictive for regions with the highest and lowest crossover rates and remain highly informative after removing sub-telomeric and -centromeric regions known to have strongly reduced crossover rates. Transcriptional activity during early meiosis and differences in motif use between autosomes and the X chromosome add to the predictive power of the models. Moreover, we show that population-specific differences in crossover rates can be partly explained by differences in motif presence. Our results suggest that crossover distribution in Drosophila is influenced by both meiosis-specific chromatin dynamics and very local constitutive open chromatin associated with DNA motifs that prevent nucleosome stabilization. These findings provide new information on the genetic factors influencing variation in recombination rates and a baseline to study epigenetic mechanisms responsible for plastic recombination as response to different biotic and abiotic conditions and stresses. PMID:27492232

  19. Ionizing irradiation-induced radical stress stalls live meiotic chromosome movements by altering the actin cytoskeleton

    PubMed Central

    Illner, Doris; Scherthan, Harry

    2013-01-01

    Meiosis generates haploid cells or spores for sexual reproduction. As a prelude to haploidization, homologous chromosomes pair and recombine to undergo segregation during the first meiotic division. During the entire meiotic prophase of the yeast Saccharomyces cerevisiae, chromosomes perform rapid movements that are suspected to contribute to the regulation of recombination. Here, we investigated the impact of ionizing radiation (IR) on movements of GFP–tagged bivalents in live pachytene cells. We find that exposure of sporulating cultures with >40 Gy (4-krad) X-rays stalls pachytene chromosome movements. This identifies a previously undescribed acute radiation response in yeast meiosis, which contrasts with its reported radioresistance of up to 1,000 Gy in survival assays. A modified 3′-end labeling assay disclosed IR-induced dsDNA breaks (DSBs) in pachytene cells at a linear dose relationship of one IR-induced DSB per cell per 5 Gy. Dihydroethidium staining revealed formation of reactive oxygen species (ROS) in irradiated cells. Immobility of fuzzy-appearing irradiated bivalents was rescued by addition of radical scavengers. Hydrogen peroxide-induced ROS did reduce bivalent mobility similar to 40 Gy X IR, while they failed to induce DSBs. IR- and H2O2-induced ROS were found to decompose actin cables that are driving meiotic chromosome mobility, an effect that could be rescued by antioxidant treatment. Hence, it appears that the meiotic actin cytoskeleton is a radical-sensitive system that inhibits bivalent movements in response to IR- and oxidant-induced ROS. This may be important to prevent motility-driven unfavorable chromosome interactions when meiotic recombination has to proceed in genotoxic environments. PMID:24046368

  20. Theory of meiotic spindle assembly

    NASA Astrophysics Data System (ADS)

    Furthauer, Sebastian; Foster, Peter; Needleman, Daniel; Shelley, Michael

    2016-11-01

    The meiotic spindle is a biological structure that self assembles from the intracellular medium to separate chromosomes during meiosis. It consists of filamentous microtubule (MT) proteins that interact through the fluid in which they are suspended and via the associated molecules that orchestrate their behavior. We aim to understand how the interplay between fluid medium, MTs, and regulatory proteins allows this material to self-organize into the spindle's highly stereotyped shape. To this end we develop a continuum model that treats the spindle as an active liquid crystal with MT turnover. In this active material, molecular motors, such as dyneins which collect MT minus ends and kinesins which slide MTs past each other, generate active fluid and material stresses. Moreover nucleator proteins that are advected with and transported along MTs control the nucleation and depolymerization of MTs. This theory captures the growth process of meiotic spindles, their shapes, and the essential features of many perturbation experiments. It thus provides a framework to think about the physics of this complex biological suspension.

  1. Gene expression profiles of Spo11-/- mouse testes with spermatocytes arrested in meiotic prophase I.

    PubMed

    Smirnova, Natalya A; Romanienko, Peter J; Khil, Pavel P; Camerini-Otero, R Daniel

    2006-07-01

    Spo11, a meiosis-specific protein, introduces double-strand breaks on chromosomal DNA and initiates meiotic recombination in a wide variety of organisms. Mouse null Spo11 spermatocytes fail to synapse chromosomes and progress beyond the zygotene stage of meiosis. We analyzed gene expression profiles in Spo11(-/ -)adult and juvenile wild-type testis to describe genes expressed before and after the meiotic arrest resulting from the knocking out of Spo11. These genes were characterized using the Gene Ontology data base. To focus on genes involved in meiosis, we performed comparative gene expression analysis of Spo11(-/ -)and wild-type testes from 15-day mice, when spermatocytes have just entered pachytene. We found that the knockout of Spo11 causes dramatic changes in the level of expression of genes that participate in meiotic recombination (Hop2, Brca2, Mnd1, FancG) and in the meiotic checkpoint (cyclin B2, Cks2), but does not affect genes encoding protein components of the synaptonemal complex. Finally, we discovered unknown genes that are affected by the disruption of the Spo11 gene and therefore may be specifically involved in meiosis and spermatogenesis.

  2. SSP1, a gene necessary for proper completion of meiotic divisions and spore formation in Saccharomyces cerevisiae.

    PubMed Central

    Nag, D K; Koonce, M P; Axelrod, J

    1997-01-01

    During meiosis, a diploid cell undergoes two rounds of nuclear division following one round of DNA replication to produce four haploid gametes. In yeast, haploid meiotic products are packaged into spores. To gain new insights into meiotic development and spore formation, we followed differential expression of genes in meiotic versus vegetatively growing cells in the yeast Saccharomyces cerevisiae. Our results indicate that there are at least five different classes of transcripts representing genes expressed at different stages of the sporulation program. Here we describe one of these differentially expressed genes, SSP1, which plays an essential role in meiosis and spore formation. SSP1 is expressed midway through meiosis, and homozygous ssp1 diploid cells fail to sporulate. In the ssp1 mutant, meiotic recombination is normal but viability declines rapidly. Both meiotic divisions occur at the normal time; however, the fraction of cells completing meiosis is significantly reduced, and nuclei become fragmented soon after meiosis II. The ssp1 defect does not appear to be related to a microtubule-cytoskeletal-dependent event and is independent of two rounds of chromosome segregation. The data suggest that Ssp1 is likely to function in a pathway that controls meiotic nuclear divisions and coordinates meiosis and spore formation. PMID:9372934

  3. Measuring Meiotic Crossovers via Multi-Locus Genotyping of Single Pollen Grains in Barley.

    PubMed

    Dreissig, Steven; Fuchs, Jörg; Cápal, Petr; Kettles, Nicola; Byrne, Ed; Houben, Andreas

    2015-01-01

    The detection of meiotic crossovers in crop plants currently relies on scoring DNA markers in a segregating population or cytological visualization. We investigated the feasibility of using flow-sorted haploid nuclei, Phi29 DNA polymerase-based whole-genome-amplification (WGA) and multi-locus KASP-genotyping to measure meiotic crossovers in individual barley pollen grains. To demonstrate the proof of concept, we used 24 gene-based physically mapped single nucleotide polymorphisms to genotype the WGA products of 50 single pollen nuclei. The number of crossovers per chromosome, recombination frequencies along chromosome 3H and segregation distortion were analysed and compared to a doubled haploid (DH) population of the same genotype. The number of crossovers and chromosome wide recombination frequencies show that this approach is able to produce results that resemble those obtained from other methods in a biologically meaningful way. Only the segregation distortion was found to be lower in the pollen population than in DH plants.

  4. Meiotic exchange and segregation in female mice heterozygous for paracentric inversions.

    PubMed Central

    Koehler, Kara E; Millie, Elise A; Cherry, Jonathan P; Schrump, Stefanie E; Hassold, Terry J

    2004-01-01

    Inversion heterozygosity has long been noted for its ability to suppress the transmission of recombinant chromosomes, as well as for altering the frequency and location of recombination events. In our search for meiotic situations with enrichment for nonexchange and/or single distal-exchange chromosome pairs, exchange configurations that are at higher risk for nondisjunction in humans and other organisms, we examined both exchange and segregation patterns in 2728 oocytes from mice heterozygous for paracentric inversions, as well as controls. We found dramatic alterations in exchange position in the heterozygotes, including an increased frequency of distal exchanges for two of the inversions studied. However, nondisjunction was not significantly increased in oocytes heterozygous for any inversion. When data from all inversion heterozygotes were pooled, meiotic nondisjunction was slightly but significantly higher in inversion heterozygotes (1.2%) than in controls (0%), although the frequency was still too low to justify the use of inversion heterozygotes as a model of human nondisjunction. PMID:15082541

  5. Nondisjunction of chromosome 15: origin and recombination.

    PubMed Central

    Robinson, W P; Bernasconi, F; Mutirangura, A; Ledbetter, D H; Langlois, S; Malcolm, S; Morris, M A; Schinzel, A A

    1993-01-01

    Thirty-two cases of uniparental disomy (UPD), ascertained from Prader-Willi syndrome patients (N = 27) and Angelman syndrome patients (N = 5), are used to investigate the pattern of recombination associated with nondisjunction of chromosome 15. In addition, the meiotic stage of nondisjunction is inferred by using markers mapping near the centromere. Two basic approaches to the analysis of recombination are utilized. Standard methods of centromere mapping are employed to determine the level of recombination in specific pairwise intervals along the chromosome. This method shows a significant reduction in recombination for two of five intervals examined. Second, the observed frequency of each recombinant class (i.e., zero, one, two, three, or more observable crossovers) is compared with expected values. This is useful for testing whether the reduction in recombination can be attributed solely to a proportion of cases with no recombination at all (because of asynapsis), with the remaining groups showing normal recombination (or even excess recombination), or whether recombination is uniformly reduced. Analysis of maternal UPD(15) data shows a slight reduction in the multiple-recombinant classes, with a corresponding increase in both the zero- and one-recombinant classes over expected values. The majority, more than 82%, of the extra chromosomes in maternal UPD(15) cases are due to meiotic I nondisjunction events. In contrast, most paternal UPD(15) cases so far examined appear to have a postzygotic origin of the extra paternal chromosome. PMID:8352279

  6. Meiotic behaviour of individual chromosomes in allotriploid Alstroemeria hybrids.

    PubMed

    Kamstra, S A; de Jong, J H; Jacobsen, E; Ramanna, M S; Kuipers, A G J

    2004-07-01

    Chromosome association and chiasma formation were studied in pollen mother cells at metaphase I of four allotriplod BC1 plants (2n=3x=24) obtained from the backcross of the hybrid Alstroemeria aurea x A. inodora with its parent A. inodora. We distinguished the chromosomes of both parental species by genomic in situ hybridization (GISH), whereas the individual chromosomes were identified on the basis of their multicolour FISH banding patterns obtained after a second hybridization with two species-specific satellite repeats as probes. All the four BC1 plants possessed two genomes of A. inodora and one of A. aurea. Variable numbers of recombinant chromosomes, resulting from meiotic recombination in the interspecific hybrid, were present in these plants. The homologous A. inodora chromosomes generally formed bivalents, leaving the homoeologous A. aurea chromosomes unassociated. High frequencies of trivalents were observed for the chromosome sets that contained recombinant chromosomes, even when the recombinant segments were small. Chromosome associations in the trivalents were restricted to homologous segments. The implications of the absence of homoeologous chromosome pairing on gamete constitution and prospects for introgression in Alstroemeria are discussed.

  7. Yellowstone Hotspot Geodynamics

    NASA Astrophysics Data System (ADS)

    Smith, R. B.; Farrell, J.; Massin, F.; Chang, W.; Puskas, C. M.; Steinberger, B. M.; Husen, S.

    2012-12-01

    The Yellowstone hotspot results from the interaction of a mantle plume with the overriding N. America plate producing a ~300-m high topographic swell centered on the Late Quaternary Yellowstone volcanic field. The Yellowstone area is dominated by earthquake swarms including a deadly M7.3 earthquake, extraordinary high heat flow up to ~40,000 mWm-2, and unprecedented episodes of crustal deformation. Seismic tomography and gravity data reveal a crustal magma reservoir, 6 to 15 km deep beneath the Yellowstone caldera but extending laterally ~20 km NE of the caldera and is ~30% larger than previously hypothesized. Kinematically, deformation of Yellowstone is dominated by regional crustal extension at up to ~0.4 cm/yr but with superimposed decadal-scale uplift and subsidence episodes, averaging ~2 cm/yr from 1923. From 2004 to 2009 Yellowstone experienced an accelerated uplift episode of up to 7 cm/yr whose source is modeled as magmatic recharge of a sill at the top of the crustal magma reservoir at 8-10-km depth. New mantle tomography suggest that Yellowstone volcanism is fed by an upper-mantle plume-shaped low velocity body that is composed of melt "blobs", extending from 80 km to 650 km in depth, tilting 60° NW, but then reversing tilt to ~60° SE to a depth of ~1500 km. Moreover, images of upper mantle conductivity from inversion of MT data reveal a high conductivity annulus around the north side of the plume in the upper mantle to resolved depths of ~300 km. On a larger scale, upper mantle flow beneath the western U.S. is characterized by eastward flow beneath Yellowstone at 5 cm/yr that deflects the plume to the west, and is underlain by a deeper zone of westerly return flow in the lower mantle reversing the deflection of the plume body to the SE. Dynamic modeling of the Yellowstone plume including a +15 m geoid anomaly reveals low excess plume temperatures, up to 150°K, consistent with a weak buoyancy flux of ~0.25 Mg/s. Integrated kinematic modeling of GPS

  8. A meiotic linkage map of the silver fox, aligned and compared to the canine genome.

    PubMed

    Kukekova, Anna V; Trut, Lyudmila N; Oskina, Irina N; Johnson, Jennifer L; Temnykh, Svetlana V; Kharlamova, Anastasiya V; Shepeleva, Darya V; Gulievich, Rimma G; Shikhevich, Svetlana G; Graphodatsky, Alexander S; Aguirre, Gustavo D; Acland, Gregory M

    2007-03-01

    A meiotic linkage map is essential for mapping traits of interest and is often the first step toward understanding a cryptic genome. Specific strains of silver fox (a variant of the red fox, Vulpes vulpes), which segregate behavioral and morphological phenotypes, create a need for such a map. One such strain, selected for docility, exhibits friendly dog-like responses to humans, in contrast to another strain selected for aggression. Development of a fox map is facilitated by the known cytogenetic homologies between the dog and fox, and by the availability of high resolution canine genome maps and sequence data. Furthermore, the high genomic sequence identity between dog and fox allows adaptation of canine microsatellites for genotyping and meiotic mapping in foxes. Using 320 such markers, we have constructed the first meiotic linkage map of the fox genome. The resulting sex-averaged map covers 16 fox autosomes and the X chromosome with an average inter-marker distance of 7.5 cM. The total map length corresponds to 1480.2 cM. From comparison of sex-averaged meiotic linkage maps of the fox and dog genomes, suppression of recombination in pericentromeric regions of the metacentric fox chromosomes was apparent, relative to the corresponding segments of acrocentric dog chromosomes. Alignment of the fox meiotic map against the 7.6x canine genome sequence revealed high conservation of marker order between homologous regions of the two species. The fox meiotic map provides a critical tool for genetic studies in foxes and identification of genetic loci and genes implicated in fox domestication.

  9. Variation in Recombination Rate: Adaptive or Not?

    PubMed

    Ritz, Kathryn R; Noor, Mohamed A F; Singh, Nadia D

    2017-03-27

    Rates of meiotic recombination are widely variable both within and among species. However, the functional significance of this variation remains largely unknown. Is the observed within-species variation in recombination rate adaptive? Recent work has revealed new insight into the scale and scope of population-level variation in recombination rate. These data indicate that the magnitude of within-population variation in recombination is similar among taxa. The apparent similarity of the variance in recombination rate among individuals between distantly related species suggests that the relative costs and benefits of recombination that establish the upper and lower bounds may be similar across species. Here we review the current data on intraspecific variation in recombination rate and discuss the molecular and evolutionary costs and benefits of recombination frequency. We place this variation in the context of adaptation and highlight the need for more empirical studies focused on the adaptive value of variation in recombination rate.

  10. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    PubMed

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.

  11. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling

    PubMed Central

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  12. Inventory and Phylogenetic Analysis of Meiotic Genes in Monogonont Rotifers

    PubMed Central

    2013-01-01

    A long-standing question in evolutionary biology is how sexual reproduction has persisted in eukaryotic lineages. As cyclical parthenogens, monogonont rotifers are a powerful model for examining this question, yet the molecular nature of sexual reproduction in this lineage is currently understudied. To examine genes involved in meiosis, we generated partial genome assemblies for 2 distantly related monogonont species, Brachionus calyciflorus and B. manjavacas. Here we present an inventory of 89 meiotic genes, of which 80 homologs were identified and annotated from these assemblies. Using phylogenetic analysis, we show that several meiotic genes have undergone relatively recent duplication events that appear to be specific to the monogonont lineage. Further, we compare the expression of “meiosis-specific” genes involved in recombination and all annotated copies of the cell cycle regulatory gene CDC20 between obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of B. calyciflorus. We show that “meiosis-specific” genes are expressed in both CP and OP strains, whereas the expression of one of the CDC20 genes is specific to cyclical parthenogenesis. The data presented here provide insights into mechanisms of cyclical parthenogenesis and establish expectations for studies of obligate asexual relatives of monogononts, the bdelloid rotifer lineage. PMID:23487324

  13. Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery.

    PubMed

    Carballo, Jesús A; Panizza, Silvia; Serrentino, Maria Elisabetta; Johnson, Anthony L; Geymonat, Marco; Borde, Valérie; Klein, Franz; Cha, Rita S

    2013-06-01

    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks.

  14. Nondisjunction of chromosome 15: Origin and recombination

    SciTech Connect

    Robinson, W.P.; Bernasconi, F.; Schinzel, A.A.; Mutirangura, A.; Ledbetter, D.H. ); Langlois, S. ); Morris, M.A.; Malcolm, S.

    1993-09-01

    Thirty-two cases of uniparental disomy (UPD), ascertained from Prader-Willi syndrome patients (N=27) and Angelman syndrome patients (N-5), are used to investigate the pattern of recombination associated with nondisjunction of chromosome 15. In addition, the meiotic stage of nondisjunction is inferred by using markers mapping near the centromere. Two basic approaches to the analysis of recombination in specific pairwise intervals along the chromosome. This method shows a significant reduction in recombination for two of five intervals examined. Second, the observed frequency of each recombinant class (i.e., zero, one, two, three, or more observable crossovers) is compared with expected values. This is useful for testing whether the reduction in recombination can be attributed solely to a proportion of cases with no recombination at all (because of asynapsis), with the remaining groups showing normal recombination (or even excess recombination), or whether recombination is uniformly reduced. Analysis of maternal UPD(15) data shows a slight reduction in the multiple-recombinant classes, with a corresponding increase in both the zero- and one-recombinant classes over expected values. The majority, more than 82%, of the extra chromosomes in maternal UPD(15) cases are due to meiotic I nondisjunction events. In contrast, more paternal UPD(15) cases so far examined appear to have a postzygotic origin of the extra paternal chromosome. 33 refs., 1 fig., 7 tabs.

  15. Presence of an extra chromosome alters meiotic double-stranded break repair dynamics and MLH1 foci distribution in human oocytes.

    PubMed

    Robles, P; Roig, I; Garcia, R; Brieño-Enríquez, M; Martin, M; Cabero, Ll; Toran, N; Garcia Caldés, M

    2013-03-01

    Studies performed on human trisomic 21 oocytes have revealed that during meiosis, the three homologues 21 synapse and, in some cases, achieve what looks like a trivalent. This implies that meiotic recombination takes place among the three homologous chromosomes 21, and to some extent, crossovers form between them. To see how meiotic recombination is in the presence of an extra chromosome 21, we analyzed the distribution of three recombination markers (γH2AX, RPA, and MLH1) on trisomic 21 oocytes at pachynema and, in particular, on chromosomes 21. Results clearly show how the presence of an extra chromosome 21 alters meiotic recombination progression, leading to the presence of a higher number of early recombination markers at pachynema. Moreover, the distribution on these chromosomes 21 of some of these markers is different in aneuploid oocytes. Finally, there is a substantial increase in the number of MLH1 foci, a marker of most crossovers in mammals, which is related to the number of synapsed chromosomes in pachynema. Thus, bivalents 21 had fewer MLH1 foci than partial or total trivalents, suggesting a close relationship between synapsis and crossover designation. All of the data presented suggest that the presence of an extra chromosome alters meiotic recombination globally in aneuploid human oocytes.

  16. Increased frequency of asynapsis and associated meiotic silencing of heterologous chromatin in the presence of irradiation-induced extra DNA double strand breaks.

    PubMed

    Schoenmakers, Sam; Wassenaar, Evelyne; van Cappellen, Wiggert A; Derijck, Alwin A; de Boer, Peter; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2008-05-01

    In meiotic prophase of male placental mammals, the heterologous X and Y chromosomes remain largely unsynapsed, which activates meiotic sex chromosome inactivation (MSCI), leading to formation of the transcriptionally silenced XY body. MSCI is most likely related to meiotic silencing of unsynapsed chromatin (MSUC), a mechanism that can silence autosomal unsynapsed chromatin. However, heterologous synapsis and escape from silencing also occur. In mammalian species, formation of DNA double strand breaks (DSBs) during leptotene precedes meiotic chromosome pairing. These DSBs are essential to achieve full synapsis of homologous chromosomes. We generated 25% extra meiotic DSBs by whole body irradiation of mice. This leads to a significant increase in meiotic recombination frequency. In mice carrying translocation chromosomes with synaptic problems, we observed an approximately 35% increase in asynapsis and MSUC of the nonhomologous region in the smallest chromosome pair following irradiation. However, the same nonhomologous region in the largest chromosome pair, shows complete synapsis and escape from MSUC in almost 100% of the nuclei, irrespective of exposure to irradiation. We propose that prevention of synapsis and associated activation of MSUC is linked to the presence of unrepaired meiotic DSBs in the nonhomologous region. Also, spreading of synaptonemal complex formation from regions of homology may act as an opposing force, and drive heterologous synapsis.

  17. Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair.

    PubMed

    Ward, Jordan D; Muzzini, Diego M; Petalcorin, Mark I R; Martinez-Perez, Enrique; Martin, Julie S; Plevani, Paolo; Cassata, Giuseppe; Marini, Federica; Boulton, Simon J

    2010-01-29

    Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C. elegans helicase helq-1 and RAD-51 paralog rfs-1, which results in a block to meiotic DSB repair after strand invasion. Whereas RAD-51-ssDNA filaments assemble at meiotic DSBs with normal kinetics in helq-1, rfs-1 double mutants, persistence of RAD-51 foci and genetic interactions with rtel-1 suggest a failure to disassemble RAD-51 from strand invasion intermediates. Indeed, purified HELQ-1 and RFS-1 independently bind to and promote the disassembly of RAD-51 from double-stranded, but not single-stranded, DNA filaments via distinct mechanisms in vitro. These results indicate that two compensating activities are required to promote postsynaptic RAD-51 filament disassembly, which are collectively essential for completion of meiotic DSB repair.

  18. Dbl2 Regulates Rad51 and DNA Joint Molecule Metabolism to Ensure Proper Meiotic Chromosome Segregation

    PubMed Central

    Hyppa, Randy W.; Benko, Zsigmond; Misova, Ivana; Schleiffer, Alexander; Smith, Gerald R.; Gregan, Juraj

    2016-01-01

    To identify new proteins required for faithful meiotic chromosome segregation, we screened a Schizosaccharomyces pombe deletion mutant library and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analyses of both live and fixed cells showed that dbl2Δ mutant cells frequently failed to segregate homologous chromosomes to opposite poles during meiosis I. Removing Rec12 (Spo11 homolog) to eliminate meiotic DNA double-strand breaks (DSBs) suppressed the segregation defect in dbl2Δ cells, indicating that Dbl2 acts after the initiation of meiotic recombination. Analyses of DSBs and Holliday junctions revealed no significant defect in their formation or processing in dbl2Δ mutant cells, although some Rec12-dependent DNA joint molecules persisted late in meiosis. Failure to segregate chromosomes in the absence of Dbl2 correlated with persistent Rad51 foci, and deletion of rad51 or genes encoding Rad51 mediators also suppressed the segregation defect of dbl2Δ. Formation of foci of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments, was impaired in dbl2Δ cells. Our results suggest that Dbl2 is a novel regulator of Fbh1 and thereby Rad51-dependent DSB repair required for proper meiotic chromosome segregation and viable sex cell formation. The wide conservation of these proteins suggests that our results apply to many species. PMID:27304859

  19. The evolution of meiotic sex and its alternatives

    PubMed Central

    Mirzaghaderi, Ghader

    2016-01-01

    Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and for all eukaryotes the shared component of sexual reproduction. The benefits and functions of meiosis, however, are still under discussion, especially considering the costs of meiotic sex. To get a novel view on this old problem, we filter out the most conserved elements of meiosis itself by reviewing the various modifications and alterations of modes of reproduction. Our rationale is that the indispensable steps of meiosis for viability of offspring would be maintained by strong selection, while dispensable steps would be variable. We review evolutionary origin and processes in normal meiosis, restitutional meiosis, polyploidization and the alterations of meiosis in forms of uniparental reproduction (apomixis, apomictic parthenogenesis, automixis, selfing) with a focus on plants and animals. This overview suggests that homologue pairing, double-strand break formation and homologous recombinational repair at prophase I are the least dispensable elements, and they are more likely optimized for repair of oxidative DNA damage rather than for recombination. Segregation, ploidy reduction and also a biparental genome contribution can be skipped for many generations. The evidence supports the theory that the primary function of meiosis is DNA restoration rather than recombination. PMID:27605505

  20. Meiotic prophase abnormalities and metaphase cell death in MLH1-deficient mouse spermatocytes: insights into regulation of spermatogenic progress.

    PubMed

    Eaker, Shannon; Cobb, John; Pyle, April; Handel, Mary Ann

    2002-09-01

    The MLH1 protein is required for normal meiosis in mice and its absence leads to failure in maintenance of pairing between bivalent chromosomes, abnormal meiotic division, and ensuing sterility in both sexes. In this study, we investigated whether failure to develop foci of MLH1 protein on chromosomes in prophase would lead to elimination of prophase spermatocytes, and, if not, whether univalent chromosomes could align normally on the meiotic spindle and whether metaphase spermatocytes would be delayed and/or eliminated. In spite of the absence of MLH1 foci, no apoptosis of spermatocytes in prophase was detected. In fact, chromosomes of pachytene spermatocytes from Mlh1(-/-) mice were competent to condense metaphase chromosomes, both in vivo and in vitro. Most condensed chromosomes were univalents with spatially distinct FISH signals. Typical metaphase events, such as synaptonemal complex breakdown and the phosphorylation of Ser10 on histone H3, occurred in Mlh1(-/-) spermatocytes, suggesting that there is no inhibition of onset of meiotic metaphase in the face of massive chromosomal abnormalities. However, the condensed univalent chromosomes did not align correctly onto the spindle apparatus in the majority of Mlh1(-/-) spermatocytes. Most meiotic metaphase spermatocytes were characterized with bipolar spindles, but chromosomes radiated away from the microtubule-organizing centers in a prometaphase-like pattern rather than achieving a bipolar orientation. Apoptosis was not observed until after the onset of meiotic metaphase. Thus, spermatocytes are not eliminated in direct response to the initial meiotic defect, but are eliminated later. Taken together, these observations suggest that a spindle assembly checkpoint, rather than a recombination or chiasmata checkpoint, may be activated in response to meiotic errors, thereby ensuring elimination of chromosomally abnormal gamete precursors.

  1. Rejuvenation of meiotic cohesion in oocytes during prophase I is required for chiasma maintenance and accurate chromosome segregation.

    PubMed

    Weng, Katherine A; Jeffreys, Charlotte A; Bickel, Sharon E

    2014-09-01

    Chromosome segregation errors in human oocytes are the leading cause of birth defects, and the risk of aneuploid pregnancy increases dramatically as women age. Accurate segregation demands that sister chromatid cohesion remain intact for decades in human oocytes, and gradual loss of the original cohesive linkages established in fetal oocytes is proposed to be a major cause of age-dependent segregation errors. Here we demonstrate that maintenance of meiotic cohesion in Drosophila oocytes during prophase I requires an active rejuvenation program, and provide mechanistic insight into the molecular events that underlie rejuvenation. Gal4/UAS inducible knockdown of the cohesion establishment factor Eco after meiotic S phase, but before oocyte maturation, causes premature loss of meiotic cohesion, resulting in destabilization of chiasmata and subsequent missegregation of recombinant homologs. Reduction of individual cohesin subunits or the cohesin loader Nipped B during prophase I leads to similar defects. These data indicate that loading of newly synthesized replacement cohesin rings by Nipped B and establishment of new cohesive linkages by the acetyltransferase Eco must occur during prophase I to maintain cohesion in oocytes. Moreover, we show that rejuvenation of meiotic cohesion does not depend on the programmed induction of meiotic double strand breaks that occurs during early prophase I, and is therefore mechanistically distinct from the DNA damage cohesion re-establishment pathway identified in G2 vegetative yeast cells. Our work provides the first evidence that new cohesive linkages are established in Drosophila oocytes after meiotic S phase, and that these are required for accurate chromosome segregation. If such a pathway also operates in human oocytes, meiotic cohesion defects may become pronounced in a woman's thirties, not because the original cohesive linkages finally give out, but because the rejuvenation program can no longer supply new cohesive linkages

  2. Cyclin B-cdk activity stimulates meiotic rereplication in budding yeast.

    PubMed Central

    Strich, Randy; Mallory, Michael J; Jarnik, Michal; Cooper, Katrina F

    2004-01-01

    Haploidization of gametes during meiosis requires a single round of premeiotic DNA replication (meiS) followed by two successive nuclear divisions. This study demonstrates that ectopic activation of cyclin B/cyclin-dependent kinase in budding yeast recruits up to 30% of meiotic cells to execute one to three additional rounds of meiS. Rereplication occurs prior to the meiotic nuclear divisions, indicating that this process is different from the postmeiotic mitoses observed in other fungi. The cells with overreplicated DNA produced asci containing up to 20 spores that were viable and haploid and demonstrated Mendelian marker segregation. Genetic tests indicated that these cells executed the meiosis I reductional division and possessed a spindle checkpoint. Finally, interfering with normal synaptonemal complex formation or recombination increased the efficiency of rereplication. These studies indicate that the block to rereplication is very different in meiotic and mitotic cells and suggest a negative role for the recombination machinery in allowing rereplication. Moreover, the production of haploids, regardless of the genome content, suggests that the cell counts replication cycles, not chromosomes, in determining the number of nuclear divisions to execute. PMID:15342503

  3. The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana

    PubMed Central

    Wijnker, Erik; Velikkakam James, Geo; Ding, Jia; Becker, Frank; Klasen, Jonas R; Rawat, Vimal; Rowan, Beth A; de Jong, Daniël F; de Snoo, C Bastiaan; Zapata, Luis; Huettel, Bruno; de Jong, Hans; Ossowski, Stephan; Weigel, Detlef; Koornneef, Maarten; Keurentjes, Joost JB; Schneeberger, Korbinian

    2013-01-01

    Knowledge of the exact distribution of meiotic crossovers (COs) and gene conversions (GCs) is essential for understanding many aspects of population genetics and evolution, from haplotype structure and long-distance genetic linkage to the generation of new allelic variants of genes. To this end, we resequenced the four products of 13 meiotic tetrads along with 10 doubled haploids derived from Arabidopsis thaliana hybrids. GC detection through short reads has previously been confounded by genomic rearrangements. Rigid filtering for misaligned reads allowed GC identification at high accuracy and revealed an ∼80-kb transposition, which undergoes copy-number changes mediated by meiotic recombination. Non-crossover associated GCs were extremely rare most likely due to their short average length of ∼25–50 bp, which is significantly shorter than the length of CO-associated GCs. Overall, recombination preferentially targeted non-methylated nucleosome-free regions at gene promoters, which showed significant enrichment of two sequence motifs. DOI: http://dx.doi.org/10.7554/eLife.01426.001 PMID:24347547

  4. The Mouse INO80 Chromatin-Remodeling Complex Is an Essential Meiotic Factor for Spermatogenesis1

    PubMed Central

    Serber, Daniel W.; Runge, John S.; Menon, Debashish U.; Magnuson, Terry

    2015-01-01

    The ability to faithfully transmit genetic information across generations via the germ cells is a critical aspect of mammalian reproduction. The process of germ cell development requires a number of large-scale modulations of chromatin within the nucleus. One such occasion arises during meiotic recombination, when hundreds of DNA double-strand breaks are induced and subsequently repaired, enabling the transfer of genetic information between homologous chromosomes. The inability to properly repair DNA damage is known to lead to an arrest in the developing germ cells and sterility within the animal. Chromatin-remodeling activity, and in particular the BRG1 subunit of the SWI/SNF complex, has been shown to be required for successful completion of meiosis. In contrast, remodeling complexes of the ISWI and CHD families are required for postmeiotic processes. Little is known regarding the contribution of the INO80 family of chromatin-remodeling complexes, which is a particularly interesting candidate due to its well described functions during DNA double-strand break repair. Here we show that INO80 is expressed in developing spermatocytes during the early stages of meiotic prophase I. Based on this information, we used a conditional allele to delete the INO80 core ATPase subunit, thereby eliminating INO80 chromatin-remodeling activity in this lineage. The loss of INO80 resulted in an arrest during meiosis associated with a failure to repair DNA damage during meiotic recombination. PMID:26607718

  5. Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes.

    PubMed

    Severson, Aaron F; Meyer, Barbara J

    2014-08-29

    We show that multiple, functionally specialized cohesin complexes mediate the establishment and two-step release of sister chromatid cohesion that underlies the production of haploid gametes. In C. elegans, the kleisin subunits REC-8 and COH-3/4 differ between meiotic cohesins and endow them with distinctive properties that specify how cohesins load onto chromosomes and then trigger and release cohesion. Unlike REC-8 cohesin, COH-3/4 cohesin becomes cohesive through a replication-independent mechanism initiated by the DNA double-stranded breaks that induce crossover recombination. Thus, break-induced cohesion also tethers replicated meiotic chromosomes. Later, recombination stimulates separase-independent removal of REC-8 and COH-3/4 cohesins from reciprocal chromosomal territories flanking the crossover site. This region-specific removal likely underlies the two-step separation of homologs and sisters. Unexpectedly, COH-3/4 performs cohesion-independent functions in synaptonemal complex assembly. This new model for cohesin function diverges from that established in yeast but likely applies directly to plants and mammals, which utilize similar meiotic kleisins.

  6. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects

    PubMed Central

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A.

    2016-01-01

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. PMID:27257060

  7. Impairment of pachytene spermatogenesis in Dmrt7 deficient mice, possibly causing meiotic arrest.

    PubMed

    Date, Shiori; Nozawa, Osamu; Inoue, Hiroaki; Hidema, Shizu; Nishimori, Katsuhiko

    2012-01-01

    Although Dmrt7 has been reported to be essential for male spermatogenesis, the molecular mechanism underlying pachytene spermatogenesis by Dmrt7 is not known. In the present study, by detailed analysis of Dmrt7 protein distribution in spermatocytes in the first wave of spermatogenesis, we clarified the profile of Dmrt7 expression and localization in pachytene spermatogenesis. Dmrt7-deficient spermatocytes were arrested in the pachytene stage, followed by apoptosis. We analyzed to determine whether every event in the spermatogenesis at the Dmrt7-deficient mice progressed normally, because in several gene knockout mice with spermatogenic arrest described in the previous reports impairments of these events often appeared. Mutant mice showed normal synapsis and XY body formation, while impairment of meiotic sex chromosome inactivation (MSCI), decreased expression of backup genes, and increased expression of retrotransposons indicated incomplete meiotic recombination.

  8. The rate of meiotic gene conversion varies by sex and age

    PubMed Central

    Halldorsson, Bjarni V.; Hardarson, Marteinn T.; Kehr, Birte; Styrkarsdottir, Unnur; Gylfason, Arnaldur; Thorleifsson, Gudmar; Zink, Florian; Jonasdottir, Adalbjorg; Jonasdottir, Aslaug; Sulem, Patrick; Masson, Gisli; Thorsteinsdottir, Unnur; Helgason, Agnar; Kong, Augustine; Gudbjartsson, Daniel F.; Stefansson, Kari

    2016-01-01

    Meiotic recombination involves a combination of gene conversion and crossover events that along with mutations produce germline genetic diversity. Here, we report the discovery of 3,176 SNP and 61 indel gene conversions. Our estimate of the non-crossover (NCO) gene conversion rate (G) is 7.0 for SNPs and 5.8 for indels per Mb per generation, and the GC bias is 67.6%. For indels we demonstrate a 65.6% preference for the shorter allele. NCO gene conversions from mothers are longer than those from fathers and G is 2.17 times greater in mothers. Notably, G increases with the age of mothers, but not fathers. A disproportionate number of NCO gene conversions in older mothers occur outside double strand break (DSB) regions and in regions with relatively low GC content. This points to age-related changes in the mechanisms of meiotic gene conversions in oocytes. PMID:27643539

  9. Accounting for false negatives in hotspot detection

    SciTech Connect

    Sego, Landon H.; Wilson, John E.

    2007-08-28

    Hotspot sampling designs are used in environmental sampling to identify the location of one (or more) contiguous regions of elevated contamination. These regions are known as hotspots. The problem of how to calculate the probability of detecting an elliptical hotspot using a rectangular or triangular grid of sampling points was addressed by Singer and Wickman in 1969. This approach presumed that any sample which coincided with a hotspot would detect the hotspot without error. However, for many sampling methodologies, there is a chance that the hotspot will not be detected even though it has been sampled directly--a false negative. We present a mathematical solution and a numerical algorithm which account for false negatives when calculating the probability of detecting hotspots that are circular in shape.

  10. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    SciTech Connect

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2010-11-05

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  11. Recombination, Pairing, and Synapsis of Homologs during Meiosis.

    PubMed

    Zickler, Denise; Kleckner, Nancy

    2015-05-18

    Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.

  12. Fine mapping of meiotic NAHR-associated crossovers causing large NF1 deletions.

    PubMed

    Hillmer, Morten; Wagner, David; Summerer, Anna; Daiber, Michaela; Mautner, Victor-Felix; Messiaen, Ludwine; Cooper, David N; Kehrer-Sawatzki, Hildegard

    2016-02-01

    Large deletions encompassing the NF1 gene and its flanking regions belong to the group of genomic disorders caused by copy number changes that are mediated by the local genomic architecture. Although nonallelic homologous recombination (NAHR) is known to be a major mutational mechanism underlying such genomic copy number changes, the sequence determinants of NAHR location and frequency are still poorly understood since few high-resolution mapping studies of NAHR hotspots have been performed to date. Here, we have characterized two NAHR hotspots, PRS1 and PRS2, separated by 20 kb and located within the low-copy repeats NF1-REPa and NF1-REPc, which flank the human NF1 gene region. High-resolution mapping of the crossover sites identified in 78 type 1 NF1 deletions mediated by NAHR indicated that PRS2 is a much stronger NAHR hotspot than PRS1 since 80% of these deletions exhibited crossovers within PRS2, whereas 20% had crossovers within PRS1. The identification of the most common strand exchange regions of these 78 deletions served to demarcate the cores of the PRS1 and PRS2 hotspots encompassing 1026 and 1976 bp, respectively. Several sequence features were identified that may influence hotspot intensity and direct the positional preference of NAHR to the hotspot cores. These features include regions of perfect sequence identity encompassing 700 bp at the hotspot core, the presence of PRDM9 binding sites perfectly matching the consensus motif for the most common PRDM9 variant, specific pre-existing patterns of histone modification and open chromatin conformations that are likely to facilitate PRDM9 binding.

  13. Whole-Genome Analysis of Individual Meiotic Events in Drosophila melanogaster Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect

    PubMed Central

    Miller, Danny E.; Smith, Clarissa B.; Kazemi, Nazanin Yeganeh; Cockrell, Alexandria J.; Arvanitakis, Alexandra V.; Blumenstiel, Justin P.; Jaspersen, Sue L.; Hawley, R. Scott

    2016-01-01

    A century of genetic analysis has revealed that multiple mechanisms control the distribution of meiotic crossover events. In Drosophila melanogaster, two significant positional controls are interference and the strongly polar centromere effect. Here, we assess the factors controlling the distribution of crossovers (COs) and noncrossover gene conversions (NCOs) along all five major chromosome arms in 196 single meiotic divisions to generate a more detailed understanding of these controls on a genome-wide scale. Analyzing the outcomes of single meiotic events allows us to distinguish among different classes of meiotic recombination. In so doing, we identified 291 NCOs spread uniformly among the five major chromosome arms and 541 COs (including 52 double crossovers and one triple crossover). We find that unlike COs, NCOs are insensitive to the centromere effect and do not demonstrate interference. Although the positions of COs appear to be determined predominately by the long-range influences of interference and the centromere effect, each chromosome may display a different pattern of sensitivity to interference, suggesting that interference may not be a uniform global property. In addition, unbiased sequencing of a large number of individuals allows us to describe the formation of de novo copy number variants, the majority of which appear to be mediated by unequal crossing over between transposable elements. This work has multiple implications for our understanding of how meiotic recombination is regulated to ensure proper chromosome segregation and maintain genome stability. PMID:26944917

  14. Whole-Genome Analysis of Individual Meiotic Events in Drosophila melanogaster Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect.

    PubMed

    Miller, Danny E; Smith, Clarissa B; Kazemi, Nazanin Yeganeh; Cockrell, Alexandria J; Arvanitakas, Alexandra V; Blumenstiel, Justin P; Jaspersen, Sue L; Hawley, R Scott

    2016-05-01

    A century of genetic analysis has revealed that multiple mechanisms control the distribution of meiotic crossover events. In Drosophila melanogaster, two significant positional controls are interference and the strongly polar centromere effect. Here, we assess the factors controlling the distribution of crossovers (COs) and noncrossover gene conversions (NCOs) along all five major chromosome arms in 196 single meiotic divisions to generate a more detailed understanding of these controls on a genome-wide scale. Analyzing the outcomes of single meiotic events allows us to distinguish among different classes of meiotic recombination. In so doing, we identified 291 NCOs spread uniformly among the five major chromosome arms and 541 COs (including 52 double crossovers and one triple crossover). We find that unlike COs, NCOs are insensitive to the centromere effect and do not demonstrate interference. Although the positions of COs appear to be determined predominately by the long-range influences of interference and the centromere effect, each chromosome may display a different pattern of sensitivity to interference, suggesting that interference may not be a uniform global property. In addition, unbiased sequencing of a large number of individuals allows us to describe the formation of de novo copy number variants, the majority of which appear to be mediated by unequal crossing over between transposable elements. This work has multiple implications for our understanding of how meiotic recombination is regulated to ensure proper chromosome segregation and maintain genome stability.

  15. New Tests of the Fixed Hotspot Approximation

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Andrews, D. L.; Horner-Johnson, B. C.; Kumar, R. R.

    2005-05-01

    We present new methods for estimating uncertainties in plate reconstructions relative to the hotspots and new tests of the fixed hotspot approximation. We find no significant motion between Pacific hotspots, on the one hand, and Indo-Atlantic hotspots, on the other, for the past ~ 50 Myr, but large and significant apparent motion before 50 Ma. Whether this motion is truly due to motion between hotspots or alternatively due to flaws in the global plate motion circuit can be tested with paleomagnetic data. These tests give results consistent with the fixed hotspot approximation and indicate significant misfits when a relative plate motion circuit through Antarctica is employed for times before 50 Ma. If all of the misfit to the global plate motion circuit is due to motion between East and West Antarctica, then that motion is 800 ± 500 km near the Ross Sea Embayment and progressively less along the Trans-Antarctic Mountains toward the Weddell Sea. Further paleomagnetic tests of the fixed hotspot approximation can be made. Cenozoic and Cretaceous paleomagnetic data from the Pacific plate, along with reconstructions of the Pacific plate relative to the hotspots, can be used to estimate an apparent polar wander (APW) path of Pacific hotspots. An APW path of Indo-Atlantic hotspots can be similarly estimated (e.g. Besse & Courtillot 2002). If both paths diverge in similar ways from the north pole of the hotspot reference frame, it would indicate that the hotspots have moved in unison relative to the spin axis, which may be attributed to true polar wander. If the two paths diverge from one another, motion between Pacific hotspots and Indo-Atlantic hotspots would be indicated. The general agreement of the two paths shows that the former is more important than the latter. The data require little or no motion between groups of hotspots, but up to ~10 mm/yr of motion is allowed within uncertainties. The results disagree, in particular, with the recent extreme interpretation of

  16. Mature cystic teratomas arise from meiotic oocytes, but not from pre-meiotic oogonia.

    PubMed

    Kaku, Hiroshi; Usui, Hirokazu; Qu, Jia; Shozu, Makio

    2016-04-01

    Mature cystic teratomas (MCTs) in the ovaries have been thought to originate from germ cells from all developmental stages, i.e., from pre-meiotic oogonia through meiotic oocytes to mature post-meiotic ova. This view was based on research on MCTs by classical methods, including those involving centromeric heteromorphisms in karyotypes, enzyme polymorphisms, and DNA polymorphisms. However, insufficient genomic information was obtained in those studies. The current study aimed to confirm the cytogenetic origin of ovarian MCTs by using short tandem repeat (STR) polymorphism analysis to obtain sufficient genomic information, especially in connection with centromeric loci. Tissue samples of MCTs (57 ovaries from 51 patients, 91 MCTs, 156 specimens in total) obtained from cystectomies or oophorectomies were used. We categorized the specimens into two groups: i) solid components of MCTs and ii) cyst walls. The numbers of solid components of MCTs from pre-meiotic oogonia, primary oocytes, secondary oocytes, and ova were 0, 33, 16, and 15, respectively. There were no pre-meiotic oogonia in this series of solid-component specimens. We propose a hypothesis for the tumorigenesis of ovarian MCTs: the precursors of ovarian MCTs are not functional oocytes or ova, but are primary oocytes that have escaped from meiotic arrest. This hypothesis could satisfactorily explain the lack of pre-meiotic teratomas observed in this study and the nearly equal distribution of teratomas originating from primary oocytes, secondary oocytes, and ova in previous studies. Furthermore, this hypothesis could provide a starting point for determining the mechanism underlying tumorigenesis of ovarian MCTs.

  17. Evidence that meiotic sex chromosome inactivation is essential for male fertility.

    PubMed

    Royo, Hélène; Polikiewicz, Grzegorz; Mahadevaiah, Shantha K; Prosser, Haydn; Mitchell, Mike; Bradley, Allan; de Rooij, Dirk G; Burgoyne, Paul S; Turner, James M A

    2010-12-07

    The mammalian X and Y chromosomes share little homology and are largely unsynapsed during normal meiosis. This asynapsis triggers inactivation of X- and Y-linked genes, or meiotic sex chromosome inactivation (MSCI). Whether MSCI is essential for male meiosis is unclear. Pachytene arrest and apoptosis is observed in mouse mutants in which MSCI fails, e.g., Brca1(-/-), H2afx(-/-), Sycp1(-/-), and Msh5(-/-). However, these also harbor defects in synapsis and/or recombination and as such may activate a putative pachytene checkpoint. Here we present evidence that MSCI failure is sufficient to cause pachytene arrest. XYY males exhibit Y-Y synapsis and Y chromosomal escape from MSCI without accompanying synapsis/recombination defects. We find that XYY males, like synapsis/recombination mutants, display pachytene arrest and that this can be circumvented by preventing Y-Y synapsis and associated Y gene expression. Pachytene expression of individual Y genes inserted as transgenes on autosomes shows that expression of the Zfy 1/2 paralogs in XY males is sufficient to phenocopy the pachytene arrest phenotype; insertion of Zfy 1/2 on the X chromosome where they are subject to MSCI prevents this response. Our findings show that MSCI is essential for male meiosis and, as such, provide insight into the differential severity of meiotic mutations' effects on male and female meiosis.

  18. Global mammal distributions, biodiversity hotspots, and conservation.

    PubMed

    Ceballos, Gerardo; Ehrlich, Paul R

    2006-12-19

    Hotspots, which have played a central role in the selection of sites for reserves, require careful rethinking. We carried out a global examination of distributions of all nonmarine mammals to determine patterns of species richness, endemism, and endangerment, and to evaluate the degree of congruence among hotspots of these three measures of diversity in mammals. We then compare congruence of hotspots in two animal groups (mammals and birds) to assess the generality of these patterns. We defined hotspots as the richest 2.5% of cells in a global equal-area grid comparable to 1 degrees latitude x 1 degrees longitude. Hotspots of species richness, "endemism," and extinction threat were noncongruent. Only 1% of cells and 16% of species were common to the three types of mammalian hotspots. Congruence increased with increases in both the geographic scope of the analysis and the percentage of cells defined as being hotspots. The within-mammal hotspot noncongruence was similar to the pattern recently found for birds. Thus, assigning global conservation priorities based on hotspots is at best a limited strategy.

  19. Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair

    PubMed Central

    Subramanian, Vijayalakshmi V.; MacQueen, Amy J.; Vader, Gerben; Shinohara, Miki; Sanchez, Aurore; Borde, Valérie; Shinohara, Akira; Hochwagen, Andreas

    2016-01-01

    Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression. PMID:26870961

  20. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast

    PubMed Central

    Zanders, Sarah E; Eickbush, Michael T; Yu, Jonathan S; Kang, Ji-Won; Fowler, Kyle R; Smith, Gerald R; Malik, Harmit Singh

    2014-01-01

    Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation. DOI: http://dx.doi.org/10.7554/eLife.02630.001 PMID:24963140

  1. A Maternal Screen for Genes Regulating Drosophila Oocyte Polarity Uncovers New Steps in Meiotic Progression

    PubMed Central

    Barbosa, Vitor; Kimm, Naomi; Lehmann, Ruth

    2007-01-01

    Meiotic checkpoints monitor chromosome status to ensure correct homologous recombination, genomic integrity, and chromosome segregation. In Drosophila, the persistent presence of double-strand DNA breaks (DSB) activates the ATR/Mei-41 checkpoint, delays progression through meiosis, and causes defects in DNA condensation of the oocyte nucleus, the karyosome. Checkpoint activation has also been linked to decreased levels of the TGFα-like molecule Gurken, which controls normal eggshell patterning. We used this easy-to-score eggshell phenotype in a germ-line mosaic screen in Drosophila to identify new genes affecting meiotic progression, DNA condensation, and Gurken signaling. One hundred eighteen new ventralizing mutants on the second chromosome fell into 17 complementation groups. Here we describe the analysis of 8 complementation groups, including Kinesin heavy chain, the SR protein kinase cuaba, the cohesin-related gene dPds5/cohiba, and the Tudor-domain gene montecristo. Our findings challenge the hypothesis that checkpoint activation upon persistent DSBs is exclusively mediated by ATR/Mei-41 kinase and instead reveal a more complex network of interactions that link DSB formation, checkpoint activation, meiotic delay, DNA condensation, and Gurken protein synthesis. PMID:17507684

  2. Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes.

    PubMed

    Kugou, Kazuto; Fukuda, Tomoyuki; Yamada, Shintaro; Ito, Masaru; Sasanuma, Hiroyuki; Mori, Saori; Katou, Yuki; Itoh, Takehiko; Matsumoto, Kouji; Shibata, Takehiko; Shirahige, Katsuhiko; Ohta, Kunihiro

    2009-07-01

    Spo11-mediated DNA double-strand breaks (DSBs) that initiate meiotic recombination are temporally and spatially controlled. The meiotic cohesin Rec8 has been implicated in regulating DSB formation, but little is known about the features of their interplay. To elucidate this point, we investigated the genome-wide localization of Spo11 in budding yeast during early meiosis by chromatin immunoprecipitation using high-density tiling arrays. We found that Spo11 is dynamically localized to meiotic chromosomes. Spo11 initially accumulated around centromeres and thereafter localized to arm regions as premeiotic S phase proceeded. During this stage, a substantial proportion of Spo11 bound to Rec8 binding sites. Eventually, some of Spo11 further bound to both DSB and Rec8 sites. We also showed that such a change in a distribution of Spo11 is affected by hydroxyurea treatment. Interestingly, deletion of REC8 influences the localization of Spo11 to centromeres and in some of the intervals of the chromosomal arms. Thus, we observed a lack of DSB formation in a region-specific manner. These observations suggest that Rec8 would prearrange the distribution of Spo11 along chromosomes and will provide clues to understanding temporal and spatial regulation of DSB formation.

  3. Human male meiotic sex chromosome inactivation.

    PubMed

    de Vries, Marieke; Vosters, Sanne; Merkx, Gerard; D'Hauwers, Kathleen; Wansink, Derick G; Ramos, Liliana; de Boer, Peter

    2012-01-01

    In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.

  4. Human Male Meiotic Sex Chromosome Inactivation

    PubMed Central

    de Vries, Marieke; Vosters, Sanne; Merkx, Gerard; D'Hauwers, Kathleen; Wansink, Derick G.; Ramos, Liliana; de Boer, Peter

    2012-01-01

    In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity. PMID:22355370

  5. Vacuole Partitioning during Meiotic Division in Yeast

    PubMed Central

    Roeder, A. D.; Shaw, J. M.

    1996-01-01

    We have examined the partitioning of the yeast vacuole during meiotic division. In pulse-chase experiments, vacuoles labeled with the lumenal ade2 fluorophore or the membrane-specific dye FM 4-64 were not inherited by haploid spores. Instead, these fluorescent markers were excluded from spores and trapped between the spore cell walls and the ascus. Serial optical sections using a confocal microscope confirmed that spores did not inherit detectable amounts of fluorescently labeled vacuoles. Moreover, indirect immunofluorescence studies established that an endogenous vacuolar membrane protein, alkaline phosphatase, and a soluable vacuolar protease, carboxypeptidase Y, were also detected outside spores after meiotic division. Spores that did not inherit ade2- or FM 4-64-labeled vacuoles did generate an organelle that could be visualized by subsequent staining with vacuole-specific fluorophores. These data contrast with genetic evidence that a soluble vacuolar protease is inherited by spores. When the partitioning of both types of markers was examined in sporulating cultures, the vacuolar protease activity was inherited by spores while fluorescently labeled vacuoles were largely excluded from spores. Our results indicate that the majority of the diploid vacuole, both soluble contents and membrane-bound components, are excluded from spores formed during meiotic division. PMID:8889511

  6. Meiotic drive of chromosomal knobs reshaped the maize genome.

    PubMed Central

    Buckler, E S; Phelps-Durr, T L; Buckler, C S; Dawe, R K; Doebley, J F; Holtsford, T P

    1999-01-01

    Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome. Simulations were used to illustrate the dynamics of this meiotic drive model and suggest knobs might be deleterious in the absence of Ab10. Chromosomal knob data from maize's wild relatives (Zea mays ssp. parviglumis and mexicana) and phylogenetic comparisons demonstrated that the evolution of knob size, frequency, and chromosomal position agreed with the meiotic drive hypothesis. Knob chromosomal position was incompatible with the hypothesis that knob repetitive DNA is neutral or slightly deleterious to the genome. We also show that environmental factors and transposition may play a role in the evolution of knobs. Because knobs occur at multiple locations on all maize chromosomes, the combined effects of meiotic drive and genetic linkage may have reshaped genetic diversity throughout the maize genome in response to the presence of Ab10. Meiotic drive may be a major force of genome evolution, allowing revolutionary changes in genome structure and diversity over short evolutionary periods. PMID:10471723

  7. Meiotic abnormalities and spermatogenic parameters in severe oligoasthenozoospermia.

    PubMed

    Vendrell, J M; García, F; Veiga, A; Calderón, G; Egozcue, S; Egozcue, J; Barri, P N

    1999-02-01

    The incidence of meiotic abnormalities and their relationship with different spermatogenic parameters was assessed in 103 male patients with presumably idiopathic severe oligoasthenozoospermia (motile sperm concentration < or = 1.5 x 10(6)/ml). Meiosis on testicular biopsies was independently evaluated by two observers. Meiotic patterns included normal meiosis and two meiotic abnormalities, i.e. severe arrest and synaptic anomalies. A normal pattern was found in 64 (62.1%), severe arrest in 21 (20.4%) and synaptic anomalies in 18 (17.5%). The overall rate of meiotic abnormalities was 37.9%. Most (66.7%) meiotic abnormalities occurred in patients with a sperm concentration < or = 1 x 10(6)/ml. In this group, total meiotic abnormalities were found in 57.8% of the patients; of these, 26.7% had synaptic anomalies. When the sperm concentration was < or = 0.5 x 10(6)/ml, synaptic anomalies were detected in 40% of the patients. In patients with increased follicle stimulating hormone (FSH) concentrations, total meiotic abnormalities occurred in 54.8% (synaptic anomalies in 22.6%). There were statistically significant differences among the three meiotic patterns in relation to sperm concentration (P < 0.001) and serum FSH concentration (P < 0.05). In the multivariate analysis, sperm concentration < or = 1 x 10(6)/ml and/or FSH concentration > 10 IU/l were the only predictors of meiotic abnormalities.

  8. Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes.

    PubMed

    Kelliher, Timothy; Walbot, Virginia

    2014-02-01

    In flowering plants, anthers are the site of de novo germinal cell specification, male meiosis, and pollen development. Atypically, anthers lack a meristem. Instead, both germinal and somatic cell types differentiate from floral stem cells packed into anther lobes. To better understand anther cell fate specification and to provide a resource for the reproductive biology community, we isolated cohorts of germinal and somatic initials from maize anthers within 36 h of fate acquisition, identifying 815 specific and 1714 significantly enriched germinal transcripts, plus 2439 specific and 2112 significantly enriched somatic transcripts. To clarify transcripts involved in cell differentiation, we contrasted these profiles to anther primordia prior to fate specification and to msca1 anthers arrested in the first step of fate specification and hence lacking normal cell types. The refined cell-specific profiles demonstrated that both germinal and somatic cell populations differentiate quickly and express unique transcription factor sets; a subset of transcript localizations was validated by in situ hybridization. Surprisingly, germinal initials starting 5 days of mitotic divisions were enriched significantly in >100 transcripts classified in meiotic processes that included recombination and synapsis, along with gene sets involved in RNA metabolism, redox homeostasis, and cytoplasmic ATP generation. Enrichment of meiotic-specific genes in germinal initials challenges current dogma that the mitotic to meiotic transition occurs later in development during pre-meiotic S phase. Expression of cytoplasmic energy generation genes suggests that male germinal cells accommodate hypoxia by diverting carbon away from mitochondrial respiration into alternative pathways that avoid producing reactive oxygen species (ROS).

  9. Exo1 and Mre11 execute meiotic DSB end resection in the protist Tetrahymena.

    PubMed

    Lukaszewicz, Agnieszka; Shodhan, Anura; Loidl, Josef

    2015-11-01

    The resection of 5'-DNA ends at a double-strand break (DSB) is an essential step in recombinational repair, as it exposes 3' single-stranded DNA (ssDNA) tails for interaction with a repair template. In mitosis, Exo1 and Sgs1 have a conserved function in the formation of long ssDNA tails, whereas this step in the processing of programmed meiotic DSBs is less well-characterized across model organisms. In budding yeast, which has been most intensely studied in this respect, Exo1 is a major meiotic nuclease. In addition, it exerts a nuclease-independent function later in meiosis in the conversion of DNA joint molecules into ZMM-dependent crossovers. In order to gain insight into the diverse meiotic roles of Exo1, we investigated the effect of Exo1 deletion in the ciliated protist Tetrahymena. We found that Exo1 together with Mre11, but without the help of Sgs1, promotes meiotic DSB end resection. Resection is completely eliminated only if both Mre11 and Exo1 are missing. This is consistent with the yeast model where Mre11 promotes resection in the 3'-5' direction and Exo1 in the opposite 5'-3' direction. However, while the endonuclease activity of Mre11 is essential to create an entry site for exonucleases and hence to start resection in budding yeast, Tetrahymena Exo1 is able to create single-stranded DNA in the absence of Mre11. Excluding a possible contribution of the Mre11 cofactor Sae2 (Com1) as an autonomous endonuclease, we conclude that there exists another unknown nuclease that initiates DSB processing in Tetrahymena. Consistent with the absence of the ZMM crossover pathway in Tetrahymena, crossover formation is independent of Exo1.

  10. Ex-vivo assessment of chronic toxicity of low levels of cadmium on testicular meiotic cells.

    PubMed

    Geoffroy-Siraudin, Cendrine; Perrard, Marie-Hélène; Ghalamoun-Slaimi, Rahma; Ali, Sazan; Chaspoul, Florence; Lanteaume, André; Achard, Vincent; Gallice, Philippe; Durand, Philippe; Guichaoua, Marie-Roberte

    2012-08-01

    Using a validated model of culture of rat seminiferous tubules, we assessed the effects of 0.1, 1 and 10 μg/L cadmium (Cd) on spermatogenic cells over a 2-week culture period. With concentrations of 1 and 10 μg/L in the culture medium, the Cd concentration in the cells, determined by ICP-MS, increased with concentration in the medium and the day of culture. Flow cytometric analysis enabled us to evaluate changes in the number of Sertoli cells and germ cells during the culture period. The number of Sertoli cells did not appear to be affected by Cd. By contrast, spermatogonia and meiotic cells were decreased by 1 and 10 μg/L Cd in a time and dose dependent manner. Stage distribution of the meiotic prophase I and qualitative study of the synaptonemal complexes (SC) at the pachytene stage were performed by immunocytochemistry with an anti SCP3 antibody. Cd caused a time-and-dose-dependent increase of total abnormalities, of fragmented SC and of asynapsis from concentration of 0.1 μg/L. Additionally, we observed a new SC abnormality, the "motheaten" SC. This abnormality is frequently associated with asynapsis and SC widening which increased with both the Cd concentration and the duration of exposure. This abnormality suggests that Cd disrupts the structure and function of proteins involved in pairing and/or meiotic recombination. These results show that Cd induces dose-and-time-dependent alterations of the meiotic process of spermatogenesis ex-vivo, and that the lowest metal concentration, which induces an adverse effect, may vary with the cell parameter studied.

  11. The Exonuclease Homolog OsRAD1 Promotes Accurate Meiotic Double-Strand Break Repair by Suppressing Nonhomologous End Joining1[OPEN

    PubMed Central

    Tang, Ding; Shen, Yi; Chen, Xiaojun; Ji, Jianhui; Du, Guijie; Li, Yafei; Cheng, Zhukuan

    2016-01-01

    During meiosis, programmed double-strand breaks (DSBs) are generated to initiate homologous recombination, which is crucial for faithful chromosome segregation. In yeast, Radiation sensitive1 (RAD1) acts together with Radiation sensitive9 (RAD9) and Hydroxyurea sensitive1 (HUS1) to facilitate meiotic recombination via cell-cycle checkpoint control. However, little is known about the meiotic functions of these proteins in higher eukaryotes. Here, we characterized a RAD1 homolog in rice (Oryza sativa) and obtained evidence that O. sativa RAD1 (OsRAD1) is important for meiotic DSB repair. Loss of OsRAD1 led to abnormal chromosome association and fragmentation upon completion of homologous pairing and synapsis. These aberrant chromosome associations were independent of OsDMC1. We found that classical nonhomologous end-joining mediated by Ku70 accounted for most of the ectopic associations in Osrad1. In addition, OsRAD1 interacts directly with OsHUS1 and OsRAD9, suggesting that these proteins act as a complex to promote DSB repair during rice meiosis. Together, these findings suggest that the 9-1-1 complex facilitates accurate meiotic recombination by suppressing nonhomologous end-joining during meiosis in rice. PMID:27512017

  12. Male Mouse Recombination Maps for Each Autosome Identified by Chromosome Painting

    PubMed Central

    Froenicke, Lutz; Anderson, Lorinda K.; Wienberg, Johannes; Ashley, Terry

    2002-01-01

    Linkage maps constructed from genetic analysis of gene order and crossover frequency provide few clues to the basis of genomewide distribution of meiotic recombination, such as chromosome structure, that influences meiotic recombination. To bridge this gap, we have generated the first cytological recombination map that identifies individual autosomes in the male mouse. We prepared meiotic chromosome (synaptonemal complex [SC]) spreads from 110 mouse spermatocytes, identified each autosome by multicolor fluorescence in situ hybridization of chromosome-specific DNA libraries, and mapped >2,000 sites of recombination along individual autosomes, using immunolocalization of MLH1, a mismatch repair protein that marks crossover sites. We show that SC length is strongly correlated with crossover frequency and distribution. Although the length of most SCs corresponds to that predicted from their mitotic chromosome length rank, several SCs are longer or shorter than expected, with corresponding increases and decreases in MLH1 frequency. Although all bivalents share certain general recombination features, such as few crossovers near the centromeres and a high rate of distal recombination, individual bivalents have unique patterns of crossover distribution along their length. In addition to SC length, other, as-yet-unidentified, factors influence crossover distribution leading to hot regions on individual chromosomes, with recombination frequencies as much as six times higher than average, as well as cold spots with no recombination. By reprobing the SC spreads with genetically mapped BACs, we demonstrate a robust strategy for integrating genetic linkage and physical contig maps with mitotic and meiotic chromosome structure. PMID:12432495

  13. DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena

    PubMed Central

    Mochizuki, Kazufumi; Novatchkova, Maria; Loidl, Josef

    2011-01-01

    Summary During meiosis, the micronuclei of the ciliated protist Tetrahymena thermophila elongate dramatically. Within these elongated nuclei, chromosomes are arranged in a bouquet-like fashion and homologous pairing and recombination takes place. We studied meiotic chromosome behavior in Tetrahymena in the absence of two genes, SPO11 and a homolog of HOP2 (HOP2A), which have conserved roles in the formation of meiotic DNA double-strand breaks (DSBs) and their repair, respectively. Single-knockout mutants for each gene display only a moderate reduction in chromosome pairing, but show a complete failure to form chiasmata and exhibit chromosome missegregation. The lack of SPO11 prevents the elongation of meiotic nuclei, but it is restored by the artificial induction of DSBs. In the hop2AΔ mutant, the transient appearance of γ-H2A.X and Rad51p signals indicates the formation and efficient repair of DSBs; but this repair does not occur by interhomolog crossing over. In the absence of HOP2A, the nuclei are elongated, meaning that DSBs but not their conversion to crossovers are required for the development of this meiosis-specific morphology. In addition, by in silico homology searches, we compiled a list of likely Tetrahymena meiotic proteins as the basis for further studies of the unusual synaptonemal complex-less meiosis in this phylogenetically remote model organism. PMID:18522989

  14. Meiotic behaviour and sperm aneuploidy in an infertile man with a mosaic 45,X/46,XY karyotype.

    PubMed

    Ren, He; Chow, Victor; Ma, Sai

    2015-12-01

    The meiotic behaviour of the germ cells in 45,X/46,XY men has not been extensively studied. This study investigated the meiotic events and sperm aneuploidy in an azoospermic man with a 45,X/46,XY (50/50) mosaic karyotype to better understand the fate of the 45,X cells and the production of chromosomally abnormal spermatozoa. Combining immunofluorescence techniques and fluorescence in-situ hybridization, meiotic recombination, synapsis, meiotic sex chromosome inactivation (MSCI) and configuration were analysed, as well as sperm aneuploidy in the patient and 10 normal, fertile men. Despite the 50:50 somatic mosaicism in the patient, 25% of pachytene cells analysed were 45,X. Furthermore, 63% of pachytene cells were 46,XY with paired sex chromosomes, and 12% were 46,XY with unpaired sex chromosomes, which displayed abnormal MCSI patterns. Although the patient's testicular spermatozoa showed increased aneuploidy, the majority were of normal constitution. The X:Y sperm ratio was significantly increased compared with the controls (P < 0.001), which may indicate that some 45,X cells gave rise to X-bearing spermatozoa. The findings provide insight into the fate of 45,X/46,XY cells in meiosis, supporting the hypothesis that stringent checkpoints ensure the favourable production of spermatozoa with normal chromosomal constitution despite an individual's abnormal karyotype.

  15. HotSpot Software Test Plan

    SciTech Connect

    Walker, H; Homann, S G

    2009-03-12

    This Software Test Plan (STP) describes the procedures used to verify and validate that the HotSpot Health Physics Codes meet the requirements of its user base, which includes: (1) Users of the PC version of HotSpot conducting consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling. This plan is intended to meet Critical Recommendation 2 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  16. Microbial hotspots and hot moments in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong

  17. Evaluating Temporal Consistency in Marine Biodiversity Hotspots

    PubMed Central

    Barner, Allison K.; Benkwitt, Cassandra E.; Boersma, Kate S.; Cerny-Chipman, Elizabeth B.; Ingeman, Kurt E.; Kindinger, Tye L.; Lindsley, Amy J.; Nelson, Jake; Reimer, Jessica N.; Rowe, Jennifer C.; Shen, Chenchen; Thompson, Kevin A.; Heppell, Selina S.

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon’s diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  18. Evaluating Temporal Consistency in Marine Biodiversity Hotspots.

    PubMed

    Piacenza, Susan E; Thurman, Lindsey L; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lindsley, Amy J; Nelson, Jake; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Heppell, Selina S

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  19. Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism.

    PubMed

    Arora, Charanjit; Kee, Kehkooi; Maleki, Shohreh; Keeney, Scott

    2004-02-27

    Meiotic recombination initiates with double-strand breaks (DSBs) catalyzed by Spo11 in conjunction with accessory proteins whose roles are not understood. Two-hybrid analysis reveals a network of interactions connecting the yeast DSB proteins to one another. Of these proteins, Ski8 was known to function in cytoplasmic RNA metabolism, suggesting that its role in recombination might be indirect. However, obligate partners of Ski8 in RNA metabolism are dispensable for recombination and Ski8 relocalizes to the nucleus and associates with chromosomes specifically during meiosis. Interaction of Ski8 with Spo11 is essential for DSB formation and Ski8 relocalization. Thus, Ski8 plays distinct roles in RNA metabolism and, as a direct partner of Spo11, in DSB formation. Ski8 works with Spo11 to recruit other DSB proteins to meiotic chromosomes, implicating Ski8 as a scaffold protein mediating assembly of a multiprotein complex essential for DSB formation.

  20. Prioritization of candidate genes in "QTL-hotspot" region for drought tolerance in chickpea (Cicer arietinum L.).

    PubMed

    Kale, Sandip M; Jaganathan, Deepa; Ruperao, Pradeep; Chen, Charles; Punna, Ramu; Kudapa, Himabindu; Thudi, Mahendar; Roorkiwal, Manish; Katta, Mohan A V S K; Doddamani, Dadakhalandar; Garg, Vanika; Kishor, P B Kavi; Gaur, Pooran M; Nguyen, Henry T; Batley, Jacqueline; Edwards, David; Sutton, Tim; Varshney, Rajeev K

    2015-10-19

    A combination of two approaches, namely QTL analysis and gene enrichment analysis were used to identify candidate genes in the "QTL-hotspot" region for drought tolerance present on the Ca4 pseudomolecule in chickpea. In the first approach, a high-density bin map was developed using 53,223 single nucleotide polymorphisms (SNPs) identified in the recombinant inbred line (RIL) population of ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive) cross. QTL analysis using recombination bins as markers along with the phenotyping data for 17 drought tolerance related traits obtained over 1-5 seasons and 1-5 locations split the "QTL-hotspot" region into two subregions namely "QTL-hotspot_a" (15 genes) and "QTL-hotspot_b" (11 genes). In the second approach, gene enrichment analysis using significant marker trait associations based on SNPs from the Ca4 pseudomolecule with the above mentioned phenotyping data, and the candidate genes from the refined "QTL-hotspot" region showed enrichment for 23 genes. Twelve genes were found common in both approaches. Functional validation using quantitative real-time PCR (qRT-PCR) indicated four promising candidate genes having functional implications on the effect of "QTL-hotspot" for drought tolerance in chickpea.

  1. Identifying infection hotspots early on.

    PubMed

    Shabha, Ghasson

    2012-04-01

    According to many published studies, 'ducting in ventilation and air-conditioning are largely overlooked and ignored, as they are out of sight and out of mind', despite mounting evidence indicating a higher risk in spreading airborne infections'. So says Ghasson Shabha BSc (Arch) MSc, PhD (Arch), MBIFM, Associate CIBSE, PG Cert Ed, of the Faculty of Technology, Engineering and the Environment (TEE), at the Birmingham School of the Built Environment (BSBE) at Birmingham City University, who adds that CIBSE estimates that fewer than 5% of buildings with air-conditioning systems above 12 kW have been inspected so far. Here he argues that incorporating 3D building information modelling software into existing computer-aided facilities management software systems will enable hospitals' 'infection hotspots' to be far more quickly identified, and subsequently monitored, to prevent future problems.

  2. Replication-dependent early meiotic requirement for Spo11 and Rad50.

    PubMed

    Merino, S T; Cummings, W J; Acharya, S N; Zolan, M E

    2000-09-12

    Spo11 and the Rad50-Mre11 complex have been indirectly implicated in processes associated with DNA replication. These proteins also have been shown to have early meiotic roles essential for the formation of a programmed DNA double-strand break known in Saccharomyces cerevisiae to initiate meiotic recombination. In both S. cerevisiae and the basidiomycete Coprinus cinereus, spo11 and rad50 mutants are defective in chromosome synapsis during meiosis. Here we demonstrate that a partial restoration of synapsis occurs in C. cinereus spo11 and rad50 mutants if premeiotic DNA replication is prevented. Double mutants were constructed with spo11-1 or rad50-4 and another mutant, spo22-1, which does not undergo premeiotic DNA replication. In both cases, we observed an increase in the percentage of nuclei containing synaptonemal complex (SC) structures, with concomitant decreases in the percentage of nuclei containing axial elements (AE) only or no structures. Both types of double mutants demonstrated significant increases in the average numbers of AE and SC, although SC-containing nuclei did not on average contain more AE than did nuclei showing no synapsis. Our results show that Spo11-induced recombination is not absolutely required for synapsis in C. cinereus, and that the early meiotic role of both Spo11 and Rad50 in SC formation partially depends on premeiotic S phase. This dependency likely reflects either a requirement for these proteins imposed by the premeiotic replication process itself or a requirement for these proteins in synapsis when a sister chromatid (the outcome of DNA replication) is present.

  3. Selection by parasites may increase host recombination frequency.

    PubMed

    Fischer, O; Schmid-Hempel, P

    2005-06-22

    Meiotic recombination destroys successful genotypes and it is therefore thought to evolve only under a very limited set of conditions. Here, we experimentally show that recombination rates across two linkage groups of the host, the red flour beetle Tribolium castaneum, increase with exposure to the microsporidian parasite, Nosema whitei, particularly when parasites were allowed to coevolve with their hosts. Selection by randomly varied parasites resulted in smaller effects, while directional selection for insecticide resistance initially reduced recombination slightly. These results, at least tentatively, suggest that short-term benefits of recombination--and thus the evolution of sex--may be related to parasitism.

  4. The Rate of Nonallelic Homologous Recombination in Males Is Highly Variable, Correlated between Monozygotic Twins and Independent of Age

    PubMed Central

    MacArthur, Jacqueline A. L.; Spector, Timothy D.; Lindsay, Sarah J.; Mangino, Massimo; Gill, Raj; Small, Kerrin S.; Hurles, Matthew E.

    2014-01-01

    Nonallelic homologous recombination (NAHR) between highly similar duplicated sequences generates chromosomal deletions, duplications and inversions, which can cause diverse genetic disorders. Little is known about interindividual variation in NAHR rates and the factors that influence this. We estimated the rate of deletion at the CMT1A-REP NAHR hotspot in sperm DNA from 34 male donors, including 16 monozygotic (MZ) co-twins (8 twin pairs) aged 24 to 67 years old. The average NAHR rate was 3.5×10−5 with a seven-fold variation across individuals. Despite good statistical power to detect even a subtle correlation, we observed no relationship between age of unrelated individuals and the rate of NAHR in their sperm, likely reflecting the meiotic-specific origin of these events. We then estimated the heritability of deletion rate by calculating the intraclass correlation (ICC) within MZ co-twins, revealing a significant correlation between MZ co-twins (ICC = 0.784, p = 0.0039), with MZ co-twins being significantly more correlated than unrelated pairs. We showed that this heritability cannot be explained by variation in PRDM9, a known regulator of NAHR, or variation within the NAHR hotspot itself. We also did not detect any correlation between Body Mass Index (BMI), smoking status or alcohol intake and rate of NAHR. Our results suggest that other, as yet unidentified, genetic or environmental factors play a significant role in the regulation of NAHR and are responsible for the extensive variation in the population for the probability of fathering a child with a genomic disorder resulting from a pathogenic deletion. PMID:24603440

  5. Analysis of meiotic sister chromatid cohesion in Caenorhabditis elegans

    PubMed Central

    Severson, Aaron F.

    2016-01-01

    In sexually reproducing organisms, the formation of healthy gametes (sperm and eggs) requires the proper establishment and release of meiotic sister chromatid cohesion (SCC). SCC tethers replicated sisters from their formation in premeiotic S phase until the stepwise removal of cohesion in anaphase of meiosis I and II allows the separation of homologs and then sisters. Defects in the establishment or release of meiotic cohesion cause chromosome segregation errors that lead to the formation of aneuploid gametes and inviable embryos. The nematode Caenorhabditis elegans is an excellent model for studies of meiotic sister chromatid cohesion due to its genetic tractability and the excellent cytological properties of the hermaphrodite gonad. Moreover, mutants defective in the establishment or maintenance of meiotic SCC nevertheless produce abundant gametes, allowing analysis of the pattern of chromosome segregation. Here I will describe two approaches for analysis of meiotic cohesion in C. elegans. The first approach relies on cytology to detect and quantify defects in SCC. The second approach relies on PCR and restriction digests to identify embryos that inherited an incorrect complement of chromosomes due to aberrant meiotic chromosome segregation. Both approaches are sensitive enough to identify rare errors and precise enough to reveal distinctive phenotypes resulting from mutations that perturb meiotic SCC in different ways. The robust, quantitative nature of these assays should strengthen phenotypic comparisons of different meiotic mutants and enhance the reproducibility of data generated by different investigators. PMID:27797074

  6. Meiotic drive impacts expression and evolution of x-linked genes in stalk-eyed flies.

    PubMed

    Reinhardt, Josephine A; Brand, Cara L; Paczolt, Kimberly A; Johns, Philip M; Baker, Richard H; Wilkinson, Gerald S

    2014-01-01

    Although sex chromosome meiotic drive has been observed in a variety of species for over 50 years, the genes causing drive are only known in a few cases, and none of these cases cause distorted sex-ratios in nature. In stalk-eyed flies (Teleopsis dalmanni), driving X chromosomes are commonly found at frequencies approaching 30% in the wild, but the genetic basis of drive has remained elusive due to reduced recombination between driving and non-driving X chromosomes. Here, we used RNAseq to identify transcripts that are differentially expressed between males carrying either a driving X (XSR) or a standard X chromosome (XST), and found hundreds of these, the majority of which are X-linked. Drive-associated transcripts show increased levels of sequence divergence (dN/dS) compared to a control set, and are predominantly expressed either in testes or in the gonads of both sexes. Finally, we confirmed that XSR and XST are highly divergent by estimating sequence differentiation between the RNAseq pools. We found that X-linked transcripts were often strongly differentiated (whereas most autosomal transcripts were not), supporting the presence of a relatively large region of recombination suppression on XSR presumably caused by one or more inversions. We have identified a group of genes that are good candidates for further study into the causes and consequences of sex-chromosome drive, and demonstrated that meiotic drive has had a profound effect on sequence evolution and gene expression of X-linked genes in this species.

  7. Sequencing Spo11 Oligonucleotides for Mapping Meiotic DNA Double-Strand Breaks in Yeast.

    PubMed

    Lam, Isabel; Mohibullah, Neeman; Keeney, Scott

    2017-01-01

    Meiosis is a specialized form of cell division resulting in reproductive cells with a reduced, usually haploid, genome complement. A key step after premeiotic DNA replication is the occurrence of homologous recombination at multiple places throughout the genome, initiated with the formation of DNA double-strand breaks (DSBs) catalyzed by the topoisomerase-like protein Spo11. DSBs are distributed non-randomly in genomes, and understanding the mechanisms that shape this distribution is important for understanding how meiotic recombination influences heredity and genome evolution. Several methods exist for mapping where Spo11 acts. Of these, sequencing of Spo11-associated oligonucleotides (Spo11 oligos) is the most precise, specifying the locations of DNA breaks to the base pair. In this chapter we detail the steps involved in Spo11-oligo mapping in the SK1 strain of budding yeast Saccharomyces cerevisiae, from harvesting cells of highly synchronous meiotic cultures, through preparation of sequencing libraries, to the mapping pipeline used for processing the data.

  8. Control of Meiotic Crossovers: From Double-Strand Break Formation to Designation

    PubMed Central

    Gray, Stephen

    2017-01-01

    Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation. PMID:27648641

  9. Budding Yeast SLX4 Contributes to the Appropriate Distribution of Crossovers and Meiotic Double-Strand Break Formation on Bivalents During Meiosis

    PubMed Central

    Higashide, Mika; Shinohara, Miki

    2016-01-01

    The number and distribution of meiosis crossover (CO) events on each bivalent are strictly controlled by multiple mechanisms to assure proper chromosome segregation during the first meiotic division. In Saccharomyces cerevisiae, Slx4 is a multi-functional scaffold protein for structure-selective endonucleases, such as Slx1 and Rad1 (which are involved in DNA damage repair), and is also a negative regulator of the Rad9-dependent signaling pathway with Rtt107. Slx4 has been believed to play only a minor role in meiotic recombination. Here, we report that Slx4 is involved in proper intrachromosomal distribution of meiotic CO formation, especially in regions near centromeres. We observed an increase in uncontrolled CO formation only in a region near the centromere in the slx4∆ mutant. Interestingly, this phenomenon was not observed in the slx1∆, rad1∆, or rtt107∆ mutants. In addition, we observed a reduced number of DNA double-strand breaks (DSBs) and altered meiotic DSB distribution on chromosomes in the slx4∆ mutant. This suggests that the multi-functional Slx4 is required for proper CO formation and meiotic DSB formation. PMID:27172214

  10. Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR).

    PubMed

    Gray, Stephen; Allison, Rachal M; Garcia, Valerie; Goldman, Alastair S H; Neale, Matthew J

    2013-07-31

    During meiosis, formation and repair of programmed DNA double-strand breaks (DSBs) create genetic exchange between homologous chromosomes-a process that is critical for reductional meiotic chromosome segregation and the production of genetically diverse sexually reproducing populations. Meiotic DSB formation is a complex process, requiring numerous proteins, of which Spo11 is the evolutionarily conserved catalytic subunit. Precisely how Spo11 and its accessory proteins function or are regulated is unclear. Here, we use Saccharomyces cerevisiae to reveal that meiotic DSB formation is modulated by the Mec1(ATR) branch of the DNA damage signalling cascade, promoting DSB formation when Spo11-mediated catalysis is compromised. Activation of the positive feedback pathway correlates with the formation of single-stranded DNA (ssDNA) recombination intermediates and activation of the downstream kinase, Mek1. We show that the requirement for checkpoint activation can be rescued by prolonging meiotic prophase by deleting the NDT80 transcription factor, and that even transient prophase arrest caused by Ndt80 depletion is sufficient to restore meiotic spore viability in checkpoint mutants. Our observations are unexpected given recent reports that the complementary kinase pathway Tel1(ATM) acts to inhibit DSB formation. We propose that such antagonistic regulation of DSB formation by Mec1 and Tel1 creates a regulatory mechanism, where the absolute frequency of DSBs is maintained at a level optimal for genetic exchange and efficient chromosome segregation.

  11. Revisiting Hotspots and Mantle Plumes: Some Phenomenology

    NASA Astrophysics Data System (ADS)

    King, S. D.; White-Gaynor, A. L.

    2012-12-01

    Sleep (1990) used gravity, topography and heat flow from 37 hotspots to ``constrain the mechanism for swell uplift and to obtain fluxes and excess temperatures of mantle plumes,'' complementing a previous analysis by Davies (1988). We repeat that analysis for the same 37 hotspots using gravity from EGM2008 and topography from ETOPO1 (Amante and Eakins, 2009). EGM2008 is complete to spherical harmonic degree and order 2159, or roughly 20 km spatial resolution (Pavlis et al., 2012). The vertical accuracy of ETOPO1 is on the order of 10 meters. With these new models we hope to improve the uplift and subsidence rates along all 37 hotspot tracks--one of the major limitations the previous work. For example, of the 37 hotspots considered Sleep ranked only 7 with good reliability while 14 were fair and 16 were poor. With this new information we can compare and contrast hotspots with various other groupings of hotspots based on tomographic images of mantle structure (Montelli et al, 2003), primary versus secondary hotspots (Courtillot et al., 2003) or relationship to cratonic boundaries (King, 2008). One encounters some puzzles when attempting to reconcile buoyancy fluxes with other groupings of hotspots and/or observations. For example, Coutillot et al.'s seven primary hotspots include: Afar, Easter, Hawaii, Iceland, Louisville, Réunion, and Tristan. Sleep (1990) categorized the reliability of the buoyancy flux calculated by from Afar, Hawaii, Iceland, and Réunion as good, while Tristan and Easter were fair and Louisville was poor. The calculated buoyancy fluxes from Macdonald and Marqueses (both listed as fair) are twice as large as those from Iceland, Tristan, and Réunion. While we recognize that these observations cannot uniquely constrain the origin of these anomalies, better observations should help test various hypotheses.

  12. Male meiotic segregation analyses of peri- and paracentric inversions in the pig species.

    PubMed

    Massip, K; Bonnet, N; Calgaro, A; Billoux, S; Baquié, V; Mary, N; Bonnet-Garnier, A; Ducos, A; Yerle, M; Pinton, A

    2009-01-01

    Inversions are well-known structural chromosomal rearrangements in humans and pigs. Such rearrangements generally have no effect on the carriers' phenotype. However, the presence of an inversion can lead to spermatogenesis impairments and to the production of unbalanced (recombinant) gametes, responsible for early miscarriages, stillbirth, or congenital abnormalities. Sperm samples from boars heterozygote for pericentric inv(2)(p1.1;q1.1), inv(2) (p1.1;q2.1), inv(1)(p2.1;q2.10), or inv(1)(p2.4;q2.9), as well as for paracentric inv(2)(q1.3;q2.5) or inv(1)(q1.2;q2.4) were analyzed using sperm FISH (fluorescent in situ hybridization on decondensed sperm heads) to determine the male meiotic segregation profiles of the rearrangements. Furthermore, the availability of sperm samples for 2 unrelated carriers of inv(2)(p1.1;q1.1) allowed us to check for the occurrence of inter-individual variability of the rates of unbalanced meiotic products for this rearrangement. The estimated proportions of recombinant gametes were very low for all the inversions studied (0.62%, 1.30%, 3.05%, 1.27%, 4.12% and 0.84%, respectively), albeit significantly higher than the control. The rearrangements should therefore have very little impact on the reproductive performance of the carriers. No difference was found between the 2 carriers of inv(2)(p1.1;q1.1), suggesting a lack of inter-individual variability for this rearrangement. Overall, no significant correlation was found between the sizes of the inverted fragments and the proportions of recombinant (unbalanced) gametes for the 6 inversions studied. This is in contradiction with most human results. Further studies (pairing and recombination analysis using immunostaining techniques) should be carried out to elucidate the origin of such an inter-species difference.

  13. Hormesis, hotspots and emissions trading.

    PubMed

    Wiener, Jonathan B

    2004-06-01

    Instrument choice--the comparison of technology standards, performance standards, taxes and tradable permits--has been a major topic in environmental law and environmental economics. Most analyses assume that emissions and health effects are positively and linearly related. If they are not, this complicates the instrument choice analysis. This article analyses the effects of a nonlinear dose-response function on instrument choice. In particular, it examines the effects of hormesis (high-dose harm but low-dose benefit) on the choice between fixed performance standards and tradable emissions permits. First, the article distinguishes the effects of hormesis from the effects of local emissions. Hormesis is an attribute of the dose-response or exposure-response relationship. Hotspots are an attribute of the emissions-exposure relationship. Some pollutants may be hormetic and cause local emissions-exposure effects; others may be hormetic without causing local emissions-exposure effects. It is only the local exposure effects of emissions that pose a problem for emissions trading. Secondly, the article shows that the conditions under which emissions trading would perform less well or even perversely under hormesis, depend on how stringent a level of protection is set. Only when the regulatory standard is set at the nadir of the hormetic curve would emissions trading be seriously perverse (assuming other restrictive conditions as well), and such a standard is unlikely. Moreover, the benefits of the overall programme may justify the risk of small perverse effects around this nadir. Thirdly, the article argues that hotspots can be of concern for two distinct reasons, harmfulness and fairness. Lastly, the paper argues that the solution to these problems may not be to abandon market-based incentive instruments and their cost-effectiveness gains, but to improve them further by moving from emissions trading and emissions taxes to risk trading and risk taxes. In short, the article

  14. Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome.

    PubMed

    Axelsson, Erik; Webster, Matthew T; Ratnakumar, Abhirami; Ponting, Chris P; Lindblad-Toh, Kerstin

    2012-01-01

    Analysis of diverse eukaryotes has revealed that recombination events cluster in discrete genomic locations known as hotspots. In humans, a zinc-finger protein, PRDM9, is believed to initiate recombination in >40% of hotspots by binding to a specific DNA sequence motif. However, the PRDM9 coding sequence is disrupted in the dog genome assembly, raising questions regarding the nature and control of recombination in dogs. By analyzing the sequences of PRDM9 orthologs in a number of dog breeds and several carnivores, we show here that this gene was inactivated early in canid evolution. We next use patterns of linkage disequilibrium using more than 170,000 SNP markers typed in almost 500 dogs to estimate the recombination rates in the dog genome using a coalescent-based approach. Broad-scale recombination rates show good correspondence with an existing linkage-based map. Significant variation in recombination rate is observed on the fine scale, and we are able to detect over 4000 recombination hotspots with high confidence. In contrast to human hotspots, 40% of canine hotspots are characterized by a distinct peak in GC content. A comparative genomic analysis indicates that these peaks are present also as weaker peaks in the panda, suggesting that the hotspots have been continually reinforced by accelerated and strongly GC biased nucleotide substitutions, consistent with the long-term action of biased gene conversion on the dog lineage. These results are consistent with the loss of PRDM9 in canids, resulting in a greater evolutionary stability of recombination hotspots. The genetic determinants of recombination hotspots in the dog genome may thus reflect a fundamental process of relevance to diverse animal species.

  15. Two rare aneutriploids in the unisexual Ambystoma (Amphibia, Caudata) identified by GISH indicating two different types of meiotic errors.

    PubMed

    Bi, K; Bogart, J P; Fu, J

    2007-01-01

    We report two types of aneutriploids in unisexual salamanders Ambystomalaterale-2jeffersonianum (LJJ) and Ambystoma 2 laterale-jeffersonianum (LLJ). One karyotype has 3n = 42: L27 (L8-); J15 (J8p+), and we suggest that it was induced by homoeologous pairing after premeiotic endomitosis followed by an unequal L8;J8 segregation. The second karyotype has 3n = 43: L14 (L10q); J29 (J12+), which can be explained by meiotic nondisjunction followed by unbalanced segregation. These two rare aneutriploids demonstrate two different types of meiotic errors that might help to explain the high mortality observed in this complex. Case one also indicates that contemporary intergenomic exchanges and homoeologous recombinations may occur after a premeiotic chromosome doubling event. Our study provides additional evidence for the extremely flexible reproduction of unisexual Ambystoma.

  16. Depletion of Key Meiotic Genes and Transcriptome-Wide Abiotic Stress Reprogramming Mark Early Preparatory Events Ahead of Apomeiotic Transition

    PubMed Central

    Shah, Jubin N.; Kirioukhova, Olga; Pawar, Pallavi; Tayyab, Muhammad; Mateo, Juan L.; Johnston, Amal J.

    2016-01-01

    methylation exclusively in the apomicts. Variability in stress and transcriptional response in a diploid apomict, which is geographically distinct from the triploid apomict, pinpoints both common and independent features of apomixis evolution. Our study provides a molecular frame-work to investigate how the adaptive traits associated with the evolutionary history of apomicts co-adapted with meiotic gene deregulation at early developmental stage, in order to predate meiotic recombination, which otherwise is thought to be favorable in stress and low-fitness conditions. PMID:27833618

  17. Meiotic sex chromosome inactivation in Drosophila.

    PubMed

    Vibranovski, Maria D

    2014-01-01

    In several different taxa, there is indubitable evidence of transcriptional silencing of the X and Y chromosomes in male meiotic cells of spermatogenesis. However, the so called meiotic sex chromosome inactivation (MSCI) has been recently a hot bed for debate in Drosophila melanogaster. This review covers cytological and genetic observations, data from transgenic constructs with testis-specific promoters, global expression profiles obtained from mutant, wild-type, larvae and adult testes as well as from cells of different stages of spermatogenesis. There is no dispute on that D. melanogaster spermatogenesis presents a down-regulation of X chromosome that does not result from the lack of dosage compensation. However, the issue is currently focused on the level of reduction of X-linked expression, the precise time it occurs and how many genes are affected. The deep examination of data and experiments in this review exposes the limitations intrinsic to the methods of studying MSCI in D. melanogaster. The current methods do not allow us to affirm anything else than the X chromosome down-regulation in meiosis (MSCI). Therefore, conclusion about level, degree or precise timing is inadequate until new approaches are implemented to know the details of MSCI or other processes involved for D. melanogaster model.

  18. Meiotic Sex Chromosome Inactivation in Drosophila

    PubMed Central

    Vibranovski, Maria D.

    2014-01-01

    In several different taxa, there is indubitable evidence of transcriptional silencing of the X and Y chromosomes in male meiotic cells of spermatogenesis. However, the so called meiotic sex chromosome inactivation (MSCI) has been recently a hot bed for debate in Drosophila melanogaster. This review covers cytological and genetic observations, data from transgenic constructs with testis-specific promoters, global expression profiles obtained from mutant, wild-type, larvae and adult testes as well as from cells of different stages of spermatogenesis. There is no dispute on that D. melanogaster spermatogenesis presents a down-regulation of X chromosome that does not result from the lack of dosage compensation. However, the issue is currently focused on the level of reduction of X-linked expression, the precise time it occurs and how many genes are affected. The deep examination of data and experiments in this review exposes the limitations intrinsic to the methods of studying MSCI in D. melanogaster. The current methods do not allow us to affirm anything else than the X chromosome down-regulation in meiosis (MSCI). Therefore, conclusion about level, degree or precise timing is inadequate until new approaches are implemented to know the details of MSCI or other processes involved for D. melanogaster model. PMID:25057326

  19. Ultraconfined Plasmonic Hotspots Inside Graphene Nanobubbles.

    PubMed

    Fei, Z; Foley, J J; Gannett, W; Liu, M K; Dai, S; Ni, G X; Zettl, A; Fogler, M M; Wiederrecht, G P; Gray, S K; Basov, D N

    2016-12-14

    We report on a nanoinfrared (IR) imaging study of ultraconfined plasmonic hotspots inside graphene nanobubbles formed in graphene/hexagonal boron nitride (hBN) heterostructures. The volume of these plasmonic hotspots is more than one-million-times smaller than what could be achieved by free-space IR photons, and their real-space distributions are controlled by the sizes and shapes of the nanobubbles. Theoretical analysis indicates that the observed plasmonic hotspots are formed due to a significant increase of the local plasmon wavelength in the nanobubble regions. Such an increase is attributed to the high sensitivity of graphene plasmons to its dielectric environment. Our work presents a novel scheme for plasmonic hotspot formation and sheds light on future applications of graphene nanobubbles for plasmon-enhanced IR spectroscopy.

  20. Locally, meiotic double-strand breaks targeted by Gal4BD-Spo11 occur at discrete sites with a sequence preference.

    PubMed

    Murakami, Hajime; Nicolas, Alain

    2009-07-01

    Meiotic recombination is initiated by DNA double-strand breaks (DSBs) that are catalyzed by the type II topoisomerase-like Spo11 protein. Locally, at recombination hot spots, Spo11 introduces DSBs at multiple positions within approximately 75 to 250 bp, corresponding to accessible regions of the chromatin. The molecular basis of this multiplicity of cleavage positions, observed in a population of meiotic cells, remains elusive. To address this issue, we have examined the properties of the Gal4BD-Spo11 fusion protein, which targets meiotic DSBs to regions with Gal4 binding sites (UAS). By single-nucleotide resolution mapping of targeted DSBs, we found that DSB formation was restricted to discrete sites approximately 20 nucleotides from the UAS, defining a "DSB targeting window." Thus, the multiplicity of cleavage positions at natural Spo11 hot spots likely represents binding of Spo11 to different distinct sites within the accessible DNA region in each different meiotic cell. Further, we showed that mutations in the Spo11 moiety affected the DSB distribution in the DSB targeting window and that mutations in the DNA at the Spo11 cleavage site affected DSB position. These results demonstrate that Spo11 itself has sequence preference and contributes to the choice of DSB positions.

  1. HotSpot Health Physics Codes

    SciTech Connect

    Homann, S. G.

    2013-04-18

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating insidents involving redioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  2. Canopy hot-spot as crop identifier

    SciTech Connect

    Gerstl, S.A.W.; Simmer, C.; Powers, B.J.

    1986-05-01

    Illuminating any reflective rough or structured surface by a directional light source results in an angular reflectance distribution that shows a narrow peak in the direction of retro-reflection. This is called the Heiligenschein or hot-spot of vegetation canopies and is caused by mutual shading of leaves. The angular intensity distribution of the hot-spot, its brightness and slope, are therefore indicators of the plant's geometry. We propose the use of hot-spot characteristics as crop identifiers in satellite remote sensing because the canopy hot-spot carries information about plant stand architecture that is more distinctive for different plant species than, for instance, their spectral reflectance characteristics. A simple three-dimensional Monte Carlo/ray tracing model and an analytic two-dimensional model are developed to estimate the angular distribution of the hot-spot as a function of the size of the plant leaves. The results show that the brightness-distribution and slope of the hot-spot change distinctively for different leaf sizes indicating a much more peaked maximum for the smaller leaves.

  3. Arabidopsis PTD is required for type I crossover formation and affects recombination frequency in two different chromosomal regions.

    PubMed

    Lu, Pingli; Wijeratne, Asela J; Wang, Zhengjia; Copenhaver, Gregory P; Ma, Hong

    2014-03-20

    In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSPO11-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors of Atspo11-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSPO11-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck ptd and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd-2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.

  4. Fast dual graph-based hotspot detection

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.; Park, Chul-Hong; Xu, Xu

    2006-10-01

    As advanced technologies in wafer manufacturing push patterning processes toward lower-k I subwavelength printing, lithography for mass production potentially suffers from decreased patterning fidelity. This results in generation of many hotspots, which are actual device patterns with relatively large CD and image errors with respect to on-wafer targets. Hotspots can be formed under a variety of conditions such as the original design being unfriendly to the RET that is applied, unanticipated pattern combinations in rule-based OPC, or inaccuracies in model-based OPC. When these hotspots fall on locations that are critical to the electrical performance of a device, device performance and parametric yield can be significantly degraded. Previous rule-based hotspot detection methods suffer from long runtimes for complicated patterns. Also, the model generation process that captures process variation within simulation-based approaches brings significant overheads in terms of validation, measurement and parameter calibration. In this paper, we first describe a novel detection algorithm for hotspots induced by lithographic uncertainty. Our goal is to rapidly detect all lithographic hotspots without significant accuracy degradation. In other words, we propose a filtering method: as long as there are no "false negatives", i.e., we successfully have a superset of actual hotspots, then our method can dramatically reduce the layout area for golden hotspot analysis. The first step of our hotspot detection algorithm is to build a layout graph which reflects pattern-related CD variation. Given a layout L, the layout graph G = (V, E c union E p) consists of nodes V, corner edges E c and proximity edges E p. A face in the layout graph includes several close features and the edges between them. Edge weight can be calculated from a traditional 2-D model or a lookup table. We then apply a three-level hotspot detection: (1) edge-level detection finds the hotspot caused by two close

  5. Chromosomal context dependence of a eukaryotic recombinational hot spot.

    PubMed Central

    Ponticelli, A S; Smith, G R

    1992-01-01

    The single base-pair mutation M26 in the ade6 gene of the fission yeast Schizosaccharomyces pombe creates a hot spot for meiotic homologous recombination. When DNA fragments containing M26 and up to 3.0 kilobases of surrounding DNA were moved to the ura4 gene or to a multicopy plasmid, M26 had no detectable hot spot activity. Our results indicate that nucleotide sequences at least 1 kilobase away from M26 are required for M26 hot spot activity and suggest that, as for transcriptional promoters, a second site or proper chromatin structure is required for activation of this eukaryotic recombinational hot spot. We discuss the implications of these results for studies of other meiotic recombinational hot spots and for gene targeting. PMID:1729693

  6. The homologous recombination system of Ustilago maydis.

    PubMed

    Holloman, William K; Schirawski, Jan; Holliday, Robin

    2008-08-01

    Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of U. maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins.

  7. The homologous recombination system of Ustilago maydis

    PubMed Central

    Holloman, William K.; Schirawski, Jan; Holliday, Robin

    2008-01-01

    Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of Ustilago maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins. PMID:18502156

  8. Variation and Evolution of the Meiotic Requirement for Crossing Over in Mammals

    PubMed Central

    2017-01-01

    The segregation of homologous chromosomes at the first meiotic division is dependent on the presence of at least one well-positioned crossover per chromosome. In some mammalian species, however, the genomic distribution of crossovers is consistent with a more stringent baseline requirement of one crossover per chromosome arm. Given that the meiotic requirement for crossing over defines the minimum frequency of recombination necessary for the production of viable gametes, determining the chromosomal scale of this constraint is essential for defining crossover profiles predisposed to aneuploidy and understanding the parameters that shape patterns of recombination rate evolution across species. Here, I use cytogenetic methods for in situ imaging of crossovers in karyotypically diverse house mice (Mus musculus domesticus) and voles (genus Microtus) to test how chromosome number and configuration constrain the distribution of crossovers in a genome. I show that the global distribution of crossovers in house mice is thresholded by a minimum of one crossover per chromosome arm, whereas the crossover landscape in voles is defined by a more relaxed requirement of one crossover per chromosome. I extend these findings in an evolutionary metaanalysis of published recombination and karyotype data for 112 mammalian species and demonstrate that the physical scale of the genomic crossover distribution has undergone multiple independent shifts from one crossover per chromosome arm to one per chromosome during mammalian evolution. Together, these results indicate that the chromosomal scale constraint on crossover rates is itself a trait that evolves among species, a finding that casts light on an important source of crossover rate variation in mammals. PMID:27838628

  9. Variation and Evolution of the Meiotic Requirement for Crossing Over in Mammals.

    PubMed

    Dumont, Beth L

    2017-01-01

    The segregation of homologous chromosomes at the first meiotic division is dependent on the presence of at least one well-positioned crossover per chromosome. In some mammalian species, however, the genomic distribution of crossovers is consistent with a more stringent baseline requirement of one crossover per chromosome arm. Given that the meiotic requirement for crossing over defines the minimum frequency of recombination necessary for the production of viable gametes, determining the chromosomal scale of this constraint is essential for defining crossover profiles predisposed to aneuploidy and understanding the parameters that shape patterns of recombination rate evolution across species. Here, I use cytogenetic methods for in situ imaging of crossovers in karyotypically diverse house mice (Mus musculus domesticus) and voles (genus Microtus) to test how chromosome number and configuration constrain the distribution of crossovers in a genome. I show that the global distribution of crossovers in house mice is thresholded by a minimum of one crossover per chromosome arm, whereas the crossover landscape in voles is defined by a more relaxed requirement of one crossover per chromosome. I extend these findings in an evolutionary metaanalysis of published recombination and karyotype data for 112 mammalian species and demonstrate that the physical scale of the genomic crossover distribution has undergone multiple independent shifts from one crossover per chromosome arm to one per chromosome during mammalian evolution. Together, these results indicate that the chromosomal scale constraint on crossover rates is itself a trait that evolves among species, a finding that casts light on an important source of crossover rate variation in mammals.

  10. Meiotic behavior of Brachiaria decumbens hybrids.

    PubMed

    Souza, V F; Pagliarini, M S; Valle, C B; Bione, N C P; Menon, M U; Mendes-Bonato, A B

    2015-10-21

    Brachiaria decumbens is a forage grass of inestimable value for livestock in Brazil due to its production of good quality forage even when planted on acid and poor soils, although it is susceptible to pasture spittlebugs. Only one cultivar, cv. Basilisk, has been used as the pollen donor in crosses with Brachiaria ruziziensis since 1988 at Embrapa Gado de Corte Research Center. Breeding within the species only became possible from 2009 when sexual accessions were successfully tetraploidized using colchicine. Three sexual genotypes were obtained and hybridization within B. decumbens was finally achieved. Here, we evaluated microspore tetrads using conventional cytology and found meiotic indexes above 78% for all three female genitors (cD24-2, cD24-27, cD24-45), but a low meiotic index (<22%) in the natural apomictic genitor D62 (cv. Basilisk) and in 49 hybrids. Analysis of the relationship between abnormal tetrad frequency and non-viable pollen grains yielded a highly significant Pearson correlation coefficient. The t-test proved significant for the progeny of cD24-45 x D62, with lower abnormalities and pollen sterility when compared to the other two progenies resulting from cD24-2 and cD24-27 crossed to D62, but these two did not differ. Apomictic hybrids such as S036 and X030 with low pollen sterility have the potential for use in cultivar development, whereas the sexual hybrids T012, X072, and X078 might be of use as female genitors in polycross blocks if they display good agronomic traits.

  11. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution.

    PubMed

    Blackmon, Heath; Demuth, Jeffery P

    2015-09-01

    Loss of the Y-chromosome is a common feature of species with chromosomal sex determination. However, our understanding of why some lineages frequently lose Y-chromosomes while others do not is limited. The fragile Y hypothesis proposes that in species with chiasmatic meiosis the rate of Y-chromosome aneuploidy and the size of the recombining region have a negative correlation. The fragile Y hypothesis provides a number of novel insights not possible under traditional models. Specifically, increased rates of Y aneuploidy may impose positive selection for (i) gene movement off the Y; (ii) translocations and fusions which expand the recombining region; and (iii) alternative meiotic segregation mechanisms (achiasmatic or asynaptic). These insights as well as existing evidence for the frequency of Y-chromosome aneuploidy raise doubt about the prospects for long-term retention of the human Y-chromosome despite recent evidence for stable gene content in older non-recombining regions.

  12. Coevolutionary dynamics of polyandry and sex-linked meiotic drive.

    PubMed

    Holman, Luke; Price, Thomas A R; Wedell, Nina; Kokko, Hanna

    2015-03-01

    Segregation distorters located on sex chromosomes are predicted to sweep to fixation and cause extinction via a shortage of one sex, but in nature they are often found at low, stable frequencies. One potential resolution to this longstanding puzzle involves female multiple mating (polyandry). Because many meiotic drivers severely reduce the sperm competitive ability of their male carriers, females are predicted to evolve more frequent polyandry and thereby promote sperm competition when a meiotic driver invades. Consequently, the driving chromosome's relative fitness should decline, halting or reversing its spread. We used formal modeling to show that this initially appealing hypothesis cannot resolve the puzzle alone: other selective pressures (e.g., low fitness of drive homozygotes) are required to establish a stable meiotic drive polymorphism. However, polyandry and meiotic drive can strongly affect one another's frequency, and polyandrous populations may be resistant to the invasion of rare drive mutants.

  13. Evolutionary hotspots in the Mojave Desert

    USGS Publications Warehouse

    Vandergast, Amy G.; Inman, Richard D.; Barr, Kelly R.; Nussear, Kenneth E.; Esque, Todd C.; Hathaway, Stacie A.; Wood, Dustin A.; Medica, Philip A.; Breinholt, Jesse W.; Stephen, Catherine L.; Gottscho, Andrew D.; Marks, Sharyn B.; Jennings, W. Bryan; Fisher, Robert N.

    2013-01-01

    Genetic diversity within species provides the raw material for adaptation and evolution. Just as regions of high species diversity are conservation targets, identifying regions containing high genetic diversity and divergence within and among populations may be important to protect future evolutionary potential. When multiple co-distributed species show spatial overlap in high genetic diversity and divergence, these regions can be considered evolutionary hotspots. We mapped spatial population genetic structure for 17 animal species across the Mojave Desert, USA. We analyzed these in concurrence and located 10 regions of high genetic diversity, divergence or both among species. These were mainly concentrated along the western and southern boundaries where ecotones between mountain, grassland and desert habitat are prevalent, and along the Colorado River. We evaluated the extent to which these hotspots overlapped protected lands and utility-scale renewable energy development projects of the Bureau of Land Management. While 30–40% of the total hotspot area was categorized as protected, between 3–7% overlapped with proposed renewable energy project footprints, and up to 17% overlapped with project footprints combined with transmission corridors. Overlap of evolutionary hotspots with renewable energy development mainly occurred in 6 of the 10 identified hotspots. Resulting GIS-based maps can be incorporated into ongoing landscape planning efforts and highlight specific regions where further investigation of impacts to population persistence and genetic connectivity may be warranted.

  14. Predator diversity hotspots in the blue ocean.

    PubMed

    Worm, Boris; Lotze, Heike K; Myers, Ransom A

    2003-08-19

    Concentrations of biodiversity, or hotspots, represent conservation priorities in terrestrial ecosystems but remain largely unexplored in marine habitats. In the open ocean, many large predators such as tunas, sharks, billfishes, and sea turtles are of current conservation concern because of their vulnerability to overfishing and ecosystem role. Here we use scientific-observer records from pelagic longline fisheries in the Atlantic and Pacific Oceans to show that oceanic predators concentrate in distinct diversity hotspots. Predator diversity consistently peaks at intermediate latitudes (20-30 degrees N and S), where tropical and temperate species ranges overlap. Individual hotspots are found close to prominent habitat features such as reefs, shelf breaks, or seamounts and often coincide with zooplankton and coral reef hotspots. Closed-area models in the northwest Atlantic predict that protection of hotspots outperforms other area closures in safeguarding threatened pelagic predators from ecological extinction. We conclude that the seemingly monotonous landscape of the open ocean shows rich structure in species diversity and that these features should be used to focus future conservation efforts.

  15. Limited Latitudinal Motion of the Louisville Hotspot

    NASA Astrophysics Data System (ADS)

    Koppers, A. A.; Yamazaki, T.; Geldmacher, J.; Gee, J. S.; Pressling, N.; Hoshi, H.

    2012-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 330 drilled five different guyots in the Louisville Seamount Trail ranging in age between 80 and 50 Ma. Two of the primary goals of this expedition were to attain high-quality estimates of the Louisville hotspot paleolatitudes using paleomagnetic measurements and to improve our knowledge of the overall age progression using high-precision 40Ar/39Ar geochronology. With these data we can provide the unique record of the paleolatitude shift (or lack thereof) of the Louisville mantle plume and compare it with the ~15° paleolatitude shift observed for seamounts in the Hawaiian-Emperor Seamount Trail over the same time period. We show that the Louisville hotspot remained within ~3° of its present-day ~51°S latitude between 70 and 50 Ma, although we cannot discount more significant southward motion since 74 Ma. Our new paleolatitude and age data suggest there has been significant inter-hotspot motion between the Hawaiian and Louisville hotspots in this time interval. We therefore conclude that the Louisville and Hawaiian hotspots moved independently and not as part of a large-scale mantle wind.

  16. The Time Scale of Recombination Rate Evolution in Great Apes.

    PubMed

    Stevison, Laurie S; Woerner, August E; Kidd, Jeffrey M; Kelley, Joanna L; Veeramah, Krishna R; McManus, Kimberly F; Bustamante, Carlos D; Hammer, Michael F; Wall, Jeffrey D

    2016-04-01

    We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives.

  17. Control of Oocyte Growth and Meiotic Maturation in C. elegans

    PubMed Central

    Kim, Seongseop; Spike, Caroline; Greenstein, David

    2013-01-01

    In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. C. elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gαs-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition. PMID:22872481

  18. Meiotic behavior as a selection tool in silage corn breeding.

    PubMed

    Souza, V F; Pagliarini, M S; Scapim, C A; Rodovalho, M; Faria, M V

    2010-10-19

    In breeding programs, commercial hybrids are frequently used as a source of inbred lines to obtain new hybrids. Considering that maize production is dependent on viable gametes, the selection of populations to obtain inbred lines with high meiotic stability could contribute to the formation of new silage corn hybrids adapted to specific region. We evaluated the meiotic stability of five commercial hybrids of silage corn used in southern Brazil with conventional squashing methods. All of them showed meiotic abnormalities. Some abnormalities, such as abnormal chromosome segregation and absence of cytokinesis, occurred in all the genotypes, while others, including cytomixis and abnormal spindle orientation, were found only in some genotypes. The hybrid SG6010 had the lowest mean frequency of abnormal cells (21.27%); the highest frequency was found in the hybrid P30K64 (44.43%). However, the frequency of abnormal meiotic products was much lower in most genotypes, ranging from 7.63% in the hybrid CD304 to 43.86% in Garra. Taking into account the percentage of abnormal meiotic products and, hence, meiotic stability, only the hybrids CD304, P30K64, SG6010, and P30F53 are recommended to be retained in the breeding program to obtain inbred lines to create new hybrids.

  19. Hybrid hotspot detection using regression model and lithography simulation

    NASA Astrophysics Data System (ADS)

    Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki; Pan, David Z.

    2016-03-01

    As minimum feature sizes shrink, unexpected hotspots appear on wafers. Therefore, it is important to detect and fix these hotspots at design stage to reduce development time and manufacturing cost. Currently, as the most accurate approach, lithography simulation is widely used to detect such hotspots. However, it is known to be time-consuming. This paper proposes a novel aerial image synthesizing method using regression and minimum lithography simulation for only hotspot detection. Experimental results show hotspot detection on the proposed method is equivalent compared with the results on the conventional hotspot detection method which uses only lithography simulation with much less computational cost.

  20. High Resolution Analysis of Meiotic Chromosome Structure and Behaviour in Barley (Hordeum vulgare L.)

    PubMed Central

    Phillips, Dylan; Nibau, Candida; Wnetrzak, Joanna; Jenkins, Glyn

    2012-01-01

    Reciprocal crossing over and independent assortment of chromosomes during meiosis generate most of the genetic variation in sexually reproducing organisms. In barley, crossovers are confined primarily to distal regions of the chromosomes, which means that a substantial proportion of the genes of this crop rarely, if ever, engage in recombination events. There is potentially much to be gained by redistributing crossovers to more proximal regions, but our ability to achieve this is dependent upon a far better understanding of meiosis in this species. This study explores the meiotic process by describing with unprecedented resolution the early behaviour of chromosomal domains, the progression of synapsis and the structure of the synaptonemal complex (SC). Using a combination of molecular cytogenetics and advanced fluorescence imaging, we show for the first time in this species that non-homologous centromeres are coupled prior to synapsis. We demonstrate that at early meiotic prophase the loading of the SC-associated structural protein ASY1, the cluster of telomeres, and distal synaptic initiation sites occupy the same polarised region of the nucleus. Through the use of advanced 3D image analysis, we show that synapsis is driven predominantly from the telomeres, and that new synaptic initiation sites arise during zygotene. In addition, we identified two different SC configurations through the use of super-resolution 3D structured illumination microscopy (3D-SIM). PMID:22761818

  1. Quantitative study on guinea pig spermatogenesis shows a relative high percentage of early meiotic prophase stages.

    PubMed

    Rodríguez, Rosana E; Wettstein, Rodolfo M

    2004-05-01

    Meiosis is the special double cellular division characterized by the reduction of chromosome number of the final products and recombination of genetic information present in maternal and paternal homologous chromosomes. Early stages of meiotic prophase, leptotene and zygotene (L/Z), are functionally important since homologous chromosomes recognize, align, and pair during them. They are poorly represented in the seminiferous tubules of mammalian species, and this fact turns studies focused on these stages difficult to perform. As a consequence, the molecular bases of these important events are so far poorly known and understood in higher eukaryotes. The purpose of this work was to provide an advantageous experimental mammalian model (with a reasonable number of cells) for biochemical and molecular analysis of early meiotic prophase stages. Here, we present the results of our quantitative study on testes material of both immature and adult guinea pig specimens (Cavia porcellus). We show that their seminiferous tubules contain a comparatively high percentage of L/Z spermatocytes, as well as a very conspicuous chromosome bouquet at the L/Z transition, which points out this species as a well-suited one to address studies on such stages in mammals.

  2. Kdm5/Lid Regulates Chromosome Architecture in Meiotic Prophase I Independently of Its Histone Demethylase Activity

    PubMed Central

    Zhaunova, Liudmila; Ohkura, Hiroyuki; Breuer, Manuel

    2016-01-01

    During prophase of the first meiotic division (prophase I), chromatin dynamically reorganises to recombine and prepare for chromosome segregation. Histone modifying enzymes are major regulators of chromatin structure, but our knowledge of their roles in prophase I is still limited. Here we report on crucial roles of Kdm5/Lid, one of two histone demethylases in Drosophila that remove one of the trimethyl groups at Lys4 of Histone 3 (H3K4me3). In the absence of Kdm5/Lid, the synaptonemal complex was only partially formed and failed to be maintained along chromosome arms, while localisation of its components at centromeres was unaffected. Kdm5/Lid was also required for karyosome formation and homologous centromere pairing in prophase I. Although loss of Kdm5/Lid dramatically increased the level of H3K4me3 in oocytes, catalytically inactive Kdm5/Lid can rescue the above cytological defects. Therefore Kdm5/Lid controls chromatin architecture in meiotic prophase I oocytes independently of its demethylase activity. PMID:27494704

  3. Kdm5/Lid Regulates Chromosome Architecture in Meiotic Prophase I Independently of Its Histone Demethylase Activity.

    PubMed

    Zhaunova, Liudmila; Ohkura, Hiroyuki; Breuer, Manuel

    2016-08-01

    During prophase of the first meiotic division (prophase I), chromatin dynamically reorganises to recombine and prepare for chromosome segregation. Histone modifying enzymes are major regulators of chromatin structure, but our knowledge of their roles in prophase I is still limited. Here we report on crucial roles of Kdm5/Lid, one of two histone demethylases in Drosophila that remove one of the trimethyl groups at Lys4 of Histone 3 (H3K4me3). In the absence of Kdm5/Lid, the synaptonemal complex was only partially formed and failed to be maintained along chromosome arms, while localisation of its components at centromeres was unaffected. Kdm5/Lid was also required for karyosome formation and homologous centromere pairing in prophase I. Although loss of Kdm5/Lid dramatically increased the level of H3K4me3 in oocytes, catalytically inactive Kdm5/Lid can rescue the above cytological defects. Therefore Kdm5/Lid controls chromatin architecture in meiotic prophase I oocytes independently of its demethylase activity.

  4. Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses[W][OPEN

    PubMed Central

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-01-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616

  5. A hotspot model for leaf canopies

    NASA Technical Reports Server (NTRS)

    Jupp, David L. B.; Strahler, Alan H.

    1991-01-01

    The hotspot effect, which provides important information about canopy structure, is modeled using general principles of environmental physics as driven by parameters of interest in remote sensing, such as leaf size, leaf shape, leaf area index, and leaf angle distribution. Specific examples are derived for canopies of horizontal leaves. The hotspot effect is implemented within the framework of the model developed by Suits (1972) for a canopy of leaves to illustrate what might occur in an agricultural crop. Because the hotspot effect arises from very basic geometrical principles and is scale-free, it occurs similarly in woodlands, forests, crops, rough soil surfaces, and clouds. The scaling principles advanced are also significant factors in the production of image spatial and angular variance and covariance which can be used to assess land cover structure through remote sensing.

  6. Plate tectonics and hotspots: the third dimension.

    PubMed

    Anderson, D L; Tanimoto, T; Zhang, Y S

    1992-06-19

    High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons.

  7. Hotspot Selective Preference of the Chimeric Sequences Formed in Multiple Displacement Amplification

    PubMed Central

    Tu, Jing; Lu, Na; Duan, Mengqin; Huang, Mengting; Chen, Liang; Li, Junji; Guo, Jing; Lu, Zuhong

    2017-01-01

    Multiple displacement amplification (MDA) is considered to be a conventional approach to comprehensive amplification from low input DNA. The chimeric reads generated in MDA lead to severe disruption in some studies, including those focusing on heterogeneity, structural variation, and genetic recombination. Meanwhile, the generation of by-products gives a new approach to gain insights into the reaction process of φ29 polymerase. Here, we analyzed 36.7 million chimeras and screened 196 billion chimeric hotspots in the human genome, as well as evaluating the hotspot selective preference of chimeras. No significant preference was captured in the distributions of chimeras and hotspots among chromosomes. Hotspots with overlaps for 12–13 nucleotides (nt) were most likely to be selected as templates in chimera generation. Meanwhile, a regularly selective preference was noticed in overlap GC content. The preferences in overlap length and GC content was shown to be pertinent to the sequence denaturation temperature, which pointed out the optimization direction for reducing chimeras. Distance preference between two segments of chimeras was 80–280 nt. The analysis is beneficial for reducing the chimeras in MDA, and the characterization of MDA chimeras is helpful in distinguishing MDA chimeras from chimeric sequences caused by disease. PMID:28245591

  8. Mismatch repair proteins: key regulators of genetic recombination.

    PubMed

    Surtees, J A; Argueso, J L; Alani, E

    2004-01-01

    Mismatch repair (MMR) systems are central to maintaining genome stability in prokaryotes and eukaryotes. MMR proteins play a fundamental role in avoiding mutations, primarily by removing misincorporation errors that occur during DNA replication. MMR proteins also act during genetic recombination in steps that include repairing mismatches in heteroduplex DNA, modulating meiotic crossover control, removing 3' non-homologous tails during double-strand break repair, and preventing recombination between divergent sequences. In this review we will, first, discuss roles for MMR proteins in repairing mismatches that occur during recombination, particularly during meiosis. We will also explore how studying this process has helped to refine models of double-strand break repair, and particularly to our understanding of gene conversion gradients. Second, we will examine the role of MMR proteins in repressing homeologous recombination, i.e. recombination between divergent sequences. We will also compare the requirements for MMR proteins in preventing homeologous recombination to the requirements for these proteins in mismatch repair.

  9. Using crossover breakpoints in recombinant inbred lines to identify quantitative trait loci controlling the global recombination frequency.

    PubMed

    Esch, Elisabeth; Szymaniak, Jessica M; Yates, Heather; Pawlowski, Wojciech P; Buckler, Edward S

    2007-11-01

    Recombination is a crucial component of evolution and breeding, producing new genetic combinations on which selection can act. Rates of recombination vary tremendously, not only between species but also within species and for specific chromosomal segments. In this study, by examining recombination events captured in recombinant inbred mapping populations previously created for maize, wheat, Arabidopsis, and mouse, we demonstrate that substantial variation exists for genomewide crossover rates in both outcrossed and inbred plant and animal species. We also identify quantitative trait loci (QTL) that control this variation. The method that we developed and employed here holds promise for elucidating factors that regulate meiotic recombination and for creation of hyperrecombinogenic lines, which can help overcome limited recombination that hampers breeding progress.

  10. Meiotic behaviour in three interspecific three-way hybrids between Brachiaria ruziziensis and B. brizantha (Poaceae: Paniceae).

    PubMed

    Adamowski, Eleniza de Victor; Pagliarini, Maria Suely; do Valle, Cacilda Borges

    2008-04-01

    The meiotic behaviour of three three-way interspecific promising hybrids (H17, H27, and H34) was evaluated. These hybrids resulted from the crosses between B. ruziziensis X B. brizantha and crossed to another B. brizantha. Two half-sib hybrids (H27 and H34) presented an aneuploid chromosome number (2n = 4x = 33), whereas hybrid H17 was a tetraploid (2n = 4x = 36), as expected. Chromosome paired predominantly as multivalents suggesting that genetic recombination and introgression of specific target genes from B. brizantha into B. ruziziensis can be expected. Arrangement of parental genomes in distinct metaphase plates was observed in H27 and H34, which have different male genitors. Hybrids H17 and H34 have the same male genitor, but did not display this abnormality. In H17, abnormalities were more frequent from anaphase II, when many laggard chromosomes appeared, suggesting that each genome presented a different genetic control for meiotic phase timing. Despite the phylogenetic proximity among these two species, these three hybrids presented a high frequency of meiotic abnormalities, mainly those related to irregular chromosome segregation typical of polyploids, H34, 69.1%; H27, 56.1% and H17, 44.9%. From the accumulated results obtained through cytological studies in Brachiaria hybrids, it is evident that cytogenetical analysis is of prime importance in determining which genotypes can continue in the process of cultivar development and which can be successfully used in the breeding. Hybrids with high frequency of meiotic abnormalities can seriously compromise seed production, a key trait in assuring adoption of a new apomictic cultivar of Brachiaria for pasture formation.

  11. Recombination analysis and structure prediction show correlation between breakpoint clusters and RNA hairpins in the pol gene of human immunodeficiency virus type 1 unique recombinant forms.

    PubMed

    Galli, Andrea; Lai, Alessia; Corvasce, Stefano; Saladini, Francesco; Riva, Chiara; Dehò, Lorenzo; Caramma, Ilaria; Franzetti, Marco; Romano, Laura; Galli, Massimo; Zazzi, Maurizio; Balotta, Claudia

    2008-12-01

    Recombination is recognized as a primary force in human immunodeficiency virus type 1 (HIV-1) evolution, increasing viral diversity through reshuffling of genomic portions. The strand-switching activity of reverse transcriptase is required to complete HIV-1 replication and can occur randomly throughout the genome, leading to viral recombination. Some recombination hotspots have been identified and found to correlate with RNA structure or sequence features. The aim of this study was to evaluate the presence of recombination hotspots in the pol gene of HIV-1 and to assess their correlation with the underlying RNA structure. Analysis of the recombination pattern and breakpoint distribution in a group of unique recombinant forms (URFs) detected two recombination hotspots in the pol region. Two stable and conserved hairpins were consistently predicted corresponding to the identified hotspots using six different RNA-folding algorithms on the URF parental strains. These findings suggest that such hairpins may play a role in the higher recombination rates detected at these positions.

  12. Meiotic pairing and gene expression disturbance in germ cells from an infertile boar with a balanced reciprocal autosome-autosome translocation.

    PubMed

    Barasc, Harmonie; Congras, Annabelle; Mary, Nicolas; Trouilh, Lidwine; Marquet, Valentine; Ferchaud, Stéphane; Raymond-Letron, Isabelle; Calgaro, Anne; Loustau-Dudez, Anne-Marie; Mouney-Bonnet, Nathalie; Acloque, Hervé; Ducos, Alain; Pinton, Alain

    2016-12-01

    Individuals carrying balanced constitutional reciprocal translocations generally have a normal phenotype, but often present reproductive disorders. The aim of our research was to analyze the meiotic process in an oligoasthenoteratospermic boar carrying an asymmetric reciprocal translocation involving chromosomes 1 and 14. Different multivalent structures (quadrivalent and trivalent plus univalent) were identified during chromosome pairing analysis. Some of these multivalents were characterized by the presence of unpaired autosomal segments with histone γH2AX accumulation sometimes associated with the XY body. Gene expression in spermatocytes was studied by RNA-DNA-FISH and microarray-based testis transcriptome analysis. Our results revealed a decrease in gene expression for chromosomes 1 and 14 and an up-regulated expression of X-chromosome genes for the translocated boar compared with normal individuals. We hypothesized that the observed meiotic arrest and reproductive failure in this boar might be due to silencing of crucial autosomal genes (MSUC) and disturbance of meiotic sex chromosome inactivation (MSCI). Further analysis revealed abnormal meiotic recombination (frequency and distribution) and the production of a high rate of unbalanced spermatozoa.

  13. Genetic recombination is directed away from functional genomic elements in mice.

    PubMed

    Brick, Kevin; Smagulova, Fatima; Khil, Pavel; Camerini-Otero, R Daniel; Petukhova, Galina V

    2012-05-13

    Genetic recombination occurs during meiosis, the key developmental programme of gametogenesis. Recombination in mammals has been recently linked to the activity of a histone H3 methyltransferase, PR domain containing 9 (PRDM9), the product of the only known speciation-associated gene in mammals. PRDM9 is thought to determine the preferred recombination sites--recombination hotspots--through sequence-specific binding of its highly polymorphic multi-Zn-finger domain. Nevertheless, Prdm9 knockout mice are proficient at initiating recombination. Here we map and analyse the genome-wide distribution of recombination initiation sites in Prdm9 knockout mice and in two mouse strains with different Prdm9 alleles and their F(1) hybrid. We show that PRDM9 determines the positions of practically all hotspots in the mouse genome, with the exception of the pseudo-autosomal region (PAR)--the only area of the genome that undergoes recombination in 100% of cells. Surprisingly, hotspots are still observed in Prdm9 knockout mice, and as in wild type, these hotspots are found at H3 lysine 4 (H3K4) trimethylation marks. However, in the absence of PRDM9, most recombination is initiated at promoters and at other sites of PRDM9-independent H3K4 trimethylation. Such sites are rarely targeted in wild-type mice, indicating an unexpected role of the PRDM9 protein in sequestering the recombination machinery away from gene-promoter regions and other functional genomic elements.

  14. Forecasting Hotspots-A Predictive Analytics Approach.

    PubMed

    Maciejewski, R; Hafen, R; Rudolph, S; Larew, S G; Mitchell, M A; Cleveland, W S; Ebert, D S

    2011-04-01

    Current visual analytics systems provide users with the means to explore trends in their data. Linked views and interactive displays provide insight into correlations among people, events, and places in space and time. Analysts search for events of interest through statistical tools linked to visual displays, drill down into the data, and form hypotheses based upon the available information. However, current systems stop short of predicting events. In spatiotemporal data, analysts are searching for regions of space and time with unusually high incidences of events (hotspots). In the cases where hotspots are found, analysts would like to predict how these regions may grow in order to plan resource allocation and preventative measures. Furthermore, analysts would also like to predict where future hotspots may occur. To facilitate such forecasting, we have created a predictive visual analytics toolkit that provides analysts with linked spatiotemporal and statistical analytic views. Our system models spatiotemporal events through the combination of kernel density estimation for event distribution and seasonal trend decomposition by loess smoothing for temporal predictions. We provide analysts with estimates of error in our modeling, along with spatial and temporal alerts to indicate the occurrence of statistically significant hotspots. Spatial data are distributed based on a modeling of previous event locations, thereby maintaining a temporal coherence with past events. Such tools allow analysts to perform real-time hypothesis testing, plan intervention strategies, and allocate resources to correspond to perceived threats.

  15. Hidden Hotspot Track Beneath Eastern United States

    NASA Astrophysics Data System (ADS)

    Helmberger, D. V.; Chu, R.; Leng, W.; Gurnis, M.

    2012-12-01

    More than two thirds of surface hotspots associated with volcanism can be explained by the interaction between a moving plate and deep-seated mantle plumes. Most of these hotspot tracks are observed on oceanic (Hawaii) or thin continental (Yellowstone) lithosphere. This poses the question that there could be many more hotspot tracks beneath old continental regions with thick lithospheres than suggested by the record of surface tracks. In particular, recent dating studies of kimberlites embedded throughout the North American Craton suggest possible ancient hotspot tracks to explain their age progression, Heaman et al. (2009). One of the youngest kimberlite fields is in Elliott County, Kentucky (75Ma). Although there is little surface expression for such a track, we discovered a well-developed lower lithospheric low velocity corridor passing directly beneath this site, connecting to an older kimberlite to the west and beneath the New Madrid rift zone. This apparent linear feature is about 200 km wide, 60 km thick, with a reduced P-velocity of 2.5% similar to dynamic predictions produced by a migrating plume neck and following predicted plate path. Such a high resolution feature could not have been recognized without the alignment of the Virginia earthquake with the USArray along this corridor. Here, we present the seismic evidence involving the North American Craton with its prominent 8° discontinuity and lower lithospheric fine structure.

  16. Eliminating "Hotspots" in Digital Image Processing

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1984-01-01

    Signals from defective picture elements rejected. Image processing program for use with charge-coupled device (CCD) or other mosaic imager augmented with algorithm that compensates for common type of electronic defect. Algorithm prevents false interpretation of "hotspots". Used for robotics, image enhancement, image analysis and digital television.

  17. Current Trends of HIV Recombination Worldwide

    PubMed Central

    Lau, Katherine A.; Wong, Justin J.L.

    2013-01-01

    One of the major characteristics of HIV-1 is its high genetic variability and extensive heterogeneity. This characteristic is due to its molecular traits, which in turn allows it to vary, recombine, and diversify at a high frequency. As such, it generates complex molecular forms, termed recombinants, which evade the human immune system and so survive. There is no sequence constraint to the recombination pattern as it appears to occur at inter-group (between groups M and O), as well as interand intra-subtype within group M. Rapid emergence and active global transmission of HIV-1 recombinants, known as circulating recombinant forms (CRFs) and unique recombinant forms (URFs), requires urgent attention. To date, 55 CRFs have been reported around the world. The first CRF01_AE originated from Central Africa but spread widely in Asia. The most recent CRF; CRF55_01B is a recombinant form of CRF01_AE and subtype B, although its origin is yet to be publicly disclosed. HIV-1 recombination is an ongoing event and plays an indispensable role in HIV epidemics in different regions. Africa, Asia and South America are identified as recombination hot-spots. They are affected by continual emergence and cocirculation of newly emerging CRFs and URFs, which are now responsible for almost 20% of HIV-1 infections worldwide. Better understanding of recombinants is necessary to determine their biological and molecular attributes. PMID:24470968

  18. Meiotic Drive Impacts Expression and Evolution of X-Linked Genes in Stalk-Eyed Flies

    PubMed Central

    Reinhardt, Josephine A.; Brand, Cara L.; Paczolt, Kimberly A.; Johns, Philip M.; Baker, Richard H.; Wilkinson, Gerald S.

    2014-01-01

    Although sex chromosome meiotic drive has been observed in a variety of species for over 50 years, the genes causing drive are only known in a few cases, and none of these cases cause distorted sex-ratios in nature. In stalk-eyed flies (Teleopsis dalmanni), driving X chromosomes are commonly found at frequencies approaching 30% in the wild, but the genetic basis of drive has remained elusive due to reduced recombination between driving and non-driving X chromosomes. Here, we used RNAseq to identify transcripts that are differentially expressed between males carrying either a driving X (XSR) or a standard X chromosome (XST), and found hundreds of these, the majority of which are X-linked. Drive-associated transcripts show increased levels of sequence divergence (dN/dS) compared to a control set, and are predominantly expressed either in testes or in the gonads of both sexes. Finally, we confirmed that XSR and XST are highly divergent by estimating sequence differentiation between the RNAseq pools. We found that X-linked transcripts were often strongly differentiated (whereas most autosomal transcripts were not), supporting the presence of a relatively large region of recombination suppression on XSR presumably caused by one or more inversions. We have identified a group of genes that are good candidates for further study into the causes and consequences of sex-chromosome drive, and demonstrated that meiotic drive has had a profound effect on sequence evolution and gene expression of X-linked genes in this species. PMID:24832132

  19. The unusual Samoan hotspot: A "hotspot highway" juxtaposed with a trench

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Konter, J. G.; Koppers, A. A.

    2011-12-01

    Oceanic hotspots are fed by (relatively) stationary, upwelling mantle plumes that melt beneath mobile tectonic plates. This mechanism results in the generation of a linear chain of volcanoes exhibiting a clear age progression: the islands and seamounts should be increasingly older with increasing distance from the inferred location of the mantle plume. Located in the southwest Pacific, the Cook-Austral volcanic islands and seamounts were long thought to lack a clear age progression, and it has been argued that the Cook-Austral volcanic chain is an example of a hotspot not fed by a mantle plume. However, work by Chauvel et al (1997) showed that the Cook-Austral volcanoes have been generated by three distinct, co-linear mantle plumes spaced by ~1000 km, resulting in 3 overlapping hotspot tracks. Critically, the volcanoes generated by each hotspot exhibit a clear age progression that emerges from its respective plume. Using plate motion models, the reconstructed tracks of the three Cook-Austral hotspots backtrack through the region of the Pacific plate now occupied by the Samoan hotspot between 10 and 40 Ma (Konter et al., 2008). Owing to the unusual number of hotspots (Samoa is the fourth) that have been hosted in the region, we refer to this corridor of the Pacific plate as the "hotspot highway." The Samoan hotspot is burning through and thus crosscutting the trails of the older Cook-Austral hotspots. Consistent with this hypothesis, Jackson et al. (2010) reported volcanic features from the Cook-Austral hotspots in the Samoan region, including three seamounts and one atoll with geochemical affinities to the Cook-Austral hotspot. The Pacific lithosphere was likely "preconditioned" (metasomatized) by the three Cook-Australs hotspots before the arrival of the Samoan plume into the region, yet geochemical signatures associated with the Cook-Austral hotspot pedigrees are not evident in Samoan shield lavas. However, Samoan rejuvenated lavas exhibit a clear EMI (enriched

  20. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance.

    PubMed

    Rosu, Simona; Zawadzki, Karl A; Stamper, Ericca L; Libuda, Diana E; Reese, Angela L; Dernburg, Abby F; Villeneuve, Anne M

    2013-01-01

    For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious

  1. From meiosis to postmeiotic events: homologous recombination is obligatory but flexible.

    PubMed

    Székvölgyi, Lóránt; Nicolas, Alain

    2010-02-01

    Sexual reproduction depends on the success of faithful chromosome transmission during meiosis to yield viable gametes. Central to meiosis is the process of recombination between paternal and maternal chromosomes, which boosts the genetic diversity of progeny and ensures normal homologous chromosome segregation. Imperfections in meiotic recombination are the source of de novo germline mutations, abnormal gametes, and infertility. Thus, not surprisingly, cells have developed a variety of mechanisms and tight controls to ensure sufficient and well-distributed recombination events within their genomes, the details of which remain to be fully elucidated. Local and genome-wide studies of normal and genetically engineered cells have uncovered a remarkable stochasticity in the number and positioning of recombination events per chromosome and per cell, which reveals an impressive level of flexibility. In this minireview, we summarize our contemporary understanding of meiotic recombination and its control mechanisms, and address the seemingly paradoxical and poorly understood diversity of recombination sites. Flexibility in the distribution of meiotic recombination events within genomes may reside in regulation at the chromatin level, with histone modifications playing a recently recognized role.

  2. HOTSPOT Health Physics codes for the PC

    SciTech Connect

    Homann, S.G.

    1994-03-01

    The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculation tool for evaluating accidents involving radioactive materials. HOTSPOT codes are a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. HOTSPOT programs are reasonably accurate for a timely initial assessment. More importantly, HOTSPOT codes produce a consistent output for the same input assumptions and minimize the probability of errors associated with reading a graph incorrectly or scaling a universal nomogram during an emergency. The HOTSPOT codes are designed for short-term (less than 24 hours) release durations. Users requiring radiological release consequences for release scenarios over a longer time period, e.g., annual windrose data, are directed to such long-term models as CAPP88-PC (Parks, 1992). Users requiring more sophisticated modeling capabilities, e.g., complex terrain; multi-location real-time wind field data; etc., are directed to such capabilities as the Department of Energy`s ARAC computer codes (Sullivan, 1993). Four general programs -- Plume, Explosion, Fire, and Resuspension -- calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel fire, or an area contamination event. Other programs deal with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. Additional programs estimate the dose commitment from the inhalation of any one of the radionuclides listed in the database of radionuclides; calibrate a radiation survey instrument for ground-survey measurements; and screen plutonium uptake in the lung (see FIDLER Calibration and LUNG Screening sections).

  3. The effects of translocations on recombination frequency in Caenorhabditis elegans.

    PubMed

    McKim, K S; Howell, A M; Rose, A M

    1988-12-01

    In the nematode Caenorhabditis elegans, recombination suppression in translocation heterozygotes is severe and extensive. We have examined the meiotic properties of two translocations involving chromosome I, szT1(I;X) and hT1(I;V). No recombination was observed in either of these translocation heterozygotes along the left (let-362-unc-13) 17 map units of chromosome I. Using half-translocations as free duplications, we mapped the breakpoints of szT1 and hT1. The boundaries of crossover suppression coincided with the physical breakpoints. We propose that DNA sequences at the right end of chromosome I facilitate pairing and recombination. We use the data from translocations of other chromosomes to map the location of pairing sites on four other chromosomes. hT1 and szT1 differed markedly in their effect on recombination adjacent to the crossover suppressed region. hT1 had no effect on recombination in the adjacent interval. In contrast, the 0.8 map unit interval immediately adjacent to the szT1(I;X) breakpoint on chromosome I increased to 2.5 map units in translocation heterozygotes. This increase occurs in a chromosomal interval which can be expanded by treatment with radiation. These results are consistent with the suggestion that the szT1(I) breakpoint is in a region of DNA in which meiotic recombination is suppressed relative to the genomic average. We propose that DNA sequences disrupted by the szT1 translocation are responsible for determining the frequency of meiotic recombination in the vicinity of the breakpoint.

  4. Recombination in maize is stable, predictable, and associated with genetic load: a joint study of the US and Chinese maize NAM populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favora...

  5. Analysis of meiotic segregation, using single-sperm typing: Meiotic drive at the myotonic dystrophy locus

    SciTech Connect

    Leeflang, E.P.; Arnheim, N.; McPeek, M.S.

    1996-10-01

    Meiotic drive at the myotonic dystrophy (DM) locus has recently been suggested as being responsible for maintaining the frequency, in the human population, of DM chromosomes capable of expansion to the disease state. In order to test this hypothesis, we have studied samples of single sperm from three individuals heterozygous at the DM locus, each with one allele larger and one allele smaller than 19 CTG repeats. To guard against the possible problem of differential PCR amplification rates based on the lengths of the alleles, the sperm were also typed at another closely linked marker whose allele size was unrelated to the allele size at the DM locus. Using statistical models specifically designed to study single-sperm segregation data, we find