Science.gov

Sample records for mejorada por mutagenesis

  1. Computer Simulation of Mutagenesis.

    ERIC Educational Resources Information Center

    North, J. C.; Dent, M. T.

    1978-01-01

    A FORTRAN program is described which simulates point-substitution mutations in the DNA strands of typical organisms. Its objective is to help students to understand the significance and structure of the genetic code, and the mechanisms and effect of mutagenesis. (Author/BB)

  2. 2004 Mutagenesis Gordon Conference

    SciTech Connect

    Dr. Sue Jinks-Robertson

    2005-09-16

    Mutations are genetic alterations that drive biological evolution and cause many, if not all, human diseases. Mutation originates via two distinct mechanisms: ''vertical'' variation is de novo change of one or few bases, whereas ''horizontal'' variation occurs by genetic recombination, which creates new mosaics of pre-existing sequences. The Mutagenesis Conference has traditionally focused on the generation of mutagenic intermediates during normal DNA synthesis or in response to environmental insults, as well as the diverse repair mechanisms that prevent the fixation of such intermediates as permanent mutations. While the 2004 Conference will continue to focus on the molecular mechanisms of mutagenesis, there will be increased emphasis on the biological consequences of mutations, both in terms of evolutionary processes and in terms of human disease. The meeting will open with two historical accounts of mutation research that recapitulate the intellectual framework of this field and thereby place the current research paradigms into perspective. The two introductory keynote lectures will be followed by sessions on: (1) mutagenic systems, (2) hypermutable sequences, (3) mechanisms of mutation, (4) mutation avoidance systems, (5) mutation in human hereditary and infectious diseases, (6) mutation rates in evolution and genotype-phenotype relationships, (7) ecology, mutagenesis and the modeling of evolution and (8) genetic diversity of the human population and models for human mutagenesis. The Conference will end with a synthesis of the meeting as the keynote closing lecture.

  3. Mechanism of proflavin mutagenesis.

    PubMed

    Sarabhai, A; Lamfrom, H

    1969-08-01

    The mutagenic action of proflavin on bacteriophage T4 is greater in the presence of defective T4 ligase than in the presence of normal T4 ligase. This suggests that the persistence of single-strand breaks in DNA enhances proflavin mutagenesis.

  4. Monitoring the fall of large atmospheric ice conglomerations: a multianalytical approach to the study of the Mejorada del Campo megacryometeor.

    PubMed

    Orellana, Francisco Alamilla; Alegre, José Ma Ramiro; Cordero Pérez, José Carlos; Martín Redondo, Ma Paz; Delgado Huertas, Antonio; Fernández Sampedro, Ma Teresa; Menor-Salván, César; Ruiz-Bermejo, Marta; López-Vera, Fernando; Rodríguez-Losada, José A; Martinez-Frias, Jesus

    2008-04-01

    Certain local atmospheric anomalies, such as the formation of unusually large ice conglomerations (megacryometeors), have been proposed to be a potential natural hazard for people and aviation, as well as geoindicators for fingerprinting larger-scale atmospheric environmental changes. On March 13th 2007, at approximately 10:15 am, an ice chunk weighing about 10 kg fell from the clear-sky and crashed through the roof (around 15 m) of an industrial storage house in Mejorada del Campo, a town located 20 km east from Madrid. The megacryometeor monitoring follow-up and the original investigation presented here includes, for the first time, both logistic and scientific collaboration between the Laboratory of the Environment, Criminalistic Service (SECRIM, the Spanish "Guardia Civil") and academic and scientific institutions (universities and the Spanish National Research Council). We propose that the management procedure of the incident, along with the detailed scientific research and combination of analytical methodologies in different laboratories, can serve as a protocol model for other similar events.

  5. Transposon Mutagenesis in Mice

    PubMed Central

    Largaespada, David A.

    2010-01-01

    Understanding the functional landscape of the mammalian genome is the next big challenge of biomedical research. The completion of the first phases of the mouse and human genome projects, and expression analyses using microarray hybridization, generate critically important questions about the functional landscape and structure of the mammalian genome: how many genes, and of what type, are there; what kind of functional elements make up a properly functioning gene? One step in this process will be to create mutations in every identifiable mouse gene and analyze the resultant phenotypes. Transposons are being considered as tools to further initiatives to create a comprehensive resource of mutant mouse strains. Also, it may be possible to use transposons in true forward genetic screens in the mouse. The “Sleeping Beauty” (SB) transposon system is one such tool. Moreover, due to its tendency for local hopping, SB has been proposed as a method for regional saturation mutagenesis of the mouse genome. In this chapter, we review the tools and methods currently available to create mutant mice using in vivo, germline transposition in mice. PMID:19266336

  6. In vitro models of mutagenesis.

    PubMed

    Strauss, B S; Larson, K; Sagher, D; Rabkin, S; Shenkar, R; Sahm, J

    1985-01-01

    The bypass of lesions in DNA with insertion of nucleotides opposite damaged bases has been studied as a model for mutagenesis in an in vitro system. Lesions introduced by dimethyl sulfate at adenines and by ultraviolet light at pyrimidine dimers act as termination sites on both double- and single-stranded DNA templates. Base selection opposite noninformational lesions is, in part, a property of the polymerases: different polymerases have different selectivities although all polymerases tested seem to prefer purines. The ability to insert "incorrect" bases is determined in part by the sequence 5' to the lesion on the template strand. The hypothesis that damaged purines tend to result in transversions can be applied to published data on activation of the c-ras oncogene.

  7. Insertional mutagenesis and illegitimate recombination in mycobacteria.

    PubMed Central

    Kalpana, G V; Bloom, B R; Jacobs, W R

    1991-01-01

    Mycobacteria, particularly Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium avium, are major pathogens of man. Although insertional mutagenesis has been an invaluable genetic tool for analyzing the mechanisms of microbial pathogenesis, it has not yet been possible to apply it to the mycobacteria. To overcome intrinsic difficulties in directly manipulating the genetics of slow-growing mycobacteria, including M. tuberculosis and bacille Calmette-Guérin (BCG) vaccine strains, we developed a system for random shuttle mutagenesis. A genomic library of Mycobacterium smegmatis was subjected to transposon mutagenesis with Tn5 seq1, a derivative of Tn5, in Escherichia coli and these transposon-containing recombinant plasmids were reintroduced into mycobacterial chromosomes by homologous recombination. This system has allowed us to isolate several random auxotrophic mutants of M. smegmatis. To extend this strategy to M. tuberculosis and BCG, targeted mutagenesis was performed using a cloned BCG methionine gene that was subjected to Tn5 seq1 mutagenesis in E. coli and reintroduced into the mycobacteria. Surprisingly for prokaryotes, both BCG and M. tuberculosis were found to incorporate linear DNA fragments into illegitimate sites throughout the mycobacterial genomes at a frequency of 10(-5) to 10(-4) relative to the number of transformants obtained with autonomously replicating vectors. Thus the efficient illegitimate recombination of linear DNA fragments provides the basis for an insertional mutagenesis system for M. tuberculosis and BCG. Images PMID:2052623

  8. Lethal Mutagenesis Failure May Augment Viral Adaptation

    PubMed Central

    Paff, Matthew L.; Stolte, Steven P.; Bull, James J.

    2014-01-01

    Lethal mutagenesis, the attempt to extinguish a population by elevating its mutation rate, has been endorsed in the virology literature as a promising approach for treating viral infections. In support of the concept, in vitro studies have forced viral extinction with high doses of mutagenic drugs. However, the one known mutagenic drug used on patients commonly fails to cure infections, and in vitro studies typically find a wide range of mutagenic conditions permissive for viral growth. A key question becomes how subsequent evolution is affected if the viral population is mutated but avoids extinction—Is viral adaptation augmented rather than suppressed? Here we consider the evolution of highly mutated populations surviving mutagenesis, using the DNA phage T7. In assays using inhibitory hosts, whenever resistance mutants were observed, the mutagenized populations exhibited higher frequencies, but some inhibitors blocked plaque formation by even the mutagenized stock. Second, outgrowth of previously mutagenized populations led to rapid and potentially complete fitness recovery but polymorphism was slow to decay, and mutations exhibited inconsistent patterns of change. Third, the combination of population bottlenecks with mutagenesis did cause fitness declines, revealing a vulnerability that was not apparent from mutagenesis of large populations. The results show that a population surviving high mutagenesis may exhibit enhanced adaptation in some environments and experience little negative fitness consequences in many others. PMID:24092771

  9. Faux Mutagenesis: Teaching Troubleshooting through Controlled Failure

    ERIC Educational Resources Information Center

    Hartberg, Yasha

    2006-01-01

    By shifting pedagogical goals from obtaining successful mutations to teaching students critical troubleshooting skills, it has been possible to introduce site-directed mutagenesis into an undergraduate teaching laboratory. Described in this study is an inexpensive laboratory exercise in which students follow a slightly modified version of…

  10. CHALLENGES FOR THE FUTURE IN ENVIRONMENTAL MUTAGENESIS

    EPA Science Inventory

    CHALLENGES FOR THE FUTURE IN ENVIRONMENTAL MUTAGENESIS
    Michael D. Waters
    US Environmental Protection Agency, MD-51A, Research Triangle Park, NC 27711 USA

    Our rapidly growing understanding of the structure of the human genome is forming the basis for numerous new...

  11. Novel Random Mutagenesis Method for Directed Evolution.

    PubMed

    Feng, Hong; Wang, Hai-Yan; Zhao, Hong-Yan

    2017-01-01

    Directed evolution is a powerful strategy for gene mutagenesis, and has been used for protein engineering both in scientific research and in the biotechnology industry. The routine method for directed evolution was developed by Stemmer in 1994 (Stemmer, Proc Natl Acad Sci USA 91, 10747-10751, 1994; Stemmer, Nature 370, 389-391, 1994). Since then, various methods have been introduced, each of which has advantages and limitations depending upon the targeted genes and procedure. In this chapter, a novel alternative directed evolution method which combines mutagenesis PCR with dITP and fragmentation by endonuclease V is described. The kanamycin resistance gene is used as a reporter gene to verify the novel method for directed evolution. This method for directed evolution has been demonstrated to be efficient, reproducible, and easy to manipulate in practice.

  12. Final report [DNA Repair and Mutagenesis - 1999

    SciTech Connect

    Walker, Graham C.

    2001-05-30

    The meeting, titled ''DNA Repair and Mutagenesis: Mechanism, Control, and Biological Consequences'', was designed to bring together the various sub-disciplines that collectively comprise the field of DNA Repair and Mutagenesis. The keynote address was titled ''Mutability Doth Play Her Cruel Sports to Many Men's Decay: Variations on the Theme of Translesion Synthesis.'' Sessions were held on the following themes: Excision repair of DNA damage; Transcription and DNA excision repair; UmuC/DinB/Rev1/Rad30 superfamily of DNA polymerases; Cellular responses to DNA damage, checkpoints, and damage tolerance; Repair of mismatched bases, mutation; Genome-instability, and hypermutation; Repair of strand breaks; Replicational fidelity, and Late-breaking developments; Repair and mutation in challenging environments; and Defects in DNA repair: consequences for human disease and aging.

  13. AS52/GPT Mammalian Mutagenesis Assay

    DTIC Science & Technology

    1996-05-10

    dimethylnitrosamine (DMN) at 50 and 100 f.J.g/rnl was used as a 3 TLS Project Nn. A0ŗ-003: AS52/GPT Mammalian Mutagenesis Assay promutagen that requires metabolic...Chemical Source Lot No. air Air Products N/A calcium chloride Sigma 84F-0723 d imeth y !sulfoxide Fisher 933274 dimethylnitrosamine Sigma 82B0365...methanesulfonate (EMS) at 150 and 300 J.i-g/ml is used as a direct-acting mutagen for the nonactivated portion, and dimethylnitrosamine (DMN) at 150 and 300

  14. Fluorometric method of quantitative cell mutagenesis

    DOEpatents

    Dolbeare, Frank A.

    1982-01-01

    A method for assaying a cell culture for mutagenesis is described. A cell culture is stained first with a histochemical stain, and then a fluorescent stain. Normal cells in the culture are stained by both the histochemical and fluorescent stains, while abnormal cells are stained only by the fluorescent stain. The two stains are chosen so that the histochemical stain absorbs the wavelengths that the fluorescent stain emits. After the counterstained culture is subjected to exciting light, the fluorescence from the abnormal cells is detected.

  15. Fluorometric method of quantitative cell mutagenesis

    DOEpatents

    Dolbeare, F.A.

    1980-12-12

    A method for assaying a cell culture for mutagenesis is described. A cell culture is stained first with a histochemical stain, and then a fluorescent stain. Normal cells in the culture are stained by both the histochemical and fluorescent stains, while abnormal cells are stained only by the fluorescent stain. The two stains are chosen so that the histochemical stain absorbs the wavelengths that the fluorescent stain emits. After the counterstained culture is subjected to exciting light, the fluorescence from the abnormal cells is detected.

  16. An efficient TALEN mutagenesis system in rice.

    PubMed

    Chen, Kunling; Shan, Qiwei; Gao, Caixia

    2014-08-15

    Targeted gene mutagenesis is a powerful tool for elucidating gene function and facilitating genetic improvement in rice. TALENs (transcription activator-like effector nucleases), consisting of a custom TALE DNA binding domain fused to a nonspecific FokI cleavage domain, are one of the most efficient genome engineering methods developed to date. The technology of TALENs allows DNA double-strand breaks (DSBs) to be introduced into predetermined chromosomal loci. DSBs trigger DNA repair mechanisms and can result in loss of gene function by error-prone non-homologous end joining (NHEJ), or they can be exploited to modify gene function or activity by precise homologous recombination (HR). In this paper, we describe a detailed protocol for constructing TALEN expression vectors, assessing nuclease activities in vivo using rice protoplast-based assays, generating and introducing TALEN DNAs into embryogenic calluses of rice and identifying TALEN-generated mutations at targeted genomic sites. Using these methods, T0 rice plants resulting from TALEN mutagenesis can be produced within 4-5 months.

  17. New transposon delivery plasmids for insertional mutagenesis in Bacillus anthracis

    PubMed Central

    Wilson, Adam C.; Perego, Marta; Hoch, James A.

    2007-01-01

    Two new transposon delivery vector systems utilizing Mariner and mini-Tn10 transposons have been developed for in vivo insertional mutagenesis in Bacillus anthracis and other compatible Gram-positive species. The utility of both systems was directly demonstrated through the mutagenesis of a widely used B. anthracis strain. PMID:17931726

  18. Conditional gene-trap mutagenesis in zebrafish.

    PubMed

    Maddison, Lisette A; Li, Mingyu; Chen, Wenbiao

    2014-01-01

    Zebrafish has become a widely used model for analysis of gene function. Several methods have been used to create mutations in this organism and thousands of mutant lines are available. However, all the conventional zebrafish mutations affect the gene in all cells at all time, making it difficult to determine tissue-specific functions. We have adopted a FlEx Trap approach to generate conditional mutations in zebrafish by gene-trap mutagenesis. Combined with appropriate Cre or Flp lines, the insertional mutants not only allow spatial- and temporal-specific gene inactivation but also permit spatial- and temporal-specific rescue of the disrupted gene. We provide experimental details on how to generate and use such mutations.

  19. Mutagenesis assays of human amniotic fluid

    SciTech Connect

    Everson, R.B.; Milne, K.L.; Warbuton, D.; McClamrock, H.D.; Buchanan, P.D.

    1985-01-01

    Extracts of amniocentesis samples from 144 women were tested for the presence of mutagenic substances using tester strain TA1538 in the Ames Salmonella/mammalian-microsome mutagenicity test. Because the volume of amniotic fluid in these samples was limited (generally less than 10 ml), the authors investigated modifications of this mutagenesis assay that could increase its ability to detect effects from small quantities of test material. Using mutagenicity in samples of urine from smokers as a model, it appeared that improved ability to detect small amounts of mutagen could be obtained by reducing volumes of media and reagents while keeping the amount of test sample constant. Tests of amniotic fluid extracts by this modified procedure showed small increases in revertants, about 50% above dimethylsulfoxide solvent control values. The increases suggest the presence of small amounts of mutagenic material in many of the amniotic fluid samples. At the doses employed, mutagenic activity in these samples was not associated with maternal smoking.

  20. From Chemical Mutagenesis to Post‐Expression Mutagenesis: A 50 Year Odyssey

    PubMed Central

    Wright, Tom H.; Vallée, M. Robert J.

    2016-01-01

    Abstract Site‐directed (gene) mutagenesis has been the most useful method available for the conversion of one amino acid residue of a given protein into another. Until relatively recently, this strategy was limited to the twenty standard amino acids. The ongoing maturation of stop codon suppression and related technologies for unnatural amino acid incorporation has greatly expanded access to nonstandard amino acids by expanding the scope of the translational apparatus. However, the necessity for translation of genetic changes restricts the diversity of residues that may be incorporated. Herein we highlight an alternative approach, termed post‐expression mutagenesis, which operates at the level of the very functional biomolecules themselves. Using the lens of retrosynthesis, we highlight prospects for new strategies in protein modification, alteration, and construction which will enable protein science to move beyond the constraints of the “translational filter” and lead to a true synthetic biology. PMID:27119221

  1. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    SciTech Connect

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation.

  2. Mutagenesis during plant responses to UVB radiation.

    PubMed

    Holá, M; Vágnerová, R; Angelis, K J

    2015-08-01

    We tested an idea that induced mutagenesis due to unrepaired DNA lesions, here the UV photoproducts, underlies the impact of UVB irradiation on plant phenotype. For this purpose we used protonemal culture of the moss Physcomitrella patens with 50% of apical cells, which mimics actively growing tissue, the most vulnerable stage for the induction of mutations. We measured the UVB mutation rate of various moss lines with defects in DNA repair (pplig4, ppku70, pprad50, ppmre11), and in selected clones resistant to 2-Fluoroadenine, which were mutated in the adenosine phosphotrasferase gene (APT), we analysed induced mutations by sequencing. In parallel we followed DNA break repair and removal of cyclobutane pyrimidine dimers with a half-life τ = 4 h 14 min determined by comet assay combined with UV dimer specific T4 endonuclease V. We show that UVB induces massive, sequence specific, error-prone bypass repair that is responsible for a high mutation rate owing to relatively slow, though error-free, removal of photoproducts by nucleotide excision repair (NER).

  3. Signature-tagged mutagenesis of Vibrio vulnificus

    PubMed Central

    YAMAMOTO, Mai; KASHIMOTO, Takashige; TONG, Ping; XIAO, Jianbo; SUGIYAMA, Michiko; INOUE, Miyuki; MATSUNAGA, Rie; HOSOHARA, Kohei; NAKATA, Kazue; YOKOTA, Kenji; OGUMA, Keiji; YAMAMOTO, Koichiro

    2015-01-01

    Vibrio vulnificus is the causative agent of primary septicemia, wound infection and gastroenteritis in immunocompromised people. In this study, signature-tagged mutagenesis (STM) was applied to identify the virulence genes of V. vulnificus. Using STM, 6,480 mutants in total were constructed and divided into 81 sets (INPUT pools); each mutant in a set was assigned a different tag. Each INPUT pool was intraperitoneally injected into iron-overloaded mice, and in vivo surviving mutants were collected from blood samples from the heart (OUTPUT pools). From the genomic DNA of mixed INPUT or OUTPUT pools, digoxigenin-labeled DNA probes against the tagged region were prepared and used for dot hybridization. Thirty tentatively attenuated mutants, which were hybridized clearly with INPUT probes but barely with OUTPUT probes, were negatively selected. Lethal doses of 11 of the 30 mutants were reduced to more than 1/100; of these, the lethal doses of 2 were reduced to as low as 1/100,000. Transposon-inserted genes in the 11 attenuated mutants were those for IMP dehydrogenase, UDP-N-acetylglucosamine-2-epimerase, aspartokinase, phosphoribosylformylglycinamidine cyclo-ligase, malate Na (+) symporter and hypothetical protein. When mice were immunized with an attenuated mutant strain into which IMP dehydrogenase had been inserted with a transposon, they were protected against V. vulnificus infection. In this study, we demonstrated that the STM method can be used to search for the virulence genes of V. vulnificus. PMID:25755021

  4. A mutagenesis study of a catalytic antibody

    SciTech Connect

    Jackson, D.Y.; Prudent, J.R.; Baldwin, E.P.; Schultz, P.G. )

    1991-01-01

    The authors have generated seven site-specific mutations in the genes encoding the variable region of the heavy chain domain (V{sub H}) of the phosphocholine-binding antibody S107.S107 is a member of a family of well-characterized highly homologous antibodies that bind phosphorylcholine mono- and diesters. Two of these antibodies, MOPC-167 and T15, have previously been shown to catalyze the hydrolysis of 4-nitrophenyl N-trimethylammonioethyl carbonate. Two conserved heavy-chain residues, Tyr-33 and Arg-52, were postulated to be involved in binding and hydrolysis of 4-nitrophenylcholine carbonate esters. To more precisely define the catalytic roles of these residues, three Arg-52 mutants (R52K, R52Q, R52C) and four Tyr-33 mutants (Y33H, Y33F, Y33E, Y33D) of antibody S107 were generated. The genes encoding the V{sub H} binding domain of S107 were inserted into plasmid pUC-fl, and in vitro mutagenesis was performed. These results not only demonstrate the importance of electrostatic interactions in catalysis by antibody S107 but also show that catalytic side chains can be introduced into antibodies to enhance their catalytic efficiency.

  5. Symposium on molecular and cellular mechanisms of mutagenesis

    SciTech Connect

    Not Available

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  6. Favipiravir elicits antiviral mutagenesis during virus replication in vivo.

    PubMed

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-10-21

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.

  7. Environmental stress induces trinucleotide repeat mutagenesis in human cells

    PubMed Central

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A.; Yotnda, Patricia; Wilson, John H.

    2015-01-01

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)—the cause of multiple human diseases—have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential. PMID:25775519

  8. Photochemical mutagenesis: examples and toxicological relevance.

    PubMed

    Gocke, E

    2001-01-01

    Induction of DNA damage as a consequence of exposure to UV light has been established as the major cause of skin cancer. DNA molecules absorb photon energy directly for wavelengths <320 nm, and lead to well-characterized mutagenic DNA damage. Alternatively, endogenous or exogenous chemicals (sensitizers) may absorb light with the potential of subsequent energy or electron transfer, and lead indirectly to DNA damage. A few light-absorbing pharmaceuticals have long been known to cause photo(geno)toxic effects. Notably, psoralen and chlorpromazine derivatives have been established as photomutagens and the reaction mechanisms have been identified; the fluoroquinolone antibiotics have more recently been recognized as being photomutagenic. The type of DNA damage and the modulation by antioxidants indicate the involvement of reactive oxygen species (ROS), but other mechanisms are also reported for, at least, some derivatives. In routine genotoxicity studies, we observed the photomutagenic activity of a compound (Ro 19-8022) under development as an anxiolytic agent in the Ames tester strain TA102 under normal laboratory illumination conditions. Further investigations showed strong photogenotoxic activity in tests for gene mutations and chromosomal aberrations in mammalian cells. The finding led to the termination of drug development. Another example of a pharmaceutical for which photogenotoxic properties were observed during development is Ro 47-7737, a bisquinoline derivative of the antimalaria compound chloroquine. Also in this case, the photochemical reactivity contributed to the termination of the development process. The risk/benefit assessment for the described compounds has to take into account the human exposure situation, for example, the ability to avoid light exposure during treatment. Consideration of photochemical mutagenesis is specifically important for sunscreen ingredients. The active components of sunscreen lotions are efficient UV absorbers. Consequently

  9. Endogenous mutagenesis in recombinant sulfolobus plasmids.

    PubMed

    Sakofsky, Cynthia J; Grogan, Dennis W

    2013-06-01

    Low rates of replication errors in chromosomal genes of Sulfolobus spp. demonstrate that these extreme thermoacidophiles can maintain genome integrity in environments with high temperature and low pH. In contrast to this genetic stability, we observed unusually frequent mutation of the β-D-glycosidase gene (lacS) of a shuttle plasmid (pJlacS) propagated in Sulfolobus acidocaldarius. The resulting Lac(-) mutants also grew faster than the Lac(+) parent, thereby amplifying the impact of the frequent lacS mutations on the population. We developed a mutant accumulation assay and corrections for the effects of copy number and differential growth for this system; the resulting measurements and calculations yielded a corrected rate of 5.1 × 10(-4) mutational events at the lacS gene per plasmid replication. Analysis of independent lacS mutants revealed three types of mutations: (i) G · C-to-A · T transitions, (ii) slipped-strand events, and (iii) deletions. These mutations were frequent in plasmid-borne lacS expressed at a high level but not in single-copy lacS in the chromosome or at lower levels of expression in a plasmid. Substitution mutations arose at only two of 12 potential priming sites of the DNA primase of the pRN1 replicon, but nearly all these mutations created nonsense (chain termination) codons. The spontaneous mutation rate of plasmid-borne lacS was 175-fold higher under high-expression than under low-expression conditions. The results suggest that important DNA repair or replication fidelity functions are impaired or overwhelmed in pJlacS, with results analogous to those of the "transcription-associated mutagenesis" seen in bacteria and eukaryotes.

  10. Predicting oligonucleotide-directed mutagenesis failures in protein engineering

    PubMed Central

    Wassman, Christopher D.; Tam, Phillip Y.; Lathrop, Richard H.; Weiss, Gregory A.

    2004-01-01

    Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed ‘cross-hybridization’, as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries. PMID:15585664

  11. Genetic aspects of targeted insertion mutagenesis in yeasts.

    PubMed

    Klinner, U; Schäfer, B

    2004-05-01

    Targeted insertion mutagenesis is a main molecular tool of yeast science initially applied in Saccharomyces cerevisiae. The method was extended to fission yeast Schizosaccharomyces pombe and to "non-conventional" yeast species, which show specific properties of special interest to both basic and applied research. Consequently, the behaviour of such non-Saccharomyces yeasts is reviewed against the background of the knowledge of targeted insertion mutagenesis in S. cerevisiae. Data of homologous integration efficiencies obtained with circular, ends-in or ends-out vectors in several yeasts are compared. We follow details of targeted insertion mutagenesis in order to recognize possible rate-limiting steps. The route of the vector to the target and possible mechanisms of its integration into chromosomal genes are considered. Specific features of some yeast species are discussed. In addition, similar approaches based on homologous recombination that have been established for the mitochondrial genome of S. cerevisiae are described.

  12. Empirical Complexities in the Genetic Foundations of Lethal Mutagenesis

    PubMed Central

    Bull, James J.; Joyce, Paul; Gladstone, Eric; Molineux, Ian J.

    2013-01-01

    From population genetics theory, elevating the mutation rate of a large population should progressively reduce average fitness. If the fitness decline is large enough, the population will go extinct in a process known as lethal mutagenesis. Lethal mutagenesis has been endorsed in the virology literature as a promising approach to viral treatment, and several in vitro studies have forced viral extinction with high doses of mutagenic drugs. Yet only one empirical study has tested the genetic models underlying lethal mutagenesis, and the theory failed on even a qualitative level. Here we provide a new level of analysis of lethal mutagenesis by developing and evaluating models specifically tailored to empirical systems that may be used to test the theory. We first quantify a bias in the estimation of a critical parameter and consider whether that bias underlies the previously observed lack of concordance between theory and experiment. We then consider a seemingly ideal protocol that avoids this bias—mutagenesis of virions—but find that it is hampered by other problems. Finally, results that reveal difficulties in the mere interpretation of mutations assayed from double-strand genomes are derived. Our analyses expose unanticipated complexities in testing the theory. Nevertheless, the previous failure of the theory to predict experimental outcomes appears to reside in evolutionary mechanisms neglected by the theory (e.g., beneficial mutations) rather than from a mismatch between the empirical setup and model assumptions. This interpretation raises the specter that naive attempts at lethal mutagenesis may augment adaptation rather than retard it. PMID:23934886

  13. ENU mutagenesis to generate genetically modified rat models.

    PubMed

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  14. Coupled mutagenesis screens and genetic mapping in zebrafish.

    PubMed Central

    Rawls, John F; Frieda, Matthew R; McAdow, Anthony R; Gross, Jason P; Clayton, Chad M; Heyen, Candy K; Johnson, Stephen L

    2003-01-01

    Forward genetic analysis is one of the principal advantages of the zebrafish model system. However, managing zebrafish mutant lines derived from mutagenesis screens and mapping the corresponding mutations and integrating them into the larger collection of mutations remain arduous tasks. To simplify and focus these endeavors, we developed an approach that facilitates the rapid mapping of new zebrafish mutations as they are generated through mutagenesis screens. We selected a minimal panel of 149 simple sequence length polymorphism markers for a first-pass genome scan in crosses involving C32 and SJD inbred lines. We also conducted a small chemical mutagenesis screen that identified several new mutations affecting zebrafish embryonic melanocyte development. Using our first-pass marker panel in bulked-segregant analysis, we were able to identify the genetic map positions of these mutations as they were isolated in our screen. Rapid mapping of the mutations facilitated stock management, helped direct allelism tests, and should accelerate identification of the affected genes. These results demonstrate the efficacy of coupling mutagenesis screens with genetic mapping. PMID:12663538

  15. A simple mutagenesis using natural competence in Tannerella forsythia.

    PubMed

    Nishikawa, Kiyoshi; Tanaka, Yoshinobu

    2013-09-01

    We report the discovery of natural competence in Tannerella forsythia and its application to targeted chromosomal mutagenesis. Keeping T. forsythia in a biofilm throughout the procedure allowed efficient DNA uptake and allelic replacement. This simple method is cost-effective and reproducible compared with the conventional protocols using broth culture and electroporation.

  16. Favipiravir elicits antiviral mutagenesis during virus replication in vivo

    PubMed Central

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-01-01

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses. DOI: http://dx.doi.org/10.7554/eLife.03679.001 PMID:25333492

  17. What Can a Micronucleus Teach? Learning about Environmental Mutagenesis

    ERIC Educational Resources Information Center

    Linde, Ana R.; Garcia-Vazquez, Eva

    2009-01-01

    The micronucleus test is widely employed in environmental health research. It can also be an excellent tool for learning important concepts in environmental health. In this article we present an inquiry-based laboratory exercise where students explore several theoretical and practical aspects of environmental mutagenesis employing the micronucleus…

  18. Methods for targetted mutagenesis in gram-positive bacteria

    DOEpatents

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  19. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases

    PubMed Central

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-01-01

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275

  20. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis

    SciTech Connect

    Wang, Weina; Hellinga, Homme W.; Beese, Lorena S.

    2012-05-10

    Even though high-fidelity polymerases copy DNA with remarkable accuracy, some base-pair mismatches are incorporated at low frequency, leading to spontaneous mutagenesis. Using high-resolution X-ray crystallographic analysis of a DNA polymerase that catalyzes replication in crystals, we observe that a C {center_dot} A mismatch can mimic the shape of cognate base pairs at the site of incorporation. This shape mimicry enables the mismatch to evade the error detection mechanisms of the polymerase, which would normally either prevent mismatch incorporation or promote its nucleolytic excision. Movement of a single proton on one of the mismatched bases alters the hydrogen-bonding pattern such that a base pair forms with an overall shape that is virtually indistinguishable from a canonical, Watson-Crick base pair in double-stranded DNA. These observations provide structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis, a long-standing concept that has been difficult to demonstrate directly.

  1. Targeted mutagenesis in sea urchin embryos using TALENs.

    PubMed

    Hosoi, Sayaka; Sakuma, Tetsushi; Sakamoto, Naoaki; Yamamoto, Takashi

    2014-01-01

    Genome editing with engineered nucleases such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) has been reported in various animals. We previously described ZFN-mediated targeted mutagenesis and insertion of reporter genes in sea urchin embryos. In this study, we demonstrate that TALENs can induce mutagenesis at specific genomic loci of sea urchin embryos. Injection of TALEN mRNAs targeting the HpEts transcription factor into fertilized eggs resulted in the impairment of skeletogenesis. Sequence analyses of the mutations showed that deletions and/or insertions occurred at the HpEts target site in the TALEN mRNAs-injected embryos. The results suggest that targeted gene disruption using TALENs is feasible in sea urchin embryos.

  2. Insertional mutagenesis of an industrial strain of Streptococcus thermophilus.

    PubMed

    Labarre, C; Schirawski, J; van der Zwet, A; Fitzgerald, G F; van Sinderen, D

    2001-06-12

    Random mutagenesis of an industrial strain of Streptococcus thermophilus was achieved through an adapted version of a two-plasmid system. The mutagenesis strategy is based on random integration of derivatives of the non-replicative (Rep(-)) plasmid pORI19 by means of homologous recombination following a temperature shift that eliminates replication of the temperature-sensitive (Rep(ts)) helper plasmid pVE6007. In this way mutants were generated which were affected in bacteriophage sensitivity or sucrose metabolism. Homologues were identified of a protein related to folate metabolism from a bacteriophage-resistant mutant and of two subunits of an oligopeptide transport system from a mutant deficient in sucrose utilisation.

  3. Specific mutagenesis of a chlorophyll-binding protein. Progress report.

    SciTech Connect

    Eaton-Rye, Dr., Julian; Shen, Gaozhong

    1990-01-01

    During the first phase of the project regarding specific mutagenesis of the chlorophyll-binding protein CP47 in photosystem II (PS II) most of the time has been devoted to (1) establishment of an optimal procedure for the reintroduction of psbB (the gene encoding CP47) carrying a site-directed mutation into the experimental organism, the cyanobacterium Synechocystis sp. PCC 6803, (2) preparations for site-directed mutagenesis, and (3) creation and analysis of chimaeric spinach/cyanobacterial CP47 mutants of Synechocystis. In the coming year, psbB constructs with site-directed mutations in potential chlorophyll-binding regions of CP47 will be introduced into the Synechocystis genome, and site-directed mutants will be characterized according to procedures described in the original project description. In addition, analysis of chimaeric CP47 mutants will be continued.

  4. Transposon mutagenesis in Actinobacillus pleuropneumoniae with a Tn10 derivative.

    PubMed Central

    Tascon, R I; Rodriguez-Ferri, E F; Gutierrez-Martin, C B; Rodriguez-Barbosa, I; Berche, P; Vazquez-Boland, J A

    1993-01-01

    A transposon mutagenesis procedure functional in the gram-negative swine pathogen Actinobacillus pleuropneumoniae was developed for the first time. The technique involved the use of a suicide conjugative plasmid, pLOF/Km, carrying a mini-Tn10 with an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible transposase located outside the mobile element (M. Herrero, V. de Lorenzo, and K. N. Timmis, J. Bacteriol. 172:6557-6567, 1990). The plasmid was mobilized from Escherichia coli to A. pleuropneumoniae through the RP4-mediated broad-host-range conjugal transfer functions provided by the chromosome of the donor strain. When IPTG was present in the mating medium, A. pleuropneumoniae CM5 transposon mutants were obtained at a frequency of 10(-5), while no mutants were detected in the absence of IPTG. Since the frequency of conjugal transfer of the RP4 plasmid from E. coli to A. pleuropneumoniae CM5 was found to be as low as 10(-4), the above result indicated that the expression level of the transposase was a critical factor for obtaining a workable efficiency of transposon mutagenesis. The transposon insertions occurred at random, as determined by Southern blotting of chromosomal DNA of randomly selected mutants and by the ability to generate mutants defective for the selected phenotypes. Almost all the mutants analyzed resulted from a single insertion of the Tn10 element. About 1.2% of the mutants resulted from the cointegration of pLOF/Km into the A. pleuropneumoniae chromosome. The applicability of this transposon mutagenesis system was verified on other A. pleuropneumoniae strains of different serotypes. The usefulness of this transposon mutagenesis system in genetic studies of A. pleuropneumoniae is discussed. Images PMID:8396122

  5. Use of liver cell cultures in mutagenesis studies

    SciTech Connect

    Huberman, E.; Jones, C.A.

    1980-09-30

    A sensitive cell-mediated assay has been developed for testing the mutagenesis of liver carcinogens. Mutagenesis was detected in Chinese hamster V79 cells that were cocultivated with hepatocytes isolated after collagenase/hyaluronidase digestion of rat liver slices. Mutations were characterized by resistance to ouabain and 6-thioguanine. Seven of the nitrosamines, which are potent liver carcinogens, exhibited a mutagenic response. Mutagenesis with these carcinogens could be detected at ..mu..molar doses. The polyaromatic hydrocarbon benzo(a)pyrene, which is not a liver carcinogen, but can cause fibrosarcomas, was not mutagenic in this assay, but was mutagenic in a fibroblast-mediated assay. The liver carcinogen, aflatoxin B/sub 1/, which usually does not induce fibrosarcomas, exhibited an inverse situation; it was mutagenic for V79 cells in the presence of liver cells but not in the presence of fibroblasts. We suggest that the use of various cell types, including hepatocytes prepared by the slicing method for carcinogen metabolism, and mutable V79 cells offers a sensitive assay for determining the mutagenic potential of chemical carcinogens, and may also allow a study of their organ specificity.

  6. Maize-targeted mutagenesis: A knockout resource for maize.

    PubMed

    May, Bruce P; Liu, Hong; Vollbrecht, Erik; Senior, Lynn; Rabinowicz, Pablo D; Roh, Donna; Pan, Xiaokang; Stein, Lincoln; Freeling, Mike; Alexander, Danny; Martienssen, Rob

    2003-09-30

    We describe an efficient system for site-selected transposon mutagenesis in maize. A total of 43,776 F1 plants were generated by using Robertson's Mutator (Mu) pollen parents and self-pollinated to establish a library of transposon-mutagenized seed. The frequency of new seed mutants was between 10-4 and 10-5 per F1 plant. As a service to the maize community, maize-targeted mutagenesis selects insertions in genes of interest from this library by using the PCR. Pedigree, knockout, sequence, phenotype, and other information is stored in a powerful interactive database (maize-targeted mutagenesis database) that enables analysis of the entire population and the handling of knockout requests. By inhibiting Mu activity in most F1 plants, we sought to reduce somatic insertions that may cause false positives selected from pooled tissue. By monitoring the remaining Mu activity in the F2, however, we demonstrate that seed phenotypes depend on it, and false positives occur in lines that appear to lack it. We conclude that more than half of all mutations arising in this population are suppressed on losing Mu activity. These results have implications for epigenetic models of inbreeding and for functional genomics.

  7. Pyrosequencing: Applicability for Studying DNA Damage-induced Mutagenesis

    PubMed Central

    Minko, Irina G.; Earley, Lauriel F.; Larlee, Kimberly E.; Lin, Ying-Chih; Lloyd, R. Stephen

    2014-01-01

    Site-specifically modified DNAs are routinely used in the study of DNA damage-induced mutagenesis. These analyses involve the creation of DNA vectors containing a lesion at a predetermined position, DNA replication, and detection of mutations at the target site. The final step has previously required the isolation of individual DNA clones, hybridization with radioactively-labeled probes, and verification of mutations by Sanger sequencing. In search for an alternative procedure that would allow direct quantification of sequence variants in a mixed population of DNA molecules, we evaluated the applicability of pyrosequencing to site-specific mutagenesis assays. The progeny DNAs were analyzed that originated from replication of N6-(deoxy-D-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dG)-containing vectors in primate cells, with the lesion being positioned in the 5′-GCNGG-3′ sequence context. Pyrosequencing detected ~8% G to T transversions and ~3.5% G to A transitions, a result that was in excellent agreement with frequencies previously measured by the standard procedure [Earley et al., 2013]. However, ~3.5% G to C transversions and ~2.0% deletions could not be detected by pyrosequencing. Consistent with these observations, the sensitivity of pyrosequencing for measuring the single deoxynucleotide variants differed depending on the deoxynucleotide identity, and in the given sequence contexts, was determined to be ~1-2% for A and T and ~5% for C. Pyrosequencing of other DNA isolates that were obtained following replication of MeFapy-dG-containing vectors in primate cells or Escherichia coli, identified several additional limitations. Collectively, our data demonstrated that pyrosequencing can be used for studying DNA damage-induced mutagenesis as an effective complementary experimental approach to current protocols. PMID:24962778

  8. EMS Mutagenesis in the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    Tagu, Denis; Le Trionnaire, Gaël; Tanguy, Sylvie; Gauthier, Jean-Pierre; Huynh, Jean-René

    2014-01-01

    In aphids, clonal individuals can show distinct morphologic traits in response to environmental cues. Such phenotypic plasticity cannot be studied with classical genetic model organisms such as Caenorhabditis elegans or Drosophila melanogaster. The genetic basis of this biological process remain unknown, as mutations affecting this process are not available in aphids. Here, we describe a protocol to treat third-stage larvae with an alkylating mutagen, ethyl methanesulfonate (EMS), to generate random mutations within the Acyrthosiphon pisum genome. We found that even low concentrations of EMS were toxic for two genotypes of A. pisum. Mutagenesis efficiency was nevertheless assessed by estimating the occurrence of mutational events on the X chromosome. Indeed, any lethal mutation on the X-chromosome would kill males that are haploid on the X so that we used the proportion of males as an estimation of mutagenesis efficacy. We could assess a putative mutation rate of 0.4 per X-chromosome at 10 mM of EMS. We then applied this protocol to perform a small-scale mutagenesis on parthenogenetic individuals, which were screened for defects in their ability to produce sexual individuals in response to photoperiod shortening. We found one mutant line showing a reproducible altered photoperiodic response with a reduced production of males and the appearance of aberrant winged males (wing atrophy, alteration of legs morphology). This mutation appeared to be stable because it could be transmitted over several generations of parthenogenetic individuals. To our knowledge, this study represents the first example of an EMS-generated aphid mutant. PMID:24531730

  9. Pollen tetrads in the detection of environmental mutagenesis

    SciTech Connect

    Mulcahy, D.L.

    1981-01-01

    Although pollen is a very sensitive indicator of environmental mutagenesis, it is also sensitive to nonmutagenic environmental stress. By analyzing pollen tetrads, rather than individual pollen grains, it is possible to distinguish between mutagenic and nonmutagenic influences. Another advantage of using pollen tetrads in mutagenicity studies is that it is possible to discriminate between pre- and post-pachytene mutations. This eliminates the mutant sector problem of a single mutational event giving rise to a large number of mutant cells. Methods of analyzing pollen tetrads are described.

  10. Mutagenesis in Newts: Protocol for Iberian Ribbed Newts.

    PubMed

    Hayashi, Toshinori; Takeuchi, Takashi

    2016-01-01

    Newts have the remarkable capability of organ/tissue regeneration, and have been used as a unique experimental model for regenerative biology. The Iberian ribbed newt (Pleurodeles waltl) is suitable as a model animal. We have established methods for artificial insemination and efficient transgenesis using P. waltl newts. In addition to the transgenic technique, development of TALENs enables targeting mutagenesis in the newts. We have reported that TALENs efficiently disrupted targeted genes in newt embryos. In this chapter, we introduce a protocol for TALEN-mediated gene targeting in Iberian ribbed newts.

  11. Chemical mutagenesis: an emerging issue for public health.

    PubMed Central

    Claxton, L D; Barry, P Z

    1977-01-01

    Chemical mutagens are recognized as prevalent in the environment and a potential threat to the health of future generations. This paper presents an overview of chemical mutagenesis as an issue for public health. Several problems in the determination of risk to human populations are discussed, including difficulties of extrapolating scientific data to humans, the latency period between exposure and recognizable genetic damage, and the large number of chemicals which must be tested. Test systems are described. Possibilities of control through federal regulation are discussed. PMID:911015

  12. New approach for fish breeding by chemical mutagenesis: establishment of TILLING method in fugu (Takifugu rubripes) with ENU mutagenesis

    PubMed Central

    2013-01-01

    Background In fish breeding, it is essential to discover and generate fish exhibiting an effective phenotype for the aquaculture industry, but screening for natural mutants by only depending on natural spontaneous mutations is limited. Presently, reverse genetics has become an important tool to generate mutants, which exhibit the phenotype caused by inactivation of a gene. TILLING (Targeting Induced Local Lesions INGenomes) is a reverse genetics strategy that combines random chemical mutagenesis with high-throughput discovery technologies for screening the induced mutations in target genes. Although the chemical mutagenesis has been used widely in a variety of model species and also genetic breeding of microorganisms and crops, the application of the mutagenesis in fish breeding has been only rarely reported. Results In this study, we developed the TILLING method in fugu with ENU mutagenesis and high-resolution melting (HRM) analysis to detect base pair changes in target sequences. Fugu males were treated 3 times at weekly intervals with various ENU concentrations, and then the collected sperm after the treatment was used to fertilize normal female for generating the mutagenized population (F1). The fertilization and the hatching ratios were similar to those of the control and did not reveal a dose dependency of ENU. Genomic DNA from the harvested F1 offspring was used for the HRM analysis. To obtain a fish exhibiting a useful phenotype (e.g. high meat production and rapid growth), fugu myostatin (Mstn) gene was examined as a target gene, because it has been clarified that the mstn deficient medaka exhibited double-muscle phenotype in common with MSTN knockout mice and bovine MSTN mutant. As a result, ten types of ENU-induced mutations were identified including a nonsense mutation in the investigated region with HRM analysis. In addition, the average mutation frequency in fugu Mstn gene was 1 mutant per 297 kb, which is similar to values calculated for zebrafish

  13. Heritable site-specific mutagenesis using TALENs in maize.

    PubMed

    Char, Si Nian; Unger-Wallace, Erica; Frame, Bronwyn; Briggs, Sarah A; Main, Marcy; Spalding, Martin H; Vollbrecht, Erik; Wang, Kan; Yang, Bing

    2015-09-01

    Transcription activator-like effector nuclease (TALEN) technology has been utilized widely for targeted gene mutagenesis, especially for gene inactivation, in many organisms, including agriculturally important plants such as rice, wheat, tomato and barley. This report describes application of this technology to generate heritable genome modifications in maize. TALENs were employed to generate stable, heritable mutations at the maize glossy2 (gl2) locus. Transgenic lines containing mono- or di-allelic mutations were obtained from the maize genotype Hi-II at a frequency of about 10% (nine mutated events in 91 transgenic events). In addition, three of the novel alleles were tested for function in progeny seedlings, where they were able to confer the glossy phenotype. In a majority of the events, the integrated TALEN T-DNA segregated independently from the new loss of function alleles, producing mutated null-segregant progeny in T1 generation. Our results demonstrate that TALENs are an effective tool for genome mutagenesis in maize, empowering the discovery of gene function and the development of trait improvement.

  14. Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir.

    PubMed

    de Ávila, Ana I; Gallego, Isabel; Soria, Maria Eugenia; Gregori, Josep; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M; Domingo, Esteban; Perales, Celia

    2016-01-01

    Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagen. Here we show that favipiravir (T-705) is a potent mutagenic agent for hepatitis C virus (HCV) during its replication in human hepatoma cells. T-705 leads to an excess of G → A and C → U transitions in the mutant spectrum of preextinction HCV populations. Infectivity decreased significantly in the presence of concentrations of T-705 which are 2- to 8-fold lower than its cytotoxic concentration 50 (CC50). Passaging the virus five times in the presence of 400 μM T-705 resulted in virus extinction. Since T-705 has undergone advanced clinical trials for approval for human use, the results open a new approach based on lethal mutagenesis to treat hepatitis C virus infections. If proven effective for HCV in vivo, this new anti-HCV agent may be useful in patient groups that fail current therapeutic regimens.

  15. Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir

    PubMed Central

    de Ávila, Ana I.; Gallego, Isabel; Soria, Maria Eugenia; Gregori, Josep; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M.; Domingo, Esteban; Perales, Celia

    2016-01-01

    Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagen. Here we show that favipiravir (T-705) is a potent mutagenic agent for hepatitis C virus (HCV) during its replication in human hepatoma cells. T-705 leads to an excess of G → A and C → U transitions in the mutant spectrum of preextinction HCV populations. Infectivity decreased significantly in the presence of concentrations of T-705 which are 2- to 8-fold lower than its cytotoxic concentration 50 (CC50). Passaging the virus five times in the presence of 400 μM T-705 resulted in virus extinction. Since T-705 has undergone advanced clinical trials for approval for human use, the results open a new approach based on lethal mutagenesis to treat hepatitis C virus infections. If proven effective for HCV in vivo, this new anti-HCV agent may be useful in patient groups that fail current therapeutic regimens. PMID:27755573

  16. Mutagenesis of diploid mammalian genes by gene entrapment

    PubMed Central

    Lin, Qing; Donahue, Sarah L.; Moore-Jarrett, Tracy; Cao, Shang; Osipovich, Anna B.; Ruley, H. Earl

    2006-01-01

    The present study describes a genome-wide method for biallelic mutagenesis in mammalian cells. Novel poly(A) gene trap vectors, which contain features for direct cloning vector–cell fusion transcripts and for post-entrapment genome engineering, were used to generate a library of 979 mutant ES cells. The entrapment mutations generally disrupted gene expression and were readily transmitted through the germline, establishing the library as a resource for constructing mutant mice. Cells homozygous for most entrapment loci could be isolated by selecting for enhanced expression of an inserted neomycin-resistance gene that resulted from losses of heterozygosity (LOH). The frequencies of LOH measured at 37 sites in the genome ranged from 1.3 × 10−5 to 1.2 × 10−4 per cell and increased with increasing distance from the centromere, implicating mitotic recombination in the process. The ease and efficiency of obtaining homozygous mutations will (i) facilitate genetic studies of gene function in cultured cells, (ii) permit genome-wide studies of recombination events that result in LOH and mediate a type of chromosomal instability important in carcinogenesis, and (iii) provide new strategies for phenotype-driven mutagenesis screens in mammalian cells. PMID:17062627

  17. Mutagenesis of diploid mammalian genes by gene entrapment.

    PubMed

    Lin, Qing; Donahue, Sarah L; Moore-Jarrett, Tracy; Cao, Shang; Osipovich, Anna B; Ruley, H Earl

    2006-01-01

    The present study describes a genome-wide method for biallelic mutagenesis in mammalian cells. Novel poly(A) gene trap vectors, which contain features for direct cloning vector-cell fusion transcripts and for post-entrapment genome engineering, were used to generate a library of 979 mutant ES cells. The entrapment mutations generally disrupted gene expression and were readily transmitted through the germline, establishing the library as a resource for constructing mutant mice. Cells homozygous for most entrapment loci could be isolated by selecting for enhanced expression of an inserted neomycin-resistance gene that resulted from losses of heterozygosity (LOH). The frequencies of LOH measured at 37 sites in the genome ranged from 1.3 x 10(-5) to 1.2 x 10(-4) per cell and increased with increasing distance from the centromere, implicating mitotic recombination in the process. The ease and efficiency of obtaining homozygous mutations will (i) facilitate genetic studies of gene function in cultured cells, (ii) permit genome-wide studies of recombination events that result in LOH and mediate a type of chromosomal instability important in carcinogenesis, and (iii) provide new strategies for phenotype-driven mutagenesis screens in mammalian cells.

  18. TALEN mediated somatic mutagenesis in murine models of cancer

    PubMed Central

    Zhang, Shuyuan; Li, Lin; Kendrick, Sara L.; Gerard, Robert D.; Zhu, Hao

    2014-01-01

    Cancer genome sequencing has identified numerous somatic mutations whose biological relevance is uncertain. In this study, we used genome-editing tools to create and analyze targeted somatic mutations in murine models of liver cancer. TALEN were designed against β-catenin (Ctnnb1) and Apc, two commonly mutated genes in hepatocellular carcinoma (HCC), to generate isogenic HCC cell lines. Both mutant cell lines exhibited evidence of Wnt pathway dysregulation. We asked if these TALENs could create targeted somatic mutations after hydrodynamic transfection (HDT) into mouse liver. TALENs targeting β-catenin promoted endogenous HCC carrying the intended gain-of-function mutations. However, TALENs targeting Apc were not as efficient in inducing in vivo homozygous loss-of-function mutations. We hypothesized that hepatocyte polyploidy might be protective against TALEN-induced loss of heterozygosity (LOH), and indeed Apc gene editing was less efficient in tetraploid than in diploid hepatocytes. To increase efficiency, we administered adenoviral Apc TALENs and found that we could achieve a higher mutagenesis rate in vivo. Our results demonstrate that genome-editing tools can enable the in vivo study of cancer genes and faithfully recapitulate the mosaic nature of mutagenesis in mouse cancer models. PMID:25070752

  19. Mechanisms of Base Substitution Mutagenesis in Cancer Genomes

    PubMed Central

    Bacolla, Albino; Cooper, David N.; Vasquez, Karen M.

    2014-01-01

    Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs). Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS) and other endogenous or exogenous electron-abstracting molecules. PMID:24705290

  20. [Mechanism of arginine deiminase activity by site-directed mutagenesis].

    PubMed

    Li, Lifeng; Ni, Ye; Sun, Zhihao

    2012-04-01

    Arginine deiminase (ADI) has been studied as a potential anti-cancer agent for inhibiting arginine-auxotrophic tumors (such as melanomas and hepatocellular carcinomas) in phase III clinical trials. In this work, we studied the molecular mechanism of arginine deiminase activity by site-directed mutagenesis. Three mutation sites, A128, H404 and 1410, were introduced into wild-type ADI gene by QuikChange site-directed mutagenesis method, and four ADI mutants M1 (A128T), M2 (H404R), M3 (I410L), and M4 (A128T, H404R) were obtained. The ADI mutants were individually expressed in Escherichia coli BL21 (DE3), and the enzymatic properties of the purified mutant proteins were determined. The results show that both A128T and H404R had enhanced optimum pH, higher activity and stability of ADI under physiological condition (pH 7.4), as well as reduced K(m) value. This study provides an insight into the molecular mechanism of the ADI activity, and also the experimental evidence for the rational protein evolution in the future.

  1. Site-directed mutagenesis and saturation mutagenesis for the functional study of transcription factors involved in plant secondary metabolite biosynthesis.

    PubMed

    Pattanaik, Sitakanta; Werkman, Joshua R; Kong, Que; Yuan, Ling

    2010-01-01

    Regulation of gene expression is largely coordinated by a complex network of interactions between transcription factors (TFs), co-factors, and their cognate cis-regulatory elements in the genome. TFs are multidomain proteins that arise evolutionarily through protein domain shuffling. The modular nature of TFs has led to the idea that specific modules of TFs can be re-designed to regulate desired gene(s) through protein engineering. Utilization of designer TFs for the control of metabolic pathways has emerged as an effective approach for metabolic engineering. We are interested in engineering the basic helix-loop-helix (bHLH, Myc-type) transcription factors. Using site-directed and saturation mutagenesis, in combination with efficient and high-throughput screening systems, we have identified and characterized several amino acid residues critical for higher transactivation activity of a Myc-like bHLH transcription factor involved in anthocyanin biosynthetic pathway in plants. Site-directed and saturation mutagenesis should be generally applicable to engineering of all TFs.

  2. Greetings from The International Association of Environmental Mutagenesis and Genomics Societies.

    PubMed

    Nohmi, Takehiko

    2015-01-01

    The International Association of Environmental Mutagenesis and Genomics Societies (IAEMGS) is an organization that promotes basic and applied research on environmental mutagenesis and genomics. In this article, as President of IAEMGS, I stress the important role of Genes and Environment to spread the voice of Asia to the international scientific community. Open access will support the journal in achieving this mission.

  3. Establishment of a Counter-selectable Markerless Mutagenesis System in Veillonella atypica

    PubMed Central

    Zhou, Peng; Li, Xiaoli; Qi, Fengxia

    2015-01-01

    Using an alternative sigma factor ecf3 as target, we successfully established the first markerless mutagenesis system in the Veillonella genus. This system will be a valuable tool for mutagenesis of multiple genes for gene function analysis as well as for gene regulation studies in Veillonella. PMID:25771833

  4. A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. We isolated 11 lethal lines that map...

  5. Environmental mutagenesis during the end-Permian ecological crisis.

    PubMed

    Visscher, Henk; Looy, Cindy V; Collinson, Margaret E; Brinkhuis, Henk; van Konijnenburg-van Cittert, Johanna H A; Kürschner, Wolfram M; Sephton, Mark A

    2004-08-31

    During the end-Permian ecological crisis, terrestrial ecosystems experienced preferential dieback of woody vegetation. Across the world, surviving herbaceous lycopsids played a pioneering role in repopulating deforested terrain. We document that the microspores of these lycopsids were regularly released in unseparated tetrads indicative of failure to complete the normal process of spore development. Although involvement of mutation has long been hinted at or proposed in theory, this finding provides concrete evidence for chronic environmental mutagenesis at the time of global ecological crisis. Prolonged exposure to enhanced UV radiation could account satisfactorily for a worldwide increase in land plant mutation. At the end of the Permian, a period of raised UV stress may have been the consequence of severe disruption of the stratospheric ozone balance by excessive emission of hydrothermal organohalogens in the vast area of Siberian Traps volcanism.

  6. Targeted Mutagenesis in Zebrafish Using Customized Zinc Finger Nucleases

    PubMed Central

    Foley, Jonathan E.; Maeder, Morgan L.; Pearlberg, Joseph; Joung, J. Keith; Peterson, Randall T.; Yeh, Jing-Ruey J.

    2009-01-01

    Zebrafish mutants have traditionally been obtained using random mutagenesis or retroviral insertions, methods that cannot be targeted to a specific gene and require laborious gene mapping and sequencing. Recently, we and others have shown that customized zinc finger nucleases (ZFNs) can introduce targeted frame-shift mutations with high efficiency, thereby enabling directed creation of zebrafish gene mutations. Here we describe a detailed protocol for constructing ZFN expression vectors, for generating and introducing ZFN-encoding RNAs into zebrafish embryos, and for identifying ZFN-generated mutations in targeted genomic sites. All of our vectors and methods are compatible with previously described Zinc Finger Consortium reagents for constructing engineered zinc finger arrays. Using these methods, zebrafish founders carrying targeted mutations can be identified within four months. PMID:20010934

  7. Combined Overlap Extension PCR Method for Improved Site Directed Mutagenesis

    PubMed Central

    Chong, Nikson Fatt-Ming

    2016-01-01

    The combined overlap extension PCR (COE-PCR) method developed in this work combines the strengths of the overlap extension PCR (OE-PCR) method with the speed and ease of the asymmetrical overlap extension (AOE-PCR) method. This combined method allows up to 6 base pairs to be mutated at a time and requires a total of 40–45 PCR cycles. A total of eight mutagenesis experiments were successfully carried out, with each experiment mutating between two to six base pairs. Up to four adjacent codons were changed in a single experiment. This method is especially useful for codon optimization, where doublet or triplet rare codons can be changed using a single mutagenic primer set, in a single experiment. PMID:27995143

  8. Mutant fatty acid desaturase and methods for directed mutagenesis

    DOEpatents

    Shanklin, John; Whittle, Edward J.

    2008-01-29

    The present invention relates to methods for producing fatty acid desaturase mutants having a substantially increased activity towards substrates with fewer than 18 carbon atom chains relative to an unmutagenized precursor desaturase having an 18 carbon chain length specificity, the sequences encoding the desaturases and to the desaturases that are produced by the methods. The present invention further relates to a method for altering a function of a protein, including a fatty acid desaturase, through directed mutagenesis involving identifying candidate amino acid residues, producing a library of mutants of the protein by simultaneously randomizing all amino acid candidates, and selecting for mutants which exhibit the desired alteration of function. Candidate amino acids are identified by a combination of methods. Enzymatic, binding, structural and other functions of proteins can be altered by the method.

  9. Mutagenesis and differentiation induction in mammalian cells by environmental chemicals

    SciTech Connect

    Friedman, J.; Huberman, E.

    1980-01-01

    These studies indicate that in agreement with the somatic mutation hypothesis, chemical carcinogens: (1) are mutagenic for mammalian cells as tested in the cell-mediated assay; (2) the degree of mutagenicity is correlated with their degree of carcinogenicity; (3) that at least in cases when analyzed carefully the metabolites responsible for mutagenesis are also responsible for initiating the carcinogenic event; and (4) that a cell organ type specificity can be established using the cell-mediated assay. Studies with HL-60 cells and HO melanoma cells and those of others suggest that tumor-promoting phorbol diesters can alter cell differentiation in various cell types and that the degree of the observed alteration in the differentiation properties may be related to the potency of the phorbol esters. Thus these and similar systems may serve as models for both studies and identification of certain types of tumor promoting agents. (ERB)

  10. New insights into behaviour using mouse ENU mutagenesis.

    PubMed

    Oliver, Peter L; Davies, Kay E

    2012-10-15

    Identifying genes involved in behavioural disorders in man is a challenge as the cause is often multigenic and the phenotype is modulated by environmental cues. Mouse mutants are a valuable tool for identifying novel pathways underlying specific neurological phenotypes and exploring the influence both genetic and non-genetic factors. Many human variants causing behavioural disorders are not gene deletions but changes in levels of expression or activity of a gene product; consequently, large-scale mouse ENU mutagenesis has the advantage over the study of null mutants in that it generates a range of point mutations that frequently mirror the subtlety and heterogeneity of human genetic lesions. ENU mutants have provided novel and clinically relevant functional information on genes that influence many aspects of mammalian behaviour, from neuropsychiatric endophenotypes to circadian rhythms. This review will highlight some of the most important findings that have been made using this method in several key areas of neurological disease research.

  11. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum.

    PubMed

    Gao, Junping; Wang, Genhong; Ma, Sanyuan; Xie, Xiaodong; Wu, Xiangwei; Zhang, Xingtan; Wu, Yuqian; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Genome editing is one of the most powerful tools for revealing gene function and improving crop plants. Recently, RNA-guided genome editing using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system has been used as a powerful and efficient tool for genome editing in various organisms. Here, we report genome editing in tobacco (Nicotiana tabacum) mediated by the CRISPR/Cas9 system. Two genes, NtPDS and NtPDR6, were used for targeted mutagenesis. First, we examined the transient genome editing activity of this system in tobacco protoplasts, insertion and deletion (indel) mutations were observed with frequencies of 16.2-20.3% after transfecting guide RNA (gRNA) and the nuclease Cas9 in tobacco protoplasts. The two genes were also mutated using multiplexing gRNA at a time. Additionally, targeted deletions and inversions of a 1.8-kb fragment between two target sites in the NtPDS locus were demonstrated, while indel mutations were also detected at both the sites. Second, we obtained transgenic tobacco plants with NtPDS and NtPDR6 mutations induced by Cas9/gRNA. The mutation percentage was 81.8% for NtPDS gRNA4 and 87.5% for NtPDR6 gRNA2. Obvious phenotypes were observed, etiolated leaves for the psd mutant and more branches for the pdr6 mutant, indicating that highly efficient biallelic mutations occurred in both transgenic lines. No significant off-target mutations were obtained. Our results show that the CRISPR/Cas9 system is a useful tool for targeted mutagenesis of the tobacco genome.

  12. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice

    PubMed Central

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2016-01-01

    Recent reports of CRISPR- (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) mediated heritable mutagenesis in plants highlight the need for accuracy of the mutagenesis directed by this system. Off-target mutations are an important issue when considering functional gene analysis, as well as the molecular breeding of crop plants with large genome size, i.e. with many duplicated genes, and where the whole-genome sequence is still lacking. In mammals, off-target mutations can be suppressed by using Cas9 paired nickases together with paired guide RNAs (gRNAs). However, the performance of Cas9 paired nickases has not yet been fully assessed in plants. Here, we analyzed on- and off-target mutation frequency in rice calli and regenerated plants using Cas9 nuclease or Cas9 nickase with paired gRNAs. When Cas9 paired nickases were used, off-target mutations were fully suppressed in rice calli and regenerated plants. However, on-target mutation frequency also decreased compared with that induced by the Cas9 paired nucleases system. Since the gRNA sequence determines specific binding of Cas9 protein–gRNA ribonucleoproteins at the targeted sequence, the on-target mutation frequency of Cas9 paired nickases depends on the design of paired gRNAs. Our results suggest that a combination of gRNAs that can induce mutations at high efficiency with Cas9 nuclease should be used together with Cas9 nickase. Furthermore, we confirmed that a combination of gRNAs containing a one nucleotide (1 nt) mismatch toward the target sequence could not induce mutations when expressed with Cas9 nickase. Our results clearly show the effectiveness of Cas9 paired nickases in delivering on-target specific mutations. PMID:26936792

  13. In vivo site-directed mutagenesis using oligonucleotides.

    PubMed

    Storici, F; Lewis, L K; Resnick, M A

    2001-08-01

    Functional characterization of the genes of higher eukaryotes has been aided by their expression in model organisms and by analyzing site-specific changes in homologous genes in model systems such as the yeast Saccharomyces cerevisiae. Modifying sequences in yeast or other organisms such that no heterologous material is retained requires in vitro mutagenesis together with subcloning. PCR-based procedures that do not involve cloning are inefficient or require multistep reactions that increase the risk of additional mutations. An alternative approach, demonstrated in yeast, relies on transformation with an oligonucleotide, but the method is restricted to the generation of mutants with a selectable phenotype. Oligonucleotides, when combined with gap repair, have also been used to modify plasmids in yeast; however, this approach is limited by restriction-site availability. We have developed a mutagenesis approach in yeast based on transformation by unpurified oligonucleotides that allows the rapid creation of site-specific DNA mutations in vivo. A two-step, cloning-free process, referred to as delitto perfetto, generates products having only the desired mutation, such as a single or multiple base change, an insertion, a small or a large deletion, or even random mutations. The system provides for multiple rounds of mutation in a window up to 200 base pairs. The process is RAD52 dependent, is not constrained by the distribution of naturally occurring restriction sites, and requires minimal DNA sequencing. Because yeast is commonly used for random and selective cloning of genomic DNA from higher eukaryotes such as yeast artificial chromosomes, the delitto perfetto strategy also provides an efficient way to create precise changes in mammalian or other DNA sequences.

  14. Structure-based design of combinatorial mutagenesis libraries.

    PubMed

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-05-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states.

  15. Random mutagenesis by error-prone pol plasmid replication in Escherichia coli.

    PubMed

    Alexander, David L; Lilly, Joshua; Hernandez, Jaime; Romsdahl, Jillian; Troll, Christopher J; Camps, Manel

    2014-01-01

    Directed evolution is an approach that mimics natural evolution in the laboratory with the goal of modifying existing enzymatic activities or of generating new ones. The identification of mutants with desired properties involves the generation of genetic diversity coupled with a functional selection or screen. Genetic diversity can be generated using PCR or using in vivo methods such as chemical mutagenesis or error-prone replication of the desired sequence in a mutator strain. In vivo mutagenesis methods facilitate iterative selection because they do not require cloning, but generally produce a low mutation density with mutations not restricted to specific genes or areas within a gene. For this reason, this approach is typically used to generate new biochemical properties when large numbers of mutants can be screened or selected. Here we describe protocols for an advanced in vivo mutagenesis method that is based on error-prone replication of a ColE1 plasmid bearing the gene of interest. Compared to other in vivo mutagenesis methods, this plasmid-targeted approach allows increased mutation loads and facilitates iterative selection approaches. We also describe the mutation spectrum for this mutagenesis methodology in detail, and, using cycle 3 GFP as a target for mutagenesis, we illustrate the phenotypic diversity that can be generated using our method. In sum, error-prone Pol I replication is a mutagenesis method that is ideally suited for the evolution of new biochemical activities when a functional selection is available.

  16. Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species.

    PubMed

    Um, Hae Young; Chung, Eunsook; Lee, Jai-Heon; Lee, Seon-Woo

    2011-04-01

    Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria.

  17. Radiation quality and mutagenesis in human lymphoblastoid cells.

    PubMed

    Liber, Howard L; Idate, Rupa; Warner, Christy; Bailey, Susan M

    2014-10-01

    , there was no clear evidence of a dose response for bystander mutagenesis, i.e., the MF plateaued. Interestingly, the magnitudes of the bystander MFs induced by different ion/energy combinations did vary, with bystander MFs ranging from 0.8 to 2.2× higher than the background. Furthermore, the nontargeted MFs appeared to reflect a mirror image of that for direct mutagenesis.

  18. Cryptococcus neoformans Virulence Gene Discovery through Insertional Mutagenesis

    PubMed Central

    Idnurm, Alexander; Reedy, Jennifer L.; Nussbaum, Jesse C.; Heitman, Joseph

    2004-01-01

    Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin (NAT)-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37°C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37°C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1, whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium-mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu+ transport into the secretory pathway is compromised, depriving laccase and other Cu+-dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen-activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their

  19. Genes Necessary for Bacterial Magnetite Biomineralization Identified by Transposon Mutagenesis

    NASA Astrophysics Data System (ADS)

    Nash, C. Z.; Komeili, A.; Newman, D. K.; Kirschvink, J. L.

    2004-12-01

    Magnetic bacteria synthesize nanoscale crystals of magnetite in intracellular, membrane-bounded organelles (magnetosomes). These crystals are preserved in the fossil record at least as far back as the late Neoproterozoic and have been tentatively identified in much older rocks (1). This fossil record may provide deep time calibration points for molecular evolution studies once the genes involved in biologically controlled magnetic mineralization (BCMM) are known. Further, a genetic and biochemical understanding of BCMM will give insight into the depositional environment and biogeochemical cycles in which magnetic bacteria play a role. The BCMM process is not well understood, though proteins have been identified from the magnetosome membrane and genetic manipulation and biochemical characterization of these proteins are underway. Most of the proteins currently thought to be involved are encoded within the mam cluster, a large cluster of genes whose products localize to the magnetosome membrane and are conserved among magnetic bacteria (2). In an effort to identify all of the genes necessary for bacterial BCMM, we undertook a transposon mutagenesis of Magnetospirillum magneticum AMB-1. Non-magnetic mutants (MNMs) were identified by growth in liquid culture followed by a magnetic assay. The insertion site of the transposon was identified two ways. First MNMs were screened with a PCR assay to determine if the transposon had inserted into the mam cluster. Second, the transposon was rescued from the mutant DNA and cloned for sequencing. The majority insertion sites are located within the mam cluster. Insertion sites also occur in operons which have not previously been suspected to be involved in magnetite biomineralization. None of the insertion sites have occurred within genes reported from previous transposon mutagenesis studies of AMB-1 (3, 4). Two of the non-mam cluster insertion sites occur in operons containing genes conserved particularly between MS-1 and MC-1. We

  20. Radio frequency electromagnetic fields: cancer, mutagenesis, and genotoxicity.

    PubMed

    Heynick, Louis N; Johnston, Sheila A; Mason, Patrick A

    2003-01-01

    We present critiques of epidemiologic studies and experimental investigations, published mostly in peer-reviewed journals, on cancer and related effects from exposure to nonionizing electromagnetic fields in the nominal frequency range of 3 kHz to 300 GHz of interest to Subcommittee 4 (SC4) of the International Committee on Electromagnetic Safety (ICES). The major topics discussed are presented under the headings Epidemiologic and Other Findings on Human Exposure, Mammals Exposed In Vivo, Mammalian Live Tissues and Cell Preparations Exposed In Vitro, and Mutagenesis and Genotoxicity in Microorganisms and Fruit Flies. Under each major topic, we present minireviews of papers on various specific endpoints investigated. The section on Epidemiologic and Other Findings on Human Exposure is divided into two subsections, the first on possible carcinogenic effects of exposure from emitters not in physical contact with the populations studied, for example, transmitting antennas and other devices. Discussed in the second subsection are studies of postulated carcinogenic effects from use of mobile phones, with prominence given to brain tumors from use of cellular and cordless telephones in direct physical contact with an ear of each subject. In both subsections, some investigations yielded positive findings, others had negative findings, including papers directed toward experimentally verifying positive findings, and both were reported in a few instances. Further research on various important aspects may resolve such differences. Overall, however, the preponderance of published epidemiologic and experimental findings do not support the supposition that in vivo or in vitro exposures to such fields are carcinogenic.

  1. Establishment of Tn5096-Based Transposon Mutagenesis in Gordonia polyisoprenivorans

    PubMed Central

    Banh, Quyen; Arenskötter, Matthias; Steinbüchel, Alexander

    2005-01-01

    The transposons Tn5, Tn10, Tn611, and Tn5096 were characterized regarding transposition in Gordonia polyisoprenivorans strain VH2. No insertional mutants were obtained employing Tn5 or Tn10. The thermosensitive plasmid pCG79 harboring Tn611 integrated into the chromosome of G. polyisoprenivorans; however, the insertional mutants were fairly unstable und reverted frequently to the wild-type phenotype. In contrast, various stable mutants were obtained employing Tn5096-mediated transposon mutagenesis. Auxotrophic mutants, mutants defective or deregulated in carotenoid biosynthesis, and mutants defective in utilization of rubber and/or highly branched isoprenoid hydrocarbons were obtained by integration of plasmid pMA5096 harboring Tn5096 as a whole into the genome. From about 25,000 isolated mutants, the insertion loci of pMA5096 were subsequently mapped in 20 independent mutants in genes which could be related to the above-mentioned metabolic pathways or to putative regulation proteins. Analyses of the genotypes of pMA5096-mediated mutants defective in biodegradation of poly(cis-1,4-isoprene) did not reveal homologues to recently identified genes coding for enzymes catalyzing the initial cleavage of poly(cis-1,4-isoprene). One rubber-negative mutant was disrupted in mcr, encoding an α-methylacyl-coenzyme A racemase. This mutant was defective in degradation of poly(cis-1,4-isoprene) and also of highly branched isoprenoid hydrocarbons. PMID:16151089

  2. Oligonucleotide-directed mutagenesis for precision gene editing.

    PubMed

    Sauer, Noel J; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-02-01

    Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed.

  3. ENU mutagenesis in mice identifies candidate genes for hypogonadism.

    PubMed

    Weiss, Jeffrey; Hurley, Lisa A; Harris, Rebecca M; Finlayson, Courtney; Tong, Minghan; Fisher, Lisa A; Moran, Jennifer L; Beier, David R; Mason, Christopher; Jameson, J Larry

    2012-06-01

    Genome-wide mutagenesis was performed in mice to identify candidate genes for male infertility, for which the predominant causes remain idiopathic. Mice were mutagenized using N-ethyl-N-nitrosourea (ENU), bred, and screened for phenotypes associated with the male urogenital system. Fifteen heritable lines were isolated and chromosomal loci were assigned using low-density genome-wide SNP arrays. Ten of the 15 lines were pursued further using higher-resolution SNP analysis to narrow the candidate gene regions. Exon sequencing of candidate genes identified mutations in mice with cystic kidneys (Bicc1), cryptorchidism (Rxfp2), restricted germ cell deficiency (Plk4), and severe germ cell deficiency (Prdm9). In two other lines with severe hypogonadism, candidate sequencing failed to identify mutations, suggesting defects in genes with previously undocumented roles in gonadal function. These genomic intervals were sequenced in their entirety and a candidate mutation was identified in SnrpE in one of the two lines. The line harboring the SnrpE variant retains substantial spermatogenesis despite small testis size, an unusual phenotype. In addition to the reproductive defects, heritable phenotypes were observed in mice with ataxia (Myo5a), tremors (Pmp22), growth retardation (unknown gene), and hydrocephalus (unknown gene). These results demonstrate that the ENU screen is an effective tool for identifying potential causes of male infertility.

  4. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna.

    PubMed

    Nakanishi, Takashi; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2014-01-01

    The water flea Daphnia magna has been used as an animal model in ecology, evolution, and environmental sciences. Thanks to the recent progress in Daphnia genomics, genetic information such as the draft genome sequence and expressed sequence tags (ESTs) is now available. To investigate the relationship between phenotypes and the available genetic information about Daphnia, some gene manipulation methods have been developed. However, a technique to induce targeted mutagenesis into Daphnia genome remains elusive. To overcome this problem, we focused on an emerging genome editing technique mediated by the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system to introduce genomic mutations. In this study, we targeted a functionally conserved regulator of eye development, the eyeless gene in D. magna. When we injected Cas9 mRNAs and eyeless-targeting guide RNAs into eggs, 18-47% of the survived juveniles exhibited abnormal eye morphology. After maturation, up to 8.2% of the adults produced progenies with deformed eyes, which carried mutations in the eyeless loci. These results showed that CRISPR/Cas system could introduce heritable mutations into the endogenous eyeless gene in D. magna. This is the first report of a targeted gene knockout technique in Daphnia and will be useful in uncovering Daphnia gene functions.

  5. Embryonic Lethals and T-DNA Insertional Mutagenesis in Arabidopsis.

    PubMed Central

    Errampalli, D; Patton, D; Castle, L; Mickelson, L; Hansen, K; Schnall, J; Feldmann, K; Meinke, D

    1991-01-01

    T-DNA insertional mutagenesis represents a promising approach to the molecular isolation of genes with essential functions during plant embryo development. We describe in this report the isolation and characterization of 18 mutants of Arabidopsis thaliana defective in embryo development following seed transformation with Agrobacterium tumefaciens. Random T-DNA insertion was expected to result in a high frequency of recessive embryonic lethals because many target genes are required for embryogenesis. The cointegrate Ti plasmid used in these experiments contained the nopaline synthase and neomycin phosphotransferase gene markers. Nopaline assays and resistance to kanamycin were used to estimate the number of functional inserts present in segregating families. Nine families appeared to contain a T-DNA insert either within or adjacent to the mutant gene. Eight families were clearly not tagged with a functional insert and appeared instead to contain mutations induced during the transformation process. DNA gel blot hybridization with internal and right border probes revealed a variety of rearrangements associated with T-DNA insertion. A general strategy is presented to simplify the identification of tagged embryonic mutants and facilitate the molecular isolation of genes required for plant embryogenesis. PMID:12324593

  6. Combinatorial mutagenesis and selection to understand and improve yeast promoters.

    PubMed

    Berg, Laila; Strand, Trine Aakvik; Valla, Svein; Brautaset, Trygve

    2013-01-01

    Microbial promoters are important targets both for understanding the global gene expression and developing genetic tools for heterologous expression of proteins and complex biosynthetic pathways. Previously, we have developed and used combinatorial mutagenesis methods to analyse and improve bacterial expression systems. Here, we present for the first time an analogous strategy for yeast. Our model promoter is the strong and inducible P AOX1 promoter in methylotrophic Pichia pastoris. The Zeocin resistance gene was applied as a valuable reporter for mutant P AOX1 promoter activity, and we used an episomal plasmid vector to ensure a constant reporter gene dosage in the yeast host cells. This novel design enabled direct selection for colonies of recombinant cells with altered Zeocin tolerance levels originating solely from randomly introduced point mutations in the P AOX1 promoter DNA sequence. We demonstrate that this approach can be used to select for P AOX1 promoter variants with abolished glucose repression in large mutant libraries. We also selected P AOX1 promoter variants with elevated expression level under induced conditions. The properties of the selected P AOX1 promoter variants were confirmed by expressing luciferase as an alternative reporter gene. The tools developed here should be useful for effective screening, characterization, and improvement of any yeast promoters.

  7. A Synthetic Approach to Stop-Codon Scanning Mutagenesis

    PubMed Central

    Nie, Lihua; Lavinder, Jason J.; Sarkar, Mohosin; Stephany, Kimberly; Magliery, Thomas J.

    2011-01-01

    A general combinatorial mutagenesis strategy using common DMT-protected mononucleotide phosphoramidites and a single orthogonally-protected trinucleotide phosphoramidite (Fmoc-TAG) was developed to scan a gene with the TAG amber stop codon with complete synthetic control. In combination with stop-codon suppressors that insert natural (e.g., alanine) or unnatural (e.g., p-benzoylphenylalanine or Bpa) amino acids, a single DNA library can be used to incorporate different amino acids for diverse purposes. Here, we scanned TAG codons through part of the gene for a model four-helix bundle protein, Rop, which regulates the copy number of ColE1 plasmids. Alanine was incorporated into Rop for mapping its binding site using an in vivo activity screen, and subtle but important differences from in vitro gel-shift studies of Rop function are evident. As a test, Bpa was incorporated using a Phe14 amber mutant isolated from the scanning library. Surprisingly, Phe14Bpa Rop is weakly active, despite the critical role of Phe14 in Rop activity. Bpa is a photoaffinity label unnatural amino acid that can form covalent bonds with adjacent molecules upon UV irradiation. Irradiation of Phe14Bpa-Rop, which is a dimer in solution like wild-type Rop, results in covalent dimers, trimers and tetramers. This suggests that Phe14Bpa Rop weakly associates as a tetramer in solution and highlights the use of Bpa crosslinking as a means of trapping weak and transient interactions. PMID:21452871

  8. Insertional mutagenesis of preneoplastic astrocytes by Moloney murine leukemia virus.

    PubMed

    Afanasieva, T A; Pekarik, V; Grazia D'Angelo, M; Klein, M A; Voigtländer, T; Stocking, C; Aguzzi, A

    2001-04-01

    Retroviral infection can induce transcriptional activation of genes flanking the sites of proviral integration in target cells. Because integration is essentially random, this phenomenon can be exploited for random mutagenesis of the genome, and analysis of integration sites in tumors may identify potential oncogenes. Here we have investigated this strategy in the context of astrocytoma progression. Neuroectodermal explants from astrocytoma-prone GFAP-v-src transgenic mice were infected with the ecotropic Moloney murine leukemia virus (Mo-MuLV). In situ hybridization and FACS analysis indicated that astrocytes from E12.5-13.5 embryos were highly susceptible to retroviral infection and expressed viral RNA and proteins both in vitro and in vivo. In average 80% of neuroectodermal cells were infected in vitro with 9-14 proviral integrations per cell. Virus mobility assays confirmed that Mo-MuLV remained transcriptionally active and replicating in neuroectodermal primary cultures even after 45 days of cultivation. Proviral insertion sites were investigated by inverse long-range PCR. Analysis of a limited number of provirus flanking sequences in clones originated from in vitro infected GFAP-v-src neuroectodermal cells identified loci of possible relevance to tumorigenesis. Therefore, the approach described here might be suitable for acceleration of tumorigenesis in preneoplastic astrocytes. We expect this method to be useful for identifying genes involved in astrocytoma development/progression in animal models.

  9. Analysis of HIV-2 Vpx by modeling and insertional mutagenesis

    SciTech Connect

    Mahnke, Lisa A. . E-mail: lmahnke@im.wustl.edu; Belshan, Michael; Ratner, Lee . E-mail: lratner@im.wustl.edu

    2006-04-25

    Vpx facilitates HIV-2 nuclear localization by a poorly understood mechanism. We have compared Vpx to an NMR structure HIV-1 Vpr in a central helical domain and probed regions of Vpx by insertional mutagenesis. A predicted loop between helices two and three appears to be unique, overlapping with a known novel nuclear localization signal. Overall, Vpx was found to be surprisingly flexible, tolerating a series of large insertions. We found that insertion within the polyproline-containing C-terminus destabilizes nuclear localization, whereas mutating a second helix in the central domain disrupts viral packaging. Other insertional mutants in the predicted loop and in a linker region between the central domain and the C-terminus may be useful as sites of intramolecular tags as they could be packaged adequately and retained preintegration complex associated integration activity in a serum starvation assay. An unexpected result was found within a previously defined nuclear localization motif near aa 71. This mutant retained robust nuclear localization in a GFP fusion assay and was competent for preintegration complex associated nuclear import. In summary, we have modeled helical content in Vpx and assessed potential sites of intramolecular tags which may prove useful for protein-protein interactions studies.

  10. Lethal Mutagenesis of HIV with Mutagenic Nucleoside Analogs

    NASA Astrophysics Data System (ADS)

    Loeb, Lawrence A.; Essigmann, John M.; Kazazi, Farhad; Zhang, Jue; Rose, Karl D.; Mullins, James I.

    1999-02-01

    The human immunodeficiency virus (HIV) replicates its genome and mutates at exceptionally high rates. As a result, the virus is able to evade immunological and chemical antiviral agents. We tested the hypothesis that a further increase in the mutation rate by promutagenic nucleoside analogs would abolish viral replication. We evaluated deoxynucleoside analogs for lack of toxicity to human cells, incorporation by HIV reverse transcriptase, resistance to repair when incorporated into the DNA strand of an RNA\\cdot DNA hybrid, and mispairing at high frequency. Among the candidates tested, 5-hydroxydeoxycytidine (5-OH-dC) fulfilled these criteria. In seven of nine experiments, the presence of this analog resulted in the loss of viral replicative potential after 9-24 sequential passages of HIV in human CEM cells. In contrast, loss of viral replication was not observed in 28 control cultures passaged in the absence of the nucleoside analog, nor with other analogs tested. Sequence analysis of a portion of the HIV reverse transcriptase gene demonstrated a disproportionate increase in G -> A substitutions, mutations predicted to result from misincorporation of 5-OH-dC into the cDNA during reverse transcription. Thus, "lethal mutagenesis" driven by the class of deoxynucleoside analogs represented by 5-OH-dC could provide a new approach to treating HIV infections and, potentially, other viral infections.

  11. Site Saturation Mutagenesis Applications on Candida methylica Formate Dehydrogenase

    PubMed Central

    Özgün, Gülşah P.; Ordu, Emel B.; Tütüncü, H. Esra; Yelboğa, Emrah; Sessions, Richard B.

    2016-01-01

    In NADH regeneration, Candida methylica formate dehydrogenase (cmFDH) is a highly significant enzyme in pharmaceutical industry. In this work, site saturation mutagenesis (SSM) which is a combination of both rational design and directed evolution approaches is applied to alter the coenzyme specificity of NAD+-dependent cmFDH from NAD+ to NADP+ and increase its thermostability. For this aim, two separate libraries are constructed for screening a change in coenzyme specificity and an increase in thermostability. To alter the coenzyme specificity, in the coenzyme binding domain, positions at 195, 196, and 197 are subjected to two rounds of SSM and screening which enabled the identification of two double mutants D195S/Q197T and D195S/Y196L. These mutants increase the overall catalytic efficiency of NAD+ to 5.6 × 104-fold and 5 × 104-fold value, respectively. To increase the thermostability of cmFDH, the conserved residue at position 1 in the catalytic domain of cmFDH is subjected to SSM. The thermodynamic and kinetic results suggest that 8 mutations on the first residue can be tolerated. Among all mutants, M1L has the best residual activity after incubation at 60°C with 17%. These studies emphasize that SSM is an efficient method for creating “smarter libraries” for improving the properties of cmFDH. PMID:27847673

  12. Analysis of mammalian cytochrome P450 structure and function by site-directed mutagenesis.

    PubMed

    Domanski, T L; Halpert, J R

    2001-06-01

    Over the past decade, site-directed mutagenesis has become an essential tool in the study of mammalian cytochrome P450 structure-function relationships. Residues affecting substrate specificity, cooperativity, membrane localization, and interactions with redox partners have been identified using a combination of amino-acid sequence alignments, homology modeling, chimeragenesis, and site-directed mutagenesis. As homology modeling and substrate docking technology continue to improve, the ability to predict more precise functions for specific residues will also advance, making it possible to utilize site-directed mutagenesis to test these predictions. Future studies will employ site-directed mutagenesis to learn more about cytochrome P450 substrate access channels, to define the role of residues that do not lie within substrate recognition sites, to engineer additional soluble forms of microsomal cytochromes P450 for x-ray crystallography, and to engineer more efficient enzymes for drug activation and/or bioremediation.

  13. Simple and efficient oligonucleotide-directed mutagenesis using one primer and circular plasmid DNA template.

    PubMed

    Marotti, K R; Tomich, C S

    1989-01-01

    A rapid and simple procedure for site-directed mutagenesis is described. This method uses only a single oligonucleotide primer with the double-stranded circular plasmid DNA as the template for mutagenesis. The phage T4 gene 32 product is included during primer extension in vitro to increase efficiency. Single and multiple changes as well as deletions have been obtained at an efficiency of 1-2%.

  14. Extinction of Hepatitis C Virus by Ribavirin in Hepatoma Cells Involves Lethal Mutagenesis

    PubMed Central

    Ortega-Prieto, Ana M.; Sheldon, Julie; Grande-Pérez, Ana; Tejero, Héctor; Gregori, Josep; Quer, Josep; Esteban, Juan I.; Domingo, Esteban; Perales, Celia

    2013-01-01

    Lethal mutagenesis, or virus extinction produced by enhanced mutation rates, is under investigation as an antiviral strategy that aims at counteracting the adaptive capacity of viral quasispecies, and avoiding selection of antiviral-escape mutants. To explore lethal mutagenesis of hepatitis C virus (HCV), it is important to establish whether ribavirin, the purine nucleoside analogue used in anti-HCV therapy, acts as a mutagenic agent during virus replication in cell culture. Here we report the effect of ribavirin during serial passages of HCV in human hepatoma Huh-7.5 cells, regarding viral progeny production and complexity of mutant spectra. Ribavirin produced an increase of mutant spectrum complexity and of the transition types associated with ribavirin mutagenesis, resulting in HCV extinction. Ribavirin-mediated depletion of intracellular GTP was not the major contributory factor to mutagenesis since mycophenolic acid evoked a similar decrease in GTP without an increase in mutant spectrum complexity. The intracellular concentration of the other nucleoside-triphosphates was elevated as a result of ribavirin treatment. Mycophenolic acid extinguished HCV without an intervening mutagenic activity. Ribavirin-mediated, but not mycophenolic acid-mediated, extinction of HCV occurred via a decrease of specific infectivity, a feature typical of lethal mutagenesis. We discuss some possibilities to explain disparate results on ribavirin mutagenesis of HCV. PMID:23976977

  15. Radiation mutagenesis from molecular and genetic points of view

    SciTech Connect

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-01-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and [gamma]-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by [gamma]-rays, [alpha]-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than [gamma]-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate [gamma]-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  16. Radiation mutagenesis from molecular and genetic points of view

    SciTech Connect

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-02-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and {gamma}-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by {gamma}-rays, {alpha}-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than {gamma}-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate {gamma}-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  17. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel; Pusey, Marc

    1998-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk'solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 4(sub 3) axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to greater than 500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 yields PHE or ALA and ASN 113 yields ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 4(sub 3) helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  18. Generation of Enterobacter sp. YSU auxotrophs using transposon mutagenesis.

    PubMed

    Caguiat, Jonathan James

    2014-10-31

    Prototrophic bacteria grow on M-9 minimal salts medium supplemented with glucose (M-9 medium), which is used as a carbon and energy source. Auxotrophs can be generated using a transposome. The commercially available, Tn5-derived transposome used in this protocol consists of a linear segment of DNA containing an R6Kγ replication origin, a gene for kanamycin resistance and two mosaic sequence ends, which serve as transposase binding sites. The transposome, provided as a DNA/transposase protein complex, is introduced by electroporation into the prototrophic strain, Enterobacter sp. YSU, and randomly incorporates itself into this host's genome. Transformants are replica plated onto Luria-Bertani agar plates containing kanamycin, (LB-kan) and onto M-9 medium agar plates containing kanamycin (M-9-kan). The transformants that grow on LB-kan plates but not on M-9-kan plates are considered to be auxotrophs. Purified genomic DNA from an auxotroph is partially digested, ligated and transformed into a pir+ Escherichia coli (E. coli) strain. The R6Kγ replication origin allows the plasmid to replicate in pir+ E. coli strains, and the kanamycin resistance marker allows for plasmid selection. Each transformant possesses a new plasmid containing the transposon flanked by the interrupted chromosomal region. Sanger sequencing and the Basic Local Alignment Search Tool (BLAST) suggest a putative identity of the interrupted gene. There are three advantages to using this transposome mutagenesis strategy. First, it does not rely on the expression of a transposase gene by the host. Second, the transposome is introduced into the target host by electroporation, rather than by conjugation or by transduction and therefore is more efficient. Third, the R6Kγ replication origin makes it easy to identify the mutated gene which is partially recovered in a recombinant plasmid. This technique can be used to investigate the genes involved in other characteristics of Enterobacter sp. YSU or of a

  19. Involvement of 5-methylcytosine in sunlight-induced mutagenesis.

    PubMed

    You, Y H; Li, C; Pfeifer, G P

    1999-10-29

    In human skin cancers, more than 30 % of all mutations in the p53 gene are transitions at dipyrimidines within the sequence context CpG, i.e. 5'-TCG and 5'-CCG, found at several mutational hotspots. Since CpGs are methylated along the p53 gene, these mutations may be derived from solar UV-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. In Xorder to define the contribution of 5-methylcytosine to sunlight-induced mutations, we have used mouse fibroblasts containing the CpG-methylated lacI transgene as a mutational target. We sequenced 182 UVC (254 nm UV)-induced mutations and 170 mutations induced by a solar UV simulator, along with 75 mutations in untreated cells. Only a few of the mutations in untreated cells were transitions at dipyrimidines, but more than 95% of the UVC and solar irradiation-induced mutations were targeted to dipyrimidine sites, the majority being transitions. After UVC irradiation, 6% of the base substitutions were at dipyrimidines containing 5-methylcytosine and only 2.2% of all mutations were transitions within this sequence context. However, 24% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of them were transitions. Two sunlight-induced mutational hotspots at methylated CpGs correlated with sequences that form the highest levels of cyclobutane pyrimidine dimers after irradiation with sunlight but not with UVC. The data indicate that dipyrimidines that contain 5-methylcytosine are preferential targets for sunlight-induced mutagenesis in cultured mammalian cells, thus explaining the large proportion of p53 mutations at such sites in skin tumors in vivo.

  20. Biophysical Optimization of a Therapeutic Protein by Nonstandard Mutagenesis

    PubMed Central

    Pandyarajan, Vijay; Phillips, Nelson B.; Cox, Gabriela P.; Yang, Yanwu; Whittaker, Jonathan; Ismail-Beigi, Faramarz; Weiss, Michael A.

    2014-01-01

    Insulin provides a model for the therapeutic application of protein engineering. A paradigm in molecular pharmacology was defined by design of rapid-acting insulin analogs for the prandial control of glycemia. Such analogs, a cornerstone of current diabetes regimens, exhibit accelerated subcutaneous absorption due to more rapid disassembly of oligomeric species relative to wild-type insulin. This strategy is limited by a molecular trade-off between accelerated disassembly and enhanced susceptibility to degradation. Here, we demonstrate that this trade-off may be circumvented by nonstandard mutagenesis. Our studies employed LysB28, ProB29-insulin (“lispro”) as a model prandial analog that is less thermodynamically stable and more susceptible to fibrillation than is wild-type insulin. We have discovered that substitution of an invariant tyrosine adjoining the engineered sites in lispro (TyrB26) by 3-iodo-Tyr (i) augments its thermodynamic stability (ΔΔGu 0.5 ±0.2 kcal/mol), (ii) delays onset of fibrillation (lag time on gentle agitation at 37 °C was prolonged by 4-fold), (iii) enhances affinity for the insulin receptor (1.5 ± 0.1-fold), and (iv) preserves biological activity in a rat model of diabetes mellitus. 1H NMR studies suggest that the bulky iodo-substituent packs within a nonpolar interchain crevice. Remarkably, the 3-iodo-TyrB26 modification stabilizes an oligomeric form of insulin pertinent to pharmaceutical formulation (the R6 zinc hexamer) but preserves rapid disassembly of the oligomeric form pertinent to subcutaneous absorption (T6 hexamer). By exploiting this allosteric switch, 3-iodo-TyrB26-lispro thus illustrates how a nonstandard amino acid substitution can mitigate the unfavorable biophysical properties of an engineered protein while retaining its advantages. PMID:24993826

  1. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel J.; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 43 axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to (3)500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 (Registered) PHE or ALA and ASN 113 (Registered) ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 43 helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  2. Stabilization of a prokaryotic LAT transporter by random mutagenesis

    PubMed Central

    Rodríguez-Banqueri, Arturo; Errasti-Murugarren, Ekaitz; Bartoccioni, Paola; Kowalczyk, Lukasz; Perálvarez-Marín, Alex

    2016-01-01

    The knowledge of three-dimensional structures at atomic resolution of membrane transport proteins has improved considerably our understanding of their physiological roles and pathological implications. However, most structural biology techniques require an optimal candidate within a protein family for structural determination with (a) reasonable production in heterologous hosts and (b) good stability in detergent micelles. SteT, the Bacillus subtilis l-serine/l-threonine exchanger is the best-known prokaryotic paradigm of the mammalian l–amino acid transporter (LAT) family. Unfortunately, SteT’s lousy stability after extracting from the membrane prevents its structural characterization. Here, we have used an approach based on random mutagenesis to engineer stability in SteT. Using a split GFP complementation assay as reporter of protein expression and membrane insertion, we created a library of 70 SteT mutants each containing random replacements of one or two residues situated in the transmembrane domains. Analysis of expression and monodispersity in detergent of this library permitted the identification of evolved versions of SteT with a significant increase in both expression yield and stability in detergent with respect to wild type. In addition, these experiments revealed a correlation between the yield of expression and the stability in detergent micelles. Finally, and based on protein delipidation and relipidation assays together with transport experiments, possible mechanisms of SteT stabilization are discussed. Besides optimizing a member of the LAT family for structural determination, our work proposes a new approach that can be used to optimize any membrane protein of interest. PMID:26976827

  3. Genetic Regulation of Charged Particle Mutagenesis in Human Cells

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy; Gauny, S.; Cherbonnel-Lasserre, C.; Liu, W.; Wiese, C.

    1999-01-01

    Our studies use a series of syngeneic, and where possible, isogenic human B-lymphoblastoid cell lines to assess the genetic factors that modulate susceptibility apoptosis and their impact on the mutagenic risks of low fluence exposures to 1 GeV Fe ions and 55 MeV protons. These ions are representative of the types of charged particle radiation that are of particular significance for human health in the space radiation environment. The model system employs cell lines derived from the male donor WIL-2. These cells have a single X chromosome and they are hemizygous for one mutation marker, hypoxanthine phosphoribosyltransferase (HPRT). TK6 and WTK1 cells were each derived from descendants of WIL-2 and were each selected as heterozygotes for a second mutation marker, the thymidine kinase (TK) gene located on chromosome 17q. The HPRT and TK loci can detect many different types of mutations, from single basepair substitutions up to large scale loss of heterozygosity (LOH). The single expressing copy of TK in the TK6 and WTKI cell lines is found on the same copy of chromosome 17, and this allele can be identified by a restriction fragment length polymorphism (RFLP) identified when high molecular weight DNA is digested by the SacI restriction endonuclease and hybridized against the cDNA probe for TK. A large series of polymorphic linked markers has been identified that span more than 60 cM of DNA (approx. 60 megabasepairs) and distinguish the copy of chromosome 17 bearing the initially active TK allele from the copy of chromosome 17 bearing the silent TK allele in both TK6 and WTKI cells. TK6 cells express normal p53 protein while WTKI cells express homozygous mutant p53. Expression of mutant p53 can increase susceptibility to x-ray-induced mutations. It's been suggested that the increased mutagenesis in p53 mutant cells might be due to reduced apoptosis.

  4. Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data

    PubMed Central

    Tripathi, Arti; Gupta, Kritika; Khare, Shruti; Jain, Pankaj C.; Patel, Siddharth; Kumar, Prasanth; Pulianmackal, Ajai J.; Aghera, Nilesh; Varadarajan, Raghavan

    2016-01-01

    Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95pdz3) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo. This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations. PMID:27563054

  5. Exploring the potential of megaprimer PCR in conjunction with orthogonal array design for mutagenesis library construction.

    PubMed

    Tang, Lixia; Zheng, Kai; Liu, Yu; Zheng, Huayu; Wang, Hu; Song, Chunlei; Zhou, Hong

    2013-01-01

    Although megaprimer PCR mutagenesis has been used routinely in protein directed evolution, users sometimes encounter technical hurdles, particularly inefficiency during amplification when large fragments are used or the template is difficult to be amplified. Instead of methodology development, here we simply overcome the limitation by optimizing megaprimer PCR conditions via orthogonal array design of the four PCR components in three levels of each: template, primer, Mg(2+) , and dNTPs. For this, only nine PCRs need to be performed. The strategy (termed as OptiMega) was not only successfully applied for the construction of one multiple-site saturation mutagenesis library of halohydrin dehalogenase HheC, which failed to be constructed previously using the standard QuikChange™ protocol, but also expanded the construction of two high-quality random mutagenesis libraries of HheA and HheC. Most importantly, OptiMega offers a quick and simple way of constructing random mutagenesis libraries by eliminating the ligation step. Our results demonstrated that the OptiMega strategy could greatly strengthen the potential of megaprimer PCR mutagenesis for library construction.

  6. 2012 Gordon Research Conference on Mutagenesis - Formal Schedule and Speaker/Poster Program

    SciTech Connect

    Demple, Bruce

    2012-08-24

    The delicate balance among cellular pathways that control mutagenic changes in DNA will be the focus of the 2012 Mutagenesis Gordon Research Conference. Mutagenesis is essential for evolution, while genetic stability maintains cellular functions in all organisms from microbes to metazoans. Different systems handle DNA lesions at various times of the cell cycle and in different places within the nucleus, and inappropriate actions can lead to mutations. While mutation in humans is closely linked to disease, notably cancers, mutational systems can also be beneficial. The conference will highlight topics of beneficial mutagenesis, including full establishment of the immune system, cell survival mechanisms, and evolution and adaptation in microbial systems. Equal prominence will be given to detrimental mutation processes, especially those involved in driving cancer, neurological diseases, premature aging, and other threats to human health. Provisional session titles include Branching Pathways in Mutagenesis; Oxidative Stress and Endogenous DNA Damage; DNA Maintenance Pathways; Recombination, Good and Bad; Problematic DNA Structures; Localized Mutagenesis; Hypermutation in the Microbial World; and Mutation and Disease.

  7. Targeted Mutagenesis in Rice Using TALENs and the CRISPR/Cas9 System.

    PubMed

    Endo, Masaki; Nishizawa-Yokoi, Ayako; Toki, Seiichi

    2016-01-01

    Sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system, are powerful tools for understanding gene function and for developing novel traits in plants. In plant species for which transformation and regeneration systems using protoplasts are not yet established, direct delivery to nuclei of SSNs either in the form of RNA or protein is difficult. Thus, Agrobacterium-mediated transformation of SSN expression constructs in cultured cells is a practical means of delivering targeted mutagenesis in some plant species including rice. Because targeted mutagenesis occurs stochastically in transgenic cells and SSN-mediated targeted mutagenesis often leads to no selectable phenotype, identification of highly mutated cell lines is a critical step in obtaining regenerated plants with desired mutations.

  8. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool.

    PubMed

    Zhang, Xue; Zhang, Xiao-Fei; Li, He-Ping; Wang, Li-Yan; Zhang, Chong; Xing, Xin-Hui; Bao, Cheng-Yu

    2014-06-01

    Developing rapid and diverse microbial mutation tool is of importance to strain modification. In this review, a new mutagenesis method for microbial mutation breeding using the radio-frequency atmospheric-pressure glow discharge (RF APGD) plasma jets is summarized. Based on the experimental study, the helium RF APGD plasma jet has been found to be able to change the DNA sequences significantly, indicating that the RF APGD plasma jet would be a powerful tool for the microbial mutagenesis with its outstanding features, such as the low and controllable gas temperatures, abundant chemically reactive species, rapid mutation, high operation flexibility, etc. Then, with the RF APGD plasma generator as the core component, a mutation machine named as atmospheric and room temperature plasma (ARTP) mutation system has been developed and successfully employed for the mutation breeding of more than 40 kinds of microorganisms including bacteria, fungi, and microalgae. Finally, the prospect of the ARTP mutagenesis is discussed.

  9. Genome-wide comparison of ultraviolet and ethyl methanesulphonate mutagenesis methods for the brown alga Ectocarpus.

    PubMed

    Godfroy, Olivier; Peters, Akira F; Coelho, Susana M; Cock, J Mark

    2015-12-01

    Ectocarpus has emerged as a model organism for the brown algae and a broad range of genetic and genomic resources are being generated for this species. The aim of the work presented here was to evaluate two mutagenesis protocols based on ultraviolet irradiation and ethyl methanesulphonate treatment using genome resequencing to measure the number, type and distribution of mutations generated by the two methods. Ultraviolet irradiation generated a greater number of genetic lesions than ethyl methanesulphonate treatment, with more than 400 mutations being detected in the genome of the mutagenised individual. This study therefore confirms that the ultraviolet mutagenesis protocol is suitable for approaches that require a high density of mutations, such as saturation mutagenesis or Targeting Induced Local Lesions in Genomes (TILLING).

  10. Signature tagged mutagenesis in the functional genetic analysis of gastrointestinal pathogens

    PubMed Central

    Cummins, Joanne; Gahan, Cormac G.M.

    2012-01-01

    Signature tagged mutagenesis is a genetic approach that was developed to identify novel bacterial virulence factors. It is a negative selection method in which unique identification tags allow analysis of pools of mutants in mixed populations. The approach is particularly well suited to functional genetic analysis of the gastrointestinal phase of infection in foodborne pathogens and has the capacity to guide the development of novel vaccines and therapeutics. In this review we outline the technical principles underpinning signature-tagged mutagenesis as well as novel sequencing-based approaches for transposon mutant identification such as TraDIS (transposon directed insertion-site sequencing). We also provide an analysis of screens that have been performed in gastrointestinal pathogens which are a global health concern (Escherichia coli, Listeria monocytogenes, Helicobacter pylori, Vibrio cholerae and Salmonella enterica). The identification of key virulence loci through the use of signature tagged mutagenesis in mice and relevant larger animal models is discussed. PMID:22555467

  11. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    PubMed Central

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  12. Bromodeoxyuridine mutagenesis in mammalian cells is related to deoxyribonucleotide pool imbalance.

    PubMed Central

    Ashman, C R; Davidson, R L

    1981-01-01

    The relationship between bromodeoxyuridine (BrdUrd) mutagenesis in mammalian cells and the effects of BrdUrd on deoxyribonucleoside triphosphate pools was analyzed. It was found that the exposure of Syrian hamster melanoma cells to mutagenic concentrations of BrdUrd resulted in the formation of a large bromodeoxyuridine triphosphate (BrdUTP) pool, which remained at a high level for several days. In contrast, the size of the deoxycytidine triphosphate (dCTP) pool dropped rapidly after the addition of BrdUrd, reached a minimum at about 6 h, and then expanded gradually to nearly its original level over the next 3 days. The addition of lower concentrations of BrdUrd, which had less of a mutagenic effect, resulted in the formation of a smaller BrdUTP pool and a slightly smaller drop in the dCTP pool. When a high concentration of deoxycytidine was added at the same time as a normally mutagenic concentration of BrdUrd, the drop in the dCTP pool was prevented, as was BrdUrd mutagenesis. In all of these experiments, mutagenesis was related to the ratio of BrdUTP to dCTP in the cells. In addition, it was shown that mutagenesis occurred primarily during the first 24 h of BrdUrd exposure, when the BrdUTP/dCTP ratio was at its highest level. It appears that there is a critical ratio of BrdUTP to dCTP that must be attained for high levels of mutagenesis to occur and that the extent of mutagenesis is related to the ratio of the BrdUrd and dCTP pools. PMID:6965099

  13. Use of the Photoactic Ability of a Bacterium to Teach the Genetic Principles of Random Mutagenesis & Mutant Screening

    ERIC Educational Resources Information Center

    Din, Neena; Bird, Terry H.; Berleman, James E.

    2007-01-01

    In this article, the authors present a laboratory activity that relies on the use of a very versatile bacterial system to introduce the concept of how mutagenesis can be used for molecular and genetic analysis of living organisms. They have used the techniques of random mutagenesis and selection/screening to obtain strains of the organism "R.…

  14. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeast strains for anaerobic conversion of lignocellulosic sugars to ethanol were produced from Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 using UV-C mutagenesis. Random UV-C mutagenesis potentially produces large numbers of mutations broadly and uniformly over the whole genome to genera...

  15. Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis

    PubMed Central

    Ng, Ashley Shu Mei; Ingham, Philip W.

    2016-01-01

    CRISPR/Cas9 is now regularly used for targeted mutagenesis in a wide variety of systems. Here we report the use of ribozymes for the generation of gRNAs both in vitro and in zebrafish embryos. We show that incorporation of ribozymes increases the types of promoters and number of target sites available for mutagenesis without compromising mutagenesis efficiency. We have tested this by comparing the efficiency of mutagenesis of gRNA constructs with and without ribozymes and also generated a transgenic zebrafish expressing gRNA using a heat shock promoter (RNA polymerase II-dependent promoter) that was able to induce mutagenesis of its target. Our method provides a streamlined approach to test gRNA efficiency as well as increasing the versatility of conditional gene knock out in zebrafish. PMID:27832146

  16. Deletion mutagenesis identifies a haploinsufficient role for gamma-zein in opaque-2 endosperm modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quality Protein Maize (QPM) is a hard kernel variant of the high-lysine mutant, opaque-2. Using gamma irradiation, we created opaque QPM variants to identify opaque-2 modifier genes and to investigate deletion mutagenesis combined with Illumina sequencing as a maize functional genomics tool. A K0326...

  17. Alleles conferring improved fiber quality from EMS mutagenesis of elite cotton genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The elite gene pool of cotton (Gossypium spp.) has less diversity than those of most other major crops, making identification of novel alleles important to ongoing crop improvement. A total of 3,164 M5 lines resulting from ethyl methanesulfonate mutagenesis of two G. hirsutum breeding lines, TAM 94L...

  18. Random mutagenesis of the hyperthermophilic archaeon Pyrococcus furiosus using in vitro mariner transposition and natural transformation

    PubMed Central

    Guschinskaya, Natalia; Brunel, Romain; Tourte, Maxime; Lipscomb, Gina L.; Adams, Michael W. W.; Oger, Philippe; Charpentier, Xavier

    2016-01-01

    Transposition mutagenesis is a powerful tool to identify the function of genes, reveal essential genes and generally to unravel the genetic basis of living organisms. However, transposon-mediated mutagenesis has only been successfully applied to a limited number of archaeal species and has never been reported in Thermococcales. Here, we report random insertion mutagenesis in the hyperthermophilic archaeon Pyrococcus furiosus. The strategy takes advantage of the natural transformability of derivatives of the P. furiosus COM1 strain and of in vitro Mariner-based transposition. A transposon bearing a genetic marker is randomly transposed in vitro in genomic DNA that is then used for natural transformation of P. furiosus. A small-scale transposition reaction routinely generates several hundred and up to two thousands transformants. Southern analysis and sequencing showed that the obtained mutants contain a single and random genomic insertion. Polyploidy has been reported in Thermococcales and P. furiosus is suspected of being polyploid. Yet, about half of the mutants obtained on the first selection are homozygous for the transposon insertion. Two rounds of isolation on selective medium were sufficient to obtain gene conversion in initially heterozygous mutants. This transposition mutagenesis strategy will greatly facilitate functional exploration of the Thermococcales genomes. PMID:27824140

  19. Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus.

    PubMed

    Tingting, Liu; Di, Fan; Lingyu, Ran; Yuanzhong, Jiang; Rui, Liu; Keming, Luo

    2015-10-01

    The typeⅡCRISPR/Cas9 system (Clustered regularly interspaced short palindromic repeats /CRISPR-associated 9) has been widely used in bacteria, yeast, animals and plants as a targeted genome editing technique. In previous work, we have successfully knocked out the endogenous phytoene dehydrogenase (PDS) gene in Populus tomentosa Carr. using this system. To study the effect of target design on the efficiency of CRISPR/Cas9-mediated gene knockout in Populus, we analyzed the efficiency of mutagenesis using different single-guide RNA (sgRNA) that target PDS DNA sequence. We found that mismatches between the sgRNA and the target DNA resulted in decreased efficiency of mutagenesis and even failed mutagenesis. Moreover, complementarity between the 3' end nucleotide of sgRNA and target DNA is especially crucial for efficient mutagenesis. Further sequencing analysis showed that two PDS homologs in Populus, PtPDS1 and PtPDS2, could be knocked out simultaneously using this system with 86.4% and 50% efficiency, respectively. These results indicated the possibility of introducing mutations in two or more endogenous genes efficiently and obtaining multi-mutant strains of Populus using this system. We have indeed generated several knockout mutants of transcription factors and structural genes in Populus, which establishes a foundation for future studies of gene function and genetic improvement of Populus.

  20. Workshop on ENU Mutagenesis: Planning for Saturation, July 25-28, 2002

    SciTech Connect

    Nadeau, Joseph H

    2002-07-25

    The goal of the conference is to enhance the development of improved technologies and new approaches to the identification of genes underlying chemically-induced mutant phenotypes. The conference brings together ENU mutagenesis experts from the United States and aborad for a small, intensive workshop to consider these issues.

  1. Improvement of Biocatalysts for Industrial and Environmental Purposes by Saturation Mutagenesis

    PubMed Central

    Valetti, Francesca; Gilardi, Gianfranco

    2013-01-01

    Laboratory evolution techniques are becoming increasingly widespread among protein engineers for the development of novel and designed biocatalysts. The palette of different approaches ranges from complete randomized strategies to rational and structure-guided mutagenesis, with a wide variety of costs, impacts, drawbacks and relevance to biotechnology. A technique that convincingly compromises the extremes of fully randomized vs. rational mutagenesis, with a high benefit/cost ratio, is saturation mutagenesis. Here we will present and discuss this approach in its many facets, also tackling the issue of randomization, statistical evaluation of library completeness and throughput efficiency of screening methods. Successful recent applications covering different classes of enzymes will be presented referring to the literature and to research lines pursued in our group. The focus is put on saturation mutagenesis as a tool for designing novel biocatalysts specifically relevant to production of fine chemicals for improving bulk enzymes for industry and engineering technical enzymes involved in treatment of waste, detoxification and production of clean energy from renewable sources. PMID:24970191

  2. Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways

    PubMed Central

    Gómez-Marroquín, Martha; Martin, Holly A.; Pepper, Amber; Girard, Mary E.; Kidman, Amanda A.; Vallin, Carmen; Yasbin, Ronald E.; Pedraza-Reyes, Mario; Robleto, Eduardo A.

    2016-01-01

    In replication-limited cells of Bacillus subtilis, Mfd is mutagenic at highly transcribed regions, even in the absence of bulky DNA lesions. However, the mechanism leading to increased mutagenesis through Mfd remains currently unknown. Here, we report that Mfd may promote mutagenesis in nutritionally stressed B. subtilis cells by coordinating error-prone repair events mediated by UvrA, MutY and PolI. Using a point-mutated gene conferring leucine auxotrophy as a genetic marker, it was found that the absence of UvrA reduced the Leu+ revertants and that a second mutation in mfd reduced mutagenesis further. Moreover, the mfd and polA mutants presented low but similar reversion frequencies compared to the parental strain. These results suggest that Mfd promotes mutagenic events that required the participation of NER pathway and PolI. Remarkably, this Mfd-dependent mutagenic pathway was found to be epistatic onto MutY; however, whereas the MutY-dependent Leu+ reversions required Mfd, a direct interaction between these proteins was not apparent. In summary, our results support the concept that Mfd promotes mutagenesis in starved B. subtilis cells by coordinating both known and previously unknown Mfd-associated repair pathways. These mutagenic processes bias the production of genetic diversity towards highly transcribed regions in the genome. PMID:27399782

  3. Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium

    PubMed Central

    Li, Cheng-Lin Frank; Santhanam, Balaji; Webb, Amanda Nicole; Zupan, Blaž

    2016-01-01

    Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum. Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods. PMID:27307293

  4. A quantitative model of bacterial mismatch repair as applied to studying induced mutagenesis

    NASA Astrophysics Data System (ADS)

    Belov, O. V.; Chuluunbaatar, O.; Kapralov, M. I.; Sweilam, N. H.

    2013-11-01

    The paper presents a mathematical model of the DNA mismatch repair system in Escherichia coli bacterial cells. The key pathways of this repair mechanism were simulated on the basis of modern experimental data. We have modelled in detail five main pathways of DNA misincorporation removal with different DNA exonucleases. Here we demonstrate an application of the model to problems of radiation-induced mutagenesis.

  5. Building on the Past, Shaping the Future: The Environmental Mutagenesis and Genomics Society

    EPA Science Inventory

    In late 2012 the members of the Environmental Mutagen Society voted to change its name to the Environmental Mutagenesis and Genomics Society. Here we describe the thought process that led to adoption of the new name, which both respects the rich history of a Society founded in 19...

  6. Identification of a halotolerant mutant via in vitro mutagenesis in the cyanobacterium Fremyella diplosiphon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy metabolism and photosynthetic pigment accumulation are affected by salt stress in cyanobacteria leading to cessation of growth. The effect of salinity on the fresh water cyanobacteria, Fremyella diplosiphon was investigated and mutagenesis-based efforts were undertaken to enhance salt toleran...

  7. CHEMICAL MUTAGENESIS AND CARCINOGENESIS: INCORPORATION OF MECHANISTIC DATA INTO RISK ASSESSMENT

    EPA Science Inventory

    CHEMICAL MUTAGENESIS AND CARCINOGENESIS: INCORPORATION OF MECHANISTIC DATA INTO RISK ASSESSMENT

    The current understanding of cancer as a genetic disease, requiring a specific set of genomic alterations for a normal cell to form a metastatic tumor, has provided the oppor...

  8. Comparing Different Strategies in Directed Evolution of Enzyme Stereoselectivity: Single- versus Double-Code Saturation Mutagenesis.

    PubMed

    Sun, Zhoutong; Lonsdale, Richard; Li, Guangyue; Reetz, Manfred T

    2016-10-04

    Saturation mutagenesis at sites lining the binding pockets of enzymes constitutes a viable protein engineering technique for enhancing or inverting stereoselectivity. Statistical analysis shows that oversampling in the screening step (the bottleneck) increases astronomically as the number of residues in the randomization site increases, which is the reason why reduced amino acid alphabets have been employed, in addition to splitting large sites into smaller ones. Limonene epoxide hydrolase (LEH) has previously served as the experimental platform in these methodological efforts, enabling comparisons between single-code saturation mutagenesis (SCSM) and triple-code saturation mutagenesis (TCSM); these employ either only one or three amino acids, respectively, as building blocks. In this study the comparative platform is extended by exploring the efficacy of double-code saturation mutagenesis (DCSM), in which the reduced amino acid alphabet consists of two members, chosen according to the principles of rational design on the basis of structural information. The hydrolytic desymmetrization of cyclohexene oxide is used as the model reaction, with formation of either (R,R)- or (S,S)-cyclohexane-1,2-diol. DCSM proves to be clearly superior to the likewise tested SCSM, affording both R,R- and S,S-selective mutants. These variants are also good catalysts in reactions of further substrates. Docking computations reveal the basis of enantioselectivity.

  9. The utility of transposon mutagenesis for cancer studies in the era of genome editing.

    PubMed

    DeNicola, Gina M; Karreth, Florian A; Adams, David J; Wong, Chi C

    2015-10-19

    The use of transposons as insertional mutagens to identify cancer genes in mice has generated a wealth of information over the past decade. Here, we discuss recent major advances in transposon-mediated insertional mutagenesis screens and compare this technology with other screening strategies.

  10. Versatile Vectors for Efficient Mutagenesis of Bradyrhizobium diazoefficiens and Other Alphaproteobacteria

    PubMed Central

    Ledermann, Raphael; Strebel, Silvan; Kampik, Clara

    2016-01-01

    ABSTRACT Analysis of bacterial gene function commonly relies on gene disruption or replacement followed by phenotypic characterization of the resulting mutant strains. Deletion or replacement of targeted regions is commonly achieved via two homologous recombination (HR) events between the bacterial genome and a nonreplicating plasmid carrying DNA fragments flanking the region to be deleted. The counterselection of clones that have integrated the entire plasmid in their genome via a single HR event is crucial in this procedure. Various genetic tools and well-established protocols are available for this type of mutagenesis in model bacteria; however, these methods are not always efficiently applicable in less established systems. Here we describe the construction and application of versatile plasmid vectors pREDSIX and pTETSIX for marker replacement and markerless mutagenesis, respectively. Apart from an array of restriction sites optimized for cloning of GC-rich DNA fragments, the vector backbone contains a constitutively expressed gene for mCherry, enabling the rapid identification of clones originating from single or double HR events by fluorescence-assisted cell sorting (FACS). In parallel, we constructed a series of plasmids from which gene cassettes providing resistance against gentamicin, kanamycin, hygromycin B, streptomycin and spectinomycin, or tetracycline were excised for use with pREDSIX-based marker replacement mutagenesis. In proof-of-concept mutagenesis experiments, we demonstrated the potential for the use of the developed tools for gene deletion mutagenesis in the nitrogen-fixing soybean symbiont Bradyrhizobium diazoefficiens (formerly Bradyrhizobium japonicum) and three additional members of the alphaproteobacteria. IMPORTANCE Mutation and phenotypic analysis are essential to the study of gene function. Efficient mutagenesis protocols and tools are available for many bacterial species, including various model organisms; however, genetic analysis of

  11. A Mutant Mouse with a Highly Specific Contextual Fear-Conditioning Deficit Found in an N-Ethyl-N-Nitrosourea (ENU) Mutagenesis Screen

    ERIC Educational Resources Information Center

    Pletcher, Mathew T.; Wiltshire, Tim; Tarantino, Lisa M.; Mayford, Mark; Reijmers, Leon G.; Coats, Jennifer K.

    2006-01-01

    Targeted mutagenesis in mice has shown that genes from a wide variety of gene families are involved in memory formation. The efficient identification of genes involved in learning and memory could be achieved by random mutagenesis combined with high-throughput phenotyping. Here, we provide the first report of a mutagenesis screen that has…

  12. EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations

    PubMed Central

    2014-01-01

    Background TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that combines chemical mutagenesis with high-throughput genome-wide screening for point mutation detection in genes of interest. However, this mutation discovery approach faces a particular problem which is how to obtain a mutant population with a sufficiently high mutation density. Furthermore, plant mutagenesis protocols require two successive generations (M1, M2) for mutation fixation to occur before the analysis of the genotype can begin. Results Here, we describe a new TILLING approach for rice based on ethyl methanesulfonate (EMS) mutagenesis of mature seed-derived calli and direct screening of in vitro regenerated plants. A high mutagenesis rate was obtained (i.e. one mutation in every 451 Kb) when plants were screened for two senescence-related genes. Screening was carried out in 2400 individuals from a mutant population of 6912. Seven sense change mutations out of 15 point mutations were identified. Conclusions This new strategy represents a significant advantage in terms of time-savings (i.e. more than eight months), greenhouse space and work during the generation of mutant plant populations. Furthermore, this effective chemical mutagenesis protocol ensures high mutagenesis rates thereby saving in waste removal costs and the total amount of mutagen needed thanks to the mutagenesis volume reduction. PMID:24475756

  13. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections

    PubMed Central

    Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T. G.; Hendriks, Wiljan J. A. J.; Cortés, Jesús M.; Pulido, Rafael

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698

  14. Ultraviolet Mutagenesis in Bacteriophage T4 I. Irradiation of Extracellular Phage Particles

    PubMed Central

    Drake, John W.

    1966-01-01

    Drake, John W. (University of Illinois, Urbana). Ultraviolet mutagenesis in bacteriophage T4. I. Irradiation of extracellular phage particles. J. Bacteriol. 91:1775–1780. 1966.—Ultraviolet (UV) irradiation of extracellular T4 phage particles induces about 2 × 10−4r mutations per lethal hit. The mutants largely escape detection unless the irradiated phages are plated with very soft overlay agar. Multiplicity reactivation is not a prerequisite for mutagenesis. A much higher frequency of base pair substitution-type mutants is induced than is found in the spontaneous background, but sign mutants are also induced. Nearly half of the mutants map into previously identified UV hot spots. The rII mutants induced extracellularly are very similar to those induced intracellularly. The mutants also appear to result from direct radiation effects upon the bacteriophage deoxyribonucleic acid. PMID:5937237

  15. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.

    PubMed

    Mukherjee, Anirban; Vasquez, Karen M

    2011-08-01

    Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.

  16. Transposon mutagenesis as an approach to improved understanding of Borrelia pathogenesis and biology

    PubMed Central

    Lin, Tao; Troy, Erin B.; Hu, Linden T.; Gao, Lihui; Norris, Steven J.

    2014-01-01

    Transposon insertion provides a method for near-random mutation of bacterial genomes, and has been utilized extensively for the study of bacterial pathogenesis and biology. This approach is particularly useful for organisms that are relatively refractory to genetic manipulation, including Lyme disease Borrelia. In this review, progress to date in the application of transposon mutagenesis to the study of Borrelia burgdorferi is reported. An effective Himar1-based transposon vector has been developed and used to acquire a sequence-defined library of nearly 4500 mutants in the infectious, moderately transformable B. burgdorferi B31 derivative 5A18NP1. Analysis of these transposon mutants using signature-tagged mutagenesis (STM) and Tn-seq approaches has begun to yield valuable information regarding the genes important in the pathogenesis and biology of this organism. PMID:24904839

  17. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis

    PubMed Central

    Beacham, T.A.; Macia, V. Mora; Rooks, P.; White, D.A.; Ali, S.T.

    2015-01-01

    Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed. PMID:26753128

  18. Bromination of deoxycytidine by eosinophil peroxidase: A mechanism for mutagenesis by oxidative damage of nucleotide precursors

    PubMed Central

    Henderson, Jeffrey P.; Byun, Jaeman; Williams, Michelle V.; McCormick, Michael L.; Parks, William C.; Ridnour, Lisa A.; Heinecke, Jay W.

    2001-01-01

    Oxidants generated by eosinophils during chronic inflammation may lead to mutagenesis in adjacent epithelial cells. Eosinophil peroxidase, a heme enzyme released by eosinophils, generates hypobromous acid that damages tissue in inflammatory conditions. We show that human eosinophils use eosinophil peroxidase to produce 5-bromodeoxycytidine. Flow cytometric, immunohistochemical, and mass spectrometric analyses all demonstrated that 5-bromodeoxycytidine generated by eosinophil peroxidase was taken up by cultured cells and incorporated into genomic DNA as 5-bromodeoxyuridine. Although previous studies have focused on oxidation of chromosomal DNA, our observations suggest another mechanism for oxidative damage of DNA. In this scenario, peroxidase-catalyzed halogenation of nucleotide precursors yields products that subsequently can be incorporated into DNA. Because the thymine analog 5-BrUra mispairs with guanine in DNA, generation of brominated pyrimidines by eosinophils might constitute a mechanism for cytotoxicity and mutagenesis at sites of inflammation. PMID:11172002

  19. Rapid construction of mycobacterial mutagenesis vectors using ligation-independent cloning

    PubMed Central

    Balhana, Ricardo; Stoker, Neil G.; Sikder, Mahmudul Hasan; Chauviac, Francois-Xavier; Kendall, Sharon L.

    2010-01-01

    Targeted mutagenesis is one of the major tools for determining the function of a given gene and its involvement in bacterial pathogenesis. In mycobacteria, gene deletion is often accomplished by using allelic exchange techniques that commonly utilise a suicide delivery vector. We have adapted a widely-used suicide delivery vector (p1NIL) for cloning two flanking regions of a gene using ligation independent cloning (LIC). The pNILRB plasmid series produced allow a faster, more efficient and less laborious cloning procedure. In this paper we describe the making of pNILRB5, a modified version of p1NIL that contains two pairs of LIC sites flanking either a sacB or a lacZ gene. We demonstrate the success of this technique by generating 3 mycobacterial mutant strains. These vectors will contribute to more high-throughput methods of mutagenesis. PMID:20650290

  20. Software-supported USER cloning strategies for site-directed mutagenesis and DNA assembly.

    PubMed

    Genee, Hans Jasper; Bonde, Mads Tvillinggaard; Bagger, Frederik Otzen; Jespersen, Jakob Berg; Sommer, Morten O A; Wernersson, Rasmus; Olsen, Lars Rønn

    2015-03-20

    USER cloning is a fast and versatile method for engineering of plasmid DNA. We have developed a user friendly Web server tool that automates the design of optimal PCR primers for several distinct USER cloning-based applications. Our Web server, named AMUSER (Automated DNA Modifications with USER cloning), facilitates DNA assembly and introduction of virtually any type of site-directed mutagenesis by designing optimal PCR primers for the desired genetic changes. To demonstrate the utility, we designed primers for a simultaneous two-position site-directed mutagenesis of green fluorescent protein (GFP) to yellow fluorescent protein (YFP), which in a single step reaction resulted in a 94% cloning efficiency. AMUSER also supports degenerate nucleotide primers, single insert combinatorial assembly, and flexible parameters for PCR amplification. AMUSER is freely available online at http://www.cbs.dtu.dk/services/AMUSER/.

  1. Transposon mutagenesis identifies genes that cooperate with mutant Pten in breast cancer progression

    PubMed Central

    Rangel, Roberto; Lee, Song-Choon; Hon-Kim Ban, Kenneth; Guzman-Rojas, Liliana; Mann, Michael B.; Newberg, Justin Y.; McNoe, Leslie A.; Selvanesan, Luxmanan; Ward, Jerrold M.; Rust, Alistair G.; Chin, Kuan-Yew; Black, Michael A.; Jenkins, Nancy A.; Copeland, Neal G.

    2016-01-01

    Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1. Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC. PMID:27849608

  2. Generation of chemically engineered ribosomes for atomic mutagenesis studies on protein biosynthesis.

    PubMed

    Erlacher, Matthias D; Chirkova, Anna; Voegele, Paul; Polacek, Norbert

    2011-05-01

    The protocol describes the site-specific chemical modification of 23S rRNA of Thermus aquaticus ribosomes. The centerpiece of this 'atomic mutagenesis' approach is the site-specific incorporation of non-natural nucleoside analogs into 23S rRNA in the context of the entire 70S ribosome. This technique exhaustively makes use of the available crystallographic structures of the ribosome for designing detailed biochemical experiments aiming at unraveling molecular insights of ribosomal functions. The generation of chemically engineered ribosomes carrying a particular non-natural 23S rRNA residue at the site of interest, a procedure that typically takes less than 2 d, allows the study of translation at the molecular level and goes far beyond the limits of standard mutagenesis approaches. This methodology, in combination with the presented tests for ribosomal functions adapted to chemically engineered ribosomes, allows unprecedented molecular insight into the mechanisms of protein biosynthesis.

  3. [RAD18 gene product of yeast Saccharomyces cerevisiae controls mutagenesis induced by hydrogen peroxide].

    PubMed

    Kozhina, T N; Korolev, V G

    2012-04-01

    Within eukaryotes, tolerance to DNA damage is determined primarily by the repair pathway controlled by the members of the RAD6 epistasis group. Genetic studies on a yeast Saccharomyces cerevisiae model showed that the initial stage of postreplication repair (PRR), i.e., initiation of replication through DNA damage, is controlled by Rad6-Rad18 ubiquitin-conjugating enzyme complex. Mutants of these genes are highly sensitive to various genotoxic agents and reduce the level of induced mutagenesis. In this case, the efficiency of mutagenesis suppression depends on the type of damage. In this study we showed that DNA damage induced by hydrogen peroxide at the same mutagen doses causes significantly more mutations and lethal events in the rad18 mutant cells compared to control wild-type cells.

  4. Random transposon mutagenesis of the Saccharopolyspora erythraea genome reveals additional genes influencing erythromycin biosynthesis

    PubMed Central

    Fedashchin, Andrij; Cernota, William H.; Gonzalez, Melissa C.; Leach, Benjamin I.; Kwan, Noelle; Wesley, Roy K.; Weber, J. Mark

    2015-01-01

    A single cycle of strain improvement was performed in Saccharopolyspora erythraea mutB and 15 genotypes influencing erythromycin production were found. Genotypes generated by transposon mutagenesis appeared in the screen at a frequency of ∼3%. Mutations affecting central metabolism and regulatory genes were found, as well as hydrolases, peptidases, glycosyl transferases and unknown genes. Only one mutant retained high erythromycin production when scaled-up from micro-agar plug fermentations to shake flasks. This mutant had a knockout of the cwh1 gene (SACE_1598), encoding a cell-wall-associated hydrolase. The cwh1 knockout produced visible growth and morphological defects on solid medium. This study demonstrated that random transposon mutagenesis uncovers strain improvement-related genes potentially useful for strain engineering. PMID:26468041

  5. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis.

    PubMed

    Kille, Sabrina; Acevedo-Rocha, Carlos G; Parra, Loreto P; Zhang, Zhi-Gang; Opperman, Diederik J; Reetz, Manfred T; Acevedo, Juan Pablo

    2013-02-15

    Saturation mutagenesis probes define sections of the vast protein sequence space. However, even if randomization is limited this way, the combinatorial numbers problem is severe. Because diversity is created at the codon level, codon redundancy is a crucial factor determining the necessary effort for library screening. Additionally, due to the probabilistic nature of the sampling process, oversampling is required to ensure library completeness as well as a high probability to encounter all unique variants. Our trick employs a special mixture of three primers, creating a degeneracy of 22 unique codons coding for the 20 canonical amino acids. Therefore, codon redundancy and subsequent screening effort is significantly reduced, and a balanced distribution of codon per amino acid is achieved, as demonstrated exemplarily for a library of cyclohexanone monooxygenase. We show that this strategy is suitable for any saturation mutagenesis methodology to generate less-redundant libraries.

  6. Novobiocin Inhibits the Antimicrobial Resistance Acquired through DNA Damage-Induced Mutagenesis in Acinetobacter baumannii

    PubMed Central

    Jara, Luis M.; Pérez-Varela, María; Corral, Jordi; Arch, Marta; Cortés, Pilar; Bou, Germán; Barbé, Jordi

    2015-01-01

    Acinetobacter baumannii, a worldwide emerging nosocomial pathogen, acquires antimicrobial resistances in response to DNA-damaging agents, which increase the expression of multiple error-prone DNA polymerase components. Here we show that the aminocoumarin novobiocin, which inhibits the DNA damage response in Gram-positive bacteria, also inhibits the expression of error-prone DNA polymerases in this Gram-negative multidrug-resistant pathogen and, consequently, its potential acquisition of antimicrobial resistance through DNA damage-induced mutagenesis. PMID:26503651

  7. A Plasmid-Transposon Hybrid Mutagenesis System Effective in a Broad Range of Enterobacteria

    PubMed Central

    Monson, Rita; Smith, Debra S.; Matilla, Miguel A.; Roberts, Kevin; Richardson, Elizabeth; Drew, Alison; Williamson, Neil; Ramsay, Josh; Welch, Martin; Salmond, George P. C.

    2015-01-01

    Random transposon mutagenesis is a powerful technique used to generate libraries of genetic insertions in many different bacterial strains. Here we develop a system facilitating random transposon mutagenesis in a range of different Gram-negative bacterial strains, including Pectobacterium atrosepticum, Citrobacter rodentium, Serratia sp. ATCC39006, Serratia plymuthica, Dickeya dadantii, and many more. Transposon mutagenesis was optimized in each of these strains and three studies are presented to show the efficacy of this system. Firstly, the important agricultural pathogen D. dadantii was mutagenized. Two mutants that showed reduced protease production and one mutant producing the previously cryptic pigment, indigoidine, were identified and characterized. Secondly, the enterobacterium, Serratia sp. ATCC39006 was mutagenized and mutants incapable of producing gas vesicles, proteinaceous intracellular organelles, were identified. One of these contained a β-galactosidase transcriptional fusion within the gene gvpA1, essential for gas vesicle production. Finally, the system was used to mutate the biosynthetic gene clusters of the antifungal, anti-oomycete and anticancer polyketide, oocydin A, in the plant-associated enterobacterium, Dickeya solani MK10. The mutagenesis system was developed to allow easy identification of transposon insertion sites by sequencing, after facile generation of a replicon encompassing the transposon and adjacent DNA, post-excision. Furthermore, the system can also create transcriptional fusions with either β-galactosidase or β-glucuronidase as reporters, and exploits a variety of drug resistance markers so that multiple selectable fusions can be generated in a single strain. This system of various transposons has wide utility and can be combined in many different ways. PMID:26733980

  8. [Cloning and insertion mutagenesis of DNA fragment coding for the luminescent system of Photobacterium leiognathi].

    PubMed

    Ptitsyn, L R; Gurevich, V B; Barsanova, T G; Shenderov, A N; Khaĭkinson, M Ia

    1988-10-01

    Fragments of DNA, obtained from the luminescent bacterium Photobacterium leiognathi and inserted into the plasmid pBR322, were found to code for the luminescence expressed in E. coli cells. The genetic functions necessary for light production in E. coli are localized on a DNA fragment of about 7 kbp. The insertion mutagenesis was used to define the luminescence functions encoded by the hybrid plasmid.

  9. A Plasmid-Transposon Hybrid Mutagenesis System Effective in a Broad Range of Enterobacteria.

    PubMed

    Monson, Rita; Smith, Debra S; Matilla, Miguel A; Roberts, Kevin; Richardson, Elizabeth; Drew, Alison; Williamson, Neil; Ramsay, Josh; Welch, Martin; Salmond, George P C

    2015-01-01

    Random transposon mutagenesis is a powerful technique used to generate libraries of genetic insertions in many different bacterial strains. Here we develop a system facilitating random transposon mutagenesis in a range of different Gram-negative bacterial strains, including Pectobacterium atrosepticum, Citrobacter rodentium, Serratia sp. ATCC39006, Serratia plymuthica, Dickeya dadantii, and many more. Transposon mutagenesis was optimized in each of these strains and three studies are presented to show the efficacy of this system. Firstly, the important agricultural pathogen D. dadantii was mutagenized. Two mutants that showed reduced protease production and one mutant producing the previously cryptic pigment, indigoidine, were identified and characterized. Secondly, the enterobacterium, Serratia sp. ATCC39006 was mutagenized and mutants incapable of producing gas vesicles, proteinaceous intracellular organelles, were identified. One of these contained a β-galactosidase transcriptional fusion within the gene gvpA1, essential for gas vesicle production. Finally, the system was used to mutate the biosynthetic gene clusters of the antifungal, anti-oomycete and anticancer polyketide, oocydin A, in the plant-associated enterobacterium, Dickeya solani MK10. The mutagenesis system was developed to allow easy identification of transposon insertion sites by sequencing, after facile generation of a replicon encompassing the transposon and adjacent DNA, post-excision. Furthermore, the system can also create transcriptional fusions with either β-galactosidase or β-glucuronidase as reporters, and exploits a variety of drug resistance markers so that multiple selectable fusions can be generated in a single strain. This system of various transposons has wide utility and can be combined in many different ways.

  10. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing.

    PubMed

    Fukuda, Masatora; Umeno, Hiromitsu; Nose, Kanako; Nishitarumizu, Azusa; Noguchi, Ryoma; Nakagawa, Hiroyuki

    2017-02-02

    As an alternative to DNA mutagenesis, RNA mutagenesis can potentially become a powerful gene-regulation method for fundamental research and applied life sciences. Adenosine-to-inosine (A-to-I) RNA editing alters genetic information at the transcript level and is an important biological process that is commonly conserved in metazoans. Therefore, a versatile RNA-mutagenesis method can be achieved by utilising the intracellular RNA-editing mechanism. Here, we report novel guide RNAs capable of inducing A-to-I mutations by guiding the editing enzyme, human adenosine deaminase acting on RNA (ADAR). These guide RNAs successfully introduced A-to-I mutations into the target-site, which was determined by the reprogrammable antisense region. In ADAR2-over expressing cells, site-directed RNA editing could also be performed by simply introducing the guide RNA. Our guide RNA framework provides basic insights into establishing a generally applicable RNA-mutagenesis method.

  11. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing

    PubMed Central

    Fukuda, Masatora; Umeno, Hiromitsu; Nose, Kanako; Nishitarumizu, Azusa; Noguchi, Ryoma; Nakagawa, Hiroyuki

    2017-01-01

    As an alternative to DNA mutagenesis, RNA mutagenesis can potentially become a powerful gene-regulation method for fundamental research and applied life sciences. Adenosine-to-inosine (A-to-I) RNA editing alters genetic information at the transcript level and is an important biological process that is commonly conserved in metazoans. Therefore, a versatile RNA-mutagenesis method can be achieved by utilising the intracellular RNA-editing mechanism. Here, we report novel guide RNAs capable of inducing A-to-I mutations by guiding the editing enzyme, human adenosine deaminase acting on RNA (ADAR). These guide RNAs successfully introduced A-to-I mutations into the target-site, which was determined by the reprogrammable antisense region. In ADAR2-over expressing cells, site-directed RNA editing could also be performed by simply introducing the guide RNA. Our guide RNA framework provides basic insights into establishing a generally applicable RNA-mutagenesis method. PMID:28148949

  12. Pseudorabies virus glycoprotein C attachment-proficient revertants isolated through a simple, targeted mutagenesis scheme.

    PubMed

    Rue, Cary A; Ryan, Patrick

    2008-07-01

    Pseudorabies virus (PRV) glycoprotein C (gC) initiates virus attachment to cells by binding to heparan sulfate (HS) proteoglycans. The gC:HS interaction is not essential since gC null mutants still infect; however, they are more easily removed from cells during the initial stages of infection. The expendability of gC has facilitated a genetic mapping of the HS-binding domain, which is composed of three independent heparin-binding domains (HBDs) of six to eight amino acids each. Previous results suggested that at least one of the HBDs (HBD 1) functioned in a context-dependent manner. To define the context better, a reversion analysis was performed in which a defective gC containing a nonfunctional but intact HBD 1 regained HS-binding ability. To increase the reversion frequency, an efficient method for targeted, yet random mutagenesis of the gC gene was developed. The method involves random mutagenesis of a plasmid-borne copy of gC, and highly efficient recombination of the plasmid-borne genes into the virus genome at the site of a double-strand break in the viral gC locus. Revertants were recovered readily, and their gC alleles suggested that HS-binding could be restored by several different amino acid substitutions. This approach should be applicable to targeted mutagenesis of other herpesvirus genes.

  13. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening.

    PubMed

    Ito, Yasuhiro; Nishizawa-Yokoi, Ayako; Endo, Masaki; Mikami, Masafumi; Toki, Seiichi

    2015-11-06

    Site-directed mutagenesis using genetic approaches can provide a wealth of resources for crop breeding as well as for biological research. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 endonuclease (CRISPR/Cas9) system is a novel strategy used to induce mutations in a specific genome region; the system functions in a variety of organisms, including plants. Here, we report application of the CRISPR/Cas9 system to efficient mutagenesis of the tomato genome. In this study, we targeted the tomato RIN gene, which encodes a MADS-box transcription factor regulating fruit ripening. Three regions within the gene were targeted and mutations consisting either of a single base insertion or deletion of more than three bases were found at the Cas9 cleavage sites in T0 regenerated plants. The RIN-protein-defective mutants produced incomplete-ripening fruits in which red color pigmentation was significantly lower than that of wild type, while heterologous mutants expressing the remaining wild-type gene reached full-ripening red color, confirming the important role of RIN in ripening. Several mutations that were generated at three independent target sites were inherited in the T1 progeny, confirming the applicability of this mutagenesis system in tomato.

  14. Ascorbate enhances u. v. -mutagenesis in E. coli but inhibits it in Chinese hamster cells

    SciTech Connect

    Rossman, T.G.; Klein, C.B.; Naslund, M.

    1986-05-01

    Ascorbic acid (vitamin C) causes an increase in the mutation frequency of u.v.-irradiated Escherichia coli WP2. The enhancement occurs at all u.v. fluences, and is dependent upon the ascorbate concentration in the medium. A maximum effect (approximately 8- to 13-fold) is seen at 100-150 micrograms/ml, although some enhancement can be seen even at 10 micrograms/ml. The comutagenic effect of ascorbate with u.v. in E. coli is dependent upon peptone, a constituent of nutrient broth. The enhancement of u.v.-mutagenesis by ascorbate is absent in strains WP2s (uvrA) and WP6 (polA), suggesting that ascorbate affects the repair of pyrimidine dimers. The opposite results are observed for u.v.-mutagenesis in Chinese hamster V79 cells. The presence of ascorbate (50 micrograms/ml) during u.v. irradiation does not enhance the u.v. effect, but rather decreases it approximately 30%. These results are discussed with regard to differences in the mechanism of u.v.-mutagenesis and DNA repair in bacterial and mammalian cells.

  15. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis

    PubMed Central

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J. Pablo; Lopez, Bernard S.

    2016-01-01

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [3H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [3H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses. PMID:27406380

  16. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system

    PubMed Central

    Chen, Xiugui; Lu, Xuke; Shu, Na; Wang, Shuai; Wang, Junjuan; Wang, Delong; Guo, Lixue; Ye, Wuwei

    2017-01-01

    The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system has been widely used for genome editing in various plants because of its simplicity, high efficiency and design flexibility. However, to our knowledge, there is no report on the application of CRISPR/Cas9-mediated targeted mutagenesis in cotton. Here, we report the genome editing and targeted mutagenesis in upland cotton (Gossypium hirsutum L., hereafter cotton) using the CRISPR/Cas9 system. We designed two guide RNAs to target distinct sites of the cotton Cloroplastos alterados 1 (GhCLA1) and vacuolar H+-pyrophosphatase (GhVP) genes. Mutations in these two genes were detected in cotton protoplasts. Most of the mutations were nucleotide substitutions, with one nucleotide insertion and one substitution found in GhCLA1 and one deletion found in GhVP in cotton protoplasts. Subsequently, the two vectors were transformed into cotton shoot apexes through Agrobacterium-mediated transformation, resulting in efficient target gene editing. Most of the mutations were nucleotide deletions, and the mutation efficiencies were 47.6–81.8% in transgenic cotton plants. Evaluation using restriction-enzyme-PCR assay and sequence analysis detected no off-target mutations. Our results indicated that the CRISPR/Cas9 system was an efficient and specific tool for targeted mutagenesis of the cotton genome. PMID:28287154

  17. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives

    PubMed Central

    Caignard, Grégory; Eva, Megan M.; van Bruggen, Rebekah; Eveleigh, Robert; Bourque, Guillaume; Malo, Danielle; Gros, Philippe; Vidal, Silvia M.

    2014-01-01

    Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses. PMID:25268389

  18. Dissecting partner recognition by an intrinsically disordered protein using descriptive random mutagenesis.

    PubMed

    Gruet, Antoine; Dosnon, Marion; Vassena, Andrea; Lombard, Vincent; Gerlier, Denis; Bignon, Christophe; Longhi, Sonia

    2013-09-23

    In view of getting insights into the molecular determinants of the binding efficiency of intrinsically disordered proteins (IDPs), we used random mutagenesis. As a proof of concept, we chose the interaction between the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) and the X domain (XD) of the viral phosphoprotein and assessed how amino acid substitutions introduced at random within NTAIL affect partner recognition. In contrast with directed evolution approaches, we did not apply any selection and used the gene library approach not for production purposes but for achieving a better understanding of the NTAIL/XD interaction. For that reason, and to differentiate our approach from similar approaches that make use of systematic (i.e., targeted) mutagenesis, we propose to call it "descriptive random mutagenesis" (DRM). NTAIL variants generated by error-prone PCR were picked at random in the absence of selection pressure and were characterized in terms of sequence and binding abilities toward XD. DRM not only identified determinants of NTAIL/XD interaction that were in good agreement with previous work but also provided new insights. In particular, we discovered that the primary interaction site is poorly evolvable in terms of binding abilities toward XD. We also identified a critical NTAIL residue whose role in stabilizing the NTAIL/XD complex had previously escaped detection, and we identified NTAIL regulatory sites that dampen the interaction while being located outside the primary interaction site. Results show that DRM is a valuable approach to study binding abilities of IDPs.

  19. 5-fluorouracil in lethal mutagenesis of foot-and-mouth disease virus.

    PubMed

    Agudo, Rubén; Arias, Armando; Domingo, Esteban

    2009-06-01

    5-fluorouracil (FU) is a pyrimidine analogue extensively used in cancer chemotherapy. FU can be metabolized into 5-fluorouridine-triphosphate, which can be used as substrate for viral RNA-dependent RNA polymerases. This results in the incorporation of mutations into viral RNA. Accumulation of mutations may lead to loss of virus infectivity, in a process known as lethal mutagenesis. RNA virus pathogens are particularly difficult to control because they are highly mutable, and mutants resistant to antiviral agents are readily selected. Here, we review the basic principles of lethal mutagenesis as an antiviral approach, and the participation of FU in its development. Recent studies with foot-and-mouth disease virus indicate that FU can act both as an inhibitor and as a mutagen during foot-and-mouth disease virus replication. This dual activity renders FU an adequate drug for lethal mutagenesis. We suggest that structural and biochemical studies can contribute to the lead to new design of base or nucleoside analogues targeted specifically to viral polymerases.

  20. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    SciTech Connect

    Nelson, O.D.

    1997-09-04

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage.

  1. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.

    PubMed

    Gagnon, James A; Valen, Eivind; Thyme, Summer B; Huang, Peng; Akhmetova, Laila; Ahkmetova, Laila; Pauli, Andrea; Montague, Tessa G; Zimmerman, Steven; Richter, Constance; Schier, Alexander F

    2014-01-01

    The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs) initiating with a 5' adenine were improved by rescuing 5' end homogeneity of the sgRNA. In some cases, direct injection of Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an attractive approach for labs of all sizes.

  2. Tnt1 Retrotransposon Mutagenesis: A Tool for Soybean Functional Genomics1[W][OA

    PubMed Central

    Cui, Yaya; Barampuram, Shyam; Stacey, Minviluz G.; Hancock, C. Nathan; Findley, Seth; Mathieu, Melanie; Zhang, Zhanyuan; Parrott, Wayne A.; Stacey, Gary

    2013-01-01

    Insertional mutagenesis is a powerful tool for determining gene function in both model and crop plant species. Tnt1, the transposable element of tobacco (Nicotiana tabacum) cell type 1, is a retrotransposon that replicates via an RNA copy that is reverse transcribed and integrated elsewhere in the plant genome. Based on studies in a variety of plants, Tnt1 appears to be inactive in normal plant tissue but can be reactivated by tissue culture. Our goal was to evaluate the utility of the Tnt1 retrotransposon as a mutagenesis strategy in soybean (Glycine max). Experiments showed that the Tnt1 element was stably transformed into soybean plants by Agrobacterium tumefaciens-mediated transformation. Twenty-seven independent transgenic lines carrying Tnt1 insertions were generated. Southern-blot analysis revealed that the copy number of transposed Tnt1 elements ranged from four to 19 insertions, with an average of approximately eight copies per line. These insertions showed Mendelian segregation and did not transpose under normal growth conditions. Analysis of 99 Tnt1 flanking sequences revealed insertions into 62 (62%) annotated genes, indicating that the element preferentially inserts into protein-coding regions. Tnt1 insertions were found in all 20 soybean chromosomes, indicating that Tnt1 transposed throughout the soybean genome. Furthermore, fluorescence in situ hybridization experiments validated that Tnt1 inserted into multiple chromosomes. Passage of transgenic lines through two different tissue culture treatments resulted in Tnt1 transposition, significantly increasing the number of insertions per line. Thus, our data demonstrate the Tnt1 retrotransposon to be a powerful system that can be used for effective large-scale insertional mutagenesis in soybean. PMID:23124322

  3. Structure of the sodium channel pore revealed by serial cysteine mutagenesis.

    PubMed Central

    Pérez-García, M T; Chiamvimonvat, N; Marban, E; Tomaselli, G F

    1996-01-01

    The pores of voltage-gated cation channels are formed by four intramembrane segments that impart selectivity and conductance. Remarkably little is known about the higher order structure of these critical pore-lining or P segments. Serial cysteine mutagenesis reveals a pattern of side-chain accessibility that contradicts currently favored structural models based on alpha-helices or beta-strands. Like the active sites of many enzymes of known structure, the sodium channel pore consists of irregular loop regions. Images Fig. 1 Fig. 4 PMID:8552626

  4. Construction, characterization, and mutagenesis of an anti-fluorescein single chain antibody idiotype family.

    PubMed

    Denzin, L K; Voss, E W

    1992-05-05

    In addition to crystallographic studies that determined antigen contact residues for monoclonal anti-fluorescein (Fl) antibody 4-4-20 (Ka = 2.5 x 10(10) M-1), primary structure comparisons revealed idiotypically cross-reactive monoclonal antibodies (mAbs) 9-40 (Ka = 4.4 x 10(7) M-1), 12-40 (Ka = 4.0 x 10(8) M-1), and 5-14 (Ka = 2.4 x 10(8) M-1) possessed identical Fl contact residues, with the exception of L34His for L34Arg. Site-specific mutagenesis of single chain antibody (SCA) 4-4-20 in which L34Arg was changed to L34His resulted in approximately 1000- and 3-fold decreases in binding affinity and Qmax (maximum quenching of bound Fl), respectively, which suggested that L34Arg was directly involved in increased binding affinity and fluorescence quenching. Therefore, substitution of Arg for His at residue L34 in mAbs 9-40, 12-40, and 5-14 should result in increased binding affinity and Qmax. To facilitate site-specific mutagenesis studies, single chain derivatives of mAbs 9-40, 12-40, and 5-14 were constructed. Following expression in Escherichia coli, characterization of the SCAs demonstrated that when compared with the respective parental mAb, the SCAs possessed identical binding affinities and similar Qmax and lambda max (absorption profiles of bound Fl) values. These results validated SCA 9-40, 12-40, and 5-14 for use in site-directed mutagenesis studies. Results of mutagenesis studies indicated that substitution of L34Arg into the active sites of 9-40, 12-40, and 5-14 was not enough to produce 4-4-20-like binding characteristics. Therefore, the following single chain mutants were constructed: 9-40L34Arg/L46Val, 12-40L34Arg/L46Val and 5-14L34Arg/L46Val, 9-40L34Arg/L46Val/H101Asp and 4-4-20H101Ala. Results demonstrated that these mutations were not able to render the mutant SCAs with increased binding affinity and fluorescence quenching values. Collectively, these results suggest that the combining sites of mAb 9-40, 12-40, and 5-14 may possess different active

  5. Reciprocal relationship between mouse germ-cell mutagenesis and basic genetics: from early beginnings to future opportunities.

    PubMed

    Russell, L B

    1989-01-01

    The scientific foundations for several mammalian germ-line mutagenesis tests in common use today were laid in the 1930s, 1940s, and early 1950s. Subsequent developments in the field have had multiple objectives: detection of mutagenicity of environmental agents (which has led to the development of numerous methodologies), identification of biological and physical factors that affect mutation yield, analysis of the structural nature of the genetic alterations, and assessment of the organismic effects of various types of mutations. Mutagenesis studies have made numerous contributions to basic genetics by generating mutant types that led to elucidation of sex-determining mechanisms in mammals; formulation of the single-active-, or inactive-, X-chromosome hypothesis; correlation of genetic and cytological maps; discovery of genetic "imprinting" phenomena; study of developmental pathways and cell lineages, etc. Particularly useful are sets of complexly overlapping deletions that have been recovered in radiation mutagenesis studies, propagated in breeding stocks, and genetically analyzed; these have constituted prerequisites for molecular genetic studies aimed at development of the DNA structure-function relationships for important genomic regions. Mutagenesis experiments have also served to identify mutagens that are particularly effective in inducing specific types of genetic lesions desired for basic studies. Reciprocally, basic genetics has contributed to the development of mutagenesis tests and has enhanced the value of the specific-locus test by adding to its quantitative capabilities the capability for qualitatively characterizing the actions of mutagens.

  6. Enhancing effect of heterocyclic amines and beta-carbolines on UV or chemically induced mutagenesis in E. coli.

    PubMed

    Shimoi, K; Kawabata, H; Tomita, I

    1992-08-01

    Most heterocyclic amines and beta-carbolines--harman, norharman, harmine, harmaline--enhanced UVC (254 nm) induced mutagenesis without microsomal activation in E. coli B/r WP2. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) was most effective and increased UVAB (295-400 nm) induced mutations as well as UVC induced ones. Trp-P-1 enhanced the frequencies of mutations induced by not only UV but also 4-nitroquinoline-1-oxide (4NQO) or 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (AF2), while it showed little effect on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or gamma-ray induced mutagenesis. Trp-P-1 decreased the survival of UVC irradiated cells of CM571recA. However, these effects of Trp-P-1 on UVC induced mutagenesis and lethality were not observed in WP2suvrA which is excision repair deficient. The alkaline sucrose gradient sedimentation analysis demonstrated that Trp-P-1 blocked the incision step in DNA excision repair. Further, pretreatment with Trp-P-1 before UVC irradiation showed no effect on UVC induced mutagenesis. Similar effects were also seen in the case of harman or norharman. These results suggest that heterocyclic amines and beta-carbolines inhibit DNA excision repair directly or indirectly, thus enhancing UV or chemically induced mutagenesis.

  7. Phenotypic Mutants of the Intracellular Actinomycete Rhodococcus equi Created by In Vivo Himar1 Transposon Mutagenesis

    PubMed Central

    Ashour, Joseph; Hondalus, Mary K.

    2003-01-01

    Rhodococcus equi is a facultative intracellular opportunistic pathogen of immunocompromised people and a major cause of pneumonia in young horses. An effective live attenuated vaccine would be extremely useful in the prevention of R. equi disease in horses. Toward that end, we have developed an efficient transposon mutagenesis system that makes use of a Himar1 minitransposon delivered by a conditionally replicating plasmid for construction of R. equi mutants. We show that Himar1 transposition in R. equi is random and needs no apparent consensus sequence beyond the required TA dinucleotide. The diversity of the transposon library was demonstrated by the ease with which we were able to screen for auxotrophs and mutants with pigmentation and capsular phenotypes. One of the pigmentation mutants contained an insertion in a gene encoding phytoene desaturase, an enzyme of carotenoid biosynthesis, the pathway necessary for production of the characteristic salmon color of R. equi. We identified an auxotrophic mutant with a transposon insertion in the gene encoding a putative dual-functioning GTP cyclohydrolase II-3,4-dihydroxy-2-butanone-4-phosphate synthase, an enzyme essential for riboflavin biosynthesis. This mutant cannot grow in minimal medium in the absence of riboflavin supplementation. Experimental murine infection studies showed that, in contrast to wild-type R. equi, the riboflavin-requiring mutant is attenuated because it is unable to replicate in vivo. The mutagenesis methodology we have developed will allow the characterization of R. equi virulence mechanisms and the creation of other attenuated strains with vaccine potential. PMID:12670990

  8. Restriction enzyme-free construction of random gene mutagenesis libraries in Escherichia coli.

    PubMed

    Pai, Jen C; Entzminger, Kevin C; Maynard, Jennifer A

    2012-02-15

    Directed evolution relies on both random and site-directed mutagenesis of individual genes and regulatory elements to create variants with altered activity profiles for engineering applications. Central to these experiments is the construction of large libraries of related variants. However, a number of technical hurdles continue to limit routine construction of random mutagenesis libraries in Escherichia coli, in particular, inefficiencies during digestion and ligation steps. Here, we report a restriction enzyme-free approach to library generation using megaprimers termed MegAnneal. Target DNA is first exponentially amplified using error-prone polymerase chain reaction (PCR) and then linearly amplified with a single 3' primer to generate long, randomly mutated, single-stranded megaprimers. These are annealed to single-stranded dUTP-containing template plasmid and extended with T7 polymerase to create a complementary strand, and the resulting termini are ligated with T4 DNA ligase. Using this approach, we are able to reliably generate libraries of approximately 10⁷ colony-forming units (cfu)/μg DNA/transformation in a single day. We have created MegAnneal libraries based on three different single-chain antibodies and identified variants with enhanced expression and ligand-binding affinity. The key advantages of this approach include facile amplification, restriction enzyme-free library generation, and a significantly reduced risk of mutations outside the targeted region and wild-type contamination as compared with current methods.

  9. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida

    PubMed Central

    Endo, Akira; Masafumi, Mikami; Kaya, Hidetaka; Toki, Seiichi

    2016-01-01

    CRISPR/Cas9 systems are nowadays applied extensively to effect genome editing in various organisms including plants. CRISPR from Prevotella and Francisella 1 (Cpf1) is a newly characterized RNA-guided endonuclease that has two distinct features as compared to Cas9. First, Cpf1 utilizes a thymidine-rich protospacer adjacent motif (PAM) while Cas9 prefers a guanidine-rich PAM. Cpf1 could be used as a sequence-specific nuclease to target AT-rich regions of a genome that Cas9 had difficulty accessing. Second, Cpf1 generates DNA ends with a 5′ overhang, whereas Cas9 creates blunt DNA ends after cleavage. “Sticky” DNA ends should increase the efficiency of insertion of a desired DNA fragment into the Cpf1-cleaved site using complementary DNA ends. Therefore, Cpf1 could be a potent tool for precise genome engineering. To evaluate whether Cpf1 can be applied to plant genome editing, we selected Cpf1 from Francisella novicida (FnCpf1), which recognizes a shorter PAM (TTN) within known Cpf1 proteins, and applied it to targeted mutagenesis in tobacco and rice. Our results show that targeted mutagenesis had occurred in transgenic plants expressing FnCpf1 with crRNA. Deletions of the targeted region were the most frequently observed mutations. Our results demonstrate that FnCpf1 can be applied successfully to genome engineering in plants. PMID:27905529

  10. Reconstitutional Mutagenesis of the Maize P Gene by Short-Range Ac Transpositions

    PubMed Central

    Moreno, M. A.; Chen, J.; Greenblatt, I.; Dellaporta, S. L.

    1992-01-01

    The tendency for Ac to transpose over short intervals has been utilized to develop insertional mutagenesis and fine structure genetic mapping strategies in maize. We recovered excisions of Ac from the P gene and insertions into nearby chromosomal sites. These closely linked Ac elements reinserted into the P gene, reconstituting over 250 unstable variegated alleles. Reconstituted alleles condition a variety of variegation patterns that reflect the position and orientation of Ac within the P gene. Molecular mapping and DNA sequence analyses have shown that reinsertion sites are dispersed throughout a 12.3-kb chromosomal region in the promoter, exons and introns of the P gene, but in some regions insertions sites were clustered in a nonrandom fashion. Transposition profiles and target site sequence data obtained from these studies have revealed several features of Ac transposition including its preference for certain target sites. These results clearly demonstrate the tendency of Ac to transpose to nearby sites in both proximal and distal directions from the donor site. With minor modifications, reconstitutional mutagenesis should be applicable to many Ac-induced mutations in maize and in other plant species and can possibly be extended to other eukaryotic transposon systems as well. PMID:1325389

  11. Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery.

    PubMed

    Moriarity, Branden S; Largaespada, David A

    2015-02-01

    Large-scale genomic efforts to study human cancer, such as the cancer gene atlas (TCGA), have identified numerous cancer drivers in a wide variety of tumor types. However, there are limitations to this approach, the mutations and expression or copy number changes that are identified are not always clearly functionally relevant, and only annotated genes and genetic elements are thoroughly queried. The use of complimentary, nonbiased, functional approaches to identify drivers of cancer development and progression is ideal to maximize the rate at which cancer discoveries are achieved. One such approach that has been successful is the use of the Sleeping Beauty (SB) transposon-based mutagenesis system in mice. This system uses a conditionally expressed transposase and mutagenic transposon allele to target mutagenesis to somatic cells of a given tissue in mice to cause random mutations leading to tumor development. Analysis of tumors for transposon common insertion sites (CIS) identifies candidate cancer genes specific to that tumor type. While similar screens have been performed in mice with the PiggyBac (PB) transposon and viral approaches, we limit extensive discussion to SB. Here we discuss the basic structure of these screens, screens that have been performed, methods used to identify CIS.

  12. The disparity mutagenesis model predicts rescue of living things from catastrophic errors

    PubMed Central

    Furusawa, Mitsuru

    2014-01-01

    In animals including humans, mutation rates per generation exceed a perceived threshold, and excess mutations increase genetic load. Despite this, animals have survived without extinction. This is a perplexing problem for animal and human genetics, arising at the end of the last century, and to date still does not have a fully satisfactory explanation. Shortly after we proposed the disparity theory of evolution in 1992, the disparity mutagenesis model was proposed, which forms the basis for an explanation for an acceleration of evolution and species survival. This model predicts a significant increase of the mutation threshold values if the fidelity difference in replication between the lagging and leading strands is high enough. When applied to biological evolution, the model predicts that living things, including humans, might overcome the lethal effect of accumulated deleterious mutations and be able to survive. Artificially derived mutator strains of microorganisms, in which an enhanced lagging-strand-biased mutagenesis was introduced, showed unexpectedly high adaptability to severe environments. The implications of the striking behaviors shown by these disparity mutators will be discussed in relation to how living things with high mutation rates can avoid the self-defeating risk of excess mutations. PMID:25538731

  13. Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling.

    PubMed

    Hackel, Benjamin J; Kapila, Atul; Wittrup, K Dane

    2008-09-19

    The 10th type III domain of human fibronectin (Fn3) has been validated as an effective scaffold for molecular recognition. In the current work, it was desired to improve the robustness of selection of stable, high-affinity Fn3 domains. A yeast surface display library of Fn3 was created in which three solvent-exposed loops were diversified in terms of amino acid composition and loop length. The library was screened by fluorescence-activated cell sorting to isolate binders to lysozyme. An affinity maturation scheme was developed to rapidly and broadly diversify populations of clones by random mutagenesis as well as homologous recombination-driven shuffling of mutagenized loops. The novel library and affinity maturation scheme combined to yield stable, monomeric Fn3 domains with 3 pM affinity for lysozyme. A secondary affinity maturation identified a stable 1.1 pM binder, the highest affinity yet reported for an Fn3 domain. In addition to extension of the affinity limit for this scaffold, the results demonstrate the ability to achieve high-affinity binding while preserving stability and the monomeric state. This library design and affinity maturation scheme is highly efficient, utilizing an initial diversity of 2x10(7) clones and screening only 1x10(8) mutants (totaled over all affinity maturation libraries). Analysis of intermediate populations revealed that loop length diversity, loop shuffling, and recursive mutagenesis of diverse populations are all critical components.

  14. Site directed mutagenesis of StSUT1 reveals target amino acids of regulation and stability.

    PubMed

    Krügel, Undine; Wiederhold, Elena; Pustogowa, Jelena; Hackel, Aleksandra; Grimm, Bernhard; Kühn, Christina

    2013-11-01

    Plant sucrose transporters (SUTs) are functional as sucrose-proton-cotransporters with an optimal transport activity in the acidic pH range. Recently, the pH optimum of the Solanum tuberosum sucrose transporter StSUT1 was experimentally determined to range at an unexpectedly low pH of 3 or even below. Various research groups have confirmed these surprising findings independently and in different organisms. Here we provide further experimental evidence for a pH optimum at physiological extrema. Site directed mutagenesis provides information about functional amino acids, which are highly conserved and responsible for this extraordinary increase in transport capacity under extreme pH conditions. Redox-dependent dimerization of the StSUT1 protein was described earlier. Here the ability of StSUT1 to form homodimers was demonstrated by heterologous expression in Lactococcus lactis and Xenopus leavis using Western blots, and in plants by bimolecular fluorescence complementation. Mutagenesis of highly conserved cysteine residues revealed their importance in protein stability. The accessibility of regulatory amino acid residues in the light of StSUT1's compartmentalization in membrane microdomains is discussed.

  15. Mutagenesis by host antimicrobial peptides: insights into microbial evolution during chronic infections

    PubMed Central

    Limoli, Dominique H.; Wozniak, Daniel J.

    2014-01-01

    Antimicrobial peptides (AMPs) are produced by the mammalian immune system to fight invading pathogens. The best understood function of AMPs is to integrate into the membranes of microbes, thereby disrupting and killing cells. However, a recent study [PLoS Pathogens (2014) 10, e1004083] provides evidence that at subinhibitory levels, AMPs promote mutations in bacterial DNA, which enhance bacterial survival. In particular, in the bacterium Pseudomonas aeruginosa, one AMP called LL-37 can promote mutations, which enable the bacteria to overproduce a protective sugar coating, a process called mucoid conversion. P. aeruginosa mucoid conversion is a major risk factor for those suffering from cystic fibrosis (CF), one of the most common lethal, heritable diseases in the US. LL-37 was found to produce mutations by penetrating the bacterial cell and binding to bacterial DNA. It was proposed that LL-37 binding DNA disrupts normal DNA replication and potentiates mutations. Importantly, LL-37 induced mutagenesis was also found to promote resistance to rifampicin in both P. aeruginosa and E. coli. This suggests that AMP-induced mutagenesis may be important for a broad range of chronic diseases and pathogens. PMID:28357249

  16. Efficient and Heritable Targeted Mutagenesis in Mosses Using the CRISPR/Cas9 System.

    PubMed

    Nomura, Toshihisa; Sakurai, Tetsuya; Osakabe, Yuriko; Osakabe, Keishi; Sakakibara, Hitoshi

    2016-12-01

    Targeted genome modification by RNA-guided nucleases derived from the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system has seen rapid development in many organisms, including several plant species. In the present study, we succeeded in introducing the CRISPR/Cas9 system into the non-model organism Scopelophila cataractae, a moss that exhibits heavy metal tolerance, and the model organism Physcomitrella patens Utilizing the process by which moss plants regenerate from protoplasts, we conducted targeted mutagenesis by expression of single-chain guide RNA (sgRNA) and Cas9 in protoplasts. Using this method, the acquisition rate of strains exhibiting phenotypic changes associated with the target genes was approximately 45-69%, and strains with phenotypic changes exhibited various insertion and deletion mutations. In addition, we report that our method is capable of multiplex targeted mutagenesis (two independent genes) and also permits the efficient introduction of large deletions (∼3 kbp). These results demonstrate that the CRISPR/Cas9 system can be used to accelerate investigations of bryology and land plant evolution.

  17. Identification of 17 hearing impaired mouse strains in the TMGC ENU-mutagenesis screen

    SciTech Connect

    Kermany, Mohammad; Parker, Lisan; Guo, Yun-Kai; Miller, Darla R; Swanson, Douglas J; Yoo, Tai-June; Goldowitz, Daniel; Zuo, Jian

    2006-01-01

    The Tennessee Mouse Genome Consortium (TMGC) employed an N-ethyl-N-nitrosourea (ENU)-mutagenesis scheme to identify mouse recessive mutants with hearing phenotypes. We employed auditory brainstem responses (ABR) to click and 8, 16, and 32 kHz stimuli and screened 285 pedigrees (1819 mice of 8-11 weeks old in various mixed genetic backgrounds) each bred to carry a homozygous ENU-induced mutation. To define mutant pedigrees, we measured P12 mice per pedigree in P2 generations and used a criterion where the mean ABR threshold per pedigree was two standard deviations above the mean of all offspring from the same parental strain. We thus identified 17 mutant pedigrees (6%), all exhibiting hearing loss at high frequencies (P16 kHz) with an average threshold elevation of 30-35 dB SPL. Interestingly, four mutants showed sex-biased hearing loss and six mutants displayed wide range frequency hearing loss. Temporal bone histology revealed that six of the first nine mutants displayed cochlear morphological defects: degeneration of spiral ganglia, spiral ligament fibrocytes or inner hair cells (but not outer hair cells) mostly in basal turns. In contrast to other ENU-mutagenesis auditory screens, our screen identified high-frequency, mild and sex-biased hearing defects. Further characterization of these 17 mouse models will advance our understanding of presbycusis and noise-induced hearing loss in humans.

  18. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.

    PubMed

    Weng, Meizhi; Deng, Xiongwei; Bao, Wei; Zhu, Li; Wu, Jieyuan; Cai, Yongjun; Jia, Yan; Zheng, Zhongliang; Zou, Guolin

    2015-09-25

    Nattokinase (NK), a bacterial serine protease from Bacillus subtilis var. natto, is a potential cardiovascular drug exhibiting strong fibrinolytic activity. To broaden its commercial and medical applications, we constructed a single-mutant (I31L) and two double-mutants (M222A/I31L and T220S/I31L) by site-directed mutagenesis. Active enzymes were expressed in Escherichia coli with periplasmic secretion and were purified to homogeneity. The kinetic parameters of enzymes were examined by spectroscopy assay and isothermal titration calorimetry (ITC), and their fibrinolytic activities were determined by fibrin plate method. The substitution of Leu(31) for Ile(31) resulted in about 2-fold enhancement of catalytic efficiency (Kcat/KM) compared with wild-type NK. The specific activities of both double-mutants (M222A/I31L and T220S/I31L) were significantly increased when compared with the single-mutants (M222A and T220S) and the oxidative stability of M222A/I31L mutant was enhanced with respect to wild-type NK. This study demonstrates the feasibility of improving activity of NK by site-directed mutagenesis and shows successful protein engineering cases to improve the activity of NK as a potent therapeutic agent.

  19. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    PubMed

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  20. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  1. Molecular dynamics simulation and site-directed mutagenesis of alcohol acyltransferase: a proposed mechanism of catalysis.

    PubMed

    Morales-Quintana, Luis; Nuñez-Tobar, María Ximena; Moya-León, María Alejandra; Herrera, Raúl

    2013-10-28

    Aroma in Vasconcellea pubescens fruit is determined by esters, which are the products of catalysis by alcohol acyltransferase (VpAAT1). VpAAT1 protein structure displayed the conserved HxxxD motif facing the solvent channel in the center of the structure. To gain insight into the role of these catalytic residues, kinetic and site-directed mutagenesis studies were carried out in VpAAT1 protein. Based on dead-end inhibition studies, the kinetic could be described in terms of a ternary complex mechanism with the H166 residue as the catalytic base. Kinetic results showed the lowest Km value for hexanoyl-CoA. Additionally, the most favorable predicted substrate orientation was observed for hexanoyl-CoA, showing a coincidence between kinetic studies and molecular docking analysis. Substitutions H166A, D170A, D170N, and D170E were evaluated in silico. The solvent channel in all mutant structures was lost, showing large differences with the native structure. Molecular docking and molecular dynamics simulations were able to describe unfavored energies for the interaction of the mutant proteins with different alcohols and acyl-CoAs. Additionally, in vitro site-directed mutagenesis of H166 and D170 in VpAAT1 induced a loss of activity, confirming the functional role of both residues for the activity, H166 being directly involved in catalysis.

  2. An ENU mutagenesis screen identifies novel and known genes involved in epigenetic processes in the mouse

    PubMed Central

    2013-01-01

    Background We have used a sensitized ENU mutagenesis screen to produce mouse lines that carry mutations in genes required for epigenetic regulation. We call these lines Modifiers of murine metastable epialleles (Mommes). Results We report a basic molecular and phenotypic characterization for twenty of the Momme mouse lines, and in each case we also identify the causative mutation. Three of the lines carry a mutation in a novel epigenetic modifier, Rearranged L-myc fusion (Rlf), and one gene, Rap-interacting factor 1 (Rif1), has not previously been reported to be involved in transcriptional regulation in mammals. Many of the other lines are novel alleles of known epigenetic regulators. For two genes, Rlf and Widely-interspaced zinc finger (Wiz), we describe the first mouse mutants. All of the Momme mutants show some degree of homozygous embryonic lethality, emphasizing the importance of epigenetic processes. The penetrance of lethality is incomplete in a number of cases. Similarly, abnormalities in phenotype seen in the heterozygous individuals of some lines occur with incomplete penetrance. Conclusions Recent advances in sequencing enhance the power of sensitized mutagenesis screens to identify the function of previously uncharacterized factors and to discover additional functions for previously characterized proteins. The observation of incomplete penetrance of phenotypes in these inbred mutant mice, at various stages of development, is of interest. Overall, the Momme collection of mouse mutants provides a valuable resource for researchers across many disciplines. PMID:24025402

  3. Rational and random mutagenesis of firefly luciferase to identify an efficient emitter of red bioluminescence

    NASA Astrophysics Data System (ADS)

    Branchini, Bruce R.; Southworth, Tara L.; Khattak, Neelum F.; Murtiashaw, Martha H.; Fleet, Sarah E.

    2004-06-01

    Firefly luciferase, which emits yellow-green (557 nm) light, and the corresponding cDNA have been used successfully as a bioluminescence reporter of gene expression. One particularly exciting application is in the area of in vivo bioluminescence imaging. Our interest is in developing improved reagents by identifying Photinus pyralis luciferase mutants that efficiently emit red bioluminescence. In this way, the proven advantages of the P. pyralis protein can be combined with the potential advantages of a red-shifted emitter. Using site-directed mutagenesis techniques, we have identified many mutants emitting red bioluminescence. Unfortunately, these enzymes generally have significantly decreased bioluminescence activity. Interestingly, we discovered a mutation, Ile351Ala, that produced a moderate 16 nm red-shift, while maintaining excellent bioluminescence activity. We then undertook a random mutagenesis approach to identify luciferase mutants that emit further red-shifted bioluminescence with minimal loss of activity. Libraries of mutants were created using an error-prone PCR method and the Ile351Ala luciferase mutant as the template DNA. The libraries were screened by in vivo bacterial assays and the promising mutants were purified to enable accurate determination of bioluminescence emission spectra and total bioluminescence activity. We will report the characterization results, including the identification of the randomly altered amino acids, of several mutants that catalyze bioluminescence with emission maxima of approximately 600 nm.

  4. Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma

    PubMed Central

    Mann, Michael B; Black, Michael A; Jones, Devin J; Ward, Jerrold M; Yew, Christopher Chin Kuan; Newberg, Justin Y; Dupuy, Adam J; Rust, Alistair G; Bosenberg, Marcus W; McMahon, Martin; Print, Cristin G; Copeland, Neal G; Jenkins, Nancy A

    2016-01-01

    Although nearly half of human melanomas harbor oncogenic BRAFV600E mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in BrafV600E mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma. Human orthologs of >500 CCGs are enriched for mutations in human melanoma or showed statistically significant clinical associations between RNA abundance and survival of patients with metastatic melanoma. We also functionally validate CEP350 as a new tumor-suppressor gene in human melanoma. SB mutagenesis has thus helped to catalog the cooperative molecular mechanisms driving BRAFV600E melanoma and discover new genes with potential clinical importance in human melanoma. PMID:25848750

  5. Mutagenesis and functional selection protocols for directed evolution of proteins in E. coli.

    PubMed

    Troll, Chris; Alexander, David; Allen, Jennifer; Marquette, Jacob; Camps, Manel

    2011-03-16

    The efficient generation of genetic diversity represents an invaluable molecular tool that can be used to label DNA synthesis, to create unique molecular signatures, or to evolve proteins in the laboratory. Here, we present a protocol that allows the generation of large (>10(11)) mutant libraries for a given target sequence. This method is based on replication of a ColE1 plasmid encoding the desired sequence by a low-fidelity variant of DNA polymerase I (LF-Pol I). The target plasmid is transformed into a mutator strain of E. coli and plated on solid media, yielding between 0.2 and 1 mutations/kb, depending on the location of the target gene. Higher mutation frequencies are achieved by iterating this process of mutagenesis. Compared to alternative methods of mutagenesis, our protocol stands out for its simplicity, as no cloning or PCR are involved. Thus, our method is ideal for mutational labeling of plasmids or other Pol I templates or to explore large sections of sequence space for the evolution of activities not present in the original target. The tight spatial control that PCR or randomized oligonucleotide-based methods offer can also be achieved through subsequent cloning of specific sections of the library. Here we provide protocols showing how to create a random mutant library and how to establish drug-based selections in E. coli to identify mutants exhibiting new biochemical activities.

  6. Caffeine enhanced measurement of mutagenesis by low levels of [gamma]-irradiation in human lymphocytes

    SciTech Connect

    Puck, T.P.; Johnson, R.; Waldren, C.A. ); Morse, H. )

    1993-09-01

    The well-known action of caffeine in synergizing mutagenesis (including chromosome aberrations) of agents like ionizing radiation by inhibition of cellular repair processes has been incorporated into a rapid procedure for detection of mutagenicity with high sensitivity. Effects of 5-10 rads of [gamma]-irradiation, which approximate the human lifetime dose accumulation from background radiation, can be detected in a two-day procedure using an immortalized human WBC culture. Chromosomally visible lesions are scored on cells incubated for 2 h after irradiation in the presence and absence of 1.0 mg/ml of caffeine. An eightfold amplification of scorable lesions is achieved over the action of radiation alone. This approach provides a closer approximation to absolute mutagenicity unmitigated by repair processes, which can vary in different situations. It is proposed that mutagenesis testing of this kind, using caffiene or other repair-inhibitory agents, be employed to identify mutagens in their effective concentrations to which human populations may be exposed; to detect agents such as caffeine that may synergize mutagenic actions and pose epidemiologic threats; and to discover effective anti-mutagens. Information derived from the use of such procedures may help prevent cancer and newly acquired genetic disease.

  7. PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia

    PubMed Central

    Dang, Jinjun; Wei, Lei; de Ridder, Jeroen; Su, Xiaoping; Rust, Alistair G.; Roberts, Kathryn G.; Payne-Turner, Debbie; Cheng, Jinjun; Ma, Jing; Qu, Chunxu; Wu, Gang; Song, Guangchun; Huether, Robert G.; Schulman, Brenda; Janke, Laura; Zhang, Jinghui; Downing, James R.; van der Weyden, Louise; Adams, David J.

    2015-01-01

    Alterations of genes encoding transcriptional regulators of lymphoid development are a hallmark of B-progenitor acute lymphoblastic leukemia (B-ALL) and most commonly involve PAX5, encoding the DNA-binding transcription factor paired-box 5. The majority of PAX5 alterations in ALL are heterozygous, and key PAX5 target genes are expressed in leukemic cells, suggesting that PAX5 may be a haploinsufficient tumor suppressor. To examine the role of PAX5 alterations in leukemogenesis, we performed mutagenesis screens of mice heterozygous for a loss-of-function Pax5 allele. Both chemical and retroviral mutagenesis resulted in a significantly increased penetrance and reduced latency of leukemia, with a shift to B-lymphoid lineage. Genomic profiling identified a high frequency of secondary genomic mutations, deletions, and retroviral insertions targeting B-lymphoid development, including Pax5, and additional genes and pathways mutated in ALL, including tumor suppressors, Ras, and Janus kinase-signal transducer and activator of transcription signaling. These results show that in contrast to simple Pax5 haploinsufficiency, multiple sequential alterations targeting lymphoid development are central to leukemogenesis and contribute to the arrest in lymphoid maturation characteristic of ALL. This cross-species analysis also validates the importance of concomitant alterations of multiple cellular growth, signaling, and tumor suppression pathways in the pathogenesis of B-ALL. PMID:25855603

  8. Phenotypic mutants of the intracellular actinomycete Rhodococcus equi created by in vivo Himar1 transposon mutagenesis.

    PubMed

    Ashour, Joseph; Hondalus, Mary K

    2003-04-01

    Rhodococcus equi is a facultative intracellular opportunistic pathogen of immunocompromised people and a major cause of pneumonia in young horses. An effective live attenuated vaccine would be extremely useful in the prevention of R. equi disease in horses. Toward that end, we have developed an efficient transposon mutagenesis system that makes use of a Himar1 minitransposon delivered by a conditionally replicating plasmid for construction of R. equi mutants. We show that Himar1 transposition in R. equi is random and needs no apparent consensus sequence beyond the required TA dinucleotide. The diversity of the transposon library was demonstrated by the ease with which we were able to screen for auxotrophs and mutants with pigmentation and capsular phenotypes. One of the pigmentation mutants contained an insertion in a gene encoding phytoene desaturase, an enzyme of carotenoid biosynthesis, the pathway necessary for production of the characteristic salmon color of R. equi. We identified an auxotrophic mutant with a transposon insertion in the gene encoding a putative dual-functioning GTP cyclohydrolase II-3,4-dihydroxy-2-butanone-4-phosphate synthase, an enzyme essential for riboflavin biosynthesis. This mutant cannot grow in minimal medium in the absence of riboflavin supplementation. Experimental murine infection studies showed that, in contrast to wild-type R. equi, the riboflavin-requiring mutant is attenuated because it is unable to replicate in vivo. The mutagenesis methodology we have developed will allow the characterization of R. equi virulence mechanisms and the creation of other attenuated strains with vaccine potential.

  9. Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery

    PubMed Central

    Moriarity, Branden S; Largaespada, David A

    2016-01-01

    Large-scale genomic efforts to study human cancer, such as the cancer gene atlas (TCGA), have identified numerous cancer drivers in a wide variety of tumor types. However, there are limitations to this approach, the mutations and expression or copy number changes that are identified are not always clearly functionally relevant, and only annotated genes and genetic elements are thoroughly queried. The use of complimentary, nonbiased, functional approaches to identify drivers of cancer development and progression is ideal to maximize the rate at which cancer discoveries are achieved. One such approach that has been successful is the use of the Sleeping Beauty (SB) transposon-based mutagenesis system in mice. This system uses a conditionally expressed transposase and mutagenic transposon allele to target mutagenesis to somatic cells of a given tissue in mice to cause random mutations leading to tumor development. Analysis of tumors for transposon common insertion sites (CIS) identifies candidate cancer genes specific to that tumor type. While similar screens have been performed in mice with the PiggyBac (PB) transposon and viral approaches, we limit extensive discussion to SB. Here we discuss the basic structure of these screens, screens that have been performed, methods used to identify CIS. PMID:26051241

  10. Mutagenesis Is Elevated in Male Germ Cells Obtained from DNA Polymerase-beta Heterozygous Mice1

    PubMed Central

    Allen, Diwi; Herbert, Damon C.; McMahan, C. Alex; Rotrekl, Vladimir; Sobol, Robert W.; Wilson, Samuel H.; Walter, Christi A.

    2008-01-01

    Gametes carry the DNA that will direct the development of the next generation. By compromising genetic integrity, DNA damage and mutagenesis threaten the ability of gametes to fulfill their biological function. DNA repair pathways function in germ cells and serve to ameliorate much DNA damage and prevent mutagenesis. High base excision repair (BER) activity is documented for spermatogenic cells. DNA polymerase-beta (POLB) is required for the short-patch BER pathway. Because mice homozygous null for the Polb gene die soon after birth, mice heterozygous for Polb were used to examine the extent to which POLB contributes to maintaining spermatogenic genomic integrity in vivo. POLB protein levels were reduced only in mixed spermatogenic cells. In vitro short-patch BER activity assays revealed that spermatogenic cell nuclear extracts obtained from Polb heterozygous mice had one third the BER activity of age-matched control mice. Polb heterozygosity had no effect on the BER activities of somatic tissues tested. The Polb heterozygous mouse line was crossed with the lacI transgenic Big Blue mouse line to assess mutant frequency. The spontaneous mutant frequency for mixed spermatogenic cells prepared from Polb heterozygous mice was 2-fold greater than that of wild-type controls, but no significant effect was found among the somatic tissues tested. These results demonstrate that normal POLB abundance is necessary for normal BER activity, which is critical in maintaining a low germline mutant frequency. Notably, spermatogenic cells respond differently than somatic cells to Polb haploinsufficiency.. PMID:18650495

  11. An inducible tool for random mutagenesis in Aspergillus niger based on the transposon Vader.

    PubMed

    Paun, Linda; Nitsche, Benjamin; Homan, Tim; Ram, Arthur F; Kempken, Frank

    2016-07-01

    The ascomycete Aspergillus niger is widely used in the biotechnology, for instance in producing most of the world's citric acid. It is also known as a major food and feed contaminant. While generation of gene knockouts for functional genomics has become feasible in ku70 mutants, analyzing gene functions or metabolic pathways remains a laborious task. An unbiased transposon-based mutagenesis approach may aid this process of analyzing gene functions by providing mutant libraries in a short time. The Vader transposon is a non-autonomous DNA-transposon, which is activated by the homologous tan1-transposase. However, in the most commonly used lab strain of A. niger (N400 strain and derivatives), we found that the transposase, encoded by the tan1 gene, is mutated and inactive. To establish a Vader transposon-based mutagenesis system in the N400 background, we expressed the functional transposase of A. niger strain CBS 513.88 under the control of an inducible promoter based on the Tet-on system, which is activated in the presence of the antibiotic doxycycline (DOX). Increasing amounts of doxycycline lead to higher Vader excision frequencies, whereas little to none activity of Vader was observed without addition of doxycycline. Hence, this system appears to be suitable for producing stable mutants in the A. niger N400 background.

  12. A shuttle mutagenesis system for tagging genes in the yeast Yarrowia lipolytica.

    PubMed

    Neuvéglise, C; Nicauda, J M; Ross-Macdonald, P; Gaillardin, C

    1998-06-15

    A shuttle mutagenesis system was developed for the dimorphic yeast Yarrowia lipolytica. This system combines transposon insertions generated in Escherichia coli with the transformation of yeast with the Tn-mutagenized DNA. The mini-transposon mTn-3xHA/GFP, used in Saccharomyces cerevisiae for producing stable insertions, was adapted for use in the yeast Y. lipolytica. The mTnYl1 transposon (for mini-Tn of Y. lipolytica) confers resistance to tetracycline in E. coli. It also contains the Y. lipolytica URA3 gene for selection of yeast transformants, and the coding sequence for the S65T mutant form of GFP. The rare cutter endonuclease, I-SceI, restriction site, which enables identification of the chromosomal localization of mutagenized genes, was also incorporated. mTnYl1 was first tested on the ACO1 gene, which encodes an Acyl CoA oxidase isozyme. The mutagenesis system was further validated on a Y. lipolytica genomic DNA library constructed in a pHSS6 derivative vector. Mutants with a particular morphology or defective for alkane, fatty acids and oil degradation were obtained.

  13. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage

    PubMed Central

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong

    2017-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563

  14. Control of mammalian cell mutagenesis and differentiation by chemicals which initiate or promote tumor formation

    SciTech Connect

    Jones, C. A.; Huberman, E.

    1980-01-01

    A cell-mediated mutagenesis assay was developed to predict the potential carcinogenic hazard of some environmental chemicals. In this assay, Chinese hamster V79 cells, which are susceptible to mutagenesis, are co-cultivated with cells capable of metabolizing chemical carcinogens. Use of this assay made it possible to demonstrate a relationship between the degree of carcinogenicity and mutagenicity of a series of polycyclic hydrocarbons and nitrosamines and to study the organ specificity exhibited by some chemical carcinogens. However, most short-term in vitro assays are designed to detect mutagenic activity and therefore do not detect tumor promoting agents which are devoid of this activity. By analyzing various markers of terminal differentiation in cultured human melanoma and myeloid leukemia cells, we have established a relationship between the activity of a series of tumor promoting phorbol diesters in the mouse skin and their ability to induce terminal differentiation. We suggest that measuring alterations in the differentiation characteristics of some cultured cells may represent an approach by which environmental tumor promoting agents can be studied and detected.

  15. MouseNet database: digital management of a large-scale mutagenesis project.

    PubMed

    Pargent, W; Heffner, S; Schäble, K F; Soewarto, D; Fuchs, H; Hrabé de Angelis, M

    2000-07-01

    The Munich ENU Mouse Mutagenesis Screen is a large-scale mutant production, phenotyping, and mapping project. It encompasses two animal breeding facilities and a number of screening groups located in the general area of Munich. A central database is required to manage and process the immense amount of data generated by the mutagenesis project. This database, which we named MouseNet(c), runs on a Sybase platform and will finally store and process all data from the entire project. In addition, the system comprises a portfolio of functions needed to support the workflow management of the core facility and the screening groups. MouseNet(c) will make all of the data available to the participating screening groups, and later to the international scientific community. MouseNet(c) will consist of three major software components:* Animal Management System (AMS)* Sample Tracking System (STS)* Result Documentation System (RDS)MouseNet(c) provides the following major advantages:* being accessible from different client platforms via the Internet* being a full-featured multi-user system (including access restriction and data locking mechanisms)* relying on a professional RDBMS (relational database management system) which runs on a UNIX server platform* supplying workflow functions and a variety of plausibility checks.

  16. Involvement of a joker mutation in a polymerase-independent lethal mutagenesis escape mechanism.

    PubMed

    Agudo, Rubén; de la Higuera, Ignacio; Arias, Armando; Grande-Pérez, Ana; Domingo, Esteban

    2016-07-01

    We previously characterized a foot-and-mouth disease virus (FMDV) with three amino acid replacements in its polymerase (3D) that conferred resistance to the mutagenic nucleoside analogue ribavirin. Here we show that passage of this mutant in the presence of high ribavirin concentrations resulted in selection of viruses with the additional replacement I248T in 2C. This 2C substitution alone (even in the absence of replacements in 3D) increased FMDV fitness mainly in the presence of ribavirin, prevented an incorporation bias in favor of A and U associated with ribavirin mutagenesis, and conferred the ATPase activity of 2C decreased sensitivity to ribavirin-triphosphate. Since in previous studies we described that 2C with I248T was selected under different selective pressures, this replacement qualifies as a joker substitution in FMDV evolution. The results have identified a role of 2C in nucleotide incorporation, and have unveiled a new polymerase-independent mechanism of virus escape to lethal mutagenesis.

  17. Mutagenesis breeding of high echinocandin B producing strain and further titer improvement with culture medium optimization.

    PubMed

    Zou, Shu-Ping; Zhong, Wei; Xia, Chao-Jie; Gu, Ya-Nan; Niu, Kun; Zheng, Yu-Guo; Shen, Yin-Chu

    2015-10-01

    A combination of microbial strain improvement and statistical optimization is investigated to maximize echinocandin B (ECB) production from Aspergillus nidulans ZJB-0817. A classical sequential mutagenesis was studied first by using physical (ultraviolet irradiation at 254 nm) and chemical mutagens (lithium chloride and sodium nitrite). Mutant strain ULN-59 exhibited 2.1-fold increase in ECB production to 1583.1 ± 40.9 mg/L when compared with the parent strain (750.8 ± 32.0 mg/L). This is the first report where mutagenesis is applied in Aspergillus to improve ECB production. Further, fractional factorial design and central composite design were adopted to optimize the culture medium for increasing ECB production by the mutant ULN-59. Results indicated that four culture media including peptone, K2HPO4, mannitol and L-ornithine had significant effects on ECB production. The optimized medium provided another 1.4-fold increase in final ECB concentration to 2285.6 ± 35.6 mg/L compared to the original medium. The results of this study indicated the combined application of a classical mutation and medium optimization can improve effectively ECB production from A. nidulans and could be a promising tool to improve other secondary metabolites production by fungal strains.

  18. Transposon-directed base-exchange mutagenesis (TDEM): a novel method for multiple-nucleotide substitutions within a target gene.

    PubMed

    Kim, Yun Cheol; Lee, Hui Sun; Yoon, Sukjoon; Morrison, Sherie L

    2009-06-01

    In this report we describe transposon-directed base-exchange mutagenesis (TDEM), an efficient and controllable method for introducing a mutation into a gene. Each round of TDEM can remove up to 11 base pairs from a randomly selected site within the target gene and replace them with any length of DNA of predetermined sequence. Therefore, the number of bases to be deleted and inserted can be independently regulated providing greater versatility than existing methods of transposon-based mutagenesis. Subsequently, multiple rounds of mutagenesis will provide a diverse mutant library that contains multiple mutations throughout the gene. Additionally, we developed a simple frame-checking procedure that eliminates nonfunctional mutants containing frameshifts or stop codons. As a proof of principle, we used TDEM to generate mutant lacZalpha lacking alpha-complementation activity and recovered active revertants using a second round of TDEM. Furthermore, a single round of TDEM yielded unique, inactive mutants of ccdB.

  19. Use of a simian virus 40-based shuttle vector to analyze enhanced mutagenesis in mitomycin C-treated monkey cells.

    PubMed Central

    Roilides, E; Munson, P J; Levine, A S; Dixon, K

    1988-01-01

    When monkey cells were treated with mitomycin C 24 h before transfection with UV-irradiated pZ189 (a simian virus 40-based shuttle vector), there was a twofold increase in the frequency of mutations in the supF gene of the vector. These results suggest the existence of an enhancible mutagenesis pathway in mammalian cells. However, DNA sequence analysis of the SupF- mutants suggested no dramatic changes in the mechanisms of mutagenesis due to mitomycin C treatment of the cells. PMID:2851732

  20. Use of a simian virus 40-based shuttle vector to analyze enhanced mutagenesis in mitomycin C-treated monkey cells

    SciTech Connect

    Roilides, E.; Munson, P.J.; Levine, A.S.; Dixon, K.

    1988-09-01

    When monkey cells were treated with mitomycin C 24 h before transfection with UV-irradiated pZ189 (a simian virus 40-based shuttle vector), there was a twofold increase in the frequency of mutations in the supF gene of the vector. These results suggest the existence of an enhancible mutagenesis pathway in mammalian cells. However, DNA sequence analysis of the SupF- mutants suggested no dramatic changes in the mechanisms of mutagenesis due to mitomycin C treatment of the cells.

  1. Detection of occupational and environmental exposures by bacterial mutagenesis assays of human body fluids.

    PubMed

    Everson, R B

    1986-08-01

    Assays of human body fluids provide a means to document human exposure to mutagens in the environment. In contrast to measurements of ambient levels, these assays demonstrate absorption of mutagens and provide estimates of minimal systemic doses. For most studies reviewed here, specimens of urine were concentrated by adsorption to columns of XAD-2 resin or by liquid partition extraction prior to the mutagenesis assays. The resulting extracts most commonly were analyzed for mutagenicity using the Salmonella/mammalian microsomal plate assay. Less frequently used assays included bacterial fluctuation tests instead of the plate assay and assays for the induction of sister chromatid exchanges in cultured mammalian cells. In addition to reviewing literature reports where body fluids were tested, the advantages, disadvantages, and potential role of this approach will be briefly discussed and compared with other approaches to the identification of mutagenic hazards in the workplace.

  2. Detection of occupational and environmental exposures by bacterial mutagenesis assays of human body fluids

    SciTech Connect

    Everson, R.B.

    1986-08-01

    Assays of human body fluids provide a means to document human exposure to mutagens in the environment. In contrast to measurements of ambient levels, these assays demonstrate absorption of mutagens and provide estimates of minimal systemic doses. For most studies reviewed here, specimens of urine were concentrated by adsorption to columns of XAD-2 resin or by liquid partition extraction prior to the mutagenesis assays. The resulting extracts most commonly were analyzed for mutagenicity using the Salmonella/mammalian microsomal plate assay. Less frequently used assays included bacterial fluctuation tests instead of the plate assay and assays for the induction of sister chromatid exchanges in cultured mammalian cells. In addition to reviewing literature reports where body fluids were tested, the advantages, disadvantages, and potential role of this approach will be briefly discussed and compared with other approaches to the identification of mutagenic hazards in the workplace.

  3. Comparative mutagenesis of human cells in vitro and in vivo. Progress report and financial statement

    SciTech Connect

    Thilly, W.G.

    1983-01-01

    Our laboratory has undertaken the study of mutagenesis from two perspectives. First, we are devising methods to measure mutation in human beings and to recognize specific patterns of mutation indicative of exposures to particular environmental agents. Second, we are studying the basic question of how chemicals induce mutation and also their potential effects on gene regulation and expression. Specifically we report results which show the applicability of measuring mutation frequencies at small loci in a human lymphoblast cell line in the generation of mutational spectra. Our experiments in the area of gene regulation have revealed that 5-azacytidine can reverse the previously discovered effect of BUdR in inducing pseudomutation at the TK locus. In addition, we have developed an improvement in the performance of human lymphoblast mutation assays by devising means to measure plating efficiency at high cell densities.

  4. Excavating the Genome: Large Scale Mutagenesis Screening for the Discovery of New Mouse Models

    PubMed Central

    Sundberg, John P.; Dadras, Soheil S.; Silva, Kathleen A.; Kennedy, Victoria E.; Murray, Stephen A.; Denegre, James; Schofield, Paul N.; King, Lloyd E.; Wiles, Michael; Pratt, C. Herbert

    2016-01-01

    Technology now exists for rapid screening of mutated laboratory mice to identify phenotypes associated with specific genetic mutations. Large repositories exist for spontaneous mutants and those induced by chemical mutagenesis, many of which have never been studied or comprehensively evaluated. To supplement these resources, a variety of techniques have been consolidated in an international effort to create mutations in all known protein coding genes in the mouse. With targeted embryonic stem cell lines now available for almost all protein coding genes and more recently CRISPR/Cas9 technology, large-scale efforts are underway to create novel mutant mouse strains and to characterize their phenotypes. However, accurate diagnosis of skin, hair, and nail diseases still relies on careful gross and histological analysis. While not automated to the level of the physiological phenotyping, histopathology provides the most direct and accurate diagnosis and correlation with human diseases. As a result of these efforts, many new mouse dermatological disease models are being developed. PMID:26551941

  5. Germ cell comparative Drosophila mutagenesis: sensitivity and mutation pattern in chemically treated stem cells

    SciTech Connect

    Abrahamson, S.; Houtchens, K.; Li Jia, X.; Foureman, P.

    1983-01-01

    Mutagenesis studies on Drosophila oogonial cells with methylnitrosourea, dimethylnitrosamine, and diethylnitrosamine revealed unexpectedly high rates of sex-linked recessive lethals relative to other male and female germ cell stages. Indeed, the oogonial mutation rates with chemicals are higher than with massive x-ray or neutron exposures of oogonia. Analysis of the distribution of lethals per treated female suggests most of the mutations recovered are of independent origin, with very small levels of clustering of identical mutations. In the male stem cell population (spermatogonia) on the other hand, the distribution of lethals is primarily nonrandom and highly clustered. The nature of the mutational endpoint and the different pattern of germ cell development in the two sexes are the probable causes of this difference. The oogonial sensitivity to chemical mutagens may have important bearing on strategies for assessing human hazard.

  6. Arenaviruses and lethal mutagenesis. Prospects for new ribavirin-based interventions.

    PubMed

    Moreno, Héctor; Grande-Pérez, Ana; Domingo, Esteban; Martín, Verónica

    2012-11-06

    Lymphocytic choriomeningitis virus (LCMV) has contributed to unveil some of the molecular mechanisms of lethal mutagenesis, or loss of virus infectivity due to increased mutation rates. Here we review these developments, and provide additional evidence that ribavirin displays a dual mutagenic and inhibitory activity on LCMV that can be relevant to treatment designs. Using 5-fluorouracil as mutagenic agent and ribavirin either as inhibitor or mutagen, we document an advantage of a sequential inhibitor-mutagen administration over the corresponding combination treatment to achieve a low LCMV load in cell culture. This advantage is accentuated in the concentration range in which ribavirin acts mainly as an inhibitor, rather than as mutagen. This observation reinforces previous theoretical and experimental studies in supporting a sequential inhibitor-mutagen administration as a possible antiviral design. Given recent progress in the development of new inhibitors of arenavirus replication, our results suggest new options of ribavirin-based anti-arenavirus treatments.

  7. Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function.

    PubMed Central

    Dalbadie-McFarland, G; Cohen, L W; Riggs, A D; Morin, C; Itakura, K; Richards, J H

    1982-01-01

    We have used oligonucleotide-directed mutagenesis to make a specific change in the beta-lactamase (EC 3.5.2.6) (ampicillin resistance) gene of the plasmid pBR322. Evidence suggests that the active site for this enzyme may include a serine-threonine dyad (residues 70 and 71). By priming in vitro DNA synthesis with a chemically synthesized 16-base oligodeoxyribonucleotide, we have inverted the Ser-Thr dyad to Thr-Ser and thereby generated a mutant with an ampicillin-sensitive phenotype. This "double-mismatch" method is relatively simple and also very general because detection of mutants is at the level of DNA and involves only colony hybridization. Accordingly, the procedure can be applied to any DNA sequence and does not depend on the phenotype of the mutant. Images PMID:6983070

  8. Genetic modification through oligonucleotide-mediated mutagenesis. A GMO regulatory challenge?

    PubMed

    Breyer, Didier; Herman, Philippe; Brandenburger, Annick; Gheysen, Godelieve; Remaut, Erik; Soumillion, Patrice; Van Doorsselaere, Jan; Custers, René; Pauwels, Katia; Sneyers, Myriam; Reheul, Dirk

    2009-01-01

    In the European Union, the definition of a GMO is technology-based. This means that a novel organism will be regulated under the GMO regulatory framework only if it has been developed with the use of defined techniques. This approach is now challenged with the emergence of new techniques. In this paper, we describe regulatory and safety issues associated with the use of oligonucleotide-mediated mutagenesis to develop novel organisms. We present scientific arguments for not having organisms developed through this technique fall within the scope of the EU regulation on GMOs. We conclude that any political decision on this issue should be taken on the basis of a broad reflection at EU level, while avoiding discrepancies at international level.

  9. Identification of catalytically essential residues in Escherichia coli esterase by site-directed mutagenesis.

    PubMed

    Haruki, M; Oohashi, Y; Mizuguchi, S; Matsuo, Y; Morikawa, M; Kanaya, S

    1999-07-09

    Escherichia coli esterase (EcE) is a member of the hormone-sensitive lipase family. We have analyzed the roles of the conserved residues in this enzyme (His103, Glu128, Gly163, Asp164, Ser165, Gly167, Asp262, Asp266 and His292) by site-directed mutagenesis. Among them, Gly163, Asp164, Ser165, and Gly167 are the components of a G-D/E-S-A-G motif. We showed that Ser165, Asp262, and His292 are the active-site residues of the enzyme. We also showed that none of the other residues, except for Asp164, is critical for the enzymatic activity. The mutation of Asp164 to Ala dramatically reduced the catalytic efficiency of the enzyme by the factor of 10(4) without seriously affecting the substrate binding. This residue is probably structurally important to make the conformation of the active-site functional.

  10. [Mutagenesis of the human histamine H1 receptor and design of new antihistamine agents].

    PubMed

    Differding, E; Gillard, M; Moguilevsky, N; Varsalona, F; Noyer, M; Daliers, J; Goldstein, S; Neuwels, M; Lassoie, M A; Guillaume, J P; Bascour, M; Bollen, A; Hénichart, J P

    1996-01-01

    The binding cavity of histamine and histamine antagonists is explored using site directed mutagenesis of the human histamine H1 receptor and the amino acids involved in ligand binding are identified. Whereas Asp107 and Phe199 are important for both agonists and antagonists, two additional amino acids (Asn198 and Trp103) are required for efficient histamine binding. The binding site of antagonists is best defined as resulting from a strong ionic bond to Asp107, an orthogonal interaction between one of the aromatic rings with Phe199, and probably a hydrophobic interaction between the second aromatic ring and the lipophilic amino acids of the upper part of TMIV and TMV. This is consistent with structure-activity data of most described antagonists.

  11. The role of flexibility and molecular shape in the crystallization of proteins by surface mutagenesis

    PubMed Central

    Devedjiev, Yancho D.

    2015-01-01

    Proteins are dynamic systems and interact with their environment. The analysis of crystal contacts in the most accurately determined protein structures (d < 1.5 Å) reveals that in contrast to current views, static disorder and high side-chain entropy are common in the crystal contact area. These observations challenge the validity of the theory that presumes that the occurrence of well ordered patches of side chains at the surface is an essential prerequisite for a successful crystallization event. The present paper provides evidence in support of the approach for understanding protein crystallization as a process dependent on multiple factors, each with its relative contribution, rather than a phenomenon driven by a few dominant physicochemical characteristics. The role of the molecular shape as a factor in the crystallization of proteins by surface mutagenesis is discussed. PMID:25664789

  12. Chromium (VI) potentiates mutagenesis by sodium azide but not ethyl methanesulfonate

    SciTech Connect

    LaVelle, J.M.; Witmer, C.M.

    1984-01-01

    A fluctuation test using Salmonella typhimurium strain 1535 has been used in an experimental protocol to assess biological effects of interactions between chromium (VI), such as K/sub 2/CrO/sub 4/, and two DNA-damaging agents, ethyl methanesulfonate (EMS), and sodium azide. For the combination of K/sub 2/CrO/sub 4/ and NaN/sub 3/, the response was significantly greater than expected suggesting a possible potentiation of mutagenesis. The opposite (a less-than-additive response) was found for the K/sub 2/CrO/sub 4//EMS combination. Both effects were found to be dose related to the concentration of potassium chromate used. Toxicity of the compounds or their combinations to the bacterial could not explain the results.

  13. Systematic analysis of the kalimantacin assembly line NRPS module using an adapted targeted mutagenesis approach.

    PubMed

    Uytterhoeven, Birgit; Appermans, Kenny; Song, Lijiang; Masschelein, Joleen; Lathouwers, Thomas; Michiels, Chris W; Lavigne, Rob

    2016-04-01

    Kalimantacin is an antimicrobial compound with strong antistaphylococcal activity that is produced by a hybrid trans-acyltransferase polyketide synthase/nonribosomal peptide synthetase system in Pseudomonas fluorescens BCCM_ID9359. We here present a systematic analysis of the substrate specificity of the glycine-incorporating adenylation domain from the kalimantacin biosynthetic assembly line by a targeted mutagenesis approach. The specificity-conferring code was adapted for use in Pseudomonas and mutated adenylation domain active site sequences were introduced in the kalimantacin gene cluster, using a newly adapted ligation independent cloning method. Antimicrobial activity screens and LC-MS analyses revealed that the production of the kalimantacin analogues in the mutated strains was abolished. These results support the idea that further insight in the specificity of downstream domains in nonribosomal peptide synthetases and polyketide synthases is required to efficiently engineer these strains in vivo.

  14. The hidden side of unstable DNA repeats: mutagenesis at a distance

    PubMed Central

    Shah, Kartik A.; Mirkin, Sergei M.

    2015-01-01

    Structure-prone DNA repeats are common components of genomic DNA in all kingdoms of life. In humans, these repeats are linked to genomic instabilities that result in various hereditary disorders, including many cancers. It has long been known that DNA repeats are not only highly polymorphic in length but can also cause chromosomal fragility and stimulate gross chromosomal rearrangements, i.e. deletions, duplications, inversions, translocations and more complex shuffles. More recently, it has become clear that inherently unstable DNA repeats dramatically elevate mutation rates in surrounding DNA segments and that these mutations can occur upto ten kilobases away from the repetitive tract, a phenomenon we call repeat-induced mutagenesis (RIM). This review describes experimental data that led to the discovery and characterization of RIM and discusses the molecular mechanisms that could account for this phenomenon. PMID:25956860

  15. Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy.

    PubMed

    Hackett, Perry B; Largaespada, David A; Switzer, Kirsten C; Cooper, Laurence J N

    2013-04-01

    Investigational therapy can be successfully undertaken using viral- and nonviral-mediated ex vivo gene transfer. Indeed, recent clinical trials have established the potential for genetically modified T cells to improve and restore health. Recently, the Sleeping Beauty (SB) transposon/transposase system has been applied in clinical trials to stably insert a chimeric antigen receptor (CAR) to redirect T-cell specificity. We discuss the context in which the SB system can be harnessed for gene therapy and describe the human application of SB-modified CAR(+) T cells. We have focused on theoretical issues relating to insertional mutagenesis in the context of human genomes that are naturally subjected to remobilization of transposons and the experimental evidence over the last decade of employing SB transposons for defining genes that induce cancer. These findings are put into the context of the use of SB transposons in the treatment of human disease.

  16. Site-specific mutagenesis of the calcium-binding photoprotein aequorin

    PubMed Central

    Tsuji, Frederick I.; Inouye, Satoshi; Goto, Toshio; Sakaki, Yoshiyuki

    1986-01-01

    The luminescent protein aequorin from the jellyfish Aequoria victoria emits light by an intramolecular reaction in the presence of a trace amount of Ca2+. In order to understand the mechanism of the reaction, a study of structure-function relationships was undertaken with respect to modifying certain of its amino acid residues. This was done by carrying out oligonucleotide-directed site-specific mutagenesis of apoaequorin cDNA and expressing the mutagenized cDNA in Escherichia coli. Amino acid substitutions were made at the three Ca2+-binding sites, the three cysteines, and a histidine in one of the hydrophobic regions. Subsequent assay of the modified aequorin showed that the Ca2+-binding sites, the cysteines, and probably the histidine all play a role in the bioluminescence reaction of aequorin. PMID:16593774

  17. Mutagenesis as a Tool in Plant Genetics, Functional Genomics, and Breeding

    PubMed Central

    Sikora, Per; Chawade, Aakash; Larsson, Mikael; Olsson, Johanna; Olsson, Olof

    2011-01-01

    Plant mutagenesis is rapidly coming of age in the aftermath of recent developments in high-resolution molecular and biochemical techniques. By combining the high variation of mutagenised populations with novel screening methods, traits that are almost impossible to identify by conventional breeding are now being developed and characterised at the molecular level. This paper provides a comprehensive overview of the various techniques and workflows available to researchers today in the field of molecular breeding, and how these tools complement the ones already used in traditional breeding. Both genetic (Targeting Induced Local Lesions in Genomes; TILLING) and phenotypic screens are evaluated. Finally, different ways of bridging the gap between genotype and phenotype are discussed. PMID:22315587

  18. Spectrum of Bmp5 mutations from germline mutagenesis experiments in mice

    SciTech Connect

    Marker, P.C.; Kwonjune Seung; Bland, A.E.

    1997-02-01

    Over 40 years of mutagenesis experiments using the mouse specific-locus test have produced a large number of induced germline mutations at seven loci, among them the short ear locus. We have previously shown that the short ear locus encodes bone morphogenetic protein 5 (BMP5), a member of a large family of secreted signaling molecules that play key roles in axis formation, tissue differentiation, mesenchymal-epithelial interactions, and skeletal development. Here we examine 24 chemical- and radiation-induced mutations at the short ear locus. Sequence changes in the Bmp5 open reading frame confirm the importance of cysteine residues in the function of TGF{beta} superfamily members. The spectrum of N-ethyl-N-nitrosourea-induced mutations also provides new information about the basepair, sequence context, and strand specificity of germline mutations in mammals. 52 refs., 3 figs., 2 tabs.

  19. Characterisation of the Rab binding properties of Rab coupling protein (RCP) by site-directed mutagenesis.

    PubMed

    Lindsay, Andrew J; McCaffrey, Mary W

    2004-07-30

    Rab coupling protein (RCP) is a member of the Rab11-family of interacting proteins (Rab11-FIPs). Family members are characterised by their ability to interact with Rab11. This property is mediated by a conserved Rab binding domain (RBD) located at their carboxy-termini. Several Rab11-FIPs can also interact with other small GTPases. RCP interacts with Rab4 in addition to Rab11. To dissect out the individual properties of the Rab4 and Rab11 interactions with RCP, conserved amino acids within the RBD of RCP were mutated by site-directed mutagenesis. The effect of these mutations on Rab4 and Rab11 binding, and the intracellular localisation of RCP, was examined. Our results indicate that Rab11, rather than Rab4, mediates the intracellular localisation of RCP, and that the class I Rab11-FIPs compete for binding to Rab11.

  20. Enhancement of astaxanthin production from Haematococcus pluvialis mutants by three-stage mutagenesis breeding.

    PubMed

    Wang, Ni; Guan, Bin; Kong, Qing; Sun, Han; Geng, Zhaoyan; Duan, Liangfei

    2016-10-20

    Haematococcus pluvialis was modified for higher astaxanthin production compatible with the superiorities of high biomass and high activity by three-stage mutagenesis breeding. UV irradiation mutants named UV11-4 made an increase on cell dry weight, but showed a longer growth circle than the wild type. On the basis of UV mutants, ethyl methane sulphonate (EMS) mutants E2-5 cut down the latent phase, brought forward and extended the logarithmic phase. The inhibitor diphenylamine (DPA) was employed to screen high-yield astaxanthin producer by the color change of colonies from green to red on solid medium. Via the contravariant cultivation, proliferation and transformation, the mutant DPA12-2 possessed an 1.7-fold astaxanthin production compared to the wild type, reaching 47.21±3.30mg/g dry cells.

  1. Spectrum of Bmp5 Mutations from Germline Mutagenesis Experiments in Mice

    PubMed Central

    Marker, P. C.; Seung, K.; Bland, A. E.; Russell, L. B.; Kingsley, D. M.

    1997-01-01

    Over 40 years of mutagenesis experiments using the mouse specific-locus test have produced a large number of induced germline mutations at seven loci, among them the short ear locus. We have previously shown that the short ear locus encodes bone morphogenetic protein 5 (BMP5), a member of a large family of secreted signaling molecules that play key roles in axis formation, tissue differentiation, mesenchymal-epithelial interactions, and skeletal development. Here we examine 24 chemical- and radiation-induced mutations at the short ear locus. Sequence changes in the Bmp5 open reading frame confirm the importance of cysteine residues in the function of TGFβ superfamily members. The spectrum of N-ethyl-N-nitrosourea-induced mutations also provides new information about the basepair, sequence context, and strand specificity of germline mutations in mammals. PMID:9071596

  2. Inducible pathway is required for mutagenesis in Salmonella typhimurium LT2

    SciTech Connect

    Orrego, C.; Eisenstadt, E.

    1987-06-01

    UV mutability of Salmonella typhimurium LT2 was eliminated in the presence of a multicopy plasmid carrying the Escherichia coli lexA/sup +/ gene. This result suggests that inducible, SOS-like functions are required for UV mutagenesis in S. typhimurium. S. typhimurium strains carrying either point or deletion mutations in topA had previously been shown to lose their mutability by UV or methyl methanesulfonate. Mitomycin C induction of the Phi(mucB'-lacZ') fusion (a DNA damage-inducible locus carried on plasmid pSE205) in S. typhimurium topA was normal, suggesting that RecA is activated in topA mutants. These observations lead the authors deduce that S. typhimurium has at least one DNA damage-inducible locus in addition to recA that is required for UV mutability.

  3. Cloning of human epidermal growth factor as a bacterial secretory protein, its properties and mutagenesis

    SciTech Connect

    Engler, D.A.; Matsunami, R.K.; Campion, S.R.; Foote, R.S.; Mural, R.J.; Larimer, F.W.; Stevens, A.; Niyogi, S.K.

    1987-05-01

    A chimeric gene, containing the DNA coding for the human epidermal growth factor (EGF) and that for the signal peptide of E. coli alkaline phosphatase, was constructed by the annealing and subsequent ligation of appropriate DNA oligonucleotides synthesized in an automated DNA synthesizer. The gene was then cloned into a bacterial plasmid under the transcriptional control of the E. coli trp-lac (tac) promoter, and then transformed into E. coli. Following induction with isopropylthiogalactoside, the secretion of EGF into the E. coli periplasmic space and some into the growth medium was confirmed by its specific binding to the EGF receptor and stimulation of the EGF receptor tyrosine kinase activity. The size and physicochemical properties of the purified protein mimicked those of authentic human EGF. Studies of structure/function relationships by specific alterations of targeted amino acid residues in the EGF molecule have been initiated by utilizing site-directed mutagenesis.

  4. In vivo mutagenesis reveals that OriL is essential for mitochondrial DNA replication

    PubMed Central

    Wanrooij, Sjoerd; Miralles Fusté, Javier; Stewart, James B; Wanrooij, Paulina H; Samuelsson, Tore; Larsson, Nils-Göran; Gustafsson, Claes M; Falkenberg, Maria

    2012-01-01

    The mechanisms of mitochondrial DNA replication have been hotly debated for a decade. The strand-displacement model states that lagging-strand DNA synthesis is initiated from the origin of light-strand DNA replication (OriL), whereas the strand-coupled model implies that OriL is dispensable. Mammalian mitochondria cannot be transfected and the requirements of OriL in vivo have therefore not been addressed. We here use in vivo saturation mutagenesis to demonstrate that OriL is essential for mtDNA maintenance in the mouse. Biochemical and bioinformatic analyses show that OriL is functionally conserved in vertebrates. Our findings strongly support the strand-displacement model for mtDNA replication. PMID:23090476

  5. Targeted mutagenesis of multiple and paralogous genes in Xenopus laevis using two pairs of transcription activator-like effector nucleases.

    PubMed

    Sakane, Yuto; Sakuma, Tetsushi; Kashiwagi, Keiko; Kashiwagi, Akihiko; Yamamoto, Takashi; Suzuki, Ken-Ichi T

    2014-01-01

    Transcription activator-like effector nucleases (TALENs) have been extensively used in genome editing in various organisms. In some cases, however, it is difficult to efficiently disrupt both paralogous genes using a single pair of TALENs in Xenopus laevis because of its polyploidy. Here, we report targeted mutagenesis of multiple and paralogous genes using two pairs of TALENs in X. laevis. First, we show simultaneous targeted mutagenesis of three genes, tyrosinase paralogues (tyra and tyrb) and enhanced green fluorescent protein (egfp) by injection of two TALENs pairs in transgenic embryos carrying egfp. Consistent with the high frequency of both severe phenotypic traits, albinism and loss of GFP fluorescence, frameshift mutation rates of tyr paralogues and egfp reached 40-80%. Next, we show early introduction of TALEN-mediated mutagenesis of these target loci during embryogenesis. Finally, we also demonstrate that two different pairs of TALENs can simultaneously introduce mutations to both paralogues encoding histone chaperone with high efficiency. Our results suggest that targeted mutagenesis of multiple genes using TALENs can be applied to analyze the functions of paralogous genes with redundancy in X. laevis.

  6. [Measurement of mutagenesis to study the effects of chemical agents]. Final report, August 1, 1993--July 31, 1994

    SciTech Connect

    Puck, T.T.

    1994-12-31

    This is the final report of a study conducted at the Eleanor Roosevelt Institute for Cancer Research, Inc. This study looked at mutagenesis as a measurement of the effects of chemical agents. Topics discussed in this report include: development of a new theory for the role of lipids and lipoproteins in the interactions of macromolecules; the action of caffeine in synergizing mutagenesis of agents like ionizing radiation by inhibition of cellular repair processes which was incorporated into a rapid procedure for detection of mutagenicity with high sensitivity; quantitative theoretical analysis of the mutagenesis process in cells exposed to physical and chemical mutagenic agents; theoretical analysis was developed leading to the conclusion that the visible chromosomal lesions described will also include a significant proportion of point mutations; application of this methodology for meaningful measurement of mutagenesis to study the effects of chemical agents was begun; and investigation of the cell cytoskeleton`s effect of genome exposure operating in the course of the differentiation process.

  7. A combination of site-directed mutagenesis and chemical modification to improve diastereopreference of Pseudomonas alcaligenes lipase.

    PubMed

    Chen, Hui; Wu, Jianping; Yang, Lirong; Xu, Gang

    2013-12-01

    A combination of site-directed mutagenesis and chemical modification was employed to alter protein structure with the objective of improving diastereopreference over that achieved by simple site-directed mutagenesis. Conformational analysis using molecular dynamic (MD) simulation of Pseudomonas alcaligenes lipase (PAL) indicated that stronger steric exclusion and structural rigidity facilitated diastereopreference. A cysteine (Cys) residue was introduced using site-directed mutagenesis to construct variant A272C. The modifier 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) was then reacted with the introduced Cys residue to provide stronger steric exclusion and structural rigidity. The modification was verified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Diastereopreference was improved significantly. The diastereomeric excess (dep) of l-menthol increased from 35% with wild type PAL to 90% with A272C-DTNB modified PAL when the conversion ratio of l-menthyl propionate was nearly 100%. Conformation and kinetic parameter analysis showed that A272C-DTNB modified PAL exhibited stronger steric exclusion and increased structural rigidity around the modification site that inhibited the hydrolysis of non-targeted substrates. The combination of site-directed mutagenesis and chemical modification could be an effective method to alter protein properties and enhance diastereopreference through the combined effect of steric exclusion and structural rigidity.

  8. From Green to Blue: Site-Directed Mutagenesis of the Green Fluorescent Protein to Teach Protein Structure-Function Relationships

    ERIC Educational Resources Information Center

    Giron, Maria D.; Salto, Rafael

    2011-01-01

    Structure-function relationship studies in proteins are essential in modern Cell Biology. Laboratory exercises that allow students to familiarize themselves with basic mutagenesis techniques are essential in all Genetic Engineering courses to teach the relevance of protein structure. We have implemented a laboratory course based on the…

  9. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in the carp industry, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open...

  10. Random T-DNA mutagenesis identifies a Cu-Zn-superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ascomycetous fungus Sclerotinia sclerotiorum is a devastating pathogen capable of infecting more than 400 plant species including many economically important crops. In order to gain a better mechanistic understanding of its non-specific host-pathogen interactions, random mutagenesis through Agro...

  11. Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases.

    PubMed

    Kawai, Narudo; Ochiai, Hiroshi; Sakuma, Tetsushi; Yamada, Lixy; Sawada, Hitoshi; Yamamoto, Takashi; Sasakura, Yasunori

    2012-06-01

    Zinc-finger nucleases (ZFNs) are engineered nucleases that induce DNA double-strand breaks (DSBs) at target sequences. They have been used as tools for generating targeted mutations in the genomes of multiple organisms in both animals and plants. The DSB induced by ZFNs is repaired by non-homologous end joining (NHEJ) or by homologous recombination (HR) mechanisms. Non-homologous end joining induces some errors because it is independent of a reference DNA sequence. Through the NHEJ mechanism, ZFNs generate insertional or deletional mutations at the target sequence. We examined the usability, specificity and toxicity of ZFNs in the basal chordate Ciona intestinalis. As the target of ZFNs, we chose an enhanced green fluorescent protein (EGFP) gene artificially inserted in the C. intestinalis genome because this locus is neutral for the development and growth of C. intestinalis, and the efficiency of mutagenesis with ZFNs can thus be determined without any bias. We introduced EGFP -ZFN mRNAs into the embryos of an EGFP -transgenic line and observed the mutation frequency in the target site of EGFP . We also examined the effects of the EGFP -ZFNs at off-target sites resembling the EGFP target sequence in the C. intestinalis genome in order to examine the specificity of ZFNs. We further investigated the influence of ZFNs on embryogenesis, and showed that adequate amounts of ZFNs, which do not disrupt embryogenesis, can efficiently induce mutations on the on-target site with less effect on the off-target sites. This suggests that target mutagenesis with ZFNs will be a powerful technique in C. intestinalis.

  12. Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases.

    PubMed

    Ansai, Satoshi; Sakuma, Tetsushi; Yamamoto, Takashi; Ariga, Hiroyoshi; Uemura, Norihito; Takahashi, Ryosuke; Kinoshita, Masato

    2013-03-01

    Transcription activator-like effector nucleases (TALENs) have become powerful tools for targeted genome editing. Here we demonstrate efficient targeted mutagenesis in medaka (Oryzias latipes), which serves as an excellent vertebrate model for genetics and genomics. We designed and constructed a pair of TALENs targeting the medaka DJ-1 gene, a homolog of human DJ-1 (PARK7). These TALENs induced a number of insertions and deletions in the injected embryos with extremely high efficiency. This induction of mutations occurred in a dose-dependent manner. All screened G0 fish injected with the TALENs transmitted the TALEN-induced mutations to the next generation with high efficiency (44-100%). We also confirmed that these TALENs induced site-specific mutations because none of the mutations were found at potential off-target sites. In addition, the DJ-1 protein was lost in DJ-1(Δ7/Δ7) fish that carried a TALEN-induced frameshift mutation in both alleles. We also investigated the effect of the N- and C-terminal regions of the transcription activator-like (TAL) effector domain on the gene-disrupting activity of DJ1-TALENs and found that 287 amino acids at the N terminus and 63 amino acids at the C terminus of the TAL domain exhibited the highest disrupting activity in the injected embryos. Our results suggest that TALENs enable us to rapidly and efficiently establish knockout medaka strains. This is the first report of targeted mutagenesis in medaka using TALENs. The TALEN technology will expand the potential of medaka as a model system for genetics and genomics.

  13. Predicting Resistance by Mutagenesis: Lessons from 45 Years of MBC Resistance

    PubMed Central

    Hawkins, Nichola J.; Fraaije, Bart A.

    2016-01-01

    When a new fungicide class is introduced, it is useful to anticipate the resistance risk in advance, attempting to predict both risk level and potential mechanisms. One tool for the prediction of resistance risk is laboratory selection for resistance, with the mutational supply increased through UV or chemical mutagenesis. This enables resistance to emerge more rapidly than in the field, but may produce mutations that would not emerge under field conditions. The methyl benzimidazole carbamates (MBCs) were the first systemic single-site agricultural fungicides, and the first fungicides affected by rapid evolution of target-site resistance. MBC resistance has now been reported in over 90 plant pathogens in the field, and laboratory mutants have been studied in nearly 30 species. The most common field mutations, including β-tubulin E198A/K/G, F200Y and L240F, have all been identified in laboratory mutants. However, of 28 mutations identified in laboratory mutants, only nine have been reported in the field. Therefore, the predictive value of mutagenesis studies would be increased by understanding which mutations are likely to emerge in the field. Our review of the literature indicates that mutations with high resistance factors, and those found in multiple species, are more likely to be reported in the field. However, there are many exceptions, possibly due to fitness penalties. Whether a mutation occurred in the same species appears less relevant, perhaps because β-tubulin is highly conserved so functional constraints are similar across all species. Predictability of mutations in other target sites will depend on the level and conservation of constraints. PMID:27895632

  14. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    PubMed

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.

  15. Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis

    PubMed Central

    Mueller, Konrad E.; Wolf, Katerina

    2016-01-01

    ABSTRACT Although progress in Chlamydia genetics has been rapid, genomic modification has previously been limited to point mutations and group II intron insertions which truncate protein products. The bacterium has thus far been intractable to gene deletion or more-complex genomic integrations such as allelic exchange. Herein, we present a novel suicide vector dependent on inducible expression of a chlamydial gene that renders Chlamydia trachomatis fully genetically tractable and permits rapid reverse genetics by fluorescence-reported allelic exchange mutagenesis (FRAEM). We describe the first available system of targeting chlamydial genes for deletion or allelic exchange as well as curing plasmids from C. trachomatis serovar L2. Furthermore, this approach permits the monitoring of mutagenesis by fluorescence microscopy without disturbing bacterial growth, a significant asset when manipulating obligate intracellular organisms. As proof of principle, trpA was successfully deleted and replaced with a sequence encoding both green fluorescent protein (GFP) and β-lactamase. The trpA-deficient strain was unable to grow in indole-containing medium, and this phenotype was reversed by complementation with trpA expressed in trans. To assess reproducibility at alternate sites, FRAEM was repeated for genes encoding type III secretion effectors CTL0063, CTL0064, and CTL0065. In all four cases, stable mutants were recovered one passage after the observation of transformants, and allelic exchange was limited to the specific target gene, as confirmed by whole-genome sequencing. Deleted sequences were not detected by quantitative real-time PCR (qPCR) from isogenic mutant populations. We demonstrate that utilization of the chlamydial suicide vector with FRAEM renders C. trachomatis highly amenable to versatile and efficient genetic manipulation. PMID:26787828

  16. Site-Directed Mutagenesis to Improve Sensitivity of a Synthetic Two-Component Signaling System

    PubMed Central

    Kuldell, Natalie

    2016-01-01

    Two-component signaling (2CS) systems enable bacterial cells to respond to changes in their local environment, often using a membrane-bound sensor protein and a cytoplasmic responder protein to regulate gene expression. Previous work has shown that Escherichia coli’s natural EnvZ/OmpR 2CS could be modified to construct a light-sensing bacterial photography system. The resulting bacterial photographs, or “coliroids,” rely on a phosphotransfer reaction between Cph8, a synthetic version of EnvZ that senses red light, and OmpR. Gene expression changes can be visualized through upregulation of a LacZ reporter gene by phosphorylated OmpR. Unfortunately, basal LacZ expression leads to a detectable reporter signal even when cells are grown in the light, diminishing the contrast of the coliroids. We performed site-directed mutagenesis near the phosphotransfer site of Cph8 to isolate mutants with potentially improved image contrast. Five mutants were examined, but only one of the mutants, T541S, increased the ratio of dark/light gene expression, as measured by β-galactosidase activity. The ratio changed from 2.57 fold in the starting strain to 5.59 in the T541S mutant. The ratio decreased in the four other mutant strains we examined. The phenotype observed in the T541S mutant strain may arise because the serine sidechain is chemically similar but physically smaller than the threonine sidechain. This may minimally change the protein’s local structure, but may be less sterically constrained when compared to threonine, resulting in a higher probability of a phosphotransfer event. Our initial success pairing synthetic biology and site-directed mutagenesis to optimize the bacterial photography system’s performance encourages us to imagine further improvements to the performance of this and other synthetic systems, especially those based on 2CS signaling. PMID:26799494

  17. Protective effect of basil (Ocimum basilicum L.) against oxidative DNA damage and mutagenesis.

    PubMed

    Berić, Tanja; Nikolić, Biljana; Stanojević, Jasna; Vuković-Gacić, Branka; Knezević-Vukcević, Jelena

    2008-02-01

    Mutagenic and antimutagenic properties of essential oil (EO) of basil and its major constituent Linalool, reported to possess antioxidative properties, were examined in microbial tests. In Salmonella/microsome and Escherichia. coli WP2 reversion assays both derivatives (0.25-2.0 microl/plate) showed no mutagenic effect. Salmonella. typhimurium TA98, TA100 and TA102 strains displayed similar sensitivity to both basil derivatives as non-permeable E. coli WP2 strains IC185 and IC202 oxyR. Moreover, the toxicity of basil derivatives to WP2 strains did not depend on OxyR function. The reduction of t-BOOH-induced mutagenesis by EO and Linalool (30-60%) was obtained in repair proficient strains of the E. coli K12 assay (Nikolić, B., Stanojević, J., Mitić, D., Vuković-Gacić, B., Knezević-Vukcević, J., Simić, D., 2004. Comparative study of the antimutagenic potential of vitamin E in different E. coli strains. Mutat. Res. 564, 31-38), as well as in E. coli WP2 IC202 strain. EO and Linalool reduced spontaneous mutagenesis in mismatch repair deficient E. coli K12 strains (27-44%). In all tests, antimutagenic effect of basil derivatives was comparable with that obtained with model antioxidant vitamin E. Linalool and vitamin E induced DNA strand breaks in Comet assay on S. cerevisiae 3A cells, but at non-genotoxic concentrations (0.075 and 0.025 microg/ml, respectively) they reduced the number of H(2)O(2)-induced comets (45-70% Linalool and 80-93% vitamin E). Obtained results indicate that antigenotoxic potential of basil derivatives could be attributed to their antioxidative properties.

  18. Site-Directed Mutagenesis to Improve Sensitivity of a Synthetic Two-Component Signaling System.

    PubMed

    Olshefsky, Audrey; Shehata, Laila; Kuldell, Natalie

    2016-01-01

    Two-component signaling (2CS) systems enable bacterial cells to respond to changes in their local environment, often using a membrane-bound sensor protein and a cytoplasmic responder protein to regulate gene expression. Previous work has shown that Escherichia coli's natural EnvZ/OmpR 2CS could be modified to construct a light-sensing bacterial photography system. The resulting bacterial photographs, or "coliroids," rely on a phosphotransfer reaction between Cph8, a synthetic version of EnvZ that senses red light, and OmpR. Gene expression changes can be visualized through upregulation of a LacZ reporter gene by phosphorylated OmpR. Unfortunately, basal LacZ expression leads to a detectable reporter signal even when cells are grown in the light, diminishing the contrast of the coliroids. We performed site-directed mutagenesis near the phosphotransfer site of Cph8 to isolate mutants with potentially improved image contrast. Five mutants were examined, but only one of the mutants, T541S, increased the ratio of dark/light gene expression, as measured by β-galactosidase activity. The ratio changed from 2.57 fold in the starting strain to 5.59 in the T541S mutant. The ratio decreased in the four other mutant strains we examined. The phenotype observed in the T541S mutant strain may arise because the serine sidechain is chemically similar but physically smaller than the threonine sidechain. This may minimally change the protein's local structure, but may be less sterically constrained when compared to threonine, resulting in a higher probability of a phosphotransfer event. Our initial success pairing synthetic biology and site-directed mutagenesis to optimize the bacterial photography system's performance encourages us to imagine further improvements to the performance of this and other synthetic systems, especially those based on 2CS signaling.

  19. Transposon insertional mutagenesis in mice identifies human breast cancer susceptibility genes and signatures for stratification

    PubMed Central

    Chen, Liming; Jenjaroenpun, Piroon; Pillai, Andrea Mun Ching; Ivshina, Anna V.; Ow, Ghim Siong; Efthimios, Motakis; Zhiqun, Tang; Lee, Song-Choon; Rogers, Keith; Ward, Jerrold M.; Mori, Seiichi; Adams, David J.; Jenkins, Nancy A.; Copeland, Neal G.; Ban, Kenneth Hon-Kim; Kuznetsov, Vladimir A.; Thiery, Jean Paul

    2017-01-01

    Robust prognostic gene signatures and therapeutic targets are difficult to derive from expression profiling because of the significant heterogeneity within breast cancer (BC) subtypes. Here, we performed forward genetic screening in mice using Sleeping Beauty transposon mutagenesis to identify candidate BC driver genes in an unbiased manner, using a stabilized N-terminal truncated β-catenin gene as a sensitizer. We identified 134 mouse susceptibility genes from 129 common insertion sites within 34 mammary tumors. Of these, 126 genes were orthologous to protein-coding genes in the human genome (hereafter, human BC susceptibility genes, hBCSGs), 70% of which are previously reported cancer-associated genes, and ∼16% are known BC suppressor genes. Network analysis revealed a gene hub consisting of E1A binding protein P300 (EP300), CD44 molecule (CD44), neurofibromin (NF1) and phosphatase and tensin homolog (PTEN), which are linked to a significant number of mutated hBCSGs. From our survival prediction analysis of the expression of human BC genes in 2,333 BC cases, we isolated a six-gene-pair classifier that stratifies BC patients with high confidence into prognostically distinct low-, moderate-, and high-risk subgroups. Furthermore, we proposed prognostic classifiers identifying three basal and three claudin-low tumor subgroups. Intriguingly, our hBCSGs are mostly unrelated to cell cycle/mitosis genes and are distinct from the prognostic signatures currently used for stratifying BC patients. Our findings illustrate the strength and validity of integrating functional mutagenesis screens in mice with human cancer transcriptomic data to identify highly prognostic BC subtyping biomarkers. PMID:28251929

  20. Evaluation of conformational epitopes on thyroid peroxidase by antipeptide antibody binding and mutagenesis

    PubMed Central

    GORA, M; GARDAS, A; WIKTOROWICZ, W; HOBBY, P; WATSON, P F; WEETMAN, A P; SUTTON, B J; BANGA, J P

    2004-01-01

    Autoantibodies to thyroid peroxidase (TPO) recognize predominantly conformational epitopes, which are restricted to two distinct determinants, termed immunodominant domain region (IDR) A and B. These dominant determinants reside in the region with structural homology to myeloperoxidase (MPO)-like domain and may extend into the adjacent complement control protein (CCP) domain. We have explored the location of these determinants on the MPO-like domain of the structural model of TPO, by identifying exposed hydrophilic loops that are potential candidates for the autoantigenic sites, generating rabbit antipeptide antisera, and competing with well characterized murine monoclonal antibodies (mabs) specific for these two IDRs. We recently defined the location of IDR-B, and here report our findings on the location of IDR-A and its relationship to IDR-B, defined with a new panel of 15 antipeptide antisera. Moreover, in combination with single amino acid replacements by in vitro mutagenesis, we have defined the limits of the IDR-B region on the TPO model. The combination of antisera to peptides P12 (aa 549–563), P14 (aa 599–617) and P18 (aa 210–225) inhibited the binding of the mab specific for IDR-A (mab 2) by 75. The same combination inhibited the binding of autoantibodies to native TPO from 67 to 94% (mean 81·5%) at autoantibody levels of 5 IU. Fabs prepared from the antipeptide IgG and pooled in this combination were also effective in competition assays, thus defining the epitopes more precisely. IDR-A was found to lie immediately adjacent to IDR-B and thus the two immunodominant epitopes form an extended patch on the surface of TPO. Finally, by single amino acid mutagenesis, we show that IDR-B extends to residue N642, thus further localizing the boundary of this autoantigenic region on the structural model. PMID:15030525

  1. Transposon insertional mutagenesis in mice identifies human breast cancer susceptibility genes and signatures for stratification.

    PubMed

    Chen, Liming; Jenjaroenpun, Piroon; Pillai, Andrea Mun Ching; Ivshina, Anna V; Ow, Ghim Siong; Efthimios, Motakis; Zhiqun, Tang; Tan, Tuan Zea; Lee, Song-Choon; Rogers, Keith; Ward, Jerrold M; Mori, Seiichi; Adams, David J; Jenkins, Nancy A; Copeland, Neal G; Ban, Kenneth Hon-Kim; Kuznetsov, Vladimir A; Thiery, Jean Paul

    2017-03-14

    Robust prognostic gene signatures and therapeutic targets are difficult to derive from expression profiling because of the significant heterogeneity within breast cancer (BC) subtypes. Here, we performed forward genetic screening in mice using Sleeping Beauty transposon mutagenesis to identify candidate BC driver genes in an unbiased manner, using a stabilized N-terminal truncated β-catenin gene as a sensitizer. We identified 134 mouse susceptibility genes from 129 common insertion sites within 34 mammary tumors. Of these, 126 genes were orthologous to protein-coding genes in the human genome (hereafter, human BC susceptibility genes, hBCSGs), 70% of which are previously reported cancer-associated genes, and ∼16% are known BC suppressor genes. Network analysis revealed a gene hub consisting of E1A binding protein P300 (EP300), CD44 molecule (CD44), neurofibromin (NF1) and phosphatase and tensin homolog (PTEN), which are linked to a significant number of mutated hBCSGs. From our survival prediction analysis of the expression of human BC genes in 2,333 BC cases, we isolated a six-gene-pair classifier that stratifies BC patients with high confidence into prognostically distinct low-, moderate-, and high-risk subgroups. Furthermore, we proposed prognostic classifiers identifying three basal and three claudin-low tumor subgroups. Intriguingly, our hBCSGs are mostly unrelated to cell cycle/mitosis genes and are distinct from the prognostic signatures currently used for stratifying BC patients. Our findings illustrate the strength and validity of integrating functional mutagenesis screens in mice with human cancer transcriptomic data to identify highly prognostic BC subtyping biomarkers.

  2. High Throughput Random Mutagenesis and Single Molecule Real Time Sequencing of the Muscle Nicotinic Acetylcholine Receptor

    PubMed Central

    Groot-Kormelink, Paul J.; Ferrand, Sandrine; Kelley, Nicholas; Bill, Anke; Freuler, Felix; Imbert, Pierre-Eloi; Marelli, Anthony; Gerwin, Nicole; Sivilotti, Lucia G.; Miraglia, Loren; Orth, Anthony P.; Oakeley, Edward J.; Schopfer, Ulrich; Siehler, Sandra

    2016-01-01

    High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype β1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation. PMID:27649498

  3. Gene transfer and mutagenesis mediated by Sleeping Beauty transposon in Nile tilapia (Oreochromis niloticus).

    PubMed

    He, Xiaozhen; Li, Jie; Long, Yong; Song, Guili; Zhou, Peiyong; Liu, Qiuxiang; Zhu, Zuoyan; Cui, Zongbin

    2013-10-01

    The success of gene transfer has been demonstrated in many of vertebrate species, whereas the efficiency of producing transgenic animals remains pretty low due to the random integration of foreign genes into a recipient genome. The Sleeping Beauty (SB) transposon is able to improve the efficiency of gene transfer in zebrafish and mouse, but its activity in tilapia (Oreochromis niloticus) has yet to be characterized. Herein, we demonstrate the potential of using the SB transposon system as an effective tool for gene transfer and insertional mutagenesis in tilapia. A transgenic construct pT2/tiHsp70-SB11 was generated by subcloning the promoter of tilapia heat shock protein 70 (tiHsp70) gene, the SB11 transposase gene and the carp β-actin gene polyadenylation signal into the second generation of SB transposon. Transgenic tilapia was produced by microinjection of this construct with in vitro synthesized capped SB11 mRNA. SB11 transposon was detected in 28.89 % of founders, 12.9 % of F1 and 43.75 % of F2. Analysis of genomic sequences flanking integrated transposons indicates that this transgenic tilapia line carries two copies of SB transposon, which landed into two different endogenous genes. Induced expression of SB11 gene after heat shock was detected using reverse transcription PCR in F2 transgenic individuals. In addition, the Cre/loxP system was introduced to delete the SB11 cassette for stabilization of gene interruption and bio-safety. These findings suggest that the SB transposon system is active and can be used for efficient gene transfer and insertional mutagenesis in tilapia.

  4. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution.

    PubMed

    Acevedo-Rocha, Carlos G; Hoebenreich, Sabrina; Reetz, Manfred T

    2014-01-01

    Iterative saturation mutagenesis (ISM) is a widely applicable and powerful strategy for the efficient directed evolution of enzymes. First, one or more amino acid positions from the chosen enzyme are assigned to multi-residue sites (i.e., groups of amino acids or "multisites"). Then, the residues in each multisite are mutated with a user-defined randomization scheme to all canonical amino acids or a reduced amino acid alphabet. Subsequently, the genes of chosen variants (usually the best but not necessarily) are used as templates for saturation mutagenesis at other multisites, and the process is repeated until the desired degree of biocatalyst improvement has been achieved. Addressing multisites iteratively results in a so-called ISM scheme or tree with various upward branches or pathways. The systematic character of ISM simulates in vitro the natural process of Darwinian evolution: variation (library creation), selection (library screening), and amplification (template chosen for the next round of randomization). However, the main feature of ISM that distinguishes it from other directed evolution methods is the systematic probing of a defined segment of the protein sequence space, as it has been shown that ISM is much more efficient in terms of biocatalyst optimization than random methods such as error-prone PCR. In addition, ISM trees have also shed light on the emergence of epistasis, thereby rationally improving the strategies for evolving better enzymes. ISM was developed to improve catalytic properties such as rate, substrate scope, stereo- and regioselectivity using the Combinatorial Active-site Saturation Test (CAST), as well as chemical and thermal stability employing the B-Factor Iterative Test (B-FIT). However, ISM can also be invoked to manipulate such protein properties as binding affinity among other possibilities, including protein-protein interactions. Herein, we provide general guidelines for ISM, using CAST as the case study in the quest to

  5. Efficient Targeted Mutagenesis in Medaka Using Custom-Designed Transcription Activator-Like Effector Nucleases

    PubMed Central

    Ansai, Satoshi; Sakuma, Tetsushi; Yamamoto, Takashi; Ariga, Hiroyoshi; Uemura, Norihito; Takahashi, Ryosuke; Kinoshita, Masato

    2013-01-01

    Transcription activator-like effector nucleases (TALENs) have become powerful tools for targeted genome editing. Here we demonstrate efficient targeted mutagenesis in medaka (Oryzias latipes), which serves as an excellent vertebrate model for genetics and genomics. We designed and constructed a pair of TALENs targeting the medaka DJ-1 gene, a homolog of human DJ-1 (PARK7). These TALENs induced a number of insertions and deletions in the injected embryos with extremely high efficiency. This induction of mutations occurred in a dose-dependent manner. All screened G0 fish injected with the TALENs transmitted the TALEN-induced mutations to the next generation with high efficiency (44–100%). We also confirmed that these TALENs induced site-specific mutations because none of the mutations were found at potential off-target sites. In addition, the DJ-1 protein was lost in DJ-1Δ7/Δ7 fish that carried a TALEN-induced frameshift mutation in both alleles. We also investigated the effect of the N- and C-terminal regions of the transcription activator-like (TAL) effector domain on the gene-disrupting activity of DJ1-TALENs and found that 287 amino acids at the N terminus and 63 amino acids at the C terminus of the TAL domain exhibited the highest disrupting activity in the injected embryos. Our results suggest that TALENs enable us to rapidly and efficiently establish knockout medaka strains. This is the first report of targeted mutagenesis in medaka using TALENs. The TALEN technology will expand the potential of medaka as a model system for genetics and genomics. PMID:23288935

  6. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    PubMed

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-05

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.

  7. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development

    PubMed Central

    Takeda, Haruna; Rust, Alistair G.; Ward, Jerrold M.; Yew, Christopher Chin Kuan; Jenkins, Nancy A.; Copeland, Neal G.

    2016-01-01

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4+/− mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC. PMID:27006499

  8. Development of Therapeutic Chimeric Uricase by Exon Replacement/Restoration and Site-Directed Mutagenesis.

    PubMed

    Xie, Guangrong; Yang, Weizhen; Chen, Jing; Li, Miaomiao; Jiang, Nan; Zhao, Baixue; Chen, Si; Wang, Min; Chen, Jianhua

    2016-05-20

    The activity of urate oxidase was lost during hominoid evolution, resulting in high susceptibility to hyperuricemia and gout in humans. In order to develop a more "human-like" uricase for therapeutic use, exon replacement/restoration and site-directed mutagenesis were performed to obtain porcine-human uricase with higher homology to deduced human uricase (dHU) and increased uricolytic activity. In an exon replacement study, substitution of exon 6 in wild porcine uricase (wPU) gene with corresponding exon in dhu totally abolished its activity. Substitutions of exon 5, 3, and 1-2 led to 85%, 60%, and 45% loss of activity, respectively. However, replacement of exon 4 and 7-8 did not significantly change the enzyme activity. When exon 5, 6, and 3 in dhu were replaced by their counterparts in wpu, the resulting chimera H1-2P₃H₄P5-6H7-8 was active, but only about 28% of wPU. Multiple sequence alignment and homology modeling predicted that mutations of E24D and E83G in H1-2P₃H₄P5-6H7-8 were favorable for further increase of its activity. After site-directed mutagenesis, H1-2P₃H₄P5-6H7-8 (E24D & E83G) with increased homology (91.45%) with dHU and higher activity and catalytic efficiency than the FDA-approved porcine-baboon chimera (PBC) was obtained. It showed optimum activity at pH 8.5 and 35 °C and was stable in a pH range of 6.5-11.0 and temperature range of 20-40 °C.

  9. Mechanism of 2-aminopurine mutagenesis in mouse T-lymphosarcoma cells.

    PubMed Central

    Caras, I W; MacInnes, M A; Persing, D H; Coffino, P; Martin, D W

    1982-01-01

    We investigated the mechanism of action of 2-aminopurine (Apur) in eucaryotic cells. By analogy with studies in procaryotic systems, the base analog is presumed to incorporate into DNA predominantly opposite T where, upon subsequent DNA replication, it can mispair with C, inducing an A:T leads to G:C transition. This model predicts that Apur-induced mutagenesis will be enhanced by factors that favor formation of Apur-C mispairs, e.g., high levels of dCTP or low levels of TTP. We describe the use of a mutant T-lymphosarcoma cell line, AraC-6-1, which has an abnormally high dCTP pool and a low TTP pool, to test this prediction. AraC-6-1 cells were three- to fivefold more mutable by Apur than their parental cell line, NSU-1. This enhanced mutability by Apur could not be explained by altered incorporation of 3H-labeled Apur, by generally impaired ability to repair DNA damage, or by a direct effect of Apur on the endogenous deoxynucleotide pools. The addition of 10 microM thymidine to the growth medium of AraC-6-1 cells lowered their high dCTP pool (two- to threefold), raised the TTP pool (two- to threefold), and abolished their enhanced mutability by Apur. Further manipulation to produce an abnormally high TTP/dCTP ratio suppressed Apur-induced mutagenesis (8- to 10-fold) in both AraC-6-1 and NSU-1 cells. These observations support the hypothesis that Apur induces A:T leads to G:C transitions in mammalian cells by a mispairing mechanism. PMID:6983647

  10. Transposon Mutagenesis of Mycobacterium marinum Identifies a Locus Linking Pigmentation and Intracellular Survival

    PubMed Central

    Gao, Lian-Yong; Groger, Richard; Cox, Jeffery S.; Beverley, Stephen M.; Lawson, Elise H.; Brown, Eric J.

    2003-01-01

    Pathogenic mycobacteria survive and replicate within host macrophages, but the molecular mechanisms involved in this necessary step in the pathogenesis of infection are not completely understood. Mycobacterium marinum has recently been used as a model for aspects of the pathogenesis of tuberculosis because of its close genetic relationship to Mycobacterium tuberculosis and because of similarities in the pathology and course of infection caused by this organism in its natural hosts, fish and frogs, with tuberculosis in humans. In order to advance the utility of the M. marinum model, we have developed efficient transposon mutagenesis of the organism by using a Drosophila melanogaster mariner-based transposon. To determine the efficiency of transposition, we have analyzed pigmentation mutants from the transposon mutant library. In addition to insertions in four known genes in the pathway of pigment biosynthesis, two insertions in novel genes were identified in our mutant library. One of these is in a putative inhibitor of the carotenoid biosynthesis pathway. The second unexpected insertion is in an intergenic region between two genes homologous to Rv2603c and Rv2604c of M. tuberculosis. In addition to a pigmentation defect, this mutant showed increased susceptibility to singlet oxygen and grew poorly in murine macrophages. Complementation with M. tuberculosis genomic DNA encompassing Rv2603c to Rv2606c corrected the pigmentation and growth defects of the mutant. These data demonstrate the utility of mariner-based transposon mutagenesis of M. marinum and that M. marinum can be used to study the function of M. tuberculosis genes involved in intracellular survival and replication. PMID:12540574

  11. Therapeutic genome mutagenesis using synthetic donor DNA and triplex-forming molecules.

    PubMed

    Reza, Faisal; Glazer, Peter M

    2015-01-01

    Genome mutagenesis can be achieved in a variety of ways, though a select few are suitable for therapeutic settings. Among them, the harnessing of intracellular homologous recombination affords the safety and efficacy profile suitable for such settings. Recombinagenic donor DNA and mutagenic triplex-forming molecules co-opt this natural recombination phenomenon to enable the specific, heritable editing and targeting of the genome. Editing the genome is achieved by designing the sequence-specific recombinagenic donor DNA to have base mismatches, insertions, and deletions that will be incorporated into the genome when it is used as a template for recombination. Targeting the genome is similarly achieved by designing the sequence-specific mutagenic triplex-forming molecules to further recruit the recombination machinery thereby upregulating its activity with the recombinagenic donor DNA. This combination of extracellularly introduced, designed synthetic molecules and intercellularly ubiquitous, evolved natural machinery enables the mutagenesis of chromosomes and engineering of whole genomes with great fidelity while limiting nonspecific interactions. Herein, we demonstrate the harnessing of recombinagenic donor DNA and mutagenic triplex-forming molecular technology for potential therapeutic applications. These demonstrations involve, among others, utilizing this technology to correct genes so that they become physiologically functional, to induce dormant yet functional genes in place of non-functional counterparts, to place induced genes under regulatory elements, and to disrupt genes to abrogate a cellular vulnerability. Ancillary demonstrations of the design and synthesis of this recombinagenic and mutagenic molecular technology as well as their delivery and assayed interaction with duplex DNA reveal a potent technological platform for engineering specific changes into the living genome.

  12. Chemical mutagenesis--a promising technique to increase metal concentration and extraction in sunflowers.

    PubMed

    Nehnevajova, Erika; Herzig, Rolf; Federer, Guido; Erismann, Karl-Hans; Schwitzguébel, Jean-Paul

    2007-01-01

    Since most of the metal-hyperaccumulating wild plants only produce very low biomass and many high-yielding crops accumulate only moderate amounts of metals, the current research is mainly focused on overcoming these limitations and the optimization of metal phytoextraction. The main goal of the present study was the improvement of metal concentration and extraction properties of Helianthus annuus L by chemical mutagenesis (the non-GMO approach). Sunflowers--hybrid cultivar Salut and inbred lines-were treated with the chemical mutagen ethyl methanesulfonate (EMS). The effect of chemical mutagenesis on metal concentration in and extraction by new sunflower M1 and M2 mutants was directly assessed on a metal-contaminated field in Raft, Switzerland. Mutants of the M2 generation showed a 2-3 times higher metal shoot concentration than the control plants. The best M2 sunflower "giant mutant" 14/185/04 showed a significantly enhanced metal extraction ability: 7.5 times for Cd, 9.2 times for Zn, and 8.2 times for Pb in aboveground parts, as compared to the control plants. Theoretical calculations for the phytoextraction potential of new sunflower variants note that the best sunflower mutant can produce up to 26 t dry matter per hectare and remove 13.3 kg Zn per hectare and year at the sewage sludge contaminated site of Raft; that is a gain factor of 9 compared to Zn extraction by sunflower controls. Furthermore, the use of sunflower oil and biomass for technical purposes (lubricants, biodiesel, biogas) should produce an additional value and improve the economical balance of phytoextraction.

  13. Mutagenesis of bacteriophage IKe major coat protein transmembrane domain: role of an interfacial proline residue.

    PubMed

    Williams, K A; Deber, C M

    1993-10-15

    The transmembrane (TM) domain of the 53-residue major coat protein of the M13-related bacteriophage IKe (residues 24-42: LISQTWPVVTTVVVAGVLI) has been subjected to randomized mutagenesis to probe the conformation and stability of the TM domain, as well as the effect of structurally-important residues such as proline. TM mutants were obtained by the Eckstein method of site-directed mutagenesis using the IKe genome as template so as to eliminate the need for subcloning. Over 40 single- and double-site viable mutants of bacteriophage IKe were isolated. Every residue in the TM segment, except the highly conserved Trp29, could be mutated to at least one other residue; polar and charged mutations occurred in the TM segment adjacent to the N-terminal domain (residues 24-28), while non-polar substitutions predominated in the C-terminal portion (residues 30-42). The Pro30 locus tolerated four mutations-Ala, Gly, Cys, and Ser- which represent the four side chains of least volume. Mutant coat proteins obtained directly from the phage in milligram quantities were studied by circular dichroism spectroscopy and SDS-PAGE gels. Wild type IKe coat protein solubilized in sodium deoxycholate micelles was found to occur as an alpha-helical, monomeric species which is stable at 95 degrees C, whereas the mutant Pro30-->Gly undergoes an irreversible conformational transition at ca. 90 degrees C to an aggregated beta-sheet structure. The result that Pro30 stabilizes the TM helix in the micellar membrane suggests a sterically-restricted location for the wild type Pro pyrrolidine side chain in the bulky Trp-Pro-Val triad, where it may be positioned to direct the initiation of the subsequent TM core domain helix.

  14. Improving the chitinolytic activity of Bacillus pumilus SG2 by random mutagenesis.

    PubMed

    Vahed, Majid; Motalebi, Ebrahim; Rigi, Garshasb; Akbari Noghabi, Kambiz; Soudi, Mohammad Reza; Sadeghi, Mehdi; Ahmadian, Gholamreza

    2013-11-28

    Bacillus pumilus SG2, a halotolerant strain, expresses two major chitinases designated ChiS and ChiL that were induced by chitin and secreted into the supernatant. The present work aimed to obtain a mutant with higher chitinolytic activity through mutagenesis of Bacillus pumilus SG2 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on chitin agar and subsequent formation of halos, the mutated strains were examined for degradation of chitin under different conditions. A mutant designated AV2-9 was selected owing to its higher chitinase activity. To search for possible mutations in the whole operon including ChiS and ChiL, the entire chitinase operon, including the intergenic region, promoter, and two areas corresponding to the ChiS and ChiL ORF, was suquenced. Nucleotide sequence analysis of the complete chitinase operon from the SG2 and AV2-9 strains showed the presence of a mutation in the catalytic domain (GH18) of chitinase (ChiL). The results demonstrated that a single base change had occurred in the ChiL sequence in AV2- 9. The wild-type chitinase, ChiL, and the mutant (designated ChiLm) were cloned, expressed, and purified in E. coli. Both enzymes showed similar profiles of activity at different ranges of pH, NaCl concentration, and temperature, but the mutant enzyme showed approximately 30% higher catalytic activity under all the conditions tested. The results obtained in this study showed that the thermal stability of chitinase increased in the mutant strain. Bioinformatics analysis was performed to predict changes in the stability of proteins caused by mutation.

  15. Cloning and rational mutagenesis of kexstatin I, a potent proteinaceous inhibitor of Kex2 proteinase.

    PubMed Central

    Oda, K; Oyama, H; Ito, S; Fukiharu, M; Miyagawa, Y; Takahashi, S; Hirose, M; Kikuchi, N; Nakayama, T; Shibano, Y

    2001-01-01

    Kexstatin I is a potent proteinaceous inhibitor of Kex2 proteinase (EC 3.4.21.61). In the present study we show the molecular cloning, primary structure determination and expression of the gene encoding kexstatin I. We also demonstrate its enhanced activity and specificity for Kex2 proteinase inhibition by rational mutagenesis. The cloned kexstatin I gene encoded a protein of 145 amino acid residues, including the 35-residue signal sequence for secretion. The amino acid sequence showed 52% identity with those of the Streptomyces subtilisin inhibitors (SSIs). Thus kexstatin I is the first SSI-family member that can inhibit Kex2 proteinase. The reactive site of the inhibitor was determined to be -Thr(69)-Lys(70) downward arrowGlu(71)-, where downward arrow indicates the reactive site. Because Kex2 proteinase generally shows the highest affinity for substrates with basic amino acid residues at the P(1) and P(2) sites, conversion of the Thr(69)-Lys(70) segment of the inhibitor into dibasic motifs was expected to result in enhanced inhibitory activities. Thus we constructed kexstatin I mutants, in which the Thr(69)-Lys(70) sequence was replaced by the Thr(69)-Arg(70), Lys(69)-Lys(70) and Lys(69)-Arg(70) sequences using PCR-based mutagenesis, and analysed them kinetically. Among these mutants, the Lys(69)-Arg(70) mutant was the most potent inhibitor. The K(i) for Kex2 proteinase was 3.2x10(-10) M, which was 140-fold lower than that of the inhibitor with the Thr(69)-Lys(70) sequence. Although kexstatin I could also inhibit subtilisin, the enhancement of inhibitory activity upon such mutations was specific for Kex2 proteinase inhibition. PMID:11284720

  16. Low-copy piggyBac transposon mutagenesis in mice identifies genes driving melanoma.

    PubMed

    Ni, Thomas K; Landrette, Sean F; Bjornson, Robert D; Bosenberg, Marcus W; Xu, Tian

    2013-09-17

    Despite considerable efforts to sequence hypermutated cancers such as melanoma, distinguishing cancer-driving genes from thousands of recurrently mutated genes remains a significant challenge. To circumvent the problematic background mutation rates and identify new melanoma driver genes, we carried out a low-copy piggyBac transposon mutagenesis screen in mice. We induced eleven melanomas with mutation burdens that were 100-fold lower relative to human melanomas. Thirty-eight implicated genes, including two known drivers of human melanoma, were classified into three groups based on high, low, or background-level mutation frequencies in human melanomas, and we further explored the functional significance of genes in each group. For two genes overlooked by prevailing discovery methods, we found that loss of membrane associated guanylate kinase, WW and PDZ domain containing 2 and protein tyrosine phosphatase, receptor type, O cooperated with the v-raf murine sarcoma viral oncogene homolog B (BRAF) recurrent V600E mutation to promote cellular transformation. Moreover, for infrequently mutated genes often disregarded by current methods, we discovered recurrent mitogen-activated protein kinase kinase kinase 1 (Map3k1)-activating insertions in our screen, mirroring recurrent MAP3K1 up-regulation in human melanomas. Aberrant expression of Map3k1 enabled growth factor-autonomous proliferation and drove BRAF-independent ERK signaling, thus shedding light on alternative means of activating this prominent signaling pathway in melanoma. In summary, our study contributes several previously undescribed genes involved in melanoma and establishes an important proof-of-principle for the utility of the low-copy transposon mutagenesis approach for identifying cancer-driving genes, especially those masked by hypermutation.

  17. Role of copper and ceruloplasmin in oxidative mutagenesis induced by the gluthathione-{gamma}-glutamyl transpeptidase system and by other thiols

    SciTech Connect

    Stark, A.A.; Glass, G.A.

    1997-10-01

    Glutathione is activated to a mutagen by {gamma}-glutamyl transpeptidase. Other thiols, such as cysteine, penicillamine, cysteine ethylester, and cysteinylglycine, are direct mutagens in the Ames Salmonella mutagenicity test. Thiol mutagenesis is oxidative in nature and involves H{sub 2}O{sub 2} and possibly hydroxyl radicals. Transition metals are crucial for thiol autoxidation. The role of copper and ceruloplasmin (CP) in thiol-dependent mutagenesis was studied in Salmonella typhimurium strain TA 102. Cu and CP at low concentrations enhanced thiol-dependent mutagenesis in the presence, but not in the absence, and added Fe. The degree of enhancement depended on the type of thiol. At high Cu or CP concentrations, thiol mutagenesis was inhibited. Cu also decreased the mutagenicity of H{sub 2}O{sub 2}. Cu- and CP-enhanced mutagenesis were inhibited by radical scavengers, catalase, and peroxidase but not by superoxide dismutase. The effects of Cu and CP on thiol-dependent mutagenesis were similar to their effects on thiol-driven lipid peroxidation. The results indicate that the role of Cu and CP in the enhancement of thiol mutagenesis is the facilitation of the transfer of electrons from a thiol to iron, rather than in catalysis of the Fenton reaction. 34 refs., 7 figs., 2 tabs.

  18. Role of copper and ceruloplasmin in oxidative mutagenesis induced by the glutathione-gamma-glutamyl transpeptidase system and by other thiols.

    PubMed

    Stark, A A; Glass, G A

    1997-01-01

    Glutathione is activated to a mutagen by gamma-glutamyl transpeptidase. Other thiols, such as cysteine, penicillamine, cysteine ethylester, and cysteinylglycine, are direct mutagens in the Ames Salmonella mutagenicity test. Thiol mutagenesis is oxidative in nature and involves H2O2 and possibly hydroxyl radicals. Transition metals are crucial for thiol autoxidation. The role of copper and ceruloplasmin (CP) in thiol-dependent mutagenesis was studied in Salmonella typhimurium strain TA102. Cu and CP at low concentrations enhanced thiol-dependent mutagenesis in the presence, but not in the absence, of added Fe. The degree of enhancement depended on the type of thiol. At high Cu or CP concentrations, thiol mutagenesis was inhibited. Cu also decreased the mutagenicity of H2O2. Cu- and CP-enhanced mutagenesis were inhibited by radical scavengers, catalase, and peroxidase but not by superoxide dismutase. The effects of Cu and CP on thiol-dependent mutagenesis were similar to their effects on thiol-driven lipid peroxidation. The results indicate that the role of Cu and CP in the enhancement of thiol mutagenesis is the facilitation of the transfer of electrons from a thiol to iron, rather than in catalysis of the Fenton reaction.

  19. N-Nitrosocarbaryl-induced mutagenesis in Haemophilus influenzae strains deficient in repair and recombination.

    PubMed

    Beattie, K L

    1975-02-01

    Mutagenesis was studied in repair- and recombination-deficient strains of Haemophilus influenzae after treatment with N-nitrosocarbaryl (NC). Three different strains of H. influenzae carrying mutations affecting excision-repair of UV-induced pyrimidine dimers exhibited normal repair of premutational lesions (as detected by decreased mutation yield resulting from post-treatment DNA synthesis delay) and normal nonreplicative mutation fixation. This indicated that neither of these phenomena are caused by the smae repair mechanism that removes UV-induced pyrimidine dimers from the DNA. The recombination-deficient mutant recI is apparently deficient in the replication-dependent mode of NC-induced mutation fixation. This conclusion is based on the following results: (I) NC-induced mutagenesis is lower in the recI strain than in rec+ cells. (2) Repair of premutational lesions (which depends on the existence of replication-dependent mutation fixation for its detection) was not detected in the recI strain. (3) When nonreplicative mutation fixation and final mutation frequency were measured in the same experiment, about I/4 to I/3 of the final mutation yield could be accounted for by nonreplicative mutation fixation in the rec+ strain, whereas all of the mutation could be accounted for in the recI strain by the nonreplicative mutation fixation. (4) When mutation fixation in strain dna9 recI was followed at the permissive (36 degrees) and nonpermissive (41 degrees) temperatures, it became apparent that in the recI strain replication-dependent mutation fixation occurs at early times, but these newly fixed mutations are unstable and disappear at later times, leaving only the mutations fixed by the nonreplicative process. The recI strain exhibits normal repair of NC-induced single-strand breaks or alkali-labile bonds in the DNA labeled before treatment, but is slow in joining discontinuties present in DNA synthesized after treatment. The results are consistent with the idea that

  20. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production.

    PubMed

    Kumari, Rajni; Pramanik, Krishna

    2012-12-01

    The present work deals with the improvement of multiple stress tolerance in a glucose-xylose co-fermenting hybrid yeast strain RPR39 by sequential mutagenesis using ethyl methane sulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, near and far ultraviolet radiations. The mutants were evaluated for their tolerance to ethanol, temperature and fermentation inhibitors. Among these mutants, mutant RPRT90 exhibited highest tolerance to 10% initial ethanol concentration, 2 g L(-1) furfural and 8 g L(-1) acetic acid. The mutant also showed good growth at high temperature (39-40°C). A study on the combined effect of multiple stresses during fermentation of glucose-xylose mixture (3:1 ratio) was performed using mutant RPRT90. Under the combined effect of thermal (39°C) and inhibitor stress (0.25 g L(-1) vanillin, 0.5 g L(-1) furfural and 4 g L(-1) acetic acid), the mutant produced ethanol with a yield of 0.379 g g(-1), while under combined effect of ethanol (7% v/v) and inhibitor stress the ethanol yield obtained was 0.43 g g(-1). Further, under the synergistic effect of sugar (250 g L(-1)), thermal (39°C), ethanol (7% v/v) and inhibitors stress, the strain produced a maximum of 47.93 g L(-1) ethanol by utilizing 162.42 g L(-1) of glucose-xylose mixture giving an ethanol yield of 0.295 g g(-1) and productivity of 0.57 g L(-1) h(-1). Under same condition the fusant RPR39 produced a maximum of 30.0 g L(-1) ethanol giving a yield and productivity of 0.21 g g(-1) and 0.42 g L(-1) h(-1) respectively. The molecular characterization of mutant showed considerable difference in its genetic profile from hybrid RPR39. Thus, sequential mutagenesis was found to be effective to improve the stress tolerance properties in yeast.

  1. Large-Scale Transposition Mutagenesis of Streptomyces coelicolor Identifies Hundreds of Genes Influencing Antibiotic Biosynthesis.

    PubMed

    Xu, Zhong; Wang, Yemin; Chater, Keith F; Ou, Hong-Yu; Xu, H Howard; Deng, Zixin; Tao, Meifeng

    2017-03-15

    Gram-positive Streptomyces bacteria produce thousands of bioactive secondary metabolites, including antibiotics. To systematically investigate genes affecting secondary metabolism, we developed a hyperactive transposase-based Tn5 transposition system and employed it to mutagenize the model species Streptomyces coelicolor, leading to the identification of 51,443 transposition insertions. These insertions were distributed randomly along the chromosome except for some preferred regions associated with relatively low GC content in the chromosomal core. The base composition of the insertion site and its flanking sequences compiled from the 51,443 insertions implied a 19-bp expanded target site surrounding the insertion site, with a slight nucleic acid base preference in some positions, suggesting a relative randomness of Tn5 transposition targeting in the high-GC Streptomyces genome. From the mutagenesis library, 724 mutants involving 365 genes had altered levels of production of the tripyrrole antibiotic undecylprodigiosin (RED), including 17 genes in the RED biosynthetic gene cluster. Genetic complementation revealed that most of the insertions (more than two-thirds) were responsible for the changed antibiotic production. Genes associated with branched-chain amino acid biosynthesis, DNA metabolism, and protein modification affected RED production, and genes involved in signaling, stress, and transcriptional regulation were overrepresented. Some insertions caused dramatic changes in RED production, identifying future targets for strain improvement.IMPORTANCE High-GC Gram-positive streptomycetes and related actinomycetes have provided more than 100 clinical drugs used as antibiotics, immunosuppressants, and antitumor drugs. Their genomes harbor biosynthetic genes for many more unknown compounds with potential as future drugs. Here we developed a useful genome-wide mutagenesis tool based on the transposon Tn5 for the study of secondary metabolism and its regulation

  2. Random mutagenesis and media optimisation for hyperproduction of cellulase from Bacillus species using proximally analysed Saccharum spontaneum in submerged fermentation.

    PubMed

    Abdullah, Roheena; Zafar, Wajeeha; Nadeem, Muhammad; Iqtedar, Mehwish; Naz, Shagufta; Syed, Quratulain; Butt, Zahid Ali

    2015-01-01

    This study deals with the isolation of novel mutant of Bacillus and optimisation of media for the hyperproduction of cellulase. Cellulase-producing Bacillus PC-BC6 was subjected to physical and chemical mutagenesis to enhance the cellulolytic potential. Later, mutagenesis isolates were screened both qualitatively and quantitatively. Among all the tested isolates, Bacillus N3 yielded maximum (CMCase 1250 IU/mL/min and FPase 629 IU/mL/min) activity. The Bacillus N3 strain exhibited 1.7-fold more enzyme production as compared with the parental strain. Proximate analysis of untreated and pretreated Saccharum spontaneum was carried out to improve cellulase production. Three different media were tested for the production of cellulase, among which M2 medium containing MgSO4, pretreated S. spontaneum, K2HPO4, (NH4)2SO4 and peptone was found to be the best for maximum enzyme production by mutant Bacillus N3.

  3. HTP-OligoDesigner: An Online Primer Design Tool for High-Throughput Gene Cloning and Site-Directed Mutagenesis.

    PubMed

    Camilo, Cesar M; Lima, Gustavo M A; Maluf, Fernando V; Guido, Rafael V C; Polikarpov, Igor

    2016-01-01

    Following burgeoning genomic and transcriptomic sequencing data, biochemical and molecular biology groups worldwide are implementing high-throughput cloning and mutagenesis facilities in order to obtain a large number of soluble proteins for structural and functional characterization. Since manual primer design can be a time-consuming and error-generating step, particularly when working with hundreds of targets, the automation of primer design process becomes highly desirable. HTP-OligoDesigner was created to provide the scientific community with a simple and intuitive online primer design tool for both laboratory-scale and high-throughput projects of sequence-independent gene cloning and site-directed mutagenesis and a Tm calculator for quick queries.

  4. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine.

    PubMed

    Leahy, D J; Erickson, H P; Aukhil, I; Joshi, P; Hendrickson, W A

    1994-05-01

    Crystals of a fragment of human fibronectin encompassing the 7th through the RGD-containing 10th type III repeats (FN7-10) have been produced with protein expressed in E. coli. The crystals are monoclinic with one molecule in the asymmetric unit and diffract to beyond 2.0 A Bragg spacings. A mutant FN7-10 was produced in which three methionines, in addition to the single native methionine already present, have been introduced by site-directed mutagenesis. Diffraction-quality crystals of this mutant protein have been grown in which methionine was replaced with selenomethionine. The introduction of methionine by site-directed mutagenesis to allow phasing from selenomethionyl-substituted crystals is shown to be feasible by this example and is proposed as a general approach to solving the crystallographic phase problem. Strategies for selecting propitious sites for methionine mutations are discussed.

  5. Space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b and screening of higher yielding strains.

    PubMed

    Wang, Junfeng; Liu, Changting; Liu, Jinyi; Fang, Xiangqun; Xu, Chen; Guo, Yinghua; Chang, De; Su, Longxiang

    2014-03-01

    The aim of this study was to investigate the space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b. The genetically engineered bacteria expressing the recombinant interferon α1b were sent into outer space on the Chinese Shenzhou VIII spacecraft. After the 17 day space flight, mutant strains that highly expressed the target gene were identified. After a series of screening of spaceflight-treated bacteria and the quantitative comparison of the mutant strains and original strain, we found five strains that showed a significantly higher production of target proteins, compared with the original strain. Our results support the notion that the outer space environment has unique effects on the mutation breeding of microorganisms, including genetically engineered strains. Mutant strains that highly express the target protein could be obtained through spaceflight-induced mutagenesis.

  6. Mutagenesis breeding for increased 3-deoxyanthocyanidin accumulation in leaves of Sorghum bicolor (L.) Moench: a source of natural food pigment.

    PubMed

    Petti, Carloalberto; Kushwaha, Rekha; Tateno, Mizuki; Harman-Ware, Anne Elizabeth; Crocker, Mark; Awika, Joseph; Debolt, Seth

    2014-02-12

    Natural food colorants with functional properties are of increasing interest. Prior papers indicate the chemical suitability of sorghum leaf 3-deoxyanthocyanidins as natural food colorants. Via mutagenesis-assisted breeding, a sorghum variety that greatly overaccumulates 3-deoxyanthocyanidins of leaf tissue, named REDforGREEN (RG), has been isolated and characterized. Interestingly, RG not only caused increased 3-deoxyanthocyanidins but also caused increased tannins, chlorogenic acid, and total phenolics in the leaf tissue. Chemical composition of pigments was established through high-performance liquid chromatography (HPLC) that identified luteolinidin (LUT) and apigeninidin (APG) as the main 3-deoxyanthocianidin species. Specifically, 3-deoxyanthocianidin levels were 1768 μg g⁻¹ LUT and 421 μg g⁻¹ APG in RG leaves compared with trace amounts in wild type, representing 1000-fold greater levels in the mutant leaves. Thus, RG represents a useful sorghum mutagenesis variant to develop as a functionalized food colorant.

  7. Large-Scale Mutagenesis of the Yeast Genome Using a Tn7-Derived Multipurpose Transposon

    PubMed Central

    Kumar, Anuj; Seringhaus, Michael; Biery, Matthew C.; Sarnovsky, Robert J.; Umansky, Lara; Piccirillo, Stacy; Heidtman, Matthew; Cheung, Kei-Hoi; Dobry, Craig J.; Gerstein, Mark B.; Craig, Nancy L.; Snyder, Michael

    2004-01-01

    We present here an unbiased and extremely versatile insertional library of yeast genomic DNA generated by in vitro mutagenesis with a multipurpose element derived from the bacterial transposon Tn7. This mini-Tn7 element has been engineered such that a single insertion can be used to generate a lacZ fusion, gene disruption, and epitope-tagged gene product. Using this transposon, we generated a plasmid-based library of ∼300,000 mutant alleles; by high-throughput screening in yeast, we identified and sequenced 9032 insertions affecting 2613 genes (45% of the genome). From analysis of 7176 insertions, we found little bias in Tn7 target-site selection in vitro. In contrast, we also sequenced 10,174 Tn3 insertions and found a markedly stronger preference for an AT-rich 5-base pair target sequence. We further screened 1327 insertion alleles in yeast for hypersensitivity to the chemotherapeutic cisplatin. Fifty-one genes were identified, including four functionally uncharacterized genes and 25 genes involved in DNA repair, replication, transcription, and chromatin structure. In total, the collection reported here constitutes the largest plasmid-based set of sequenced yeast mutant alleles to date and, as such, should be singularly useful for gene and genome-wide functional analysis. PMID:15466296

  8. Large-scale mutagenesis of the yeast genome using a Tn7-derived multipurpose transposon.

    PubMed

    Kumar, Anuj; Seringhaus, Michael; Biery, Matthew C; Sarnovsky, Robert J; Umansky, Lara; Piccirillo, Stacy; Heidtman, Matthew; Cheung, Kei-Hoi; Dobry, Craig J; Gerstein, Mark B; Craig, Nancy L; Snyder, Michael

    2004-10-01

    We present here an unbiased and extremely versatile insertional library of yeast genomic DNA generated by in vitro mutagenesis with a multipurpose element derived from the bacterial transposon Tn7. This mini-Tn7 element has been engineered such that a single insertion can be used to generate a lacZ fusion, gene disruption, and epitope-tagged gene product. Using this transposon, we generated a plasmid-based library of approximately 300,000 mutant alleles; by high-throughput screening in yeast, we identified and sequenced 9032 insertions affecting 2613 genes (45% of the genome). From analysis of 7176 insertions, we found little bias in Tn7 target-site selection in vitro. In contrast, we also sequenced 10,174 Tn3 insertions and found a markedly stronger preference for an AT-rich 5-base pair target sequence. We further screened 1327 insertion alleles in yeast for hypersensitivity to the chemotherapeutic cisplatin. Fifty-one genes were identified, including four functionally uncharacterized genes and 25 genes involved in DNA repair, replication, transcription, and chromatin structure. In total, the collection reported here constitutes the largest plasmid-based set of sequenced yeast mutant alleles to date and, as such, should be singularly useful for gene and genome-wide functional analysis.

  9. Towards Understanding the Catalytic Mechanism of Human Paraoxonase 1: Experimental and In Silico Mutagenesis Studies.

    PubMed

    Tripathy, Rajan K; Aggarwal, Geetika; Bajaj, Priyanka; Kathuria, Deepika; Bharatam, Prasad V; Pande, Abhay H

    2017-02-04

    Human paraoxonase 1 (h-PON1) is a ~45-kDa serum enzyme that can hydrolyze a variety of substrates, including organophosphate (OP) compounds. It is a potential candidate for the development of antidote against OP poisoning in humans. However, insufficient OP-hydrolyzing activity of native enzyme affirms the urgent need to develop improved variant(s) having enhanced OP-hydrolyzing activity. The crystal structure of h-PON1 remains unsolved, and the molecular details of how the enzyme catalyses hydrolysis of different types of substrates are also not clear. Understanding the molecular details of the catalytic mechanism of h-PON1 is essential to engineer better variant(s) of enzyme. In this study, we have used a random mutagenesis approach to increase the OP-hydrolyzing activity of recombinant h-PON1. The mutants not only showed a 10-340-fold increased OP-hydrolyzing activity against different OP substrates but also exhibited differential lactonase and arylesterase activities. In order to investigate the mechanistic details of the effect of observed mutations on the hydrolytic activities of enzyme, molecular docking studies were performed with selected mutants. The results suggested that the observed mutations permit differential binding of substrate/inhibitor into the enzyme's active site. This may explain differential hydrolytic activities of the enzyme towards different substrates.

  10. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.

    PubMed

    Liang, Zhen; Zhang, Kang; Chen, Kunling; Gao, Caixia

    2014-02-20

    Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have emerged as powerful tools for genome editing in a variety of species. Here, we report, for the first time, targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. We designed five TALENs targeting 4 genes, namely ZmPDS, ZmIPK1A, ZmIPK, ZmMRP4, and obtained targeting efficiencies of up to 23.1% in protoplasts, and about 13.3% to 39.1% of the transgenic plants were somatic mutations. Also, we constructed two gRNAs targeting the ZmIPK gene in maize protoplasts, at frequencies of 16.4% and 19.1%, respectively. In addition, the CRISPR/Cas system induced targeted mutations in Z. mays protoplasts with efficiencies (13.1%) similar to those obtained with TALENs (9.1%). Our results show that both TALENs and the CRISPR/Cas system can be used for genome modification in maize.

  11. Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility.

    PubMed

    Hendrixson, D R; Akerley, B J; DiRita, V J

    2001-04-01

    Campylobacter jejuni constitutes the leading cause of bacterial gastroenteritis in the United States and a major cause of diarrhoea worldwide. Little is known about virulence mechanisms in this organism because of the scarcity of suitable genetic tools. We have developed an efficient system of in vitro transposon mutagenesis using a mariner-based transposon and purified mariner transposase. Through in vitro transposition of C. jejuni chromosomal DNA followed by natural transformation of the transposed DNA, large random transposon mutant libraries consisting of approximately 16 000 individual mutants were generated. The first genetic screen of C. jejuni using a transposon-generated mutant library identified 28 mutants defective for flagellar motility, one of the few known virulence determinants of this pathogen. We developed a second genetic system, which allows for the construction of defined chromosomal deletions in C. jejuni, and demonstrated the requirement of sigma28 and sigma54 for motility. In addition, we show that sigma28 is involved in the transcription of flaA and that sigma54 is required for transcription of three other flagellar genes, flaB and flgDE. We also identified two previously uncharacterized genes required for motility encoding proteins that we call CetA and CetB, which mediate energy taxis responses. Through our analysis of the Cet proteins, we propose a unique mechanism for sensing energy levels and mediating energy taxis in C. jejuni.

  12. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs).

    PubMed

    Moore, Finola E; Reyon, Deepak; Sander, Jeffry D; Martinez, Sarah A; Blackburn, Jessica S; Khayter, Cyd; Ramirez, Cherie L; Joung, J Keith; Langenau, David M

    2012-01-01

    Zinc Finger Nucleases (ZFNs) made by Context-Dependent Assembly (CoDA) and Transcription Activator-Like Effector Nucleases (TALENs) provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging from 20%-76.8% compared to 1.1%-3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform. TALENs exhibited similar toxicity to CoDA ZFNs, with >50% of injected animals surviving to 3 days of life. Taken together, our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish.

  13. Rational Mutagenesis of Cyclodextrin Glucanotransferase at the Calcium Binding Regions for Enhancement of Thermostability

    PubMed Central

    Goh, Poh Hong; Illias, Rosli Md.; Goh, Kian Mau

    2012-01-01

    Studies related to the engineering of calcium binding sites of CGTase are limited. The calcium binding regions that are known for thermostability function were subjected to site-directed mutagenesis in this study. The starting gene-protein is a variant of CGTase Bacillus sp. G1, reported earlier and denoted as “parent CGTase” herein. Four CGTase variants (S182G, S182E, N132R and N28R) were constructed. The two variants with a mutation at residue 182, located adjacent to the Ca-I site and the active site cleft, possessed an enhanced thermostability characteristic. The activity half-life of variant S182G at 60 °C was increased to 94 min, while the parent CGTase was only 22 min. This improvement may be attributed to the formation of a shorter α-helix and the alleviation of unfavorable steric strains by glycine at the corresponding region. For the variant S182E, an extra ionic interaction at the A/B domain interface increased the half-life to 31 min, yet it reduced CGTase activity. The introduction of an ionic interaction at the Ca-I site via the mutation N132R disrupted CGTase catalytic activity. Conversely, the variant N28R, which has an additional ionic interaction at the Ca-II site, displayed increased cyclization activity. However, thermostability was not affected. PMID:22754298

  14. Comprehensive cysteine-scanning mutagenesis reveals Claudin-2 pore-lining residues with different intrapore locations.

    PubMed

    Li, Jiahua; Zhuo, Min; Pei, Lei; Rajagopal, Madhumitha; Yu, Alan S L

    2014-03-07

    The first extracellular loop (ECL1) of claudins forms paracellular pores in the tight junction that determine ion permselectivity. We aimed to map the pore-lining residues of claudin-2 by comprehensive cysteine-scanning mutagenesis of ECL1. We screened 45 cysteine mutations within the ECL1 by expression in polyclonal Madin-Darby canine kidney II Tet-Off cells and found nine mutants that displayed a significant decrease of conductance after treatment with the thiol-reactive reagent 2-(trimethylammonium)ethyl methanethiosulfonate, indicating the location of candidate pore-lining residues. Next, we stably expressed these candidates in monoclonal Madin-Darby canine kidney I Tet-Off cells and exposed them to thiol-reactive reagents. The maximum degree of inhibition of conductance, size selectivity of degree of inhibition, and size dependence of the kinetics of reaction were used to deduce the location of residues within the pore. Our data support the following sequence of pore-lining residues located from the narrowest to the widest part of the pore: Ser(68), Ser(47), Thr(62)/Ile(66), Thr(56), Thr(32)/Gly(45), and Met(52). The paracellular pore appears to primarily be lined by polar side chains, as expected for a predominantly aqueous environment. Furthermore, our results strongly suggest the existence of a continuous sequence of residues in the ECL1 centered around Asp(65)-Ser(68) that form a major part of the lining of the pore.

  15. Mutagenesis and redox partners analysis of the P450 fatty acid decarboxylase OleTJE

    PubMed Central

    Fang, Bo; Xu, Huifang; Liu, Yi; Qi, Fengxia; Zhang, Wei; Chen, Hui; Wang, Cong; Wang, Yilin; Yang, Wenxia; Li, Shengying

    2017-01-01

    The cytochrome P450 enzyme OleTJE from Jeotgalicoccus sp. ATCC 8456 is capable of converting free long-chain fatty acids into α-alkenes via one-step oxidative decarboxylation in presence of H2O2 as cofactor or using redox partner systems. This enzyme has attracted much attention due to its intriguing but unclear catalytic mechanism and potential application in biofuel production. Here, we investigated the functionality of a select group of residues (Arg245, Cys365, His85, and Ile170) in the active site of OleTJE through extensive mutagenesis analysis. The key roles of these residues for catalytic activity and reaction type selectivity were identified. In addition, a range of heterologous redox partners were found to be able to efficiently support the decarboxylation activity of OleTJE. The best combination turned out to be SeFdx-6 (ferredoxin) from Synechococcus elongatus PCC 7942 and CgFdR-2 (ferredoxin reductase) from Corynebacterium glutamicum ATCC 13032, which gave the highest myristic acid conversion rate of 94.4%. Moreover, Michaelis-Menton kinetic parameters of OleTJE towards myristic acid were determined. PMID:28276499

  16. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    SciTech Connect

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-10-31

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser{sub 108/121}, HB-EGF-Cys/Ser{sub 116/132}, and HB-EGF-Cys/Ser{sub 134/143}) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with M{sub r} of 6.5, 21 and 24 kDa were observed from lysates of HB-EGF and each HB-EGF disulfide analogue. HB-EGF immunohistochemical analyses of each HB-EGF stable cell line demonstrated ubiquitous protein expression except HB-EGF-Cys/Ser{sub 108/121} and HB-EGF-Cys/Ser{sub 116/132} stable cell lines which exhibited accumulated expression immediately outside the nucleus. rHB-EGF, HB-EGF, and HB-EGF{sub 134/143} proteins competed with {sup 125}I-EGF in an A431 competitive binding assay, whereas HB-EGF-Cys/Ser{sub 108/121} and HB-EGF-Cys/Ser{sub 116/132} failed to compete. Each HB-EGF disulfide analogue lacked the ability to stimulate tyrosine phosphorylation of the 170 kDa EGFR. These results suggest that HB-EGF-Cys/Ser{sub 134/143} antagonizes EGFRs.

  17. Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity.

    PubMed

    Wu, Chuanfeng; Dunbar, Cynthia E

    2011-12-01

    Virus-based vectors are widely used in hematopoietic stem cell (HSC) gene therapy, and have the ability to integrate permanently into genomic DNA, thus driving long-term expression of corrective genes in all hematopoietic lineages. To date, HSC gene therapy has been successfully employed in the clinic for improving clinical outcomes in small numbers of patients with X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy (ALD), thalassemia, chronic granulomatous disease (CGD), and Wiskott-Aldrich syndrome (WAS). However, adverse events were observed during some of these HSC gene therapy clinical trials, linked to insertional activation of proto-oncogenes by integrated proviral vectors leading to clonal expansion and eventual development of leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity, with the aim of developing safer vectors and lower-risk gene therapy protocols. This review will summarize current information on the mechanisms of insertional mutagenesis in hematopoietic stem and progenitor cells due to integrating gene transfer vectors, discuss the available assays for predicting genotoxicity and mapping vector integration sites, and introduce newly-developed approaches for minimizing genotoxicity as a way to further move HSC gene therapy forward into broader clinical application.

  18. Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis.

    PubMed

    Markert, Matthew J; Zhang, Ying; Enuameh, Metewo S; Reppert, Steven M; Wolfe, Scot A; Merlin, Christine

    2016-04-07

    The eastern North American monarch butterfly, Danaus plexippus, is an emerging model system to study the neural, molecular, and genetic basis of animal long-distance migration and animal clockwork mechanisms. While genomic studies have provided new insight into migration-associated and circadian clock genes, the general lack of simple and versatile reverse-genetic methods has limited in vivo functional analysis of candidate genes in this species. Here, we report the establishment of highly efficient and heritable gene mutagenesis methods in the monarch butterfly using transcriptional activator-like effector nucleases (TALENs) and CRISPR-associated RNA-guided nuclease Cas9 (CRISPR/Cas9). Using two clock gene loci, cryptochrome 2 and clock (clk), as candidates, we show that both TALENs and CRISPR/Cas9 generate high-frequency nonhomologous end-joining (NHEJ)-mediated mutations at targeted sites (up to 100%), and that injecting fewer than 100 eggs is sufficient to recover mutant progeny and generate monarch knockout lines in about 3 months. Our study also genetically defines monarch CLK as an essential component of the transcriptional activation complex of the circadian clock. The methods presented should not only greatly accelerate functional analyses of many aspects of monarch biology, but are also anticipated to facilitate the development of these tools in other nontraditional insect species as well as the development of homology-directed knock-ins.

  19. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments.

    PubMed

    Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C; Johnson, Jennifer L; Entzminger, Kevin; Jain, Avni; Heaner, David P; Morales, Ivan A; Truskett, Thomas M; Maynard, Jennifer A; Lieberman, Raquel L

    2014-09-01

    Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three-dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although noncomplementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts.

  20. Generation of an Enhancer-Trapping Vector for Insertional Mutagenesis in Zebrafish

    PubMed Central

    Liu, Chunyan; Song, Guili; Mao, Lin; Long, Yong; Li, Qing; Cui, Zongbin

    2015-01-01

    Enhancer trapping (ET) is a powerful approach to establish tissue- or cell-specific reporters and identify expression patterns of uncharacterized genes. Although a number of enhancer-trapping vectors have been developed and a large library of fish lines with distinct tissue- or cell-specific expression of reporter genes have been generated, the specificity and efficiency of trapping vectors need to be improved because of the bias interaction of minimal promoters with genomic enhancers. Accordingly, we generated an enhancer-trapping vector pTME that contains a minimal mouse metallothionein gene (mMTI) promoter upstream of EGFP reporter. In the first round of screening, twelve zebrafish lines that carry a single copy of ET cassettes were characterized to have tissue- or cell-specific EGFP expression. One of the highly conserved noncoding elements near an insertion site of trapping cassettes was characterized as an enhancer that can specifically regulate the expression of EGFP in cells of the central nervous system. In addition, the pTME vector contains a mutation-cassette that is able to effectively block the transcription of an endogenous gene in an ET line with ubiquitous EGFP expression. Thus, the pTME vector can be used as an alternative tool for both enhancer trapping and mutagenesis across a target genome. PMID:26436547

  1. Localized Mutagenesis of Any Specific Small Region of the Bacterial Chromosome

    PubMed Central

    Hong, Jen-Shiang; Ames, Bruce N.

    1971-01-01

    A method, which we call localized mutagenesis, is described for the isolation of temperature-sensitive and other types of mutations in any specific small region (about 1%) of the bacterial chromosome. The principle of this method is to mutate the transducing DNA rather than the bacterial DNA. One can select for the introduction of this mutated DNA into any particular region of the bacterial chromosome by transducing an auxotrophic marker in that region to prototrophy, thereby introducing new mutations in the neighborhood. We have used this method to isolate many different temperature-sensitive mutations in genes of unknown function in particular regions of the chromosome. Since the method is very simple, it can be used to saturate any region of the map with mutations in essential genes, or for various types of genetic manipulations. Although we have used hydroxylamine-mutagenized phage P22 and Salmonella typhimurium, the method should be applicable to other mutagens and bacteria and transducing phage. PMID:4943557

  2. Molecular pathogenesis of feline leukemia virus-induced malignancies: insertional mutagenesis.

    PubMed

    Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime

    2008-05-15

    Feline leukemia virus (FeLV), which is subclassified into three subgroups of A, B and C, is a pathogenic retrovirus in cats. FeLV-A is minimally pathogenic, FeLV-C can cause pure red cell aplasia, and FeLV-B is associated with a variety of pathogenic properties such as lymphoma, leukemia and anemia. FeLV-induced neoplasms are caused, at least in part, by somatically acquired insertional mutagenesis in which the integrated provirus may activate a proto-oncogene or disrupt a tumor suppressor gene. The common integration sites for FeLV have been identified in six loci with feline lymphomas: c-myc, flvi-1, flvi-2 (contains bmi-1), fit-1, pim-1 and flit-1. Oncogenic association of the loci includes that c-myc is known as a proto-oncogene, bmi-1 and pim-1 have been recognized as myc-collaborators, fit-1 appears to be closely linked to myb, and flit-1 insertion is shown to be associated with over-expression of a cellular gene, e.g. ACVRL1. Thus, identification of common integration sites for FeLV is a tenable model to clarify oncogenesis. Recent advances in molecular biology and cytogenetics have developed to rapidly detect numbers of retroviral integration sites by genome-wide large-scale analyses. Especially, polymerase chain reaction (PCR)-based strategies and chromosome analyses with fluorescence in situ hybridization (FISH) will be applicable for studies on FeLV.

  3. An optimized TALEN application for mutagenesis and screening in Drosophila melanogaster

    PubMed Central

    Lee, Han B; Sebo, Zachary L; Peng, Ying; Guo, Yi

    2015-01-01

    Transcription activator-like effector nucleases (TALENs) emerged as powerful tools for locus-specific genome engineering. Due to the ease of TALEN assembly, the key to streamlining TALEN-induced mutagenesis lies in identifying efficient TALEN pairs and optimizing TALEN mRNA injection concentrations to minimize the effort to screen for mutant offspring. Here we present a simple methodology to quantitatively assess bi-allelic TALEN cutting, as well as approaches that permit accurate measures of somatic and germline mutation rates in Drosophila melanogaster. We report that percent lethality from pilot injection of candidate TALEN mRNAs into Lig4 null embryos can be used to effectively gauge bi-allelic TALEN cutting efficiency and occurs in a dose-dependent manner. This timely Lig4-dependent embryonic survival assay also applies to CRISPR/Cas9-mediated targeting. Moreover, the somatic mutation rate of individual G0 flies can be rapidly quantitated using SURVEYOR nuclease and capillary electrophoresis, and germline transmission rate determined by scoring progeny of G0 outcrosses. Together, these optimized methods provide an effective step-wise guide for routine TALEN-mediated gene editing in the fly. PMID:26196022

  4. Synthesis of Recombinant P48 of Mycoplasma agalactiae by Site Directed Mutagenesis and its Immunological Characterization.

    PubMed

    Cheema, Pawanjit Singh; Singh, Satparkash; Kathiresan, S; Kumar, Ramesh; Bhanot, Vandna; Singh, Vijendra Pal

    2017-01-02

    Contagious agalactia caused by Mycoplasma agalactiae is an economically important disease of sheep and goats and has been prevalent worldwide including India. The present study was undertaken to evaluate the membrane protein P48 of M. agalactiae for specific diagnosis of disease. For this, p48 gene of the organism was amplified by PCR and subjected to site directed mutagenesis to convert three TGA codons to TGG's and, subsequently, cloned into prokaryotic expression vector pPRO EX HTb. Purified recombinant P48 protein reacted to anti-P48 serum in western blotting, which confirmed its immunogenic nature. Furthermore, the immune-blotting of the cell lysates from various Indian isolates of M. agalactiae against anti-P48 serum resulted in a single band at ∼ 48 kDa among all isolates, indicating the conserved nature of P48 antigen in M. agalactiae. Also, the cross reactivity of P48 antigen among various Mycoplasma spp. was checked by western blotting which revealed reactivity only with M. agalactiae and M. bovis. Hence, this antigen could be exploited to differentiate M. agalactiae from other pathogenic Mycoplasma species except M. bovis. However, the inability of P48 to distinguish M. agalactiae from M. bovis does not downgrade the significance of P48 as the two species are usually host specific.

  5. Mutagenesis and functional analysis of the pore-forming toxin HALT-1 from Hydra magnipapillata.

    PubMed

    Liew, Yvonne Jing Mei; Soh, Wai Tuck; Jiemy, William Febry; Hwang, Jung Shan

    2015-02-03

    Actinoporins are small 18.5 kDa pore-forming toxins. A family of six actinoporin genes has been identified in the genome of Hydra magnipapillata, and HALT-1 (Hydra actinoporin-like toxin-1) has been shown to have haemolytic activity. In this study, we have used site-directed mutagenesis to investigate the role of amino acids in the pore-forming N-terminal region and the conserved aromatic cluster required for cell membrane binding. A total of 10 mutants of HALT-1 were constructed and tested for their haemolytic and cytolytic activity on human erythrocytes and HeLa cells, respectively. Insertion of 1-4 negatively charged residues in the N-terminal region of HALT-1 strongly reduced haemolytic and cytolytic activity, suggesting that the length or charge of the N-terminal region is critical for pore-forming activity. Moreover, substitution of amino acids in the conserved aromatic cluster reduced haemolytic and cytolytic activity by more than 80%, suggesting that these aromatic amino acids are important for attachment to the lipid membrane as shown for other actinoporins. The results suggest that HALT-1 and other actinoporins share similar mechanisms of pore formation and that it is critical for HALT-1 to maintain an amphipathic helix at the N-terminus and an aromatic amino acid-rich segment at the site of membrane binding.

  6. Functional Analysis by Site-Directed Mutagenesis of the NAD+-Reducing Hydrogenase from Ralstonia eutropha

    PubMed Central

    Burgdorf, Tanja; De Lacey, Antonio L.; Friedrich, Bärbel

    2002-01-01

    The tetrameric cytoplasmic [NiFe] hydrogenase (SH) of Ralstonia eutropha couples the oxidation of hydrogen to the reduction of NAD+ under aerobic conditions. In the catalytic subunit HoxH, all six conserved motifs surrounding the [NiFe] site are present. Five of these motifs were altered by site-directed mutagenesis in order to dissect the molecular mechanism of hydrogen activation. Based on phenotypic characterizations, 27 mutants were grouped into four different classes. Mutants of the major class, class I, failed to grow on hydrogen and were devoid of H2-oxidizing activity. In one of these isolates (HoxH I64A), H2 binding was impaired. Class II mutants revealed a high D2/H+ exchange rate relative to a low H2-oxidizing activity. A representative (HoxH H16L) displayed D2/H+ exchange but had lost electron acceptor-reducing activity. Both activities were equally affected in class III mutants. Mutants forming class IV showed a particularly interesting phenotype. They displayed O2-sensitive growth on hydrogen due to an O2-sensitive SH protein. PMID:12399498

  7. Mutagenesis of NosM Leader Peptide Reveals Important Elements in Nosiheptide Biosynthesis.

    PubMed

    Jin, Liang; Wu, Xuri; Xue, Yanjiu; Jin, Yue; Wang, Shuzhen; Chen, Yijun

    2017-02-15

    Nosiheptide, a typical member of the ribosomally synthesized and posttranslationally modified peptides (RiPPs), exhibits potent activity against multidrug-resistant Gram-positive bacterial pathogens. The precursor peptide of nosiheptide (NosM) is comprised of a leader peptide with 37 amino acids and a core peptide containing 13 amino acids. To pinpoint elements in the leader peptide that are essential for nosiheptide biosynthesis, a collection of mutants with unique sequence features, including N- and C-terminal motifs, peptide length, and specific sites in the leader peptide, was generated by mutagenesis in vivo The effects of various mutants on nosiheptide biosynthesis were evaluated. In addition to the necessity of a conserved motif LEIS box, native length and the N-terminal 12 amino acid residues were indispensable, and single-site substitutions of these 12 amino acid residues resulted in changes ranging from a greater-than-5-fold decrease to a 2-fold increase of nosiheptide production, depending on the sites and substituted residues. Moreover, although the C-terminal motif is not conservative, significant effects of this portion on nosiheptide production were also evident. Taken together, the present results further highlight the importance of the leader peptide in nosiheptide biosynthesis, and provide new insights into the diversity and specificity of leader peptides in the biosynthesis of various RiPPs.

  8. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  9. Hydrogen overproducing nitrogenases obtained by random mutagenesis and high-throughput screening

    PubMed Central

    Barahona, Emma; Jiménez-Vicente, Emilio; Rubio, Luis M.

    2016-01-01

    When produced biologically, especially by photosynthetic organisms, hydrogen gas (H2) is arguably the cleanest fuel available. An important limitation to the discovery or synthesis of better H2-producing enzymes is the absence of methods for the high-throughput screening of H2 production in biological systems. Here, we re-engineered the natural H2 sensing system of Rhodobacter capsulatus to direct the emission of LacZ-dependent fluorescence in response to nitrogenase-produced H2. A lacZ gene was placed under the control of the hupA H2-inducible promoter in a strain lacking the uptake hydrogenase and the nifH nitrogenase gene. This system was then used in combination with fluorescence-activated cell sorting flow cytometry to screen large libraries of nitrogenase Fe protein variants generated by random mutagenesis. Exact correlation between fluorescence emission and H2 production levels was found for all automatically selected strains. One of the selected H2-overproducing Fe protein variants lacked 40% of the wild-type amino acid sequence, a surprising finding for a protein that is highly conserved in nature. We propose that this method has great potential to improve microbial H2 production by allowing powerful approaches such as the directed evolution of nitrogenases and hydrogenases. PMID:27910898

  10. Mutagenesis of mNeptune Red-Shifts Emission Spectrum to 681-685 nm

    PubMed Central

    Li, ZhaoYang; Zhang, ZhiPing; Bi, LiJun; Cui, ZongQiang; Deng, JiaoYu; Wang, DianBing; Zhang, Xian-En

    2016-01-01

    GFP-like fluorescent proteins with diverse emission wavelengths have been developed through mutagenesis, offering many possible choices in cellular and tissue imaging, such as multi-targets imaging, deep tissue imaging that require longer emission wavelength. Here, we utilized a combined approach of random mutation and structure-based rational design to develop new NIR fluorescent proteins on the basis of a far-red fluorescent protein, mNeptune (Ex/Em: 600/650 nm). We created a number of new monomeric NIR fluorescent proteins with the emission range of 681–685 nm, which exhibit the largest Stocks shifts (77–80 nm) compared to other fluorescent proteins. Among them, mNeptune681 and mNeptune684 exhibit more than 30 nm redshift in emission relative to mNeptune, owing to the major role of the extensive hydrogen-bond network around the chromophore and contributions of individual mutations to the observed redshift. Furthermore, the two variants still maintain monomeric state in solution, which is a trait crucial for their use as protein tags. In conclusion, our results suggest that there is untapped potential for developing fluorescent proteins with desired properties. PMID:27119418

  11. Probing RNA recognition by human ADAR2 using a high-throughput mutagenesis method

    PubMed Central

    Wang, Yuru; Beal, Peter A.

    2016-01-01

    Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA. In humans, ADAR1 and ADAR2 catalyze this modification and their malfunction correlates with disease. Recently our laboratory reported crystal structures of the human ADAR2 deaminase domain bound to duplex RNA revealing a protein loop that binds the RNA on the 5′ side of the modification site. This 5′ binding loop appears to be one contributor to substrate specificity differences between ADAR family members. In this study, we endeavored to reveal detailed structure–activity relationships in this loop to advance our understanding of RNA recognition by ADAR2. To achieve this goal, we established a high-throughput mutagenesis approach which allows rapid screening of ADAR variants in single yeast cells and provides quantitative evaluation for enzymatic activity. Using this approach, we determined the importance of specific amino acids at 19 different positions in the ADAR2 5′ binding loop and revealed six residues that provide essential structural elements supporting the fold of the loop and key RNA-binding functional groups. This work provided new insight into RNA recognition by ADAR2 and established a new tool for defining structure–function relationships in ADAR reactions. PMID:27614075

  12. Single chain human interleukin 5 and its asymmetric mutagenesis for mapping receptor binding sites.

    PubMed

    Li, J; Cook, R; Dede, K; Chaiken, I

    1996-01-26

    Wild type human (h) interleukin 5 (wt IL5) is composed of two identical peptide chains linked by disulfide bonds. A gene encoding a single chain form of hIL5 dimer was constructed by linking the two hIL5 chain coding regions with Gly-Gly linker. Expression of this gene in COS cells yielded a single chain IL5 protein (sc IL5) having biological activity similar to that of wt IL5, as judged by stimulation of human cell proliferation. Single chain and wt IL5 also had similar binding affinity for soluble IL5 receptor alpha chain, the specificity subunit of the IL5 receptor, as measured kinetically with an optical biosensor. The design of functionally active sc IL5 molecule. Such mutagenesis was exemplified by changes at residues Glu-13, Arg-91, Glu-110, and Trp-111. The receptor binding and bioactivity data obtained are consistent with a model in which residues from both IL5 monomers interact with the receptor alpha chain, while the interaction likely is asymmetric due to the intrinsic asymmetry of folded receptor. The results demonstrate a general route to the further mapping of receptor and other binding sites on the surface of human IL5.

  13. Modular mutagenesis of human placental ribonuclease inhibitor, a protein with leucine-rich repeats.

    PubMed Central

    Lee, F S; Vallee, B L

    1990-01-01

    Human placental ribonuclease inhibitor (PRI) is a potent protein inhibitor of pancreatic ribonucleases and the homologous blood vessel-inducing protein angiogenin. Although inhibition by PRI occurs with a 1:1 stoichiometry, its primary structure is composed predominantly of seven internal leucine-rich repeats. These internal repeats were systematically deleted either singly or in combination by "modular" mutagenesis. Deletion of repeat units 3 plus 4 or repeat unit 6 results in mutants that both bind to and inhibit ribonuclease A. Therefore, the angiogenin/ribonuclease binding site in PRI must reside primarily or entirely in repeats 1, 2, 5, or 7, the short N- or C-terminal segments, or a combination of these. Deletion of repeat units 3-5, 5-6, or 5 alone results in mutants that exhibit only binding activity. Hence, the binding site cannot reside exclusively in repeat 5. Other internal deletions or N- or C-terminal deletions of 6-86% of the protein all abolish activity. These results suggest that PRI has a modular structure, with one primary structural repeat constituting one module. The approach taken may be applicable to other proteins with repeat structures. Images PMID:2408043

  14. An Assessment of Heavy Ion Irradiation Mutagenesis for Reverse Genetics in Wheat (Triticum aestivum L.)

    PubMed Central

    Fitzgerald, Timothy L.; Powell, Jonathan J.; Stiller, Jiri; Weese, Terri L.; Abe, Tomoko; Zhao, Guangyao; Jia, Jizeng; McIntyre, C. Lynne; Li, Zhongyi; Manners, John M.; Kazan, Kemal

    2015-01-01

    Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed. PMID:25719507

  15. Improvement of ENU Mutagenesis Efficiency Using Serial Injection and Mismatch Repair Deficiency Mice.

    PubMed

    Gallego-Llamas, Jabier; Timms, Andrew E; Pitstick, Rose; Peters, Janet; Carlson, George A; Beier, David R

    2016-01-01

    ENU mutagenesis is a powerful method for generating novel lines of mice that are informative with respect to both fundamental biological processes and human disease. Rapid developments in genomic technology have made the task of identifying causal mutations by positional cloning remarkably efficient. One limitation of this approach remains the mutation frequency achievable using standard treatment protocols, which currently generate approximately 1-2 sequence changes per megabase when optimized. In this study we used two strategies to attempt to increase the number of mutations induced by ENU treatment. One approach employed mice carrying a mutation in the DNA repair enzyme Msh6. The second strategy involved injection of ENU to successive generations of mice. To evaluate the number of ENU-induced mutations, single mice or pooled samples were analyzed using whole exome sequencing. The results showed that there is considerable variability in the induced mutation frequency using these approaches, but an overall increase in ENU-induced variants from one generation to another was observed. The analysis of the mice deficient for Msh6 also showed an increase in the ENU-induced variants compared to the wild-type ENU-treated mice. However, in both cases the increase in ENU-induced mutation frequency was modest.

  16. Mutagenesis and evaluation of cellulase properties and cellulose hydrolysis of Talaromyces piceus.

    PubMed

    He, Ronglin; Cai, Pengli; Wu, Gaihong; Zhang, Can; Zhang, Dongyuan; Chen, Shulin

    2015-11-01

    A fungal species with a high yield of β-glucosidase was isolated and identified as Talaromyces piceus 9-3 (anamorph: Penicillium piceum) by morphological and molecular characterization. Through dimethyl sulphate mutagenesis, the cellulase over-producing strain T. piceus H16 was obtained. The FPase activity and β-glucosidase activity of T. piceus H16 were 5.83 and 53.12 IU ml(-1) respectively--a 5.34- and 4.43-times improvement from the parent strain T. piceus 9-3. The optimum pH and temperature for enzyme activity were pH 5.0 and 50 °C for FPase activity and pH 5.0 and 55 °C for β-glucosidase activity, respectively. The cellulase were quite stable at 37 °C, only losing <10% of their initial activity after 24 h of incubation. Hydrolysis analysis results showed that a highly efficient synergistic effect was achieved by combining cellulase from T. piceus H16 with that from Trichoderma reesei RUT C30 on hydrolyzing different substrates due to the high β-glucosidase activity of T. piceus H16. These data suggest that T. piceus H16 can be used as a potential cellulase producer with good prospects.

  17. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis

    PubMed Central

    Canver, Matthew C.; Smith, Elenoe C.; Sher, Falak; Pinello, Luca; Sanjana, Neville E.; Shalem, Ophir; Chen, Diane D.; Schupp, Patrick G.; Vinjamur, Divya S.; Garcia, Sara P.; Luc, Sidinh; Kurita, Ryo; Nakamura, Yukio; Fujiwara, Yuko; Maeda, Takahiro; Yuan, Guo-Cheng; Feng, Zhang; Orkin, Stuart H.; Bauer, Daniel E.

    2015-01-01

    Summary Enhancers, critical determinants of cellular identity, are commonly identified by correlative chromatin marks and gain-of-function potential, though only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously we identified an erythroid enhancer of BCL11A, subject to common genetic variation associated with fetal hemoglobin (HbF) level, whose mouse ortholog is necessary for erythroid BCL11A expression. Here we develop pooled CRISPR-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for HbF reinduction. The detailed enhancer map will inform therapeutic genome editing. The screening approach described here is generally applicable to functional interrogation of noncoding genomic elements. PMID:26375006

  18. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis.

    PubMed

    Canver, Matthew C; Smith, Elenoe C; Sher, Falak; Pinello, Luca; Sanjana, Neville E; Shalem, Ophir; Chen, Diane D; Schupp, Patrick G; Vinjamur, Divya S; Garcia, Sara P; Luc, Sidinh; Kurita, Ryo; Nakamura, Yukio; Fujiwara, Yuko; Maeda, Takahiro; Yuan, Guo-Cheng; Zhang, Feng; Orkin, Stuart H; Bauer, Daniel E

    2015-11-12

    Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements.

  19. New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis.

    PubMed

    Sabrautzki, Sibylle; Rubio-Aliaga, Isabel; Hans, Wolfgang; Fuchs, Helmut; Rathkolb, Birgit; Calzada-Wack, Julia; Cohrs, Christian M; Klaften, Matthias; Seedorf, Hartwig; Eck, Sebastian; Benet-Pagès, Ana; Favor, Jack; Esposito, Irene; Strom, Tim M; Wolf, Eckhard; Lorenz-Depiereux, Bettina; Hrabě de Angelis, Martin

    2012-08-01

    Metabolic bone disorders arise as primary diseases or may be secondary due to a multitude of organ malfunctions. Animal models are required to understand the molecular mechanisms responsible for the imbalances of bone metabolism in disturbed bone mineralization diseases. Here we present the isolation of mutant mouse models for metabolic bone diseases by phenotyping blood parameters that target bone turnover within the large-scale genome-wide Munich ENU Mutagenesis Project. A screening panel of three clinical parameters, also commonly used as biochemical markers in patients with metabolic bone diseases, was chosen. Total alkaline phosphatase activity and total calcium and inorganic phosphate levels in plasma samples of F1 offspring produced from ENU-mutagenized C3HeB/FeJ male mice were measured. Screening of 9,540 mice led to the identification of 257 phenodeviants of which 190 were tested by genetic confirmation crosses. Seventy-one new dominant mutant lines showing alterations of at least one of the biochemical parameters of interest were confirmed. Fifteen mutations among three genes (Phex, Casr, and Alpl) have been identified by positional-candidate gene approaches and one mutation of the Asgr1 gene, which was identified by next-generation sequencing. All new mutant mouse lines are offered as a resource for the scientific community.

  20. Catalytic improvement and structural analysis of atrazine chlorohydrolase by site-saturation mutagenesis.

    PubMed

    Guo, Yuan; Zhao, Panjie; Zhang, Wenhao; Li, Xiaolong; Chen, Xiwen; Chen, Defu

    2016-07-01

    To improve the catalytic activity of atrazine chlorohydrolase (AtzA), amino acid residues involved in substrate binding (Gln71) and catalytic efficiency (Val12, Ile393, and Leu395) were targeted to generate site-saturation mutagenesis libraries. Seventeen variants were obtained through Haematococcus pluvialis-based screening, and their specific activities were 1.2-5.2-fold higher than that of the wild type. For these variants, Gln71 tended to be substituted by hydrophobic amino acids, Ile393 and Leu395 by polar ones, especially arginine, and Val12 by alanine, respectively. Q71R and Q71M significantly decreased the Km by enlarging the substrate-entry channel and affecting N-ethyl binding. Mutations at sites 393 and 395 significantly increased the kcat/Km, probably by improving the stability of the dual β-sheet domain and the whole enzyme, owing to hydrogen bond formation. In addition, the contradictory relationship between the substrate affinity improvement by Gln71 mutation and the catalytic efficiency improvement by the dual β-sheet domain modification was discussed.

  1. Retrovirus-induced insertional mutagenesis: mechanism of collagen mutation in Mov13 mice.

    PubMed Central

    Barker, D D; Wu, H; Hartung, S; Breindl, M; Jaenisch, R

    1991-01-01

    The Mov13 mouse strain carries a mutation in the alpha 1(I) procollagen gene which is due to the insertion of a Moloney murine leukemia provirus into the first intron. This insertion results in the de novo methylation of the provirus and flanking DNA, the alteration of chromatin structure, and the transcriptional inactivity of the collagen promoter. To address the mechanism of mutagenesis, we reintroduced a cloned and therefore demethylated version of the Mov13 mutant allele into mouse fibroblasts. The transfected gene was not transcribed, indicating that the transcriptional defect was not due to the hypermethylation. Rather, this result strongly suggests that the mutation is due to the displacement or disruption of cis-acting regulatory DNA sequences within the first intron. We also constructed a Mov13 variant allele containing a single long terminal repeat instead of the whole provirus. This construct also failed to express mRNA, indicating that the Mov13 mutation does not revert by provirus excision as has been observed for other retrovirus-induced mutations. Images PMID:1922037

  2. Analysis of chromosomal rearrangements induced by postmeiotic mutagenesis with ethylnitrosourea in zebrafish.

    PubMed Central

    Imai, Y; Feldman, B; Schier, A F; Talbot, W S

    2000-01-01

    Mutations identified in zebrafish genetic screens allow the dissection of a wide array of problems in vertebrate biology. Most screens have examined mutations induced by treatment of spermatogonial (premeiotic) cells with the chemical mutagen N-ethyl-N-nitrosourea (ENU). Treatment of postmeiotic gametes with ENU induces specific-locus mutations at a higher rate than premeiotic regimens, suggesting that postmeiotic mutagenesis protocols could be useful in some screening strategies. Whereas there is extensive evidence that ENU induces point mutations in premeiotic cells, the range of mutations induced in postmeiotic zebrafish germ cells has been less thoroughly characterized. Here we report the identification and analysis of five mutations induced by postmeiotic ENU treatment. One mutation, snh(st1), is a translocation involving linkage group (LG) 11 and LG 14. The other four mutations, oep(st2), kny(st3), Df(LG 13)(st4), and cyc(st5), are deletions, ranging in size from less than 3 cM to greater than 20 cM. These results show that germ cell stage is an important determinant of the type of mutations induced. The induction of chromosomal rearrangements may account for the elevated frequency of specific-locus mutations observed after treatment of postmeiotic gametes with ENU. PMID:10790400

  3. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response

    PubMed Central

    Kumar, Akhilesh; Birnbaum, Michael D; Patel, Devang M; Morgan, William M; Singh, Jayanti; Barrientos, Antoni; Zhang, Fangliang

    2016-01-01

    Arginyltransferase 1 (Ate1) mediates protein arginylation, a poorly understood protein posttranslational modification (PTM) in eukaryotic cells. Previous evidence suggest a potential involvement of arginylation in stress response and this PTM was traditionally considered anti-apoptotic based on the studies of individual substrates. However, here we found that arginylation promotes cell death and/or growth arrest, depending on the nature and intensity of the stressing factor. Specifically, in yeast, mouse and human cells, deletion or downregulation of the ATE1 gene disrupts typical stress responses by bypassing growth arrest and suppressing cell death events in the presence of disease-related stressing factors, including oxidative, heat, and osmotic stresses, as well as the exposure to heavy metals or radiation. Conversely, in wild-type cells responding to stress, there is an increase of cellular Ate1 protein level and arginylation activity. Furthermore, the increase of Ate1 protein directly promotes cell death in a manner dependent on its arginylation activity. Finally, we found Ate1 to be required to suppress mutation frequency in yeast and mammalian cells during DNA-damaging conditions such as ultraviolet irradiation. Our study clarifies the role of Ate1/arginylation in stress response and provides a new mechanism to explain the link between Ate1 and a variety of diseases including cancer. This is also the first example that the modulation of the global level of a PTM is capable of affecting DNA mutagenesis. PMID:27685622

  4. Allosteric Features of KCNQ1 Gating Revealed by Alanine Scanning Mutagenesis

    PubMed Central

    Ma, Li-Juan; Ohmert, Iris; Vardanyan, Vitya

    2011-01-01

    Controlled opening and closing of an ion-selective pathway in response to changes of membrane potential is a fundamental feature of voltage-gated ion channels. In recent decades, various details of this process have been revealed with unprecedented precision based on studies of prototypic potassium channels. Though current scientific efforts are focused more on a thorough description of voltage-sensor movement, much less is known about the similarities and differences of the gating mechanisms among potassium channels. Here, we describe the peculiarities of the KCNQ1 gating process in parallel comparison to Shaker. We applied alanine scanning mutagenesis to the S4-S5 linker and pore region and followed the regularities of gating perturbations in KCNQ1. We found a fractional constitutive conductance for wild-type KCNQ1. This component increased significantly in mutants with considerably leftward-shifted steady-state activation curves. In contrast to Shaker, no correlation between V1/2 and Z parameters was observed for the voltage-dependent fraction of KCNQ1. Our experimental findings are explained by a simple allosteric gating scheme with voltage-driven and voltage-independent transitions. Allosteric features are discussed in the context of extreme gating adaptability of KCNQ1 upon interaction with KCNE β-subunits. PMID:21320432

  5. Increase in UV mutagenesis by heat stress on UV-irradiated E. coli cells.

    PubMed

    Saha, Swati; Basu, Tarakdas

    2012-06-01

    When leu- auxotrophs of Escherichia coli, after UV irradiation, were grown at temperatures between 30 and 47°C, the frequency of UV-induced mutation from leu- to leu+ revertant increased as the UV dose and the temperature increased. For cells exposed to a UV dose of 45 J/m2, the mutation frequency at 47°C was 1.9 times that at 30°C; for a dose of 90 J/m2, it was 3.25 times; and for 135 J/m2, it was 4.8 times. Similar enhancement of reversion frequency was observed when the irradiated cells were grown at 30°C in the presence of a heat shock inducer, ethanol (8% v/v). Heat shock-mediated enhancement of UV mutagenesis did not occur in an E. coli mutant sigma 32 (heat shock regulator protein), but sigma 32 overexpression in the mutant strain (transformed with a sigma 32-bearing plasmid) increased the UV-induced mutation frequency. These results suggest that heat stress alone has no mutagenic property, but when applied to UV-damaged cells, it enhances the UV-induced frequency of cell mutation.

  6. Damage, Repair, and Mutagenesis in Nuclear Genes after Mouse Forebrain Ischemia–Reperfusion

    PubMed Central

    Liu, Philip K.; Hsu, Chung Y.; Dizdaroglu, Miral; Floyd, Robert A.; Kow, Yoke W.; Karakaya, Asuman; Rabow, Lois E.; Cui, Jian-K.

    2009-01-01

    To determine whether oxidative stress after cerebral ischemia–reperfusion affects genetic stability in the brain, we studied mutagenesis after forebrain ischemia–reperfusion in Big Blue transgenic mice (male C57BL/6 strain) containing a reporter lacI gene, which allows detection of mutation frequency. The frequency of mutation in this reporter lacI gene increased from 1.5 to 7.7 (per 100,000) in cortical DNA after 30 min of forebrain ischemia and 8 hr of reperfusion and remained elevated at 24 hr reperfusion. Eight DNA lesions that are characteristic of DNA damage mediated by free radicals were detected. Four mutagenic lesions (2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyadenine, 5-hydroxycytosine, and 8-hydroxyguanine) examined by gas chromatography/mass spectrometry and one corresponding 8-hydroxy-2′-deoxyguanosine by a method of HPLC with electrochemical detection increased in cortical DNA two- to fourfold (p < 0.05) during 10–20 min of reperfusion. The damage to γ-actin and DNA polymerase-β genes was detected within 20 min of reperfusion based on the presence of formamidopyrimidine DNA N-glycosylase-sensitive sites. These genes became resistant to the glycosylase within 4–6 hr of reperfusion, suggesting a reduction in DNA damage and presence of DNA repair in nuclear genes. These results suggest that nuclear genes could be targets of free radicals. PMID:8824320

  7. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity.

  8. Crizotinib-Resistant Mutants of EML4-ALK Identified Through an Accelerated Mutagenesis Screen

    PubMed Central

    Zhang, Sen; Wang, Frank; Keats, Jeffrey; Zhu, Xiaotian; Ning, Yaoyu; Wardwell, Scott D; Moran, Lauren; Mohemmad, Qurish K; Anjum, Rana; Wang, Yihan; Narasimhan, Narayana I; Dalgarno, David; Shakespeare, William C; Miret, Juan J; Clackson, Tim; Rivera, Victor M

    2011-01-01

    Activating gene rearrangements of anaplastic lymphoma kinase (ALK) have been identified as driver mutations in non-small-cell lung cancer, inflammatory myofibroblastic tumors, and other cancers. Crizotinib, a dual MET/ALK inhibitor, has demonstrated promising clinical activity in patients with non-small-cell lung cancer and inflammatory myofibroblastic tumors harboring ALK translocations. Inhibitors of driver kinases often elicit kinase domain mutations that confer resistance, and such mutations have been successfully predicted using in vitro mutagenesis screens. Here, this approach was used to discover an extensive set of ALK mutations that can confer resistance to crizotinib. Mutations at 16 residues were identified, structurally clustered into five regions around the kinase active site, which conferred varying degrees of resistance. The screen successfully predicted the L1196M, C1156Y, and F1174L mutations, recently identified in crizotinib-resistant patients. In separate studies, we demonstrated that crizotinib has relatively modest potency in ALK-positive non-small-cell lung cancer cell lines. A more potent ALK inhibitor, TAE684, maintained substantial activity against mutations that conferred resistance to crizotinib. Our study identifies multiple novel mutations in ALK that may confer clinical resistance to crizotinib, suggests that crizotinib's narrow selectivity window may underlie its susceptibility to such resistance and demonstrates that a more potent ALK inhibitor may be effective at overcoming resistance. PMID:22034911

  9. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments

    PubMed Central

    Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C.; Johnson, Jennifer L.; Entzminger, Kevin; Jain, Avni; Heaner, David P.; Morales, Ivan A.; Truskett, Thomas M.; Maynard, Jennifer A.; Lieberman, Raquel L.

    2014-01-01

    Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although non-complementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts. PMID:24615866

  10. Identification of mutations from phenotype-driven ENU mutagenesis in mouse chromosome 7.

    PubMed

    Culiat, Cymbeline T; Klebig, Mitchell L; Liu, Zhaowei; Monroe, Heidi; Stanford, Beverly; Desai, Jayashree; Tandan, Samvit; Hughes, Lori; Kerley, Marilyn K; Carpenter, Donald A; Johnson, Dabney K; Rinchik, Eugene M; Li, Qingbo

    2005-08-01

    We have used the new high-throughput mutation-scanning technique temperature-gradient capillary electrophoresis (TGCE) for the identification of point mutations induced by N-ethyl-N-nitrosourea (ENU) in the mouse genome. TGCE detects the presence of heteroduplex molecules formed between a wild-type gene segment and the corresponding homologous segment containing an induced mutation or a naturally occurring single nucleotide polymorphism (SNP). Partially denatured heteroduplex molecules are resolved from homoduplexes by virtue of their differential mobilities during capillary electrophoresis conducted in a finely controlled temperature gradient. Simultaneous heteroduplex analysis of 96 amplicons ranging from 150 to 600 bp in size is achieved in approximately 45 min without the need for predetermining the melting profile of each fragment. Initially, we exploited known mouse mutations to develop TGCE protocols for analyzing unpurified PCR samples amplified from crude tail-DNA preparations. TGCE was then applied to the rapid identification of three new ENU-induced mutations recovered from regional mutagenesis screens of a segment of mouse Chromosome 7. Enzyme assays and quantitative reverse transcription-PCR (qRT-PCR) methods validated these new mutations. Our data demonstrate that rapid mutation scanning with TGCE, followed by sequence verification only of detected positives, is an efficient approach to the identification of point mutations in the mouse genome.

  11. Effects of site-specific mutagenesis of tyrosine 105 in a class A beta-lactamase.

    PubMed Central

    Escobar, W A; Miller, J; Fink, A L

    1994-01-01

    Tyr-105 is a conserved residue in the Class A beta-lactamases and is in close proximity to the active-site. Tyr-105 in beta-lactamase from Bacillus licheniformis was converted into Phe by site-directed mutagenesis. This mutation caused no significant effect on the structure of the enzyme and had only small effects on the catalytic properties. In particular, in comparison to the wild-type, kcat. for benzylpenicillin was increased slightly, whereas it was decreased slightly for several other substrates. For each substrate examined, Km increased 3-4-fold in the mutant compared with the wild-type enzyme. Examination of the effect of pH on the catalytic reaction revealed only small perturbations in the pK values for the acidic and basic limbs of the kcat./Km pH profiles due to the mutation. Overall effects of the Y105F substitution on the catalytic efficiency for different penicillin and cephalosporin substrates ranged from 14% to 56% compared with the wild-type activity. We conclude that Tyr-105 is not an essential residue for beta-lactamase catalysis, but does contribute to substrate binding. PMID:7980417

  12. Dopamine D1 receptor-agonist interactions: A mutagenesis and homology modeling study.

    PubMed

    Mente, Scot; Guilmette, Edward; Salafia, Michelle; Gray, David

    2015-01-01

    The dopamine D1 receptor is a G protein-coupled receptor that regulates intracellular signaling via agonist activation. Although the number of solved GPCR X-ray structures has been steadily increasing, still no structure of the D1 receptor exists. We have used site-directed mutagenesis of 12 orthosteric vicinity residues of possible importance to G protein-coupled activation to examine the function of prototypical orthosteric D1 agonists and partial agonists. We find that residues from four different regions of the D1 receptor make significant contributions to agonist function. All compounds studied, which are catechol-amines, are found to interact with the previously identified residues: the conserved D103(3.32), as well as the trans-membrane V serine residues. Additional key interactions are found for trans-membrane VI residues F288(6.51), F289(6.52) and N292(6.55), as well as the extra-cellular loop residue L190(ECL2). Molecular dynamics simulations of a D1 homology model have been used to help put the ligand-residue interactions into context. Finally, we considered the rescaling of fold-shift data as a method to account for the change in the size of the mutated side-chain and found that this rescaling helps to relate the calculated ligand-residue energies with observed experimental fold-shifts.

  13. Site Directed Mutagenesis of Schizosaccharomyces pombe Glutathione Synthetase Produces an Enzyme with Homoglutathione Synthetase Activity

    PubMed Central

    Dworeck, Tamara; Zimmermann, Martin

    2012-01-01

    Three different His-tagged, mutant forms of the fission yeast glutathione synthetase (GSH2) were derived by site-directed mutagenesis. The mutant and wild-type enzymes were expressed in E. coli DH5α and affinity purified in a two-step procedure. Analysis of enzyme activity showed that it was possible to shift the substrate specificity of GSH2 from Gly (km 0,19; wild-type) to β-Ala or Ser. One mutation (substitution of Ile471, Cy472 to Met and Val and Ala 485 and Thr486 to Leu and Pro) increased the affinity of GSH2 for β-Ala (km 0,07) and lowered the affinity for Gly (km 0,83), which is a characteristic of the enzyme homoglutathione synthetase found in plants. Substitution of Ala485 and Thr486 to Leu and Pro only, increased instead the affinity of GSH2 for Ser (km 0,23) as a substrate, while affinity to Gly was preserved (km 0,12). This provides a new biosynthetic pathway for hydroxymethyl glutathione, which is known to be synthesized from glutathione and Ser in a reaction catalysed by carboxypeptidase Y. The reported findings provide further insight into how specific amino acids positioned in the GSH2 active site facilitate the recognition of different amino acid substrates, furthermore they support the evolutionary theory that homoglutathione synthetase evolved from glutathione synthetase by a single gene duplication event. PMID:23091597

  14. Identification of functional regions on the I-Ab molecule by site-directed mutagenesis.

    PubMed Central

    Cohn, L E; Glimcher, L H; Waldmann, R A; Smith, J A; Ben-Nun, A; Seidman, J G; Choi, E

    1986-01-01

    Functional analysis of mutant class II major histocompatibility complex molecules has begun to identify regions important for antibody binding and for T-cell activation. By using in vitro mutagenesis directed at the beta 1 domain of the Ab beta gene we have constructed three structurally distinct mutant Ab beta genes. Each of these genes, as well as the wild-type Ab beta gene, was cotransfected together with the wild-type Ab alpha gene into the Ia-negative B-lymphoma cell line M12.C3. Transfection resulted in the successful synthesis and cell surface expression of three mutant class II antigens that showed serological and functional alterations as compared to the I-Ab antigens from the M12.C3 cell transfected with the wild-type gene. The variable patterns of both I-Ab-specific monoclonal antibody binding and activation of I-Ab-specific T-cell hybridomas show that the mutations result in the loss of structural epitopes required for both monoclonal antibody binding and for T-cell recognition. The data suggest that there are multiple sites on a single Ia molecule that are recognized by T helper cells and also that the tertiary conformation of the Ia molecule can be critical in the formation of such sites. PMID:2418441

  15. Ligand Promiscuity of Aryl Hydrocarbon Receptor Agonists and Antagonists Revealed by Site-Directed Mutagenesis

    PubMed Central

    Soshilov, Anatoly A.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse chemicals. To examine the mechanisms responsible for the promiscuity in AhR ligand binding, we determined the effects of mutations within the AhR ligand-binding domain (LBD) on the activity of diverse AhR ligands. Site-directed mutagenesis identified Ile319 of the mouse AhR and, to a lesser extent, Phe318 as residues involved in ligand-selective modulation of AhR transformation using a panel of 12 AhR ligands. These ligands could be categorized into four distinct structurally related groups based on their ability to activate AhR mutants at position 319 in vitro. The mutation I319K was selectively activated by FICZ and not by other examined ligands in vitro and in cell culture. F318L and F318A mutations resulted in the conversion of AhR agonists β-naphthoflavone and 3-methylcholanthrene, respectively, into partial agonists/antagonists. Hsp90 binding to the AhR was decreased with several mutations and was inversely correlated with AhR ligand-binding promiscuity. Together, these data define overlapping amino acid residues within the AhR LBD involved in the selectivity of ligand binding, the agonist or antagonist mode of ligand binding, and hsp90 binding and provide insights into the ligand diversity of AhR activators. PMID:24591650

  16. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana.

    PubMed Central

    McElver, J; Tzafrir, I; Aux, G; Rogers, R; Ashby, C; Smith, K; Thomas, C; Schetter, A; Zhou, Q; Cushman, M A; Tossberg, J; Nickle, T; Levin, J Z; Law, M; Meinke, D; Patton, D

    2001-01-01

    The purpose of this project was to identify large numbers of Arabidopsis genes with essential functions during seed development. More than 120,000 T-DNA insertion lines were generated following Agrobacterium-mediated transformation. Transgenic plants were screened for defective seeds and putative mutants were subjected to detailed analysis in subsequent generations. Plasmid rescue and TAIL-PCR were used to recover plant sequences flanking insertion sites in tagged mutants. More than 4200 mutants with a wide range of seed phenotypes were identified. Over 1700 of these mutants were analyzed in detail. The 350 tagged embryo-defective (emb) mutants identified to date represent a significant advance toward saturation mutagenesis of EMB genes in Arabidopsis. Plant sequences adjacent to T-DNA borders in mutants with confirmed insertion sites were used to map genome locations and establish tentative identities for 167 EMB genes with diverse biological functions. The frequency of duplicate mutant alleles recovered is consistent with a relatively small number of essential (EMB) genes with nonredundant functions during seed development. Other functions critical to seed development in Arabidopsis may be protected from deleterious mutations by extensive genome duplications. PMID:11779812

  17. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    PubMed

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-10-08

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p < 0.05). Some eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.

  18. Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis

    PubMed Central

    Markert, Matthew J.; Zhang, Ying; Enuameh, Metewo S.; Reppert, Steven M.; Wolfe, Scot A.; Merlin, Christine

    2016-01-01

    The eastern North American monarch butterfly, Danaus plexippus, is an emerging model system to study the neural, molecular, and genetic basis of animal long-distance migration and animal clockwork mechanisms. While genomic studies have provided new insight into migration-associated and circadian clock genes, the general lack of simple and versatile reverse-genetic methods has limited in vivo functional analysis of candidate genes in this species. Here, we report the establishment of highly efficient and heritable gene mutagenesis methods in the monarch butterfly using transcriptional activator-like effector nucleases (TALENs) and CRISPR-associated RNA-guided nuclease Cas9 (CRISPR/Cas9). Using two clock gene loci, cryptochrome 2 and clock (clk), as candidates, we show that both TALENs and CRISPR/Cas9 generate high-frequency nonhomologous end-joining (NHEJ)-mediated mutations at targeted sites (up to 100%), and that injecting fewer than 100 eggs is sufficient to recover mutant progeny and generate monarch knockout lines in about 3 months. Our study also genetically defines monarch CLK as an essential component of the transcriptional activation complex of the circadian clock. The methods presented should not only greatly accelerate functional analyses of many aspects of monarch biology, but are also anticipated to facilitate the development of these tools in other nontraditional insect species as well as the development of homology-directed knock-ins. PMID:26837953

  19. Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2010-12-01

    Rice is the first cereal genome to be completely sequenced. Since the completion of its genome sequencing, considerable progress has been made in multiple areas including the whole genome annotation, gene expression profiling, mutant collection, etc. Here, we summarize the current status of rice genome annotation and review the methodology of assigning biological functions to hundreds of thousands of rice genes as well as discuss the major limitations and the future perspective in rice functional genomics. Available data analysis shows that the rice genome encodes around 32,000 protein-coding genes. Expression analysis revealed at least 31,000 genes with expression evidence from full-length cDNA/EST collection or other transcript profiling. In addition, we have summarized various strategies to generate mutant population including natural, physical, chemical, T-DNA, transposon/retrotransposon or gene silencing based mutagenesis. Currently, more than 1 million of mutants have been generated and 27,551 of them have their flanking sequence tags. To assign biological functions to hundreds of thousands of rice genes, global co-operations are required, various genetic resources should be more easily accessible and diverse data from transcriptomics, proteomics, epigenetics, comparative genomics and bioinformatics should be integrated to better understand the functions of these genes and their regulatory mechanisms.

  20. Site-directed mutagenesis of lysine-329 of ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum

    SciTech Connect

    Soper, T.S.; Larimer, F.W.; Mural, R.J.; Machanoff, R.; Foote, R.S.; Lee, E.H.; Hartman, F.C.

    1987-05-01

    A variety of data suggest that Lys-329 of the title enzyme serves a catalytic function. To test this postulate, Lys-329 has been replaced with Gly, Ala, Ser, Cys, Arg, or Glu by a technique of site-directed mutagenesis that utilizes a suitably gapped plasmid carrying the target gene. The mutant proteins were produced in E. coli JM107 and purified to near homogeneity by immunoaffinity chromatography; they were shown to be dimers, like the wild-type enzyme, by gel electrophoresis. Hence, these amino acid substitutions are compatible with proper folding and association of subunits. The purified mutant proteins do not exhibit detectable enzyme activity nor do they form a stable quaternary complex with Mg/sup 2 +/, CO/sub 2/, and a transition-state analog as observed for wild-type enzyme. However, based on ligand-selective elution of the mutant proteins from an affinity matrix (green A agarose) they do retain the ability to bind substrate analogs. These results support an absolute essentiality of Lys-329; its precise function may be illuminated by further characterization of the mutant proteins.

  1. Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis.

    PubMed

    Xu, Wei; Shao, Rong; Wang, Zupeng; Yan, Xiuhua

    2015-03-01

    Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13% over a temperature range of 40-75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed.

  2. Rates and Mechanisms of Bacterial Mutagenesis from Maximum-Depth Sequencing

    PubMed Central

    Jee, Justin; Rasouly, Aviram; Shamovsky, Ilya; Akivis, Yonatan; Steinman, Susan; Mishra, Bud; Nudler, Evgeny

    2016-01-01

    In 1943, Luria and Delbrück used a phage resistance assay to establish spontaneous mutation as a driving force of microbial diversity1. Mutation rates are still studied using such assays, but these can only examine the small minority of mutations conferring survival in a particular condition. Newer approaches, such as long-term evolution followed by whole-genome sequencing 2, 3, may be skewed by mutational “hot” or “cold” spots 3, 4. Both approaches are affected by numerous caveats 5, 6, 7 (see Supplemental Information). We devise a method, Maximum-Depth Sequencing (MDS), to detect extremely rare variants in a population of cells through error-corrected, high-throughput sequencing. We directly measure locus-specific mutation rates in E. coli and show that they vary across the genome by at least an order of magnitude. Our data suggest that certain types of nucleotide misincorporation occur 104-fold more frequently than the basal rate of mutations, but are repaired in vivo. Our data also suggest specific mechanisms of antibiotic-induced mutagenesis, including downregulation of mismatch repair via oxidative stress; transcription-replication conflicts; and in the case of fluoroquinolones, direct damage to DNA. PMID:27338792

  3. Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis.

    PubMed

    Lin, Xi; Liu, Sha; Xie, Guangrong; Chen, Jing; Li, Penghua; Chen, Jianhua

    2016-11-28

    Wild strain L-6 was subjected to combined mutagenesis, including UV irradiation, atmospheric and room temperature plasma, and ion beam implantation, to increase the yield of 1,3-dihydroxyacetone (DHA). With application of a high-throughput screening method, mutant Gluconobacter oxydans I-2-239 with a DHA productivity of 103.5 g/l in flask-shake fermentation was finally obtained with the starting glycerol concentration of 120 g/l, which was 115.7% higher than the wild strain. The cultivation time also decreased from 54 h to 36 h. Compared with the wild strain, a dramatic increase in enzyme activity was observed for the mutant strain, although the increase in biomass was limited. DNA and amino acid sequence alignment revealed 11 nucleotide substitutions and 10 amino acid substitutions between the sldAB of strains L-6 and I-2-239. Simulation of the 3-D structure and prediction of active site residues and PQQ binding site residues suggested that these mutations were mainly related to PQQ binding, which was speculated to be favorable for the catalyzing capacity of glycerol dehydrogenase. RT-qPCR assay indicated that the transcription levels of sldA and sldB in the mutant strain were respectively 4.8-fold and 5.4-fold higher than that in the wild strain, suggesting another possible reason for the increased DHA productivity of the mutant strain.

  4. Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis.

    PubMed

    Meshalkina, L; Nilsson, U; Wikner, C; Kostikowa, T; Schneider, G

    1997-03-01

    The role of two conserved amino acid residues in the thiamin diphosphate binding site of yeast transketolase has been analyzed by site-directed mutagenesis. Replacement of E162, which is part of a cluster of glutamic acid residues at the subunit interface, by alanine or glutamine results in mutant enzymes with most catalytic properties similar to wild-type enzyme. The two mutant enzymes show, however, significant increases in the K0.5 values for thiamin diphosphate in the absence of substrate and in the lag of the reaction progress curves. This suggests that the interaction of E162 with residue E418, and possibly E167, from the second subunit is important for formation and stabilization of the transketolase dimer. Replacement of the conserved residue D382, which is buried upon binding of thiamin diphosphate, by asparagine and alanine, results in mutant enzymes severely impaired in thiamin diphosphate binding and catalytic efficiency. The 25-80-fold increase in K0.5 for thiamin diphosphate suggests that D382 is involved in cofactor binding, probably by electrostatic compensation of the positive charge of the thiazolium ring and stabilization of a flexible loop at the active site. The decrease in catalytic activities in the D382 mutants indicates that this residue might also be important in subsequent steps in catalysis.

  5. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma.

    PubMed

    Mann, Karen M; Ward, Jerrold M; Yew, Christopher Chin Kuan; Kovochich, Anne; Dawson, David W; Black, Michael A; Brett, Benjamin T; Sheetz, Todd E; Dupuy, Adam J; Chang, David K; Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Grimmond, Sean M; Rust, Alistair G; Adams, David J; Jenkins, Nancy A; Copeland, Neal G

    2012-04-17

    Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.

  6. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis

    PubMed Central

    DeJesus, Michael A.; Gerrick, Elias R.; Xu, Weizhen; Park, Sae Woong; Long, Jarukit E.; Boutte, Cara C.; Rubin, Eric J.; Schnappinger, Dirk; Ehrt, Sabine; Fortune, Sarah M.; Sassetti, Christopher M.

    2017-01-01

    ABSTRACT   For decades, identifying the regions of a bacterial chromosome that are necessary for viability has relied on mapping integration sites in libraries of random transposon mutants to find loci that are unable to sustain insertion. To date, these studies have analyzed subsaturated libraries, necessitating the application of statistical methods to estimate the likelihood that a gap in transposon coverage is the result of biological selection and not the stochasticity of insertion. As a result, the essentiality of many genomic features, particularly small ones, could not be reliably assessed. We sought to overcome this limitation by creating a completely saturated transposon library in Mycobacterium tuberculosis. In assessing the composition of this highly saturated library by deep sequencing, we discovered that a previously unknown sequence bias of the Himar1 element rendered approximately 9% of potential TA dinucleotide insertion sites less permissible for insertion. We used a hidden Markov model of essentiality that accounted for this unanticipated bias, allowing us to confidently evaluate the essentiality of features that contained as few as 2 TA sites, including open reading frames (ORF), experimentally identified noncoding RNAs, methylation sites, and promoters. In addition, several essential regions that did not correspond to known features were identified, suggesting uncharacterized functions that are necessary for growth. This work provides an authoritative catalog of essential regions of the M. tuberculosis genome and a statistical framework for applying saturating mutagenesis to other bacteria. PMID:28096490

  7. Targeted mutagenesis of dengue virus type 2 replicon RNA by yeast in vivo recombination.

    PubMed

    Manzano, Mark; Padmanabhan, Radhakrishnan

    2014-01-01

    The use of cDNA infectious clones or subgenomic replicons is indispensable in studying flavivirus biology. Mutating nucleotides or amino acid residues gives important clues to their function in the viral life cycle. However, a major challenge to the establishment of a reverse genetics system for flaviviruses is the instability of their nucleotide sequences in Escherichia coli. Thus, direct cloning using conventional restriction enzyme-based procedures usually leads to unwanted rearrangements of the construct. In this chapter, we discuss a cloning strategy that bypasses traditional cloning procedures. We take advantage of the observations from previous studies that (1) unstable sequences in bacteria can be cloned in eukaryotic systems and (2) Saccharomyces cerevisiae has a well-studied genetics system to introduce sequences using homologous recombination. We describe a protocol to perform targeted mutagenesis in a subgenomic dengue virus 2 replicon. Our method makes use of homologous recombination in yeast using a linearized replicon and a PCR product containing the desired mutation. Constructs derived from this method can be propagated in E. coli with improved stability. Thus, yeast in vivo recombination provides an excellent strategy to genetically engineer flavivirus infectious clones or replicons because this system is compatible with inherently unstable sequences of flaviviruses and is not restricted by the limitations of traditional cloning procedures.

  8. Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis.

    PubMed

    Paik, Sehmi; Senty, Lauren; Das, Sankar; Noe, Jody C; Munro, Cindy L; Kitten, Todd

    2005-09-01

    Streptococcus sanguinis is a gram-positive, facultative anaerobe and a normal inhabitant of the human oral cavity. It is also one of the most common agents of infective endocarditis, a serious endovascular infection. To identify virulence factors for infective endocarditis, signature-tagged mutagenesis (STM) was applied to the SK36 strain of S. sanguinis, whose genome is being sequenced. STM allows the large-scale creation, in vivo screening, and recovery of a series of mutants with altered virulence. Screening of 800 mutants by STM identified 38 putative avirulent and 5 putative hypervirulent mutants. Subsequent molecular analysis of a subset of these mutants identified genes encoding undecaprenol kinase, homoserine kinase, anaerobic ribonucleotide reductase, adenylosuccinate lyase, and a hypothetical protein. Virulence reductions ranging from 2-to 150-fold were confirmed by competitive index assays. One putatively hypervirulent strain with a transposon insertion in an intergenic region was identified, though increased virulence was not confirmed in competitive index assays. All mutants grew comparably to SK36 in aerobic broth culture except for the homoserine kinase mutant. Growth of this mutant was restored by the addition of threonine to the medium. Mutants containing an insertion or in-frame deletion in the anaerobic ribonucleotide reductase gene failed to grow under strictly anaerobic conditions. The results suggest that housekeeping functions such as cell wall synthesis, amino acid and nucleic acid synthesis, and the ability to survive under anaerobic conditions are important virulence factors in S. sanguinis endocarditis.

  9. Viable transmembrane region mutants of bacteriophage M13 coat protein prepared by site-directed mutagenesis.

    PubMed

    Li, Z; Deber, C M

    1991-10-31

    Bacteriophage M13 coat protein - a 50-residue protein located at the E. coli host membrane during phage reproduction - is subjected to cytoplasmic, membrane-bound, and DNA-interactive environments during the phage life cycle. In research to examine the specific features of primary/secondary structure in the effective transmembrane (TM) region of the protein (residues 21-39: YIGYAWAMVVVIVGATIGI) which modulate its capacity to respond conformationally to the progressive influences of these varying environments, we have prepared over two dozen viable mutant phages with alterations in their coat protein TM regions. Mutants were obtained through use of site-directed mutagenesis techniques in combination with three "randomized" oligonucleotides which spanned the TM region. No subcloning was required. Among mutations observed were those in which each of the four TM Val residues was changed to Ala, and several with increased Ser or Thr content, including one double Ser mutant (G23S-A25S). Polar substitutions arising at Gly23 and Tyr24-including G23D, Y24H, Y24D and Y24N-suggested that this local segment resides external to the host membrane. Milligram quantities of mutant coat proteins are obtained by growing M13 mutant phages in liter preparations, with isotopic (e.g., 13C) labelling at desired sites, for subsequent characterization and conformational analysis in membrane-mimetic media.

  10. Role of electrostatic potential in the in silico prediction of molecular bioactivation and mutagenesis.

    PubMed

    Ford, Kevin A

    2013-04-01

    Electrostatic potential (ESP) is a useful physicochemical property of a molecule that provides insights into inter- and intramolecular associations, as well as prediction of likely sites of electrophilic and nucleophilic metabolic attack. Knowledge of sites of metabolic attack is of paramount importance in DMPK research since drugs frequently fail in clinical trials due to the formation of bioactivated metabolites which are often difficult to measure experimentally due to their reactive nature and relatively short half-lives. Computational chemistry methods have proven invaluable in recent years as a means to predict and study bioactivated metabolites without the need for chemical syntheses, or testing on experimental animals. Additional molecular properties (heat of formation, heat of solvation and E(LUMO) - E(HOMO)) are discussed in this paper as complementary indicators of the behavior of metabolites in vivo. Five diverse examples are presented (acetaminophen, aniline/phenylamines, imidacloprid, nefazodone and vinyl chloride) which illustrate the utility of this multidimensional approach in predicting bioactivation, and in each case the predicted data agreed with experimental data described in the scientific literature. A further example of the usefulness of calculating ESP, in combination with the molecular properties mentioned above, is provided by an examination of the use of these parameters in providing an explanation for the sites of nucleophilic attack of the nucleic acid cytosine. Exploration of sites of nucleophilic attack of nucleic acids is important as adducts of DNA have the potential to result in mutagenesis.

  11. Mutagenesis and redox partners analysis of the P450 fatty acid decarboxylase OleTJE.

    PubMed

    Fang, Bo; Xu, Huifang; Liu, Yi; Qi, Fengxia; Zhang, Wei; Chen, Hui; Wang, Cong; Wang, Yilin; Yang, Wenxia; Li, Shengying

    2017-03-09

    The cytochrome P450 enzyme OleTJE from Jeotgalicoccus sp. ATCC 8456 is capable of converting free long-chain fatty acids into α-alkenes via one-step oxidative decarboxylation in presence of H2O2 as cofactor or using redox partner systems. This enzyme has attracted much attention due to its intriguing but unclear catalytic mechanism and potential application in biofuel production. Here, we investigated the functionality of a select group of residues (Arg245, Cys365, His85, and Ile170) in the active site of OleTJE through extensive mutagenesis analysis. The key roles of these residues for catalytic activity and reaction type selectivity were identified. In addition, a range of heterologous redox partners were found to be able to efficiently support the decarboxylation activity of OleTJE. The best combination turned out to be SeFdx-6 (ferredoxin) from Synechococcus elongatus PCC 7942 and CgFdR-2 (ferredoxin reductase) from Corynebacterium glutamicum ATCC 13032, which gave the highest myristic acid conversion rate of 94.4%. Moreover, Michaelis-Menton kinetic parameters of OleTJE towards myristic acid were determined.

  12. Thermosensitivity of a barosensitive Saccharomyces cerevisiae mutant obtained by UV mutagenesis

    NASA Astrophysics Data System (ADS)

    Shigematsu, Toru; Nomura, Kazuki; Nasuhara, Yusuke; Ikarashi, Kenta; Nagai, Gen; Hirayama, Masao; Hayashi, Mayumi; Ueno, Shigeaki; Fujii, Tomoyuki

    2010-12-01

    Using UV mutagenesis, a high pressure (HP)-sensitive (barosensitive) mutant of Saccharomyces cerevisiae was obtained. The mutant strain a924E1 showed a significant loss of viability at HP levels of 175 to 250 MPa at 20 °C compared with the parent strain. This strain also showed a significant loss of viability following heat treatment at 50-58 °C at 0.1 MPa. These results showed that the mutation caused a significant thermosensitivity as well as barosensitivity. The activation volume and activation energy values for the inactivation of strain a924E1 were equivalent to those of the parent strain. This suggested that the mechanism for the HP and thermal inactivation reaction of strain a924E1 was basically the same as that of the parent strain. Strain a924E1 showed no deficiency in growth and fermentation ability as well as auxotrophic property. Although the identification of the genetic sites of mutation introduced is underway, these phenotypes are favorable for the application of HP treatment and heat-assisted HP treatment on fermentation control.

  13. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion.

    PubMed

    Hou, Xiaoru; Yao, Shuo

    2012-03-01

    The xylose-fermenting yeast Spathaspora passalidarum showed excellent fermentation performance utilizing glucose and xylose under anaerobic conditions. But this yeast is highly sensitive to the inhibitors such as furfural present in the pretreated lignocellulosic biomass. In order to improve the inhibitor tolerance of this yeast, a combination of UV mutagenesis and protoplast fusion was used to construct strains with improved performance. Firstly, UV-induced mutants were screened and selected for improved tolerance towards furfural. The most promised mutant, S. passalidarum M7, produced 50% more final ethanol than the wild-type strain in a synthetic xylose medium containing 2 g/l furfural. However, this mutant was unable to grow in a medium containing 75% liquid fraction of pretreated wheat straw (WSLQ), in which furfural and many other inhibitors were present. Hybrid yeast strains, obtained from fusion of the protoplasts of S. passalidarum M7 and a robust yeast, Saccharomyces cerevisiae ATCC 96581, were able to grow in 75% WSLQ and produce around 0.4 g ethanol/g consumed xylose. Among the selected hybrid strains, the hybrid FS22 showed the best fermentation capacity in 75% WSLQ. Phenotypic and partial molecular analysis indicated that S. passalidarum M7 was the dominant parental contributor to the hybrid. In summary, the hybrids are characterized by desired phenotypes derived from both parents, namely the ability to ferment xylose from S. passalidarum and an increased tolerance to inhibitors from S. cerevisiae ATCC 96581.

  14. Study of substrate specificity of human aromatase by site directed mutagenesis.

    PubMed

    Auvray, P; Nativelle, C; Bureau, R; Dallemagne, P; Séralini, G-E; Sourdaine, P

    2002-03-01

    Human aromatase is responsible for estrogen biosynthesis and is implicated, in particular, in reproduction and estrogen-dependent tumor proliferation. The molecular structure model is largely derived from the X-ray structure of bacterial cytochromes sharing only 15-20% identities with hP-450arom. In the present study, site directed mutagenesis experiments were performed to examine the role of K119, C124, I125, K130, E302, F320, D309, H475, D476, S470, I471 and I474 of aromatase in catalysis and for substrate binding. The catalytic properties of mutants, transfected in 293 cells, were evaluated using androstenedione, testosterone or nor-testosterone as substrates. In addition, inhibition profiles for these mutants with indane or indolizinone derivatives were obtained. Our results, together with computer modeling, show that catalytic properties of mutants vary in accordance with the substrate used, suggesting possible differences in substrates positioning within the active site. In this respect, importance of residues H475, D476 and K130 was discussed. These results allow us to hypothesize that E302 could be involved in the aromatization mechanism with nor-androgens, whereas D309 remains involved in androgen aromatization. This study highlights the flexibility of the substrate-enzyme complex conformation, and thus sheds new light on residues that may be responsible for substrate specificity between species or aromatase isoforms.

  15. Yellow fluorescent protein phiYFPv (Phialidium): structure and structure-based mutagenesis

    SciTech Connect

    Pletneva, Nadya V.; Pletnev, Vladimir Z. Souslova, Ekaterina; Chudakov, Dmitry M.; Lukyanov, Sergey; Martynov, Vladimir I.; Arhipova, Svetlena; Artemyev, Igor; Wlodawer, Alexander; Dauter, Zbigniew; Pletnev, Sergei

    2013-06-01

    The yellow fluorescent protein phiYFPv with improved folding has been developed from the spectrally identical wild-type phiYFP found in the marine jellyfish Phialidium. The yellow fluorescent protein phiYFPv (λ{sub em}{sup max} ≃ 537 nm) with improved folding has been developed from the spectrally identical wild-type phiYFP found in the marine jellyfish Phialidium. The latter fluorescent protein is one of only two known cases of naturally occurring proteins that exhibit emission spectra in the yellow–orange range (535–555 nm). Here, the crystal structure of phiYFPv has been determined at 2.05 Å resolution. The ‘yellow’ chromophore formed from the sequence triad Thr65-Tyr66-Gly67 adopts the bicyclic structure typical of fluorophores emitting in the green spectral range. It was demonstrated that perfect antiparallel π-stacking of chromophore Tyr66 and the proximal Tyr203, as well as Val205, facing the chromophore phenolic ring are chiefly responsible for the observed yellow emission of phiYFPv at 537 nm. Structure-based site-directed mutagenesis has been used to identify the key functional residues in the chromophore environment. The obtained results have been utilized to improve the properties of phiYFPv and its homologous monomeric biomarker tagYFP.

  16. Mutagenesis study to disrupt electrostatic interactions on the twofold symmetry interface of Escherichia coli bacterioferritin.

    PubMed

    Zhang, Yu; Wang, Lijun; Ardejani, Maziar S; Aris, Nur Fazlina; Li, Xun; Orner, Brendan P; Wang, Fei

    2015-12-01

    Ferritins and other cage proteins have been utilized as models to understand the fundamentals of protein folding and self-assembly. The bacterioferritin (BFR) from Escherichia coli, a maxi-ferritin made up of 24 subunits, was chosen as the basis for a mutagenesis study to investigate the role of electrostatic intermolecular interactions mediated through charged amino acids. Through structural and computational analyses, three charged amino acids R30, D56 and E60 which involved in an electrostatic interaction network were mutated to the opposite charge. Four mutants, R30D, D56R, E60H and D56R-E60H, were expressed, purified and characterized. All of the mutants fold into α-helical structures. Consistent with the computational prediction, they all show a lowered thermostability; double mutant D56R-E60H was found to be 16°C less stable than the wild type. Except for the mutant E60H, all the other mutations completely shut down the formation of protein cages to favour the dimer state in solution. The mutants, however, retain their ability to form cage-like nanostructures in the dried, surface immobilized conditions of transmission electron microscopy. Our findings confirm that even a single charge-inversion mutation at the 2-fold interface of BFR can affect the quaternary structure of its dimers and their ability to self-assemble into cage structures.

  17. Mutagenesis of aspartic acid-116 enhances the ribonucleolytic activity and angiogenic potency of angiogenin.

    PubMed Central

    Harper, J W; Vallee, B L

    1988-01-01

    Site-specific mutagenesis of the blood vessel-inducing protein angiogenin has been used to further explore both its homology to pancreatic ribonuclease and the functional roles of particular residues. Replacement of Asp-116 in angiogenin by either asparagine (D116N), alanine (D116A), or histidine (D116H) markedly enhances both its ribonucleolytic activity and angiogenic potency. Activity toward tRNA is 8-, 15-, and 18-fold greater than native angiogenin for D116N-, D116A-, and D116H-angiogenin, respectively. The enzymatic specificity of angiogenin, however, has been maintained. Thus, cleavage of 18S and 28S rRNA by the most active His-116 mutant yields the same pattern of polynucleotide products as from angiogenin, whereas there are only minor alterations in activity with cytidylyl(3',5')adenosine and uridylyl(3',5')-adenosine. Extensive biological assays on the chicken embryo chorioallantoic membrane demonstrate that D116H-angiogenin is one to two orders of magnitude more potent in inducing neovascularization than native angiogenin, which correlates well with enhanced enzymatic action. These results support the proposition that the enzymatic and angiogenic activities on angiogenin are interrelated. PMID:2459697

  18. Functional mutagenesis screens reveal the 'cap structure' formation in disulfide-bridge free TASK channels.

    PubMed

    Goldstein, Matthias; Rinné, Susanne; Kiper, Aytug K; Ramírez, David; Netter, Michael F; Bustos, Daniel; Ortiz-Bonnin, Beatriz; González, Wendy; Decher, Niels

    2016-01-22

    Two-pore-domain potassium (K2P) channels have a large extracellular cap structure formed by two M1-P1 linkers, containing a cysteine for dimerization. However, this cysteine is not present in the TASK-1/3/5 subfamily. The functional role of the cap is poorly understood and it remained unclear whether K2P channels assemble in the domain-swapped orientation or not. Functional alanine-mutagenesis screens of TASK-1 and TRAAK were used to build an in silico model of the TASK-1 cap. According to our data the cap structure of disulfide-bridge free TASK channels is similar to that of other K2P channels and is most likely assembled in the domain-swapped orientation. As the conserved cysteine is not essential for functional expression of all K2P channels tested, we propose that hydrophobic residues at the inner leaflets of the cap domains can interact with each other and that this way of stabilizing the cap is most likely conserved among K2P channels.

  19. Facilitating Structure-Function Studies of CFTR Modulator Sites with Efficiencies in Mutagenesis and Functional Screening.

    PubMed

    Molinski, Steven V; Ahmadi, Saumel; Hung, Maurita; Bear, Christine E

    2015-12-01

    There are nearly 2000 mutations in the CFTR gene associated with cystic fibrosis disease, and to date, the only approved drug, Kalydeco, has been effective in rescuing the functional expression of a small subset of these mutant proteins with defects in channel activation. However, there is currently an urgent need to assess other mutations for possible rescue by Kalydeco, and further, definition of the binding site of such modulators on CFTR would enhance our understanding of the mechanism of action of such therapeutics. Here, we describe a simple and rapid one-step PCR-based site-directed mutagenesis method to generate mutations in the CFTR gene. This method was used to generate CFTR mutants bearing deletions (p.Gln2_Trp846del, p.Ser700_Asp835del, p.Ile1234_Arg1239del) and truncation with polyhistidine tag insertion (p.Glu1172-3Gly-6-His*), which either recapitulate a disease phenotype or render tools for modulator binding site identification, with subsequent evaluation of drug responses using a high-throughput (384-well) membrane potential-sensitive fluorescence assay of CFTR channel activity within a 1 wk time frame. This proof-of-concept study shows that these methods enable rapid and quantitative comparison of multiple CFTR mutants to emerging drugs, facilitating future large-scale efforts to stratify mutants according to their "theratype" or most promising targeted therapy.

  20. Design of Deinococcus radiodurans thioredoxin reductase with altered thioredoxin specificity using computational alanine mutagenesis.

    PubMed

    Obiero, Josiah; Sanders, David A R

    2011-06-01

    In this study, the X-ray crystal structure of the complex between Escherichia coli thioredoxin reductase (EC TrxR) and its substrate thioredoxin (Trx) was used as a guide to design a Deinococcus radiodurans TrxR (DR TrxR) mutant with altered Trx specificity. Previous studies have shown that TrxRs have higher affinity for cognate Trxs (same species) than that for Trxs from different species. Computational alanine scanning mutagenesis and visual inspection of the EC TrxR-Trx interface suggested that only four residues (F81, R130, F141, and F142) account for the majority of the EC TrxR-Trx interface stability. Individual replacement of equivalent residues in DR TrxR (M84, K137, F148, and F149) with alanine resulted in drastic changes in binding affinity, confirming that the four residues account for most of TrxR-Trx interface stability. When M84 and K137 were changed to match equivalent EC TrxR residues (K137R and M84F), the DR TrxR substrate specificity was altered from its own Trx to that of EC Trx. The results suggest that a small subset of the TrxR-Trx interface residues is responsible for the majority of Trx binding affinity and species-specific recognition.

  1. Alanine scanning mutagenesis of anti-TRAP (AT) reveals residues involved in binding to TRAP.

    PubMed

    Chen, Yanling; Gollnick, Paul

    2008-04-11

    The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic (trp) genes in response to changes in intracellular levels of free l-tryptophan in many Gram-positive bacteria. When activated by binding tryptophan, TRAP binds to the mRNAs of several genes involved in tryptophan metabolism, and down-regulates transcription or translation of these genes. Anti-TRAP (AT) is an antagonist of TRAP that binds to tryptophan-activated TRAP and prevents it from binding to its RNA targets, and thereby up-regulates trp gene expression. The crystal structure shows that AT is a cone-shaped trimer (AT(3)) with the N-terminal residues of the three subunits assembled at the apex of the cone and that these trimers can further assemble into a dodecameric (AT(12)) structure. Using alanine-scanning mutagenesis we found four residues, all located on the "top" region of AT(3), that are essential for binding to TRAP. Fluorescent labeling experiments further suggest that the top region of AT is in close juxtaposition to TRAP in the AT-TRAP complex. In vivo studies confirmed the importance of these residues on the top of AT in regulating TRAP mediated gene regulation.

  2. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    NASA Technical Reports Server (NTRS)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from <1 cM to 64 cM, while mutations that arose by allelic recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  3. Active-site-mutagenesis study of rat liver betaine-homocysteine S-methyltransferase.

    PubMed

    González, Beatriz; Campillo, Nuria; Garrido, Francisco; Gasset, María; Sanz-Aparicio, Juliana; Pajares, María A

    2003-03-15

    A site-directed-mutagenesis study of putative active-site residues in rat liver betaine-homocysteine S-methyltransferase has been carried out. Identification of these amino acids was based on data derived from a structural model of the enzyme. No alterations in the CD spectra or the gel-filtration chromatography elution pattern were observed with the mutants, thus suggesting no modification in the secondary structure content or in the association state of the proteins. All the mutants obtained showed a reduction of the enzyme activity, the most dramatic effect being that of Glu(159), followed by Tyr(77) and Asp(26). Changes in affinity for either of the substrates, homocysteine or betaine, were detected when substitutions were performed of Glu(21), Asp(26), Phe(74) and Cys(186). Interestingly, Asp(26), postulated to be involved in homocysteine binding, has a strong effect on affinity for betaine. The relevance of these results is discussed in the light of very recent structural data obtained for the human enzyme.

  4. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.

    PubMed

    Sun, Yecheng; Duan, Xuguo; Wang, Lei; Wu, Jing

    2016-01-10

    Maltogenic amylases are used to decrease the maltotriose content of high maltose syrups. However, due to the interplay between the hydrolysis and transglycosylation activities of maltogenic amylases, the maltotriose contents of these syrups are still greater than that necessary for pure maltose preparation. In this study, the maltogenic amylase from Bacillus stearothermophilus was engineered to decrease its transglycosylation activity with the expectation that this would enhance maltose production. Site-directed mutagenesis was used to generate Trp 177 variants W177F, W177Y, W177L, W177N, and W177S. The transglycosylation activities of the mutant enzymes decreased as the hydrophilicity of the residue at position 177 increased. The mutant enzymes exhibited notable enhancements in maltose production, with a minimum of maltotriose contents of 0.2%, compared with 3.2% for the wild-type enzyme. Detailed characterization of the mutant enzymes suggests that the best of them, W177S, will deliver performance superior to that of the wild-type under industrial conditions.

  5. Functional characterization of the Sindbis virus E2 glycoprotein by transposon linker-insertion mutagenesis

    SciTech Connect

    Navaratnarajah, Chanakha K.; Kuhn, Richard J. . E-mail: kuhnr@purdue.edu

    2007-06-20

    The glycoprotein envelope of alphaviruses consists of two proteins, E1 and E2. E1 is responsible for fusion and E2 is responsible for receptor binding. An atomic structure is available for E1, but one for E2 has not been reported. In this study, transposon linker-insertion mutagenesis was used to probe the function of different domains of E2. A library of mutants, containing 19 amino acid insertions in the E2 glycoprotein sequence of the prototype alphavirus, Sindbis virus (SINV), was generated. Fifty-seven independent E2 insertions were characterized, of which more than half (67%) gave rise to viable virus. The wild-type-like mutants identify regions that accommodate insertions without perturbing virus production and can be used to insert targeting moieties to direct SINV to specific receptors. The defective and lethal mutants give insight into regions of E2 important for protein stability, transport to the cell membrane, E1-E2 contacts, and receptor binding.

  6. The HIV mutation browser: a resource for human immunodeficiency virus mutagenesis and polymorphism data.

    PubMed

    Davey, Norman E; Satagopam, Venkata P; Santiago-Mozos, Salvador; Villacorta-Martin, Carlos; Bharat, Tanmay A M; Schneider, Reinhard; Briggs, John A G

    2014-12-01

    Huge research effort has been invested over many years to determine the phenotypes of natural or artificial mutations in HIV proteins--interpretation of mutation phenotypes is an invaluable source of new knowledge. The results of this research effort are recorded in the scientific literature, but it is difficult for virologists to rapidly find it. Manually locating data on phenotypic variation within the approximately 270,000 available HIV-related research articles, or the further 1,500 articles that are published each month is a daunting task. Accordingly, the HIV research community would benefit from a resource cataloguing the available HIV mutation literature. We have applied computational text-mining techniques to parse and map mutagenesis and polymorphism information from the HIV literature, have enriched the data with ancillary information and have developed a public, web-based interface through which it can be intuitively explored: the HIV mutation browser. The current release of the HIV mutation browser describes the phenotypes of 7,608 unique mutations at 2,520 sites in the HIV proteome, resulting from the analysis of 120,899 papers. The mutation information for each protein is organised in a residue-centric manner and each residue is linked to the relevant experimental literature. The importance of HIV as a global health burden advocates extensive effort to maximise the efficiency of HIV research. The HIV mutation browser provides a valuable new resource for the research community. The HIV mutation browser is available at: http://hivmut.org.

  7. Improvement of ENU Mutagenesis Efficiency Using Serial Injection and Mismatch Repair Deficiency Mice

    PubMed Central

    Pitstick, Rose; Peters, Janet; Carlson, George A.

    2016-01-01

    ENU mutagenesis is a powerful method for generating novel lines of mice that are informative with respect to both fundamental biological processes and human disease. Rapid developments in genomic technology have made the task of identifying causal mutations by positional cloning remarkably efficient. One limitation of this approach remains the mutation frequency achievable using standard treatment protocols, which currently generate approximately 1–2 sequence changes per megabase when optimized. In this study we used two strategies to attempt to increase the number of mutations induced by ENU treatment. One approach employed mice carrying a mutation in the DNA repair enzyme Msh6. The second strategy involved injection of ENU to successive generations of mice. To evaluate the number of ENU-induced mutations, single mice or pooled samples were analyzed using whole exome sequencing. The results showed that there is considerable variability in the induced mutation frequency using these approaches, but an overall increase in ENU-induced variants from one generation to another was observed. The analysis of the mice deficient for Msh6 also showed an increase in the ENU-induced variants compared to the wild-type ENU-treated mice. However, in both cases the increase in ENU-induced mutation frequency was modest. PMID:27441645

  8. Chemical mutagenesis of Gluconobacter frateurii to construct methanol-resistant mutants showing glyceric acid production from methanol-containing glycerol.

    PubMed

    Sato, Shun; Kitamoto, Dai; Habe, Hiroshi

    2014-02-01

    To produce glyceric acid (GA) from methanol-containing glycerol, resistance to methanol of Gluconobacter frateurii NBRC103465 was improved by chemical mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine. The obtained mutant Gf398 produced 6.3 g/L GA in 5% (v/v) methanol-containing 17% (w/v) glycerol medium, in which the wild-type strain neither grew nor produced GA.

  9. Modification of a deoxynivalenol-antigen-mimicking nanobody to improve immunoassay sensitivity by site-saturation mutagenesis.

    PubMed

    Qiu, Yu-Lou; He, Qing-Hua; Xu, Yang; Wang, Wei; Liu, Yuan-Yuan

    2016-01-01

    A nanobody (N-28) which can act as a deoxynivalenol (DON) antigen has been generated, and its residues Thr102-Ser106 were identified to bind with anti-DON monoclonal antibody by alanine-scanning mutagenesis. Site-saturation mutagenesis was used to analyze the plasticity of five residues and to improve the sensitivity of the N-28-based immunoassay. After mutagenesis, three mutants were selected by phage immunoassay and were sequenced. The half-maximal inhibitory concentrations of the immunoassay based on mutants N-28-T102Y, N-28-V103L, and N-28-Y105F were 24.49 ± 1.0, 51.83 ± 2.5, and 35.65 ± 1.6 ng/mL, respectively, showing the assay was, respectively, 3.2, 1.5, and 2.2 times more sensitive than the wild-type-based assay. The best mutant, N-28-T102Y, was used to develop a competitive phage ELISA to detect DON in cereals with high specificity and accuracy. In addition, the structural properties of N-28-T102Y and N-28 were investigated, revealing that the affinity of N-28-T102Y decreased because of increased steric hindrance with the large side chain. The lower-binding-affinity antigen mimetic may contribute to the improvement of the sensitivity of competitive immunoassays. These results demonstrate that nanobodies would be a favorable tool for engineering. Moreover, our results have laid a solid foundation for site-saturation mutagenesis of antigen-mimicking nanobodies to improve immunoassay sensitivity for small molecules.

  10. Targeted and random mutagenesis of Ehrlichia chaffeensis for the identification of genes required for in vivo infection.

    PubMed

    Cheng, Chuanmin; Nair, Arathy D S; Indukuri, Vijaya V; Gong, Shanzhong; Felsheim, Roderick F; Jaworski, Deborah; Munderloh, Ulrike G; Ganta, Roman R

    2013-02-01

    Ehrlichia chaffeensis is a tick transmitted pathogen responsible for the disease human monocytic ehrlichiosis. Research to elucidate gene function in rickettsial pathogens is limited by the lack of genetic manipulation methods. Mutational analysis was performed, targeting to specific and random insertion sites within the bacterium's genome. Targeted mutagenesis at six genomic locations by homologous recombination and mobile group II intron-based methods led to the consistent identification of mutants in two genes and in one intergenic site; the mutants persisted in culture for 8 days. Three independent experiments using Himar1 transposon mutagenesis of E. chaffeensis resulted in the identification of multiple mutants; these mutants grew continuously in macrophage and tick cell lines. Nine mutations were confirmed by sequence analysis. Six insertions were located within non-coding regions and three were present in the coding regions of three transcriptionally active genes. The intragenic mutations prevented transcription of all three genes. Transposon mutants containing a pool of five different insertions were assessed for their ability to infect deer and subsequent acquisition by Amblyomma americanum ticks, the natural reservoir and vector, respectively. Three of the five mutants with insertions into non-coding regions grew well in deer. Transposition into a differentially expressed hypothetical gene, Ech_0379, and at 18 nucleotides downstream to Ech_0230 gene coding sequence resulted in the inhibition of growth in deer, which is further evidenced by their failed acquisition by ticks. Similarly, a mutation into the coding region of ECH_0660 gene inhibited the in vivo growth in deer. This is the first study evaluating targeted and random mutagenesis in E. chaffeensis, and the first to report the generation of stable mutants in this obligate intracellular bacterium. We further demonstrate that in vitro mutagenesis coupled with in vivo infection assessment is a

  11. Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals

    PubMed Central

    van Boxtel, Ruben; Toonen, Pim W; Verheul, Mark; van Roekel, Henk S; Nijman, Isaac J; Guryev, Victor; Cuppen, Edwin

    2008-01-01

    Background The laboratory rat (Rattus norvegicus) is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. Results As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR) system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by ~20%, resulting in an overall increase in efficiency of ~2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. Conclusion Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest. PMID:18840264

  12. Combinatorial effect of mutagenesis and medium component optimization on Bacillus amyloliquefaciens antifungal activity and efficacy in eradicating Botrytis cinerea.

    PubMed

    Masmoudi, Fatma; Ben Khedher, Saoussen; Kamoun, Amel; Zouari, Nabil; Tounsi, Slim; Trigui, Mohamed

    2017-04-01

    This work is directed towards Bacillus amyloliquefaciens strain BLB371 metabolite production for biocontrol of fungal phytopathogens. In order to maximise antifungal metabolite production by this strain, two approaches were combined: random mutagenesis and medium component optimization. After three rounds of mutagenesis, a hyper active mutant, named M3-7, was obtained. It produces 7 fold more antifungal metabolites (1800AU/mL) than the wild strain in MC medium. A hybrid design was applied to optimise a new medium to enhance antifungal metabolite production by M3-7. The new optimized medium (35g/L of peptone, 32.5g/L of sucrose, 10.5g/L of yeast extract, 2.4g/L of KH2PO4, 1.3g/L of MgSO4 and 23mg/L of MnSO4) achieved 1.62 fold enhancement in antifungal compound production (3000AU/mL) by this mutant, compared to that achieved in MC medium. Therefore, combinatory effect of these two approaches (mutagenesis and medium component optimization) allowed 12 fold improvement in antifungal activity (from 250UA/mL to 3000UA/mL). This improvement was confirmed against several phytopathogenic fungi with an increase of MIC and MFC over than 50%. More interestingly, a total eradication of gray mold was obtained on tomato fruits infected by Botrytis cinerea and treated by M3-7, compared to those treated by BLB371. From the practical point of view, combining random mutagenesis and medium optimization could be considered as an excellent tool for obtaining promising biological products useful against phytopathogenic fungi.

  13. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci.

    PubMed

    Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H

    2017-02-20

    Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.

  14. Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes

    PubMed Central

    Sun, Yongwei; Jiao, Guiai; Liu, Zupei; Zhang, Xin; Li, Jingying; Guo, Xiuping; Du, Wenming; Du, Jinlu; Francis, Frédéric; Zhao, Yunde; Xia, Lanqin

    2017-01-01

    Cereals high in amylose content (AC) and resistant starch (RS) offer potential health benefits. Previous studies using chemical mutagenesis or RNA interference have demonstrated that starch branching enzyme (SBE) plays a major role in determining the fine structure and physical properties of starch. However, it remains a challenge to control starch branching in commercial lines. Here, we use CRISPR/Cas9 technology to generate targeted mutagenesis in SBEI and SBEIIb in rice. The frequencies of obtained homozygous or bi-allelic mutant lines with indels in SBEI and SBEIIb in T0 generation were from 26.7 to 40%. Mutations in the homozygous T0 lines stably transmitted to the T1 generation and those in the bi-allelic lines segregated in a Mendelian fashion. Transgene-free plants carrying only the frame-shifted mutagenesis were recovered in T1 generation following segregation. Whereas no obvious differences were observed between the sbeI mutants and wild type, sbeII mutants showed higher proportion of long chains presented in debranched amylopectin, significantly increased AC and RS content to as higher as 25.0 and 9.8%, respectively, and thus altered fine structure and nutritional properties of starch. Taken together, our results demonstrated for the first time the feasibility to create high-amylose rice through CRISPR/Cas9-mediated editing of SBEIIb. PMID:28326091

  15. Induced mutagenesis of plasmid and chromosomal genes inserted into the plasmid DNA. II. Mutagenic action of chemical factors

    SciTech Connect

    Esipova, V.V.; Vedunova, S.L.; Kriviskii, A.S.

    1986-02-01

    Following the study of the mutagenic action of UV and ..gamma..-radiation on plasmid DNA in vitro, they investigated the induction of mutations under the influence of chemical mutagens on the same DNA of plasmid RSF2124, determining the synthesis of colicine E1 and resistance to ampicillin. The inactivating action of the mutagen was assessed from the yield of transformants resistant to the antibiotic and the mutagenic effect from the loss by colonies of transformants that were capable of releasing colicine into the external medium. In these experiments they mainly used chemical compounds whose mutagenic effect if well known in other systems (transforming and transfecting DNA, microbial viruses). As a result all mutagens tested for their activity were divided into four groups: first group, those exceeding the level of mutagenesis by more than 100-fold above the spontaneous background (hydroxylamine, O-methylhydroxylamine); second group, those exceeding it by a factor of 10 (UV radiation (lambda = 254 nm), W-mutagenesis, ionizing radiation, nitrous acid, mitomycin C); third group, those exceeding it by a factor of <10 (indirect UV mutagenesis, nitrous acid, ..beta..-chloroethyldiethylamine hydrochloride, nitrosoguanidine); fourth group, no mutagenic effect (acridine orange, ethyl methane sulfonate, sodium azide, 0-..beta..-diethylaminoethylhydroxylamine).

  16. From green to blue: site-directed mutagenesis of the green fluorescent protein to teach protein structure-function relationships.

    PubMed

    Girón, María D; Salto, Rafael

    2011-07-01

    Structure-function relationship studies in proteins are essential in modern Cell Biology. Laboratory exercises that allow students to familiarize themselves with basic mutagenesis techniques are essential in all Genetic Engineering courses to teach the relevance of protein structure. We have implemented a laboratory course based on the site-directed mutagenesis of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria. The GFP is ideal because the students are able to correlate the changes introduced into the structure of the protein with the observable modification of its fluorescence properties. By using noncommercial kits, we set up a non PCR-thermocycling reaction using mutagenic primers, followed by removal of the original plasmid template by DpnI digestion. By introducing only one (Y66H) or two mutations (Y66H/Y145F) in the "cycle 3" variant of GFP (F99S, M153T, and V163A) or GFPuv, students are able to analyze the changes from green to blue in the fluorescence emission of the mutated proteins and to correlate these differences in fluorescence with the structural changes using three-dimensional structure visualization software. This inexpensive laboratory course familiarizes the students with the design of mutagenic oligonucleotides, site-directed mutagenesis, bacterial transformation, restriction analysis of the mutated plasmids, and protein characterization by SDS-PAGE and fluorescence spectroscopy.

  17. [Improvement of thermal adaptability and fermentation of industrial ethanologenic yeast by genomic DNA mutagenesis-based genetic recombination].

    PubMed

    Liu, Xiuying; He, Xiuping; Lu, Ying; Zhang, Borun

    2011-07-01

    Ethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, in the process of industrial production of ethanol, both cell growth and fermentation of ethanologenic S. cerevisiae are dramatically affected by environmental stresses, such as thermal stress. In this study, we improved both the thermotolerance and fermentation performance of industrial ethanologenic S. cerevisiae by combined usage of chemical mutagenesis and genomic DNA mutagenesis-based genetic recombination method. The recombinant S. cerevisiae strain T44-2 could grow at 44 degrees C, 3 degrees C higher than that of the original strain CE6. The survival rate of T44-2 was 1.84 and 1.87-fold of that of CE6 when heat shock at 48 degrees C and 52 degrees C for 1 h respectively. At temperature higher than 37 degrees C, recombinant strain T44-2 always gave higher cell growth and ethanol production than those of strain CE6. Meanwhile, from 30 degrees C to 40 degrees C, recombinant strain T44-2 produces 91.2-83.8 g/L of ethanol from 200 g/L of glucose, which indicated that the recombinant strain T44-2 had both thermotolerance and broad thermal adaptability. The work offers a novel method, called genomic DNA mutagenesis-based genetic recombination, to improve the physiological functions of S. cerevisiae.

  18. Mutagenesis and lethality following S phase irradiation of xeroderma pigmentosum and normal human diploid fibroblasts with ultraviolet light

    SciTech Connect

    Grosovsky, A.J.; Little, J.B.

    1983-11-01

    The mutagenic and lethal effects of u.v. light exposure in the DNA synthetic phase of the cell cycle were determined in xeroderma pigmentosum complementation group A (XP-A), hereditary adenomatosis of the colon and rectum (ACR), and a normal, foreskin derived cell strain (AG1522). For AG1522, an increased sensitivity to the cytotoxic effects of u.v. light (survival curve D0 . 3.2 J/m2) was observed as compared to previous findings for confluent, non-proliferating cultures (D0 . 4.2 J/m2). XP-A fibroblasts were markedly hypersensitive (D0 . 0.5 J/m2) and ACR fibroblasts exhibited an intermediate response (D0 . 2.0 J/m2). The mutagenic response of ACR fibroblasts, however, was similar to normal fibroblasts. A threshold of 1.5-2 J/m2 was observed for u.v. induced mutagenesis in normal and ACR fibroblasts. XP fibroblasts, on the other hand, were strikingly hypermutable and demonstrated little or no threshold. When S phase mutagenesis was considered as a function of survival level rather than u.v. light dose, XP fibroblasts remained significantly hypermutable as compared with normal fibroblasts at all survival levels. Previous mutagenesis results with confluent, nonproliferating cultures of XP and normal fibroblasts were reanalyzed as a function of cytotoxicity; XP hypermutability at all survival levels was also observed.

  19. Mutagenesis and lethality following S phase irradiation of xeroderma pigmentosum and normal human diploid fibroblasts with ultraviolet light

    SciTech Connect

    Grosovsky, A.J.; Little, J.B. . School of Public Health)

    1983-11-01

    The mutagenic and lethal effects of u.v. light exposure in the DNA synthetic phase of the cell cycle were determined in xeroderma pigmentosum complementation group A (XP-A), hereditary adenomatosis of the colon and rectum (ACR), and a normal, foreskin derived cell strain (AG1522). For AG1522, an increased sensitivity to the cytotoxic effects of u.v. light was observed as compared to previous findings for confluent, non-proliferating cultures. XP-A fibroblasts were markedly hypersensitive and ACR fibroblasts exhibited an intermediate response. The mutagenic response of ACR fibroblasts, however, was similar to normal fibroblasts. A threshold of 1.5-2 J/m/sup 2/ was observed for u.v. induced mutagenesis in normal and ACR fibroblasts. XP fibroblasts, on the other hand, were strikingly hypermutable and demonstrated little or no threshold. When S phase mutagenesis was considered as a function of survival level rather than u.v. light dose, XP fibroblasts remained significantly hypermutable as compared with normal fibroblasts at all survival levels. Previous mutagenesis results with confluent, non-proliferating cultures of XP and normal fibroblasts were reanalyzed as a function of cytotoxicity; XP hypermutability at all survival levels was also observed.

  20. Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes

    PubMed Central

    Elso, Colleen M.; Chu, Edward P. F.; Alsayb, May A.; Mackin, Leanne; Ivory, Sean T.; Ashton, Michelle P.; Bröer, Stefan; Silveira, Pablo A.; Brodnicki, Thomas C.

    2015-01-01

    A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying “natural” alleles in the human population is to engineer “artificial” alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis. PMID:26438296

  1. Structure-Based and Random Mutagenesis Approaches Increase the Organophosphate-Degrading Activity of a Phosphotriesterase Homologue from Deinococcus radiodurans

    SciTech Connect

    Hawwa, Renda; Larsen, Sonia D.; Ratia, Kiira; Mesecar, Andrew D.

    2010-11-09

    An enzyme from the amidohydrolase family from Deinococcus radiodurans (Dr-OPH) with homology to phosphotriesterase has been shown to exhibit activity against both organophosphate (OP) and lactone compounds. We have characterized the physical properties of Dr-OPH and have found it to be a highly thermostable enzyme, remaining active after 3 h of incubation at 60 C and withstanding incubation at temperatures up to 70 C. In addition, it can withstand concentrations of at least 200 mg/mL. These properties make Dr-OPH a promising candidate for development in commercial applications. However, compared to the most widely studied OP-degrading enzyme, that from Pseudomonas diminuta, Dr-OPH has low hydrolytic activity against certain OP substrates. Therefore, we sought to improve the OP-degrading activity of Dr-OPH, specifically toward the pesticides ethyl and methyl paraoxon, using structure-based and random approaches. Site-directed mutagenesis, random mutagenesis, and site-saturation mutagenesis were utilized to increase the OP-degrading activity of Dr-OPH. Out of a screen of more than 30,000 potential mutants, a total of 26 mutant enzymes were purified and characterized kinetically. Crystal structures of w.t. Dr-OPH, of Dr-OPH in complex with a product analog, and of 7 mutant enzymes were determined to resolutions between 1.7 and 2.4 {angstrom}. Information from these structures directed the design and production of 4 additional mutants for analysis. In total, our mutagenesis efforts improved the catalytic activity of Dr-OPH toward ethyl and methyl paraoxon by 126- and 322-fold and raised the specificity for these two substrates by 557- and 183-fold, respectively. Our work highlights the importance of an iterative approach to mutagenesis, proving that large rate enhancements are achieved when mutations are made in already active mutants. In addition, the relationship between the kinetic parameters and the introduced mutations has allowed us to hypothesize on those

  2. Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis

    PubMed Central

    Rizwan, Muhammad; Aslam, Muhammad; Asghar, Muhammad Jawad; Abbas, Ghulam; Shah, Tariq Mahmud; Shimelis, Hussein

    2017-01-01

    Lentil is a poor competitor of weeds and its sensitivity to herbicides is a major hurdle for large scale production. The present study was conducted to select herbicide resistant lentil genotypes through seed mutagenesis. Seeds of three advanced lentil genotypes (LPP 11001, LPP 11100 and LPP 11116) were treated with two different concentrations of ethyl methanesulfonate (EMS; 0.1 and 0.2%), hydrazine hydrate (HH; 0.02 and 0.03%) and sodium azide (SA; 0.01 and 0.02%) to develop M1 seed. The M2 was screened against two herbicides including Ally Max 28.6% SG (X = 34.58 g/ha and 1.5X = 51.87 g/ha) and Atlantis 3.6% WG (X = 395.2 g/ha and 1.5X = 592.8 g/ha) using the following three screening methods: post plant emergence (PPE), pre-plant incorporation (PPI) and seed priming (SP). Data were recorded on survival index and survival percentage from each experimental unit of every population. Plants in all populations were categorized following their reaction to herbicides. The newly developed populations showed greater variation for herbicide resistance when compared to their progenitors. Phenotypic traits were significantly reduced in all the screening environments. Overall, 671 herbicide resistant mutants were selected from all testing environments. The seeds from selected plants were re-mutagenized at 150 Gy of gamma radiation and evaluated against higher dose of herbicides. This allowed selection of 134 herbicide resistant mutants. The selected mutants are useful germplasm for herbicide resistance breeding of lentil. PMID:28196091

  3. Molecular Structure of P2Y Receptors: Mutagenesis, Modeling, and Chemical Probes

    PubMed Central

    Jayasekara, M.P. Suresh; Costanzi, Stefano

    2012-01-01

    There are eight subtypes of P2Y receptors (P2YRs) that are activated, and in some cases inhibited, by a range of extracellular nucleotides. These nucleotides are ubiquitous, but their extracellular concentration can rise dramatically in response to hypoxia, ischemia, or mechanical stress, injury, and release through channels and from vesicles. Two subclasses of P2YRs were defined based on clustering of sequences, second messengers, and receptor sequence analysis. The numbering system for P2YR subtypes is discontinuous; i.e., P2Y1–14Rs have been defined, but six of the intermediate-numbered cloned receptor sequences (e.g., P2y3, P2y5, P2y7–10) are not functional mammalian nucleotide receptors. Of these two clusters, the P2Y12–14 subtypes couple via Gαi to inhibit adenylate cyclase, while the remaining subtypes couple through Gαq to activate phospholipase C. Collectively, the P2YRs respond to both purine and pyrimidine nucleotides, in the form of 5′-mono- and dinucleotides and nucleoside-5′-diphosphosugars. In recent years, the medicinal chemistry of P2Y receptors has advanced significantly, to provide selective agonists and antagonists for many but not all of the subtypes. Ligand design has been aided by insights from structural probing using molecular modelling and mutagenesis. Currently, the molecular modelling of the receptors is effectively based on the X-ray structure of the CXCR4 receptor, which is the closest to the P2Y receptors among all the currently crystallized receptors in terms of sequence similarity. It is now a challenge to develop novel and selective P2YR ligands for disease treatment (although antagonists of the P2Y12R are already widely used as antithrombotics). PMID:23336097

  4. Identification of mycoplasma membrane proteins by systematic Tn phoA mutagenesis of a recombinant library.

    PubMed

    Cleavinger, C M; Kim, M F; Im, J H; Wise, K S

    1995-10-01

    Wall-less prokaryotes in the genus Mycoplasma include over 90 species of infectious agents whose pathogenicity for humans and other animals is currently being assessed. Molecular characterization of surface proteins is critical in this regard but is hampered by the lack of genetic systems in these organisms. We used TnphoA transposition to systematically mutagenize, in Escherichia coli, a genomic plasmid library constructed from Mycoplasma fermentans, a potential human pathogen. The strategy circumvented problems of expressing mycoplasma genes containing UGA (Trp) codons and relied on the construction of the vector pG7ZCW, designed to reduce TnphoA transposition into vector sequences. Functional phoA gene fusions directly identified genes encoding 19 putative membrane-associated proteins of M. fermentans. Sequences of fusion constructs defined three types of export sequence: (1) non-cleavable, membrane-spanning sequences, (2) signal peptides with signal peptidase (SPase) I-like cleavage sites, and (3) signal peptides with SPase II-like lipoprotein-cleavage sites which, like most other mycoplasmal lipoprotein signals analysed to date, differed from those in several Gram-negative and Gram-positive eubacteria in their lack of a Leu residue at the -3 position. Antibodies to synthetic peptides that were deduced from two fusions to predicted lipoproteins, identified corresponding amphiphilic membrane proteins of 57 kDa and 78 kDa expressed in the mycoplasma. The P57 sequence contained a proline-rich N-terminal region analogous to an adhesin of Mycoplasma gallisepticum. The P78 protein was identical to a serologically defined phase-variant surface lipoprotein. TnphoA mutagenesis provides an efficient means of systematically characterizing functionally diverse lipoproteins and other exported proteins in mycoplasmas.

  5. Elevated Mutagenesis Does Not Explain the Increased Frequency of Antibiotic Resistant Mutants in Starved Aging Colonies

    PubMed Central

    Katz, Sophia; Hershberg, Ruth

    2013-01-01

    The frequency of mutants resistant to the antibiotic rifampicin has been shown to increase in aging (starved), compared to young colonies of Eschierchia coli. These increases in resistance frequency occur in the absence of any antibiotic exposure, and similar increases have also been observed in response to additional growth limiting conditions. Understanding the causes of such increases in the frequency of resistance is important for understanding the dynamics of antibiotic resistance emergence and spread. Increased frequency of rifampicin resistant mutants in aging colonies is cited widely as evidence of stress-induced mutagenesis (SIM), a mechanism thought to allow bacteria to increase mutation rates upon exposure to growth-limiting stresses. At the same time it has been demonstrated that some rifampicin resistant mutants are relatively fitter in aging compared to young colonies, indicating that natural selection may also contribute to increased frequency of rifampicin resistance in aging colonies. Here, we demonstrate that the frequency of mutants resistant to both rifampicin and an additional antibiotic (nalidixic-acid) significantly increases in aging compared to young colonies of a lab strain of Escherichia coli. We then use whole genome sequencing to demonstrate conclusively that SIM cannot explain the observed magnitude of increased frequency of resistance to these two antibiotics. We further demonstrate that, as was previously shown for rifampicin resistance mutations, mutations conferring nalidixic acid resistance can also increase fitness in aging compared to young colonies. Our results show that increases in the frequency of antibiotic resistant mutants in aging colonies cannot be seen as evidence of SIM. Furthermore, they demonstrate that natural selection likely contributes to increases in the frequency of certain antibiotic resistance mutations, even when no selection is exerted due to the presence of antibiotics. PMID:24244205

  6. Characterization and Transposon Mutagenesis of the Maize (Zea mays) Pho1 Gene Family

    PubMed Central

    Salazar-Vidal, M. Nancy; Acosta-Segovia, Edith; Sánchez-León, Nidia; Ahern, Kevin R.; Brutnell, Thomas P.; Sawers, Ruairidh J. H.

    2016-01-01

    Phosphorus is an essential nutrient for all plants, but also one of the least mobile, and consequently least available, in the soil. Plants have evolved a series of molecular, metabolic and developmental adaptations to increase the acquisition of phosphorus and to maximize the efficiency of use within the plant. In Arabidopsis (Arabidopsis thaliana), the AtPHO1 protein regulates and facilitates the distribution of phosphorus. To investigate the role of PHO1 proteins in maize (Zea mays), the B73 reference genome was searched for homologous sequences, and four genes identified that were designated ZmPho1;1, ZmPho1;2a, ZmPho1;2b and ZmPho1;3. ZmPho1;2a and ZmPho1;2b are the most similar to AtPHO1, and represent candidate co-orthologs that we hypothesize to have been retained following whole genome duplication. Evidence was obtained for the production of natural anti-sense transcripts associated with both ZmPho1;2a and ZmPho1;2b, suggesting the possibility of regulatory crosstalk between paralogs. To characterize functional divergence between ZmPho1;2a and ZmPho1;2b, a program of transposon mutagenesis was initiated using the Ac/Ds system, and, here, we report the generation of novel alleles of ZmPho1;2a and ZmPho1;2b. PMID:27648940

  7. The paramyxovirus fusion protein C-terminal region: mutagenesis indicates an indivisible protein unit.

    PubMed

    Zokarkar, Aarohi; Lamb, Robert A

    2012-03-01

    Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Fusion is mediated by the viral fusion (F) protein, and it undergoes large irreversible conformational changes to cause membrane merger. The C terminus of PIV5 F contains a membrane-proximal 7-residue external region (MPER), followed by the transmembrane (TM) domain and a 20-residue cytoplasmic tail. To study the sequence requirements of the F protein C terminus for fusion, we constructed chimeras containing the ectodomain of parainfluenza virus 5 F (PIV5 F) and either the MPER, the TM domain, or the cytoplasmic tail of the F proteins of the paramyxoviruses measles virus, mumps virus, Newcastle disease virus, human parainfluenza virus 3, and Nipah virus. The chimeras were expressed, and their ability to cause cell fusion was analyzed. The chimeric proteins were variably expressed at the cell surface. We found that chimeras containing the ectodomain of PIV5 F with the C terminus of other paramyxoviruses were unable to cause cell fusion. Fusion could be restored by decreasing the activation energy of refolding through introduction of a destabilizing mutation (S443P). Replacing individual regions, singly or doubly, in the chimeras with native PIV5 F sequences restored fusion to various degrees, but it did not have an additive effect in restoring activity. Thus, the F protein C terminus may be a specific structure that only functions with its cognate ectodomain. Alanine scanning mutagenesis of MPER indicates that it has a regulatory role in fusion since both hyperfusogenic and hypofusogenic mutations were found.

  8. Apoptotic regulation and mutagenesis in human cells exposes to charged particles of importance for spaceflight

    NASA Astrophysics Data System (ADS)

    Kronenberg, A.; Gauny, S.; Hain, J.; Wu, P.; Wiese, C.

    Exposure to ionizing radiation can elicit two modes of cell death - necrosis or apoptosis. In human lymphoid cells, the predominant mechanism of radiation- induced cell death is apoptosis. The most likely exposure of individual human cells to heavy ions (e.g. Fe or Si) during spaceflight will result from single particle traversals. Here we report the fluence-response for apoptosis in human TK6 B- lymp hoblasts and provide evidence that single Fe ion traversals can stimulate an apoptotic response. The apoptotic response to charged particle exposures includes scrambling of the phospholipid bilayer in the cell membrane, activation of caspase signaling cascades and degradation of DNA into oligonucleosomes. We have also explored the importance of apoptotic regulation on the frequency and spectrum of mutations arising after exposure to charged particles. We used isogenic derivatives of TK6 cells stably transfected with pSFFV-neo-bcl-xL (encoding the anti-apoptotic gene BCL-XL and the neomycin resistance gene) or with pSFFV neo (encoding only- the neomycin resistance gene). TK6-bclxL cells were more susceptible to mutations at the TK1 locus than TK6-neo cells following exposure to protons, silicon ions or Fe ions. Molecular analysis demonstrated that most Fe-ion-induced mutations arose by loss of heterozygosity (LOH). In TK6-bclxL cells, more of the LOH occurred via mitotic recombination than in TK6-neo cells where the predominant mode of LOH was via deletion. We are currently mapping the LOH tracts to further define the biological bases for the differential sensitivity to Fe-ion-induced mutagenesis as a function of the genotype of the cell at risk. Supported by NASA grant T-964W to A. Kronenberg

  9. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome.

    PubMed

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.

  10. Toward Understanding the Catalytic Mechanism of Human Paraoxonase 1: Site-Specific Mutagenesis at Position 192

    PubMed Central

    Aggarwal, Geetika; Prajapati, Rameshwar; Tripathy, Rajan K.; Bajaj, Priyanka; Iyengar, A. R. Satvik; Sangamwar, Abhay T.; Pande, Abhay H.

    2016-01-01

    Human paraoxonase 1 (h-PON1) is a serum enzyme that can hydrolyze a variety of substrates. The enzyme exhibits anti-inflammatory, anti-oxidative, anti-atherogenic, anti-diabetic, anti-microbial and organophosphate-hydrolyzing activities. Thus, h-PON1 is a strong candidate for the development of therapeutic intervention against a variety conditions in human. However, the crystal structure of h-PON1 is not solved and the molecular details of how the enzyme hydrolyzes different substrates are not clear yet. Understanding the catalytic mechanism(s) of h-PON1 is important in developing the enzyme for therapeutic use. Literature suggests that R/Q polymorphism at position 192 in h-PON1 dramatically modulates the substrate specificity of the enzyme. In order to understand the role of the amino acid residue at position 192 of h-PON1 in its various hydrolytic activities, site-specific mutagenesis at position 192 was done in this study. The mutant enzymes were produced using Escherichia coli expression system and their hydrolytic activities were compared against a panel of substrates. Molecular dynamics simulation studies were employed on selected recombinant h-PON1 (rh-PON1) mutants to understand the effect of amino acid substitutions at position 192 on the structural features of the active site of the enzyme. Our results suggest that, depending on the type of substrate, presence of a particular amino acid residue at position 192 differentially alters the micro-environment of the active site of the enzyme resulting in the engagement of different subsets of amino acid residues in the binding and the processing of substrates. The result advances our understanding of the catalytic mechanism of h-PON1. PMID:26829396

  11. Pre-breeding of lentil (Lens culinaris Medik.) for herbicide resistance through seed mutagenesis.

    PubMed

    Rizwan, Muhammad; Aslam, Muhammad; Asghar, Muhammad Jawad; Abbas, Ghulam; Shah, Tariq Mahmud; Shimelis, Hussein

    2017-01-01

    Lentil is a poor competitor of weeds and its sensitivity to herbicides is a major hurdle for large scale production. The present study was conducted to select herbicide resistant lentil genotypes through seed mutagenesis. Seeds of three advanced lentil genotypes (LPP 11001, LPP 11100 and LPP 11116) were treated with two different concentrations of ethyl methanesulfonate (EMS; 0.1 and 0.2%), hydrazine hydrate (HH; 0.02 and 0.03%) and sodium azide (SA; 0.01 and 0.02%) to develop M1 seed. The M2 was screened against two herbicides including Ally Max 28.6% SG (X = 34.58 g/ha and 1.5X = 51.87 g/ha) and Atlantis 3.6% WG (X = 395.2 g/ha and 1.5X = 592.8 g/ha) using the following three screening methods: post plant emergence (PPE), pre-plant incorporation (PPI) and seed priming (SP). Data were recorded on survival index and survival percentage from each experimental unit of every population. Plants in all populations were categorized following their reaction to herbicides. The newly developed populations showed greater variation for herbicide resistance when compared to their progenitors. Phenotypic traits were significantly reduced in all the screening environments. Overall, 671 herbicide resistant mutants were selected from all testing environments. The seeds from selected plants were re-mutagenized at 150 Gy of gamma radiation and evaluated against higher dose of herbicides. This allowed selection of 134 herbicide resistant mutants. The selected mutants are useful germplasm for herbicide resistance breeding of lentil.

  12. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro.

    PubMed

    Baranovich, Tatiana; Wong, Sook-San; Armstrong, Jianling; Marjuki, Henju; Webby, Richard J; Webster, Robert G; Govorkova, Elena A

    2013-04-01

    Several novel anti-influenza compounds are in various phases of clinical development. One of these, T-705 (favipiravir), has a mechanism of action that is not fully understood but is suggested to target influenza virus RNA-dependent RNA polymerase. We investigated the mechanism of T-705 activity against influenza A (H1N1) viruses by applying selective drug pressure over multiple sequential passages in MDCK cells. We found that T-705 treatment did not select specific mutations in potential target proteins, including PB1, PB2, PA, and NP. Phenotypic assays based on cell viability confirmed that no T-705-resistant variants were selected. In the presence of T-705, titers of infectious virus decreased significantly (P < 0.0001) during serial passage in MDCK cells inoculated with seasonal influenza A (H1N1) viruses at a low multiplicity of infection (MOI; 0.0001 PFU/cell) or with 2009 pandemic H1N1 viruses at a high MOI (10 PFU/cell). There was no corresponding decrease in the number of viral RNA copies; therefore, specific virus infectivity (the ratio of infectious virus yield to viral RNA copy number) was reduced. Sequence analysis showed enrichment of G→A and C→T transversion mutations, increased mutation frequency, and a shift of the nucleotide profiles of individual NP gene clones under drug selection pressure. Our results demonstrate that T-705 induces a high rate of mutation that generates a nonviable viral phenotype and that lethal mutagenesis is a key antiviral mechanism of T-705. Our findings also explain the broad spectrum of activity of T-705 against viruses of multiple families.

  13. Tryptophan Scanning Mutagenesis Identifies the Molecular Determinants of Distinct Barttin Functions*

    PubMed Central

    Wojciechowski, Daniel; Fischer, Martin; Fahlke, Christoph

    2015-01-01

    CLC-K chloride channels are expressed in the kidney and in the inner ear and require the accessory subunit barttin for proper function and membrane insertion. Barttin exerts multiple functions on CLC-proteins: it modifies protein stability and intracellular trafficking as well as channel activity, ion conduction, and gating. So far, the molecular determinants of these distinct barttin functions have remained elusive. Here we performed serial perturbation mutagenesis to identify the sequence determinants of barttin function. Barttin consists of two transmembrane helices followed by a long intracellular carboxyl terminus, and earlier work demonstrated that the transmembrane core of barttin suffices for most effects on the α-subunit. We individually substituted every amino acid of the predicted transmembrane core (amino acids 9–26 and 35–55) with tryptophan, co-expressed mutant barttin with hClC-Ka or V166E rClC-K1, and characterized CLC-K/barttin channels by patch clamp techniques, biochemistry, and confocal microscopy. The majority of mutations left the chaperone function of barttin, i.e. the effects on endoplasmic reticulum exit and surface membrane insertion, unaffected. In contrast, tryptophan insertion at multiple positions resulted in impaired activity of hClC-Ka/barttin and changes in gating of V166E rClC-K1/barttin. These results demonstrate that mutations in a cluster of hydrophobic residues within transmembrane domain 1 affect barttin-CLC-K interaction and impair gating modification by the accessory subunit. Whereas tight interaction is necessary for functional modification, even impaired association of barttin and CLC-K suffices for normal intracellular trafficking. Our findings allow definition of a likely interaction surface and clarify the mechanisms underlying CLC-K channel modification by barttin. PMID:26063802

  14. T-705 (Favipiravir) Induces Lethal Mutagenesis in Influenza A H1N1 Viruses In Vitro

    PubMed Central

    Baranovich, Tatiana; Wong, Sook-San; Armstrong, Jianling; Marjuki, Henju; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Several novel anti-influenza compounds are in various phases of clinical development. One of these, T-705 (favipiravir), has a mechanism of action that is not fully understood but is suggested to target influenza virus RNA-dependent RNA polymerase. We investigated the mechanism of T-705 activity against influenza A (H1N1) viruses by applying selective drug pressure over multiple sequential passages in MDCK cells. We found that T-705 treatment did not select specific mutations in potential target proteins, including PB1, PB2, PA, and NP. Phenotypic assays based on cell viability confirmed that no T-705-resistant variants were selected. In the presence of T-705, titers of infectious virus decreased significantly (P < 0.0001) during serial passage in MDCK cells inoculated with seasonal influenza A (H1N1) viruses at a low multiplicity of infection (MOI; 0.0001 PFU/cell) or with 2009 pandemic H1N1 viruses at a high MOI (10 PFU/cell). There was no corresponding decrease in the number of viral RNA copies; therefore, specific virus infectivity (the ratio of infectious virus yield to viral RNA copy number) was reduced. Sequence analysis showed enrichment of G→A and C→T transversion mutations, increased mutation frequency, and a shift of the nucleotide profiles of individual NP gene clones under drug selection pressure. Our results demonstrate that T-705 induces a high rate of mutation that generates a nonviable viral phenotype and that lethal mutagenesis is a key antiviral mechanism of T-705. Our findings also explain the broad spectrum of activity of T-705 against viruses of multiple families. PMID:23325689

  15. Alanine-scanning mutagenesis reveals a cytosine deaminase mutant with altered substrate preference.

    PubMed

    Mahan, Sheri D; Ireton, Greg C; Stoddard, Barry L; Black, Margaret E

    2004-07-20

    Suicide gene therapy of cancer is a method whereby cancerous tumors can be selectively eradicated while sparing damage to normal tissue. This is accomplished by delivering a gene, encoding an enzyme capable of specifically converting a nontoxic prodrug into a cytotoxin, to cancer cells followed by prodrug administration. The Escherichia coli gene, codA, encodes cytosine deaminase and is introduced into cancer cells followed by administration of the prodrug 5-fluorocytosine (5-FC). Cytosine deaminase converts 5-FC into cytotoxic 5-fluorouracil, which leads to tumor-cell eradication. One limitation of this enzyme/prodrug combination is that 5-FC is a poor substrate for bacterial cytosine deaminase. The crystal structure of bacterial cytosine deaminase (bCD) reveals that a loop structure in the active site pocket of wild-type bCD comprising residues 310-320 undergoes a conformational change upon cytosine binding, making several contacts to the pyrimidine ring. Alanine-scanning mutagenesis was used to investigate the structure-function relationship of amino acid residues within this region, especially with regard to substrate specificity. Using an E. coli genetic complementation system, seven active mutants were identified (F310A, G311A, H312A, D314A, V315A, F316A, and P318A). Further characterization of these mutants reveals that mutant F316A is 14-fold more efficient than the wild-type at deaminating cytosine to uracil. The mutant D314A enzyme demonstrates a dramatic decrease in cytosine activity (17-fold) as well as a slight increase in activity toward 5-FC (2-fold), indicating that mutant D314A prefers the prodrug over cytosine by almost 20-fold, suggesting that it may be a superior suicide gene.

  16. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome

    PubMed Central

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo. PMID:26559182

  17. Alanine screening mutagenesis establishes the critical inactivating damage of irradiated E. coli lactose repressor.

    PubMed

    Goffinont, Stephane; Villette, Sandrine; Spotheim-Maurizot, Melanie

    2012-06-01

    The function of the E. coli lactose operon requires the binding of lactose repressor to operator DNA. We have previously shown that γ rradiation destabilizes the repressor-operator complex because the repressor loses its DNA-binding ability. It was suggested that the observed oxidation of the four tyrosines (Y7, Y12, Y17, Y47) and the concomitant structural changes of the irradiated DNA-binding domains (headpieces) could be responsible for the inactivation. To pinpoint the tyrosine whose oxidation has the strongest effect, four headpieces containing the product of tyrosine oxidation, 3,4-dihydroxyphenylalanine (DOPA), were simulated by molecular dynamics. We have observed that replacing Y47 by DOPA triggers the largest change of structure and stability of the headpiece and have concluded that Y47 oxidation is the greatest contributor to the decrease of repressor binding to DNA. To experimentally verify this conclusion, we applied the alanine screening mutagenesis approach. Tetrameric mutated repressors bearing an alanine instead of each one of the tyrosines were prepared and their binding to operator DNA was checked. Their binding ability is quite similar to that of the wild-type repressor, except for the Y47A mutant whose binding is strongly reduced. Circular dichroism determinations revealed small reductions of the proportion of α helices and of the melting temperature for Y7A, Y12A and Y17A headpieces, but much larger ones were revealed for Y47A headpiece. These results established the critical role of Y47 oxidation in modifying the structure and stability of the headpiece, and in reduction of the binding ability of the whole lactose repressor.

  18. Sleeping Beauty Transposon Mutagenesis of the Rat Genome in Spermatogonial Stem Cells

    PubMed Central

    Ivics, Zoltán; Izsvák, Zsuzsanna; Chapman, Karen M.; Hamra, F. Kent

    2011-01-01

    Since several aspects of physiology in rats has evolved to be more similar to humans than that of mice, it is highly desirable to link the rat into the process of annotating the human genome with function. However, the lack of technology for generating defined mutants in the rat genome has hindered the identification of causative relationships between genes and disease phenotypes. As an important step towards this goal, an approach of establishing transposon-mediated insertional mutagenesis in rat spermatogonial stem cells was recently developed. Transposons can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of transposons can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest such as a mutagenic gene trap cassette cloned between the inverted repeat sequences of a transposon-based vector can be utilized for stable genomic insertion in a regulated and highly efficient manner. Gene trap transposons integrate into the genome in a random fashion, and those mutagenic insertions that occurred in expressed genes can be selected in vitro based on activation of a reporter. Selected monoclonal as well as polyclonal libraries of gene trap clones are transplanted into the testes of recipient/founder male rats allowing passage of the mutation through the germline to F1 progeny after only a single cross with wild-type females. This paradigm enables a powerful methodological pipeline for forward genetic screens for functional gene annotation in the rat, as well as other vertebrate models. This article provides a detailed description on how to culturerat spermatogonial stem cell lines, their transfection with transposon plasmids, selection of gene trap insertions with antibiotics, transplantation of genetically modified stem cells and genotyping of knockout animals. PMID:21193047

  19. Spontaneous mutagenesis of a plant potyvirus genome after insertion of a foreign gene.

    PubMed Central

    Dolja, V V; Herndon, K L; Pirone, T P; Carrington, J C

    1993-01-01

    The RNA genome of tobacco etch potyvirus (TEV) was engineered to express bacterial beta-glucuronidase (GUS) fused to the virus helper component proteinase (HC-Pro). It was shown previously that prolonged periods (approximately 1 month) of TEV-GUS propagation in plants resulted in the appearance of spontaneous deletion variants. Nine deletion mutants were identified by nucleotide sequence analysis of 40 cDNA clones obtained after polymerase chain reaction amplification. The mutants were missing between 1,741 and 2,074 nucleotides from TEV-GUS, including the sequences coding for most of GUS and the N-terminal region of HC-Pro. This region of HC-Pro contains determinants involved in helper component activity during aphid transmission, as well as a highly conserved series of cysteine residues. The deletion variants were shown to replicate and move systemically without the aid of a helper virus. Infectious viruses harboring the two largest HC-Pro deletions (termed TEV-2del and TEV-7del) were reconstructed by subcloning the corresponding mutated regions into full-length DNA copies of the TEV genome. Characterization of these and additional variants derived by site-directed mutagenesis demonstrated that deletion of sequences coding for the HC-Pro N-terminal domain had a negative effect on accumulation of viral RNA and coat protein. The TEV-2del variant possessed an aphid-nontransmissible phenotype that could be rescued partially by prefeeding of aphids on active HC-Pro from another potyvirus. These data suggest that the N-terminal domain of HC-Pro or its coding sequence enhances virus replication or genome expression but does not provide an activity essential for these processes. The function of this domain, as well as a proposed deletion mechanism involving nonhomologous recombination, is discussed. Images PMID:8371351

  20. Characterization of lysosomal acid lipase by site-directed mutagenesis and heterologous expression.

    PubMed

    Sheriff, S; Du, H; Grabowski, G A

    1995-11-17

    Lysosomal acid lipase (LAL) is essential for the hydrolysis of cholesterol esters and triglycerides that are delivered to the lysosomes via the low density lipoprotein receptor system. The deficiency of LAL is associated with cholesteryl ester storage disease (CESD) and Wolman's disease (WD). We cloned the human LAL cDNA and expressed the active enzyme in the baculovirus system. Two molecular forms (M(r) approximately 41,000 and approximately 46,000) with different glycosylation were found intracellularly, and approximately 24% of the M(r) approximately 46,000 form was secreted into the medium. Tunicamycin treatment produced only an inactive M(r) approximately 41,000 form. This result implicates glycosylation occupancy in the proper folding for active-site function. Catalytic activity was greater toward cis- than trans-unsaturated fatty acid esters of 4-methylumbelliferone and toward esters with 7-carbon length acyl chains. LAL cleaved cholesterol esters and mono-, tri-, and diglycerides. Heparin had a biphasic effect on enzymatic activity with initial activation followed by inhibition. Inhibition of LAL activity by tetrahydrolipstatin and diethyl p-nitrophenyl phosphate suggested the presence of active serines in binding/catalytic domain(s) of the protein. Site-directed mutagenesis at two putative active centers, GXSXG, showed that Ser153 was important to catalytic activity, whereas Ser99 was not and neither was the catalytic nucleophile. Three reported mutations (L179P, L336P, and delta AG302 deletion) from CESD patients were created and expressed in the Sf9 cell system. None cleaved cholesterol esters, and L179P and L336P cleaved only triolein at approximately 4% of wild-type levels. These results suggest that mechanisms, in addition to LAL defects, may operate in the selective accumulation of cholesterol esters or triglycerides in CESD and WD patients.

  1. Thiostrepton Variants Containing a Contracted Quinaldic Acid Macrocycle Result from Mutagenesis of the Second Residue

    PubMed Central

    Zhang, Feifei; Li, Chaoxuan

    2016-01-01

    The thiopeptides are a family of ribosomally synthesized and posttranslationally modified peptide metabolites, and the vast majority of thiopeptides characterized to date possess one highly modified macrocycle. A few members, including thiostrepton A, harbor a second macrocycle that incorporates a quinaldic acid moiety and the four N-terminal residues of the peptide. The antibacterial properties of thiostrepton A are well established, and its recently discovered ability to inhibit the proteasome has additional implications for the development of antimalarial and anticancer therapeutics. We have conducted the saturation mutagenesis of Ala2 in the precursor peptide, TsrA, to examine which variants can be transformed into a mature thiostrepton analogue. Although the thiostrepton biosynthetic system is somewhat restrictive towards substitutions at the second residue, eight thiostrepton Ala2 analogues were isolated. The TsrA Ala2Ile and Ala2Val variants were largely channeled through an alternate processing pathway wherein the first residue of the core peptide, Ile1, is removed and the resulting thiostrepton analogues bear quinaldic acid macrocycles abridged by one residue. This is the first report revealing that quinaldic acid loop size is amenable to alteration during the course of thiostrepton biosynthesis. Both the antibacterial and proteasome inhibitory properties of the thiostrepton Ala2 analogues were examined. While the identity of the residue at the second position of the core peptide influences thiostrepton biosynthesis, our report suggests it may not be crucial for antibacterial and proteasome inhibitory properties of the full-length variants. In contrast, the contracted quinaldic acid loop can, to differing degrees, affect both types of biological activity. PMID:26630475

  2. Use of Mutagenesis, Genetic Mapping and Next Generation Transcriptomics to Investigate Insecticide Resistance Mechanisms

    PubMed Central

    Kalajdzic, Predrag; Oehler, Stefan; Reczko, Martin; Pavlidi, Nena; Vontas, John; Hatzigeorgiou, Artemis G.; Savakis, Charalambos

    2012-01-01

    Insecticide resistance is a worldwide problem with major impact on agriculture and human health. Understanding the underlying molecular mechanisms is crucial for the management of the phenomenon; however, this information often comes late with respect to the implementation of efficient counter-measures, particularly in the case of metabolism-based resistance mechanisms. We employed a genome-wide insertional mutagenesis screen to Drosophila melanogaster, using a Minos-based construct, and retrieved a line (MiT[w−]3R2) resistant to the neonicotinoid insecticide Imidacloprid. Biochemical and bioassay data indicated that resistance was due to increased P450 detoxification. Deep sequencing transcriptomic analysis revealed substantial over- and under-representation of 357 transcripts in the resistant line, including statistically significant changes in mixed function oxidases, peptidases and cuticular proteins. Three P450 genes (Cyp4p2, Cyp6a2 and Cyp6g1) located on the 2R chromosome, are highly up-regulated in mutant flies compared to susceptible Drosophila. One of them (Cyp6g1) has been already described as a major factor for Imidacloprid resistance, which validated the approach. Elevated expression of the Cyp4p2 was not previously documented in Drosophila lines resistant to neonicotinoids. In silico analysis using the Drosophila reference genome failed to detect transcription binding factors or microRNAs associated with the over-expressed Cyp genes. The resistant line did not contain a Minos insertion in its chromosomes, suggesting a hit-and-run event, i.e. an insertion of the transposable element, followed by an excision which caused the mutation. Genetic mapping placed the resistance locus to the right arm of the second chromosome, within a ∼1 Mb region, where the highly up-regulated Cyp6g1 gene is located. The nature of the unknown mutation that causes resistance is discussed on the basis of these results. PMID:22768270

  3. Mutagenesis and behavioral screening for altered circadian activity identifies the mouse mutant, Wheels.

    PubMed

    Pickard, G E; Sollars, P J; Rinchik, E M; Nolan, P M; Bucan, M

    1995-12-24

    The molecular processes underlying the generation of circadian behavior in mammals are virtually unknown. To identify genes that regulate or alter circadian activity rhythms, a mouse mutagenesis program was initiated in conjunction with behavioral screening for alterations in circadian period (tau), a fundamental property of the biological clock. Male mice of the inbred BALB/c strain, treated with the potent mutagen N-ethyl-N-nitrosourea were mated with wild-type hybrids. Wheel-running activity of approximately 300 male progeny was monitored for 6-10 weeks under constant dark (DD) conditions. The tau DD of a single mouse (#187) was longer than the population mean by more than three standard deviations (24.20 vs. 23.32 +/- 0.02 h; mean +/- S.E.M.; n = 277). In addition, mouse #187 exhibited other abnormal phenotypes, including hyperactive bi-directional circling/spinning activity and an abnormal response to light. Heterozygous progeny of the founder mouse, generated from outcrossings with wild-type C57BL/6J mice, displayed lengthened tau DD although approximately 20% of the animals showed no wheel-running activity despite being quite active. Under light:dark conditions, all animals displaying circling behavior that ran in the activity wheels exhibited robust wheel-running activity at lights-ON and these animals also showed enhanced wheel-running activity in constant light conditions. The genetic dissection of the complex behavior associated with this mutation was facilitated by the previously described genetic mapping of the mutant locus causing circling behavior, designated Wheels (Whl), to the subcentromeric portion of mouse chromosome 4. In this report, the same locus is shown to be responsible for the abnormal responses to light and presumably for the altered circadian behavior. Characterization of the gene altered in the novel Whl mutation will contribute to understanding the molecular elements involved in mammalian circadian regulation.

  4. DNA lesions, inducible DNA repair, and cell division: Three key factors in mutagenesis and carcinogenesis

    SciTech Connect

    Ames, B.N.; Shigenaga, M.K.; Gold, L.S.

    1993-12-01

    DNA lesions that escape repair have a certain probability of giving rise to mutations when the cell divides. Endogenous DNA damage is high: 10{sup 6} oxidative lesions are present per rat cell. An exogenous mutagen produces an increment in lesions over the background rate of endogenous lesions. The effectiveness of a particular lesion depends on whether it is excised by a DNA repair system and the probability that it gives rise to a mutation when the cell divides. When the cell divides, an unrepaired DNA lesion has a certain probability of giving rise to a mutation. Thus, an important factor in the mutagenic effect of an exogenous agent whether it is genotoxic or non-genotoxic, is the increment it causes over the background cell division rate (mitogenesis) in cells that appear to matter most in cancer, the stem cells, which are not on their way to being discarded. Increasing their cell division rate increases by high doses of chemicals. If both the rate of DNA lesions and cell division are increased, then there will be a multiplicative effect on mutagenesis (and carcinogenesis), for example, by high doses of a mutagen that also increases mitogenesis through cell killing. The defense system against reactive electrophilic mutagens, such as the glutathione transferases, are also almost all inducible and buffer cells against increments in active forms of chemicals that can cause DNA lesions. A variety of DNA repair defense systems, almost all inducible, buffer the cell against any increment in DNA lesions. Therefore, the effect of a particular chemical insult depends on the level of each defense, which in turn depends on the past history of exposure. Exogenous agents can influence the induction and effectiveness of these defenses. Defenses can be partially disabled by lack of particular micronutrients in the diet (e.g., antioxidants).

  5. Mapping the HLA-DO/HLA-DM complex by FRET and mutagenesis

    PubMed Central

    Yoon, Taejin; Macmillan, Henriette; Mortimer, Sarah E.; Jiang, Wei; Rinderknecht, Cornelia H.; Stern, Lawrence J.; Mellins, Elizabeth D.

    2012-01-01

    HLA-DO (DO) is a nonclassic class II heterodimer that inhibits the action of the class II peptide exchange catalyst, HLA-DM (DM), and influences DM localization within late endosomes and exosomes. In addition, DM acts as a chaperone for DO and is required for its egress from the endoplasmic reticulum (ER). These reciprocal functions are based on direct DO/DM binding, but the topology of DO/DM complexes is not known, in part, because of technical limitations stemming from DO instability. We generated two variants of recombinant soluble DO with increased stability [zippered DOαP11A (szDOv) and chimeric sDO-Fc] and confirmed their conformational integrity and ability to inhibit DM. Notably, we found that our constructs, as well as wild-type sDO, are inhibitory in the full pH range where DM is active (4.7 to ∼6.0). To probe the nature of DO/DM complexes, we used intermolecular fluorescence resonance energy transfer (FRET) and mutagenesis and identified a lateral surface spanning the α1 and α2 domains of szDO as the apparent binding site for sDM. We also analyzed several sDM mutants for binding to szDOv and susceptibility to DO inhibition. Results of these assays identified a region of DM important for interaction with DO. Collectively, our data define a putative binding surface and an overall orientation of the szDOv/sDM complex and have implications for the mechanism of DO inhibition of DM. PMID:22733780

  6. Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance.

    PubMed

    Zhang, Hongfang; Chong, Huiqing; Ching, Chi Bun; Jiang, Rongrong

    2012-05-01

    The naturally existing microbial hosts can rarely satisfy industrial requirements, thus there has always been an intense effort in strain engineering to meet the needs of these bioprocesses. Here, in this work, we want to prove the concept that engineering global transcription factor cAMP receptor protein (CRP) of Escherichia coli can improve cell phenotypes. CRP is one of the global regulatory proteins that can regulate the transcription of over 400 genes in E. coli. The target phenotype in this study is strain osmotolerance. Amino acid mutations were introduced to CRP by either error-prone PCR or DNA shuffling, and the random mutagenesis libraries were subjected to enrichment selection under NaCl stress. Five CRP mutants (MT1-MT5) were selected from the error-prone PCR libraries with enhanced osmotolerance. DNA shuffling technique was employed to generate mutant MT6 with MT1-MT5 as templates. All of these variants showed much better growth in the presence of NaCl compared to the wild type, and MT6 presented the best tolerance towards NaCl. In the presence of 0.9 M NaCl, the growth rate of MT6 is 0.113 h(-1), while that of WT is 0.077 h(-1). MT6 also exhibited resistance to other osmotic stressors, such as KCl, glucose, and sucrose. DNA microarray analysis showed that genes involved in colanic acid biosynthesis are up-regulated in the absence of salt stress, whereas carbohydrate metabolic genes are differentially expressed under NaCl stress when comparing MT6 to WT. Scanning electron microscopy images confirmed the elongation of both WT and MT6 when exposed to NaCl but the cell surface of MT6 was relatively smooth.

  7. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation.

    PubMed

    Kluckova, K; Sticha, M; Cerny, J; Mracek, T; Dong, L; Drahota, Z; Gottlieb, E; Neuzil, J; Rohlena, J

    2015-05-07

    Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.

  8. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation

    PubMed Central

    Kluckova, K; Sticha, M; Cerny, J; Mracek, T; Dong, L; Drahota, Z; Gottlieb, E; Neuzil, J; Rohlena, J

    2015-01-01

    Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy. PMID:25950479

  9. Conditional poliovirus mutants made by random deletion mutagenesis of infectious cDNA.

    PubMed Central

    Kirkegaard, K; Nelsen, B

    1990-01-01

    Small deletions were introduced into DNA plasmids bearing cDNA copies of Mahoney type 1 poliovirus RNA. The procedure used was similar to that of P. Hearing and T. Shenk (J. Mol. Biol. 167:809-822, 1983), with modifications designed to introduce only one lesion randomly into each DNA molecule. Methods to map small deletions in either large DNA or RNA molecules were employed. Two poliovirus mutants, VP1-101 and VP1-102, were selected from mutagenized populations on the basis of their host range phenotype, showing a large reduction in the relative numbers of plaques on CV1 and HeLa cells compared with wild-type virus. The deletions borne by the mutant genomes were mapped to the region encoding the amino terminus of VP1. That these lesions were responsible for the mutant phenotypes was substantiated by reintroduction of the sequenced lesions into a wild-type poliovirus cDNA by deoxyoligonucleotide-directed mutagenesis. The deletion of nucleotides encoding amino acids 8 and 9 of VP1 was responsible for the VP1-101 phenotype; the VP1-102 defect was caused by the deletion of the sequences encoding the first four amino acids of VP1. The peptide sequence at the VP1-VP3 proteolytic cleavage site was altered from glutamine-glycine to glutamine-methionine in VP1-102; this apparently did not alter the proteolytic cleavage pattern. The biochemical defects resulting from these mutations are discussed in the accompanying report. Images PMID:2152811

  10. First Streptococcus pyogenes signature-tagged mutagenesis screen identifies novel virulence determinants.

    PubMed

    Kizy, Anne E; Neely, Melody N

    2009-05-01

    The virulence of bacterial pathogens is a complex process that requires the dynamic expression of many genes for the pathogens to invade and circumvent host defenses, as well as to proliferate in vivo. In this study, we employed a large-scale screen, signature-tagged mutagenesis (STM), to identify Streptococcus pyogenes virulence genes important for pathogenesis within the host. Approximately 1,200 STM mutants were created and screened using the zebrafish infectious disease model. The transposon insertion site was identified for 29 of the 150 mutants that were considered attenuated for virulence. Previously reported streptococcal virulence genes, such as mga, hasA, amrA, smeZ, and two genes in the sil locus, were identified, confirming the utility of the model for revealing genes important for virulence. Multiple genes not previously implicated in virulence were also identified, including genes encoding putative transporters, hypothetical cytosolic proteins, and macrolide efflux pumps. The STM mutant strains display various levels of attenuation, and multiple separate insertions were identified in either the same gene or the same locus, suggesting that these factors are important for this type of acute, invasive infection. We further examined two such genes, silB and silC of a putative quorum-sensing regulon, and determined that they are significant virulence factors in our model of necrotizing fasciitis. sil locus promoter expression was examined under various in vitro conditions, as well as in zebrafish tissues, and was found to be differentially induced. This study was a unique investigation of S. pyogenes factors required for successful invasive infection.

  11. In vivo evidence for ribavirin-induced mutagenesis of the hepatitis E virus genome

    PubMed Central

    Todt, Daniel; Gisa, Anett; Radonic, Aleksandar; Nitsche, Andreas; Behrendt, Patrick; Suneetha, Pothakamuri Venkata; Pischke, Sven; Bremer, Birgit; Brown, Richard J P; Manns, Michael P; Cornberg, Markus; Bock, C Thomas; Steinmann, Eike; Wedemeyer, Heiner

    2016-01-01

    Objective Hepatitis E virus (HEV) infection can take chronic courses in immunocompromised patients potentially leading to liver cirrhosis and liver failure. Ribavirin (RBV) is currently the only treatment option for many patients, but treatment failure can occur which has been associated with the appearance of a distinct HEV polymerase mutant (G1634R). Here, we performed a detailed analysis of HEV viral intrahost evolution during chronic hepatitis E infections. Design Illumina deep sequencing was performed for the detection of intrahost variation in the HEV genome of chronically infected patients. Novel polymerase mutants were investigated in vitro using state-of-the-art HEV cell culture models. Results Together, these data revealed that (1) viral diversity differed markedly between patients but did not show major intraindividual short-term variations in untreated patients with chronic hepatitis E, (2) RBV therapy was associated with an increase in viral heterogeneity which was reversible when treatment was stopped, (3) the G1634R mutant was detectable as a minor population prior to therapy in patients who subsequently failed to achieve a sustained virological response to RBV therapy and (4) in addition to G1634R further dominant variants in the polymerase region emerged, impacting HEV replication efficiency in vitro. Conclusions In summary, this first investigation of intrahost HEV population evolution indicates that RBV causes HEV mutagenesis in treated patients and that an emergence of distinct mutants within the viral population occurs during RBV therapy. We also suggest that next-generation sequencing could be useful to guide personalised antiviral strategies. PMID:27222534

  12. Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma

    PubMed Central

    Kodama, Takahiro; Newberg, Justin Y.; Kodama, Michiko; Rangel, Roberto; Yoshihara, Kosuke; Tien, Jean C.; Parsons, Pamela H.; Wu, Hao; Finegold, Milton J.; Copeland, Neal G.; Jenkins, Nancy A.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets. PMID:27247392

  13. Identification of functional regions in the Rhodospirillum rubrum L-asparaginase by site-directed mutagenesis.

    PubMed

    Pokrovskaya, M V; Aleksandrova, S S; Pokrovsky, V S; Veselovsky, A V; Grishin, D V; Abakumova, O Yu; Podobed, O V; Mishin, A A; Zhdanov, D D; Sokolov, N N

    2015-03-01

    Site-directed mutagenesis of Rhodospirillum rubrum L-asparaginase (RrA) was performed in order to identify sites of the protein molecule important for its therapeutic and physico-chemical properties. Ten multipoint mutant genes were obtained, and five recombinant RrA variants were expressed in E. coli BL21(DE3) cells and isolated as functionally active highly purified proteins. Protein purification was performed using Q-Sepharose and DEAE-Toyopearl chromatography. Overall yield of the active enzymes was 70-80 %, their specific activity at pH 7.4 and 37 °C varied of 140-210 U/mg. L-Glutaminase activity did not exceed 0.01 % of L-asparaginase activity. All RrA mutants showed maximum enzyme activity at pH 9.3-9.5 and 53-58 °C. Km and Vmax values for L-asparagine were evaluated for all mutants. Mutations G86P, D88H, M90K (RrAH), G121L, D123A (RrАI) caused the loss of enzyme activity and confirmed the importance of these sites in the implementation of catalytic functions. Removal of four residues from C-terminal area of the enzyme (RrAK) resulted in the enzyme instability. Mutations D60K, F61L(RrАD), and R118H, G120R(RrАJ) led to the improvement of kinetic parameters and enzyme stabilization. Substitutions E149R, V150P (RrАB) improved antineoplastic and cytotoxic activity of the RrA. A64V, E67K substitutions, especially in combination with E149R, V150P (RrАE), considerably destabilized recombinant enzyme.

  14. A Versatile Platform for Single- and Multiple-Unnatural Amino Acid Mutagenesis in Escherichia coli

    PubMed Central

    Chatterjee, Abhishek; Sun, Sophie B.; Furman, Jennifer L.; Xiao, Han; Schultz, Peter G.

    2013-01-01

    To site-specifically incorporate an unnatural amino acid (UAA) into target proteins in Escherichia coli, we use a suppressor plasmid that provides an engineered suppressor tRNA and an aminoacyl-tRNA synthetase (aaRS) specific for the UAA of interest. The continuous drive to further improve UAA incorporation efficiency in E. coli has resulted in several generations of suppressor plasmids. Here we describe a new, highly efficient suppressor plasmid, pUltra, harboring a single copy each of the tRNA and aaRS expression cassettes that exhibits higher suppression activity than its predecessors. This system is able to efficiently incorporate up to three UAAs within the same protein at levels up to 30% of the level of wild-type protein expression. Its unique origin of replication (CloDF13) and antibiotic resistance marker (spectinomycin) allow pUltra to be used in conjunction with the previously reported pEVOL suppressor plasmid, each encoding a distinct tRNA/aaRS pair, to simultaneously insert two different UAAs into the same protein. We demonstrate the utility of this system by efficiently incorporating two bio-orthogonal UAAs containing keto and azido side chains into ketosteroid isomerase and subsequently derivatizing these amino acid residues with two distinct fluorophores, capable of Förster resonance energy transfer interaction. Finally, because of its minimal composition, two different tRNA/aaRS pairs were encoded in pUltra, allowing the generation of a single plasmid capable of dual suppression. The high suppression efficiency and the ability to harbor multiple tRNA/aaRS pairs make pUltra a useful system for conducting single- and multiple-UAA mutagenesis in E. coli. PMID:23379331

  15. A Regulatory Role for NBS1 in Strand-Specific Mutagenesis during Somatic Hypermutation

    PubMed Central

    Du, Likun; Dunn-Walters, Deborah K.; Chrzanowska, Krystyna H.; Stankovic, Tanja; Kotnis, Ashwin; Li, Xin; Lu, Jiayi; Eggertsen, Gösta; Brittain, Claire; Popov, Sergey W.; Gennery, Andrew R.; Taylor, A. Malcolm R.; Pan-Hammarström, Qiang

    2008-01-01

    Activation-induced cytidine deaminase (AID) is believed to initiate somatic hypermutation (SHM) by deamination of deoxycytidines to deoxyuridines within the immunoglobulin variable regions genes. The deaminated bases can subsequently be replicated over, processed by base excision repair or mismatch repair, leading to introduction of different types of point mutations (G/C transitions, G/C transversions and A/T mutations). It is evident that the base excision repair pathway is largely dependent on uracil-DNA glycosylase (UNG) through its uracil excision activity. It is not known, however, which endonuclease acts in the step immediately downstream of UNG, i.e. that cleaves at the abasic sites generated by the latter. Two candidates have been proposed, an apurinic/apyrimidinic endonuclease (APE) and the Mre11-Rad50-NBS1 complex. The latter is intriguing as this might explain how the mutagenic pathway is primed during SHM. We have investigated the latter possibility by studying the in vivo SHM pattern in B cells from ataxia-telangiectasia-like disorder (Mre11 deficient) and Nijmegen breakage syndrome (NBS1 deficient) patients. Our results show that, although the pattern of mutations in the variable heavy chain (VH) genes was altered in NBS1 deficient patients, with a significantly increased number of G (but not C) transversions occurring in the SHM and/or AID targeting hotspots, the general pattern of mutations in the VH genes in Mre11 deficient patients was only slightly altered, with an increased frequency of A to C transversions. The Mre11-Rad50-NBS1 complex is thus unlikely to be the major nuclease involved in cleavage of the abasic sites during SHM, whereas NBS1 might have a specific role in regulating the strand-biased repair during phase Ib mutagenesis. PMID:18575580

  16. Identification and cloning of an Erwinia carotovora subsp. carotovora bacteriocin regulator gene by insertional mutagenesis.

    PubMed

    Chuang, D Y; Kyeremeh, A G; Gunji, Y; Takahara, Y; Ehara, Y; Kikumoto, T

    1999-03-01

    Avirulent Erwinia carotovora subsp. carotovora CGE234-M403 produces two types of bacteriocin. For the purpose of cloning the bacteriocin genes of strain CGE234M403, a spontaneous rifampin-resistant mutant of this strain, M-rif-11-2, was isolated. By Tn5 insertional mutagenesis using M-rif-11-2, a mutant, TM01A01, which produces the high-molecular-weight bacteriocin but not the low-molecular-weight bacteriocin was obtained. By thermal asymmetric interlaced PCR, the DNA sequence from the Tn5 insertion site and the DNA sequence of a contiguous 1,280-bp region were determined. One complete open reading frame (ORF), designated ORF2, was identified within the sequenced fragment. The 3' end of another ORF, ORF1, was located upstream of ORF2. A noncoding region and a putative promoter were located between ORF1 and ORF2. Downstream from ORF2, the 5' end of another ORF (ORF3) was found. Deduction from the nucleotide sequence indicated that ORF2 encodes a protein of 99 amino acids, which showed high homology with Yersinia enterocolitica Yrp, a regulator of enterotoxin (Y-ST) production; Escherichia coli host factor 1, required for Qbeta-replicase; and Azorhizobium caulinodans NrfA, required for the expression of nifA. ORF2 was designated brg, bacteriocin regulator gene. A fragment containing ORF2 and its promoter was amplified and cloned into pBR322 and pHSG415r, and the recombinant plasmids, pBYL1 and pHYL1, were transferred into E. coli DH5. Plasmid pBYL1 was reisolated and transferred into the insertion mutant TM01A01. Transformants carrying the plasmid, which was reisolated and designated pBYL1, re-produced the low-molecular-weight bacteriocin.

  17. Characterization and Transposon Mutagenesis of the Maize (Zea mays) Pho1 Gene Family.

    PubMed

    Salazar-Vidal, M Nancy; Acosta-Segovia, Edith; Sánchez-León, Nidia; Ahern, Kevin R; Brutnell, Thomas P; Sawers, Ruairidh J H

    2016-01-01

    Phosphorus is an essential nutrient for all plants, but also one of the least mobile, and consequently least available, in the soil. Plants have evolved a series of molecular, metabolic and developmental adaptations to increase the acquisition of phosphorus and to maximize the efficiency of use within the plant. In Arabidopsis (Arabidopsis thaliana), the AtPHO1 protein regulates and facilitates the distribution of phosphorus. To investigate the role of PHO1 proteins in maize (Zea mays), the B73 reference genome was searched for homologous sequences, and four genes identified that were designated ZmPho1;1, ZmPho1;2a, ZmPho1;2b and ZmPho1;3. ZmPho1;2a and ZmPho1;2b are the most similar to AtPHO1, and represent candidate co-orthologs that we hypothesize to have been retained following whole genome duplication. Evidence was obtained for the production of natural anti-sense transcripts associated with both ZmPho1;2a and ZmPho1;2b, suggesting the possibility of regulatory crosstalk between paralogs. To characterize functional divergence between ZmPho1;2a and ZmPho1;2b, a program of transposon mutagenesis was initiated using the Ac/Ds system, and, here, we report the generation of novel alleles of ZmPho1;2a and ZmPho1;2b.

  18. Phenotypic and biochemical profile changes in calendula (Calendula officinalis L.) plants treated with two chemical mutagenesis.

    PubMed

    El-Nashar, Y I; Asrar, A A

    2016-05-06

    Chemical mutagenesis is an efficient tool used in mutation-breeding programs to improve the vital characters of the floricultural crops. This study aimed to estimate the effects of different concentrations of two chemical mutagens; sodium azide (SA) and diethyl sulfate (DES). The vegetative growth and flowering characteristics in two generations (M1 and M2) of calendula plants were investigated. Seeds were treated with five different concentrations of SA and DES (at the same rates) of 1000, 2000, 3000, 4000, and 5000 ppm, in addition to a control treatment of 0 ppm. Results showed that lower concentrations of SA mutagen had significant effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements in plants of both generations. Calendula plants tended to flower earlier under low mutagen concentrations (1000 ppm), whereas higher concentrations delayed flowering significantly. Positive results on seed germination, plant height, number of branches, plant fresh weight, and leaf area were observed in the M2-generation at lower concentrations of SA (1000 ppm), as well as at 4000 ppm DES on number of leaves and inflorescences. The highest total soluble protein was detected at the concentrations of 1000 ppm SA and 2000 ppm DES. DES showed higher average of acid phosphatase activity than SA. Results indicated that lower concentrations of SA and DES mutagens had positive effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements. Thus, lower mutagen concentrations could be recommended for better floral and physio-chemical performance.

  19. Comparative mutagenesis and interaction between near-ultraviolet (313- to 405-nm) and far-ultraviolet (254-nm) radiation in Escherichia coli strains with differing repair capabilities.

    PubMed Central

    Turner, M A; Webb, R B

    1981-01-01

    Comparative mutagenesis and possible synergistic interaction between broad-spectrum (313- to 405-nm) near-ultraviolet (black light bulb [BLB]) radiation and 254-nm radiation were studied in Escherichia coli strains WP2 (wild type), WP2s (uvrA), WP10 (recA), WP6 (polA), WP6s (polA uvrA), WP100 (uvrA recA), and WP5 (lexA). With BLB radiation, strains WP2s and WP6s demonstrated a high level of mutagenesis, whereas strains WP2, WP5, WP6, WP10, and WP100 did not demonstrate significant mutagenesis. In contrast, 254-nm radiation was mutagenic in strains WP2, WP2s, WP6, and WP6s, but strains WP5, WP10, and WP100 were not significantly mutated. The absence of mutagenesis by BLB radiation in lexA and recA strains WP10, WP5, and WP100 suggests that lex+ rec+ repair may play a major role in mutagenesis by both BLB and 254-nm radiation. The hypothesis that BLB radiation selectively inhibits rec+ lex+ repair was tested by sequential BLB-254-nm radiation. With strain WP2, a fluence of 30 J/m2 at 254 nm induced trp+ revertants at a frequency of 15 X 10(-6). However, when 10(5) J/m2 or more of BLB radiation preceded the 254-nm exposure, no trp+ revertants could be detected. A similar inhibition of 254-nm mutagenesis was observed with strain WP6 (polA). However, strains WP2s (uvrA) and wP6s (polA uvrA) showed enhanced 254-nm mutagenesis when a prior exposure to BLB radiation was given. PMID:7021529

  20. Mutagenesis-Mediated Virus Extinction: Virus-Dependent Effect of Viral Load on Sensitivity to Lethal Defection

    PubMed Central

    Moreno, Héctor; Tejero, Héctor; de la Torre, Juan Carlos; Domingo, Esteban; Martín, Verónica

    2012-01-01

    Background Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI) on progeny production of several RNA viruses under enhanced mutagenesis. Results The effect of the mutagenic base analogue 5-fluorouracil (FU) on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV) can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI), or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV), but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV) and encephalomyocarditis virus (EMCV). The increase in mutation frequency and Shannon entropy (mutant spectrum complexity) as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results. Conclusions (i) Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii) This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii) The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv) LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v) The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development. PMID:22442668

  1. Escherichia coli UmuC active site mutants: effects on translesion DNA synthesis, mutagenesis and cell survival

    PubMed Central

    Kuban, Wojciech; Vaisman, Alexandra; McDonald, John P.; Karata, Kiyonobu; Yang, Wei; Goodman, Myron F.; Woodgate, Roger

    2012-01-01

    Escherichia coli polymerase V (pol V/UmuD'2C) is a low-fidelity DNA polymerase that has recently been shown to avidly incorporate ribonucleotides (rNTPs) into undamaged DNA. The fidelity and sugar selectivity of pol V can be modified by missense mutations around the “steric gate” of UmuC. Here, we analyze the ability of three steric gate mutants of UmuC to facilitate translesion DNA synthesis (TLS) of a cyclobutane pyrimidine dimer (CPD) in vitro, and to promote UV-induced mutagenesis and cell survival in vivo. The pol V (UmuC_F10L) mutant discriminates against rNTP and incorrect dNTP incorporation much better than wild-type pol V and although exhibiting a reduced ability to bypass a CPD in vitro, does so with high-fidelity and consequently produces minimal UV-induced mutagenesis in vivo. In contrast, pol V (UmuC_Y11A) readily misincorporates both rNTPs and dNTPs during efficient TLS of the CPD in vitro. However, cells expressing umuD'C (Y11A) were considerably more UV-sensitive and exhibited lower levels of UV-induced mutagenesis than cells expressing wild-type umuD'C or umuD'C (Y11F). We propose that the increased UV-sensitivity and reduced UV-mutability of umuD'C (Y11A) is due to excessive incorporation of rNTPs during TLS that are subsequently targeted for repair, rather than an inability to traverse UV-induced lesions. PMID:22784977

  2. Antagonism of ultraviolet-light mutagenesis by the methyl-directed mismatch-repair system of Escherichia coli.

    PubMed Central

    Liu, H; Hewitt, S R; Hays, J B

    2000-01-01

    Previous studies have demonstrated that the Escherichia coli MutHLS mismatch-repair system can process UV-irradiated DNA in vivo and that the human MSH2.MSH6 mismatch-repair protein binds more strongly in vitro to photoproduct/base mismatches than to "matched" photoproducts in DNA. We tested the hypothesis that mismatch repair directed against incorrect bases opposite photoproducts might reduce UV mutagenesis, using two alleles at E. coli lacZ codon 461, which revert, respectively, via CCC --> CTC and CTT --> CTC transitions. F' lacZ targets were mated from mut(+) donors into mutH, mutL, or mutS recipients, once cells were at substantial densities, to minimize spontaneous mutation prior to irradiation. In umu(+) mut(+) recipients, a range of UV fluences induced lac(+) revertant frequencies of 4-25 x 10(-8); these frequencies were consistently 2-fold higher in mutH, mutL, or mutS recipients. Since this effect on mutation frequency was unaltered by an Mfd(-) defect, it appears not to involve transcription-coupled excision repair. In mut(+) umuC122::Tn5 bacteria, UV mutagenesis (at 60 J/m(2)) was very low, but mutH or mutL or mutS mutations increased reversion of both lacZ alleles roughly 25-fold, to 5-10 x 10(-8). Thus, at UV doses too low to induce SOS functions, such as Umu(2)'D, most incorrect bases opposite occasional photoproducts may be removed by mismatch repair, whereas in heavily irradiated (SOS-induced) cells, mismatch repair may only correct some photoproduct/base mismatches, so UV mutagenesis remains substantial. PMID:10655206

  3. Bidirectional promoter trapping T-DNA for insertional mutagenesis in Verticillium dahliae.

    PubMed

    Deng, Sheng; Wang, Cai-yue; Zhang, Xin; Lin, Ling

    2014-07-01

    Transfer DNA (T-DNA)-based random insertional mutagenesis is a universal forward genetic approach for gene identification and cloning in many phytopathogenic fungi. In a large number of randomly selected transformants, screening for mutants with a specific phenotype is laborious, especially for pathogenicity-defective mutants. To accelerate mutant screening and gene identification, a bidirectional promoter-trapping Ti binary vector, 1300-bisGFP-hyg, was constructed and deployed in this study. More than 6000 Verticillium dahliae transformants were obtained by the mediation of Agrobacterium tumefaciens carrying the vector. One thousand randomly selected transformants were cultured on Czapek-Dox and on Czapek-Dox plus cotton root extract media plates. The cultured transformants with green fluorescent protein (GFP) expression or changes in phenotype were selected and used in virulence or promoter-trapping assays. Based on the virulence assay of 60 transformants, the pathogenicity of 17 of these mutants was compromised. Ten pathogenicity-defective mutants were found with GFP expression, and 6 with expression in Czapek-Dox plus cotton root extract media specifically. Using TAIL-PCR (thermal asymmetric interlaced polymerase chain reaction), the T-DNA insertion sites were identified in 8 GFP-expressing transformants, including 5 pathogenicity-defective mutants and 3 unaffected transformants. Promoters of 6 genes were successfully trapped using the T-DNA method in this study. The nonpathogenic transformant 24C9 was the subject of additional investigation. It displayed strong GFP expression on water agar medium supplemented with cotton root extracts and on cotton seedling stems. The results obtained by Southern blot and quantitative real-time PCR confirmed that the transcription level of VdUGPU (encoding UTP-glucose-1-phosphate uridylyltransferase) was significantly reduced owing to T-DNA insertion in the gene promoter region. These results indicate that the bidirectional

  4. Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis.

    PubMed

    Yu, Mina; Yu, Junjie; Hu, Jiankun; Huang, Lei; Wang, Yahui; Yin, Xiaole; Nie, Yafeng; Meng, Xiangkun; Wang, Weiduo; Liu, Yongfeng

    2015-03-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) is becoming a popular effective system as an insertional mutagenesis tool in filamentous fungi. To gain more insight into the cellular and molecular mechanisms in the pathogenesis of Ustilaginoidea virens, the causal agent of rice false smut disease, a T-DNA insertion mutant library of U. virens was established using ATMT. We optimized a range of conditions to improve the transformation efficiency. Transformants were most effectively obtained when the optimal co-cultivation time is 72h, with 50μM AS in medium and 100μl A. tumefaciens for co-cultivation, leading to the production of 160-185 hygromycin B resistant transformants per 1×10(5) conidia. Southern blot analysis indicated that 58.14% of transformants had a single T-DNA copy. Among 5600 transformants tested for virulence, 37 mutants with reproducible pathogenic defects were obtained. The flanking sequences of three avirulent tranformants (B20, B1015 and B1465) and two pathogenicity-reduced transformants (B726 and B785) were amplified by high-efficiency thermal asymmetric interlaced PCR. Sequence analyses revealed that single T-DNA insertion in mutant B20 targeted the coding region of a gene encoding a protein highly similar to SUN family protein, and in mutant B726 targeted upstream of a gene with unknown function. The two T-DNA insertion sites in mutant B785 were found in the coding region of a gene encoding C6 transcription factor, but failed in amplified flanking sequence of another T-DNA. Chromosomal rearrangement occurred in the genome of mutant B1016 and B1465 with single T-DNA insertion. Among avirulent mutants, B20 showed altered colony growth and pigmentation. The T-DNA insert in B20 was detected in the coding region of a gene named UvSUN2. Morphophysiological characterization analysis suggested that UvSUN2 might be a virulence factor, and possibly required for proper fungal growth, cell wall construction, and stress responses in U. virens

  5. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice

    SciTech Connect

    Michaud III, Edward J; Culiat, Cymbeline T; Klebig, Mitch; Barker, Gene; Cain, K T; Carpenter, Debra J S; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn Wallace; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert Edward; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann; Rinchik, Eugene M; Johnson, Dabney K

    2005-01-01

    Background: Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results: We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions: The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations.

  6. Astrobiological aspects of the mutagenesis of cosmic radiation on bacterial spores.

    PubMed

    Moeller, Ralf; Reitz, Günther; Berger, Thomas; Okayasu, Ryuichi; Nicholson, Wayne L; Horneck, Gerda

    2010-06-01

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. In this study, spores of B. subtilis were used to study the effects of galactic cosmic radiation (GCR) on spore survival and induced mutagenesis. In interplanetary space, outside Earth's protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galactic sources and from the Sun, which consists of photons (X-rays, gamma rays), protons, electrons, and heavy, high-energy charged (HZE) particles. B. subtilis spores were irradiated with X-rays and accelerated heavy ions (helium, carbon, silicon and iron) in the linear energy transfer (LET) range of 2-200 keV/mum. Spore survival and the rate of the induced mutations to rifampicin resistance (Rif(R)) depended on the LET of the applied species of ions and radiation, whereas the exposure to high-energy charged particles, for example, iron ions, led to a low level of spore survival and increased frequency of mutation to Rif(R) compared to low-energy charged particles and X-rays. Twenty-one Rif(R) mutant spores were isolated from X-ray and heavy ion-irradiated samples. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the beta-subunit of RNA polymerase. Most mutations were primarily found in Cluster I and were predicted to result in amino acid changes at residues Q469L, A478V, and H482P/Y. Four previously undescribed alleles in B. subtilis rpoB were isolated: L467P, R484P, and A488P in Cluster I and H507R in the spacer between Clusters I and II. The spectrum of Rif(R) mutations arising from spores exposed to components of GCR is distinctly different from those of spores exposed to simulated space vacuum and martian conditions.

  7. Enhancing the Thermostability of Serratia plymuthica Sucrose Isomerase Using B-Factor-Directed Mutagenesis.

    PubMed

    Duan, Xuguo; Cheng, Sheng; Ai, Yixin; Wu, Jing

    2016-01-01

    The sucrose isomerase of Serratia plymuthica AS9 (AS9 PalI) was expressed in Escherichia coli BL21(DE3) and characterized. The half-life of AS9 PalI was 20 min at 45°C, indicating that it was unstable. In order to improve its thermostability, six amino acid residues with higher B-factors were selected as targets for site-directed mutagenesis, and six mutants (E175N, K576D, K174D, G176D, S575D and N577K) were designed using the RosettaDesign server. The E175N and K576D mutants exhibited improved thermostability in preliminary experiments, so the double mutant E175N/K576D was constructed. These three mutants (E175N, K576D, E175N/K576D) were characterized in detail. The results indicate that the three mutants exhibit a slightly increased optimal temperature (35°C), compared with that of the wild-type enzyme (30°C). The mutants also share an identical pH optimum of 6.0, which is similar to that of the wild-type enzyme. The half-lives of the E175N, K576D and E175N/K576D mutants were 2.30, 1.78 and 7.65 times greater than that of the wild-type enzyme at 45°C, respectively. Kinetic studies showed that the Km values for the E175N, K576D and E175N/K576D mutants decreased by 6.6%, 2.0% and 11.0%, respectively, and their kcat/Km values increased by 38.2%, 4.2% and 19.4%, respectively, compared with those of the wild-type enzyme. After optimizing the conditions for isomaltulose production at 45°C, we found that the E175N, K576D and E175N/K576D mutants displayed slightly improved isomaltulose yields, compared with the wild-type enzyme. Therefore, the mutants produced in this study would be more suitable for industrial biosynthesis of isomaltulose.

  8. Enhancing the Thermostability of Serratia plymuthica Sucrose Isomerase Using B-Factor-Directed Mutagenesis

    PubMed Central

    Ai, Yixin; Wu, Jing

    2016-01-01

    The sucrose isomerase of Serratia plymuthica AS9 (AS9 PalI) was expressed in Escherichia coli BL21(DE3) and characterized. The half-life of AS9 PalI was 20 min at 45°C, indicating that it was unstable. In order to improve its thermostability, six amino acid residues with higher B-factors were selected as targets for site-directed mutagenesis, and six mutants (E175N, K576D, K174D, G176D, S575D and N577K) were designed using the RosettaDesign server. The E175N and K576D mutants exhibited improved thermostability in preliminary experiments, so the double mutant E175N/K576D was constructed. These three mutants (E175N, K576D, E175N/K576D) were characterized in detail. The results indicate that the three mutants exhibit a slightly increased optimal temperature (35°C), compared with that of the wild-type enzyme (30°C). The mutants also share an identical pH optimum of 6.0, which is similar to that of the wild-type enzyme. The half-lives of the E175N, K576D and E175N/K576D mutants were 2.30, 1.78 and 7.65 times greater than that of the wild-type enzyme at 45°C, respectively. Kinetic studies showed that the Km values for the E175N, K576D and E175N/K576D mutants decreased by 6.6%, 2.0% and 11.0%, respectively, and their kcat/Km values increased by 38.2%, 4.2% and 19.4%, respectively, compared with those of the wild-type enzyme. After optimizing the conditions for isomaltulose production at 45°C, we found that the E175N, K576D and E175N/K576D mutants displayed slightly improved isomaltulose yields, compared with the wild-type enzyme. Therefore, the mutants produced in this study would be more suitable for industrial biosynthesis of isomaltulose. PMID:26886729

  9. Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics.

    PubMed

    Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong

    2015-04-05

    Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-71 5 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the

  10. Astrobiological Aspects of the Mutagenesis of Cosmic Radiation on Bacterial Spores

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Reitz, Günther; Berger, Thomas; Okayasu, Ryuichi; Nicholson, Wayne L.; Horneck, Gerda

    2010-06-01

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. In this study, spores of B. subtilis were used to study the effects of galactic cosmic radiation (GCR) on spore survival and induced mutagenesis. In interplanetary space, outside Earth's protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galactic sources and from the Sun, which consists of photons (X-rays, γ rays), protons, electrons, and heavy, high-energy charged (HZE) particles. B. subtilis spores were irradiated with X-rays and accelerated heavy ions (helium, carbon, silicon and iron) in the linear energy transfer (LET) range of 2-200 keV/μm. Spore survival and the rate of the induced mutations to rifampicin resistance (RifR) depended on the LET of the applied species of ions and radiation, whereas the exposure to high-energy charged particles, for example, iron ions, led to a low level of spore survival and increased frequency of mutation to RifR compared to low-energy charged particles and X-rays. Twenty-one RifR mutant spores were isolated from X-ray and heavy ion-irradiated samples. Nucleotide sequencing located the RifR mutations in the rpoB gene encoding the β-subunit of RNA polymerase. Most mutations were primarily found in Cluster I and were predicted to result in amino acid changes at residues Q469L, A478V, and H482P/Y. Four previously undescribed alleles in B. subtilis rpoB were isolated: L467P, R484P, and A488P in Cluster I and H507R in the spacer between Clusters I and II. The spectrum of RifR mutations arising from spores exposed to components of GCR is distinctly different from those of spores exposed to simulated space vacuum and martian conditions.

  11. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics.

    PubMed

    Smith, Everett Clinton; Blanc, Hervé; Surdel, Matthew C; Vignuzzi, Marco; Denison, Mark R

    2013-08-01

    No therapeutics or vaccines currently exist for human coronaviruses (HCoVs). The Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) epidemic in 2002-2003, and the recent emergence of Middle East Respiratory Syndrome coronavirus (MERS-CoV) in April 2012, emphasize the high probability of future zoonotic HCoV emergence causing severe and lethal human disease. Additionally, the resistance of SARS-CoV to ribavirin (RBV) demonstrates the need to define new targets for inhibition of CoV replication. CoVs express a 3'-to-5' exoribonuclease in nonstructural protein 14 (nsp14-ExoN) that is required for high-fidelity replication and is conserved across the CoV family. All genetic and biochemical data support the hypothesis that nsp14-ExoN has an RNA proofreading function. Thus, we hypothesized that ExoN is responsible for CoV resistance to RNA mutagens. We demonstrate that while wild-type (ExoN+) CoVs were resistant to RBV and 5-fluorouracil (5-FU), CoVs lacking ExoN activity (ExoN-) were up to 300-fold more sensitive. While the primary antiviral activity of RBV against CoVs was not mutagenesis, ExoN- CoVs treated with 5-FU demonstrated both enhanced sensitivity during multi-cycle replication, as well as decreased specific infectivity, consistent with 5-FU functioning as a mutagen. Comparison of full-genome next-generation sequencing of 5-FU treated SARS-CoV populations revealed a 16-fold increase in the number of mutations within the ExoN- population as compared to ExoN+. Ninety percent of these mutations represented A:G and U:C transitions, consistent with 5-FU incorporation during RNA synthesis. Together our results constitute direct evidence that CoV ExoN activity provides a critical proofreading function during virus replication. Furthermore, these studies identify ExoN as the first viral protein distinct from the RdRp that determines the sensitivity of RNA viruses to mutagens. Finally, our results show the importance of ExoN as a target for inhibition

  12. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.

    PubMed

    Tran, Thuy T; Mamo, Gashaw; Búxo, Laura; Le, Nhi N; Gaber, Yasser; Mattiasson, Bo; Hatti-Kaul, Rajni

    2011-07-10

    Site-directed mutagenesis of a thermostable alkaline phytase from Bacillus sp. MD2 was performed with an aim to increase its specific activity and activity and stability in an acidic environment. The mutation sites are distributed on the catalytic surface of the enzyme (P257R, E180N, E229V and S283R) and in the active site (K77R, K179R and E227S). Selection of the residues was based on the idea that acid active phytases are more positively charged around their catalytic surfaces. Thus, a decrease in the content of negatively charged residues or an increase in the positive charges in the catalytic region of an alkaline phytase was assumed to influence the enzyme activity and stability at low pH. Moreover, widening of the substrate-binding pocket is expected to improve the hydrolysis of substrates that are not efficiently hydrolysed by wild type alkaline phytase. Analysis of the phytase variants revealed that E229V and S283R mutants increased the specific activity by about 19% and 13%, respectively. Mutation of the active site residues K77R and K179R led to severe reduction in the specific activity of the enzyme. Analysis of the phytase mutant-phytate complexes revealed increase in hydrogen bonding between the enzyme and the substrate, which might retard the release of the product, resulting in decreased activity. On the other hand, the double mutant (K77R-K179R) phytase showed higher stability at low pH (pH 2.6-3.0). The E227S variant was optimally active at pH 5.5 (in contrast to the wild type enzyme that had an optimum pH of 6) and it exhibited higher stability in acidic condition. This mutant phytase, displayed over 80% of its initial activity after 3h incubation at pH 2.6 while the wild type phytase retained only about 40% of its original activity. Moreover, the relative activity of this mutant phytase on calcium phytate, sodium pyrophosphate and p-nitro phenyl phosphate was higher than that of the wild type phytase.

  13. Improving the Thermostability and Catalytic Efficiency of Bacillus deramificans Pullulanase by Site-Directed Mutagenesis

    PubMed Central

    Duan, Xuguo; Chen, Jian

    2013-01-01

    Pullulanase (EC 3.2.1.41) is a well-known starch-debranching enzyme. Its instability and low catalytic efficiency are the major factors preventing its widespread application. To address these issues, Asp437 and Asp503 of the pullulanase from Bacillus deramificans were selected in this study as targets for site-directed mutagenesis based on a structure-guided consensus approach. Four mutants (carrying the mutations D503F, D437H, D503Y, and D437H/D503Y) were generated and characterized in detail. The results showed that the D503F, D437H, and D503Y mutants had an optimum temperature of 55°C and a pH optimum of 4.5, similar to that of the wild-type enzyme. However, the half-lives of the mutants at 60°C were twice as long as that of the wild-type enzyme. In addition, the D437H/D503Y double mutant displayed a larger shift in thermostability, with an optimal temperature of 60°C and a half-life at 60°C of more than 4.3-fold that of the wild-type enzyme. Kinetic studies showed that the Km values for the D503F, D437H, D503Y, and D437H/D503Y mutants decreased by 7.1%, 11.4%, 41.4%, and 45.7% and the Kcat/Km values increased by 10%, 20%, 140%, and 100%, respectively, compared to those of the wild-type enzyme. Mechanisms that could account for these enhancements were explored. Moreover, in conjunction with the enzyme glucoamylase, the D503Y and D437H/D503Y mutants exhibited an improved reaction rate and glucose yield during starch hydrolysis compared to those of the wild-type enzyme, confirming the enhanced properties of the mutants. The mutants generated in this study have potential applications in the starch industry. PMID:23624477

  14. Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong

    2015-04-01

    Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-715 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the

  15. Structure-function studies on human retinol-binding protein using site-directed mutagenesis.

    PubMed Central

    Sivaprasadarao, A; Findlay, J B

    1994-01-01

    Retinol-binding protein (RBP) transports vitamin A in the plasma. It consists of eight anti-parallel beta-strands (A to H) that fold to form an orthogonal barrel. The loops connecting the strands A and B, C and D, and E and F form the entrance to the binding site in the barrel. The retinol molecule is found deep inside this barrel. Apart from its specific interaction with retinol, RBP is involved in two other molecular-recognition properties, that is it binds to transthyretin (TTR), another serum protein, and to a cell-surface receptor. Using site-directed mutagenesis, specific changes were made to the loop regions of human RBP and the resultant mutant proteins were tested for their ability to bind to retinol, to TTR and to the RBP receptor. While all the variants retained their ability to bind retinol, that in which residues 92 to 98 of the loop E-F were deleted completely lost its ability to interact with TTR, but retained some binding activity for the receptor. In contrast, the double mutant in which leucine residues at positions 63 and 64 of the loop C-D were changed to arginine and serine respectively partially retained its TTR-binding ability, but completely lost its affinity for the RBP receptor. Mutation of Leu-35 of loop A-B to valine revealed no apparent effect on any of the binding activities of RBP. However, substitution of leucine for proline at position 35 markedly reduced the affinity of the protein for TTR, but showed no apparent change in its receptor-binding activity. These results demonstrate that RBP interacts with both TTR and the receptor via loops C-D and E-F. The binding sites, however, are overlapping rather than identical. RBP also appears to make an additional contact with TTR via its loop A-B. A further implication of these results is that RBP, when bound to TTR, cannot bind simultaneously to the receptor. This observation is consistent with our previously proposed mechanism for delivery of retinol to target tissues [Sivaprasadarao and

  16. Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis.

    PubMed

    Chen, Yu; Luo, Quan; Zhou, Wen; Xie, Zeng; Cai, Yu-Jie; Liao, Xiang-Ru; Guan, Zheng-Bing

    2017-03-01

    Bacterial laccases are potential enzymes for biotechnological applications because of their remarkable advantages, such as broad substrate spectrum, various reactions, high thermostability, wide pH range, and resistance to strongly alkaline environments. However, the use of bacterial laccases for industrialized applications is limited because of their low expression level and catalytic efficiency. In this study, CotA, a bacterial laccase from Bacillus pumilus, was engineered through presumptive reasoning and rational design approaches to overcome low catalytic efficiency and thermostability. L386W/G417L, a CotA double-mutant, was constructed through site-directed mutagenesis. The catalytic efficiency of L386W/G417L was 4.3 fold higher than that of wild-type CotA-laccase, but the thermostability of the former was decreased than that of the latter and other mutants. The half-life (t 1/2) of wild-type and G417L were 1.14 and 1.47 h, but the half-life of L386W/G417L was only 0.37 h when incubating the enzyme at 80 °C. Considering the high catalytic efficiency of L386W/G417L, we constructed L386W/G417L/G57F, another mutant, to improve thermostability. Results showed that the half-life of L386W/G417L/G57F was 0.54 h when incubating the enzyme at 90 °C for 2 h with about 34% residual activity, but the residual activity of L386W/G417L was less than 40% when incubating the enzyme at 90 °C for 5 min. L386W/G417L was more efficient in decolorizing various industrial dyes at pH 10 than other mutants. L386W/G417L/G57F also exhibited an efficient decolorization ability. L386W/G417L/G57F is appropriate for biotechnological applications because of its high activity and thermostability in decolorizing industrial dyes. CotA-laccase may be further subjected to molecular modification and be used as an enhancer to improve decolorization efficiency for the physical and chemical treatment of dye wastewater.

  17. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway.

    PubMed

    Cooksley, Clare M; Zhang, Ying; Wang, Hengzheng; Redl, Stephanie; Winzer, Klaus; Minton, Nigel P

    2012-11-01

    The production of the chemical solvents acetone and butanol by the bacterium Clostridium acetobutylicum was one of the first large-scale industrial processes to be developed, and in the first part of the last century ranked second in importance only to ethanol production. After a steep decline in its industrial use, there has been a recent resurgence of interest in the acetone-butanol-ethanol (ABE) fermentation process, with a particular emphasis on butanol production. In order to generate strains suitable for efficient use on an industrial scale, metabolic engineering is required to alter the AB ratio in favour of butanol, and eradicate the production of unwanted products of fermentation. Using ClosTron technology, a large-scale targeted mutagenesis in C. acetobutylicum ATCC 824 was carried out, generating a set of 10 mutants, defective in alcohol/aldehyde dehydrogenases 1 and 2 (adhE1, adhE2), butanol dehydrogenases A and B (bdhA, bdhB), phosphotransbutyrylase (ptb), acetate kinase (ack), acetoacetate decarboxylase (adc), CoA transferase (ctfA/ctfB), and a previously uncharacterised putative alcohol dehydrogenase (CAP0059). However, inactivation of the main hydrogenase (hydA) and thiolase (thl) could not be achieved. Constructing such a series of mutants is paramount for the acquisition of information on the mechanism of solvent production in this organism, and the subsequent development of industrial solvent producing strains. Unexpectedly, bdhA and bdhB mutants did not affect solvent production, whereas inactivation of the previously uncharacterised gene CAP0059 resulted in increased acetone, butanol, and ethanol formation. Other mutants showed predicted phenotypes, including a lack of acetone formation (adc, ctfA, and ctfB mutants), an inability to take up acids (ctfA and ctfB mutants), and a much reduced acetate formation (ack mutant). The adhE1 mutant in particular produced very little solvents, demonstrating that this gene was indeed the main contributor to

  18. Catalytic mechanism of a family 3 beta-glucosidase and mutagenesis study on residue Asp-247.

    PubMed Central

    Li, Y K; Chir, J; Chen, F Y

    2001-01-01

    A family 3 beta-glucosidase (EC 3.2.1.21) from Flavobacterium meningosepticum has been cloned and overexpressed. The mechanistic action of the enzyme was probed by NMR spectroscopy and kinetic investigations, including substrate reactivity, secondary kinetic isotope effects and inhibition studies. The stereochemistry of enzymic hydrolysis was identified as occurring with the retention of an anomeric configuration, indicating a double-displacement reaction. Based on the k(cat) values with a series of aryl glucosides, a Bronsted plot with a concave-downward shape was constructed. This biphasic behaviour is consistent with a two-step mechanism involving the formation and breakdown of a glucosyl-enzyme intermediate. The large Bronsted constant (beta=-0.85) for the leaving-group-dependent portion (pK(a) of leaving phenols >7) indicates substantial bond cleavage at the transition state. Secondary deuterium kinetic isotope effects with 2,4-dinitrophenyl beta-D-glucopyanoside, o-nitrophenyl beta-D-glucopyanoside and p-cyanophenyl beta-D-glucopyanoside as substrates were 1.17+/-0.02, 1.19+/-0.02 and 1.04+/-0.02 respectively. These results support an S(N)1-like mechanism for the deglucosylation step and an S(N)2-like mechanism for the glucosylation step. Site-directed mutagenesis was also performed to study essential amino acid residues. The activities (k(cat)/K(m)) of the D247G and D247N mutants were 30000- and 200000-fold lower respectively than that of the wild-type enzyme, whereas the D247E mutant retained 20% of wild-type activity. These results indicate that Asp-247 is an essential amino acid. It is likely that this residue functions as a nucleophile in the reaction. This conclusion is supported by the kinetics of the irreversible inactivation of the wild-type enzyme by conduritol-B-epoxide, compared with the much slower inhibition of the D247E mutant and the lack of irreversible inhibition of the D247G mutant. PMID:11311148

  19. QM/MM Model of the Mouse Olfactory Receptor MOR244-3 Validated by Site-Directed Mutagenesis Experiments

    PubMed Central

    Sekharan, Sivakumar; Ertem, Mehmed Z.; Zhuang, Hanyi; Block, Eric; Matsunami, Hiroaki; Zhang, Ruina; Wei, Jennifer N.; Pan, Yi; Batista, Victor S.

    2014-01-01

    Understanding structure/function relationships of olfactory receptors is challenging due to the lack of x-ray structural models. Here, we introduce a QM/MM model of the mouse olfactory receptor MOR244-3, responsive to organosulfur odorants such as (methylthio)methanethiol. The binding site consists of a copper ion bound to the heteroatoms of amino-acid residues H105, C109, and N202. The model is consistent with site-directed mutagenesis experiments and biochemical measurements of the receptor activation, and thus provides a valuable framework for further studies of the sense of smell at the molecular level. PMID:25185561

  20. Pigmentation-based insertional mutagenesis is a simple and potent screening approach for identifying neurocristopathy-associated genes in mice

    PubMed Central

    Pilon, Nicolas

    2016-01-01

    ABSTRACT Neurocristopathies form a specific group of rare genetic diseases in which a defect in neural crest cell development is causal. Because of the large number of neural crest cell derivatives, distinct structures/cell types (isolated or in combination) are affected in each neurocristopathy. The most important issues in this research field is that the underlying genetic cause and associated pathogenic mechanism of most cases of neurocristopathy are poorly understood. This article describes how a relatively simple insertional mutagenesis approach in the mouse has proved useful for identifying new candidate genes and pathogenic mechanisms for diverse neurocristopathies. PMID:27141416

  1. Identification by PCR signature-tagged mutagenesis of attenuated Salmonella Pullorum mutants and corresponding genes in a chicken embryo model.

    PubMed

    Geng, Shizhong; Tian, Qin; Guo, Rongxian; Jiao, Yang; Barrow, Paul; Yin, Chao; Wang, Yaonan; Geng, Haopeng; Pan, Zhiming; Jiao, Xinan

    2017-03-01

    A key feature of the fowl-specific pathogen Salmonella Pullorum is its vertical transmission to progeny via the egg. In this study, PCR signature-tagged mutagenesis identified nine genes of a strain of S. Pullorum that contributed to survival in the chicken embryo during incubation. The genes were involved in invasion, cell division, metabolism and bacterial defence. The competition index in vivo and in vitro together with a virulence evaluation for chicken embryos of all nine mutant strains confirmed their attenuation.

  2. Site-directed Mutagenesis Switching a Dimethylallyl Tryptophan Synthase to a Specific Tyrosine C3-Prenylating Enzyme*

    PubMed Central

    Fan, Aili; Zocher, Georg; Stec, Edyta; Stehle, Thilo; Li, Shu-Ming

    2015-01-01

    The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C4- and C7-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C3-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis. PMID:25477507

  3. The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1.

    PubMed

    Xu, Xinxin; Li, Jinyang; Shi, Pengjun; Ji, Wangli; Liu, Bo; Zhang, Yuhong; Yao, Bin; Fan, Yunliu; Zhang, Wei

    2016-08-10

    Humicola insolens is an excellent producer of pH-neutral active, thermostable cellulases that find many industrial applications. In the present study, we developed an efficient Agrobacterium tumefaciens-mediated transformation system for H. insolens. We transformed plasmids carrying the promoter of the glyceraldehyde-3-phosphate dehydrogenase gene of H. insolens driving the transcription of genes encoding neomycin phosphotransferase, hygromycin B phosphotransferase, and enhanced green fluorescent protein. We optimized transformation efficiency to obtain over 300 transformants/10(6) conidia. T-DNA insertional mutagenesis was employed to generate an H. insolens mutant library, and we isolated a transformant termed T4 with enhanced cellulase and hemicellulase activities. The FPase, endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase activities of T4, measured at the end of fermentation, were 60%, 440%, 320%, 41%, and 81% higher than those of the wild-type strain, respectively. We isolated the sequences flanking the T-DNA insertions and thus identified new genes potentially involved in cellulase and hemicellulase production. Our results show that it is feasible to use T-DNA insertional mutagenesis to identify novel candidate genes involved in cellulase production. This will be valuable when genetic improvement programs seeking to enhance cellulase production are planned, and will also allow us to gain a better understanding of the genetics of the thermophilic fungus H. insolens.

  4. Improvements in Glucose Sensitivity and Stability of Trichoderma reesei β-Glucosidase Using Site-Directed Mutagenesis

    PubMed Central

    Amano, Yoshihiko

    2016-01-01

    Glucose sensitivity and pH and thermal stabilities of Trichoderma reesei Cel1A (Bgl II) were improved by site-directed mutagenesis of only two amino acid residues (L167W or P172L) at the entrance of the active site. The Cel1A mutant showed high glucose tolerance (50% of inhibitory concentration = 650 mM), glucose stimulation (2.0 fold at 50 mM glucose), and enhanced specific activity (2.4-fold) compared with those of the wild-type Cel1A. Furthermore, the mutant enzyme showed stability at a wide pH range of 4.5–9.0 and possessed high thermal stability up to 50°C with 80% of the residual activities compared with the stability seen at the pH range of 6.5–7.0 and temperatures of up to 40°C in the wild-type Cel1A. Kinetic studies for hydrolysis revealed that the Cel1A mutant was competitively inhibited by glucose at similar levels as the wild-type enzyme. Additionally, the mutant enzyme exhibited substrate inhibition, which gradually disappeared with an increasing glucose concentration. These data suggest that the glucose stimulation was caused by relieve the substrate inhibition in the presence of glucose. To conclude, all the properties improved by the mutagenesis would be great advantages in degradation of cellulosic biomass together with cellulases. PMID:26790148

  5. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation.

    PubMed

    Yi, Zhiqian; Xu, Maonian; Magnusdottir, Manuela; Zhang, Yuetuan; Brynjolfsson, Sigurdur; Fu, Weiqi

    2015-09-29

    Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.

  6. Mutation Breeding of Extracellular Polysaccharide-Producing Microalga Crypthecodinium cohnii by a Novel Mutagenesis with Atmospheric and Room Temperature Plasma

    PubMed Central

    Liu, Bin; Sun, Zheng; Ma, Xiaonian; Yang, Bo; Jiang, Yue; Wei, Dong; Chen, Feng

    2015-01-01

    Extracellular polysaccharides (EPS) produced by marine microalgae have the potential to be used as antioxidants, antiviral agents, immunomodulators, and anti-inflammatory agents. Although the marine microalga Crypthecodinium cohnii releases EPS during the process of docosahexaenoic acid (DHA) production, the yield of EPS remains relatively low. To improve the EPS production, a novel mutagenesis of C. cohnii was conducted by atmospheric and room temperature plasma (ARTP). Of the 12 mutants obtained, 10 mutants exhibited significantly enhanced EPS yield on biomass as compared with the wild type strain. Among them, mutant M7 was the best as it could produce an EPS volumetric yield of 1.02 g/L, EPS yield on biomass of 0.39 g/g and EPS yield on glucose of 94 mg/g, which were 33.85%, 85.35% and 57.17% higher than that of the wild type strain, respectively. Results of the present study indicated that mutagenesis of the marine microalga C. cohnii by ARTP was highly effective leading to the high-yield production of EPS. PMID:25872142

  7. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    PubMed Central

    Yi, Zhiqian; Xu, Maonian; Magnusdottir, Manuela; Zhang, Yuetuan; Brynjolfsson, Sigurdur; Fu, Weiqi

    2015-01-01

    Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress. PMID:26426027

  8. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis

    SciTech Connect

    Pepinsky, R. Blake; Silvian, Laura; Berkowitz, Steven A.; Farrington, Graham; Lugovskoy, Alexey; Walus, Lee; Eldredge, John; Capili, Allan; Mi, Sha; Graff, Christilyn; Garber, Ellen

    2010-11-15

    Monoclonal antibodies (Mabs) are a favorite drug platform of the biopharmaceutical industry. Currently, over 20 Mabs have been approved and several hundred others are in clinical trials. The anti-LINGO-1 Mab Li33 was selected from a large panel of antibodies by Fab phage display technology based on its extraordinary biological activity in promoting oligodendrocyte differentiation and myelination in vitro and in animal models of remyelination. However, the Li33 Fab had poor solubility when converted into a full antibody in an immunoglobulin G1 framework. A detailed analysis of the biochemical and structural features of the antibody revealed several possible reasons for its propensity to aggregate. Here, we successfully applied three molecular approaches (isotype switching, targeted mutagenesis of complementarity determining region residues, and glycosylation site insertion mutagenesis) to address the solubility problem. Through these efforts we were able to improve the solubility of the Li33 Mab from 0.3 mg/mL to >50 mg/mL and reduce aggregation to an acceptable level. These strategies can be readily applied to other proteins with solubility issues.

  9. System-dependent regulations of colour-pattern development: a mutagenesis study of the pale grass blue butterfly.

    PubMed

    Iwata, Masaki; Hiyama, Atsuki; Otaki, Joji M

    2013-01-01

    Developmental studies on wing colour patterns have been performed in nymphalid butterflies, but efficient genetic manipulations, including mutagenesis, have not been well established. Here, we have performed mutagenesis experiments in a lycaenid butterfly, the pale grass blue Zizeeria maha, to produce colour-pattern mutants. We fed the P-generation larvae an artificial diet containing the mutagen ethyl methane sulfonate (EMS), and the F1- and F2-generation adults showed various aberrant colour patterns: dorsoventral transformation, anterioposterior background colouration gap, weak contrast, disarrangement of spots, reduction of the size of spots, loss of spots, fusion of spots, and ectopic spots. Among them, the disarrangement, reduction, and loss of spots were likely produced by the coordinated changes of many spots of a single wing around the discal spot in a system-dependent manner, demonstrating the existence of the central symmetry system. The present study revealed multiple genetic regulations for system-dependent and wing-wide colour-pattern determination in lycaenid butterflies.

  10. Mutation breeding of extracellular polysaccharide-producing microalga Crypthecodinium cohnii by a novel mutagenesis with atmospheric and room temperature plasma.

    PubMed

    Liu, Bin; Sun, Zheng; Ma, Xiaonian; Yang, Bo; Jiang, Yue; Wei, Dong; Chen, Feng

    2015-04-13

    Extracellular polysaccharides (EPS) produced by marine microalgae have the potential to be used as antioxidants, antiviral agents, immunomodulators, and anti-inflammatory agents. Although the marine microalga Crypthecodinium cohnii releases EPS during the process of docosahexaenoic acid (DHA) production, the yield of EPS remains relatively low. To improve the EPS production, a novel mutagenesis of C. cohnii was conducted by atmospheric and room temperature plasma (ARTP). Of the 12 mutants obtained, 10 mutants exhibited significantly enhanced EPS yield on biomass as compared with the wild type strain. Among them, mutant M7 was the best as it could produce an EPS volumetric yield of 1.02 g/L, EPS yield on biomass of 0.39 g/g and EPS yield on glucose of 94 mg/g, which were 33.85%, 85.35% and 57.17% higher than that of the wild type strain, respectively. Results of the present study indicated that mutagenesis of the marine microalga C. cohnii by ARTP was highly effective leading to the high-yield production of EPS.

  11. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis.

    PubMed

    Pepinsky, R Blake; Silvian, Laura; Berkowitz, Steven A; Farrington, Graham; Lugovskoy, Alexey; Walus, Lee; Eldredge, John; Capili, Allan; Mi, Sha; Graff, Christilyn; Garber, Ellen

    2010-05-01

    Monoclonal antibodies (Mabs) are a favorite drug platform of the biopharmaceutical industry. Currently, over 20 Mabs have been approved and several hundred others are in clinical trials. The anti-LINGO-1 Mab Li33 was selected from a large panel of antibodies by Fab phage display technology based on its extraordinary biological activity in promoting oligodendrocyte differentiation and myelination in vitro and in animal models of remyelination. However, the Li33 Fab had poor solubility when converted into a full antibody in an immunoglobulin G1 framework. A detailed analysis of the biochemical and structural features of the antibody revealed several possible reasons for its propensity to aggregate. Here, we successfully applied three molecular approaches (isotype switching, targeted mutagenesis of complementarity determining region residues, and glycosylation site insertion mutagenesis) to address the solubility problem. Through these efforts we were able to improve the solubility of the Li33 Mab from 0.3 mg/mL to >50 mg/mL and reduce aggregation to an acceptable level. These strategies can be readily applied to other proteins with solubility issues.

  12. The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1

    PubMed Central

    Xu, Xinxin; Li, Jinyang; Shi, Pengjun; Ji, Wangli; Liu, Bo; Zhang, Yuhong; Yao, Bin; Fan, Yunliu; Zhang, Wei

    2016-01-01

    Humicola insolens is an excellent producer of pH-neutral active, thermostable cellulases that find many industrial applications. In the present study, we developed an efficient Agrobacterium tumefaciens-mediated transformation system for H. insolens. We transformed plasmids carrying the promoter of the glyceraldehyde-3-phosphate dehydrogenase gene of H. insolens driving the transcription of genes encoding neomycin phosphotransferase, hygromycin B phosphotransferase, and enhanced green fluorescent protein. We optimized transformation efficiency to obtain over 300 transformants/106 conidia. T-DNA insertional mutagenesis was employed to generate an H. insolens mutant library, and we isolated a transformant termed T4 with enhanced cellulase and hemicellulase activities. The FPase, endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase activities of T4, measured at the end of fermentation, were 60%, 440%, 320%, 41%, and 81% higher than those of the wild-type strain, respectively. We isolated the sequences flanking the T-DNA insertions and thus identified new genes potentially involved in cellulase and hemicellulase production. Our results show that it is feasible to use T-DNA insertional mutagenesis to identify novel candidate genes involved in cellulase production. This will be valuable when genetic improvement programs seeking to enhance cellulase production are planned, and will also allow us to gain a better understanding of the genetics of the thermophilic fungus H. insolens. PMID:27506519

  13. [From random mutagenesis to precise genome editing: the development and evolution of genome editing techniques in Drosophila].

    PubMed

    Su, Fang; Huang, Zongliang; Guo, Yawen; Jiao, Renjie; Zi, Li; Chen, Jianming; Liu, Jiyong

    2016-01-01

    Drosophila melanogaster, an important model organism for studying life science, has contributed more to the research of genetics, developmental biology and biomedicine with the development of genome editing techniques. Drosophila genome-editing techniques have evolved from random mutagenesis to precise genome editing and from simple mutant construction to diverse genome editing methods since the 20th century. Chemical mutagenesis, using Ethyl methanesulfonate (EMS), is an important technique to study gene function in forward genetics, however, the precise knockout of Drosophila genes could not be achieved. The gene targeting technology, based on homologous recombination, has accomplished the precise editing of Drosophila genome for the first time, but with low efficiency. The CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein)-mediated precise genome editing is simple, fast and highly efficient compared with the gene targeting technology in Drosophila. In this review, we focus on Drosophila gene knockout, and summarize the evolution of genome editing techniques in Drosophila, emphasizing the development and applications of gene targeting, zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and CRISPR/Cas9 techniques.

  14. Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs.

    PubMed

    Gao, Xi; Jiang, Ling; Zhu, Liying; Xu, Qing; Xu, Xian; Huang, He

    2016-04-20

    Bioconversion processes of organic acid or acid hydrolysis of raw material for microbial metabolism often suffer limitations as a result of microbial sensitivity in low-pH conditions. We adopted a three-step method called RAndom Insertional-deletional Strand Exchange mutagenesis (RAISE) to engineer the components of global regulator Sigma D factor (RpoD) of Escherichia coli to improve its acid tolerance. The best strain Mutant VII was identified from random mutagenesis libraries based on the growth performance, which exhibited much higher growth rate than the control (0.22h(-1) vs. 0.15h(-1)) at pH as low as 3.17. Combined transcriptome and phenome analysis of E. coli was carried out to better understand the global effects of RpoD on the regulatory networks. Our analysis showed that 95 (2.1%) of all E. coli genes were induced and 178 (4.0%) genes were repressed, including those for trehalose biosynthesis, nucleotides biosynthesis, carbon metabolism, amino acid utilization, except for acid resistance. Also regulated were the master regulators (ArcA, EvgA, H-NS and RpoS) and gene/operon-specific transcription factors (GadX, GadW, AppY, YdeO, KdgR). These results demonstrated that RpoD acts as global regulator in the growth phase of E. coli and consequently improves acid tolerances.

  15. Site-Directed Mutagenesis of the Nidovirus Replicative Endoribonuclease NendoU Exerts Pleiotropic Effects on the Arterivirus Life Cycle

    PubMed Central

    Posthuma, Clara C.; Nedialkova, Danny D.; Zevenhoven-Dobbe, Jessika C.; Blokhuis, Jeroen H.; Gorbalenya, Alexander E.; Snijder, Eric J.

    2006-01-01

    The highly conserved NendoU replicative domain of nidoviruses (arteriviruses, coronaviruses, and roniviruses) belongs to a small protein family whose cellular branch is prototyped by XendoU, a Xenopus laevis endoribonuclease involved in nucleolar RNA processing. Recently, sequence-specific in vitro endoribonuclease activity was demonstrated for the NendoU-containing nonstructural protein (nsp) 15 of several coronaviruses. To investigate the biological role of this novel enzymatic activity, we have characterized a comprehensive set of arterivirus NendoU mutants. Deleting parts of the NendoU domain from nsp11 of equine arteritis virus was lethal. Site-directed mutagenesis of conserved residues exerted pleiotropic effects. In a first-cycle analysis, replacement of two conserved Asp residues in the C-terminal part of NendoU rendered viral RNA synthesis and virus production undetectable. In contrast, mutagenesis of other conserved residues, including two putative catalytic His residues that are absolutely conserved in NendoU and cellular homologs, produced viable mutants displaying reduced plaque sizes (20 to 80% reduction) and reduced yields of infectious progeny of up to 5 log units. A more detailed analysis of these mutants revealed a moderate reduction in RNA synthesis, with subgenomic RNA synthesis consistently being more strongly affected than genome replication. Our data suggest that the arterivirus nsp11 is a multifunctional protein with a key role in viral RNA synthesis and additional functions in the viral life cycle that are as yet poorly defined. PMID:16439522

  16. A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice1[OPEN

    PubMed Central

    Cermak, Tomas; Sugimoto, Kazuhiko; Saika, Hiroaki; Mori, Akiko; Osakabe, Keishi; Hamada, Masao; Katayose, Yuichi; Voytas, Daniel F.

    2016-01-01

    We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing. PMID:26668331

  17. Novel structure--function information on biogenic amine transporters revealed by site-directed mutagenesis and alkylation.

    PubMed

    Reith, Maarten E A

    2013-07-01

    The study reported by Wenge and Bönisch in this issue provides critical structural information regarding extracellular loop 2 (EL2) of the human norepinephrine transporter (NET). A systematic search among all 10 cysteine and 13 histidine residues in NET led to His222 in EL2 as the target for N-ethylmaleimide: its alkylation interferes with [(3)H]nisoxetine binding, indicating the part of EL2 containing His 222 reaches back into the protein interior where it prevents access by nisoxetine to its binding site. Thus, EL2 in human NET does much more than conformationally assisting substrate translocation. The present study underscores the importance of site-directed mutagenesis approaches to elucidate structural features that cannot be deduced from crystals of homolog proteins. In the case of NET, the closest crystal structure is that of the homolog LeuT, but EL2 is difficult to align with 22 less loop residues in LeuT than in NET. The present results could only be achieved by the systematic mutagenesis study of all cysteines and all histidines in NET.

  18. MMS Exposure Promotes Increased MtDNA Mutagenesis in the Presence of Replication-Defective Disease-Associated DNA Polymerase γ Variants

    PubMed Central

    Stumpf, Jeffrey D.; Copeland, William C.

    2014-01-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  19. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    PubMed

    Stumpf, Jeffrey D; Copeland, William C

    2014-10-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  20. Assessing Human Germ-Cell Mutagenesis in the Postgenome Era: A Celebration of the Legacy of William Lawson (Bill) Russell

    PubMed Central

    Wyrobek, Andrew J.; Mulvihill, John J.; Wassom, John S.; Malling, Heinrich V.; Shelby, Michael D.; Lewis, Susan E.; Witt, Kristine L.; Preston, R. Julian; Perreault, Sally D.; Allen, James W.; DeMarini, David M.; Woychik, Richard P.; Bishop, Jack B.

    2007-01-01

    Birth defects, de novo genetic diseases, and chromosomal abnormality syndromes occur in ~5% of all live births, and affected children suffer from a broad range of lifelong health consequences. Despite the social and medical impact of these defects, and the 8 decades of research in animal systems that have identified numerous germ-cell mutagens, no human germ-cell mutagen has been confirmed to date. There is now a growing consensus that the inability to detect human germ-cell mutagens is due to technological limitations in the detection of random mutations rather than biological differences between animal and human susceptibility. A multidisciplinary workshop responding to this challenge convened at The Jackson Laboratory in Bar Harbor, Maine. The purpose of the workshop was to assess the applicability of an emerging repertoire of genomic technologies to studies of human germ-cell mutagenesis. Workshop participants recommended large-scale human germ-cell mutation studies be conducted using samples from donors with high-dose exposures, such as cancer survivors. Within this high-risk cohort, parents and children could be evaluated for heritable changes in (a) DNA sequence and chromosomal structure, (b) repeat sequences and minisatellites, and (c) global gene expression profiles and pathways. Participants also advocated the establishment of a bio-bank of human tissue samples from donors with well-characterized exposure, including medical and reproductive histories. This mutational resource could support large-scale, multiple-endpoint studies. Additional studies could involve the examination of transgenerational effects associated with changes in imprinting and methylation patterns, nucleotide repeats, and mitochondrial DNA mutations. The further development of animal models and the integration of these with human studies are necessary to provide molecular insights into the mechanisms of germ-cell mutations and to identify prevention strategies. Furthermore, scientific

  1. Role of the "helix clamp" in HIV-1 reverse transcriptase catalytic cycling as revealed by alanine-scanning mutagenesis.

    PubMed

    Beard, W A; Minnick, D T; Wade, C L; Prasad, R; Won, R L; Kumar, A; Kunkel, T A; Wilson, S H

    1996-05-24

    Residues 259-284 of HIV-1 reverse transcriptase exhibit sequence homology with other nucleic acid polymerases and have been termed the "helix clamp" (Hermann, T., Meier, T., Gotte, M., and Heumann, H. (1994) Nucleic Acids Res. 22, 4625-4633), since crystallographic evidence indicates these residues are part of two alpha-helices (alpha H and alpha I) that interact with DNA. Alanine-scanning mutagenesis has previously demonstrated that several residues in alpha H make important interactions with nucleic acid and influence frameshift fidelity. To define the role of alpha I (residues 278-286) during catalytic cycling, we performed systematic site-directed mutagenesis from position 277 through position 287 by changing each residue, one by one, to alanine. Each mutant protein was expressed and, except for L283A and T286A, was soluble. The soluble mutant enzymes were purified and characterized. In contrast to alanine mutants of alpha H, alanine substitution in alpha I did not have a significant effect on template.primer (T.P) binding as revealed by a lack of an effect on Km, T.P, Ki for 3'-azido-2',3'-dideoxythymidine 5'-triphosphate, koff, T.P and processivity. Consistent with these observations, the fidelity of the mutant enzymes was not influenced. However, alanine mutagenesis of alpha I lowered the apparent activity of every mutant relative to wild-type enzyme. Titration of two mutants exhibiting the lowest activity with T.P (L282A and R284A) demonstrated that these mutant enzymes could bind T.P stoichiometrically and tightly. In contrast, active site concentrations determined from "burst" experiments suggest that the lower activity is due to a smaller populations of enzyme bound productively to T.P. The putative electrostatic interactions between the basic side chains of the helix clamp and the DNA backbone are either very weak or kinetically silent. In contrast, interactions between several residues of alpha H and the DNA minor groove, 3-5 nucleotides from the 3

  2. Delineation of the complement receptor type 2-C3d complex by site-directed mutagenesis and molecular docking.

    PubMed

    Shaw, Craig D; Storek, Michael J; Young, Kendra A; Kovacs, James M; Thurman, Joshua M; Holers, V Michael; Hannan, Jonathan P

    2010-12-10

    The interactions between the complement receptor type 2 (CR2) and the C3 complement fragments C3d, C3dg, and iC3b are essential for the initiation of a normal immune response. A crystal-derived structure of the two N-terminal short consensus repeat (SCR1-2) domains of CR2 in complex with C3d has previously been elucidated. However, a number of biochemical and biophysical studies targeting both CR2 and C3d appear to be in conflict with these structural data. Previous mutagenesis and heteronuclear NMR spectroscopy studies directed toward the C3d-binding site on CR2 have indicated that the CR2-C3d cocrystal structure may represent an encounter/intermediate or nonphysiological complex. With regard to the CR2-binding site on C3d, mutagenesis studies by Isenman and coworkers [Isenman, D. E., Leung, E., Mackay, J. D., Bagby, S. & van den Elsen, J. M. H. (2010). Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: Implications for the controversy regarding the CR2/C3d cocrystal structure. J. Immunol. 184, 1946-1955] have implicated an electronegative "concave" surface on C3d in the binding process. This surface is discrete from the CR2-C3d interface identified in the crystal structure. We generated a total of 18 mutations targeting the two (X-ray crystallographic- and mutagenesis-based) proposed CR2 SCR1-2 binding sites on C3d. Using ELISA analyses, we were able to assess binding of mutant forms of C3d to CR2. Mutations directed toward the concave surface of C3d result in substantially compromised CR2 binding. By contrast, targeting the CR2-C3d interface identified in the cocrystal structure and the surrounding area results in significantly lower levels of disruption in binding. Molecular modeling approaches used to investigate disparities between the biochemical data and the X-ray structure of the CR2-C3d cocrystal result in highest-scoring solutions in which CR2 SCR1-2 is

  3. Hydrophobic Mutagenesis and Semi-rational Engineering of Arginine Deiminase for Markedly Enhanced Stability and Catalytic Efficiency.

    PubMed

    Jamil, Serwanja; Liu, Meng-Han; Liu, Yong-Mei; Han, Rui-Zhi; Xu, Guo-Chao; Ni, Ye

    2015-07-01

    Due to its systemic arginine degradation, arginine deiminase (ADI) has attracted attentions as an anti-tumor drug. Its low activity at physiological conditions among other limitations has necessitated its engineering for improved properties. The present study describes the hydrophobic mutagenesis and semi-rational engineering of ADI from Pseudomonas plecoglossicida (PpADI). Using an improved ADI variant M13 (D38H/A128T/E296K/H404R/I410L) as parent, site saturation mutagenesis at position 162 resulted in an over 20 % increase in protein solubility. Compared with M13 (15.23 U/mg), mutants M13-2 (M13+S245D) and M13-5 (M13+R243L) exhibited enhanced specific activity of 21.19 and 31.20 U/mg at physiological conditions. M13-5 displayed enhanced substrate specificity with a dramatic reduction in its K m value (from 0.52 to 0.16 mM). It is speculated that the improvements in M13-5 could mainly be attributed to the enhanced structural stability due to an R243L substitution. The hydrophobic contribution of Leu 243 was supported by mutant M13-9 (M13+A276W) generated based on the hydrophobic mutagenesis concept. M13-9 showed a specific activity of 18.68 U/mg, as well as remarkable thermal and pH stability. It retained over 90 % activity over pH range from 4.5 to 8.5. At 60 °C, the half-life of M13-9 was enhanced from 4 to 17.5 min in comparison with M13, and its specific activity at 62 °C (93.0 U/mg) was approximately fivefold of that determined at 37 °C. Our results suggest that the increased hydrophobicity around the active regions of PpADI might be crucial in improving its structural stability and ultimately catalytic efficiency.

  4. Role of Acinetobacter baumannii UmuD homologs in antibiotic resistance acquired through DNA damage-induced mutagenesis.

    PubMed

    Aranda, Jesús; López, Mario; Leiva, Enoy; Magán, Andrés; Adler, Ben; Bou, Germán; Barbé, Jordi

    2014-01-01

    The role of Acinetobacter baumannii ATCC 17978 UmuDC homologs A1S_0636-A1S_0637, A1S_1174-A1S_1173, and A1S_1389 (UmuDAb) in antibiotic resistance acquired through UV-induced mutagenesis was evaluated. Neither the growth rate nor the UV-related survival of any of the three mutants was significantly different from that of the wild-type parental strain. However, all mutants, and especially the umuDAb mutant, were less able to acquire resistance to rifampin and streptomycin through the activities of their error-prone DNA polymerases. Furthermore, in the A. baumannii mutant defective in the umuDAb gene, the spectrum of mutations included a dramatic reduction in the frequency of transition mutations, the mutagenic signature of the DNA polymerase V encoded by umuDC.

  5. Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis.

    PubMed

    Zeng, Qi-Kai; Du, Hong-Li; Wang, Jing-Fang; Wei, Dong-Qing; Wang, Xiao-Ning; Li, Yi-Xue; Lin, Ying

    2009-07-01

    A major problem when xylose is used for ethanol production is the intercellular redox imbalance arising from different coenzyme specificities of xylose reductase (XR) and xylitol dehydrogenase. The residue Lys21 in XR from Pichia stipitis was subjected to site-directed mutagenesis to alter its coenzyme specificity. The N272D mutant exhibited improved catalytic efficiency when NADH was the coenzyme. Both K21A and K21A/N272D preferred NADH to NADPH, their catalytic efficiencies for NADPH were almost zero. The catalytic efficiency of K21A/N272D for NADH was almost 9-fold and 2-fold that of K21A and the wild-type enzyme, respectively. Complete reversal of coenzyme specificity toward NADH and improved catalytic efficiency were achieved.

  6. Alteration of coenzyme specificity of malate dehydrogenase from Streptomyces coelicolor A3(2) by site-directed mutagenesis.

    PubMed

    Ge, Y D; Song, P; Cao, Z Y; Wang, P; Zhu, G P

    2014-07-29

    We describe here for the first time the alteration of coenzyme specificity of malate dehydrogenase (MDH) from Streptomyces coelicolor A3(2) (ScMDH). In the present study, we replaced four amino acid residues in the Rossmann fold (βB-αC) region of NADH-dependent ScMDH by site-directed mutagenesis with those of NADPH-dependent MDH (Glu42Gly, Ile43Ser, Pro45Arg, and Ala46Ser). The coenzyme specificity of the mutant enzyme (ScMDH-T4) was examined. Coenzyme specificity of ScMDH-T4 was shifted 2231.3-fold toward NADPH using kcat/Km(coenzyme) as the measurement of coenzyme specificity. Accordingly, the effect of the replacements on coenzyme specificity is discussed. Our work provides further insight into the coenzyme specificity of ScMDH.

  7. Mutagenesis and Genome Engineering of Epstein-Barr Virus in Cultured Human Cells by CRISPR/Cas9.

    PubMed

    Yuen, Kit-San; Chan, Chi-Ping; Kok, Kin-Hang; Jin, Dong-Yan

    2017-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 nuclease (Cas9) system is a powerful genome-editing tool for both chromosomal and extrachromosomal DNA. DNA viruses such as Epstein-Barr virus (EBV), which undergoes episomal replication in human cells, can be effectively edited by CRISPR/Cas9. We have demonstrated targeted editing of the EBV genome by CRISPR/Cas9 in several lines of EBV-infected cells. CRISPR/Cas9-based mutagenesis and genome engineering of EBV provides a new method for genetic analysis, which has some advantages over bacterial artificial chromosome-based recombineering. This approach might also prove useful in the cure of EBV infection. In this chapter, we use the knockout of the BART promoter as an example to detail the experimental procedures for construction of recombinant EBV in human cells.

  8. Construction of a mutagenesis cartridge for poliovirus genome-linked viral protein: isolation and characterization of viable and nonviable mutants

    SciTech Connect

    Kuhn, R.J.; Tada, H.; Ypma-Wong, M.F.; Dunn, J.J.; Semler, B.L.; Wimmer, E.

    1988-01-01

    By following a strategy of genetic analysis of poliovirus, the authors have constructed a synthetic mutagenesis cartridge spanning the genome-linked viral protein coding region and flanking cleavage sites in an infectious cDNA clone of the type I (Mahoney) genome. The insertion of new restriction sites within the infectious clone has allowed them to replace the wild-type sequences with short complementary pairs of synthetic oligonucleotides containing various mutations. A set of mutations have been made that create methionine codons within the genome-linked viral protein region. The resulting viruses have growth characteristics similar to wild type. Experiments that led to an alteration of the tyrosine residue responsible for the linkage to RNA have resulted in nonviable virus. In one mutant, proteolytic processing assayed in vitro appeared unimpaired by the mutation. They suggest that the position of the tyrosine residue is important for genome-linked viral protein function(s).

  9. Generation of a fast maturating red fluorescent protein by a combined approach of elongation mutagenesis and functional salvage screening

    SciTech Connect

    Choi, Eun-Sil; Han, Sang-Soo; Cheong, Dea-Eun; Park, Mi-Young; Kim, Jeong-Sun; Kim, Geun-Joong

    2010-01-01

    Fluorescent proteins that can be useful as indicators or reporters must have rapid maturation time, high quantum yield and photobleaching stability. A red fluorescent protein DsRed that has a high quantum yield and photostability has an innately slow maturation time when compared to other fluorescence proteins. In this study, we combined a functional salvage screen (FSS) and elongation mutagenesis to obtain a DsRed variant that maintained structural features closely linked with a high quantum yield and photostability and evolved to have a rapid maturation time. It is expected that the variant generated here, FmRed (fast maturating red fluorescent protein), will be widely used as an indicator or reporter because it maintained traits superior to that of the wild-type protein and also matured rapidly.

  10. Rat bladder cell-mediated mutagenesis of Chinese hamster V79 cells and metabolism of benzo(a)pyrene

    SciTech Connect

    Langenbach, R.; Malick, L.; Nesnow, S.

    1981-05-01

    Primary rat bladder epithelial cells were cocultivated with Chinese hamster V79 cells in the presence of carcinogens, and the induction of 6-thioguanine resistance in the V79 cells was used as a market of cell-mediated mutagenesis. The carcinogens dimethylnitrosamine, 7,12-dimethylbenz(a)anthracene, and benzo(a)pyrene (BP) were mutagenic to V79 cells in the presence of bladder cells but not in their absence. Analysis of BP metabolites (formed by bladder cells indicated that 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene, 9,10-dihydro-9,10-dihydroxybenzo(a)pyrene, benzo(a)pyrene-3,6-quinone, and 9-hydroxybenzo(a)pyrene were the major organic-soluble metabolites formed. The finding that rat bladder peithelium can metabolize some carcinogens offers new possibilities for the mechanism of initiation of bladder cancer.

  11. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis.

    PubMed

    Lang, Kathrin; Erlacher, Matthias; Wilson, Daniel N; Micura, Ronald; Polacek, Norbert

    2008-05-01

    Peptide bond formation is a fundamental reaction in biology, catalyzed by the ribosomal peptidyl-transferase ribozyme. Although all active-site 23S ribosomal RNA nucleotides are universally conserved, atomic mutagenesis suggests that these nucleobases do not carry functional groups directly involved in peptide bond formation. Instead, a single ribose 2'-hydroxyl group at A2451 was identified to be of pivotal importance. Here, we altered the chemical characteristics by replacing its 2'-hydroxyl with selected functional groups and demonstrate that hydrogen donor capability is essential for transpeptidation. We propose that the A2451-2'-hydroxyl directly hydrogen bonds to the P-site tRNA-A76 ribose. This promotes an effective A76 ribose C2'-endo conformation to support amide synthesis via a proton shuttle mechanism. Simultaneously, the direct interaction of A2451 with A76 renders the intramolecular transesterification of the peptide from the 3'- to 2'-oxygen unfeasible, thus promoting effective peptide bond synthesis.

  12. Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification.

    PubMed

    Harder, Daniel; Hirschi, Stephan; Ucurum, Zöhre; Goers, Roland; Meier, Wolfgang; Müller, Daniel J; Fotiadis, Dimitrios

    2016-07-25

    For applications in synthetic biology, for example, the bottom-up assembly of biomolecular nanofactories, modules of specific and controllable functionalities are essential. Of fundamental importance in such systems are energizing modules, which are able to establish an electrochemical gradient across a vesicular membrane as an energy source for powering other modules. Light-driven proton pumps like proteorhodopsin (PR) are excellent candidates for efficient energy conversion. We have extended the versatility of PR by implementing an on/off switch based on reversible chemical modification of a site-specifically introduced cysteine residue. The position of this cysteine residue in PR was identified by structure-based cysteine mutagenesis combined with a proton-pumping assay using E. coli cells overexpressing PR and PR proteoliposomes. The identified PR mutant represents the first light-driven proton pump that can be chemically switched on/off depending on the requirements of the molecular system.

  13. Enhanced toxicity of Bacillus thuringiensis Cry3A delta-endotoxin in coleopterans by mutagenesis in a receptor binding loop.

    PubMed

    Wu, S J; Koller, C N; Miller, D L; Bauer, L S; Dean, D H

    2000-05-12

    We used site-directed mutagenesis to modify the Bacillus thuringiensis cry3A gene in amino acid residues 350-354. Two mutant toxins, A1 (R(345)A,Y(350)F,Y(351)F) and A2 (R(345)A,DeltaY(350), DeltaY(351)), showed significantly improved toxicity against Tenebrio molitor (yellow mealworm). The mutant toxin A1 was also more potent against both Leptinotarsa decemlineata (Colorado potato beetle) and Chrysomela scripta (cottonwood leaf beetle), while A2 displayed enhanced toxicity only in L. decemlineata. Competitive binding assays of L. decemlineata brush border membrane vesicles (BBMV) revealed that binding affinities for the A1 and A2 mutant toxins were ca. 2.5-fold higher than for the wild-type Cry3 toxin. Similar binding assays with C. scripta BBMV revealed a ca. 5-fold lower dissociation rate for the A1 mutant as compared to that of Cry3A.

  14. Ultra-wide band electromagnetic radiation does not affect UV-induced recombination and mutagenesis in yeast.

    PubMed

    Pakhomova, O N; Belt, M L; Mathur, S P; Lee, J C; Akyel, Y

    1998-01-01

    Cell samples of the yeast Saccharomyces cerevisiae were exposed to 100 J/m2 of 254 nm ultraviolet (UV) radiation followed by a 30 min treatment with ultra-wide band (UWB) electromagnetic pulses. The UWB pulses (101-104 kV/m, 1.0 ns width, 165 ps rise time) were applied at the repetition rates of 0 Hz (sham), 16 Hz, or 600 Hz. The effect of exposures was evaluated from the colony-forming ability of the cells on complete and selective media and the number of aberrant colonies. The experiments established no effect of UWB exposure on the UV-induced reciprocal and non-reciprocal recombination, mutagenesis, or cell survival.

  15. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.

    PubMed

    Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J

    1996-04-30

    A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms.

  16. A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome.

    PubMed Central

    Speulman, E; Metz, P L; van Arkel, G; te Lintel Hekkert, B; Stiekema, W J; Pereira, A

    1999-01-01

    A modified Enhancer-Inhibitor transposon system was used to generate a series of mutant lines by single-seed descent such that multiple I insertions occurred per plant. The distribution of original insertions in the population was assessed by isolating transposon-flanking DNA, and a database of insertion sites was created. Approximately three-quarters of the identified insertion sites show similarity to sequences stored in public databases, which demonstrates the power of this regimen of insertional mutagenesis. To isolate insertions in specific genes, we developed three-dimensional pooling and polymerase chain reaction strategies that we then validated by identifying mutants for the regulator genes APETALA1 and SHOOT MERISTEMLESS. The system then was used to identify inserts in a class of uncharacterized genes involved in lipid biosynthesis; one such insertion conferred a fiddlehead mutant phenotype. PMID:10521517

  17. Agrobacterium tumefaciens-mediated transformation as an efficient tool for insertional mutagenesis of Cercospora zeae-maydis.

    PubMed

    Lu, Yuanyuan; Xiao, Shuqin; Wang, Fen; Sun, Jiaying; Zhao, Likun; Yan, Libin; Xue, Chunsheng

    2017-02-01

    An efficient Agrobacterium tumefaciens-mediated transformation (ATMT) approach was developed for the plant pathogenic fungus, Cercospora zeae-maydis, which is the causative agent of gray leaf spot in maize. The transformation was evaluated with five parameters to test the efficiencies of transformation. Results showed that spore germination time, co-cultivation temperature and time were the significant influencing factors in all parameters. Randomly selected transformants were confirmed and the transformants were found to be mitotically stable, with single-copy T-DNA integration in the genome. T-DNA flanking sequences were cloned by thermal asymmetric interlaced PCR. Thus, the ATMT approach is an efficient tool for insertional mutagenesis of C. zeae-maydis.

  18. Use of signature-tagged mutagenesis to identify virulence determinants in Haemophilus ducreyi responsible for ulcer formation.

    PubMed

    Yeung, Angela; Cameron, D William; Desjardins, Marc; Lee, B Craig

    2011-02-01

    Elucidating the molecular mechanisms responsible for chancroid, a genital ulcer disease caused by Haemophilus ducreyi, has been hampered in part by the relative genetic intractability of the organism. A whole genome screen using signature-tagged mutagenesis in the temperature-dependent rabbit model (TDRM) of H. ducreyi infection uncovered 26 mutants with a presumptive attenuated phenotype. Insertions in two previously recognized virulence determinants, hgbA and lspA1, validated this genome scanning technique. Database interrogation allowed assignment of 24 mutants to several functional classes, including transport, metabolism, DNA repair, stress response and gene regulation. The attenuated virulence for a 3 strain with a mutation in hicB was confirmed by individual infection in the TDRM. The results from this preliminary study indicate that this high throughput strategy will further the understanding of the pathogenesis of H. ducreyi infection.

  19. Identification of the Catalytic Residue of Rat Acyl-CoA Dehydrogenase 9 by Site-Directed Mutagenesis.

    PubMed

    Zeng, Jia; Deng, Senwen; Wang, Yiping

    2017-01-13

    Acyl-CoA dehydrogenase 9 (ACAD 9) is the ninth member of ACADs involved in mitochondrial fatty acid oxidation and possibly complex I assembly. Sequence alignment suggested that Glu389 of rat ACAD 9 was highly conserved and located near the active center and might act as an important base for the dehydrogenation reaction. The role of Glu389 in the catalytic reaction was investigated by site-directed mutagenesis. Both wild-type and mutant ACAD 9 proteins were purified and their catalytic characterization was studied. When Glu389 was replaced by other residues, the enzyme activity could be lost to a large extent. Those results suggested that Glu389 could function as the catalytic base that abstracted the α-proton of the acyl-CoA substrate in a proposed catalytic mechanism.

  20. Random Mutagenesis MAPPIT Analysis Identifies Binding Sites for Vif and Gag in Both Cytidine Deaminase Domains of Apobec3G

    PubMed Central

    Uyttendaele, Isabel; Lavens, Delphine; Catteeuw, Dominiek; Lemmens, Irma; Bovijn, Celia

    2012-01-01

    The mammalian two-hybrid system MAPPIT allows the detection of protein-protein interactions in intact human cells. We developed a random mutagenesis screening strategy based on MAPPIT to detect mutations that disrupt the interaction of one protein with multiple protein interactors simultanously. The strategy was used to detect residues of the human cytidine deaminase Apobec3G that are important for its homodimerization and its interaction with the HIV-1 Gag and Vif proteins. The strategy is able to identify the previously described head-to-head homodimerization interface in the N-terminal domain of Apobec3G. Our analysis further detects two new potential interaction surfaces in the N-and C-terminal domain of Apobec3G for interaction with Vif and Gag or for Apobec3G dimerization. PMID:22970171

  1. Error-Prone PCR-Based Mutagenesis Strategy for Rapidly Generating High-Yield Influenza Vaccine Candidates

    PubMed Central

    Ye, Jianqiang; Wen, Feng; Xu, Yifei; Zhao, Nan; Long, Liping; Sun, Hailiang; Yang, Jialiang; Cooley, Jim; Pharr, G. Todd; Webby, Richard; Wan, Xiu-Feng

    2015-01-01

    Vaccination is the primary strategy for the prevention and control of influenza outbreaks. However, the manufacture of influenza vaccine requires a high-yield seed strain, and the conventional methods for generating such strains are time consuming. In this study, we developed a novel method to rapidly generate high-yield candidate vaccine strains by integrating error-prone PCR, site-directed mutagenesis strategies, and reverse genetics. We used this method to generate seed strains for the influenza A(H1N1)pdm09 virus and produced six high-yield candidate strains. We used a mouse model to assess the efficacy of two of the six candidate strains as a vaccine seed virus: both strains provided complete protection in mice against lethal challenge, thus validating our method. Results confirmed that the efficacy of these candidate vaccine seed strains was not affected by the yield-optimization procedure. PMID:25899178

  2. Structure-Function Studies of Escherichia coli RpoH (σ32) by In Vitro Linker Insertion Mutagenesis

    PubMed Central

    Narberhaus, Franz; Balsiger, Sylvia

    2003-01-01

    The sigma factor RpoH (σ32) is the key regulator of the heat shock response in Escherichia coli. Many structural and functional properties of the sigma factor are poorly understood. To gain further insight into RpoH regions that are either important or dispensable for its cellular activity, we generated a collection of tetrapeptide insertion variants by a recently established in vitro linker insertion mutagenesis technique. Thirty-one distinct insertions were obtained, and their sigma factor activity was analyzed by using a groE-lacZ reporter fusion in an rpoH-negative background. Our study provides a map of permissive sites which tolerate linker insertions and of functionally important regions at which a linker insertion impairs sigma factor activity. Selected linker insertion mutants will be discussed in the light of known sigma factor properties and in relation to a modeled structure of an RpoH fragment containing region 2. PMID:12700252

  3. Structure-function studies of Escherichia coli RpoH (sigma32) by in vitro linker insertion mutagenesis.

    PubMed

    Narberhaus, Franz; Balsiger, Sylvia

    2003-05-01

    The sigma factor RpoH (sigma(32)) is the key regulator of the heat shock response in Escherichia coli. Many structural and functional properties of the sigma factor are poorly understood. To gain further insight into RpoH regions that are either important or dispensable for its cellular activity, we generated a collection of tetrapeptide insertion variants by a recently established in vitro linker insertion mutagenesis technique. Thirty-one distinct insertions were obtained, and their sigma factor activity was analyzed by using a groE-lacZ reporter fusion in an rpoH-negative background. Our study provides a map of permissive sites which tolerate linker insertions and of functionally important regions at which a linker insertion impairs sigma factor activity. Selected linker insertion mutants will be discussed in the light of known sigma factor properties and in relation to a modeled structure of an RpoH fragment containing region 2.

  4. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.

    PubMed Central

    Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J

    1996-01-01

    A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms. Images Fig. 1 Fig. 2 PMID:8633004

  5. UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 strain for improved anaerobic growth at elevated temperature on pentose and hexose sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More robust industrial yeast strains from Kluyveromyces marxianus NRRL Y-1109 and have been produced using UV-C irradiation specifically for anaerobic conversion of lignocellulosic sugar streams to fuel ethanol at elevated temperature (45°C). This type of random mutagenesis offers the possibility o...

  6. MALS: an efficient strategy for multiple site-directed mutagenesis employing a combination of DNA amplification, ligation and suppression PCR

    PubMed Central

    Fushan, Alexey A; Drayna, Dennis T

    2009-01-01

    Background Multiple approaches for the site-directed mutagenesis (SDM) have been developed. However, only several of them are designed for simultaneous introduction of multiple nucleotide alterations, and these are time consuming. In addition, many of the existing multiple SDM methods have technical limitations associated with type and number of mutations that can be introduced, or are technically demanding and require special chemical reagents. Results In this study we developed a quick and efficient strategy for introduction of multiple complex mutations in a target DNA without intermediate subcloning by using a combination of connecting SDM and suppression PCR. The procedure consists of sequential rounds, with each individual round including PCR amplification of target DNA with two non-overlapping pairs of oligonucleotides. The desired mutation is incorporated at the 5' end of one or both internal oligonucleotides. DNA fragments obtained during amplification are mixed and ligated. The resulting DNA mixture is amplified with external oligonucleotides that act as suppression adapters. Suppression PCR limits amplification to DNA molecules representing full length target DNA, while amplification of other types of molecules formed during ligation is suppressed. To create additional mutations, an aliquot of the ligation mixture is then used directly for the next round of mutagenesis employing internal oligonucleotides specific for another region of target DNA. Conclusion A wide variety of complex multiple mutations can be generated in a short period of time. The procedure is rapid, highly efficient and does not require special chemical reagents. Thus, MALS represents a powerful alternative to the existing methods for multiple SDM. PMID:19778447

  7. RNA-Guided Cas9-Induced Mutagenesis in Tobacco Followed by Efficient Genetic Fixation in Doubled Haploid Plants

    PubMed Central

    Schedel, Sindy; Pencs, Stefanie; Hensel, Götz; Müller, Andrea; Rutten, Twan; Kumlehn, Jochen

    2017-01-01

    Customizable endonucleases are providing an effective tool for genome engineering. The resulting primary transgenic individuals (T0) are typically heterozygous and/or chimeric with respect to any mutations induced. To generate genetically fixed mutants, they are conventionally allowed to self-pollinate, a procedure which segregates individuals into mutant heterozygotes/homozygotes and wild types. The chances of recovering homozygous mutants among the progeny depend not only on meiotic segregation but also on the frequency of mutated germline cells in the chimeric mother plant. In Nicotiana species, the heritability of Cas9-induced mutations has not been demonstrated yet. RNA-guided Cas9 endonuclease-mediated mutagenesis was targeted to the green fluorescent protein (GFP) gene harbored by a transgenic tobacco line. Upon retransformation using a GFP-specific guide RNA/Cas9 construct, the T0 plants were allowed to either self-pollinate, or were propagated via regeneration from in vitro cultured embryogenic pollen which give rise to haploid/doubled haploid plants or from leaf explants that form plants vegetatively. Single or multiple mutations were detected in 80% of the T0 plants. About half of these mutations proved heritable via selfing. Regeneration from in vitro cultured embryogenic pollen allowed for homozygous mutants to be produced more efficiently than via sexual reproduction. Consequently, embryogenic pollen culture provides a convenient method to rapidly generate a variety of genetically fixed mutants following site-directed mutagenesis. The recovery of a mutation not found among sexually produced and analyzed progeny was shown to be achievable through vegetative plant propagation in vitro, which eventually resulted in heritability when the somatic clones were selfed. In addition, some in-frame mutations were associated with functional attenuation of the target gene rather than its full knock-out. The generation of mutants with compromised rather than

  8. Transposon mutagenesis reveals cooperation of ETS family transcription factors with signaling pathways in erythro-megakaryocytic leukemia

    PubMed Central

    Tang, Jian Zhong; Carmichael, Catherine L.; Shi, Wei; Metcalf, Donald; Ng, Ashley P.; Hyland, Craig D.; Jenkins, Nancy A.; Copeland, Neal G.; Howell, Viive M.; Zhao, Zhizhuang Joe; Smyth, Gordon K.; Kile, Benjamin T.; Alexander, Warren S.

    2013-01-01

    To define genetic lesions driving leukemia, we targeted cre-dependent Sleeping Beauty (SB) transposon mutagenesis to the blood-forming system using a hematopoietic-selective vav 1 oncogene (vav1) promoter. Leukemias of diverse lineages ensued, most commonly lymphoid leukemia and erythroleukemia. The inclusion of a transgenic allele of Janus kinase 2 (JAK2)V617F resulted in acceleration of transposon-driven disease and strong selection for erythroleukemic pathology with transformation of bipotential erythro-megakaryocytic cells. The genes encoding the E-twenty-six (ETS) transcription factors Ets related gene (Erg) and Ets1 were the most common sites for transposon insertion in SB-induced JAK2V617F-positive erythroleukemias, present in 87.5% and 65%, respectively, of independent leukemias examined. The role of activated Erg was validated by reproducing erythroleukemic pathology in mice transplanted with fetal liver cells expressing translocated in liposarcoma (TLS)-ERG, an activated form of ERG found in human leukemia. Via application of SB mutagenesis to TLS-ERG–induced erythroid transformation, we identified multiple loci as likely collaborators with activation of Erg. Jak2 was identified as a common transposon insertion site in TLS-ERG–induced disease, strongly validating the cooperation between JAK2V617F and transposon insertion at the Erg locus in the JAK2V617F-positive leukemias. Moreover, loci expressing other regulators of signal transduction pathways were conspicuous among the common transposon insertion sites in TLS-ERG–driven leukemia, suggesting that a key mechanism in erythroleukemia may be the collaboration of lesions disturbing erythroid maturation, most notably in genes of the ETS family, with mutations that reduce dependence on exogenous signals. PMID:23533276

  9. Transposon mutagenesis reveals cooperation of ETS family transcription factors with signaling pathways in erythro-megakaryocytic leukemia.

    PubMed

    Tang, Jian Zhong; Carmichael, Catherine L; Shi, Wei; Metcalf, Donald; Ng, Ashley P; Hyland, Craig D; Jenkins, Nancy A; Copeland, Neal G; Howell, Viive M; Zhao, Zhizhuang Joe; Smyth, Gordon K; Kile, Benjamin T; Alexander, Warren S

    2013-04-09

    To define genetic lesions driving leukemia, we targeted cre-dependent Sleeping Beauty (SB) transposon mutagenesis to the blood-forming system using a hematopoietic-selective vav 1 oncogene (vav1) promoter. Leukemias of diverse lineages ensued, most commonly lymphoid leukemia and erythroleukemia. The inclusion of a transgenic allele of Janus kinase 2 (JAK2)V617F resulted in acceleration of transposon-driven disease and strong selection for erythroleukemic pathology with transformation of bipotential erythro-megakaryocytic cells. The genes encoding the E-twenty-six (ETS) transcription factors Ets related gene (Erg) and Ets1 were the most common sites for transposon insertion in SB-induced JAK2V617F-positive erythroleukemias, present in 87.5% and 65%, respectively, of independent leukemias examined. The role of activated Erg was validated by reproducing erythroleukemic pathology in mice transplanted with fetal liver cells expressing translocated in liposarcoma (TLS)-ERG, an activated form of ERG found in human leukemia. Via application of SB mutagenesis to TLS-ERG-induced erythroid transformation, we identified multiple loci as likely collaborators with activation of Erg. Jak2 was identified as a common transposon insertion site in TLS-ERG-induced disease, strongly validating the cooperation between JAK2V617F and transposon insertion at the Erg locus in the JAK2V617F-positive leukemias. Moreover, loci expressing other regulators of signal transduction pathways were conspicuous among the common transposon insertion sites in TLS-ERG-driven leukemia, suggesting that a key mechanism in erythroleukemia may be the collaboration of lesions disturbing erythroid maturation, most notably in genes of the ETS family, with mutations that reduce dependence on exogenous signals.

  10. BAX and Tumor Suppressor TRP53 Are Important in Regulating Mutagenesis in Spermatogenic Cells in Mice1

    PubMed Central

    Xu, Guogang; Vogel, Kristine S.; McMahan, C. Alex; Herbert, Damon C.; Walter, Christi A.

    2010-01-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis. PMID:20739667

  11. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait

    PubMed Central

    Abt, Tom Den; Souffriau, Ben; Foulquié-Moreno, Maria R.; Duitama, Jorge; Thevelein, Johan M.

    2016-01-01

    Isolation of mutants in populations of microorganisms has been a valuable tool in experimental genetics for decades. The main disadvantage, however, is the inability of isolating mutants in non-selectable polygenic traits. Most traits of organisms, however, are non-selectable and polygenic, including industrially important properties of microorganisms. The advent of powerful technologies for polygenic analysis of complex traits has allowed simultaneous identification of multiple causative mutations among many thousands of irrelevant mutations. We now show that this also applies to haploid strains of which the genome has been loaded with induced mutations so as to affect as many non-selectable, polygenic traits as possible. We have introduced about 900 mutations into single haploid yeast strains using multiple rounds of EMS mutagenesis, while maintaining the mating capacity required for genetic mapping. We screened the strains for defects in flavor production, an important non-selectable, polygenic trait in yeast alcoholic beverage production. A haploid strain with multiple induced mutations showing reduced ethyl acetate production in semi-anaerobic fermentation, was selected and the underlying quantitative trait loci (QTLs) were mapped using pooled-segregant whole-genome sequence analysis after crossing with an unrelated haploid strain. Reciprocal hemizygosity analysis and allele exchange identified PMA1 and CEM1 as causative mutant alleles and TPS1 as a causative genetic background allele. The case of CEM1 revealed that relevant mutations without observable effect in the haploid strain with multiple induced mutations (in this case due to defective mitochondria) can be identified by polygenic analysis as long as the mutations have an effect in part of the segregants (in this case those that regained fully functional mitochondria). Our results show that genomic saturation mutagenesis combined with complex trait polygenic analysis could be used successfully to

  12. A Study on the Effect of Surface Lysine to Arginine Mutagenesis on Protein Stability and Structure Using Green Fluorescent Protein

    PubMed Central

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering. PMID:22792305

  13. In silico functional dissection of saturation mutagenesis: Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity

    PubMed Central

    Pires, Douglas E. V.; Chen, Jing; Blundell, Tom L.; Ascher, David B.

    2016-01-01

    Despite interest in associating polymorphisms with clinical or experimental phenotypes, functional interpretation of mutation data has lagged behind generation of data from modern high-throughput techniques and the accurate prediction of the molecular impact of a mutation remains a non-trivial task. We present here an integrated knowledge-driven computational workflow designed to evaluate the effects of experimental and disease missense mutations on protein structure and interactions. We exemplify its application with analyses of saturation mutagenesis of DBR1 and Gal4 and show that the experimental phenotypes for over 80% of the mutations correlate well with predicted effects of mutations on protein stability and RNA binding affinity. We also show that analysis of mutations in VHL using our workflow provides valuable insights into the effects of mutations, and their links to the risk of developing renal carcinoma. Taken together the analyses of the three examples demonstrate that structural bioinformatics tools, when applied in a systematic, integrated way, can rapidly analyse a given system to provide a powerful approach for predicting structural and functional effects of thousands of mutations in order to reveal molecular mechanisms leading to a phenotype. Missense or non-synonymous mutations are nucleotide substitutions that alter the amino acid sequence of a protein. Their effects can range from modifying transcription, translation, processing and splicing, localization, changing stability of the protein, altering its dynamics or interactions with other proteins, nucleic acids and ligands, including small molecules and metal ions. The advent of high-throughput techniques including sequencing and saturation mutagenesis has provided large amounts of phenotypic data linked to mutations. However, one of the hurdles has been understanding and quantifying the effects of a particular mutation, and how they translate into a given phenotype. One approach to overcome

  14. A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein.

    PubMed

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering.

  15. Random insertion and gene disruption via transposon mutagenesis of Ureaplasma parvum using a mini-transposon plasmid.

    PubMed

    Aboklaish, Ali F; Dordet-Frisoni, Emilie; Citti, Christine; Toleman, Mark A; Glass, John I; Spiller, O Brad

    2014-11-01

    While transposon mutagenesis has been successfully used for Mycoplasma spp. to disrupt and determine non-essential genes, previous attempts with Ureaplasma spp. have been unsuccessful. Using a polyethylene glycol-transformation enhancing protocol, we were able to transform three separate serovars of Ureaplasma parvum with a Tn4001-based mini-transposon plasmid containing a gentamicin resistance selection marker. Despite the large degree of homology between Ureaplasma parvum and Ureaplasma urealyticum, all attempts to transform the latter in parallel failed, with the exception of a single clinical U. urealyticum isolate. PCR probing and sequencing were used to confirm transposon insertion into the bacterial genome and identify disrupted genes. Transformation of prototype serovar 3 consistently resulted in transfer only of sequence between the mini-transposon inverted repeats, but some strains showed additional sequence transfer. Transposon insertion occurred randomly in the genome resulting in unique disruption of genes UU047, UU390, UU440, UU450, UU520, UU526, UU582 for single clones from a panel of screened clones. An intergenic insertion between genes UU187 and UU188 was also characterised. Two phenotypic alterations were observed in the mutated strains: Disruption of a DEAD-box RNA helicase (UU582) altered growth kinetics, while the U. urealyticum strain lost resistance to serum attack coincident with disruption of gene UUR10_137 and loss of expression of a 41 kDa protein. Transposon mutagenesis was used successfully to insert single copies of a mini-transposon into the genome and disrupt genes leading to phenotypic changes in Ureaplasma parvum strains. This method can now be used to deliver exogenous genes for expression and determine essential genes for Ureaplasma parvum replication in culture and experimental models.

  16. Using site-saturation mutagenesis to explore mechanism and substrate specificity in thiamin diphosphate-dependent enzymes.

    PubMed

    Andrews, Forest H; McLeish, Michael J

    2013-12-01

    For almost 20 years, site-saturation mutagenesis (SSM) has been used to evolve stereoselective enzymes as catalysts for synthetic organic chemistry. Much of this work has focused on enzymes such as lipases and esterases, although the range is rapidly expanding. By contrast, using SSM to study enzyme mechanisms is much less common. Instead, site-directed mutagenesis is more generally employed, with a particular emphasis on alanine variants. In the present review, we provide examples of the growing use of SSM to study not only substrate and reaction selectivity, but also the reaction mechanism of thiamin diphosphate (ThDP)-dependent enzymes. We report that the use of SSM to examine the roles of the catalytic residues of benzoylformate decarboxylase gave rise to results that were at odds with earlier kinetic and structural studies using alanine substitutions and also questioned their conclusions. SSM was also employed to examine the long held tenet that a bulky hydrophobic residue provides a fulcrum by which the V-conformation of the ThDP cofactor is maintained. X-ray structures showed that ThDP stayed in the V-conformation even when the replacement residues were charged or did not contact the cofactor. We also summarize the results obtained when SSM was used to evolve new substrate specificity and/or enantioselectivity in ThDP-dependent enzymes such as benzoylformate decarboxylase, transketolase, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase and the E1 component of the 2-oxoglutarate dehydrogenase complex.

  17. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli.

    PubMed

    Weng, MeiZhi; Zheng, ZhongLiang; Bao, Wei; Cai, YongJun; Yin, Yan; Zou, GuoLin; Zou, GouLin

    2009-11-01

    Nattokinase (subtilisin NAT, NK) is a bacterial serine protease with strong fibrinolytic activity and it is a potent cardiovascular drug. In medical and commercial applications, however, it is susceptible to chemical oxidation, and subsequent inactivation or denaturation. Here we show that the oxidative stability of NK was substantially increased by optimizing the amino acid residues Thr(220) and Met(222), which were in the vicinity of the catalytic residue Ser(221) of the enzyme. Two nonoxidative amino acids (Ser and Ala) were introduced at these sites using site-directed mutagenesis. Active enzymes were successfully expressed in Escherichia coli with periplasmic secretion and enzymes were purified to homogeneity. The purified enzymes were analyzed with respect to oxidative stability, kinetic parameters, fibrinolytic activity and thermal stability. M222A mutant was found to have a greatly increased oxidative stability compared with wild-type enzyme and it was resistant to inactivation by more than 1 M H(2)O(2), whereas the wild-type enzyme was inactivated by 0.1 M H(2)O(2) (t(1/2) approximately 11.6 min). The other mutant (T220S) also showed an obvious increase in antioxidative ability. Molecular dynamic simulations on wild-type and T220S mutant proteins suggested that a hydrogen bond was formed between Ser(220) and Asn(155), and the spatial structure of Met(222) was changed compared with the wild-type. The present study demonstrates the feasibility of improving oxidative stability of NK by site-directed mutagenesis and shows successful protein engineering cases to improve stability of NK as a potent therapeutic agent.

  18. CRISPR/Cas9 Mutagenesis Reveals Versatile Roles of Hox Genes in Crustacean Limb Specification and Evolution.

    PubMed

    Martin, Arnaud; Serano, Julia M; Jarvis, Erin; Bruce, Heather S; Wang, Jennifer; Ray, Shagnik; Barker, Carryn A; O'Connell, Liam C; Patel, Nipam H

    2016-01-11

    Crustaceans possess a diverse array of specialized limbs. Although shifts in Hox gene expression domains have been postulated to play a role in generating this limb diversity, little functional data have been provided to understand the precise roles of Hox genes during crustacean development. We used a combination of CRISPR/Cas9-targeted mutagenesis and RNAi knockdown to decipher the function of the six Hox genes expressed in the developing mouth and trunk of the amphipod Parhyale hawaiensis. These experimentally manipulated animals display specific and striking homeotic transformations. We found that abdominal-A (abd-A) and Abdominal-B (Abd-B) are required for proper posterior patterning, with knockout of Abd-B resulting in an animal with thoracic type legs along what would have been an abdomen, and abd-A disruption generating a simplified body plan characterized by a loss of specialization in both abdominal and thoracic appendages. In the thorax, Ubx is necessary for gill development and for repression of gnathal fate, and Antp dictates claw morphology. In the mouth, Scr and Antp confer the part-gnathal, part-thoracic hybrid identity of the maxilliped, and Scr and Dfd prevent antennal identity in posterior head segments. Our results allow us to define the role Hox genes play in specifying each appendage type in Parhyale, including the modular nature by which some appendages are patterned by Hox gene inputs. In addition, we define how changes in Hox gene expression have generated morphological differences between crustacean species. Finally, we also highlight the utility of CRISPR/Cas9-based somatic mutagenesis in emerging model organisms.

  19. RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background High-energy-density biofuels are typically derived from the fatty acid pathway, thus establishing free fatty acids (FFAs) as important fuel precursors. FFA production using photosynthetic microorganisms like cyanobacteria allows for direct conversion of carbon dioxide into fuel precursors. Recent studies investigating cyanobacterial FFA production have demonstrated the potential of this process, yet FFA production was also shown to have negative physiological effects on the cyanobacterial host, ultimately limiting high yields of FFAs. Results Cyanobacterial FFA production was shown to generate reactive oxygen species (ROS) and lead to increased cell membrane permeability. To identify genetic targets that may mitigate these toxic effects, RNA-seq analysis was used to investigate the host response of Synechococcus elongatus PCC 7942. Stress response, nitrogen metabolism, photosynthesis, and protein folding genes were up-regulated during FFA production while genes involved in carbon and hydrogen metabolisms were down-regulated. Select genes were targeted for mutagenesis to confirm their role in mitigating FFA toxicity. Gene knockout of two porins and the overexpression of ROS-degrading proteins and hypothetical proteins reduced the toxic effects of FFA production, allowing for improved growth, physiology, and FFA yields. Comparative transcriptomics, analyzing gene expression changes associated with FFA production and other stress conditions, identified additional key genes involved in cyanobacterial stress response. Conclusions A total of 15 gene targets were identified to reduce the toxic effects of FFA production. While single-gene targeted mutagenesis led to minor increases in FFA production, the combination of these targeted mutations may yield additional improvement, advancing the development of high-energy-density fuels derived from cyanobacteria. PMID:23919451

  20. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, November 1, 1979-October 31, 1980

    SciTech Connect

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. Use of the host-cell reactivation viral suicide enrichment procedure was initiated in the isolation of repair-deficient mutants. Lightly mutagenized BHK cells were infected with irradiated Herpes simplex virus (HSV); several radiation-sensitive strains were isolated among the survivors of the infection. The characterization of these strains is progressing and the enrichments are continuing. That alterations in the frequency of mutation of C3H/10T 1/2 cells, occurring as a result of holding the cells in a confluent state following treatment with ethylmethane sulfonate, parallel the alterations in the frequency of neoplastic transformation was found. The repair capabilities of BHK cells were found to be intermediate in comparison to repair-proficient and -deficient human cells with regard to the reactivation of HSV treated with various inactivating agents. The effect of confluency and of low serum levels on DNA synthesis, as well as the response to the cytotoxic effects of MNNG and acriflavin were determined in BHK cells in preparation for the investigation of the role of DNA repair in mutagenesis and transformation. It was also found that C3H/10T 1/2 cells partially recover from the toxic effects of 4-nitroquinoline-1-oxide if they are held in a confluent state for 6 to 22 hrs following treatment. Addition of catalase did not alleviate the toxic effects of 4-NQO. The cells contain a relatively high endogenous level of this enzyme. (ERB)

  1. Molecular dynamics simulation studies and in vitro site directed mutagenesis of avian beta-defensin Apl_AvBD2

    PubMed Central

    2010-01-01

    Background Defensins comprise a group of antimicrobial peptides, widely recognized as important elements of the innate immune system in both animals and plants. Cationicity, rather than the secondary structure, is believed to be the major factor defining the antimicrobial activity of defensins. To test this hypothesis and to improve the activity of the newly identified avian β-defensin Apl_AvBD2 by enhancing the cationicity, we performed in silico site directed mutagenesis, keeping the predicted secondary structure intact. Molecular dynamics (MD) simulation studies were done to predict the activity. Mutant proteins were made by in vitro site directed mutagenesis and recombinant protein expression, and tested for antimicrobial activity to confirm the results obtained in MD simulation analysis. Results MD simulation revealed subtle, but critical, structural variations between the wild type Apl_AvBD2 and the more cationic in silico mutants, which were not detected in the initial structural prediction by homology modelling. The C-terminal cationic 'claw' region, important in antimicrobial activity, which was intact in the wild type, showed changes in shape and orientation in all the mutant peptides. Mutant peptides also showed increased solvent accessible surface area and more number of hydrogen bonds with the surrounding water molecules. In functional studies, the Escherichia coli expressed, purified recombinant mutant proteins showed total loss of antimicrobial activity compared to the wild type protein. Conclusion The study revealed that cationicity alone is not the determining factor in the microbicidal activity of antimicrobial peptides. Factors affecting the molecular dynamics such as hydrophobicity, electrostatic interactions and the potential for oligomerization may also play fundamental roles. It points to the usefulness of MD simulation studies in successful engineering of antimicrobial peptides for improved activity and other desirable functions. PMID

  2. Site-Directed Mutagenesis of a Hyperthermophilic Endoglucanase Cel12B from Thermotoga maritima Based on Rational Design

    PubMed Central

    Zhang, Jinfeng; Shi, Hao; Xu, Linyu; Zhu, Xiaoyan; Li, Xiangqian

    2015-01-01

    To meet the demand for the application of high activity and thermostable cellulases in the production of new-generation bioethanol from nongrain-cellulose sources, a hyperthermostable β-1,4-endoglucase Cel12B from Thermotoga maritima was selected for further modification by gene site-directed mutagenesis method in the present study, based on homology modeling and rational design. As a result, two recombinant enzymes showed significant improvement in enzyme activity by 77% and 87%, respectively, higher than the parental enzyme TmCel12B. Furthermore, the two mutants could retain 80% and 90.5% of their initial activity after incubation at 80°C for 8 h, while only 45% for 5 h to TmCel12B. The Km and Vmax of the two recombinant enzymes were 1.97±0.05 mM, 4.23±0.15 μmol·mg-1·min-1 of TmCel12B-E225H-K207G-D37V, and 2.97±0.12 mM, 3.15±0.21 μmol·mg-1·min-1 of TmCel12B-E225H-K207G, respectively, when using CMC-Na as the substrate. The roles of the mutation sites were also analyzed and evaluated in terms of electron density, hydrophobicity of the modeled protein structures. The recombinant enzymes may be used in the hydrolysis of cellulose at higher temperature in the future. It was concluded that the gene mutagenesis approach of a certain active residues may effectively improve the performance of cellulases for the industrial applications and contribute to the study the thermostable mechanism of thermophilic enzymes. PMID:26218520

  3. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis

    PubMed Central

    Zhao, Junfei; Sheng, Jinsong; Rubin, Donald H.

    2016-01-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics. PMID:27632082

  4. Drug uptake pathways of multidrug transporter AcrB studied by molecular simulations and site-directed mutagenesis experiments.

    PubMed

    Yao, Xin-Qiu; Kimura, Nobuhiro; Murakami, Satoshi; Takada, Shoji

    2013-05-22

    Multidrug resistance has been a critical issue in current chemotherapy. In Escherichia coli , a major efflux pump responsible for the multidrug resistance contains a transporter AcrB. Crystallographic studies and mutational assays of AcrB provided much of structural and overall functional insights, which led to the functionally rotating mechanism. However, the drug uptake pathways are somewhat controversial because at least two possible pathways, the vestibule and the cleft paths, were suggested. Here, combining molecular simulations and site-directed mutagenesis experiments, we addressed the uptake mechanism finding that the drug uptake pathways can be significantly different depending on the properties of drugs. First, in the computational free energy analysis of drug movements along AcrB tunnels, we found a ligand-dependent drug uptake mechanism. With the same molecular sizes, drugs that are both strongly hydrophobic and lipophilic were preferentially taken in via the vestibule path, while other drugs favored the cleft path. Second, direct simulations realized totally about 3500 events of drug uptake by AcrB for a broad range of drug property. These simulations confirmed the ligand-dependent drug uptake and further suggested that a smaller drug favors the vestibule path, while a larger one is taken in via the cleft path. Moreover, the direct simulations identified an alternative uptake path which is not visible in the crystal structure. Third, site-directed mutagenesis of AcrB in E. coli verified that mutations of residues located along the newly identified path significantly reduced the efflux efficiency, supporting its relevance in in vivo function.

  5. Demonstration of Lignin-to-Peroxidase Direct Electron Transfer: A TRANSIENT-STATE KINETICS, DIRECTED MUTAGENESIS, EPR, AND NMR STUDY.

    PubMed

    Sáez-Jiménez, Verónica; Baratto, Maria Camilla; Pogni, Rebecca; Rencoret, Jorge; Gutiérrez, Ana; Santos, José Ignacio; Martínez, Angel T; Ruiz-Dueñas, Francisco Javier

    2015-09-18

    Versatile peroxidase (VP) is a high redox-potential peroxidase of biotechnological interest that is able to oxidize phenolic and non-phenolic aromatics, Mn(2+), and different dyes. The ability of VP from Pleurotus eryngii to oxidize water-soluble lignins (softwood and hardwood lignosulfonates) is demonstrated here by a combination of directed mutagenesis and spectroscopic techniques, among others. In addition, direct electron transfer between the peroxidase and the lignin macromolecule was kinetically characterized using stopped-flow spectrophotometry. VP variants were used to show that this reaction strongly depends on the presence of a solvent-exposed tryptophan residue (Trp-164). Moreover, the tryptophanyl radical detected by EPR spectroscopy of H2O2-activated VP (being absent from the W164S variant) was identified as catalytically active because it was reduced during lignosulfonate oxidation, resulting in the appearance of a lignin radical. The decrease of lignin fluorescence (excitation at 355 nm/emission at 400 nm) during VP treatment under steady-state conditions was accompanied by a decrease of the lignin (aromatic nuclei and side chains) signals in one-dimensional and two-dimensional NMR spectra, confirming the ligninolytic capabilities of the enzyme. Simultaneously, size-exclusion chromatography showed an increase of the molecular mass of the modified residual lignin, especially for the (low molecular mass) hardwood lignosulfonate, revealing that the oxidation products tend to recondense during the VP treatment. Finally, mutagenesis of selected residues neighboring Trp-164 resulted in improved apparent second-order rate constants for lignosulfonate reactions, revealing that changes in its protein environment (modifying the net negative charge and/or substrate accessibility/binding) can modulate the reactivity of the catalytic tryptophan.

  6. Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi.

    PubMed

    Navas, J; González-Zorn, B; Ladrón, N; Garrido, P; Vázquez-Boland, J A

    2001-08-01

    The virulence mechanisms of the facultative intracellular parasite Rhodococcus equi remain largely unknown. Among the candidate virulence factors of this pathogenic actinomycete is a secreted cholesterol oxidase, a putative membrane-damaging toxin. We identified and characterized the gene encoding this enzyme, the choE monocistron. Its protein product, ChoE, is homologous to other secreted cholesterol oxidases identified in Brevibacterium sterolicum and Streptomyces spp. ChoE also exhibits significant similarities to putative cholesterol oxidases encoded by Mycobacterium tuberculosis and Mycobacterium leprae. Genetic tools for use with R. equi are poorly developed. Here we describe the first targeted mutagenesis system available for this bacterium. It is based on a suicide plasmid, a selectable marker (the aacC4 apramycin resistance gene from Salmonella), and homologous recombination. The choE allele was disrupted by insertion of the aacC4 gene, cloned in pUC19 and introduced by electroporation in R. equi. choE recombinants were isolated at frequencies between 10(-2) and 10(-3). Twelve percent of the recombinants were double-crossover choE mutants. The choE mutation was associated with loss of cooperative (CAMP-like) hemolysis with sphingomyelinase-producing bacteria (Listeria ivanovii). Functional complementation was achieved by expression of choE from pVK173-T, a pAL5000 derivative conferring hygromycin resistance. Our data demonstrate that ChoE is an important cytolytic factor for R. equi. The highly efficient targeted mutagenesis procedure that we used to generate choE isogenic mutants will be a valuable tool for the molecular analysis of R. equi virulence.

  7. A role for dNTP binding of human immunodeficiency virus type 1 reverse transcriptase in viral mutagenesis.

    PubMed

    Weiss, Kellie K; Chen, Renxiang; Skasko, Mark; Reynolds, Holly M; Lee, Kwi; Bambara, Robert A; Mansky, Louis M; Kim, Baek

    2004-04-20

    HIV-1 reverse transcriptase (RT) is a highly error prone DNA polymerase. We assessed whether the ability of RT to bind nucleotide substrates affects viral mutagenesis. Structural modeling predicts that the V148 and Q151 residues influence the interaction between RT and the incoming dNTP. When we introduce either a V148I or Q151N mutation, RT fidelity increases 8.7- or 13-fold, respectively, as measured by the M13 lacZalpha forward mutation assay. Interestingly, pre-steady state kinetic studies demonstrated that these mutations do not alter polymerase fidelity during the first step of mutation synthesis, misincorporation. Rather, the V148I and Q151N mutations alter RT fidelity by weakening the ability of the polymerase to complete mismatch extension, the second step of mutation synthesis. While both these mutations minimally affect the binding of RT (K(D)) to a mismatched template-primer complex (T/P), these mutant RTs are significantly impaired in their ability to bind (K(d)) and chemically incorporate (k(pol)) nucleotide substrate onto a mismatched T/P. These differences in binding and catalysis translate into 24- and 15.9-fold increase in mismatch extension fidelity for the V148I and Q151N RT mutants, respectively. Finally, we employed a cell-based pseudotyped HIV-1 mutation assay to determine whether changes in these dNTP binding residues alter RT fidelity in vivo. We found that the V148I and Q151N mutant viruses had 3.8- and 5.7-fold higher fidelities than wild-type viruses, respectively, indicating that the molecular interaction between HIV-1 RT and the dNTP substrate contributes to viral mutagenesis.

  8. In silico functional dissection of saturation mutagenesis: Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity.

    PubMed

    Pires, Douglas E V; Chen, Jing; Blundell, Tom L; Ascher, David B

    2016-01-22

    Despite interest in associating polymorphisms with clinical or experimental phenotypes, functional interpretation of mutation data has lagged behind generation of data from modern high-throughput techniques and the accurate prediction of the molecular impact of a mutation remains a non-trivial task. We present here an integrated knowledge-driven computational workflow designed to evaluate the effects of experimental and disease missense mutations on protein structure and interactions. We exemplify its application with analyses of saturation mutagenesis of DBR1 and Gal4 and show that the experimental phenotypes for over 80% of the mutations correlate well with predicted effects of mutations on protein stability and RNA binding affinity. We also show that analysis of mutations in VHL using our workflow provides valuable insights into the effects of mutations, and their links to the risk of developing renal carcinoma. Taken together the analyses of the three examples demonstrate that structural bioinformatics tools, when applied in a systematic, integrated way, can rapidly analyse a given system to provide a powerful approach for predicting structural and functional effects of thousands of mutations in order to reveal molecular mechanisms leading to a phenotype. Missense or non-synonymous mutations are nucleotide substitutions that alter the amino acid sequence of a protein. Their effects can range from modifying transcription, translation, processing and splicing, lo