Science.gov

Sample records for melanocortin-4 receptor mrna

  1. The Melanocortin-4 Receptor Integrates Circadian Light Cues and Metabolism

    PubMed Central

    Arble, Deanna M.; Holland, Jenna; Ottaway, Nickki; Sorrell, Joyce; Pressler, Joshua W.; Morano, Rachel; Woods, Stephen C.; Seeley, Randy J.; Herman, James P.; Sandoval, Darleen A.

    2015-01-01

    The melanocortin system directs diverse physiological functions from coat color to body weight homoeostasis. A commonality among melanocortin-mediated processes is that many animals modulate similar processes on a circannual basis in response to longer, summer days, suggesting an underlying link between circadian biology and the melanocortin system. Despite key neuroanatomical substrates shared by both circadian and melanocortin-signaling pathways, little is known about the relationship between the two. Here we identify a link between circadian disruption and the control of glucose homeostasis mediated through the melanocortin-4 receptor (Mc4r). Mc4r-deficient mice exhibit exaggerated circadian fluctuations in baseline blood glucose and glucose tolerance. Interestingly, exposure to lighting conditions that disrupt circadian rhythms improve their glucose tolerance. This improvement occurs through an increase in glucose clearance by skeletal muscle and is food intake and body weight independent. Restoring Mc4r expression to the paraventricular nucleus prevents the improvement in glucose tolerance, supporting a role for the paraventricular nucleus in the integration of circadian light cues and metabolism. Altogether these data suggest that Mc4r signaling plays a protective role in minimizing glucose fluctuations due to circadian rhythms and environmental light cues and demonstrate a previously undiscovered connection between circadian biology and glucose metabolism mediated through the melanocortin system. PMID:25730108

  2. The melanocortin-4 receptor integrates circadian light cues and metabolism.

    PubMed

    Arble, Deanna M; Holland, Jenna; Ottaway, Nickki; Sorrell, Joyce; Pressler, Joshua W; Morano, Rachel; Woods, Stephen C; Seeley, Randy J; Herman, James P; Sandoval, Darleen A; Perez-Tilve, Diego

    2015-05-01

    The melanocortin system directs diverse physiological functions from coat color to body weight homoeostasis. A commonality among melanocortin-mediated processes is that many animals modulate similar processes on a circannual basis in response to longer, summer days, suggesting an underlying link between circadian biology and the melanocortin system. Despite key neuroanatomical substrates shared by both circadian and melanocortin-signaling pathways, little is known about the relationship between the two. Here we identify a link between circadian disruption and the control of glucose homeostasis mediated through the melanocortin-4 receptor (Mc4r). Mc4r-deficient mice exhibit exaggerated circadian fluctuations in baseline blood glucose and glucose tolerance. Interestingly, exposure to lighting conditions that disrupt circadian rhythms improve their glucose tolerance. This improvement occurs through an increase in glucose clearance by skeletal muscle and is food intake and body weight independent. Restoring Mc4r expression to the paraventricular nucleus prevents the improvement in glucose tolerance, supporting a role for the paraventricular nucleus in the integration of circadian light cues and metabolism. Altogether these data suggest that Mc4r signaling plays a protective role in minimizing glucose fluctuations due to circadian rhythms and environmental light cues and demonstrate a previously undiscovered connection between circadian biology and glucose metabolism mediated through the melanocortin system.

  3. Melanocortin-4 receptor gene mutations in obese Slovak children.

    PubMed

    Stanikova, D; Surova, M; Ticha, L; Petrasova, M; Virgova, D; Huckova, M; Skopkova, M; Lobotkova, D; Valentinova, L; Mokan, M; Stanik, J; Klimes, I; Gasperikova, D

    2015-01-01

    The most common etiology of non-syndromic monogenic obesity are mutations in gene for the Melanocortin-4 receptor (MC485) with variable prevalence in different countries (1.2-6.3 % of obese children). The aim of our study was 1) to search for MC4R mutations in obese children in Slovakia and compare their prevalence with other European countries, and 2) to describe the phenotype of the mutation carriers. DNA analysis by direct Sanger sequencing of the coding exons and intron/exon boundaries of the MC4R gene was performed in 268 unrelated Slovak children and adolescents with body mass index above the 97(th) percentile for age and sex and obesity onset up to 11 years (mean 4.3+/-2.8 years). Two different previously described heterozygous loss of function MC4R variants (i.e. p.Ser19Alafs*34, p.Ser127Leu) were identified in two obese probands, and one obese (p.Ser19Alafs*34), and one lean (p.Ser127Leu) adult family relatives. No loss of function variants were found in lean controls. The prevalence of loss-of-function MC4R variants in obese Slovak children was 0.7 %, what is one of the lowest frequencies in Europe.

  4. A neural basis for melanocortin-4 receptor regulated appetite

    PubMed Central

    Garfield, Alastair S.; Li, Chia; Madara, Joseph C.; Shah, Bhavik P.; Webber, Emily; Steger, Jennifer S.; Campbell, John N.; Gavrilova, Oksana; Lee, Charlotte E.; Olson, David P.; Elmquist, Joel K.; Tannous, Bakhos A.; Krashes, Michael J.; Lowell, Bradford B.

    2015-01-01

    Pro-opiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons are oppositely regulated by caloric depletion and co-ordinately stimulate and inhibit homeostatic satiety, respectively. This bimodality is principally underscored by the antagonistic actions of these ligands at downstream melanocortin-4 receptors (MC4R) within the paraventricular nucleus of the hypothalamus. Although this population is critical to energy balance the underlying neural circuitry remains unknown. Enabled by mice expressing Cre-recombinase in MC4R neurons, we demonstrate bidirectional control of feeding following real-time activation and inhibition of PVHMC4R neurons and further identify these cells as a functional exponent of ARCAgRP neuron-driven hunger. Moreover, we reveal this function to be mediated by a PVHMC4R→lateral parabrachial nucleus (LPBN) pathway. Activation of this circuit encodes positive valence, but only in calorically depleted mice. Thus, the satiating and appetitive nature of PVHMC4R→LPBN neurons supports the principles of drive reduction and highlights this circuit as a promising target for anti-obesity drug development. PMID:25915476

  5. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  6. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    PubMed Central

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  7. Impaired coordination of nutrient intake and substrate oxidation in melanocortin-4 receptor knockout mice.

    PubMed

    Albarado, Diana C; McClaine, Jennifer; Stephens, Jacqueline M; Mynatt, Randall L; Ye, Jianping; Bannon, Anthony W; Richards, William G; Butler, Andrew A

    2004-01-01

    Mutations in the melanocortin-4 receptor (MC4R) are associated with obesity. The obesity syndrome observed in humans with MC4R haploinsufficiency is similar to that observed in MC4R knockout mice, including increased longitudinal growth, hyperphagia, and fasting hyperinsulinemia. For comparison with other commonly investigated models of obesity and insulin resistance, we have backcrossed Mc4r-/- mice into the C57BL/6J (B6) background. Female obese Mc4r-/- mice exhibit reduced energy expenditure and an attenuated increase in fatty acid (FA) oxidation after exposure to high-fat diets compared with obese Lepob/Lepob mice. The reduced energy expenditure and FA oxidation correlates with changes in hepatic gene expression. The expression of genes involved in FA oxidation increased in obese Lepob/Lepob mice compared with wild-type and obese Mc4r-/- mice. In contrast, a key lipogenic enzyme, FA synthase (FAS), is increased in obese Mc4r-/- mice compared with obese Lepob/Lepob mice. Hyperinsulinemia, increased FAS mRNA expression and hepatic steatosis appear to be secondary to obesity in B6 Mc4r-/- mice. However, Mc4r-/- mice in a mixed genetic background develop severe hepatic steatosis at an early age. This might suggest an important role of the MC4R in regulating liver FA metabolism that is masked on the B6 background. Interestingly, the 10- to 20-fold increase in liver triglyceride in the outbred strain of Mc4r-/- mice is not always associated with fasting hyperinsulinemia or increased FAS mRNA expression. This observation suggests that changes in liver secondary to triglyceride accumulation lead to hyperinsulinemia and increased hepatic FAS expression in Mc4r-/- mice.

  8. Mechanism of N-terminal modulation of activity at the melanocortin-4 receptor GPCR

    PubMed Central

    Ersoy, Baran A; Pardo, Leonardo; Zhang, Sumei; Thompson, Darren A; Millhauser, Glenn; Govaerts, Cedric; Vaisse, Christian

    2013-01-01

    Most of our understanding of G protein–coupled receptor (GPCR) activation has been focused on the direct interaction between diffusible ligands and their seven-transmembrane domains. However, a number of these receptors depend on their extracellular N-terminal domain for ligand recognition and activation. To dissect the molecular interactions underlying both modes of activation at a single receptor, we used the unique properties of the melanocortin-4 receptor (MC4R), a GPCR that shows constitutive activity maintained by its N-terminal domain and is physiologically activated by the peptide α-melanocyte stimulating hormone (αMSH). We find that activation by the N-terminal domain and αMSH relies on different key residues in the transmembrane region. We also demonstrate that agouti-related protein, a physiological antagonist of MC4R, acts as an inverse agonist by inhibiting N terminus–mediated activation, leading to the speculation that a number of constitutively active orphan GPCRs could have physiological inverse agonists as sole regulators. PMID:22729149

  9. Neuroanatomy of melanocortin-4 receptor pathway in the lateral hypothalamic area.

    PubMed

    Cui, Huxing; Sohn, Jong-Woo; Gautron, Laurent; Funahashi, Hisayuki; Williams, Kevin W; Elmquist, Joel K; Lutter, Michael

    2012-12-15

    The central melanocortin system regulates body energy homeostasis including the melanocortin-4 receptor (MC4R). The lateral hypothalamic area (LHA) receives dense melanocortinergic inputs from the arcuate nucleus of the hypothalamus and regulates multiple processes including food intake, reward behaviors, and autonomic function. By using a mouse line in which green fluorescent protein (GFP) is expressed under control of the MC4R gene promoter, we systemically investigated MC4R signaling in the LHA by combining double immunohistochemistry, electrophysiology, and retrograde tracing techniques. We found that LHA MC4R-GFP neurons coexpress neurotensin as well as the leptin receptor but do not coexpress other peptide neurotransmitters found in the LHA including orexin, melanin-concentrating hormone, and nesfatin-1. Furthermore, electrophysiological recording demonstrated that leptin, but not the MC4R agonist melanotan II, hyperpolarizes the majority of LHA MC4R-GFP neurons in an ATP- sensitive potassium channel-dependent manner. Retrograde tracing revealed that LHA MC4R-GFP neurons do not project to the ventral tegmental area, dorsal raphe nucleus, nucleus accumbens, and spinal cord, and only limited number of neurons project to the nucleus of the solitary tract and parabrachial nucleus. Our findings provide new insights into MC4R signaling in the LHA and its potential implications in homeostatic regulation of body energy balance.

  10. Functional Studies on Twenty Novel Naturally Occurring Melanocortin-4 Receptor Mutations

    PubMed Central

    Wang, Zhi-Qiang; Tao, Ya-Xiong

    2011-01-01

    The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor critically involved in regulating energy balance. MC4R activation results in decreased food intake and increased energy expenditure. Genetic and pharmacological studies demonstrated that the MC4R regulation of energy balance is conserved from fish to mammals. In humans, more than 150 naturally occurring mutations in the MC4R gene have been identified. Functional study of mutant MC4Rs is an important component in proving the causal link between MC4R mutation and obesity as well as the basis of personalized medicine. In this article, we studied 20 MC4R mutations that were either not characterized or not fully characterized. We showed that 11 mutants had decreased or absent cell surface expression. D126Y was defective in ligand binding. Three mutants were constitutively active but had decreased cell surface expression. Eleven mutants had decreased basal signaling, with two mutants defective only in this parameter, suggesting that impaired basal signaling might also be a cause of obesity. Five mutants had normal functions. In summary, we provided detailed functional data for further studies on identifying therapeutic approaches for personalized medicine to treat patients harboring these mutations. PMID:21729752

  11. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions

    PubMed Central

    Aspiras, Ariel C.; Rohner, Nicolas; Martineau, Brian; Borowsky, Richard L.; Tabin, Clifford J.

    2015-01-01

    Despite recent advances in the understanding of morphological evolution, the genetic underpinnings of behavioral and physiological evolution remain largely unknown. Here, we study the metabolic changes that evolved in independently derived populations of the Mexican cavefish, Astyanax mexicanus. A hallmark of cave environments is scarcity of food. Cavefish populations rely almost entirely on sporadic food input from outside of the caves. To survive under these conditions, cavefish have evolved a range of adaptations, including starvation resistance and binge eating when food becomes available. The use of these adaptive strategies differs among independently derived cave populations. Although all cavefish populations tested lose weight more slowly than their surface conspecifics during restricted rations, only a subset of cavefish populations consume more food than their surface counterparts. A candidate gene-based screen led to the identification of coding mutations in conserved residues of the melanocortin 4 receptor (MC4R) gene, contributing to the insatiable appetite found in some populations of cavefish. Intriguingly, one of the mutated residues has been shown to be linked to obesity in humans. We demonstrate that the allele results in both reduced maximal response and reduced basal activity of the receptor in vitro. We further validate in vivo that the mutated allele contributes to elevated appetite, growth, and starvation resistance. The allele appears to be fixed in cave populations in which the overeating phenotype is present. The presence of the same allele in multiple caves appears to be due to selection from standing genetic variation present in surface populations. PMID:26170297

  12. Melanocortin-4 receptor expression in a vago-vagal circuitry involved in postprandial functions.

    PubMed

    Gautron, Laurent; Lee, Charlotte; Funahashi, Hisayuki; Friedman, Jeffrey; Lee, Syann; Elmquist, Joel

    2010-01-01

    Vagal afferents regulate energy balance by providing a link between the brain and postprandial signals originating from the gut. In the current study, we investigated melanocortin-4 receptor (MC4R) expression in the nodose ganglion, where the cell bodies of vagal sensory afferents reside. By using a line of mice expressing green fluorescent protein (GFP) under the control of the MC4R promoter, we found GFP expression in approximately one-third of nodose ganglion neurons. By using immunohistochemistry combined with in situ hybridization, we also demonstrated that approximately 20% of GFP-positive neurons coexpressed cholecystokinin receptor A. In addition, we found that the GFP is transported to peripheral tissues by both vagal sensory afferents and motor efferents, which allowed us to assess the sites innervated by MC4R-GFP neurons. GFP-positive efferents that co-expressed choline acetyltransferase specifically terminated in the hepatic artery and the myenteric plexus of the stomach and duodenum. In contrast, GFP-positive afferents that did not express cholinergic or sympathetic markers terminated in the submucosal plexus and mucosa of the duodenum. Retrograde tracing experiments confirmed the innervation of the duodenum by GFP-positive neurons located in the nodose ganglion. Our findings support the hypothesis that MC4R signaling in vagal afferents may modulate the activity of fibers sensitive to satiety signals such as cholecystokinin, and that MC4R signaling in vagal efferents may contribute to the control of the liver and gastrointestinal tract.

  13. SNPs of melanocortin 4 receptor (MC4R) associated with body weight in Beagle dogs.

    PubMed

    Zeng, Ruixia; Zhang, Yibo; Du, Peng

    2014-01-01

    Melanocortin 4 receptor (MC4R), which is associated with inherited human obesity, is involoved in food intake and body weight of mammals. To study the relationships between MC4R gene polymorphism and body weight in Beagle dogs, we detected and compared the nucleotide sequence of the whole coding region and 3'- and 5'- flanking regions of the dog MC4R gene (1214 bp). In 120 Beagle dogs, two SNPs (A420C, C895T) were identified and their relation with body weight was analyzed with RFLP-PCR method. The results showed that the SNP at A420C was significantly associated with canine body weight trait when it changed amino acid 101 of the MC4R protein from asparagine to threonine, while canine body weight variations were significant in female dogs when MC4R nonsense mutation at C895T. It suggested that the two SNPs might affect the MC4R gene's function which was relative to body weight in Beagle dogs. Therefore, MC4R was a candidate gene for selecting different size dogs with the MC4R SNPs (A420C, C895T) being potentially valuable as a genetic marker.

  14. The prevalence of melanocortin-4 receptor gene mutations in Slovak obese children and adolescents.

    PubMed

    Polák, Emil; Vitáriušová, Eva; Celec, Peter; Pribilincová, Zuzana; Košťálová, Ľudmila; Hlavatá, Anna; Kovács, László; Kádaši, Ľudevít

    2016-01-01

    Melanocortin-4 receptor (MC4R) deficiency is the most frequent monogenic form of obesity. The contribution of MC4R mutations to the Slovak population has not been investigated as yet. We screened the coding sequence of the MC4R gene in a cohort of 210 Slovak obese children and adolescents. We identified four different mutations in four patients, giving a mutation detection rate of 0.95%. Of these, three were missense mutations previously identified and characterized by other research groups (p.R7C, p.S127L and p. R305W, respectively). One was a novel nonsense mutation p.W174* detected in a severely obese 7-year-old boy. This mutation was further analyzed in family segregation analysis and exhibited variable penetrance. Two known amino acid polymorphisms (p.V103I and p.I251L) were also identified in seven subjects of our cohort group. We also performed multifactorial statistical analysis to determine the influence of genotypes on standard biochemical blood markers. No significant influence was observed in carriers of DNA variants on tested parameters. We conclude that rare heterozygous MC4R mutations contribute to the onset of obesity only in a few cases in the Slovak population.

  15. Synthesis and evaluation of bivalent ligands for binding to the human melanocortin-4 receptor

    PubMed Central

    Fernandes, Steve M.; Lee, Yeon Sun; Gillies, Robert J.; Hruby, Victor J.

    2014-01-01

    Membrane proteins, especially G-protein coupled receptors (GPCRs), are interesting and important theragnostic targets since many of them serve in intracellular signaling critical for all aspects of health and disease. The potential utility of designed bivalent ligands as targeting agents for cancer diagnosis and/or therapy can be evaluated by determining their binding to the corresponding receptors. As proof of concept, GPCR cell surface proteins are shown to be targeted specifically using multivalent ligands. We designed, synthesized, and tested a series of bivalent ligands targeting the over-expressed human melanocortin 4 receptor (hMC4R) in human embryonic kidney (HEK) 293 cells. Based on our data suggesting an optimal linker length of 25±10 Å inferred from the bivalent melanocyte stimulating hormone (MSH) agonist, the truncated heptapeptide, referred to as MSH(7): Ac-Ser-Nle-Glu-His-D-Phe-Arg-Trp-NH2 was used to construct a set of bivalent ligands incorporating a hMC4R antagonist, SHU9119: Ac-Nle-c[Asp-His-2′-D-Nal-Arg-Trp-Lys]-NH2 and another set of bivalent ligands containing the SHU9119 antagonist pharmacophore on both side of the optimized linkers. These two binding motifs within the bivalent constructs were conjoined by semi-rigid (Pro-Gly)3 units with or without the flexible poly(ethylene glycol) (PEGO) moieties. Lanthanide-based competitive binding assays showed bivalent ligands binds to the hMC4R with up to 240-fold higher affinity than the corresponding linked monovalent ligands. PMID:25438759

  16. Synthesis and evaluation of bivalent ligands for binding to the human melanocortin-4 receptor.

    PubMed

    Fernandes, Steve M; Lee, Yeon Sun; Gillies, Robert J; Hruby, Victor J

    2014-11-15

    Membrane proteins, especially G-protein coupled receptors (GPCRs), are interesting and important theragnostic targets since many of them serve in intracellular signaling critical for all aspects of health and disease. The potential utility of designed bivalent ligands as targeting agents for cancer diagnosis and/or therapy can be evaluated by determining their binding to the corresponding receptors. As proof of concept, GPCR cell surface proteins are shown to be targeted specifically using multivalent ligands. We designed, synthesized, and tested a series of bivalent ligands targeting the over-expressed human melanocortin 4 receptor (hMC4R) in human embryonic kidney (HEK) 293 cells. Based on our data suggesting an optimal linker length of 25±10Å inferred from the bivalent melanocyte stimulating hormone (MSH) agonist, the truncated heptapeptide, referred to as MSH(7): Ac-Ser-Nle-Glu-His-D-Phe-Arg-Trp-NH2 was used to construct a set of bivalent ligands incorporating a hMC4R antagonist, SHU9119: Ac-Nle-c[Asp-His-2'-D-Nal-Arg-Trp-Lys]-NH2 and another set of bivalent ligands containing the SHU9119 antagonist pharmacophore on both side of the optimized linkers. These two binding motifs within the bivalent constructs were conjoined by semi-rigid (Pro-Gly)3 units with or without the flexible poly(ethylene glycol) (PEGO) moieties. Lanthanide-based competitive binding assays showed bivalent ligands binds to the hMC4R with up to 240-fold higher affinity than the corresponding linked monovalent ligands.

  17. Melanocortin 4 receptor constitutive activity inhibits L-type voltage-gated calcium channels in neurons.

    PubMed

    Agosti, F; Cordisco Gonzalez, S; Martinez Damonte, V; Tolosa, M J; Di Siervi, N; Schioth, H B; Davio, C; Perello, M; Raingo, J

    2017-03-27

    The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain nuclei playing a crucial role in the regulation of energy balance controlling the homeostasis of the organism. It displays both agonist-evoked and constitutive activity, and moreover, it can couple to different G proteins. Most of the research on MC4R has been focused on agonist-induced activity, while the molecular and cellular basis of MC4R constitutive activity remains scarcely studied. We have previously shown that neuronal N-type voltage-gated calcium channels (CaV2.2) are inhibited by MC4R agonist-dependent activation, while the CaV subtypes that carry L- and P/Q-type current are not. Here, we tested the hypothesis that MC4R constitutive activity can affect CaV, with focus on the channel subtypes that can control transcriptional activity coupled to depolarization (L-type, CaV1.2/1.3) and neurotransmitter release (N- and P/Q-type, CaV2.2 and CaV2.1). We found that MC4R constitutive activity inhibits specifically CaV1.2/1.3 and CaV2.1 subtypes of CaV. We also explored the signaling pathways mediating this inhibition, and thus propose that agonist-dependent and basal MC4R activation modes signal differentially through Gs and Gi/o pathways to impact on different CaV subtypes. In addition, we found that chronic incubation with MC4R endogenous inverse agonist, agouti and agouti-related peptide (AgRP), occludes CaV inhibition in a cell line and in amygdaloid complex cultured neurons as well. Thus, we define new mechanisms of control of the main mediators of depolarization-induced calcium entry into neurons by a GPCR that displays constitutive activity.

  18. Melanocortin 4 receptor activation inhibits presynaptic N-type calcium channels in amygdaloid complex neurons.

    PubMed

    Agosti, Francina; López Soto, Eduardo J; Cabral, Agustina; Castrogiovanni, Daniel; Schioth, Helgi B; Perelló, Mario; Raingo, Jesica

    2014-09-01

    The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor involved in food intake and energy expenditure regulation. MC4R activation modifies neuronal activity but the molecular mechanisms by which this regulation occurs remain unclear. Here, we tested the hypothesis that MC4R activation regulates the activity of voltage-gated calcium channels and, as a consequence, synaptic activity. We also tested whether the proposed effect occurs in the amygdala, a brain area known to mediate the anorexigenic actions of MC4R signaling. Using the patch-clamp technique, we found that the activation of MC4R with its agonist melanotan II specifically inhibited 34.5 ± 1.5% of N-type calcium currents in transiently transfected HEK293 cells. This inhibition was concentration-dependent, voltage-independent and occluded by the Gαs pathway inhibitor cholera toxin. Moreover, we found that melanotan II specifically inhibited 25.9 ± 2.0% of native N-type calcium currents and 55.4 ± 14.4% of evoked inhibitory postsynaptic currents in mouse cultured amygdala neurons. In vivo, we found that the MC4R agonist RO27-3225 increased the marker of cellular activity c-Fos in several components of the amygdala, whereas the N-type channel blocker ω conotoxin GVIA increased c-Fos expression exclusively in the central subdivision of the amygdala. Thus, MC4R specifically inhibited the presynaptic N-type channel subtype, and this inhibition may be important for the effects of melanocortin in the central subdivision of the amygdala.

  19. Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress.

    PubMed

    Ryan, Karen K; Mul, Joram D; Clemmensen, Christoffer; Egan, Ann E; Begg, Denovan P; Halcomb, Kristen; Seeley, Randy J; Herman, James P; Ulrich-Lai, Yvonne M

    2014-04-01

    The melanocortin 4 receptor (MC4R), well-known for its role in the regulation of energy balance, is widely expressed in stress-regulatory brain regions, including the paraventricular nucleus of the hypothalamus (PVH) and the medial amygdala (MeA). In agreement with this, MC4R has been implicated in hypothalamic-pituitary-adrenocortical axis (HPA) regulation. The present work investigated the role of chronic Mc4r function to modulate basal HPA axis tone and to facilitate acute HPA responses to psychological stress, using a novel rat model with Mc4r loss-of-function. In this study, adult male rats were placed into 3 groups (n=15/group) according to genotype [wild-type (WT); heterozygous mutant (HET); and homozygous mutant (HOM)]. Basal (pre-stress) plasma adrenocorticotropic hormone (ACTH) and corticosterone were measured in the AM and PM, and the HPA axis response to restraint was assessed in the AM. Rats were perfused at 2h after restraint to assess the effect of loss of MC4R on stress-induced c-Fos immunolabeling in stress-regulatory brain regions. We find that basal (non-stress) AM and PM plasma ACTH and corticosterone showed a normal diurnal rhythm that was not altered according to genotype. Consistent with this, adrenal and thymus weights were unaffected by genotype. However, the plasma ACTH and corticosterone responses to restraint were significantly reduced by loss of MC4R function. Likewise, stress-induced c-Fos immunolabeling in both PVH and MeA was significantly reduced by loss of Mc4r function. These results support the hypothesis that endogenous MC4R signaling contributes to the HPA axis response to stress. Because MC4R plays a critical role in the regulation of energy balance, the present work suggests that it may also serve as an important communication link between brain metabolic and stress systems.

  20. Central role for melanocortin-4 receptors in offspring hypertension arising from maternal obesity

    PubMed Central

    Samuelsson, Anne-Maj S.; Mullier, Amandine; Maicas, Nuria; Oosterhuis, Nynke R.; Eun Bae, Sung; Novoselova, Tatiana V.; Chan, Li F.; Pombo, Joaquim M.; Taylor, Paul D.; Joles, Jaap A.; Coen, Clive W.; Balthasar, Nina; Poston, Lucilla

    2016-01-01

    Melanocortin-4 receptor (Mc4r)–expressing neurons in the autonomic nervous system, particularly in the paraventricular nucleus of the hypothalamus (PVH), play an essential role in blood pressure (BP) control. Mc4r-deficient (Mc4rKO) mice are severely obese but lack obesity-related hypertension; they also show a reduced pressor response to salt loading. We have previously reported that lean juvenile offspring born to diet-induced obese rats (OffOb) exhibit sympathetic-mediated hypertension, and we proposed a role for postnatally raised leptin in its etiology. Here, we test the hypothesis that neonatal hyperleptinemia due to maternal obesity induces persistent changes in the central melanocortin system, thereby contributing to offspring hypertension. Working on the OffOb paradigm in both sexes and using transgenic technology to restore Mc4r in the PVH of Mc4rKO (Mc4rPVH) mice, we have now shown that these mice develop higher BP than Mc4rKO or WT mice. We have also found that experimental hyperleptinemia induced in the neonatal period in Mc4rPVH and WT mice, but not in the Mc4rKO mice, leads to heightened BP and severe renal dysfunction. Thus, Mc4r in the PVH appears to be required for early-life programming of hypertension arising from either maternal obesity or neonatal hyperleptinemia. Early-life exposure of the PVH to maternal obesity through postnatal elevation of leptin may have long-term consequences for cardiovascular health. PMID:27791019

  1. LOSS OF MELANOCORTIN-4 RECEPTOR FUNCTION ATTENUATES HPA RESPONSES TO PSYCHOLOGICAL STRESS

    PubMed Central

    Ryan, Karen K.; Mul, Joram D.; Clemmensen, Christoffer; Egan, Ann E.; Begg, Denovan P.; Halcomb, Kristen; Seeley, Randy J.; Herman, James P.; Ulrich-Lai, Yvonne M.

    2014-01-01

    SUMMARY The melanocortin 4 receptor (MC4R), well-known for its role in the regulation of energy balance, is widely expressed in stress-regulatory brain regions, including the paraventricular nucleus of the hypothalamus (PVH) and the medial amygdala (MeA). In agreement with this, MC4R has been implicated in hypothalamic-pituitary-adrenocortical axis (HPA) regulation. The present work investigated the role of chronic Mc4r function to modulate basal HPA axis tone and to facilitate acute HPA responses to psychological stress, using a novel rat model with Mc4r loss-of-function. In this study, adult male rats were placed into 3 groups (n=15/group) according to genotype [wild-type (WT); heterozygous mutant (HET); and homozygous mutant (HOM)]. Basal (pre-stress) plasma adrenocorticotropic hormone (ACTH) and corticosterone were measured in the AM and PM, and the HPA axis response to restraint was assessed in the AM. Rats were perfused at 2 hours after restraint to assess the effect of loss of MC4R on stress-induced c-Fos immunolabeling in stress-regulatory brain regions. We find that basal (non-stress) AM and PM plasma ACTH and corticosterone showed a normal diurnal rhythm that was not altered according to genotype. Consistent with this, adrenal and thymus weights were unaffected by genotype. However, the plasma ACTH and corticosterone responses to restraint were significantly reduced by loss of MC4R function. Likewise, stress-induced c-Fos immunolabeling in both PVH and MeA was significantly reduced by loss of Mc4r function. These results support the hypothesis that endogenous MC4R signaling contributes to the HPA axis response to stress. Because MC4R plays a critical role in the regulation of energy balance, the present work suggests that it may also serve as an important communication link between brain metabolic and stress systems. PMID:24636506

  2. Molecular cloning, tissue distribution, and pharmacological characterization of melanocortin-4 receptor in grass carp (Ctenopharyngodon idella).

    PubMed

    Li, L; Yang, Z; Zhang, Y-P; He, S; Liang, X-F; Tao, Y-X

    2017-04-01

    Melanocortin-4 receptor (MC4R) plays a pivotal role in the mediation of leptin action on food intake and energy expenditure in mammals. The MC4R has also been identified in several teleosts, and its importance in the regulation of fish energy homeostasis is emerging. We herein reported on the molecular cloning, tissue distribution, and pharmacological characterization of MC4R in grass carp (Ctenopharyngodon idella), an economically and ecologically important fish. We showed that grass carp MC4R (ciMC4R) consisted of a 981 bp open reading frame encoding a protein of 326 amino acids, highly homologous (>95%) to several teleost MC4Rs. Phylogenetic and synteny analysis further indicated ciMC4R was closely related to piscine MC4Rs. Using reverse transcription PCR, we found that mc4r messenger RNA was expressed in the brain as well as various peripheral tissues in grass carp. The pharmacological properties of ciMC4R were investigated using 4 agonists, including α-melanocyte stimulating hormone (α-MSH), β-MSH, [Nle(4), D-Phe(7)]-MSH (NDP-MSH), and adrenocorticotropic hormone (ACTH). We showed that all 4 ligands could bind to ciMC4R and initiate dose-dependent intracellular cyclic adenosine monophosphate (cAMP) accumulation. Grass carp MC4R had the highest affinity for NDP-MSH. Both NDP-MSH and ACTH (1-24) exhibited higher potencies compared to the other 2 endogenous agonists. The ciMC4R was constitutively active, with significantly increased basal cAMP level compared with that of human MC4R (P < 0.01). The availability of ciMC4R and its pharmacologic characteristics provide a basis for future investigation of its functional roles in regulating diverse physiological processes and novel insights into understanding the mechanism of food habit transition in grass carp.

  3. Molecular cloning and pharmacological characterization of giant panda (Ailuropoda melanoleuca) melanocortin-4 receptor.

    PubMed

    Wang, Zhi-Qiang; Wang, Wei; Shi, Lin; Chai, Ji-Tian; Zhang, Xin-Jun; Tao, Ya-Xiong

    2016-04-01

    The melanocortin-4 receptor (MC4R) is critical in regulating mammalian food intake and energy expenditure. Giant panda (Ailuropoda melanoleuca), famous as the living fossil, is an endangered species endemic to China. We are interested in exploring the functions of the giant panda MC4R (amMC4R) in regulating energy homeostasis and report herein the molecular cloning and pharmacology of the amMC4R. Sequence analysis revealed that amMC4R was highly homologous (>88%) at nucleotide and amino acid sequences to several mammalian MC4Rs. Western blot revealed that the expression construct myc-amMC4R in pcDNA3.1 was successfully constructed and expressed in HEK293T cells. With human MC4R (hMC4R) as a control, pharmacological characteristics of amMC4R were analyzed with binding and signaling assays. Four agonists, including [Nle(4), D-Phe(7)]-α-melanocyte stimulating hormone (NDP-MSH), α- and β-MSH, and a small molecule agonist, THIQ, were used in binding and signaling assays. We showed that amMC4R bound NDP-MSH with the highest affinity followed by THIQ, α-MSH, and β-MSH, with the same ranking order as hMC4R. Treatment of HEK293T cells expressing amMC4R with different concentrations of agonists resulted in dose-dependent increase of intracellular cAMP levels, with similar EC50s for the four agonists. The results suggested that the cloned amMC4R encoded a functional MC4R. The availability of amMC4R and its binding and signaling properties will facilitate the investigation of amMC4R in regulating food intake and energy homeostasis.

  4. Central role of the melanocortin-4 receptors in appetite regulation after endotoxin.

    PubMed

    Sartin, J L; Marks, D L; McMahon, C D; Daniel, J A; Levasseur, P; Wagner, C G; Whitlock, B K; Steele, B P

    2008-10-01

    Melanocortin-4 receptors (MC4R) are key factors in the depression of appetite during disease. This study was designed to determine the role of agouti-related protein (AgRP) in the effect of endotoxin (lipopolysaccharide, LPS) on appetite. Sheep received an intracerebroventricular injection of either saline or AgRP (0.5 nmol/kg of BW) 1 h before intravenous injection of either saline or LPS (0.6 microg/kg of BW) at time 0 and again at 4 h. Agouti-related protein prevented the reduction in feed intake due to LPS (P < 0.05). In a second experiment, AgRP gene expression was unaffected at 3 h and increased (P < 0.01) at 6 h after LPS. Immunohistochemical evidence indicated that there was an increase in the percentage of AgRP neurons with c-Fos immunoreactive nuclei 6 h after sheep were injected with LPS (P < 0.04) and a corresponding decrease in a-melanocyte-stimulating hormone neurons coexpressing c-Fos (P < 0.001). In situ hybridization provided evidence for an increase in AgRP gene expression and a decrease in proopiomelanocortin gene expression 6 h after LPS (P < 0.05). In a final experiment, physiological elevation of orexigenic agents by short-term fasting kept feed intake at the same level as controls, in spite of the presence of LPS, similar to the effects of AgRP in Exp. 1. The AgRP inhibition of the MC4R prevents appetite inhibition in response to LPS and well after LPS inhibition of feed intake, both AgRP and a-melanocyte-stimulating hormone may change in a pattern that favors appetite increases. These studies support the notion of the MC4R as a critical component of the mechanism for appetite suppression due to endotoxin.

  5. Gene expression in hypothalamus, liver and adipose tissues and feed intake response to melanocortin-4 receptor (MC4R) agonist in pigs expressing (MC4R) mutations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptional profiling was used to identify genes and pathways that responded to intracerebroventricular (ICV) injection of melanocortin-4 receptor (MC4R) agonist, NDP-MSH, in pigs homozygous for the missense mutation in the MC4R, D298 allele (n = 12), N298 allele (n = 12) or heterozygous (n = 12...

  6. Microarray gene expression profiles of fasting induced changes in liver and adipose tissues of pigs expressing the melanocortin-4 receptor D298N variant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptional profiling was used to identify porcine genes and pathways that respond to a fasting in pigs that express the missense mutation (D298N) in the melanocortin-4 receptor (MC4R) gene, which has been associated with increased growth and feed efficiency. Prepubertal gilts (n=24; 12 wildtype...

  7. Pharmacological and pharmacokinetic characterization of 2-piperazine-alpha-isopropyl benzylamine derivatives as melanocortin-4 receptor antagonists.

    PubMed

    Chen, Chen; Tucci, Fabio C; Jiang, Wanlong; Tran, Joe A; Fleck, Beth A; Hoare, Sam R; Wen, Jenny; Chen, Takung; Johns, Michael; Markison, Stacy; Foster, Alan C; Marinkovic, Dragan; Chen, Caroline W; Arellano, Melissa; Harman, John; Saunders, John; Bozigian, Haig; Marks, Daniel

    2008-05-15

    A series of 2-piperazine-alpha-isopropylbenzylamine derivatives were synthesized and characterized as melanocortin-4 receptor (MC4R) antagonists. Attaching an amino acid to benzylamines 7 significantly increased their binding affinity, and the resulting compounds 8-12 bound selectively to MC4R over other melanocortin receptor subtypes and behaved as functional antagonists. These compounds were also studied for their permeability using Caco-2 cell monolayers and metabolic stability in human liver microsomes. Most compounds exhibited low permeability and high efflux ratio possibly due to their high molecular weights. They also showed moderate metabolic stability which might be associated with their moderate to high lipophilicity. Pharmacokinetic properties of these MC4R antagonists, including brain penetration, were studied in mice after oral and intravenous administrations. Two compounds identified to possess high binding affinity and selectivity, 10d and 11d, were studied in a murine cachexia model. After intraperitoneal (ip) administration of 1mg/kg dose, mice treated with 10d had significantly more food intake and weight gain than the control animals, demonstrating efficacy by blocking the MC4 receptor. Similar in vivo effects were also observed when 11d was dosed orally at 20mg/kg. These results provide further evidence that a potent and selective MC4R antagonist has potential in the treatment of cancer cachexia.

  8. Rescue of melanocortin 4 receptor (MC4R) nonsense mutations by aminoglycoside-mediated read-through.

    PubMed

    Brumm, Harald; Mühlhaus, Jessica; Bolze, Florian; Scherag, Susann; Hinney, Anke; Hebebrand, Johannes; Wiegand, Susanna; Klingenspor, Martin; Grüters, Annette; Krude, Heiko; Biebermann, Heike

    2012-05-01

    Aminoglycoside-mediated read-through of stop codons was recently demonstrated for a variety of diseases in vitro and in vivo. About 30 percent of human genetic diseases are the consequence of nonsense mutations. Nonsense mutations in obesity-associated genes like the melanocortin 4 receptor (MC4R), expressed in the hypothalamus, show the impact of premature stop codons on energy homeostasis. Therefore, the MC4R could be a potential pharmaceutical target for obesity treatment and targeting MC4R stop mutations could serve as proof of principle for nonsense mutations in genes expressed in the brain. We investigated four naturally occurring nonsense mutations in the MC4R (W16X, Y35X, E61X, Q307X) located at different positions in the receptor for aminoglycoside-mediated functional rescue in vitro. We determined localization and amount of full-length protein before and after aminoglycoside treatment by fluorescence microscopy, cell surface and total enzyme linked immunosorbent assay (ELISA). Signal transduction properties were analyzed by cyclic adenosine monophosphate (cAMP) assays after transient transfection of MC4R wild type and mutant receptors into COS-7 cells. Functional rescue of stop mutations in the MC4R is dependent on: (i) triplet sequence of the stop codon, (ii) surrounding sequence, (iii) location within the receptor, (iv) applied aminoglycoside and ligand. Functional rescue was possible for W16X, Y35X (N-terminus), less successful for Q307X (C-terminus) and barely feasible for E61X (first transmembrane domain). Restoration of full-length proteins by PTC124 could not be confirmed. Future pharmaceutical applications must consider the potency of aminoglycosides to restore receptor function as well as the ability to pass the blood-brain barrier.

  9. Melanocortin-4 receptor (MC4R) polymorphisms are associated with growth and meat quality traits in sheep.

    PubMed

    Zuo, Beiyao; Liu, Guiqiong; Peng, Yuqin; Qian, Hongguang; Liu, Jiasen; Jiang, Xunping; Mara, Adama

    2014-10-01

    The involvement of melanocortin 4 receptor gene (MC4R) in food intake and body weight regulation is well characterized. MC4R mutations are the most frequent monogenic cause of human obesity. Significant associations have been revealed between MC4R mutations and productive traits in pigs, cattle and poultry. Herein, fluorescence-based conformation sensitive gel electrophoresis was used to identify two single nucleotide polymorphisms (SNPs) in the coding region (93G>A and 292G>A) and two SNPs in the 3'-UTR area (1016G>A and 1240T>C) of MC4R gene in 132 German Merino sheep. We found that the 1016G>A mutation in the 3'-UTR was significantly associated with body weight at 120 and 180 days, average daily gain, back fat thickness and loin-eye area. Allele A located at the 292th position of MC4R gene representing Arg98 was associated with significantly higher loin-eye area in sheep. For the synonymous 93G>A mutation, A allele carrier animals had higher back fat thickness. Our results provide evidence that the MC4R gene may be a candidate gene for growth and meat quality traits with MC4R SNPs being potentially valuable as genetic markers for economic traits in German Merino sheep.

  10. Polymorphism and chromosomal location of the MC4R (melanocortin-4 receptor) gene in the dog and red fox.

    PubMed

    Skorczyk, Anna; Stachowiak, Monika; Szczerbal, Izabela; Klukowska-Roetzler, Jolanta; Schelling, Claude; Dolf, Gaudenz; Switonski, Marek

    2007-05-01

    The melanocortin-4 receptor (MC4R) is expressed in the hypothalamus and regulates energy intake and body weight. In silico screening of the canine chromosome 1 sequence and a comparison with the porcine MC4R sequence by BLAST were performed. The nucleotide sequence of the whole coding region and 3'- and 5'-flanking regions of the dog (1214 bp) and red fox (1177 bp) MC4R gene was established and high conservation of the nucleotide sequences was revealed (99%). Five sets of PCR primers were designed and a search for polymorphism was performed by the SSCP technique in a group of 31 dogs representing nineteen breeds and 35 farm red foxes. Sequencing of DNA fragments, representing the identified SSCP patterns, revealed three single nucleotide polymorphisms (including a missense one) in dogs and four silent SNPs in red foxes. An average SNP frequency was approx. 1/400 bp in the dog and 1/300 bp in the red fox. We mapped the MC4R gene by FISH to the canine chromosome 1 (CFA1q1.1) and to the red fox chromosome 5 (VVU5p1.2).

  11. Variation at the Melanocortin 4 Receptor gene and response to weight-loss interventions in the Diabetes Prevention Program

    PubMed Central

    Pan, Qing; Delahanty, Linda M.; Jablonski, Kathleen A.; Knowler, William C.; Kahn, Steven E.; Florez, Jose C.; Franks, Paul W.

    2013-01-01

    Objective To assess associations and genotype × treatment interactions for melanocortin 4 receptor (MC4R) locus variants and obesity-related traits. Design and Methods Diabetes Prevention Program (DPP) participants (N=3,819, of whom 3,356 were genotyped for baseline and 3,234 for longitudinal analyses) were randomized into intensive lifestyle modification (diet, exercise, weight loss), metformin or placebo control. Adiposity was assessed in a subgroup (n=909) using computed tomography. All analyses were adjusted for age, sex, ethnicity and treatment. Results The rs1943218 minor allele was nominally associated with short-term (6 month; P=0.032) and long-term (2 year; P=0.038) weight change. Eight SNPs modified response to treatment on short-term (rs17066856, rs9966412, rs17066859, rs8091237, rs17066866, rs7240064) or long-term (rs12970134, rs17066866) reduction in body weight, or diabetes incidence (rs17066829) (all Pinteraction <0.05). Conclusion This is the first study to comprehensively assess the role of MC4R variants and weight regulation in a weight loss intervention trial. One MC4R variant was directly associated with obesity-related traits or diabetes; numerous other variants appear to influence body weight and diabetes risk by modifying the protective effects of the DPP interventions. PMID:23512951

  12. RNAi-mediated knockdown of mouse melanocortin-4 receptor in vitro and in vivo, using an siRNA expression construct based on the mir-187 precursor

    PubMed Central

    Kato, Minoru; Huang, Yi-Ying; Matsuo, Mina; Takashina, Yoko; Sasaki, Kazuyo; Horai, Yasushi; Juni, Aya; Kamijo, Shin-Ichi; Saigo, Kaoru; Ui-Tei, Kumiko; Tei, Hajime

    2016-01-01

    RNA interference (RNAi) is a powerful tool for the study of gene function in mammalian systems, including transgenic mice. Here, we report a gene knockdown system based on the human mir-187 precursor. We introduced small interfering RNA (siRNA) sequences against the mouse melanocortin-4 receptor (mMc4r) to alter the targeting of miR-187. The siRNA-expressing cassette was placed under the control of the cytomegalovirus (CMV) early enhancer/chicken β-actin promoter. In vitro, the construct efficiently knocked down the gene expression of a co-transfected mMc4r-expression vector in cultured mammalian cells. Using this construct, we generated a transgenic mouse line which exhibited partial but significant knockdown of mMc4r mRNA in various brain regions. Northern blot analysis detected transgenic expression of mMc4r siRNA in these regions. Furthermore, the transgenic mice fed a normal diet ate 9% more and were 30% heavier than wild-type sibs. They also developed hyperinsulinemia and fatty liver as do mMc4r knockout mice. We determined that this siRNA expression construct based on mir-187 is a practical and useful tool for gene functional studies in vitro as well as in vivo. PMID:27725374

  13. Melanocortin 4 receptor ligands modulate energy homeostasis through urocortin 1 neurons of the centrally projecting Edinger-Westphal nucleus.

    PubMed

    Füredi, Nóra; Nagy, Ákos; Mikó, Alexandra; Berta, Gergely; Kozicz, Tamás; Pétervári, Erika; Balaskó, Márta; Gaszner, Balázs

    2017-03-03

    The role of the urocortin 1 (Ucn1) expressing centrally projecting Edinger-Westphal (EWcp) nucleus in energy homeostasis and stress adaptation response has previously been investigated. Morphological and functional studies have proven that orexigenic and anorexigenic peptidergic afferents and receptors for endocrine messengers involved in the energy homeostasis are found in the EWcp. The central role of the hypothalamic melanocortin system in energy homeostasis is well known, however, no data have been published so far on possible crosstalk between melanocortins and EWcp-Ucn1. First, we hypothesized that members of the melanocortin system [i.e. alpha-melanocyte stimulating hormone (alpha-MSH), agouti-related peptide (AgRP), melanocortin 4 receptor (MC4R)] would be expressed in the EWcp. Second, we put forward, that alpha-MSH and AgRP contents as well as neuronal activity and Ucn1 peptide content of the EWcp would be affected by fasting. Third, we assumed that the intra-EWcp injections of exogenous MC4R agonists and antagonist would cause food intake-related and metabolic changes. Ucn1 neurons were found to carry MC4Rs, and they were contacted both by alpha-MSH and AgRP immunoreactive nerve fibers in the rat. The alpha-MSH immunosignal was reduced, while that of AgRP was increased upon starvation. These were associated with the elevation of FosB and Ucn1 expression. The intra-EWcp administration of MC4R blocker (i.e. HS024) had a similar, but enhanced effect on FosB and Ucn1. Furthermore, alpha-MSH injected into the EWcp had anorexigenic effect, increased oxygen consumption and caused peripheral vasodilation. We conclude that the melanocortin system influences the EWcp that contributes to energy-homeostasis.

  14. RM-493, a Melanocortin-4 Receptor (MC4R) Agonist, Increases Resting Energy Expenditure in Obese Individuals

    PubMed Central

    Chen, Kong Y.; Muniyappa, Ranganath; Abel, Brent S.; Mullins, Katherine P.; Staker, Pamela; Brychta, Robert J.; Zhao, Xiongce; Ring, Michael; Psota, Tricia L.; Cone, Roger D.; Panaro, Brandon L.; Gottesdiener, Keith M.; Van der Ploeg, Lex H.T.; Reitman, Marc L.

    2015-01-01

    Context: Activation of the melanocortin-4 receptor (MC4R) with the synthetic agonist RM-493 decreases body weight and increases energy expenditure (EE) in nonhuman primates. The effects of MC4R agonists on EE in humans have not been examined to date. Objective, Design, and Setting: In a randomized, double-blind, placebo-controlled, crossover study, we examined the effects of the MC4R agonist RM-493 on resting energy expenditure (REE) in obese subjects in an inpatient setting. Study Participants and Methods: Twelve healthy adults (6 men and 6 women) with body mass index of 35.7 ± 2.9 kg/m2 (mean ± SD) received RM-493 (1 mg/24 h) or placebo by continuous subcutaneous infusion over 72 hours, followed immediately by crossover to the alternate treatment. All subjects received a weight-maintenance diet (50% carbohydrate, 30% fat, and 20% protein) and performed 30 minutes of standardized exercise daily. Continuous EE was measured on the third treatment day in a room calorimeter, and REE in the fasting state was defined as the mean of 2 30-minute resting periods. Results: RM-493 increased REE vs placebo by 6.4% (95% confidence interval, 0.68–13.02%), on average by 111 kcal/24 h (95% confidence interval, 15–207 kcal, P = .03). Total daily EE trended higher, whereas the thermic effect of a test meal and exercise EE did not differ significantly. The 23-hour nonexercise respiratory quotient was lower during RM-493 treatment (0.833 ± 0.021 vs 0.848 ± 0.022, P = .02). No adverse effect on heart rate or blood pressure was observed. Conclusions: Short-term administration of the MC4R agonist RM-493 increases REE and shifts substrate oxidation to fat in obese individuals. PMID:25675384

  15. Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice.

    PubMed

    Konuma, Kuniha; Itoh, Michiko; Suganami, Takayoshi; Kanai, Sayaka; Nakagawa, Nobutaka; Sakai, Takeru; Kawano, Hiroyuki; Hara, Mitsuko; Kojima, Soichi; Izumi, Yuichi; Ogawa, Yoshihiro

    2015-01-01

    Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-β activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.

  16. Physical Activity, Energy Expenditure, and Defense of Body Weight in Melanocortin 4 Receptor-Deficient Male Rats

    PubMed Central

    Almundarij, Tariq I.; Smyers, Mark E.; Spriggs, Addison; Heemstra, Lydia A.; Beltz, Lisa; Dyne, Eric; Ridenour, Caitlyn; Novak, Colleen M.

    2016-01-01

    Melanocortin 4 receptor (MC4R) variants contribute to human obesity, and rats lacking functional MC4R (Mc4rK314X/K314X) are obese. We investigated the hypothesis that low energy expenditure (EE) and physical activity contribute to this obese phenotype in male rats, and determined whether lack of functional MC4R conferred protection from weight loss during 50% calorie restriction. Though Mc4rK314X/K314X rats showed low brown adipose Ucp1 expression and were less physically active than rats heterozygous for the mutation (Mc4r+/K314X) or wild-type (Mc4r+/+) rats, we found no evidence of lowered EE in Mc4rK314X/K314X rats once body weight was taken into account using covariance. Mc4rK314X/K314X rats had a significantly higher respiratory exchange ratio. Compared to Mc4r+/+ rats, Mc4rK314X/K314X and Mc4r+/K314X rats lost less lean mass during calorie restriction, and less body mass when baseline weight was accounted for. Limited regional overexpression of Mc3r was found in the hypothalamus. Although lower physical activity levels in rats with nonfunctional MC4R did not result in lower total EE during free-fed conditions, rats lacking one or two functional copies of Mc4r showed conservation of mass, particularly lean mass, during energy restriction. This suggests that variants affecting MC4R function may contribute to individual differences in the metabolic response to food restriction. PMID:27886210

  17. Intra-cerebral and intra-nasal melanocortin-4 receptor antagonist blocks withdrawal hyperalgesia in alcohol-dependent rats.

    PubMed

    Roltsch Hellard, Emily A; Impastato, Renata A; Gilpin, Nicholas W

    2016-01-24

    Humans diagnosed with alcohol use disorder are more sensitive to painful stimuli during withdrawal, which suggests that excessive alcohol drinking worsens pain outcomes. Alcohol-dependent rats exhibit increases in nociceptive sensitivity during withdrawal. Data from animal models suggest that brain melanocortin-4 receptors (MC4Rs) mediate alcohol drinking and nociception. Here we tested: (1) the effect of alcohol dependence on thermal nociception in rats, and (2) the ability of acute alcohol and (3) MC4R antagonists to reverse hyperalgesia during withdrawal in alcohol-dependent rats. Rats were trained to self-administer operant alcohol and were tested for baseline thermal nociception. Half of the rats were made dependent on alcohol, then all rats were cannulated in the lateral ventricle. We tested the effects of acute alcohol drinking, acute fixed-dose alcohol, intra-ventricular agouti-related protein (endogenous MC4R antagonist), intra-ventricular HS014 (synthetic MC4R antagonist) and intra-nasal HS014 on hyperalgesia during withdrawal in alcohol-dependent rats, relative to non-dependent drinkers and alcohol-naïve controls. Alcohol-dependent rats exhibit thermal hyperalgesia that is abolished by alcohol drinking, bolus alcohol and intra-ventricular and intra-nasal MC4R antagonists. These manipulations did not affect thermal nociception in non-dependent drinkers and alcohol-naïve controls, suggesting that alcohol dependence produces neuroadaptations in brain MC4R systems. These results suggest that brain MC4R systems may be an effective therapeutic target for reducing nociception in the alcohol-dependent organism.

  18. Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus.

    PubMed

    Jiang, Dong-Neng; Li, Jian-Tao; Tao, Ya-Xiong; Chen, Hua-Pu; Deng, Si-Ping; Zhu, Chun-Hua; Li, Guang-Li

    2017-02-14

    Melanocortin-4 receptor (Mc4r) function related to reproduction in fish has not been extensively investigated. Here, we report on gene expression changes by real-time PCR following treatment with Mc4r agonists and antagonists in the spotted scat (Scatophagus argus). Using in vitro incubated hypothalamus, the Mc4r nonselective agonist NDP-MSH ([Nle(4), D-Phe(7)]-α-melanocyte stimulating hormone; 10(-6) M) and selective agonist THIQ (N-[(3R)-1, 2, 3, 4-Tetrahydroisoquinolinium-3-ylcarbonyl]- (1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl) piperidin-1-yl]-2-oxoethylamine; 10(-7) M) significantly increased the expression of gnrh (Gonadotropin releasing hormone), while the Mc4r nonselective antagonist SHU9119 (Ac-Nle-[Asp-His-DPhe/DNal(2')-Arg-Trp-Lys]-NH2; 10(-6) M) and selective antagonist Ipsen 5i (compound 5i synthesized in Ipsen Research Laboratories; 10(-6) M) significantly inhibited gnrh expression after 3 h of incubation. In incubated pituitary tissue, NDP-MSH and THIQ significantly increased the expression of fshb (Follicle-stimulating hormone beta subunit) and lhb (Luteinizing hormone beta subunit), while SHU9119 and Ipsen 5i significantly decreased fshb and lhb expression after 3 h of incubation. During the in vivo experiment, THIQ (1 mg/kg bw) significantly increased gnrh expression in hypothalamic tissue, as well as the fshb and lhb expression in pituitary tissue 12 h after abdominal injection. Furthermore, Ipsen 5i (1 mg/kg bw) significantly inhibited gnrh expression in hypothalamic tissue, as well as fshb and lhb gene expression in pituitary tissue 12 h after abdominal injection. In summary, Mc4r singling appears to stimulate gnrh expression in the hypothalamus, thereby modulating the synthesis of Fsh and Lh in the pituitary. In addition, Mc4r also appears to directly regulate fshb and lhb levels in the pituitary in spotted scat. Our study suggests that Mc4r, through the hypothalamus and pituitary, participates in

  19. Budded baculoviruses as a tool for a homogeneous fluorescence anisotropy-based assay of ligand binding to G protein-coupled receptors: the case of melanocortin 4 receptors.

    PubMed

    Veiksina, Santa; Kopanchuk, Sergei; Rinken, Ago

    2014-01-01

    We present here the implementation of budded baculoviruses that display G protein-coupled receptors on their surfaces for the investigation of ligand-receptor interactions using fluorescence anisotropy (FA). Melanocortin 4 (MC4) receptors and the fluorescent ligand Cy3B-NDP-α-MSH were used as the model system. The real-time monitoring of reactions and the high assay quality allow the application of global data analysis with kinetic mechanistic models that take into account the effect of nonspecific interactions and the depletion of the fluorescent ligand during the reaction. The receptor concentration, affinity and kinetic parameters of fluorescent ligand binding as well as state anisotropies for different fluorescent ligand populations were determined. At low Cy3B-NDP-α-MSH concentrations, a one-site receptor-ligand binding model described the processes, whereas divergence from this model was observed at higher ligand concentrations, which indicated a more complex mechanism of interactions similar to those mechanisms that have been found in experiments with radioactive ligands. The information obtained from our kinetic experiments and the inherent flexibility of FA assays also allowed the estimation of binding parameters for several MC4 receptor-specific unlabelled compounds. In summary, the FA assay that was developed with budded baculoviruses led the experimental data to a level that would solve complex models of receptor-ligand interactions also for other receptor systems and would become as a valuable tool for the screening of pharmacologically active compounds.

  20. Constitutive cholesterol-dependent endocytosis of melanocortin-4 receptor (MC4R) is essential to maintain receptor responsiveness to α-melanocyte-stimulating hormone (α-MSH).

    PubMed

    McDaniel, Faith K; Molden, Brent M; Mohammad, Sameer; Baldini, Giovanna; McPike, Lakisha; Narducci, Paola; Granell, Susana; Baldini, Giulia

    2012-06-22

    Melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor expressed in the hypothalamus where it controls feeding behavior. MC4R cycles constitutively and is internalized at the same rate in the presence or absence of stimulation by the agonist, melanocyte-stimulating hormone (α-MSH). This is different from other G-protein-coupled receptors, such as β(2)-adrenergic receptor (β(2)AR), which internalizes more rapidly in response to agonist stimulation. Here, it is found that in immortalized neuronal Neuro2A cells expressing exogenous receptors, constitutive endocytosis of MC4R and agonist-dependent internalization of β(2)AR were equally sensitive to clathrin depletion. Inhibition of MC4R endocytosis by clathrin depletion decreased the number of receptors at the cell surface that were responsive to the agonist, α-MSH, by 75%. Mild membrane cholesterol depletion also inhibited constitutive endocytosis of MC4R by ∼5-fold, while not affecting recycling of MC4R or agonist-dependent internalization of β(2)AR. Reduced cholesterol did not change the MC4R dose-response curve to α-MSH, but it decreased the amount of cAMP generated per receptor number indicating that a population of MC4R at the cell surface becomes nonfunctional. The loss of MC4R function increased over time (25-50%) and was partially reversed by mutations at putative phosphorylation sites (T312A and S329A). This was reproduced in hypothalamic GT1-7 cells expressing endogenous MC4R. The data indicate that constitutive endocytosis of MC4R is clathrin- and cholesterol-dependent. MC4R endocytosis is required to maintain MC4R responsiveness to α-MSH by constantly eliminating from the plasma membrane a pool of receptors modified at Thr-312 and Ser-329 that have to be cycled to the endosomal compartment to regain function.

  1. The Melanocortin-4 Receptor is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-Like Peptide 1 In Vivo

    PubMed Central

    Panaro, Brandon L.; Tough, Iain R.; Engelstoft, Maja Storm; Matthews, Robert T.; Digby, Gregory J.; Møller, Cathrine Laustrup; Svendsen, Berit; Gribble, Fiona; Reimann, Frank; Holst, Jens J.; Holst, Birgitte; Schwartz, Thue W.; Cox, Helen M.; Cone, Roger D.

    2014-01-01

    SUMMARY The melanocortin-4 receptor (MC4R) is expressed in the brainstem and vagal afferent nerves, and regulates a number of aspects of gastrointestinal function. Here we show that the receptor is also diffusely expressed in cells of the gastrointestinal system, from stomach to descending colon. Furthermore, MC4R is the second most highly expressed GPCR in peptide YY (PYY) and glucagon-like peptide one (GLP-1) expressing enteroendocrine L cells. When vectorial ion transport is measured across mouse or human intestinal mucosa, administration of α-MSH induces a MC4R-specific PYY-dependent anti-secretory response consistent with a role for the MC4R in paracrine inhibition of electrolyte secretion. Finally, MC4R-dependent acute PYY and GLP-1 release from L cells can be stimulated in vivo by intraperitoneal administration of melanocortin peptides to mice. This suggests physiological significance for MC4R in L cells, and indicates a previously unrecognized peripheral role for the MC4R, complementing vagal and central receptor functions. PMID:25453189

  2. Substitution of arginine with proline and proline derivatives in melanocyte-stimulating hormones leads to selectivity for human melanocortin 4 receptor.

    PubMed

    Qu, Hongchang; Cai, Minying; Mayorov, Alexander V; Grieco, Paolo; Zingsheim, Morgan; Trivedi, Dev; Hruby, Victor J

    2009-06-25

    A new series of melanotropin analogues with His or Arg residues in the core pharmacophores of MTII, SHU9119, and Ac-NDP-gamma-MSH-NH(2) replaced by Pro or trans-/cis-4-guanidinyl-Pro derivatives were designed and synthesized to introduce selectivity toward the human melanocortin 4 receptor (hMC4R). Analogues 1, 2, 3, 6, 7, 8 were found to be hMC4R selective. Second messenger studies have demonstrated that analogues 1 and 2 are insurmountable inhibitors of MTII agonist activity at the hMC4R. Molecular modeling studies suggest that the hMC4R selectivity is due to a beta-turn shift induced by the Pro ring that makes the global minimum structures of these analogues resemble the NMR solution structure of the hASIP melanocortin receptor binding motif. Substitution of His in MTII also provided functional selectivity for the hMC3R or the hMC4R. These findings are important for a better understanding of the selectivity mechanism at the hMC3R/hMC4R and the development of therapeutic ligands selectively targeting the hMC4R.

  3. Melanocortin-4 Receptor Deficiency Phenotype with an Interstitial 18q Deletion: A Case Report of Severe Childhood Obesity and Tall Stature

    PubMed Central

    Harrison, Karen J.

    2016-01-01

    Childhood obesity is a growing health concern, associated with significant physical and psychological morbidity. Childhood obesity is known to have a strong genetic component, with mutations in the melanocortin-4 receptor (MC4R) gene being the most common monogenetic cause of obesity. Over 166 different MC4R mutations have been identified in persons with hyperphagia, severe childhood obesity, and increased linear growth. However, it is unclear whether the MC4-R deficiency phenotype is due to haploinsufficiency or dominant-negative effects by the mutant receptor. We report the case of a four-and-a-half-year-old boy with an interstitial deletion involving the long arm of chromosome 18 (46,XY,del(18)(q21.32q22.1)) encompassing the MC4R gene. This patient presented with tall stature and hyperphagia within his first 18 months of life leading to significant obesity. This case supports haploinsufficiency of MC4-R as it describes a MC4-R deficiency phenotype in a patient heterozygous for a full MC4R gene deletion. The intact functional allele with MC4-R haploinsufficiency has the potential to favor a therapeutic response to gastric surgery. Currently, small molecule MC4-R agonists are under development for pharmacologic therapy. PMID:27738543

  4. Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, a 250-Fold Selective Melanocortin-4 Receptor (MC4R) Antagonist over the Melanocortin-3 Receptor (MC3R), Affects Energy Homeostasis in Male and Female Mice Differently.

    PubMed

    Lensing, Cody J; Adank, Danielle N; Doering, Skye R; Wilber, Stacey L; Andreasen, Amy; Schaub, Jay W; Xiang, Zhimin; Haskell-Luevano, Carrie

    2016-09-21

    The melanocortin-4 receptor (MC4R) has been indicated as a therapeutic target for metabolic disorders such as anorexia, cachexia, and obesity. The current study investigates the in vivo effects on energy homeostasis of a 15 nM MC4R antagonist SKY2-23-7, Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, that is a 3700 nM melanocortin-3 receptor (MC3R) antagonist with minimal MC3R and MC4R agonist activity. When monitoring both male and female mice in TSE metabolic cages, sex-specific responses were observed in food intake, respiratory exchange ratio (RER), and energy expenditure. A 7.5 nmol dose of SKY2-23-7 increased food intake, increased RER, and trended toward decreasing energy expenditure in male mice. However, this compound had minimal effect on female mice's food intake and RER at the 7.5 nmol dose. A 2.5 nmol dose of SKY2-23-7 significantly increased female food intake, RER, and energy expenditure while having a minimal effect on male mice at this dose. The observed sex differences of SKY2-23-7 administration result in the discovery of a novel chemical probe for elucidating the molecular mechanisms of the sexual dimorphism present within the melanocortin pathway. To further explore the melanocortin sexual dimorphism, hypothalamic gene expression was examined. The mRNA expression of the MC3R and proopiomelanocortin (POMC) were not significantly different between sexes. However, the expression of agouti-related peptide (AGRP) was significantly higher in female mice which may be a possible mechanism for the sex-specific effects observed with SKY2-23-7.

  5. Angiotensin-converting enzyme inhibition reduces food intake and weight gain and improves glucose tolerance in melanocortin-4 receptor deficient female rats.

    PubMed

    Mul, Joram D; Seeley, Randy J; Woods, Stephen C; Begg, Denovan P

    2013-09-10

    Functional loss of melanocortin-4 receptor (MC4R) activity leads to hyperphagia and an obese, glucose intolerant phenotype. We have previously established that inhibition of angiotensin-converting enzyme (ACE) reduces food intake, body weight and glucose homeostasis in diet-induced obesity. The current study assessed the effect of ACE inhibitor treatment in MC4R-deficient female rats on body weight, adiposity and glucose tolerance. Rats homozygous (HOM) for a loss of function Mc4r mutation had an obese phenotype relative to their wildtype (WT) littermates. Inhibition of ACE for 8weeks produced reductions in body weight gain in both HOM and WT rats; however, food intake was only reduced in HOM rats. Weight loss following ACE inhibitor treatment was specific to fat mass while lean mass was unaffected. HOM rats were severely glucose intolerant and insensitive to exogenous insulin injection, and treatment with an ACE inhibitor improved both glucose tolerance and insulin sensitivity in HOM rats although not fully to that of the level of WT rats. The current study indicates that HOM rats are sensitive to the anorectic effects of ACE inhibition, unlike their WT littermates. This resulted in a more rapid reduction in body weight gain and a more substantial loss of adipose mass in HOM animals, relative to WT animals, treated with an ACE inhibitor. Overall, these data demonstrate that MC4R signaling is not required for weight loss following treatment with an ACE inhibitor.

  6. Roles for the sympathetic nervous system, renal nerves, and CNS melanocortin-4 receptor in the elevated blood pressure in hyperandrogenemic female rats

    PubMed Central

    Maranon, Rodrigo; Lima, Roberta; Spradley, Frank T.; do Carmo, Jussara M.; Zhang, Howei; Smith, Andrew D.; Bui, Elizabeth; Thomas, R. Lucas; Moulana, Mohadetheh; Hall, John E.; Granger, Joey P.

    2015-01-01

    Women with polycystic ovary syndrome (PCOS) have hyperandrogenemia and increased prevalence of risk factors for cardiovascular disease, including elevated blood pressure. We recently characterized a hyperandrogenemic female rat (HAF) model of PCOS [chronic dihydrotestosterone (DHT) beginning at 4 wk of age] that exhibits similar characteristics as women with PCOS. In the present studies we tested the hypotheses that the elevated blood pressure in HAF rats is mediated in part by sympathetic activation, renal nerves, and melanocortin-4 receptor (MC4R) activation. Adrenergic blockade with terazosin and propranolol or renal denervation reduced mean arterial pressure (MAP by telemetry) in HAF rats but not controls. Hypothalamic MC4R expression was higher in HAF rats than controls, and central nervous system MC4R antagonism with SHU-9119 (1 nmol/h icv) reduced MAP in HAF rats. Taking a genetic approach, MC4R null and wild-type (WT) female rats were treated with DHT or placebo from 5 to 16 wk of age. MC4R null rats were obese and had higher MAP than WT control rats, and while DHT increased MAP in WT controls, DHT failed to further increase MAP in MC4R null rats. These data suggest that increases in MAP with chronic hyperandrogenemia in female rats are due, in part, to activation of the sympathetic nervous system, renal nerves, and MC4R and may provide novel insights into the mechanisms responsible for hypertension in women with hyperandrogenemia such as PCOS. PMID:25695289

  7. A missense mutation in the rabbit melanocortin 4 receptor (MC4R) gene is associated with finishing weight in a meat rabbit line.

    PubMed

    Fontanesi, Luca; Scotti, Emilio; Cisarova, Katarina; Di Battista, Piero; Dall'olio, Stefania; Fornasini, Daniela; Frabetti, Andrea

    2013-01-01

    In this study we resequenced 1729 bp of the rabbit melanocortin 4 receptor (MC4 R) gene in 31 rabbits from different breeds/lines and identified ten polymorphisms: one was an indel and 9 were single nucleotide polymorphisms (SNPs). The indel and 5 SNPs were in the 5'-flanking region, 3 were synonymous SNPs and one was a missense mutation (c.101G>A; p.G34D), located in a conserved position of the extracellular tail of the MC4 R protein. The missense mutation was analyzed in a panel of 74 rabbits of different breeds and in 516 performance tested rabbits of a commercial paternal line under selection for growth efficiency. Association analysis indicated that rabbits with the less frequent genotype in this population (DD) had a lighter weight at 70 postnatal days than animals with genotype GD (P < 0.10) and animals with genotype GG (P < 0.05). This is the third study on candidate genes, after those on GH1 and IGF2 that reported a marker associated with finishing weight. Therefore, it seems that a candidate gene approach in rabbit based on previous information accumulated in other livestock species could be useful to identify genes explaining a fraction of variability of performance traits with potential application on rabbit breeding and selection.

  8. Melanocortin 4 Receptor Activation Protects Against Testicular Ischemia-Reperfusion Injury by Triggering the Cholinergic Antiinflammatory Pathway

    PubMed Central

    Minutoli, Letteria; Bitto, Alessandra; Irrera, Natasha; Rinaldi, Mariagrazia; Nicotina, Piero Antonio; Arena, Salvatore; Magno, Carlo; Marini, Herbert; Spaccapelo, Luca; Ottani, Alessandra; Giuliani, Daniela; Romeo, Carmelo; Guarini, Salvatore; Antonuccio, Pietro; Altavilla, Domenica

    2011-01-01

    Melanocortins (MC) trigger a vagus nerve-mediated cholinergic-antiinflammatory pathway projecting to the testis. We tested whether pharmacological activation of brain MC receptors might protect the testis from the damage induced by ischemia-reperfusion. Adult male rats were subjected to 1-h testicular ischemia, followed by 24-h reperfusion [testicular ischemia-reperfusion (TI/R)]. Before TI/R, groups of animals were subjected to bilateral cervical vagotomy, or pretreated with the nicotinic acetylcholine receptor antagonist chlorisondamine or the selective MC4 receptor antagonist HS024. Immediately after reperfusion, rats were ip treated with saline or the MC analog [Nle4,D-Phe7]α-melanocyte-stimulating hormone (NDP-α-MSH) (340 μg/kg). We evaluated testicular IL-6 and TNF-α by Western blot analysis and organ damage by light microscopy. Some experimental groups were prepared for neural efferent activity recording along the vagus nerve starting 30 min after treatment with NDP-α-MSH or saline, and for a 30-min period. Additional groups of TI/R rats were treated for 30 d with saline, NDP-α-MSH, chlorisondamine plus NDP-α-MSH, or HS024 plus NDP-α-MSH to evaluate spermatogenesis, organ damage, and the apoptosis machinery. After a 24-h reperfusion, in TI/R saline-treated rats, there was an increase in IL-6 and TNF-α expression and a marked damage in both testes. NDP-α-MSH inhibited IL-6 and TNF-α expression, decreased histological damage, and increased neural efferent activity. Furthermore, NDP-α-MSH administration for 30 d greatly improved spermatogenesis, reduced organ damage, and inhibited apoptosis. All positive NDP-α-MSH effects were abrogated by vagotomy, chlorisondamine, or HS024. Our data suggest that selective MC4 receptor agonists might be therapeutic candidates for the management of testicular torsion. PMID:21828180

  9. Melanocortin 4 receptor activation protects against testicular ischemia-reperfusion injury by triggering the cholinergic antiinflammatory pathway.

    PubMed

    Minutoli, Letteria; Bitto, Alessandra; Squadrito, Francesco; Irrera, Natasha; Rinaldi, Mariagrazia; Nicotina, Piero Antonio; Arena, Salvatore; Magno, Carlo; Marini, Herbert; Spaccapelo, Luca; Ottani, Alessandra; Giuliani, Daniela; Romeo, Carmelo; Guarini, Salvatore; Antonuccio, Pietro; Altavilla, Domenica

    2011-10-01

    Melanocortins (MC) trigger a vagus nerve-mediated cholinergic-antiinflammatory pathway projecting to the testis. We tested whether pharmacological activation of brain MC receptors might protect the testis from the damage induced by ischemia-reperfusion. Adult male rats were subjected to 1-h testicular ischemia, followed by 24-h reperfusion [testicular ischemia-reperfusion (TI/R)]. Before TI/R, groups of animals were subjected to bilateral cervical vagotomy, or pretreated with the nicotinic acetylcholine receptor antagonist chlorisondamine or the selective MC(4) receptor antagonist HS024. Immediately after reperfusion, rats were ip treated with saline or the MC analog [Nle(4),D-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) (340 μg/kg). We evaluated testicular IL-6 and TNF-α by Western blot analysis and organ damage by light microscopy. Some experimental groups were prepared for neural efferent activity recording along the vagus nerve starting 30 min after treatment with NDP-α-MSH or saline, and for a 30-min period. Additional groups of TI/R rats were treated for 30 d with saline, NDP-α-MSH, chlorisondamine plus NDP-α-MSH, or HS024 plus NDP-α-MSH to evaluate spermatogenesis, organ damage, and the apoptosis machinery. After a 24-h reperfusion, in TI/R saline-treated rats, there was an increase in IL-6 and TNF-α expression and a marked damage in both testes. NDP-α-MSH inhibited IL-6 and TNF-α expression, decreased histological damage, and increased neural efferent activity. Furthermore, NDP-α-MSH administration for 30 d greatly improved spermatogenesis, reduced organ damage, and inhibited apoptosis. All positive NDP-α-MSH effects were abrogated by vagotomy, chlorisondamine, or HS024. Our data suggest that selective MC(4) receptor agonists might be therapeutic candidates for the management of testicular torsion.

  10. Association of the melanocortin 4 receptor gene rs17782313 polymorphism with rewarding value of food and eating behavior in Chilean children.

    PubMed

    Obregón, A M; Oyarce, K; Santos, J L; Valladares, M; Goldfield, G

    2017-02-01

    Studies conducted in monozygotic and dizygotic twins have established a strong genetic component in eating behavior. Rare mutations and common variants of the melanocortin 4 receptor (MC4R) gene have been linked to obesity and eating behavior scores. However, few studies have assessed common variants in MC4R gene with the rewarding value of food in children. The objective of the study was to evaluate the association between the MC4R rs17782313 polymorphism with homeostatic and non-homeostatic eating behavior patterns in Chileans children. This is a cross-sectional study in 258 Chilean children (44 % female, 8-14 years old) showing a wide variation in BMI. Anthropometric measurements (weight, height, Z-score of BMI and waist circumference) were performed by standard procedures. Eating behavior was assessed using the Eating in Absence of Hunger Questionnaire (EAHQ), the Child Eating Behavior Questionnaire (CEBQ), the Three-Factor Eating Questionnaire (TFEQ), and the Food Reinforcement Value Questionnaire (FRVQ). Genotype of the rs17782313 nearby MC4R was determined by a Taqman assay. Association of the rs17782313 C allele with eating behavior was assessed using non-parametric tests. We found that children carrying the CC genotype have higher scores of food responsiveness (p value = 0.02). In obese girls, carriers of the C allele showed lower scores of satiety responsiveness (p value = 0.02) and higher scores of uncontrolled eating (p value = 0.01). Obese boys carrying the C allele showed lower rewarding value of food in relation to non-carriers. The rs17782313 C allele is associated with eating behavior traits that may predispose obese children to increased energy intake and obesity.

  11. Differential body weight, blood pressure and placental inflammatory responses to normal versus high-fat diet in melanocortin-4 receptor-deficient pregnant rats

    PubMed Central

    Spradley, Frank T.; Palei, Ana C.; Granger, Joey P.

    2016-01-01

    Objectives Although obesity increases the risk for hypertensive disorders of pregnancy, the mechanisms remain unclear. Neural melanocortin-4 receptor (MC4R) deficiency causes hyperphagia and obesity. Effects of MC4R deficiency on body weight, blood pressure (BP) and placental inflammatory responses to high-fat diet (HFD) are unknown. We tested two hypotheses: MC4R deficiency results in higher body weight, BP and placental inflammation under normal-fat diet (NFD) conditions and HFD exaggerates these responses in MC4R-deficient pregnant rats. Methods MC4R+/+ and MC4R+/− rats were maintained on NFD (13% kcal fat) or HFD (40% kcal fat) for ~15 weeks, then measurements made on gestational day 19. Results MC4R+/− pregnant rats had greater body mass and total body fat and visceral adipose tissue weights along with greater circulating total cholesterol (TC) and leptin levels than MC4R+/+ rats regardless of diet. On NFD, circulating adiponectin levels were lower and placental TNFα levels and BP (conscious with carotid catheter) were higher in these heavier rats. Circulating adiponectin levels were lower and placental TNFα levels and BP were higher in MC4R+/+ rats compared with NFD controls. These parameters were not affected by HFD in the already heavier and hypertensive MC4R+/− pregnant rats. Conclusion Obesity in MC4R deficiency and HFD in MC4R+/+ rats result in higher BP and placental inflammation during pregnancy. However, HFD did not exaggerate these responses in already obese MC4R+/− pregnant rats. These data suggest that obesity and HFD are independently related to hypertension and placental inflammation in pregnancy. PMID:27467764

  12. An Essential Role for the K+-dependent Na+/Ca2+-exchanger, NCKX4, in Melanocortin-4-receptor-dependent Satiety*

    PubMed Central

    Li, Xiao-Fang; Lytton, Jonathan

    2014-01-01

    K+-dependent Na+/Ca2+-exchangers are broadly expressed in various tissues, and particularly enriched in neurons of the brain. The distinct physiological roles for the different members of this Ca2+ transporter family are, however, not well described. Here we show that gene-targeted mice lacking the K+-dependent Na+/Ca2+-exchanger, NCKX4 (gene slc24a4 or Nckx4), display a remarkable anorexia with severe hypophagia and weight loss. Feeding and satiety are coordinated centrally by melanocortin-4 receptors (MC4R) in neurons of the hypothalamic paraventricular nucleus (PVN). The hypophagic response of Nckx4 knock-out mice is accompanied by hyperactivation of neurons in the PVN, evidenced by high levels of c-Fos expression. The activation of PVN neurons in both fasted Nckx4 knock-out and glucose-injected wild-type animals is blocked by Ca2+ removal and MC4R antagonists. In cultured hypothalamic neurons, melanocyte stimulating hormone induces an MC4R-dependent and sustained Ca2+ signal, which requires phospholipase C activity and plasma membrane Ca2+ entry. The Ca2+ signal is enhanced in hypothalamic neurons from Nckx4 knock-out animals, and is depressed in cells in which NCKX4 is overexpressed. Finally, MC4R-dependent oxytocin expression in the PVN, a key essential step in satiety, is prevented by blocking phospholipase C activation or Ca2+ entry. These findings highlight an essential, and to our knowledge previously unknown, role for Ca2+ signaling in the MC4R pathway that leads to satiety, and a novel non-redundant role for NCKX4-mediated Ca2+ extrusion in controlling MC4R signaling and feeding behavior. Together, these findings highlight a novel pathway that potentially could be exploited to develop much needed new therapeutics to tackle eating disorders and obesity. PMID:25096581

  13. Gene Amplification and Functional Diversification of Melanocortin 4 Receptor at an Extremely Polymorphic Locus Controlling Sexual Maturation in the Platyfish

    PubMed Central

    Volff, Jean-Nicolas; Selz, Yvonne; Hoffmann, Carsten; Froschauer, Alexander; Schultheis, Christina; Schmidt, Cornelia; Zhou, Qingchun; Bernhardt, Wolfgang; Hanel, Reinhold; Böhne, Astrid; Brunet, Frédéric; Ségurens, Béatrice; Couloux, Arnaud; Bernard-Samain, Sylvie; Barbe, Valérie; Ozouf-Costaz, Catherine; Galiana, Delphine; Lohse, Martin J.; Schartl, Manfred

    2013-01-01

    In two swordtail species of the genus Xiphophorus, the onset of puberty has been shown to be modulated at the P locus by sequence polymorphism and gene copy-number variation affecting the type 4 melanocortin hormone receptor Mc4r. The system works through the interaction of two allelic types, one encoding wild type and the other dominant-negative receptors. We have analyzed the structure and evolution of the P locus in the platyfish Xiphophorus maculatus, where as many as nine alleles of P determining the onset of sexual maturity in males and females, fecundity in females, and adult size in males are located on both the X and Y chromosomes in a region linked to the master sex-determining locus. In this species, mc4r has been amplified to up to 10 copies on both the X and Y chromosomes through recent large serial duplications. Subsequently, mc4r paralogues have diverged considerably into many different subtypes. Certain copies have acquired new untranslated regions through genomic rearrangements, and transposable element insertions and other mutations have accumulated in promoter regions, possibly explaining observed deviations from the classical mc4r transcriptional pattern. In the mc4r-coding sequence, in-frame insertions and deletions as well as nonsense and missense mutations have generated a high diversity of Mc4r-predicted proteins. Most of these variants are expressed in embryos, adults, and/or tumors. Functional receptor characterization demonstrated major divergence in pharmacological behavior for Mc4r receptors encoded by different copies of platyfish mc4r, with differences in constitutive activity as well as binding and stimulation by hormones. The high degree of allelic and copy-number variation observed between individuals can explain the high level of polymorphism for sexual maturation, fecundity, and body size in the platyfish: multiple combinations of Mc4r variants with different biochemical properties might interact to modulate the melanocortin

  14. Synthesis, Biophysical, and Pharmacological Evaluation of the Melanocortin Agonist AST3-88: Modifications of Peptide Backbone at Trp 7 Position Lead to a Potent, Selective, and Stable Ligand of the Melanocortin 4 Receptor (MC4R)

    PubMed Central

    2015-01-01

    The melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors are expressed in the brain and are implicated in the regulation of food intake and energy homeostasis. The endogenous agonist ligands for these receptors (α-, β-, γ-MSH and ACTH) are linear peptides with limited receptor subtype selectivity and metabolic stability, thus minimizing their use as probes to characterize the overlapping pharmacological and physiological functions of the melanocortin receptor subtypes. In the present study, an engineered template, in which the peptide backbone was modified by a heterocyclic reverse turn mimetic at the Trp7 residue, was synthesized using solid phase peptide synthesis and characterized by a β-galactosidase cAMP based reporter gene assay. The functional assay identified a ∼5 nM mouse MC4R agonist (AST3-88) with more than 50-fold selectivity over the mMC3R. Biophysical studies (2D 1H NMR spectroscopy and molecular dynamics) of AST3-88 identified a type VIII β-turn secondary structure spanning the pharmacophore domain stabilized by the intramolecular interactions between the side chains of the His and Trp residues. Enzymatic studies of AST3-88 revealed enhanced stability of AST3-88 over the α-MSH endogenous peptide in rat serum. Upon central administration of AST3-88 into rats, a decreased food intake response was observed. This is the first study to probe the in vivo physiological activity of this engineered peptide-heterocycle template. These findings advance the present knowledge of pharmacophore design for potent, selective, and metabolically stable melanocortin ligands. PMID:25141170

  15. A novel melanocortin-4 receptor mutation MC4R-P272L associated with severe obesity has increased propensity to be ubiquitinated in the ER in the face of correct folding.

    PubMed

    Granell, Susana; Serra-Juhé, Clara; Martos-Moreno, Gabriel Á; Díaz, Francisca; Pérez-Jurado, Luis A; Baldini, Giulia; Argente, Jesús

    2012-01-01

    Heterozygous mutations in the melanocortin-4 receptor (MC4R) gene represent the most frequent cause of monogenic obesity in humans. MC4R mutation analysis in a cohort of 77 children with morbid obesity identified previously unreported heterozygous mutations (P272L, N74I) in two patients inherited from their obese mothers. A rare polymorphism (I251L, allelic frequency: 1/100) reported to protect against obesity was found in another obese patient. When expressed in neuronal cells, the cell surface abundance of wild-type MC4R and of the N74I and I251L variants and the cAMP generated by these receptors in response to exposure to the agonist, α-MSH, were not different. Conversely, MC4R P272L was retained in the endoplasmic reticulum and had reduced cell surface expression and signaling (by ≈ 3-fold). The chemical chaperone PBA, which promotes protein folding of wild-type MC4R, had minimal effects on the distribution and signaling of the P272L variant. In contrast, incubation with UBE-41, a specific inhibitor of ubiquitin activating enzyme E1, inhibited ubiquitination of MC4R P272L and increased its cell surface expression and signaling to similar levels as wild-type MC4R. UBE41 had much less profound effects on MC4R I316S, another obesity-linked MC4R variant trapped in the ER. These data suggest that P272L is retained in the ER by a propensity to be ubiquitinated in the face of correct folding, which is only minimally shared by MC4R I316S. Thus, studies that combine clinical screening of obese patients and investigation of the functional defects of the obesity-linked MC4R variants can identify specific ways to correct these defects and are the first steps towards personalized medicine.

  16. A Novel Melanocortin-4 Receptor Mutation MC4R-P272L Associated with Severe Obesity Has Increased Propensity To Be Ubiquitinated in the ER in the Face of Correct Folding

    PubMed Central

    Granell, Susana; Serra-Juhé, Clara; Martos-Moreno, Gabriel Á.; Díaz, Francisca; Pérez-Jurado, Luis A.; Baldini, Giulia; Argente, Jesús

    2012-01-01

    Heterozygous mutations in the melanocortin-4 receptor (MC4R) gene represent the most frequent cause of monogenic obesity in humans. MC4R mutation analysis in a cohort of 77 children with morbid obesity identified previously unreported heterozygous mutations (P272L, N74I) in two patients inherited from their obese mothers. A rare polymorphism (I251L, allelic frequency: 1/100) reported to protect against obesity was found in another obese patient. When expressed in neuronal cells, the cell surface abundance of wild-type MC4R and of the N74I and I251L variants and the cAMP generated by these receptors in response to exposure to the agonist, α-MSH, were not different. Conversely, MC4R P272L was retained in the endoplasmic reticulum and had reduced cell surface expression and signaling (by ≈3-fold). The chemical chaperone PBA, which promotes protein folding of wild-type MC4R, had minimal effects on the distribution and signaling of the P272L variant. In contrast, incubation with UBE-41, a specific inhibitor of ubiquitin activating enzyme E1, inhibited ubiquitination of MC4R P272L and increased its cell surface expression and signaling to similar levels as wild-type MC4R. UBE41 had much less profound effects on MC4R I316S, another obesity-linked MC4R variant trapped in the ER. These data suggest that P272L is retained in the ER by a propensity to be ubiquitinated in the face of correct folding, which is only minimally shared by MC4R I316S. Thus, studies that combine clinical screening of obese patients and investigation of the functional defects of the obesity-linked MC4R variants can identify specific ways to correct these defects and are the first steps towards personalized medicine. PMID:23251400

  17. Development of a high throughput screen for allosteric modulators of melanocortin-4 receptor signaling using a real time cAMP assay

    PubMed Central

    Pantel, Jacques; Williams, Savannah Y.; Mi, Dehui; Sebag, Julien; Corbin, Jackie D.; Weaver, C. David; Cone, Roger D.

    2011-01-01

    The melanocortin MC4 receptor is a potential target for the development of drugs for both obesity and cachexia. Melanocortin MC4 receptor ligands known thus far are orthosteric agonists or antagonists, however the agonists, in particular, have generally exhibited unwanted side effects. For some receptors, allosteric modulators are expected to reduce side-effect profiles. To identify allosteric modulators of the melanocortin MC4 receptor, we created HEK293 cell lines coexpressing the human melanocortin MC4 receptor and a modified luciferase-based cAMP sensor. Monitoring luminescence as a readout of real-time intracellular cAMP concentration, we demonstrate this cell line is able to report melanocortin agonist responses, as well as inverse agonist response to the physiological AgRP peptide. Based on the MC4R-GLO cell line, we developed an assay that was shown to meet HTS standards (Z’=0.50). A pilot screen run on the Microsource Spectrum compound library (n= 2,000) successfully identified 62 positive modulators. This screen identified predicted families of compounds: β2AR agonists –the β2AR being endogenously expressed in HEK293 cells-, an adenylyl cyclase activator and finally a distribution of phosphodiesterase (PDE) inhibitors well characterized or recently identified. In this last category, we identified a structural family of coumarin-derived compounds (imperatorin, osthol and prenyletin), along with deracoxib, a drug in veterinary use for its COX2 inhibitory properties. This latter finding unveiled a new off-target mechanism of action for deracoxib as a PDE inhibitor. Overall, these data are the first report of an HTS for allosteric modulators for a Gs protein coupled receptor. PMID:21296065

  18. Gene expression in hypothalamus, liver and adipose tissues and food intake reponse to melanocortin-4 receptor (MC4R) agonist in pigs expressing MC4R mutations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptional profiling was used to identify genetic mechanisms that respond to alpha- melanocortin stimulating hormone (MSH), a melanocortin-3 and 4-receptor (MC3/4-R) agonist. Three MC4R genotypes (2 homozygous and the heterozygous for MC4R) were selected. Six pigs per genotype per treatment wer...

  19. Identification and in vivo and in vitro characterization of long acting and melanocortin 4 receptor (MC4-R) selective α-melanocyte-stimulating hormone (α-MSH) analogues.

    PubMed

    Conde-Frieboes, Kilian; Thøgersen, Henning; Lau, Jesper F; Sensfuss, Ulrich; Hansen, Thomas K; Christensen, Leif; Spetzler, Jane; Olsen, Helle B; Nilsson, Cecilia; Raun, Kirsten; Dahl, Kirsten; Hansen, Birgit S; Wulff, Birgitte S

    2012-03-08

    We report in vitro and in vivo data of new α-melanocyte-stimulating hormone (α-MSH) analogues which are N-terminal modified with a long chain fatty acid derivative. While keeping the pharmacophoric motif (d-Phe-Arg-Trp) fixed, we tried to improve selectivity and physicochemical parameters like solubility and stability of these analogues by replacing amino acids further away from the motif. Receptor specific changes in binding affinity to the melanocortin receptors were observed between the acetyl derivatives and the fatty acid analogues. Furthermore, amino acids at the N-terminal of α-MSH (Ser-Tyr-Ser) not considered to be part of the pharmacophore were found to have an influence on the MC4/MC1 receptor selectivity. While the acetyl analogues have an in vivo effect for around 7 h, the long chain fatty acid analogues have an effect up to 48 h in an acute feeding study in male Sprague-Dawley rats after a single subcutaneous administration.

  20. Fat mass obesity-associated (FTO) (rs9939609) and melanocortin 4 receptor (MC4R) (rs17782313) SNP are positively associated with obesity and blood pressure in Mexican school-aged children.

    PubMed

    García-Solís, Pablo; Reyes-Bastidas, Marissa; Flores, Karla; García, Olga P; Rosado, Jorge L; Méndez-Villa, Lorena; Garcia-G, Carlota; García-Gutiérrez, David; Kuri-García, Aarón; Hernández-Montiel, Hebert L; Soriano-Leon, Ofelia; Villagrán-Herrera, Maria Elena; Solis-Sainz, Juan C

    2016-11-10

    Childhood overweight and obesity are worldwide public health problems and risk factors for chronic diseases. The presence of SNP in several genes has been associated with the presence of obesity. A total of 580 children (8-13 years old) from Queretaro, Mexico, participated in this cross-sectional study, which evaluated the associations of rs9939609 (fat mass obesity-associated (FTO)), rs17782313 (melanocortin 4 receptor (MC4R)) and rs6548238 (transmembrane protein 18 (TMEM18)) SNP with obesity and metabolic risk factors. Overweight and obesity prevalence was 19·8 and 19·1 %, respectively. FTO, MC4R and TMEM18 risk allele frequency was 17, 9·8 and 89·5 %, respectively. A significant association between FTO homozygous and MC4R heterozygous risk alleles and obesity was found (OR 3·9; 95 % CI 1·46, 10·22, and OR 2·1; 95 % CI 1·22, 3·71; respectively). The FTO heterozygous subjects showed higher systolic and diastolic blood pressures, compared with the homozygous for the ancestral allele subjects. These results remain significant after considering adiposity as a covariate. The FTO and MC4R genotypes were not significantly associated with total cholesterol, HDL-cholesterol and insulin concentration. No association was found between TMEM18 risk allele and obesity and/or metabolic alterations. Our results show that, in addition to a higher BMI, there is also an association of the risk genotype with blood pressure in the presence of the FTO risk genotype. The possible presence of a risk genotype in obese children must be considered to offer a more comprehensive therapeutic approach in order to delay and/or prevent the development of chronic diseases.

  1. Pivotal roles of alpha-melanocyte-stimulating hormone and the melanocortin 4 receptor in leptin stimulation of prolactin secretion in rats.

    PubMed

    Watanobe, Hajime; Schiöth, Helgi B; Izumi, Junkichi

    2003-04-01

    Leptin, the obese gene product, was reported to stimulate prolactin (PRL) secretion, but the neuroendocrine mechanism underlying this hormonal response is largely unknown. Thus, in this study we examined the involvement of several important PRL regulators in the leptin-induced PRL secretion in male rats. Compared with the values in normally fed rats, food deprivation for 3 days significantly decreased both PRL and leptin levels in the plasma. These changes were reverted to normal by a 3-day constant infusion of 75 microg/kg/day of leptin to the fasted rats, while 225 microg/kg/day of leptin further elevated both PRL and leptin levels. These four groups of animals were used for the following experiments. Results of dopamine and serotonin turnover studies in the brain and the pituitary indicated that neither of these biogenic amines plays a primary role in mediating leptin's effects on PRL. Repeated intracerebroventricular injections over 72 h of neutralizing antibodies against vasoactive intestinal peptide, PRL-releasing peptide, or beta-endorphin, did not significantly suppress the leptin actions. However, both the blockade of the melanocortin (MC) 4 receptor (R) and the immunoquenching of brain alpha-melanocyte-stimulating hormone (alpha-MSH) completely abolished the leptin-induced PRL release, and the stimulation of the MC4-R, but not the MC3-R, significantly elevated PRL levels in the fasted rats. These results suggest that alpha-MSH, a cleaved peptide from pro-opiomelanocortin of which synthesis is stimulated by leptin, may be the pivotal neuropeptide in the brain mediating the leptin's stimulatory influence on PRL secretion. It was also suggested that the MC4-R may be the primary subtype of the MC-Rs mediating this action of alpha-MSH.

  2. The contribution of serotonin 5-HT2C and melanocortin-4 receptors to the satiety signaling of glucagon-like peptide 1 and liraglutide, a glucagon-like peptide 1 receptor agonist, in mice.

    PubMed

    Nonogaki, Katsunori; Suzuki, Marina; Sanuki, Marin; Wakameda, Mamoru; Tamari, Tomohiro

    2011-07-29

    Glucagon-like peptide 1 (GLP-1), an insulinotropic gastrointestinal peptide produced mainly from intestinal endocrine L-cells, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, induce satiety. The serotonin 5-HT2C receptor (5-HT2CR) and melanoroctin-4 receptor (MC4R) are involved in the regulation of food intake. Here we show that systemic administration of GLP-1 (50 and 200μg/kg)-induced anorexia was blunted in mice with a 5HT2CR null mutation, and was attenuated in mice with a heterozygous MC4R mutation. On the other hand, systemic administration of liraglutide (50 and 100μg/kg) suppressed food intake in mice lacking 5-HT2CR, mice with a heterozygous mutation of MC4R and wild-type mice matched for age. Moreover, once-daily consecutive intraperitoneal administration of liraglutide (100μg/kg) over 3days significantly suppressed daily food intake and body weight in mice with a heterozygous mutation of MC4R as well as wild-type mice. These findings suggest that GLP-1 and liraglutide induce anorexia via different central pathways.

  3. Chemokine receptor CCR7 and CXCR5 mRNA in chickens following inflammation or vaccination.

    PubMed

    Annamalai, T; Selvaraj, R K

    2011-08-01

    The CCR7 and CXCR5 chemokine receptor mRNA contents of different immune organs were studied in normal, healthy birds and in birds treated with either lipopolysaccharide (LPS) as a systemic inflammatory challenge or coccidial vaccine (Coccivac B; Intervet/Schering-Plough Animal Health Corp., Millsboro, DE) as an enteric vaccination challenge. The CCR7 mRNA content of the spleen of normal, healthy birds was approximately 150-fold higher than CCR7 mRNA content of any other organs studied. The CXCR5 mRNA content of the bursa of normal, healthy birds was approximately 80-fold higher than the CXCR5 mRNA content of any other organs studied. The LPS injection decreased the splenic CCR7 mRNA content by approximately 100 times and the bursal CXCR5 mRNA content by approximately 5-fold at 24 h post-LPS injection (P < 0.01). The LPS injection increased the CXCR5 content of cecal tonsils by approximately 3-fold at 24 h post-LPS injection (P < 0.05). At 10 d postvaccination, CCR7 mRNA content was approximately 15-fold higher and CXCR5 mRNA content was approximately 12-fold higher in cecal tonsils of the vaccinated group than in the control group (P < 0.01). In conclusion, CCR7 and CXCR5 mRNA levels were dependent on the immune organs and the inflammatory status of the organs in chickens.

  4. Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients

    PubMed Central

    Kwak, Yong T; Koo, Min-Seong; Choi, Chul-Hee; Sunwoo, IN

    2001-01-01

    Background Though the dysfunction of central dopaminergic system has been proposed, the etiology or pathogenesis of schizophrenia is still uncertain partly due to limited accessibility to dopamine receptor. The purpose of this study was to define whether or not the easily accessible dopamine receptors of peripheral lymphocytes can be the peripheral markers of schizophrenia. Results 44 drug-medicated schizophrenics for more than 3 years, 28 drug-free schizophrenics for more than 3 months, 15 drug-naïve schizophrenic patients, and 31 healthy persons were enrolled. Sequential reverse transcription and quantitative polymerase chain reaction of the mRNA were used to investigate the expression of D3 and D5 dopamine receptors in peripheral lymphocytes. The gene expression of dopamine receptors was compared in each group. After taking antipsychotics in drug-free and drug-naïve patients, the dopamine receptors of peripheral lymphocytes were sequentially studied 2nd week and 8th week after medication. In drug-free schizophrenics, D3 dopamine receptor mRNA expression of peripheral lymphocytes significantly increased compared to that of controls and drug-medicated schizophrenics, and D5 dopamine receptor mRNA expression increased compared to that of drug-medicated schizophrenics. After taking antipsychotics, mRNA of dopamine receptors peaked at 2nd week, after which it decreases but the level was above baseline one at 8th week. Drug-free and drug-naïve patients were divided into two groups according to dopamine receptor expression before medications, and the group of patients with increased dopamine receptor expression had more severe psychiatric symptoms. Conclusions These results reveal that the molecular biologically-determined dopamine receptors of peripheral lymphocytes are reactive, and that increased expression of dopamine receptor in peripheral lymphocyte has possible clinical significance for subgrouping of schizophrenis. PMID:11252158

  5. cDNA cloning of the bovine low density lipoprotein receptor: feedback regulation of a receptor mRNA.

    PubMed Central

    Russell, D W; Yamamoto, T; Schneider, W J; Slaughter, C J; Brown, M S; Goldstein, J L

    1983-01-01

    The low density lipoprotein (LDL) receptor belongs to a class of migrant cell surface proteins that mediate endocytosis of macromolecular ligands. No cDNAs for this class of proteins have been isolated to date. In the current paper, we report the isolation of a cDNA clone for the LDL receptor from a bovine adrenal cDNA library. The library was constructed by the Okayama-Berg method from poly(A)+ RNA that had been enriched in receptor mRNA by immunopurification of polysomes. Mixtures of synthetic oligonucleotides encoding the amino acid sequence of two neighboring regions of a single cyanogen bromide fragment were used as hybridization probes to identify a recombinant plasmid containing the LDL receptor cDNA. This plasmid, designated pLDLR-1, contains a 2.8-kilobase (kb) insert that includes a sequence which corresponds to the known amino acid sequence of a 36-residue cyanogen bromide fragment of the receptor. pLDLR-1 hybridized to a mRNA of approximately equal to 5.5 kb in the bovine adrenal gland. This mRNA, like the receptor protein, was 9-fold more abundant in bovine adrenal than in bovine liver. pLDLR-1 cross-hybridized to a mRNA of approximately equal to 5.5 kb in cultured human epidermoid carcinoma A-431 cells. This mRNA was markedly reduced in amount when sterols were added to the culture medium, an observation that explains the previously observed feedback regulation of LDL receptor protein. Southern blot analysis of bovine genomic DNA with 32P-labeled pLDLR-1 revealed a simple pattern of hybridization, consistent with a single-copy gene containing introns. Images PMID:6143315

  6. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  7. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    SciTech Connect

    Lazarus, Kyren A.; Zhao, Zhe; Knower, Kevin C.; To, Sarah Q.; Chand, Ashwini L.; Clyne, Colin D.

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  8. Oestradiol reduces liver receptor homolog-1 mRNA transcript stability in breast cancer cell lines.

    PubMed

    Lazarus, Kyren A; Zhao, Zhe; Knower, Kevin C; To, Sarah Q; Chand, Ashwini L; Clyne, Colin D

    2013-08-30

    The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E2), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER- cells. However, the presence of LRH-1 protein in ER- cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER- breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER- compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E2, showed increased mRNA stability in ER- versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E2 treatment, this effect mediated by ERα. Our data demonstrates that in ER- cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER- cells as well as ER- tumors suggests a possible role in the development of ER- tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER- and ER+ breast cancer.

  9. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts.

    PubMed

    Vousooghi, Nasim; Zarei, Seyed Zeinolabedin; Sadat-Shirazi, Mitra-Sadat; Eghbali, Fatemeh; Zarrindast, Mohammad Reza

    2015-10-01

    Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted.

  10. mRNA for low density lipoprotein receptor in brain and spinal cord of immature and mature rabbits

    SciTech Connect

    Hofmann, S.L.; Russell, D.W.; Goldstein, J.L.; Brown, M.S.

    1987-09-01

    Hybridization studies with (/sup 32/P)cDNA probes revealed detectable amounts of mRNA for the low density lipoprotein (LDL) receptor in the central nervous system (CNS) of rabbits. mRNA levels were highest in the medulla/pons and spinal cord, which were the most heavily myelinated regions that were studied. Lower, but detectable levels were present in cerebral cortex, hypothalamus, thalamus, midbrain, and cerebellum. In the medulla/pons and spinal cord, the levels of receptor mRNA were in a range comparable to that detected in the liver. The levels of receptor mRNA in whole brain were constant from 3 days of age to adulthood and, thus, did not vary in proportion to the rate of myelin synthesis. LDL receptor mRNA in the CNS was produced by the same gene that produced the liver and adrenal mRNA as revealed by the demonstration of a deletion in the neural mRNA of Watanabe-heritable hyperlipidemic (WHHL) rabbits identical to the deletion in the LDL receptor gene of these mutant animals. Using antibodies directed against the bovine LDL receptor, the authors showed that LDL receptor protein is present in the medulla/pons of adult cows. The cell types that express LDL receptors in the CNS and the functions of these receptors are unknown.

  11. HDAC3 regulates stability of estrogen receptor α mRNA

    SciTech Connect

    Oie, Shohei; Matsuzaki, Kazuya; Yokoyama, Wataru; Murayama, Akiko; Yanagisawa, Junn

    2013-03-08

    Highlights: ► HDAC inhibitors decrease the stability of ERα mRNA in MCF-7 cells. ► HDAC3 is involved in maintaining ERα mRNA stability in MCF-7 cells. ► ERα mRNA instability by knockdown of HDAC3 reduces the estrogen-dependent proliferation of ERα-positive MCF-7 cells. ► HDAC3 specific inhibitor will be one of new drugs for ERα-positive breast cancers. -- Abstract: Estrogen receptor alpha (ERα) expression is a risk factor for breast cancer. HDAC inhibitors have been demonstrated to down-regulate ERα expression in ERα-positive breast cancer cell lines, but the molecular mechanisms are poorly understood. Here, we showed that HDAC inhibitors decrease the stability of ERα mRNA, and that knockdown of HDAC3 decreases the stability of ERα mRNA and suppresses estrogen-dependent proliferation of ERα-positive MCF-7 breast cancer cells. In the Oncomine database, expression levels of HDAC3 in ERα-positive tumors are higher than those in ERα-negative tumors, thus suggesting that HDAC3 is necessary for ERα mRNA stability, and is involved in the estrogen-dependent proliferation of ERα-positive tumors.

  12. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    PubMed

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues.

  13. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    SciTech Connect

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  14. Rat uterine oxytocin receptor and estrogen receptor α and β mRNA levels are regulated by estrogen through multiple estrogen receptors.

    PubMed

    Murata, Takuya; Narita, Kazumi; Ichimaru, Toru

    2014-03-07

    Estrogen action is mediated through several types of receptors (ERs), such as ERα, ERβ and putative membrane ERs. Oxytocin receptor (OTR) and ER expression levels in the rat uterus are regulated by estrogen; however, which types of ERs are involved has not been elucidated. This study examined OTR, ERα and ERβ levels in ovariectomized rats treated with 17β-estradiol (E2), an ERα agonist (PPT), an ERβ agonist (DPN) or estren (Es). E2 and PPT increased OTR mRNA levels and decreased ERα and ERβ mRNA levels 3 and 6 h posttreatment. DPN decreased ERα and ERβ mRNA levels at 3 and 6 h, while OTR mRNA levels increased at 3 h and decreased at 6 h. OTR mRNA levels increased 3 h after the Es treatment and then declined until 6 h. ERα and ERβ mRNA levels decreased by 3 h and remained low until 6 h posttreatment with Es. The ER antagonist ICI182,780 (ICI) suppressed the increases in OTR mRNA levels induced 3 h after the Es treatment. However, ICI and tamoxifen (Tam) had no significant effect on ERα and ERβ mRNA levels in the Es-treated or vehicle-treated group. In intact rats, proestrus-associated increases in OTR mRNA levels were antagonized by both ICI and Tam. However, decreases in ERα and ERβ mRNA levels were not antagonized by Tam and ICI, respectively. Therefore, uterine OTR gene expression is upregulated by estrogen through the classical nuclear (or non-nuclear) ERs, ERα and ERβ, while the levels of these ERs are downregulated by estrogen through multiple pathways including Es-sensitive nonclassical ERs.

  15. Memory time-course: mRNA 5-HT1A and 5-HT7 receptors.

    PubMed

    Perez-Garcia, Georgina; Meneses, Alfredo

    2009-08-24

    In an attempt to clarify conflicting results about serotonin (5-hydroxytryptamine, 5-HT) 5-HT(1A) and 5-HT(7) receptors in memory formation, their mRNA expression was determined by RT-PCR in key brain areas for explicit and implicit memory. The time-course (0-120 h) of autoshaped responses was progressive and mRNA 5-HT(1A) or 5-HT(7) receptors expression monotonically augmented or declined in prefrontal cortex, hippocampus and raphe nuclei, respectively. At 24-48 h acutely 8-OH-DPAT (0.062 mg/kg) administration enhanced memory and attenuated mRNA 5-HT(1A)<5-HT(7) receptors expression respect to saline group. WAY100635 (0.3 mg/kg) or SB-269970 (10.0 mg/kg) did not affect the former, partially blocked or reversed the latter, respectively. Furthermore, lower WAY100635 (0.001-0.1 mg/kg) or SB-269970 (1.0-5.0 mg/kg) doses plus 8-OHDPAT not affected memory; however both combinations suppressed or up-regulated mRNA expression 5-HT(1A) or 5-HT(7) receptors. In contrast, AS19 (5.0 mg/kg) facilitated memory consolidation, decreased or increased hippocampal 5-HT(7) and 5-HT(1A) receptors expression. Together these data revealed that, when both 5-HT(1A) and 5-HT(7) receptors were stimulated by 8-OHDPAT under memory consolidation, subtle changes emerged, not evident at behavioral level though detectable at genes expression. Notably, high levels of efficient memory were maintained even when serotonergic tone, via either 5-HT(1A) or 5-HT(7) receptor, was down- or up-regulated. Nevertheless, WAY100635 plus SB-269970 impaired memory consolidation and suppressed their expression. Considering that serotonergic changes are prominent in AD patients with an earlier onset of disease the present approach might be useful in the identification of functional changes associated to memory formation, memory deficits and reversing or even preventing these deficits.

  16. Inverse relationship between estrogen receptor and epidermal growth factor receptor mRNA levels in human breast cancer cell lines.

    PubMed

    Lee, C S; Hall, R E; Alexander, I E; Koga, M; Shine, J; Sutherland, R L

    1990-01-01

    Epidermal growth factor receptors (EGF-R) are present in a number of human breast cancer cell lines and tumor biopsies. Furthermore, it has been suggested that EGF-R levels are higher in estrogen receptor negative (ER-) than in ER+ human breast tumors and that EGF-R status may be a prognostic indicator in breast cancer. The present study was undertaken to establish whether there is a quantitative relationship between EGF-R and ER mRNA concentrations in a series of 10 well-characterized human breast cancer cell lines. All cell lines expressed detectable quantities of EGF-R mRNA by Northern analysis but the relative abundance of EGF-R mRNA varied more than 50-fold. Two transcripts corresponding to the 10.5- and 5.8-kb mRNAs described in other cell types were present but in different relative proportions in different cell lines. When these lines were divided into an ER+ and an ER- group based on their ability to bind estradiol, ER- cell lines were shown to express significantly higher concentrations of EGF-R mRNA than did ER+ cell lines (p less than 0.005). Furthermore, linear-regression analysis revealed a significant inverse relationship between ER and EGF-R mRNA concentrations both within the group of 10 human breast cancer cell lines as a whole (r = 0.66) and within the 6 functionally ER + lines (r = 0.77). This demonstration of a significant (p less than 0.005) inverse relationship between the concentrations of ER and EGF-R mRNAs in ER + cell lines raises the possibility of reciprocal regulation of the expression of these genes in human breast cancer.

  17. Dexamethasone increases growth hormone (GH)-releasing hormone (GRH) receptor mRNA levels in cultured rat anterior pituitary cells.

    PubMed

    Tamaki, M; Sato, M; Matsubara, S; Wada, Y; Takahara, J

    1996-06-01

    To examine the effects of glucocorticoid (GC) on growth hormone (GH)-releasing hormone (GRH) receptor gene expression, a highly-sensitive and quantitative reverse-transcribed polymerase chain reaction (RT-PCR) method was used in this study. Rat anterior pituitary cells were isolated and cultured for 4 days. The cultured cells were treated with dexamethasone for 2, 6, and 24 h. GRH receptor mRNA levels were determined by competitive RT-PCR using a recombinant RNA as the competitor. Dexamethasone significantly increased GRH receptor mRNA levels at 5 nM after 6- and 24 h-incubations, and the maximal effect was found at 25 nM. The GC receptor-specific antagonist, RU 38486 completely eliminated the dexamethasone-induced enhancement of GRH receptor mRNA levels. Dexamethasone did not alter the mRNA levels of beta-actin and prolactin at 5 nM for 24 h, whereas GH mRNA levels were significantly increased by the same treatment. The GH response to GRH was significantly enhanced by the 24-h incubation with 5 nM dexamethasone. These findings suggest that GC stimulates GRH receptor gene expression through the ligand-activated GC receptors in the rat somatotrophs. The direct effects of GC on the GRH receptor gene could explain the enhancement of GRH-induced GH secretion.

  18. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain

    PubMed Central

    Kimura, Eiki; Tohyama, Chiharu

    2017-01-01

    Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain. PMID:28223923

  19. Distinct prognostic values of four-Notch-receptor mRNA expression in ovarian cancer.

    PubMed

    Zhou, Xinling; Teng, Lingling; Wang, Min

    2016-05-01

    Notch signaling pathway includes ligands and Notch receptors, which are frequently deregulated in several human malignancies including ovarian cancer. Aberrant activation of Notch signaling has been linked to ovarian carcinogenesis and progression. In the current study, we used the "Kaplan-Meier plotter" (KM plotter) database, in which updated gene expression data and survival information from a total of 1306 ovarian cancer patients were used to access the prognostic value of four Notch receptors in ovarian cancer patients. Hazard ratio (HR), 95 % confidence intervals, and log-rank P were calculated. Notch1 messenger RNA (mRNA) high expression was not found to be correlated to overall survival (OS) for all ovarian cancer, as well as in serous and endometrioid cancer patients followed for 20 years. However, Notch1 mRNA high expression is significantly associated with worsen OS in TP53 wild-type ovarian cancer patients, while it is significantly associated with better OS in TP53 mutation-type ovarian cancer patients. Notch2 mRNA high expression was found to be significantly correlated to worsen OS for all ovarian cancer patients, as well as in grade II ovarian cancer patients. Notch3 mRNA high expression was found to be significantly correlated to better OS for all ovarian cancer patients, but not in serous cancer patients and endometrioid cancer patients. Notch4 mRNA high expression was not found to be significantly correlated to OS for all ovarian cancer patients, serous cancer patients, and endometrioid cancer patients. These results indicate that there are distinct prognostic values of four Notch receptors in ovarian cancer. This information will be useful for better understanding of the heterogeneity and complexity in the molecular biology of ovarian cancer and for developing tools to more accurately predict their prognosis. Based on our results, Notch1 could be a potential drug target of TP53 wild-type ovarian cancer and Notch2 could be a potential drug

  20. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines.

    PubMed Central

    Nørgaard, P.; Spang-Thomsen, M.; Poulsen, H. S.

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II mRNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF-beta receptor proteins beta-glycan mRNA was rapidly down-regulated and this effect was sustained throughout the 24 h observation period. RI and RII mRNAs were slightly increased 24 h after treatment. In one cell line sensitive to growth inhibition by TGF-beta, 1 but lacking beta-glycan expression, and one cell line expressing only beta-glycan and thus TGF-beta 1 -resistant, no autoregulation of mRNA of either TGF-beta receptor was demonstrated. The results suggest that TGF-beta 1 regulates the expression of its receptors, in particular beta-glycan, and that this effect is dependent on co-expression of beta-glycan, RI and RII. Images Figure 1 Figure 2 Figure 4 PMID:8624260

  1. Regulation of H1-receptor coupling and H1-receptor mRNA by histamine in bovine tracheal smooth muscle

    PubMed Central

    Pype, J L; Dupont, L J; Mak, J C W; Barnes, P J; Verleden, G M

    1998-01-01

    Pretreatment of bovine tracheal smooth muscle (BTSM) with histamine (1–100 μM, 1 h) induced a concentration-dependent desensitization of the contractile response to subsequently administered histamine, with a reduction of the maximum response of 72±8% (n=5) following pre-exposure to 100 μM histamine. In contrast, concentration-response curves to the muscarinic agonist, methacholine were not affected following histamine pretreatment, indicating a homologous desensitization. Furthermore, concentration-response curves to NaF, a G-protein activator, were not altered following histamine pre-incubation.The histamine H1-receptor (H1R) desensitization could be antagonized by mepyramine (an H1-receptor antagonist, 1 μM) but not by cimetidine (an H2-receptor antagonist, 10 μM), indicating that the desensitization occurred via stimulation of histamine H1-receptors, without evidence for the involvement of histamine H2-receptors.Indomethacin (10 μM) did not block the H1R desensitization, suggesting no involvement of prostaglandins. Furthermore, histamine pre-incubation in calcium free medium still induced a functional uncoupling of H1R.GF 109203X, a protein kinase C (PKC) inhibitor, and H-7, a non-selective kinase inhibitor, did not antagonize the homologous H1R desensitization.The steady-state level of H1R mRNA, assessed by Northern blot analysis, was not affected by prolonged histamine exposure (100 μM, 0.5, 1, 2, 4, 16 and 24 h).These results suggest that histamine induces desensitization of the H1R at the level of the receptor protein, which involves a mechanism independent of PKC, PKA, PKG and calcium influx, suggesting the involvement of a receptor-specific kinase. PMID:9535029

  2. Up-regulation of sigma(1) receptor mRNA in rat brain by a putative atypical antipsychotic and sigma receptor ligand.

    PubMed

    Zamanillo, D; Andreu, F; Ovalle, S; Pérez, M P; Romero, G; Farré, A J; Guitart, X

    2000-03-24

    Sigma(1) (sigma(1)) receptor mRNA expression was studied in the prefrontal cortex, striatum, hippocampus and cerebellum of rat brain by northern blot and in situ hybridization. The effects of a chronic treatment with antipsychotic drugs (haloperidol and clozapine), and with E-5842, a sigma(1) receptor ligand and putative atypical antipsychotic on sigma(1) receptor expression were examined. A significant increase in the levels of sigma(1) receptor mRNA in the prefrontal cortex and striatum after E-5842 administration was observed, while no apparent changes were seen with either haloperidol or clozapine. Our results suggest a long-term adaptation of the sigma(1) receptor at the level of mRNA expression in specific areas of the brain as a response to a sustained treatment with E-5842.

  3. An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation.

    PubMed

    Pérez-García, Georgina; Gonzalez-Espinosa, Claudia; Meneses, Alfredo

    2006-04-25

    Despite the compelling support for 5-hydroxytryptamine (5-HT) receptors participation in learning and memory in mammal species, the molecular basis had been largely absent from any discussion of its mechanistic underpinnings. Here, we report that reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that there was a higher level of expression of the investigated 5-HT receptor mRNAs in autoshaping-trained relative to untrained groups. Actually, pharmacological naïve untrained and autoshaping-trained rats showed significant differences, the latter groups expressing, in decreasing order, 5-HT1A < 5-HT6 < 5-HT4 < or = 5-HT7 receptors mRNA in prefrontal cortex and hippocampus. In order to determine more precisely mRNA expression and memory consolidation, we combined selective 5-HT7 receptors stimulation or blockade in the same animals, and brain areas individually analyzed. 5-HT7 receptors were strongly expressed in all the three brain areas of vehicle-trained rats relative to untrained group. The potential selective 5-HT7 receptor agonist AS 19 enhanced memory consolidation, attenuated mRNA receptors expression, and the facilitatory memory effect was reversed by SB-269970. Finally, pharmacological stimulation of 5-HT7 receptors reversed scopolamine- or dizocilpine-induced amnesia and receptor down-regulation.

  4. mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain

    PubMed Central

    Shukla, Rammohan; Watakabe, Akiya; Yamamori, Tetsuo

    2014-01-01

    To better understand serotonin function in the primate brain, we examined the mRNA expression patterns of all the 13 members of the serotonin receptor (5HTR) family, by in situ hybridization (ISH) and the distribution of serotonergic terminations by serotonin transporter (SERT) protein immunohistochemical analysis. Ten of the 13 5HTRs showed significant mRNA expressions in the marmoset brain. Our study shows several new features of the organization of serotonergic systems in the marmoset brain. (1) The thalamus expressed only a limited number of receptor subtypes compared with the cortex, hippocampus, and other subcortical regions. (2) In the cortex, there are layer-selective and area-selective mRNA expressions of 5HTRs. (3) Highly localized mRNA expressions of 5HT1F and 5HT3A were observed. (4) There was a conspicuous overlap of the mRNA expressions of receptor subtypes known to have somatodendritic localization of receptor proteins with dense serotonergic terminations in the visual cortex, the central lateral (CL) nucleus of the thalamus, the presubiculum, and the medial mammillary nucleus of the hypothalamus. This suggests a high correlation between serotonin availability and receptor expression at these locations. (5) The 5HTRs show differences in mRNA expression pattern between the marmoset and mouse cortices whereas the patterns of both the species were much similar in the hippocampus. We discuss the possible roles of 5HTRs in the marmoset brain revealed by the analysis of their overall mRNA expression patterns. PMID:24904298

  5. Separate fractions of mRNA from Torpedo electric organ induce chloride channels and acetylcholine receptors in Xenopus oocytes.

    PubMed Central

    Sumikawa, K; Parker, I; Amano, T; Miledi, R

    1984-01-01

    Poly(A)+ mRNA extracted from the electric organ of Torpedo was fractionated by sucrose density gradient centrifugation. After injection into Xenopus oocytes one mRNA fraction induced the appearance of chloride channels in the oocyte membrane. Many of these channels were normally open, and the ensuing chloride current kept the resting potential of injected oocytes close to the chloride equilibrium potential. When the membrane was hyperpolarized, the chloride current was reduced. A separate fraction of mRNA induced the incorporation of acetylcholine receptors into the oocyte membrane. When translated in a cell-free system this fraction directed the synthesis of the alpha, beta, gamma, and delta subunits of the acetylcholine receptor. In contrast, the mRNA fraction that induced the chloride channels caused the synthesis of the delta subunit, a very small amount of alpha, and no detectable beta or gamma subunits. This suggests that the size of the mRNA coding for the chloride channel is similar to the preponderant species of mRNA coding for the delta subunit of the acetylcholine receptor. Images Fig. 1. PMID:6094179

  6. Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense.

    PubMed

    Gloggnitzer, Jiradet; Akimcheva, Svetlana; Srinivasan, Arunkumar; Kusenda, Branislav; Riehs, Nina; Stampfl, Hansjörg; Bautor, Jaqueline; Dekrout, Bettina; Jonak, Claudia; Jiménez-Gómez, José M; Parker, Jane E; Riha, Karel

    2014-09-10

    Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs. NMD impairment in Arabidopsis is linked to constitutive immune response activation and enhanced antibacterial resistance, but the underlying mechanisms are unknown. Here we show that NMD contributes to innate immunity in Arabidopsis by controlling the turnover of numerous TIR domain-containing, nucleotide-binding, leucine-rich repeat (TNL) immune receptor-encoding mRNAs. Autoimmunity resulting from NMD impairment depends on TNL signaling pathway components and can be triggered through deregulation of a single TNL gene, RPS6. Bacterial infection of plants causes host-programmed inhibition of NMD, leading to stabilization of NMD-regulated TNL transcripts. Conversely, constitutive NMD activity prevents TNL stabilization and impairs plant defense, demonstrating that host-regulated NMD contributes to disease resistance. Thus, NMD shapes plant innate immunity by controlling the threshold for activation of TNL resistance pathways.

  7. The vitamin D receptor localization and mRNA expression in ram testis and epididymis.

    PubMed

    Jin, Hui; Huang, Yang; Jin, Guang; Xue, Yanrong; Qin, Xiaowei; Yao, Xiaolei; Yue, Wenbing

    2015-02-01

    The objectives of present study were to investigate the presence of vitamin D receptor (VDR) in testis and epididymis of ram by polymerase chain reaction (PCR), to locate VDR in testis and epididymis by immunohistochemistry and to compare difference of VDR expression between testis and epididymis before and after sexual maturation by Real time-PCR and Western blot. The results showed that VDR exists in the testis and epididymis of ram while VDR protein in testis and epididymis was localized in Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells and principal cells. For the adult ram, the amounts of VDR mRNA and VDR protein were less (p < 0.01) in testis than compared with caput, corpus and cauda epididymis. For prepubertal ram, the result showed the same trend (p < 0.01). However, the expression levels of VDR mRNA and VDR protein in caput, corpus, cauda epididymis and testis showed no significant difference (p > 0.05) between adult and prepubertal. In conclusion, VDR exists in testis and epididymis of ram, suggesting 1α,25-(OH)(2)VD(3) may play a role in ram reproduction.

  8. Prolactin receptor mRNA is upregulated in discus fish (Symphysodon aequifasciata) skin during parental phase.

    PubMed

    Khong, Hou-Keat; Kuah, Meng-Kiat; Jaya-Ram, Annette; Shu-Chien, Alexander Chong

    2009-05-01

    Prolactin (PRL) has been shown to directly influence parental-care associated behavior in many vertebrate species. The discus fish (Symphysodon aequifasciata) displays extensive parental care behavior through utilization of epidermal mucosal secretion to raise free-swimming fry. Here, we cloned the full-length cDNA sequence of the S. aequifasciata prolactin receptor (dfPRLR) and investigated the mRNA expression pattern in several adult tissues. Bioinformatic analysis showed the dfPRLR shared rather high identity (79 and 67%) with the Nile tilapia PRLR 1 and black seabream PRLR 1, respectively. The presence of dfPRLR in several osmoregulatory tissues including kidney, gill and intestine is consistent with the known role of PRL in mediating hydromineral balance in teleosts. In addition, upregulated expression of PRLR mRNA was observed in skin of parental fish compared to non-parental fish, indicating possibility of a role of the PRL hormonal signaling in regulation of mucus production in relation to parental care behaviour.

  9. Lack of effect of antipsychotic and antidepressant drugs on glutamate receptor mRNA levels in rat brains.

    PubMed

    Oretti, R G; Spurlock, G; Buckland, P R; McGuffin, P

    1994-08-15

    By employing multiprobe oligonucleotide solution hybridisation (MOSH) we have measured the levels of mRNA encoding the NMDA receptor subtypes (R1, R2A, R2B and R2C) and the non-NMDA glutamate receptor subtypes (GluR1, 2, 3, and 4) within rat brain following, 1-32 days of antipsychotic or antidepressant drug administration. The results suggest that the drugs studied do not significantly alter rat glutamatergic system mRNA levels when compared to controls.

  10. Effects of social isolation on mRNA expression for corticotrophin-releasing hormone receptors in prairie voles.

    PubMed

    Pournajafi-Nazarloo, Hossein; Partoo, Leila; Yee, Jason; Stevenson, Jennifer; Sanzenbacher, Lisa; Kenkel, William; Mohsenpour, Seyed Ramezan; Hashimoto, Kozo; Carter, C Sue

    2011-07-01

    Previous studies have demonstrated that various type of stressors modulate messenger ribonucleic acid (mRNA) for type 1 corticotropin-releasing hormone (CRH) receptor (CRH-R1 mRNA) and type 2 CRH receptor (CRH-R2 mRNA). The purpose of this study was to explore the effect of social isolation stress of varying durations on the CRH, CRH-R1 and CRH-R2 mRNAs expression in the hypothalamus, hippocampus and pituitary of socially monogamous female and male prairie voles (Microtus ochrogaster). Isolation for 1h (single isolation) or 1h of isolation every day for 4 weeks (repeated isolation) was followed by a significant increase in plasma corticosterone levels. Single or repeated isolation increased hypothalamic CRH mRNA expression, but no changes in CRH-R1 mRNA in the hypothalamus were observed. Continuous isolation for 4 weeks (chronic isolation) showed no effect on hypothalamic CRH or CRH-R1 mRNAs in female or male animals. However, hypothalamic CRH-R2 mRNA was significantly reduced in voles exposed to chronic isolation. Single or repeated isolation, but not chronic isolation, significantly increased CRH-R1 mRNA and decreased CRH-R2 mRNA in the pituitary. Despite elevated CRH mRNA expression, CRH-R1 and CRH-R2 mRNAs were not modulated in the hippocampus following single or repeated isolation. Although, chronic isolation did not affect hippocampal CRH or CRH-R1 mRNAs, it did increase CRH-R2 mRNA expression in females and males. The results of the present study in prairie voles suggest that social isolation has receptor subtype and species-specific consequences for the modulation of gene expression for CRH and its receptors in brain and pituitary. Previous studies have revealed a female-biased increase in oxytocin in response to chronic isolation; however, we did not find a sex difference in CRH or its receptors following single, repeated or chronic social isolation, suggesting that sexually dimorphic processes beyond the CRH system, possibly involving vasopressin, might

  11. Increased abundance of aromatase and follicle stimulating hormone receptor mRNA and decreased insulin-like growth factor-2 receptor mRNA in small ovarian follicles of cattle selected for twin births.

    PubMed

    Echternkamp, S E; Aad, P Y; Eborn, D R; Spicer, L J

    2012-07-01

    Cattle genetically selected for twin ovulations and births (Twinner) exhibit increased ovarian follicular development, increased ovulation rate, and greater blood and follicular fluid IGF-1 concentrations compared with contemporary cattle not selected for twins (Control). Experimental objectives were to 1) assess relationships among aromatase (CYP19A1), IGF-1 (IGF1), IGF-2 receptor (IGF2R), and FSH receptor (FSHR) mRNA expression in small (≤5 mm) antral follicles and 2) determine their association with increased numbers of developing follicles in ovaries of Twinner females. Ovaries were collected from mature, cyclic (d 3 to 6) Twinner (n = 11), and Control (n = 12) cows at slaughter and pieces of cortical tissue were fixed and embedded in paraffin. Expression of mRNA was evaluated by in situ hybridization using (35)S-UTP-labeled antisense and sense probes for CYP19A1, FSHR, IGF1, and IGF2R mRNA. Silver grain density was quantified within the granulosa and theca cells of individual follicles (2 to 7 follicles/cow) by Bioquant image analysis. Follicles of Twinners tended to be smaller in diameter than Controls (1.9 ± 0.1 vs. 2.3 ± 0.1 mm; P = 0.08), but thickness of granulosa layer did not differ (P > 0.1) by genotype. Relative abundance of CYP19A1 (P < 0.01) and FSHR (P < 0.05) mRNA was greater in granulosa cells of Twinners vs. Controls, respectively, whereas IGF2R mRNA expression was less in both granulosa (P < 0.01) and theca (P < 0.05) cells in follicles of Twinners vs. Controls, respectively. Abundance of CYP19A1 mRNA in granulosa cells was correlated negatively with IGF2R mRNA expression in both granulosa (r = -0.33; P < 0.01) and theca (r = -0.21; P = 0.05) cells. Expression of IGF1 mRNA was primarily in granulosa cells, including cumulus cells, and its expression did not differ between Twinners vs. Controls (P > 0.10). Detected increases in CYP19A1 and FSHR, but not IGF1, mRNA expression along with decreases in IGF2R mRNA expression in individual

  12. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation.

    PubMed

    Jourdi, Hussam; Hsu, Yu-Tien; Zhou, Miou; Qin, Qingyu; Bi, Xiaoning; Baudry, Michel

    2009-07-08

    Brain-derived neurotrophic factor (BDNF) stimulates local dendritic mRNA translation and is involved in formation and consolidation of memory. 2H,3H,6aH-pyrrolidino[2'',1''-3',2']1,3-oxazino[6',5'-5,4]-benzo[e]1,4-dioxan-10-one (CX614), one of the best-studied positive AMPA receptor modulators (also known as ampakines), increases BDNF mRNA and protein and facilitates long-term potentiation (LTP) induction. Several other ampakines also improve performance in various behavioral and learning tasks. Since local dendritic protein synthesis has been implicated in LTP stabilization and in memory consolidation, this study investigated whether CX614 could influence synaptic plasticity by upregulating dendritic protein translation. CX614 treatment of primary neuronal cultures and acute hippocampal slices rapidly activated the translation machinery and increased local dendritic protein synthesis. CX614-induced activation of translation was blocked by K252a [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester], CNQX, APV, and TTX, and was inhibited in the presence of an extracellular BDNF scavenger, TrkB-Fc. The acute effect of CX614 on translation was mediated by increased BDNF release as demonstrated with a BDNF scavenging assay using TrkB-Fc during CX614 treatment of cultured primary neurons and was blocked by nifedipine, ryanodine, and lack of extracellular Ca(2+) in acute hippocampal slices. Finally, CX614, like BDNF, rapidly increased dendritic translation of an exogenous translation reporter. Together, our results demonstrate that positive modulation of AMPA receptors rapidly stimulates dendritic translation, an effect mediated by BDNF secretion and TrkB receptor activation. They also suggest that increased BDNF secretion and stimulation of local protein synthesis contribute to the effects of ampakines on synaptic plasticity.

  13. Morphine and endomorphins differentially regulate micro-opioid receptor mRNA in SHSY-5Y human neuroblastoma cells.

    PubMed

    Yu, Xin; Mao, Xin; Blake, Allan D; Li, Wen Xin; Chang, Sulie L

    2003-08-01

    A sensitive quantitative-competitive reverse transcriptase-polymerase chain reaction method was developed to measure micro-opioid receptor (MOR) mRNA expression in SHSY-5Y neuroblastoma cells. Differentiation of SHSY-5Y cells with either retinoic acid (RA) or 12-o-tetradecanoyl-phorbol-13-acetate (TPA) significantly increased MOR mRNA levels. Morphine treatment (10 microM) for 24 h decreased MOR mRNA levels in control, as well as RA- and TPA-differentiated cells. In contrast, chronic exposure to the opioid peptides endomorphin-1 or endomorphin-2 significantly increased MOR mRNA levels in undifferentiated and RA-differentiated cells. An opioid antagonist, naloxone, reversed the morphine and endomorphin-1 and -2 effects on MOR mRNA levels in undifferentiated SHSY-5Y cells, but naloxone had differential reversing effects on the agonists' regulation of MOR mRNA in RA- or TPA-differentiated cells. To investigate whether the changes in MOR mRNA expression paralleled changes in MOR receptor function, intracellular cAMP accumulation in SHSY-5Y cells was measured. After chronic treatment with morphine, forskolin-induced cAMP levels in SHSY-5Y cells were significantly higher than those of untreated control cells. In contrast, forskolin-induced cAMP accumulation levels were lower in cells treated with endomorphin-1 or -2 than in untreated control cells. Together, our studies indicate that the opioid alkaloid morphine and the opioid peptides endomorphin-1 and -2 differentially regulate MOR mRNA expression and MOR function in SHSY-5Y cells.

  14. Zearalenone activates pregnane X receptor, constitutive androstane receptor and aryl hydrocarbon receptor and corresponding phase I target genes mRNA in primary cultures of human hepatocytes.

    PubMed

    Ayed-Boussema, Imen; Pascussi, Jean Marc; Maurel, Patrick; Bacha, Hassen; Hassen, Wafa

    2011-01-01

    The mycotoxin zearalenone (ZEN) is found worldwide as a contaminant in cereals and grains. ZEN subchronic and chronic toxicities are dominated by reproductive disorders in different mammalian species which have made ZEN established mammalian endocrine disrupter. Over the last 30 years of ZEN biotransformation study, the toxin was thought to undergo reductive metabolism only, with the generation in several species of α- and β-isomers of zearalenol. However, recent investigations have noticed that the mycoestrogen is prone to oxidative metabolism leading to hydroxylation of ZEN though the involvement of different cytochromes P450 (CYPs) isoforms. The aim of the present study was to further explore the effect of ZEN on regulation of some CYPs using primary cultures of human hepatocytes. For this aim, using real time RT-PCR, we monitored in a first time, the effect of ZEN on mRNA levels of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and aryl hydrocarbon receptor (AhR), nuclear receptors known to be involved in the regulation of some CYPs. In a second time, we looked for ZEN effect on expression of PXR, CAR and AhR corresponding phase I target genes (CYP3A4, CYP3A5, CYP2B6, CYP2C9, CYP1A1 and CYP1A2). Finally, we realised the luciferase assay in HepG2 treated with the toxin and transiently transfected with p-CYP3A4-Luc in the presence of a hPXR vector or transfected with p-CYPA1-Luc.Our results clearly showed that ZEN activated human PXR, CAR and AhR mRNA levels in addition to some of their phase I target genes mainly CYP3A4, CYP2B6 and CYP1A1 and at lesser extent CYP3A5 and CYP2C9 at ZEN concentrations as low as 0.1 μM.

  15. Bacteria and Toll-like receptor and cytokine mRNA expression profiles associated with canine arthritis.

    PubMed

    Riggio, Marcello P; Lappin, David F; Bennett, David

    2014-08-15

    The major forms of inflammatory canine arthritis are immune-mediated arthritis (IMA) and septic arthritis (SA), although some cases of cruciate disease (CD) are associated with significant levels of synovitis. In this study, the bacteria associated with canine arthritis were identified and mRNA expression levels of Toll-like receptors (TLRs) and pro-inflammatory cytokines determined. Of the 40 synovial fluid samples analysed, bacteria were isolated from 12 samples by culture (2 CD, 10 SA) and detected in 4 samples (3 CD, 1 SA) using culture-independent methods. Statistically significant increases in TLR2, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-12 mRNA expression were seen in all disease groups compared to normal controls. All disease groups had decreased mRNA expression of other TLRs compared to normal controls, but this did not reach statistical significance. Synovial fluid cell counts revealed that the highest number and proportion of mononuclear cells and neutrophils were found in the IMA and SA samples, respectively. Age had an effect on the TLR and cytokine mRNA expression profiles: TNF-α (p=0.043) and IL-12 (p=0.025) mRNA expression was increased and TLR4 mRNA expression was reduced (p=0.033) in dogs up to 4 years of age compared to older animals. In the 10 SA samples from which bacteria were isolated, statistically significant increases in TLR2, TLR7, TNF-α and IL-6 mRNA expression were observed. It is concluded that canine arthritis is associated with increased mRNA levels of pro-inflammatory cytokines, which could in some cases be mediated by bacteria through activation of TLR2.

  16. Expression of c-Kit receptor mRNA and protein in the developing, adult and irradiated rodent testis.

    PubMed

    Prabhu, Sridurga Mithra; Meistrich, Marvin L; McLaughlin, Eileen A; Roman, Shaun D; Warne, Sam; Mendis, Sirisha; Itman, Catherine; Loveland, Kate Lakoski

    2006-03-01

    Germ cell proliferation, migration and survival during all stages of spermatogenesis are affected by stem cell factor signalling through the c-Kit receptor, the expression and function of which are vital for normal male reproductive function. The present study comprehensively describes the c-Kit mRNA and protein cellular expression profiles in germ cells of the postnatal and adult rodent testis, revealing their significant elevation in synthesis at the onset of spermatogenesis. Real-time PCR analysis for both mice and rats matched the cellular mRNA expression profile where examined. Localization studies in normal mouse testes indicated that both c-Kit mRNA and protein are first detectable in differentiating spermatogonia. In addition, all spermatogonia isolated from 8-day-old mice displayed detectable c-Kit mRNA, but 30-50% of these lacked protein expression. The c-Kit mRNA and protein profile in normal rat testes indicated expression in gonocytes, in addition to differentiating spermatogonia. However, in the irradiated adult rat testes, in which undifferentiated spermatogonia are the only germ cell type, mRNA was also detected in the absence of protein. This persisted at 3 days and 1 and 2 weeks following treatment with gonadotrophin-releasing hormone (GnRH) antagonist to stimulate spermatogenesis recovery. By 4 weeks of GnRH antagonist treatment, accompanying the emergence of differentiating spermatogonia, both mRNA and protein were detected. Based on these observations, we propose that c-Kit mRNA and protein synthesis are regulated separately, possibly by influences linked to testis maturation and circulating hormone levels.

  17. Noncoding 3' sequences of the transferrin receptor gene are required for mRNA regulation by iron.

    PubMed Central

    Owen, D; Kühn, L C

    1987-01-01

    The cell-surface receptor for transferrin mediates cellular uptake of iron from serum. Transferrin receptor protein and mRNA levels are increased in cells treated with iron chelating agents, and are decreased by treatment with iron salts or hemin. Here we report that expression of human transferrin receptor cDNA constructions in stably transfected mouse fibroblasts is regulated both by the iron chelator, desferrioxamine, and by hemin. We found that sequences within the 3' noncoding region are required for the iron-dependent feed-back regulation of receptor expression, whereas the presence of the transferrin receptor promoter region is not necessary. Regulation by iron is observed when transcription is initiated at either the SV-40 early promoter or the transferrin receptor promoter, but deletion of a 2.3 kb fragment within the 2.6 kb 3' noncoding region of the cDNA abolishes regulation and increases the constitutive level of receptor expression. Furthermore, the 3' deletion does not affect the decrease in receptors which is observed in response to growth arrest, indicating that transferrin receptor expression is controlled by at least two distinct mechanisms. Images Fig. 3. Fig. 6. Fig. 8. PMID:3608980

  18. Translational control of beta2-adrenergic receptor mRNA by T-cell-restricted intracellular antigen-related protein.

    PubMed

    Kandasamy, Karthikeyan; Joseph, Kusumam; Subramaniam, Kothandharaman; Raymond, John R; Tholanikunnel, Baby G

    2005-01-21

    Cellular expression of the beta(2)-adrenergic receptor (beta(2)-AR) is suppressed at the translational level by 3'-untranslated region (UTR) sequences. To test the possible role of 3'-UTR-binding proteins in translational suppression of beta(2)-AR mRNA, we expressed the full-length 3'-UTR or the adenylate/uridylate-rich (A+U-rich element (ARE)) RNA from the 3'-UTR sequences of beta(2)-AR in cell lines that endogenously express this receptor. Reversal of beta(2)-adrenergic receptor translational repression by retroviral expression of 3'-UTR sequences suggested that ARE RNA-binding proteins are involved in translational suppression of beta(2)-adrenergic receptor expression. Using a 20-nucleotide ARE RNA from the receptor 3'-UTR as an affinity ligand, we purified the proteins that bind to these sequences. T-cell-restricted intracellular antigen-related protein (TIAR) was one of the strongly bound proteins identified by this method. UV-catalyzed cross-linking experiments using in vitro transcribed 3'-UTR RNA and glutathione S-transferase-TIAR demonstrated multiple binding sites for this protein on beta(2)-AR 3'-UTR sequences. The distal 340-nucleotide region of the 3'-UTR was identified as a target RNA motif for TIAR binding by both RNA gel shift analysis and immunoprecipitation experiments. Overexpression of TIAR resulted in suppression of receptor protein synthesis and a significant shift in endogenously expressed beta(2)-AR mRNA toward low molecular weight fractions in sucrose gradient polysome fractionation. Taken together, our results provide the first evidence for translational control of beta(2)-AR mRNA by TIAR.

  19. Lifelong ethanol consumption and brain regional GABAA receptor subunit mRNA expression in alcohol-preferring rats.

    PubMed

    Sarviharju, Maija; Hyytiä, Petri; Hervonen, Antti; Jaatinen, Pia; Kiianmaa, Kalervo; Korpi, Esa R

    2006-11-01

    Brain regional gamma-aminobutyric acid type A (GABAA) receptor subunit mRNA expression was studied in ethanol-preferring AA (Alko, Alcohol) rats after moderate ethanol drinking for up to 2 years of age. In situ hybridization with oligonucleotide probes specific for 13 different subunits was used with coronal cryostat sections of the brains. Selective alterations were observed by ethanol exposure and/or aging in signals for several subunits. Most interestingly, the putative highly ethanol-sensitive alpha4 and beta3 subunit mRNAs were significantly decreased in several brain regions. The age-related alterations in alpha4 subunit expression were parallel to those caused by lifelong ethanol drinking, whereas aging had no significant effect on beta3 subunit expression. The results suggest that prolonged ethanol consumption leading to blood concentrations of about 10 mM may downregulate the mRNA expression of selected GABAA receptor subunits and that aging might have partly similar effects.

  20. Neurotransmitter receptors and voltage-dependent Ca2+ channels encoded by mRNA from the adult corpus callosum.

    PubMed Central

    Matute, C; Miledi, R

    1993-01-01

    The presence of mRNAs encoding neurotransmitter receptors and voltage-gated channels in the adult human and bovine corpus callosum was investigated using Xenopus oocytes. Oocytes injected with mRNA extracted from the corpus callosum expressed functional receptors to glutamate, acetylcholine, and serotonin, and also voltage-operated Ca2+ channels, all with similar properties in the two species studied. Acetylcholine and serotonin elicited oscillatory Cl- currents due to activation of the inositol phosphate-Ca2+ receptor-channel coupling system. Glutamate and its analogs N-methyl-D-aspartate (NMDA), kainate, quisqualate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) induced smooth currents. The non-NMDA responses showed a strong inward rectification at positive potentials and were potently blocked by 6,7-dinitroquinoxaline-2,3-dione, as observed for the AMPA/kainate glutamate receptors GLUR1 and GLUR3. Furthermore, in situ hybridization experiments showed that GLUR1 and GLUR3 mRNAs are present in corpus callosum cells that were labeled with antiserum to glial fibrillary acid protein and that, in primary cell cultures, had the morphology of type 2 astrocytes. These results indicate that glial cells in the adult corpus callosum possess mRNA encoding functional neurotransmitter receptors and Ca2+ channels. These molecules may provide a mechanism for glial-neuronal interactions. Images Fig. 1 Fig. 5 Fig. 6 Fig. 7 PMID:7682696

  1. Activity regulates the levels of acetylcholine receptor alpha-subunit mRNA in cultured chicken myotubes.

    PubMed Central

    Klarsfeld, A; Changeux, J P

    1985-01-01

    In vitro blocking the spontaneous activity of primary cultures of chicken embryo myotubes with tetrodotoxin increases approximately equal to 2-fold their content in surface acetylcholine receptor. To investigate this effect at the level of gene expression, chicken genomic DNA sequences coding for the acetylcholine receptor alpha subunit were isolated and characterized. They were shown to belong to a single-copy, polymorphic gene with at least two alleles in the chicken strain utilized. Probes derived from these genomic clones were used to quantitate levels of alpha-subunit mRNA. In culture, a 2-day exposure to tetrodotoxin increased these mRNA levels up to 13-fold, a value similar to that observed after denervation of chick leg muscle (approximately equal to 17-fold). Actin mRNA levels varied little in any of these experiments. These results support the notion that membrane electrical activity affects acetylcholine receptor expression by regulating the accumulation of the corresponding mRNAs. Images PMID:2989833

  2. Effects of seawater acclimation on mRNA levels of corticosteroid receptor genes in osmoregulatory and immune systems in trout

    USGS Publications Warehouse

    Yada, T.; Hyodo, S.; Schreck, C.B.

    2008-01-01

    Influence of environmental salinity on expression of distinct corticosteroid receptor (CR) genes, glucocorticoid receptor (GR)-1 and -2, and mineralcorticoid receptor (MR), was examined in osmoregulatory and hemopoietic organs and leucocytes of steelhead trout (Oncorhynchus mykiss). There was no significant difference in plasma cortisol levels between freshwater (FW)- or seawater (SW)-acclimated trout, whereas Na+, K+-ATPase was activated in gill of SW fish. Plasma lysozyme levels also showed a significant increase after acclimation to SW. In SW-acclimated fish, mRNA levels of GR-1, GR-2, and MR were significantly higher in gill and body kidney than those in FW. Head kidney and spleen showed no significant change in these CR mRNA levels after SW-acclimation. On the other hand, leucocytes isolated from head kidney and peripheral blood showed significant decreases in mRNA levels of CR in SW-acclimated fish. These results showed differential regulation of gene expression of CR between osmoregulatory and immune systems. ?? 2008 Elsevier Inc. All rights reserved.

  3. Dopamine receptor D3 mRNA expression in human lymphocytes is negatively correlated with the personality trait of persistence.

    PubMed

    Czermak, Christoph; Lehofer, Michael; Renger, Helmut; Wagner, Elke M; Lemonis, Leonidas; Rohrhofer, Alfred; Schauenstein, Konrad; Liebmann, Peter M

    2004-05-01

    It has been proposed that neurotransmitter receptor expression in peripheral immune cells reflects expression of these receptors in the brain. To test this "peripheral marker hypothesis", we compared mRNA expression of the dopamine receptors D3 (DRD3) and D4 (DRD4) in peripheral blood lymphocytes (PBL) to personality traits assessed with the Temperament and Character Inventory (TCI) in 50 healthy and unmedicated Caucasian individuals. A shared variance of at least 17% (p=0.016) between DRD3 mRNA expression in PBL and the personality trait of persistence was found. As personality traits have been generally assumed polygenic with a single gene accounting for rarely more than 1-2% of observed variance in a trait, this result lends further support to the peripheral marker hypothesis for DRD3 mRNA expression in PBL. It may also suggest a significant role for the DRD3 in the neurobiology of persistence and point to an interesting link between personality and functioning of the immune system.

  4. Long form leptin receptor mRNA expression in the brain, pituitary, and other tissues in the pig.

    PubMed

    Lin, J; Barb, C R; Matteri, R L; Kraeling, R R; Chen, X; Meinersmann, R J; Rampacek, G B

    2000-07-01

    Much effort has focused recently on understanding the role of leptin, the obese gene product secreted by adipocytes, in regulating growth and reproduction in rodents, humans and domestic animals. We previously demonstrated that leptin inhibited feed intake and stimulated growth hormone (GH) and luteinizing hormone (LH) secretion in the pig. This study was conducted to determine the location of long form leptin receptor (Ob-Rl) mRNA in various tissues of the pig. The leptin receptor has several splice variants in the human and mouse, but Ob-Rl is the major form capable of signal transduction. The Ob-Rl is expressed primarily in the hypothalamus of the human and rodents, but has been located in other tissues as well. In the present study, a partial porcine Ob-Rl cDNA, cloned in our laboratory and specific to the intracellular domain, was used to evaluate the Ob-Rl mRNA expression by RT-PCR in the brain and other tissues in three 105 d-old prepuberal gilts and in a 50 d-old fetus. In 105 d-old gilts, Ob-Rl mRNA was expressed in the hypothalamus, cerebral cortex, amygdala, thalamus, cerebellum, area postrema and anterior pituitary. In addition, Ob-Rl mRNA was expressed in ovary, uterine body, liver, kidney, pancreas, adrenal gland, heart, spleen, lung, intestine, bone marrow, muscle and adipose tissue. However, expression was absent in the thyroid, thymus, superior vena cava, aorta, spinal cord, uterine horn and oviduct. In the 50 d-old fetus, Ob-Rl mRNA was expressed in brain, intestine, muscle, fat, heart, liver and umbilical cord. These results support the idea that leptin might play a role in regulating numerous physiological functions.

  5. Himasthla elongata: effect of infection on expression of the LUSTR-like receptor mRNA in common periwinkle haemocytes.

    PubMed

    Gorbushin, A M; Klimovich, A V; Iakovleva, N V

    2009-09-01

    The first mollusc mRNA coding G-protein-coupled transmembrane receptor (GPcapital ES, CyrillicR), homologous to human receptors LUSTR 1 (GPR107) and LUSTR 2 (GPR108), was isolated from haemocytes of common periwinkle Littorina littorea. The analyses showed that the full-length cDNA is 1935 bp long and is predicted to encode a 614 amino acid protein (named Lit-LUSTR) with a calculated molecular mass of 69.6 kDa and theoretical isoelectric point 7.59. Pair-wise comparisons between Lit-LUSTR and LUSTR proteins from human or mouse have approximately 38% identity and 56% similarity. Lit-LUSTR clusters with LUSTR-A sub-family proteins and is a first characterization of proteins containing Lung7TM-R domain in Mollusca. Significant differences were found between the Lit-LUSTR mRNA levels in haemocytes of healthy periwinkles and those naturally infected with the echinostome trematode Himasthla elongata. Down regulated expression of the LUSTR-like receptor caused by infection illustrates modification of the haemocyte receptor system and may be attributed to the previously demonstrated greater numbers of "immature" haemocytes in the circulation of infected snails.

  6. Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death

    PubMed Central

    Grooms, Sonja Y.; Opitz, Thoralf; Bennett, Michael V. L.; Zukin, R. Suzanne

    2000-01-01

    Kainic acid (KA)-induced status epilepticus in adult rats leads to delayed, selective death of pyramidal neurons in the hippocampal CA1 and CA3. Death is preceded by down-regulation of glutamate receptor 2 (GluR2) mRNA and protein [the subunit that limits Ca2+ permeability of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] in CA1 and CA3, as indicated by in situ hybridization, immunolabeling, and quantitative Western blotting. GluR1 mRNA and protein are unchanged or slightly increased before cell death. These changes could lead to formation of GluR2-lacking, Ca2+-permeable AMPA receptors and increased toxicity of endogenous glutamate. GluR2 immunolabeling is unchanged in granule cells of the dentate gyrus, which are resistant to seizure-induced death. Thus, formation of Ca2+-permeable AMPA receptors may be a critical mediator of delayed neurodegeneration after status epilepticus. PMID:10725374

  7. Alterations in the estrogen receptor alpha mRNA in the breast tumors of African American women.

    PubMed

    Koduri, S; Fuqua, S A; Poola, I

    2000-05-01

    Several recent reports have shown that the mortality rate with breast cancer is about three times higher in African American women than in other populations. In addition, the available data also indicate that the tumors are very aggressive and poorly differentiated with a very low frequency of hormone receptors. To gain an insight into the factors that may be responsible for their aggressive tumors, we investigated the transcript profiles of the estrogen receptor (ER), the most important prognostic factor in breast cancer, in the tumors derived from African American women. We analyzed 24 immunohistochemically ER+ and 6 ER- malignant tumors for ER mRNA by reverse transcription polymerase chain reaction using a number of primer pairs. For comparative purposes, 20 ER- malignant tumor issues derived from Caucasian patients were also included. Our results showed that only 15 of the ER+ tumors from African American women patients had full-length wild-type receptor transcripts and the others exhibited alterations/truncations in exon 8. We also found that the majority of tumors that had alterations/truncations in exon 8 did not express the naturally occurring, more abundant exon 7 deletion transcript. Most of the tumors expressed exon 2, exons 2-3, and exon 5 deletion variant transcripts. Unexpectedly, 2 of the 6 immunohistochemically ER- tumors showed full-length wild-type receptor mRNA but none of the variant transcripts.

  8. Sequence analysis of bone morphogenetic protein receptor type II mRNA from ascitic and nonascitic commercial broilers.

    PubMed

    Cisar, C R; Balog, J M; Anthony, N B; Donoghue, A M

    2003-10-01

    Ascites syndrome, also known as pulmonary hypertension syndrome (PHS), is a common metabolic disorder in rapidly growing meat-type chickens. Environmental factors, such as cold, altitude, and diet, play significant roles in development of the disease, but there is also an important genetic component to PHS susceptibility. The human disease familial primary pulmonary hypertension (FPPH) is similar to PHS in broilers both genetically and physiologically. Several recent studies have shown that mutations in the bone morphogenetic protein receptor type II (BMPR2) gene are a cause of FPPH in humans. To determine whether mutations in the chicken BMPR2 gene play a similar role in PHS susceptibility, BMPR-II mRNA from ascitic and nonascitic commercial broilers were sequenced and compared with the published Leghorn chicken BMPR-II mRNA sequence. Fourteen single nucleotide polymorphisms (SNP) were identified in the commercial broiler BMPR-II mRNA. No mutations unique to ascites-susceptible broilers were present in the coding, 5' untranslated or 3' untranslated regions of BMPR-II mRNA. The twelve SNP present within the coding region of BMPR-II mRNA were synonymous substitutions and did not alter the BMPR-II protein sequence. In addition, analysis of BMPR2 gene expression by reverse transcriptase-PCR indicated that there were no differences in BMPR-II mRNA levels in ascitic and nonascitic birds. Therefore, it appears unlikely that mutations in the BMPR2 gene were responsible for susceptibility to PHS in these commercial broilers.

  9. Detection of full-length and truncated neurokinin-1 receptor mRNA expression in human brain regions.

    PubMed

    Lai, Jian-Ping; Cnaan, Avital; Zhao, Huaqing; Douglas, Steven D

    2008-02-15

    We have applied a newly developed SYBR green-based real-time RT-PCR assay for quantification of full-length and truncated neurokinin-1 receptor (NK1R) mRNA expression in nine regions of human brain tissues obtained from 23 subjects who died with no evidence of neurological or neurodegenerative disease. The following brain regions were examined: cingulate cortex, cerebellum, nucleus accumbens, caudate nucleus, putamen, pons, hippocampus, locus coeruleus, and basal ganglia. The SYBR green-based real-time PCR was more sensitive than TaqMan probe-based real-time PCR in amplifying both full-length and truncated NK1R mRNA. The real-time RT-PCR assay had excellent specificity and sensitivity, with a dynamic range of detection between 100 and 1,000,000 copies of the NK1R cDNA per reaction. The truncated NK1R mRNA levels were more abundant than those of the full-length NK1R in most of the regions examined and there was no significant difference in the truncated NK1R mRNA levels among the nine regions studied. There was, however, a significant difference in the expression of full-length NK1R mRNA levels among the nine regions (P=0.0024), and the putamen region expressed the highest full-length NK1R mRNA. Further studies are needed in order to examine the differences between full-length and truncated NK1R in signal transduction and functional consequences in order to delineate the significance of the co-presence of the two forms of NK1R in the human brain.

  10. Detection of Full-Length and Truncated Neurokinin-1 Receptor mRNA Expression in Human Brain Regions

    PubMed Central

    Lai, Jian-Ping; Cnaan, Avital; Zhao, Huaqing; Douglas, Steven D.

    2008-01-01

    We have applied a newly developed SYBR green based real-time RT-PCR assay for quantification of full-length and truncated neurokinin-1 receptor (NK1R) mRNA expression in 9 regions of human brain tissues obtained from 23 subjects who died with no evidence of neurological or neurodegenerative disease. The following brain regions were examined: cingulate cortex, cerebellum, nucleus accumbens, caudate nucleus, putamen, pons, hippocampus, locus coeruleus, and basal ganglia. The SYBR green based-real-time PCR was more sensitive than TaqMan probe based real-time PCR in amplifying both full-length and truncated NK1R mRNA. The real-time RT-PCR assay had excellent specificity and sensitivity, with a dynamic range of detection between 100 and 1000,000 copies of the NK1R cDNA per reaction. The truncated NK1R mRNA levels were more abundant than those of the full-length NK1R in most of the regions examined and there was no significant difference in the truncated NK1R mRNA levels among the nine regions studied. There was, however, a significant difference in the expression of full-length NK1R mRNA levels among the nine regions (P=0.0024), and the putamen region expressed the highest full-length NK1R mRNA. Further studies are needed in order to examine the differences between full-length and truncated NK1R in signal transduction and functional consequences in order to delineate the significance of the copresence of the two forms of NK1R in the human brain. PMID:18035424

  11. Human peroxisome proliferator-activated receptor mRNA and protein expression during development

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that regulate lipid and glucose homeostasis and are important in reproduction and development. PPARs are targets ofpharmaceuticals and are also activated by environmental contaminants, including ...

  12. Identification and molecular characterization of cellular factors required for glucocorticoid receptor-mediated mRNA decay

    PubMed Central

    Park, Ok Hyun; Park, Joori; Yu, Mira; An, Hyoung-Tae; Ko, Jesang; Kim, Yoon Ki

    2016-01-01

    Glucocorticoid (GC) receptor (GR) has been shown recently to bind a subset of mRNAs and elicit rapid mRNA degradation. However, the molecular details of GR-mediated mRNA decay (GMD) remain unclear. Here, we demonstrate that GMD triggers rapid degradation of target mRNAs in a translation-independent and exon junction complex-independent manner, confirming that GMD is mechanistically distinct from nonsense-mediated mRNA decay (NMD). Efficient GMD requires PNRC2 (proline-rich nuclear receptor coregulatory protein 2) binding, helicase ability, and ATM-mediated phosphorylation of UPF1 (upstream frameshift 1). We also identify two GMD-specific factors: an RNA-binding protein, YBX1 (Y-box-binding protein 1), and an endoribonuclease, HRSP12 (heat-responsive protein 12). In particular, using HRSP12 variants, which are known to disrupt trimerization of HRSP12, we show that HRSP12 plays an essential role in the formation of a functionally active GMD complex. Moreover, we determine the hierarchical recruitment of GMD factors to target mRNAs. Finally, our genome-wide analysis shows that GMD targets a variety of transcripts, implicating roles in a wide range of cellular processes, including immune responses. PMID:27798850

  13. Expression of NK1 receptor at the protein and mRNA level in the porcine female reproductive system.

    PubMed

    Bukowski, R

    2014-01-01

    The presence and distribution of substance P (SP) receptor NK1 was studied in the ovary, the oviduct and the uterus (uterine horn and cervix) of the domestic pig using the methods of molecular biology (RT-PCR and immunoblot) and immunohistochemistry. The expression of NK1 receptor at mRNA level was confirmed with RT-PCR in all the studied parts of the porcine female reproductive system by the presence of 525 bp PCR product and at the protein level by the detection of 46 kDa protein band in immunoblot. Immunohistochemical staining revealed the cellular distribution of NK1 receptor protein. In the ovary NKI receptor was present in the wall of arterial blood vessels, as well as in ovarian follicles of different stages of development. In the tubular organs the NK1 receptor immunohistochemical stainings were observed in the wall of the arterial blood vessels, in the muscular membrane, as well as in the mucosal epithelium. The study confirmed the presence of NK1 receptor in the tissues of the porcine female reproductive tract which clearly points to the possibility that SP can influence porcine ovary, oviduct and uterus.

  14. 5-HT1B receptor-mediated contractions in human temporal artery: evidence from selective antagonists and 5-HT receptor mRNA expression

    PubMed Central

    Verheggen, R; Hundeshagen, A G; Brown, A M; Schindler, M; Kaumann, A J

    1998-01-01

    In the human temporal artery both 5-HT1-like and 5-HT2A receptors mediate the contractile effects of 5-hydroxytryptamine (5-HT) and we have suggested that the 5-HT1-like receptors resemble more closely recombinant 5-HT1B than 5-HT1D receptors. To investigate further which subtype is involved, we investigated the blockade of 5-HT-induced contractions by the 5-HT1B-selective antagonist SB-224289 (2,3,6,7-tetrahydro-1′-methyl-5-{2-methyl-4′[(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-yl] carbonyl} furo[2,3-f]indole-3-spiro-4′-piperidine oxalate) and the 5-HT1D-selective antagonist BRL-15572 (1-phenyl-3[4-3-chlorophenyl piperazin-1-yl] phenylpropan-2-ol). We also used RT-PCR to search for the mRNA of 5-HT1B, 5-HT1D and other 5-HT receptors.The contractile effects of 5-HT in temporal artery rings were partially antagonized by SB-224289 (20, 200 nM) (apparent KB=1 nM) and ketanserin (1 μM) but not by BRL-15572 (500 nM).Sumatriptan evoked contractions (EC50, 170 nM) that were resistant to blockade by BRL-15572 (500 nM) but antagonized by SB-224289 (20, 200 nM).The potency of 5-HT (EC50) was estimated to be 94 nM for the ketanserin-sensitive receptor and 34 nM for the SB-224289-sensitive receptor. The fraction of maximal 5-HT response mediated through SB-224289-sensitive receptors was 0.20–0.67, the remainder being mediated through ketanserin-sensitive receptors.We detected arterial receptor mRNA for the following receptors (incidence): 5-HT1B (8/8), 5-HT1D (2/8), 5-HT1F (0/4), 5-HT2A (0/8), 5-HT2B (0/8), 5-HT2C (0/8), 5-HT4 (4/8) and 5-HT7 (4/8).We conclude that the ketanserin-resistant fraction of the 5-HT effects and the effects of sumatriptan are mediated by 5-HT1B receptors. The lack of antagonism by BRL-15572 rules out 5-HT1D receptors as mediators of the contractile effects of 5-HT and sumatriptan. PMID:9723944

  15. Differential regulation of cytokine and cytokine receptor mRNA expression upon infection of bone marrow-derived macrophages with Listeria monocytogenes.

    PubMed Central

    Demuth, A; Goebel, W; Beuscher, H U; Kuhn, M

    1996-01-01

    Cytokine and cytokine receptor mRNA expression was analyzed by PCR-assisted amplification of RNA extracted from bone marrow-derived macrophages (BMM phi) at different time points after infection with Listeria monocytogenes. The mRNAs for the cytokines interleukin-1 alpha (IL-1 alpha), IL-1 beta, and tumor necrosis factor alpha (TNF-alpha) were induced early after infection, whereas IL-6 mRNA appeared later and even nonhemolytic Listeria strains, which are unable to grow inside eukaryotic cells, induced the same cytokine mRNAs at levels similar to those of the wild-type strain. In most cases, the amounts of cytokines determined by various bioassays correlated with the level of mRNA induction. Inhibition of phagocytic uptake of L. monocytogenes by cytochalasin D treatment resulted in adherent bacteria which still induced the proinflammatory cytokines. In BMM phi, the level of IL-1 receptor II mRNA was unaffected, whereas mRNA expression of the two subtypes of tumor necrosis factor receptors (TNF-RI and TNF-RII) was differentially regulated upon infection: transcription of TNF-RI was reduced, and that of TNF-RII mRNA was induced. Similar to the decreased TNF-RI mRNA expression, gamma interferon receptor mRNA was downregulated in L. monocytogenes-infected BMM phi. This dose- and time-dependent induction or downregulation of cytokine receptor mRNA following L. monocytogenes infection of BMM phi was not observed upon infection of established macrophage-like cell lines J774 and P388D1. Induction of IL-6 mRNA as well as IL-1 alpha/beta and TNF-alpha mRNAs upon L. monocytogenes infection of BMM phi occurs independently of autocrine TNF-alpha signaling via TNF-RI or TNF-RII, as shown by infection of TNF-RI- and TNF-RII-deficient macrophages derived from mutant B6 x 129 mice. In contrast to gamma interferon receptor mRNA, both TNF receptor subtype mRNAs were not influenced by L. monocytogenes infection of hybrid (B6 x 129) mouse macrophages. Whereas the proinflammatory

  16. Synchronized expression of retinoid X receptor mRNA with reproductive tract recrudescence in an imposex-susceptible mollusc.

    PubMed

    Sternberg, Robin M; Hotchkiss, Andrew K; Leblanc, Gerald A

    2008-02-15

    The biocide tributyltin (TBT) causes the development of male sex characteristics in females of some molluscan species, a phenomenon known as imposex. Recent evidence suggests that the retinoid X receptor (RXR) participates in TBT-induced imposex. Accordingly, we hypothesized that RXR may contribute to the seasonal development of the male reproductive tract in molluscs and would be expressed in concert with this phenomenon. RXR was cloned and sequenced from an imposex-susceptble species, the eastern mud snail Ilyanassa obsoleta. The DNA-binding domain of the receptor protein was 100 and 97% identical to those of the rock shell Thais clavigera and the freshwater snail Biomphalaria glabrata. The ligand-binding domain was 93 and 92% identicalto the LBD of these two molluscan species, respectively. Phylogenetic analyses revealed that RXR is an ancient nuclear receptor whose origin predates the emergence of the Bilateria. Interestingly, though inexplicably, the molluscan RXRs were more similar to sequences of vertebrate RXRs than to the RXRs of other lophotrochozoan invertebrates. Next, the expression of RXR mRNA levels in the reproductive tract was determined through the reproductive cycle. RXR mRNA levels increased commensurate with reproductive tract recrudescence in both sexes. However, the timing of coordinate recrudescence-RXR expression differed between sexes. Results demonstrate that RXR expression is associated with reproductive tract recrudescence in both sexes; although, the timing of recrudescence may dictate sex-specific development. Retinoid signaling initiated by TBT during an inappropriate time in females may result in imposex.

  17. Differential expression of viral PAMP receptors mRNA in peripheral blood of patients with chronic hepatitis C infection

    PubMed Central

    Atencia, Rafael; Bustamante, Francisco J; Valdivieso, Andrés; Arrieta, Arantza; Riñón, Marta; Prada, Alvaro; Maruri, Natalia

    2007-01-01

    Background Pathogen-associated molecular patterns (PAMP) receptors play a key role in the early host response to viruses. In this work, we determined mRNA levels of two members of the Toll-like Receptors family, (TLR3 and TLR7) and the helicase RIG-I, all of three recognizing viral RNA products, in peripheral blood of healthy donors and hepatitis C virus (HCV) patients, to observe if their transcripts are altered in this disease. Methods IFN-α, TLR3, TLR7 and RIG-I levels in peripheral blood from healthy controls (n = 18) and chronic HCV patients (n = 18) were quantified by real-time polymerase chain reaction. Results Our results show that IFN-α, TLR3, TLR7 and RIG-I mRNA levels are significantly down-regulated in patients with chronic HCV infection when compared with healthy controls. We also found that the measured levels of TLR3 and TLR7, but not RIG-I, correlated significantly with those of IFN-α Conclusion Monitoring the expression of RNA-sensing receptors like TLR3, TLR7 and RIG-I during the different clinical stages of infection could bring a new source of data about the prognosis of disease. PMID:18021446

  18. Inflammatory nociception diminishes dopamine release and increases dopamine D2 receptor mRNA in the rat's insular cortex

    PubMed Central

    2010-01-01

    Background The insular cortex (IC) receives somatosensory afferent input and has been related to nociceptive input. It has dopaminergic terminals and D1 (D1R) -excitatory- and D2 (D2R) -inhibitory- receptors. D2R activation with a selective agonist, as well as D1R blockade with antagonists in the IC, diminish neuropathic nociception in a nerve transection model. An intraplantar injection of carrageenan and acute thermonociception (plantar test) were performed to measure the response to inflammation (paw withdrawal latency, PWL). Simultaneously, a freely moving microdyalisis technique and HPLC were used to measure the release of dopamine and its metabolites in the IC. Plantar test was applied prior, one and three hours after inflammation. Also, mRNA levels of D1 and D2R's were measured in the IC after three hours of inflammation. Results The results showed a gradual decrease in the release of dopamine, Dopac and HVA after inflammation. The decrease correlates with a decrease in PWL. D2R's increased their mRNA expression compared to the controls. In regard of D1R's, there was a decrease in their mRNA levels compared to the controls. Conclusions Our results showed that the decreased extracellular levels of dopamine induced by inflammation correlated with the level of pain-related behaviour. These results also showed the increase in dopaminergic mediated inhibition by an increase in D2R's and a decrease in D1R's mRNA. There is a possible differential mechanism regarding the regulation of excitatory and inhibitory dopaminergic receptors triggered by inflammation. PMID:21050459

  19. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.).

    PubMed

    Shibuya, Kenichi; Nagata, Masayasu; Tanikawa, Natsu; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.

  20. ∆(9)-Tetrahydrocannabinol decreases NOP receptor density and mRNA levels in human SH-SY5Y cells.

    PubMed

    Cannarsa, Rosalia; Carretta, Donatella; Lattanzio, Francesca; Candeletti, Sanzio; Romualdi, Patrizia

    2012-02-01

    Several studies demonstrated a cross-talk between the opioid and cannabinoid system. The NOP receptor and its endogenous ligand nociceptin/orphanin FQ represent an opioid-related functional entity that mediates some non-classical opioid effects. The relationship between cannabinoid and nociceptin/NOP system is yet poorly explored. In this study, we used the neuroblastoma SH-SY5Y cell line to investigate the effect of delta-9-tetrahydrocannabinol (∆(9)-THC) on nociceptin/NOP system. Results revealed that the exposure to ∆(9)-THC (100, 150, and 200 nM) for 24 h produces a dose-dependent NOP receptor B (max) down-regulation. Moreover, ∆(9)-THC caused a dose-dependent decrease in NOP mRNA levels. The selective cannabinoid receptor CB1 antagonist AM251 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide) reduces both effects, suggesting that ∆(9)-THC activation of CB1 receptor is involved in the observed effects. These data show evidence of a cross-talk between NOP and CB1 receptors, thus suggesting a possible interplay between cannabinoid and nociceptin/NOP system.

  1. Glucagon-like peptide-1 receptor (GLP1-R) mRNA in the rat hypothalamus.

    PubMed

    Shughrue, P J; Lane, M V; Merchenthaler, I

    1996-11-01

    GLP-1 has been shown to dramatically reduce food intake in fasted rats and is thought to exert its effects by modulating neuronal function in the hypothalamus. To date, little is known about the distribution of GLP1-R and its mRNA in the rodent hypothalamus. The purpose of the present study was to utilize in situ hybridization histochemistry to determine the anatomical distribution of GLP1-R mRNA in the rat hypothalamus. The results of these studies revealed an extensive distribution of GLP1-R mRNA throughout the rostral-caudal extent of the hypothalamus; with a dense accumulation of labeled cells in the supraoptic, paraventricular, and arcuate nuclei. Additional labeled cells were also detected in medial and lateral preoptic areas, periventricular nucleus, ventral division of the bed nucleus of the stria terminalis, lateral hypothalamus, and dorsomedial nucleus. The results of these in situ hybridization histochemical studies have provided detailed and novel information about the distribution of GLP1-R mRNA in the rat hypothalamus. In addition, this morphological data provides important information about the neuronal systems modulated by GLP-1 and their potential role in feeding behavior.

  2. A case of cervical cancer expressed three mRNA variant of Hyaluronan-mediated motility receptor

    PubMed Central

    Villegas-Ruíz, Vanessa; Salcedo, Mauricio; Zentella-Dehesa, Alejandro; de Oca, Edén V Montes; Román-Basaure, Edgar; Mantilla-Morales, Alejandra; Dávila-Borja, Víctor M; Juárez-Méndez, Sergio

    2014-01-01

    Cervical cancer is the second malignancy in Mexico, little is known about the prognostic factors associated with this disease. Several cellular components are important in their transformation and progression. Alternative mRNA splice is an important mechanism for generating protein diversity, nevertheless, in cancer unknown mRNA diversity is expressed. Hyaluronan-mediated motility receptor (HMMR, RHAMM, CD168) is a family member of proteins, hyaluronan acid dependent, and has been associated with different malignant processes such as: angiogenesis, cell invasiveness, proliferation, metastasis and poor outcome in some tumors. In the present study we identified expression of HMMR in cervical cancer by means of RT-PCR and sequencing. Our results indicate co-expression of two HMMR variants in all samples, and one case expressed three alternative HMMR splice transcripts. These results showed the heterogeneity of mRNA transcripts of HMMR that could express in cancer and the expression of HMMR could be marker of malignancy in CC. PMID:24966934

  3. Effect of sodium hydrosulfide on mRNA expression of prostaglandin E2 receptors in response to mucosal acidification and distention-induced gastric acid secretion in rats

    PubMed Central

    Mard, Seyyed Ali; Mahini, Simin; Dianat, Mahin; Farbood, Yaghoob

    2017-01-01

    Objective(s): Prostaglandins have been shown to mediate the gastro-protective effect of sodium hydrosulfide (NaHS) but effect of NaHS on mRNA expression of prostaglandin E2 receptors (EP1, 3-4; EPs) has not been investigated. Therefore, this study designed to evaluate the effect of NaHS on mRNA expression of EPs receptors in response to mucosal acidification and distention-induced gastric acid secretion in rats. Materials and Methods: Fasted rats were randomly assigned into 4 groups (n=6/group). They were control, and NaHS-treated groups. To evaluate the effect of NaHS on mucosal mRNA expression of EPs receptors, the gastric mucosa exposed to stimulated gastric acid output and mucosal acidification. The pylorus sphincter catheterized for instillation of isotonic neutral saline or acidic solution. Ninety min after beginning the experiments, animals sacrificed and the gastric mucosa collected to determine the pH, mucus secretion and to quantify the mRNA expression of EPs receptors by quantitative real-time PCR. Results: present results showed that a) NaHS increased the mucus secretion, mRNA expression of EP3 and EP4 receptors in response to distention-induced expression; b) The mRNA expression of EP1 receptors increased while EP4 mRNA receptors decreased in response to mucosal acidification in NaHS-pretreated rats; and c) NaHS increased pH of gastric contents both in response to distention-induced gastric acid secretion and mucosal acidification. Conclusion: NaHS behaves in a different manner. It effectively only increased the pH of gastric contents to reinforce the gastric mucosa against a highly acidic solution but modulated both acid and mucus secretion when the rate of acid increase in the stomach was slower. PMID:28293390

  4. Thyroid Hormone Regulates the mRNA Expression of Small Heterodimer Partner through Liver Receptor Homolog-1

    PubMed Central

    Ahn, Hwa Young; Kim, Hwan Hee; Kim, Ye An; Kim, Min; Ohn, Jung Hun; Chung, Sung Soo; Lee, Yoon-Kwang; Park, Do Joon; Park, Kyong Soo

    2015-01-01

    Background Expression of hepatic cholesterol 7α-hydroxylase (CYP7A1) is negatively regulated by orphan nuclear receptor small heterodimer partner (SHP). In this study, we aimed to find whether thyroid hormone regulates SHP expression by modulating the transcriptional activities of liver receptor homolog-1 (LRH-1). Methods We injected thyroid hormone (triiodothyronine, T3) to C57BL/6J wild type. RNA was isolated from mouse liver and used for microarray analysis and quantitative real-time polymerase chain reaction (PCR). Human hepatoma cell and primary hepatocytes from mouse liver were used to confirm the effect of T3 in vitro. Promoter assay and electrophoretic mobility-shift assay (EMSA) were also performed using human hepatoma cell line Results Initial microarray results indicated that SHP expression is markedly decreased in livers of T3 treated mice. We confirmed that T3 repressed SHP expression in the liver of mice as well as in mouse primary hepatocytes and human hepatoma cells by real-time PCR analysis. LRH-1 increased the promoter activity of SHP; however, this increased activity was markedly decreased after thyroid hormone receptor β/retinoid X receptor α/T3 administration. EMSA revealed that T3 inhibits specific LRH-1 DNA binding. Conclusion We found that thyroid hormone regulates the expression of SHP mRNA through interference with the transcription factor, LRH-1. PMID:26485468

  5. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    SciTech Connect

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-07-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.

  6. Quantitative mapping shows that serotonin rather than dopamine receptor mRNA expressions are affected after repeated intermittent administration of MDMA in rat brain.

    PubMed

    Kindlundh-Högberg, Anna M S; Svenningsson, Per; Schiöth, Helgi B

    2006-09-01

    Ecstasy, (+/-)-3,4-methylenedioxy-metamphetamine (MDMA), is a popular recreational drug among young people. The present study aims to mimic MDMA intake among adolescents at dance clubs, taking repeated doses in the same evening on an intermittent basis. Male Sprague-Dawley rats received either 3x1 or 3x5 mg/kg/day (3 h apart) every seventh day during 4 weeks. We used real-time RT-PCR to determine the gene expression of serotonin 5HT1A, 5HT1B, 5HT2A, 5HT2C, 5HT3, 5HT6 receptors and dopamine D1, D2, D3 receptors in seven brain nuclei. The highest dose of MDMA extensively increased the 5HT1B-receptor mRNA in the cortex, caudate putamen, nucleus accumbens, and hypothalamus. The 5HT2A-receptor mRNA was reduced at the highest MDMA dose in the cortex. The 5HT2C mRNA was significantly increased in a dose-dependent manner in the cortex and the hypothalamus, as well as the 5HT3-receptor mRNA was in the hypothalamus. The 5HT6 mRNA level was increased in the forebrain cortex and the amygdala. Dopamine receptor mRNAs were only affected in the hypothalamus. In conclusion, this study provides evidence for a unique implication of serotonin rather than dopamine receptor mRNA levels, in response to repeated intermittent MDMA administration. We therefore suggest that serotonin regulated functions also primarily underlie repeated MDMA intake at rave parties.

  7. Physical Activity and Sedentary Behaviors Modify the Association between Melanocortin 4 Receptor Gene Variant and Obesity in Chinese Children and Adolescents

    PubMed Central

    Song, Jie-Yun; Song, Qi-Ying; Wang, Shuo; Ma, Jun; Wang, Hai-Jun

    2017-01-01

    Effects of MC4R variants in previous Chinese population studies were inconsistent. Gene-environment interactions might influence the effect of MC4R variants on obesity, which was still unclear. We performed the study to clarify the association of variants near MC4R gene with obesity-related phenotypes and gene-environment interactions in Chinese children and adolescents. Two common variants (rs12970134 and rs17782313) near MC4R were genotyped in 2179 children and adolescents aged 7–18 years in Beijing of China. Associations between the variants and obesity-related phenotypes together with gene-environment interactions were analyzed. The A-alleles of rs12970134 were nominally associated with risk of overweight/obesity (Odds Ratios (OR) = 1.21, 95%CI: 1.03–1.44, P = 0.025) and BMI (β = 0.33 kg/m2, 95%CI: 0.02–0.63, P = 0.025), respectively. The rs12970134 was also associated with HDL-C (β = -0.03mmol/L per A-allele, 95%CI: -0.05, -0.01, P = 0.013) independent of BMI. In the further analysis, we found the significant interaction of rs12970134 and physical activity/sedentary behaviors on BMI (Pinteraction = 0.043). The rs12970134 was found to be associated with BMI only in children with physical activity<1h/d and sedentary behaviors ≥2h/d (BMI: β = 1.27 kg/m2, 95%CI: 0.10–2.45, P = 0.034). The association was not detected in their counterparts with physical activity≥1h/d or sedentary behaviors <2h/d. We identified the effect of MC4R rs12970134 on overweight/obesity and BMI, and we also found physical activity and sedentary behaviors modified the association between the rs12970134 and BMI in Chinese children and adolescents. PMID:28081251

  8. Physical Activity and Sedentary Behaviors Modify the Association between Melanocortin 4 Receptor Gene Variant and Obesity in Chinese Children and Adolescents.

    PubMed

    Song, Jie-Yun; Song, Qi-Ying; Wang, Shuo; Ma, Jun; Wang, Hai-Jun

    2017-01-01

    Effects of MC4R variants in previous Chinese population studies were inconsistent. Gene-environment interactions might influence the effect of MC4R variants on obesity, which was still unclear. We performed the study to clarify the association of variants near MC4R gene with obesity-related phenotypes and gene-environment interactions in Chinese children and adolescents. Two common variants (rs12970134 and rs17782313) near MC4R were genotyped in 2179 children and adolescents aged 7-18 years in Beijing of China. Associations between the variants and obesity-related phenotypes together with gene-environment interactions were analyzed. The A-alleles of rs12970134 were nominally associated with risk of overweight/obesity (Odds Ratios (OR) = 1.21, 95%CI: 1.03-1.44, P = 0.025) and BMI (β = 0.33 kg/m2, 95%CI: 0.02-0.63, P = 0.025), respectively. The rs12970134 was also associated with HDL-C (β = -0.03mmol/L per A-allele, 95%CI: -0.05, -0.01, P = 0.013) independent of BMI. In the further analysis, we found the significant interaction of rs12970134 and physical activity/sedentary behaviors on BMI (Pinteraction = 0.043). The rs12970134 was found to be associated with BMI only in children with physical activity<1h/d and sedentary behaviors ≥2h/d (BMI: β = 1.27 kg/m2, 95%CI: 0.10-2.45, P = 0.034). The association was not detected in their counterparts with physical activity≥1h/d or sedentary behaviors <2h/d. We identified the effect of MC4R rs12970134 on overweight/obesity and BMI, and we also found physical activity and sedentary behaviors modified the association between the rs12970134 and BMI in Chinese children and adolescents.

  9. Luteotropic and luteolytic factors regulate mRNA and protein expression of progesterone receptor isoforms A and B in the bovine endometrium.

    PubMed

    Rekawiecki, Robert; Kowalik, Magdalena Karolina; Kotwica, Jan

    2014-12-17

    The aim of the present study was to examine the effects of luteotropic and luteolytic factors on the mRNA and protein levels of progesterone receptor isoforms A (PGRA) and B (PGRB) in the bovine endometrium. Endometrial slices from Days 6-10 and 17-20 of the oestrous cycle were treated with LH (100ngmL-1), oestradiol (E2; 1×10-8M), prostaglandin (PG) E2 (1×10-6M) and PGF2? (1×10-6M) and the nitric oxide donor NONOate (1×10-4M); these treatments lasted for 6h for mRNA expression analysis and 24h for protein expression analysis. On Days 6-10 of the oestrous cycle PGRAB (PGRAB; the entire PGRA mRNA sequence is common to the PGRB mRNA sequence) mRNA expression in endometrial slices was enhanced by E2 treatment (PPGRB mRNA expression was increased by LH (PPPPGRAB mRNA expression increased after E2 (P2 (PPGRB mRNA expression was increased by PGE2 (P2? (PPPPPP2? (P2 (P2? (P<0.001). These data suggest that luteotropic and luteolytic factors affect PGRA and PGRB mRNA and protein levels, and this may regulate the effects of progesterone on endometrial cells.

  10. Lower levels of cannabinoid 1 receptor mRNA in female eating disorder patients: association with wrist cutting as impulsive self-injurious behavior.

    PubMed

    Schroeder, Marc; Eberlein, Christian; de Zwaan, Martina; Kornhuber, Johannes; Bleich, Stefan; Frieling, Helge

    2012-12-01

    The cannabinoid 1 (CB 1) receptor as the primary mediator of the endocannabinoid (EC) system was found to play a role in eating disorders (EDs), depression, anxiety, and suicidal behavior. The CB 1 receptor is assumed to play a crucial role in the central reward circuitry with impact on body weight and personality traits like novelty-seeking behavior. In a previous study we found higher levels of CB 1 receptor mRNA in patients with anorexia nervosa (AN) and bulimia nervosa (BN) compared to healthy control women (HCW). The aim of the present study was to investigate the possible influence of the EC and the CB 1 receptor system on wrist cutting as self-injurious behavior (SIB) in women with EDs (n=43; AN: n=20; BN: n=23). Nine ED patients with repetitive wrist cutting (AN, n=4; BN, n=5) were compared to 34 ED patients without wrist cutting and 26 HCW. Levels of CB 1 receptor mRNA were determined in peripheral blood samples using quantitative real-time PCR. ED patients with self-injurious wrist cutting exhibited significantly lower CB 1 receptor mRNA levels compared with ED patients without wrist cutting and HCW. No significant differences were found between ED patients without a history of wrist cutting and HCW. Furthermore, a negative association was detected between CB 1 receptor mRNA levels and Beck Depression Inventory (BDI) scores. To our knowledge, this is the first study reporting a down-regulation of CB 1 receptor mRNA in patients with EDs and wrist cutting as SIB. Due to the small sample size, our results should be regarded as preliminary and further studies are warranted to reveal the underlying mechanisms.

  11. Biological implications of estrogen and androgen effects on androgen receptor and its mRNA levels in human uterine endometrium.

    PubMed

    Fujimoto, J; Nishigaki, M; Hori, M; Ichigo, S; Itoh, T; Tamaya, T

    1995-06-01

    It has been shown that some effects of testosterone are different from those of its 5 alpha-reduced metabolite, dihydrotestosterone. Briefly, activities of testosterone might be related to cellular differentiation, whereas dihydrotestosterone acts on cellular proliferation. The number of testosterone binding sites in the uterine endometrium was increased by estradiol dipropionate, and this increase was down-regulated by testosterone cypionate. Dihydrotestosterone-specific binding sites in the endometrium were not modulated by estradiol dipropionate and testosterone cypionate. The dissociation constants of the binding sites for testosterone and dihydrotestosterone were not altered by these steroids. Estradiol dipropionate with or without testosterone cypionate induced androgen receptor mRNA expression in the endometrium. In conclusion, testosterone might predominantly affect cellular differentiation in the endometrium.

  12. Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain.

    PubMed

    Anderson, Joel G; Fordahl, Steve C; Cooney, Paula T; Weaver, Tara L; Colyer, Christa L; Erikson, Keith M

    2008-11-01

    Unlike other essential trace elements (e.g., zinc and iron) it is the toxicity of manganese (Mn) that is more common in human populations than its deficiency. Data suggest alterations in dopamine biology may drive the effects associated with Mn neurotoxicity, though recently gamma-aminobutyric acid (GABA) has been implicated. In addition, iron deficiency (ID), a common nutritional problem, may cause disturbances in neurochemistry by facilitating accumulation of Mn in the brain. Previous data from our lab have shown decreased brain tissue levels of GABA as well as decreased (3)H-GABA uptake in synaptosomes as a result of Mn exposure and ID. These results indicate a possible increase in the concentration of extracellular GABA due to alterations in expression of GABA transport and receptor proteins. In this study weanling-male Sprague-Dawley rats were randomly placed into one of four dietary treatment groups: control (CN; 35mg Fe/kg diet), iron-deficient (ID; 6mg Fe/kg diet), CN with Mn supplementation (via the drinking water; 1g Mn/l) (CNMn), and ID with Mn supplementation (IDMn). Using in vivo microdialysis, an increase in extracellular GABA concentrations in the striatum was observed in response to Mn exposure and ID although correlational analysis reveals that extracellular GABA is related more to extracellular iron levels and not Mn. A diverse effect of Mn exposure and ID was observed in the regions examined via Western blot and RT-PCR analysis, with effects on mRNA and protein expression of GAT-1, GABA(A), and GABA(B) differing between and within the regions examined. For example, Mn exposure reduced GAT-1 protein expression by approximately 50% in the substantia nigra, while increasing mRNA expression approximately four-fold, while in the caudate putamen mRNA expression was decreased with no effect on protein expression. These data suggest that Mn exposure results in an increase in extracellular GABA concentrations via altered expression of transport and

  13. Sigma receptor antagonists attenuate acute methamphetamine-induced hyperthermia by a mechanism independent of IL-1β mRNA expression in the hypothalamus.

    PubMed

    Seminerio, Michael J; Robson, Matthew J; McCurdy, Christopher R; Matsumoto, Rae R

    2012-09-15

    Methamphetamine is currently one of the most widely abused drugs worldwide, with hyperthermia being a leading cause of death in methamphetamine overdose situations. Methamphetamine-induced hyperthermia involves a variety of cellular mechanisms, including increases in hypothalamic interleukin-1 beta (IL-1β) expression. Methamphetamine also interacts with sigma receptors and previous studies have shown that sigma receptor antagonists mitigate many of the behavioral and physiological effects of methamphetamine, including hyperthermia. The purpose of the current study was to determine if the attenuation of methamphetamine-induced hyperthermia by the sigma receptor antagonists, AZ66 and SN79, is associated with a concomitant attenuation of IL-1β mRNA expression, particularly in the hypothalamus. Methamphetamine produced dose- and time-dependent increases in core body temperature and IL-1β mRNA expression in the hypothalamus, striatum, and cortex in male, Swiss Webster mice. Pretreatment with the sigma receptor antagonists, AZ66 and SN79, significantly attenuated methamphetamine-induced hyperthermia, but further potentiated IL-1β mRNA in the mouse hypothalamus when compared to animals treated with methamphetamine alone. These findings suggest sigma receptor antagonists attenuate methamphetamine-induced hyperthermia through a different mechanism from that involved in the modulation of hypothalamic IL-1β mRNA expression.

  14. Impact of estrogen receptor gene polymorphisms and mRNA levels on obesity and lipolysis – a cohort study

    PubMed Central

    Nilsson, Maria; Dahlman, Ingrid; Jiao, Hong; Gustafsson, Jan-Åke; Arner, Peter; Dahlman-Wright, Karin

    2007-01-01

    Background The estrogen receptors α and β (ESR1, ESR2) have been implicated in adiposity, lipid metabolism and feeding behaviour. In this report we analyse ESR1 and ESR2 gene single nucleotide polymorphisms (SNPs) for association with obesity. We also relate adipose tissue ESR1 mRNA levels and ESR1 SNPs to adipocyte lipolysis and lipogenesis phenotypes. Methods 23 ESR1 and 11 ESR2 tag-SNPs, covering most of the common haplotype variation in each gene according to HAPMAP data, were analysed by Chi2 for association with obesity in a cohort comprising 705 adults with severe obesity and 402 lean individuals. Results were replicated in a cohort comprising 837 obese and 613 lean subjects. About 80% of both cohorts comprised women and 20% men. Adipose tissue ESR1 mRNA was quantified in 122 women and related to lipolysis and lipogenesis by multiple regression. ESR1 SNPs were analysed for association with adipocyte lipolysis and lipogenesis phenotypes in 204 obese women by simple regression. Results No ESR1 SNP was associated with obesity. Five ESR2 SNPs displayed nominal significant allelic association with obesity in women and one in men. The two ESR2 SNPs associated with obesity with nominal P value < 0.01 were genotyped in a second cohort where no association with obesity was observed. There was an inverse correlation between ESR1 mRNA levels in abdominal subcutaneous (sc) adipose tissue and basal lipolysis, as well as responsiveness to adrenoceptor agonists independent of age and BMI (P value 0.009–0.045). ESR1 rs532010 was associated with lipolytic sensitivity to noradrenaline (nominal P value 0.012), and ESR1 rs1884051 with responsiveness to the non-selective beta-adrenoceptor agonist isoprenaline (nominal P value 0.05). These associations became non-significant after Bonferroni correction. Conclusion ESR1 gene alleles are unlikely to be a major cause of obesity in women. A minor importance of ESR2 on severe obesity cannot be excluded. The inverse correlation

  15. Interdependent Adrenergic Receptor Regulation of Arc and ZIf268 mRNA in Cerebral Cortex

    PubMed Central

    Essali, Norah; Sanders, Jeff

    2015-01-01

    Norepinephrine is a neurotransmitter that signals by stimulating the α1, α2 and β adrenergic receptor (AR). We determined the role of these receptors in regulating the immediate early genes, Activity Regulated Cytoskeleton Associated Protein (Arc) and Zif268 in the rat cerebral cortex. RX821002, an α2 -AR antagonist, produced Arc and Zif268 elevations across cortical layers. Next we examined the effects of delivering RX821002 with an α1- -AR antagonist, prazosin, and a β -AR antagonist, propranolol. RX821002 given with a prazosin and propranolol cocktail, or with each of these antagonists individually, decreased Arc and Zif268 to saline-treated control levels in most cortical layers. Arc and Zif268 levels were also similar to saline-treated control levels when rats were given a prazosin and propranolol cocktail alone, or when each of these antagonists were delivered individually. Taken together, these data reveal that α2 –AR uniquely exert a tonic inibitory regulation of both Arc and Zif268 compared to α1 and β-AR. However, the ability of RX821002 to increase Arc and Zif268 is interdependent with α1 and β –AR signaling. PMID:26655475

  16. The cellular mRNA expression of GABA and glutamate receptors in spinal motor neurons of SOD1 mice.

    PubMed

    Petri, S; Schmalbach, S; Grosskreutz, J; Krampfl, K; Grothe, C; Dengler, R; Van Den Bosch, L; Robberecht, W; Bufler, J

    2005-11-15

    ALS is a fatal neurodegenerative disorder characterized by a selective loss of upper motor neurons in the motor cortex and lower motor neurons in the brain stem and spinal cord. About 10% of ALS cases are familial, in 10-20% of these, mutations in the gene coding for superoxide dismutase 1 (SOD1) can be detected. Overexpression of mutated SOD1 in mice created animal models which clinically resemble ALS. Abnormalities in glutamatergic and GABAergic neurotransmission presumably contribute to the selective motor neuron damage in ALS. By in situ hybridization histochemistry (ISH), we investigated the spinal mRNA expression of the GABAA and AMPA type glutamate receptor subunits at different disease stages on spinal cord sections of mutant SOD1 mice and control animals overexpressing wild-type SOD1 aged 40, 80, 120 days and at disease end-stage, i.e. around 140 days) (n=5, respectively). We detected a slight but statistically significant decrease of the AMPA receptor subunits GluR3 and GluR4 only in end stage disease animals.

  17. Ammonia upregulates kynurenine aminotransferase II mRNA expression in rat brain: a role for astrocytic NMDA receptors?

    PubMed

    Obara-Michlewska, Marta; Tuszyńska, Paulina; Albrecht, Jan

    2013-06-01

    Kynurenine aminotransferase II (KAT-II) is the astrocytic enzyme catalyzing the synthesis of kynurenic acid (KYNA), an endogenous inhibitor of the α7-nicotinic receptor and the NMDA receptor (NMDAr). A previous study demonstrated an increase of KYNA synthesis in the brain of rats with thioacetamide (TAA)-induced acute liver failure. Here we show that TAA administration increases KAT-II expression in the rat cerebral cortex and the effect is mimicked in cerebral cortical astrocytes in culture treated with high (5 mM) concentration of ammonia. KAT-II expression in control and TAA-treated rats was increased by NMDAr antagonist memantine, and the effects of TAA and memantine appeared additive. In astrocytes, the NMDAr antagonist MK-801 raised KAT-II expression as well, while NMDA added alone had no effect. Glutamate decreased KAT-II mRNA level, which was attenuated by MK-801. The results suggest that stimulation of KAT-II expression during hepatic encephalopathy may be associated with a partial inactivation of astrocytic NMDAr by ammonia.

  18. Familial glucocorticoid receptor haploinsufficiency by non-sense mediated mRNA decay, adrenal hyperplasia and apparent mineralocorticoid excess.

    PubMed

    Bouligand, Jérôme; Delemer, Brigitte; Hecart, Annie-Claude; Meduri, Geri; Viengchareun, Say; Amazit, Larbi; Trabado, Séverine; Fève, Bruno; Guiochon-Mantel, Anne; Young, Jacques; Lombès, Marc

    2010-10-22

    Primary glucocorticoid resistance (OMIM 138040) is a rare hereditary disease that causes a generalized partial insensitivity to glucocorticoid action, due to genetic alterations of the glucocorticoid receptor (GR). Investigation of adrenal incidentalomas led to the discovery of a family (eight affected individuals spanning three generations), prone to cortisol resistance, bilateral adrenal hyperplasia, arterial hypertension and hypokalemia. This phenotype exacerbated over time, cosegregates with the first heterozygous nonsense mutation p.R469[R,X] reported to date for the GR, replacing an arginine (CGA) by a stop (TGA) at amino-acid 469 in the second zinc finger of the DNA-binding domain of the receptor. In vitro, this mutation leads to a truncated 50-kDa GR lacking hormone and DNA binding capacity, devoid of hormone-dependent nuclear translocation and transactivation properties. In the proband's fibroblasts, we provided evidence for the lack of expression of the defective allele in vivo. The absence of detectable mutated GR mRNA was accompanied by a 50% reduction in wild type GR transcript and protein. This reduced GR expression leads to a significantly below-normal induction of glucocorticoid-induced target genes, FKBP5 in fibroblasts. We demonstrated that the molecular mechanisms of glucocorticoid signaling dysfunction involved GR haploinsufficiency due to the selective degradation of the mutated GR transcript through a nonsense-mediated mRNA Decay that was experimentally validated on emetine-treated propositus' fibroblasts. GR haploinsufficiency leads to hypertension due to illicit occupation of renal mineralocorticoid receptor by elevated cortisol rather than to increased mineralocorticoid production reported in primary glucocorticoid resistance. Indeed, apparent mineralocorticoid excess was demonstrated by a decrease in urinary tetrahydrocortisone-tetrahydrocortisol ratio in affected patients, revealing reduced glucocorticoid degradation by renal activity of

  19. Correlation of Adiponectin mRNA Abundance and Its Receptors with Quantitative Parameters of Sperm Motility in Rams

    PubMed Central

    Kadivar, Ali; Heidari Khoei, Heidar; Hassanpour, Hossein; Golestanfar, Arefe; Ghanaei, Hamid

    2016-01-01

    Background Adiponectin and its receptors (AdipoR1 and AdipoR2), known as adiponectin system, have some proven roles in the fat and glucose metabolisms. Several studies have shown that adiponectin can be considered as a candidate in linking metabolism to testicular function. In this regard, we evaluated the correlation between sperm mRNA abundance of adiponectin and its receptors, with sperm motility indices in the present study. Materials and Methods In this completely randomized design study, semen samples from 6 adult rams were fractionated on a two layer discontinuous percoll gradient into high and low motile sperm cells, then quantitative parameters of sperm motility were determined by computer-assisted sperm analyzer (CASA). The mRNA abundance levels of Adiponectin, AdipoR1 and AdipoR2 were measured quantitatively using real-time reverse transcriptase polymerase chain reaction (qRT-PCR) in the high and low motile groups. Results Firstly, we showed that adiponectin and its receptors (AdipoR1 and AdipoR2) were transcriptionally expressed in the ram sperm cells. Using Pfaff based method qRT- PCR, these levels of transcription were significantly higher in the high motile rather than low motile samples. This increase was 3.5, 3.6 and 2.5 fold change rate for Adiponectin, AdipoR1 and AdipoR2, respectively. Some of sperm motility indices [curvilinear velocity (VCL), straight-line velocity (VSL), average path velocity (VAP), linearity (LIN), wobble (WOB) and straightness (STR)] were also significantly correlated with Adiponectin and AdipoR1 relative expression. The correlation of AdipoR2 was also significant with the mentioned parameters, although this correlation was not comparable with adiponectin and AdipoR1. Conclusion This study revealed the novel association of adiponectin system with sperm motility. The results of our study suggested that adiponectin is one of the possible factors which can be evaluated and studied in male infertility disorders. PMID:27123210

  20. Complex Control of GABA(A) Receptor Subunit mRNA Expression: Variation, Covariation, and Genetic Regulation

    PubMed Central

    Mulligan, Megan K.; Wang, Xusheng; Adler, Adrienne L.; Mozhui, Khyobeni; Lu, Lu; Williams, Robert W.

    2012-01-01

    GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly variable and heritable among the large cohort of BXD strains derived from crosses of fully sequenced parents—C57BL/6J and DBA/2J. Genetic control of these subunits is complex and highly dependent on tissue and mRNA region. Remarkably, this high variation is generally not linked to phenotypic differences. The single exception is Gabrb3, a locus that is linked to anxiety. We identified upstream genetic loci that influence subunit expression, including three unlinked regions of chromosome 5 that modulate the expression of nine subunits in hippocampus, and that are also associated with multiple phenotypes. Candidate genes within these loci include, Naaa, Nos1, and Zkscan1. We confirmed a high level of coexpression for subunits comprising the major channel—Gabra1, Gabrb2, and Gabrg2—and identified conserved members of this expression network in mice and humans. Gucy1a3, Gucy1b3, and Lis1 are novel and conserved associates of multiple subunits that are involved in inhibitory signaling. Finally, proximal and distal regions of the 3′ UTRs of single subunits have remarkably independent expression patterns in both species. However, corresponding regions of different subunits often show congruent genetic control and coexpression (proximal-to-proximal or distal-to-distal), even in the absence of sequence homology. Our findings identify novel sources of variation that modulate subunit expression and highlight the extraordinary capacity of biological networks to buffer 4–100 fold

  1. Identification of androgen receptor protein and 5α-reductase mRNA in human ocular tissues

    PubMed Central

    Rocha, E.; Wickham, L; da Silveira, L. A; Krenzer, K.; Yu, F.; Toda, I.; Sullivan, B.; Sullivan, D.

    2000-01-01

    BACKGROUND/AIMS—Androgens have been reported to influence the structural organisation, functional activity, and/or pathological features of many ocular tissues. In addition, these hormones have been proposed as a topical therapy for such conditions as dry eye syndromes, corneal wound healing, and high intraocular pressure. To advance our understanding of androgen action in the eye, the purpose of the present study was twofold: firstly, to determine whether tissues of the anterior and posterior segments contain androgen receptor protein, which might make them susceptible to hormone effects following topical application; and, secondly, to examine whether these tissues contain the mRNA for types 1 and/or 2 5α-reductase, an enzyme that converts testosterone to the very potent metabolite, dihydrotestosterone.
METHODS—Human ocular tissues and cells were obtained and processed for histochemical and molecular biological procedures. Androgen receptor protein was identified by utilising specific immunoperoxidase techniques. The analysis of type 1 and type 2 5α-reductase mRNAs was performed by the use of RT-PCR, agarose gel electrophoresis, and DNA sequence analysis. All immunohistochemical evaluations and PCR amplifications included positive and negative controls.
RESULTS—These findings show that androgen receptor protein exists in the human lacrimal gland, meibomian gland, cornea, bulbar and forniceal conjunctivae, lens epithelial cells, and retinal pigment epithelial cells. In addition, our results demonstrate that the mRNAs for types 1 and 2 5α-reductase occur in the human lacrimal gland, meibomian gland, bulbar conjunctiva, cornea, and RPE cells.
CONCLUSION—These combined results indicate that multiple ocular tissues may be target sites for androgen action.

 PMID:10611104

  2. Influence of moonlight on mRNA expression patterns of melatonin receptor subtypes in the pineal organ of a tropical fish.

    PubMed

    Park, Yong-Ju; Park, Ji-Gweon; Takeuchi, Yuki; Hur, Sung-Pyo; Lee, Young-Don; Kim, Se-Jae; Takemura, Akihiro

    2014-04-01

    The goldlined spinefoot, Siganus guttatus, is a lunar-synchronized spawner, which repeatedly releases gametes around the first quarter moon during the reproductive season. A previous study reported that manipulating moonlight brightness at night disrupted synchronized spawning, suggesting involvement of this natural light source in lunar synchronization. The present study examined whether the mRNA expression pattern of melatonin receptor subtypes MT1 and Mel1c in the pineal organ of the goldlined spinefoot is related to moonlight. Real-time quantitative polymerase chain reaction analysis revealed that the abundance of MT1 and Mel1c mRNA at midnight increased during the new moon phase and decreased during the full moon phase. Exposing fish to moonlight intensity during the full moon period resulted in a decrease in Mel1c mRNA abundance within 1h. Fluctuations in the melatonin receptor genes according to changes in the moon phase agreed with those of melatonin levels in the blood. These results indicate that periodic changes in cues from the moon influence melatonin receptor mRNA expression levels. The melatonin-melatonin receptor system may play a role in predicting the moon phase through changes in night brightness.

  3. IMPACT OF GESTATIONAL COCAINE TREATMENT OR PRENATAL COCAINE EXPOSURE ON EARLY POSTPARTUM OXYTOCIN mRNA LEVELS AND RECEPTOR BINDING IN THE RAT

    PubMed Central

    McMurray, M.S.; Cox, E.T.; Jarrett, T.M.; Williams, S.K.; Walker, C.H.; Johns, J.M.

    2008-01-01

    Prior research reported decreased oxytocin levels in specific brain regions correlated with disruptions in maternal care following gestational cocaine treatment in rats. Similarly, prenatal exposure to cocaine impaired subsequent maternal behavior in adulthood, but behavioral alterations were not associated with decreases in oxytocin levels in the same brain regions as were found in their cocaine-treated rat dams. To determine if other aspects of the oxytocin system are disrupted by cocaine treatment or prenatal exposure to cocaine during critical time points associated with maternal care, oxytocin mRNA transcription and receptor binding were examined on postpartum day two in relevant brain regions following gestational treatment with, or prenatal exposure to, either cocaine or saline. We hypothesized that oxytocin mRNA levels and receptor binding would be differentially affected by cocaine in the early postpartum period of dams and their offspring. Our findings indicate that gestational cocaine treatment resulted in significant increases in oxytocin mRNA levels in only the paraventricular nucleus of cocaine-treated dams, with almost significant increases in both generations in the supraoptic nucleus, but no significant effects of cocaine on receptor binding in either generation of dams. These findings indicate that in addition to oxytocin levels, cocaine treatment or prenatal exposure primarily affects oxytocin mRNA synthesis, with little effect on receptor binding in specific brain regions associated with maternal behavior in the early postpartum period of the rat. PMID:18579201

  4. Differential regulation of 5-HT2A receptor mRNA expression following withdrawal from a chronic escalating dose regimen of D-amphetamine.

    PubMed

    Horner, Kristen A; Gilbert, Yamiece E; Noble, Erika S

    2011-05-16

    Several lines of evidence indicate that psychostimulant withdrawal can induce negative emotional symptoms, such as anhedonia and dysphoria, which may be due in part, to dysfunction of the serotonin (5-HT) system, including alterations in 5-HT receptors. For example, changes in 5-HT(2A) receptor function in prefrontal cortex (PFC) have been reported in association with psychostimulant withdrawal. However, it is not known if alterations in 5-HT(2A) receptor mRNA expression occur in the PFC or other limbic-associated areas following withdrawal from chronic psychostimulant treatment. The goal of the current study was to determine the effects of chronic, escalating doses of D-amphetamine (D-AMPH) and withdrawal on the expression of 5-HT(2A) receptors in the cortex, caudate putamen, NAc and hippocampus of rat brain. Animals were treated three times a day for 4 days with escalating doses of D-AMPH (1-10 mg/kg). Twenty-four hours after the final dose of D-AMPH, animals were sacrificed and the tissue processed for in situ hybridization histochemistry. Chronic, escalating doses of D-AMPH, followed by a 24 h withdrawal period, significantly decreased 5-HT(2A) receptor mRNA expression in the prefrontal, motor and cingulate cortices, while 5-HT(2A) receptor mRNA expression in the NAc, caudal CPu and hippocampus were significantly increased. These data indicate that region-specific changes in 5-HT(2A) receptor mRNA expression occur in limbic system and associated areas following chronic D-AMPH treatment, supporting the notion that alterations in the 5-HT system may contribute to the negative emotional aspects of psychostimulant withdrawal.

  5. The 3'-untranslated region length and AU-rich RNA location modulate RNA-protein interaction and translational control of β2-adrenergic receptor mRNA.

    PubMed

    Subramaniam, Kothandharaman; Kandasamy, Karthikeyan; Joseph, Kusumam; Spicer, Eleanor K; Tholanikunnel, Baby G

    2011-06-01

    Posttranscriptional controls play a major role in β(2)-adrenergic receptor (β(2)-AR) expression. We recently reported that β(2)-AR mRNA translation is suppressed by elements in its 3'-untranslated region (UTR). We also identified T-cell-restricted intracellular antigen-related protein (TIAR) and HuR as prominent AU-rich (ARE) RNA-binding proteins that associate with β(2)-AR mRNA 3'-UTR. In this study, we identified a poly(U) region at the distal end of the 3'-UTR as critical for TIAR binding to β(2)-AR mRNA and for translational suppression. Here, we also report that the locations of the poly(U) and ARE sequences within the 3'-UTR are important determinants that control the translation of β(2)-AR mRNA. Consistent with this finding, a 20-nucleotide ARE RNA from the proximal 3'-UTR that did not inhibit mRNA translation in its native position was able to suppress translation when re-located to the distal 3'-UTR of the receptor mRNA. Immunoprecipitation and polysome profile analysis demonstrated the importance of 3'-UTR length and the ARE RNA location within the 3'-UTR, as key determinants of RNA/protein interactions and translational control of β(2)-AR mRNA. Further, the importance of 3'-UTR length and ARE location in TIAR and HuR association with mRNA and translational suppression was demonstrated using a chimeric luciferase reporter gene.

  6. Effect of sodium on vasoconstriction and angiotensin II type 1 receptor mRNA expression in cold-induced hypertensive rats.

    PubMed

    Zhu, Zhiming; Zhu, Shanjun; Zhu, Jijun; van der Giet, Markus; Tepel, Martin

    2004-08-01

    Angiotensin II and sodium play an important pathogenetic role in several models of hypertension. Now, we investigated the effects of sodium on vasoconstriction and angiotensin II type 1 (AT1) and type 2 (AT2) receptor mRNA expression in aortic vessels from cold-induced hypertensive rats. Wistar rats on low sodium and high sodium diet were exposed to cold-stress for 8 weeks. The effects of angiotensin II infusion on mean arterial blood pressure were investigated in these rats. In addition, angiotensin II induced contraction was measured using aortic rings. Expression of AT1 receptor mRNA and AT2 receptor mRNA was assessed in aortic vessels by reverse transcription polymerase chain reaction. After infusion of angiotensin II mean arterial blood pressure in cold-induced hypertensive rats on high sodium diet was significantly higher compared to cold-induced hypertensive rats on low sodium diet (p < 0.05). Angiotensin II-induced contraction of aortic rings was significantly higher in cold-induced hypertensive rats on high sodium diet compared to cold-induced hypertensive rats on low sodium diet (2.39 +/- 0.03 g vs. 2.21 +/- 0.04 g, n = 12, p < 0.01). Angiotensin AT1 receptor mRNA was significantly higher in cold-induced hypertensive rats on high sodium diet compared to cold-induced hypertensive rats on low sodium diet (p < 0.05). It is concluded that in this nongenetic, nonsurgical animal model of cold-induced hypertension increased vasoconstriction and increased AT1 receptor mRNA expression in aortic vessels are dependent on sodium intake.

  7. Regional mRNA expression of GABAergic receptor subunits in brains of C57BL/6J and 129P3/J mice: Strain and heroin effects

    PubMed Central

    Brownstein, A.J.; Zhang, Y.; Ho, A.; Kreek, M.J.

    2014-01-01

    C57BL/6J and 129 substrains of mice are known to differ in their basal levels of anxiety and behavioral response to drugs of abuse. We have previously shown strain differences in heroin-induced conditioned place preference (CPP) between C57BL/6J (C57) and 129P3/J (129) mice, and in the regional expression of several receptor and peptide mRNAs. In this study, we examined the contribution of the GABAergic system in the cortex, nucleus accumbens (NAc), caudate putamen (CPu) and the region containing the substantia nigra and ventral tegmental area (SN/VTA) to heroin reward by measuring mRNA levels of 7 of the most commonly expressed GABA-A receptor subunits, and both GABA-B receptor subunits, in these same mice following saline (control) or heroin administration in a CPP design. Using real-time PCR, we studied the effects of strain and heroin administration on GABA-A α1, α2, α3, β2, and γ2 subunits, which typically constitute synaptic GABA-A receptors, GABA-A α4 and δ subunits, which typically constitute extrasynaptic GABA-A receptors, and GABA-B R1 and R2 subunits. In saline-treated animals, we found an experiment-wise significant strain difference in GABA-Aα2 mRNA expression in the SN/VTA. Point-wise significant strain differences were also observed in GABA-Aα2, GABA-Aα3, and GABA-Aα4 mRNA expression in the NAc, as well as GABA-BR2 mRNA expression in the NAc and CPu, and GABA-BR1 mRNA expression in the cortex. For all differences, 129 mice had higher mRNA expression compared to C57 animals, with the exception of GABA-BR1 mRNA in the cortex where we observed lower levels in 129 mice. Therefore, it may be possible that known behavioral differences between these two strains are, in part, due to differences in their GABAergic systems. While we did not find heroin dose-related changes in mRNA expression levels in C57 mice, we did observe dose-related differences in 129 mice. These results may relate to our earlier behavioral finding that 129 mice are

  8. Coupling of inositol phospholipid hydrolysis to peptide hormone receptors expressed from adrenal and pituitary mRNA in Xenopus laevis oocytes

    SciTech Connect

    McIntosh, R.P.; Catt, K.J.

    1987-12-01

    The expression of several neurotransmitter and drug receptors from injected exogenous mRNA in Xenopus laevis oocytes has been demonstrated by electrophysiological measurements of ion channel activation. The expression of specific receptors for peptide hormones in such a translation system would facilitate studies on the structure and regulation of cell-surface receptors as well as their coupling to membrane transduction mechanisms. The expression of receptors for calcium-mobilizing hormones in Xenopus oocytes was sought by analysis of phospholipid turnover in hormone-stimulated oocytes. For this purpose, Xenopus oocytes were injected with mRNA extracted from bovine adrenal and pituitary glands and incubated with myo-(/sup 3/H)inositol to label plasma-membrane phosphatidylinositol phosphates. The expression of functionally active receptors for angiotensin II (AII) and thyrotropin-releasing hormone (TRH) was demonstrated by the stimulation of (/sup 3/H)inositol phosphate production by AII and TRH in the mRNA-injected, (/sup 3/H)inositol-prelabeled oocytes. The ability of AII and TRH to act by way of newly synthesized receptors from mammalian endocrine tissues to stimulate phosphatidylinositol polyphosphate hydrolysis in Xenopus oocytes suggests a generalized and conserved mechanism of receptor coupling to the transduction mechanism responsible for activation of phospholipase C in the plasma membrane.

  9. Monoclonal Antibody Targeting of Fibroblast Growth Factor Receptor 1c Ameliorates Obesity and Glucose Intolerance via Central Mechanisms

    PubMed Central

    Lelliott, Christopher J.; Ahnmark, Andrea; Admyre, Therese; Ahlstedt, Ingela; Irving, Lorraine; Keyes, Feenagh; Patterson, Laurel; Mumphrey, Michael B.; Bjursell, Mikael; Gorman, Tracy; Bohlooly-Y, Mohammad; Buchanan, Andrew; Harrison, Paula; Vaughan, Tristan; Berthoud, Hans-Rudolf; Lindén, Daniel

    2014-01-01

    We have generated a novel monoclonal antibody targeting human FGFR1c (R1c mAb) that caused profound body weight and body fat loss in diet-induced obese mice due to decreased food intake (with energy expenditure unaltered), in turn improving glucose control. R1c mAb also caused weight loss in leptin-deficient ob/ob mice, leptin receptor-mutant db/db mice, and in mice lacking either the melanocortin 4 receptor or the melanin-concentrating hormone receptor 1. In addition, R1c mAb did not change hypothalamic mRNA expression levels of Agrp, Cart, Pomc, Npy, Crh, Mch, or Orexin, suggesting that R1c mAb could cause food intake inhibition and body weight loss via other mechanisms in the brain. Interestingly, peripherally administered R1c mAb accumulated in the median eminence, adjacent arcuate nucleus and in the circumventricular organs where it activated the early response gene c-Fos. As a plausible mechanism and coinciding with the initiation of food intake suppression, R1c mAb induced hypothalamic expression levels of the cytokines Monocyte chemoattractant protein 1 and 3 and ERK1/2 and p70 S6 kinase 1 activation. PMID:25427253

  10. Sex differences in prenatally programmed anxiety behaviour in rats: differential corticotropin-releasing hormone receptor mRNA expression in the amygdaloid complex.

    PubMed

    Brunton, Paula J; Donadio, Márcio V F; Russell, John A

    2011-11-01

    We recently reported that male, but not female, offspring born to mothers exposed to social stress during late gestation show heightened anxiety-type behaviour in adulthood. The amygdala organises anxious behaviour, which involves actions of corticotropin-releasing hormone (CRH). CRH gene expression and/or its release are increased in the amygdala in prenatally stressed (PNS) rats. CRH type 1 receptor (CRH-R1) mediates actions of CRH and urocortin I to promote anxiety-like behaviour, whereas the CRH type 2 receptor (CRH-R2) may mediate anxiolytic actions, through actions of urocortins 2 and 3. Here, using quantitative in situ hybridisation, we investigated whether altered CRH receptor mRNA expression in the amygdaloid nuclei may explain the sex differences in anxiety behaviour in adult male and female PNS rats. CRH-R1 mRNA expression was significantly greater in the central amygdala and basolateral amygdala (BLA) in male PNS rats compared with controls, with no change in the basomedial amygdala (BMA) or medial amygdala (MeA). In PNS females, CRH-R1 mRNA expression was greater than controls only in the MeA. Conversely, CRH-R2 mRNA expression was significantly lower in the BMA of male PNS rats compared with controls, but greater in female PNS rats, with no change in the BLA or MeA in either sex. The ratio of CRH-R1:CRH-R2 mRNA in the amygdaloid nuclei was generally increased in PNS males, but not in the PNS females. In conclusion, sex differences in anxiety-type behaviour in PNS rats may be explained by differential mRNA expression for CRH-R1 (pro-anxiogenic) and CRH-R2 (pro-anxiolytic) in the amygdaloid complex.

  11. The effects of neonatal paternal deprivation on pair bonding, NAcc dopamine receptor mRNA expression and serum corticosterone in mandarin voles.

    PubMed

    Yu, Peng; An, Shucheng; Tai, Fadao; Zhang, Xia; He, Fengqin; Wang, Jianli; An, Xiaolei; Wu, Ruiyong

    2012-05-01

    High levels of paternal care are important for the development of social behavior in monogamous rodents. However, the effects of paternal care on the formation of pair bonding and underlying neuroendocrine mechanisms, especially the involvements of dopamine system and corticosterone, are not well understood. We investigated effects of paternal deprivation on pair bonding in mandarin voles (Microtus mandarinus), a socially monogamous rodent. Paternal deprivation was found to inhibit the formation of pair bonding in females according to partner preference tests (PPT). Paternal deprivation also reduced body contact behavior and increased aggression in males and females in PPT. During social interaction tests (SIT), paternal deprivation was found to reduce investigative and aggressive behaviors but increase body contact and self-grooming in females, and reduce staring, aggression, body contact and self-grooming in males when interacting with the opposite sex. Paternal deprivation reduced the expression of dopamine 1-type receptor (D1R) mRNA and dopamine 2-type receptor (D2R) mRNA in the nucleus accumbens of female offspring in later life, but enhanced mRNA expression of these two dopamine receptors in males. After three days of cohabitation the expression of D1R mRNA and D2R mRNA was negatively correlated for voles reared by two parents, but positively correlated in paternally deprived animals. Paternal deprivation reduced serum corticosterone levels in females but had the opposite effect in males. Three days of cohabitation did not alter corticosterone levels of PD females, but reduced it in PC females. Our results provide substantial evidence that paternal deprivation inhibits the formation of pair bonding in female mandarin voles and alters social behavior later in life. These behavioral variations were possibly associated with sex-specific alterations in the expression of two types of dopamine receptors and serum corticosterone levels induced by paternal

  12. Seasonal changes in peptide, receptor and ion channel mRNA expression in the caudal neurosecretory system of the European flounder (Platichthys flesus).

    PubMed

    Lu, Weiqun; Worthington, Jonathan; Riccardi, Daniela; Balment, Richard J; McCrohan, Catherine R

    2007-01-01

    The caudal neurosecretory system (CNSS) of the euryhaline flounder Platichthys flesus has suggested roles in osmoregulatory, reproductive and nutritional adaptation, as fish migrate between seawater (winter) and brackish/freshwater (summer) environments. This study examined seasonal changes in mRNA expression profile of functionally important genes in the CNSS. cDNAs encoding neuropeptides, receptors and ion channels were cloned by reverse transcriptase polymerase chain reaction (RT-PCR) and screening of a flounder CNSS cDNA library. The expression profile of cloned genes was determined by real-time RT-PCR at 2-month intervals throughout the year in CNSS from seawater-adapted fish. Plasma cortisol (measured by radioimmunoassay) showed a peak in April, the time of spawning. Expression levels of mRNA for peptides urotensins I and II (UI, UII) and corticotropin releasing factor (CRF) all showed a seasonal cycle, with lowest expression in April and highest in August-October. The expression of CRF2(UI), UT(UII) and CRF1 receptors was not correlated with corresponding peptide expression. Receptors for potential neuromodulators of CNSS activity also displayed a seasonal mRNA expression profile. Glucocorticoid, 5-hydroxytryptamine, kappa-opioid and glutamate receptor expression peaked around April, suggesting that modulation of electrical activity of the neurosecretory Dahlgren cells is of particular importance at this time. Expression of mRNA for L-type Ca(2+) and Ca-activated K(+) channels was lower during the summer months. These channels underlie electrical bursting activity in Dahlgren cells. Ion channel mRNA expression was also lower in CNSS from flounder fully adapted to freshwater as opposed to seawater, consistent with previously reported observations of reduced bursting activity in Dahlgren cells from freshwater-adapted CNSS. These findings support the hypothesis that the CNSS is functionally reprogrammed to cope with changes in physiological challenge as fish

  13. Neural regulation of MRNA for the alpha-subunit of acetylcholine receptors: Role of neuromuscular transmission. (Reannouncement with new availability information)

    SciTech Connect

    Lipsky, N.G.; Drachman, D.B.; Pestronk, A.; Shih, P.J.

    1989-12-31

    Levels of mRNA for acetylcholine receptor (AChR) subunits are relatively low in innervated skeletal muscles. Following denervation they rise rapidly, leading to increased AChR synthesis. The mechanism by which motor nerves normally regulate these mRNA levels is not yet known. In order to determine the possible role of synaptic transmission in this process, the authors have compared the effect of blockade of cholinergic ACh transmission with that of surgical denervation. Blockade of quantal ACh transmission was produced by injection of type A botulinum toxin into the soleus muscles of rats.

  14. Prenatal ethanol increases ethanol intake throughout adolescence, alters ethanol-mediated aversive learning, and affects μ but not δ or κ opioid receptor mRNA expression.

    PubMed

    Fabio, María Carolina; Macchione, Ana Fabiola; Nizhnikov, Michael E; Pautassi, Ricardo Marcos

    2015-06-01

    Animal models of prenatal ethanol exposure (PEE) have indicated a facilitatory effect of PEE on adolescent ethanol intake, but few studies have assessed the effects of moderate PEE throughout adolescence. The mechanisms underlying this facilitatory effect remain largely unknown. In the present study, we analysed ethanol intake in male and female Wistar rats with or without PEE (2.0 g/kg, gestational days 17-20) from postnatal days 37 to 62. The results revealed greater ethanol consumption in PEE rats than in controls, which persisted throughout adolescence. By the end of testing, ethanol ingestion in PEE rats was nearly 6.0 g/kg. PEE was associated with insensitivity to ethanol-induced aversion. PEE and control rats were further analysed for levels of μ, δ and κ opioid receptor mRNA in the infralimbic cortex, nucleus accumbens shell, and ventral tegmental area. Similar levels of mRNA were observed across most areas and opioid receptors, but μ receptor mRNA in the ventral tegmental area was significantly increased by PEE. Unlike previous studies that assessed the effects of PEE on ethanol intake close to birth, or in only a few sessions during adolescence, the present study observed a facilitatory effect of PEE that lasted throughout adolescence. PEE was associated with insensitivity to the aversive effect of ethanol, and increased levels of μ opioid receptor transcripts. PEE is a prominent vulnerability factor that probably favors the engagement of adolescents in risky trajectories of ethanol use.

  15. Developmental changes in the hypothalamic mRNA levels of prepro-orexin and orexin receptors and their sensitivity to fasting in male and female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-11-01

    Orexin, which is also called as hypocretin (Hcrt), a product of the prepro-orexin (pp-orexin//Hcrt) gene, affects various physiological and behavioral functions, such as the sleep-wake cycle and appetite. The developmental changes in the hypothalamic mRNA levels of pp-prexin and the orexin receptors OX1R and OX2R and their sensitivity to fasting were evaluated in both male and female rats. During development, hypothalamic pp-orexin/Hcrt mRNA expression increased in both male and female rats, whereas hypothalamic OX1R mRNA expression decreased in both sexes. In addition, hypothalamic OX2R mRNA expression increased in male rats, but did not change in female rats. Fasting did not affect hypothalamic pp-orexin/Hcrt mRNA expression in either sex. Hypothalamic OX1R mRNA expression was increased by fasting in the prepubertal period (postnatal days 20 and 30) in female rats, but was not affected by fasting in males. In male rats, hypothalamic OX2R mRNA expression was decreased by fasting during the neonatal period (postnatal day 10), but not the prepubertal period (postnatal days 20 and 30). In females, hypothalamic OX2R mRNA expression was also decreased by fasting; however, the fasting-induced downregulation of hypothalamic OX2R expression persisted until postnatal day 20. These results indicate that the developmental patterns of components of the orexin system and their sensitivity to fasting during the neonatal and prepubertal periods only differ slightly between the sexes. These differences might be involved in the development of some physiological and behavioral functions.

  16. Molecular cloning, characterization, tissue distribution and mRNA expression changes during the hibernation and reproductive periods of estrogen receptor alpha (ESR1) in Chinese alligator, Alligator sinensis.

    PubMed

    Zhang, Ruidong; Hu, Yuehong; Wang, Huan; Yan, Peng; Zhou, Yongkang; Wu, Rong; Wu, Xiaobing

    2016-10-01

    Chinese alligator, Alligator sinensis, is a critically endangered reptile species unique to China. Little is known about the mechanism of growth- and reproduction-related hormones gene expression in Chinese alligator. Estrogens play important roles in regulating multiple reproduction- and non-reproduction-related functions by binding to their corresponding receptors. Here, the full-length cDNA of estrogen receptor alpha (ERα/ESR1) was cloned and sequenced from Chinese alligator for the first time, which comprises 1764bp nucleotides and encodes a predicted protein of 587 amino acids. Phylogenetic analysis of ESR1 showed that crocodilians and turtles were the sister-group of birds. The results of real-time quantitative PCR indicated that the ESR1 mRNA was widely expressed in the brain and peripheral tissues. In the brain and pituitary gland, ESR1 was most highly transcribed in the cerebellum. But in other peripheral tissues, ESR1 mRNA expression level was the highest in the ovary. Compared with hibernation period, ESR1 mRNA expression levels were increased significantly in the reproductive period (P<0.05) in cerebellum, pituitary gland, liver, spleen, lung, kidney and ovary, while no significant change in other examined tissues (P>0.05). The ESR1 mRNA expression levels changes during the two periods of different tissues suggested that ESR1 might play an important role in mediation of estrogenic multiple reproductive effects in Chinese alligator. Furthermore, it was the first time to quantify ESR1 mRNA level in the brain of crocodilians, and the distribution and expression of ESR1 mRNA in the midbrain, cerebellum and medulla oblongata was also reported for the first time in reptiles.

  17. Human Epidermal Growth Factor Receptor-3 mRNA Expression as a Prognostic Marker for Invasive Duct Carcinoma not Otherwise Specified

    PubMed Central

    Hammoda, Ghada Ezat; El-Hefnawy, Sally Mohammed; Abdallah, Rania Abdallah

    2017-01-01

    Introduction Breast cancer is the most common cancer in women and the Erythroblastosis Oncogene B(ErbB) receptor family holds crucial role in its pathogenesis. Human Epidermal Growth Factor Receptor 3 (HER-3) gene over expression in breast tissue has been associated with aggressive clinical behaviour and bad prognosis. Aim To evaluate HER-3 mRNA expression level as a prognostic marker for breast cancer and to correlate its level with other established prognostic parameters. Materials and Methods This study was carried out on specimens of 100 cases that were divided into 40 patients presented with fibroadenoma and 60 patients presented with Invasive Ductal Carcinoma (IDC) not otherwise specified and underwent modified radical mastectomy. All specimens were investigated for HER-2/neu, ER and PR expression by Immunohistochemistry (IHC) and quantitative assay of HER-3 mRNA expression using real time PCR technique. Results There was a significant high HER3 mRNA level in carcinoma cases compared to fibroadenoma. In malignant cases, HER3 mRNA level was significantly associated with advanced T stage, advanced N stage, number of positive lymph nodes, large tumour size and cases associated with an adjacent in situ component. Moreover, HER-3 mRNA level was of highest values in Her-2/neu positive group followed by triple negative cases with the lowest level in luminal group (p<0.05). Conclusion HER-3 gene is upregulated in IDC especially those carrying poor prognostic features. HER-3 mRNA level may identify a subset of patients with a poor prognosis, and who could undergo further evaluation for the efficacy of HER3 targeted anticancer therapy. PMID:28384967

  18. Changes in GABA(B) receptor mRNA expression in the rodent basal ganglia and thalamus following lesion of the nigrostriatal pathway.

    PubMed

    Johnston, T; Duty, S

    2003-01-01

    Loss of striatal dopaminergic innervation in Parkinson's disease (PD) is accompanied by widespread alterations in GABAergic activity within the basal ganglia and thalamus. Accompanying changes in GABA(B) receptor binding have been noted in some basal ganglia regions in parkinsonian primates, suggesting that plasticity of this receptor may also occur in PD. However, the molecular mechanisms underlying the changes in receptor binding and the manner and extent to which different GABA(B) receptor mRNA subunits and splice-variants are affected remain unknown. This study used in situ hybridisation to examine the full profile of changes in expression of the known rat GABA(B) receptor genes and gene variants in the basal ganglia and thalamus of rats, brought about by degeneration of the nigrostriatal tract. All of the GABA(B) mRNA species examined showed unique expression patterns throughout the basal ganglia and thalamus. In addition, all exhibited a marked loss of expression (between 46 and 80%) in the substantia nigra pars compacta of animals bearing a complete 6-hydroxydopamine-induced lesion of the nigrostriatal tract, confirming the presence of these variants in dopaminergic neurones in this region. Further analysis of autoradioagrams revealed additional changes only in GABA(B(1a)) mRNA in discrete anatomical regions. Expression of the GABA(B(1a)) variant was significantly increased in the substantia nigra pars reticulata (33+/-2%), entopeduncular nucleus (26+/-1%) and the subthalamic nucleus (16+/-1%). Since these regions all receive reduced GABAergic innervation following nigrostriatal tract lesioning, it is possible that the increased expression occurs as a compensatory measure. In conclusion, these data demonstrate that GABA(B) receptor genes exhibit regional- and subunit/variant-specific plasticity at the molecular level under parkinsonian conditions.

  19. Cannabinoid receptor CB1 mRNA is highly expressed in the rat ciliary body: implications for the antiglaucoma properties of marihuana.

    PubMed

    Porcella, A; Casellas, P; Gessa, G L; Pani, L

    1998-07-15

    We used RT-PCR to measure relative differences in cannabinoid receptor (CB) mRNAs in the rat eye, comparing CB1 or CB2 transcripts to that of the normalizing reference gene beta2 microglobulin (beta2m). Significantly higher levels of CB1 mRNA levels were found in the ciliary body (0.84+/-0.05% of beta2m) than in the iris, (0.34+/-0.04% of beta2m), retina (0.07+/-0.005% of beta2m) and choroid (0.06+/-0.005% of beta2m). CB2 mRNA was undetectable. This expression pattern supports a specific role for the CB1 receptor in controlling intraocular pressure, helping to explain the antiglaucoma property of cannabinoids.

  20. AU-rich elements in the mRNA 3'-untranslated region of the rat receptor for advanced glycation end products and their relevance to mRNA stability.

    PubMed

    Caballero, José Juan; Girón, María Dolores; Vargas, Alberto Manuel; Sevillano, Natalia; Suárez, María Dolores; Salto, Rafael

    2004-06-18

    Several putative polyadenylation sequences and an adenylate plus timidylate rich element (ARE) are present at the 3' end of the rat advanced glycation end products receptor (RAGE) gene. Two transcripts are generated by the use of alternative polyadenylation sequences, one containing the ARE sequence in its 3'-untranslated region (3'-UTR). Transfections of CHO-k1 or NRK cells with constructs expressing the 3'-UTRs of the transcripts fused to a green fluorescence protein mRNA show that the ARE sequence has a negative effect on protein expression correlating with a decrease in the amount of mRNA, as shown in CHO-k1 transfected cells. When transfected cells were incubated in the presence of Actinomycin D the amount of fluorescence decreased in cells transfected with the ARE sequence, indicating that this sequence induces lower mRNA stability. Thus, alternative polyadenylation signals and an ARE sequence provide a novel mechanism for the regulation of the rat RAGE gene expression.

  1. The effect of GABA stimulation on GABAA receptor subunit protein and mRNA expression in rat cultured cerebellar granule cells.

    PubMed Central

    Platt, K. P.; Zwartjes, R. E.; Bristow, D. R.

    1996-01-01

    1. After 8 days in vitro, rat cerebellar granule cells were exposed to 1 mM gamma-aminobutyric acid (GABA) for periods of 1, 2, 4, 6, 8 and 10 days. The effect of the GABA exposure on GABAA receptor alpha 1, alpha 6 and beta 2,3 subunit protein expression and alpha 1 and alpha 6 subunit steady-state mRNA levels, was examined using Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. 2. GABA exposure for 2 days decreased alpha 1 (35 +/- 10%, mean +/- s.e.mean), beta 2,3 (21 +/- 9%) and alpha 6 (28 +/- 10%) subunit protein expression compared to control levels. The GABA-mediated reduction in alpha 1 subunit expression after 2 days treatment was abolished in the presence of the GABAA receptor antagonist, Ru 5135 (10 microM). 3. GABA exposure for 8 days increased alpha 1 (26 +/- 10%, mean +/- s.e.mean) and beta 2,3 (56 +/- 23%) subunit protein expression over control levels, whereas alpha 6 subunit protein expression remained below control levels (by 38 +/- 10%). However, after 10 days GABA exposure, alpha 6 subunit protein expression was also increased over control levels by 65 +/- 29% (mean +/- s.e.mean). 4. GABA exposure did not change the alpha 1 or alpha 6 subunit steady-state mRNA levels over and 8 day period, nor did it alter the expression of cyclophilin mRNA over 1-8 days. 5. These results suggest that chronic GABA exposure of rat cerebellar granule cells has a bi-phasic effect on GABAA receptor subunit expression that is independent of changes to mRNA levels. Therefore, the regulation of the GABAA receptor expression by chronic agonist treatment appears to involve post-transcriptional and/or post-translational processes. Images Figure 1 Figure 3 Figure 4 PMID:8968548

  2. Region-specific expression and hormonal regulation of the first exon variants of rat prolactin receptor mRNA in rat brain and anterior pituitary gland.

    PubMed

    Nogami, H; Hoshino, R; Ogasawara, K; Miyamoto, S; Hisano, S

    2007-08-01

    Recent studies have revealed the occurrence of five first exon variants of the rat prolactin receptor mRNA, suggesting that multiple promoters direct prolactin receptor transcription in response to different regulatory factors. In the present study, regional expression of these first exon variants, as well as two prolactin receptor subtypes generated by alternative splicing, was examined in the brains and anterior pituitary glands of female rats. Expression of the long-form was detected in the choroid plexus, hypothalamus, hippocampus, cerebral cortex and anterior pituitary gland, whereas the short form was detected only in the choroid plexus. E1-3 mRNA, a first exon variant, was detected in the choroid plexus, hypothalamus, and anterior pituitary gland, whereas E1-4 was detected only in the choroid plexus. Other variants were not detectable by the polymerase chain reaction protocol employed in this study. Ovariectomy increased the short form in the choroid plexus and the E1-3 expression in the choroid plexus and pituitary gland, but changes in the long-form and E1-4 expression were minimal. Replacement of oestrogens and prolactin suggest that oestrogens down-regulate E1-3 expression in the choroid plexus and pituitary gland, and that the negative effect of oestrogen is mediated by prolactin in the pituitary gland. The present results revealed the region-specific promoter usage in prolactin receptor mRNA transcription, as well as the involvement of oestrogens in the regulation of E1-3 mRNA expression in the brain and pituitary gland.

  3. Noise Stress-Induced Changes in mRNA Levels of Corticotropin-Releasing Hormone Family Molecules and Glucocorticoid Receptors in the Rat Brain.

    PubMed

    Eraslan, E; Akyazi, İ; Ergül-Ekiz, E; Matur, E

    2015-01-01

    Noise is a widespread stress resource that may lead to detrimental effects on the health. However, the molecular basis of the stress response caused by noise remains elusive. We have studied the effects of acute and chronic noise stress on stress-related molecules in the hypothalamus and hippocampus and also corticosterone responses. Sprague Dawley rats were randomized into control, acute and chronic noise stress groups. While the chronic noise stress group animals were exposed to 100 dB white noise for 4 h/a day during 30 days, the acute noise stress group of animals was exposed to the same level of stress once for 4 h. The expression profiles of corticotropin releasing hormone (CRH), CRH1, CRH2 receptors and glucocorticoid receptor (GR) mRNAs were analysed by RT-PCR. Chronic noise stress upregulated CRH mRNA levels in the hypothalamus. Both acute and chronic noise increased CRH-R1 mRNA in the hypothalamus but decreased it in the hippocampus. GR mRNA levels were decreased by chronic noise stress in the hippocampus. The present results suggest that while corticosterone responses have habituated to continuous noise stress, the involvement of CRH family molecules and glucocorticoid receptors in the noise stress responses are different and structure specific.

  4. Distribution of vesicular glutamate transporter 2 and glutamate receptor 1 mRNA in the central nervous system of the pigeon (Columba livia).

    PubMed

    Islam, Mohammad Rafiqul; Atoji, Yasuro

    2008-12-10

    Glutamate acts as the excitatory neurotransmitter in the central nervous system (CNS) and is mediated largely by the vesicular glutamate transporters (VGLUT1-3) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) types of glutamate receptors (GluR1-4) in mammals. In the present study, we determined the cDNA sequences of pigeon VGLUT2 and GluR1 and mapped the distribution of their mRNA in the pigeon CNS. The predicted amino acids of pigeon VGLUT2 and GluR1 showed a 93% identity to human VGLUT2 and GluR1 both. In situ hybridization autoradiograms showed VGLUT2 mRNA expression exclusively in the pallium of the telencephalon, and no expression in the subpallium. Within the diencephalon, VGLUT2 mRNA was more abundant in the thalamus than in the hypothalamus. Rich VGLUT2 mRNA expression was found in the optic tectum, nucleus mesencephalicus lateralis, pars dorsalis, nucleus isthmi, pars parvocellularis, isthmo-optic nucleus, pontine nuclei, and granular layer of the cerebellum. Moderate expression was noted in the cerebellar nuclei, vestibular nuclei, cochlear nuclei, inferior olivary nucleus, and gray matter of the spinal cord. GluR1 mRNA was expressed abundantly in the pallium and subpallium of the telencephalon, but it was poor in the diencephalon, midbrain, medulla, cerebellar cortex, and gray matter of the spinal cord. These results suggest that the cDNA sequences of VGLUT2 and GluR1 in the pigeon are comparable to those of VGLUT2 and GluR1 in mammals, respectively. The distribution of pigeon GluR1 mRNA resembles that of mammals, but the distribution of VGLUT2 mRNA resembles that of both VGLUT1 and VGLUT2 in mammals.

  5. Association of time-dependent changes in mu opioid receptor mRNA, but not BDNF, TrkB, or MeCP2 mRNA and protein expression in the rat nucleus accumbens with incubation of heroin craving

    PubMed Central

    Theberge, Florence R. M.; Pickens, Charles L.; Goldart, Evan; Fanous, Sanya; Hope, Bruce T.; Liu, Qing-Rong

    2013-01-01

    Rationale and objectives Responding to heroin cues progressively increases after cessation of heroin self-administration (incubation of heroin craving). We investigated whether this incubation is associated with time-dependent changes in brain-derived neurotrophic factor (BDNF) and methyl-CpG binding protein 2 (MeCP2) signaling and mu opioid receptor (MOR) expression in nucleus accumbens (NAc), dorsal striatum (DS), and medial pre-frontal cortex (mPFC). We also investigated the effect of the preferential MOR antagonist naloxone on cue-induced heroin seeking during abstinence. Methods We trained rats to self-administer heroin or saline for 9–10 days and then dissected the NAc, DS, and mPFC at different abstinence days and measured mRNA and protein levels of BDNF, TrkB, and MeCP2, as well as MOR mRNA (Oprm1). In other groups, we assessed cue-induced heroin seeking in extinction tests after 1, 11, and 30 abstinence days, and naloxone’s (0–1.0 mg/kg) effect on extinction responding after 1 and 15 days. Results Cue-induced heroin seeking progressively increased or incubated during abstinence. This incubation was not associated with changes in BDNF, TrkB, or MeCP2 mRNA or protein levels in NAc, DS, or mPFC; additionally, no molecular changes were observed after extinction tests on day 11. In NAc, but not DS or mPFC, MOR mRNA decreased on abstinence day 1 and returned to basal levels over time. Naloxone significantly decreased cue-induced heroin seeking after 15 abstinence days but not 1 day. Conclusions Results suggest a role of MOR in incubation of heroin craving. As previous studies implicated NAc BDNF in incubation of cocaine craving, our data suggest that different mechanisms contribute to incubation of heroin versus cocaine craving. PMID:22790874

  6. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus).

    PubMed

    Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A

    2014-04-01

    The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts.

  7. Individual vulnerability to escalated aggressive behavior by a low dose of alcohol: decreased serotonin receptor mRNA in the prefrontal cortex of male mice.

    PubMed

    Chiavegatto, S; Quadros, I M H; Ambar, G; Miczek, K A

    2010-02-01

    Low to moderate doses of alcohol consumption induce heightened aggressive behavior in some, but not all individuals. Individual vulnerability for this nonadaptive behavior may be determined by an interaction of genetic and environmental factors with the sensitivity of alcohol's effects on brain and behavior. We used a previously established protocol for alcohol oral self-administration and characterized alcohol-heightened aggressive (AHA) mice as compared with alcohol non-heightened (ANA) counterparts. A week later, we quantified mRNA steady state levels of several candidate genes in the serotonin [5-hydroxytryptamine (5-HT)] system in different brain areas. We report a regionally selective and significant reduction of all 5-HT receptor subtype transcripts, except for 5-HT(3), in the prefrontal cortex of AHA mice. Comparable gene expression profile was previously observed in aggressive mice induced by social isolation or by an anabolic androgenic steroid. Additional change in the 5-HT(1B) receptor transcripts was seen in the amygdala and hypothalamus of AHA mice. In both these areas, 5-HT(1B) mRNA was elevated when compared with ANA mice. In the hypothalamus, AHA mice also showed increased transcripts for 5-HT(2A) receptor. In the midbrain, 5-HT synthetic enzyme, 5-HT transporter and 5-HT receptors mRNA levels were similar between groups. Our results emphasize a role for postsynaptic over presynaptic 5-HT receptors in mice which showed escalated aggression after the consumption of a moderate dose of alcohol. This gene expression profile of 5-HT neurotransmission components in the brain of mice may suggest a vulnerability trait for alcohol-heightened aggression.

  8. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator.

    PubMed

    Moore, Brandon C; Forouhar, Sara; Kohno, Satomi; Botteri, Nicole L; Hamlin, Heather J; Guillette, Louis J

    2012-01-15

    Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here, we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses.

  9. Cellular protein and mRNA expression of β1 nicotinic acetylcholine receptor (nAChR) subunit in brain, skeletal muscle and placenta.

    PubMed

    Aishah, Atqiya; Hinton, Tina; Machaalani, Rita

    2017-01-30

    The β1 nicotinic acetylcholine receptor (nAChR) subunit is a muscle type subunit of this family and as such, is found predominantly in muscle. Recent reports document its expression in other tissues and cell lines including adrenal glands, carcinomas, lung and brain. However, the majority of studies were of tissue lysates, thus the cellular distribution was not determined. This study aimed to determine the cellular distribution of the β1 nAChR subunit in the brain, at both the mRNA and protein levels, using non-radioactive in situ hybridization (ISH) and immunohistochemistry (IHC), respectively, and to compare it to two muscle tissue types, skeletal and placenta. Tissue was formalin fixed and paraffin embedded (all tissue types) and frozen (placenta) from humans. Additional control tissue from the piglet and mouse brain were also studied, as was mRNA for the α3 nAChR and N-methyl-d-aspartate receptor 1 (NR1) subunit. We found no β1 nAChR subunit mRNA expression in the human and piglet brain despite strong protein expression. Some signal was seen in the mouse brain but considered inconclusive given the probes designed were not of 100% homology to the mouse. In the skeletal muscle and placenta tissues, β1 nAChR subunit mRNA expression was prominent and mirrored protein expression. No α3 nAChR or NR1 mRNA was seen in the skeletal muscle, as expected, although both subunit mRNAs were present in the placenta. This study concludes that further experiments are required to conclusively state that the β1 nAChR subunit is expressed in the human, piglet and mouse brain.

  10. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator

    PubMed Central

    Moore, Brandon C.; Forouhar, Sara; Kohno, Satomi; Botteri, Nicole L.; Hamlin, Heather J.; Guillette, Louis J.

    2011-01-01

    Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses. PMID:22154572

  11. GH, IGF-I and GH receptors mRNA expression in response to growth impairment following a food deprivation period in individually housed cichlid fish Cichlasoma dimerus.

    PubMed

    Delgadin, Tomás Horacio; Pérez Sirkin, Daniela Irina; Di Yorio, María Paula; Arranz, Silvia Eda; Vissio, Paula Gabriela

    2015-02-01

    Cichlasoma dimerus is a social cichlid fish capable of growing at high rates under laboratory conditions, but knowledge on somatic growth regulation is still unclear. Growth hormone (GH)/insulin-like growth factor I (IGF-I) axis is the key regulator of somatic growth in vertebrates. Two types of growth hormone receptors have been described in teleost fish, named GH receptor type 1 (GHR1) and type 2 (GHR2). In addition, isoforms of these receptors lacking part of the intracellular region have been described. The aim of this study was to evaluate the somatic growth, liver histology and changes in the GH/IGF-I axis after 4 weeks of food deprivation in C. dimerus. Four-week fasted fish showed reductions in specific growth rates in body weight (p < 0.001) and standard length (p < 0.001). Additionally, the hepatosomatic index (p < 0.001) and hepatocyte area (p < 0.001) decreased in fasted fish, while no changes in glucose levels were detected in plasma. The starvation protocol failed to induce changes in GH mRNA levels in the pituitary and IGF-I mRNA levels in liver. In contrast, IGF-I mRNA levels in muscle decreased in fasted fish (p = 0.002). On the other hand, GHR2 (detected with primer sets designed over the extracellular and intracellular region) was upregulated by starvation both in liver and muscle (p < 0.05), while GHR1 remained unchanged. These results show that a fasting period reduced somatic growth both in length and body weight concomitantly with alterations on liver and muscle GHR2 and muscle IGF-I mRNA expression.

  12. 17β-Estradiol Regulation of the mRNA Expression of T-type Calcium Channel subunits: Role of Estrogen Receptor α and Estrogen Receptor β

    PubMed Central

    Bosch, Martha A.; Hou, Jingwen; Fang, Yuan; Kelly, Martin J.; Rønnekleiv., Oline K.

    2009-01-01

    Low voltage-activated (T-type) calcium channels are responsible for burst firing and transmitter release in neurons and are important for exocytosis and hormone secretion in pituitary cells. T-type channels contain an α1 subunit, of which there are three subtypes, Cav3.1, 3.2 and 3.3, and each subtype has distinct kinetic characteristics. Although 17β-estradiol modulates T-type calcium channel expression and function, little is known about the molecular mechanisms involved. Presently, we used real-time PCR quantification of RNA extracted from hypothalamic nuclei and pituitary in vehicle and E2-treated C57BL/6 mice to elucidate E2-mediated regulation of Cav3.1, 3.2 and 3.3 subunits. The three subunits were expressed in both the hypothalamus and the pituitary. E2 treatment increased the mRNA expression of Cav3.1 and 3.2, but not Cav3.3, in the medial preoptic area and the arcuate nucleus. In the pituitary, Cav3.1 was increased with E2-treatment and Cav3.2 and 3.3 were decreased. In order to examine whether the classical estrogen receptors (ERs) were involved in the regulation, we used ERα- and ERβ-deficient C57BL/6 mice and explored the effects of E2 on T-type channel subtypes. Indeed, we found that the E2-induced increase in Cav3.1 in the hypothalamus was dependent on ERα, whereas the E2 effect on Cav3.2 was dependent on both ERα and ERβ. However, the E2-induced effects in the pituitary were dependent on only the expression of ERα. The robust E2-regulation of the T-type calcium channels could be an important mechanism by which E2 increases the excitability of hypothalamic neurons and modulates pituitary secretion. PMID:19003958

  13. Expression of progesterone receptor membrane component (PGRMC) 1 and 2, serpine mRNA binding protein 1 (SERBP1) and nuclear progesterone receptor (PGR) in the bovine endometrium during the estrous cycle and the first trimester of pregnancy.

    PubMed

    Kowalik, Magdalena K; Slonina, Dominika; Rekawiecki, Robert; Kotwica, Jan

    2013-03-01

    Progesterone (P4) is involved in the regulation of essential reproductive functions affecting the target cells through both nuclear progesterone receptors (PGRs) and membrane progesterone receptors. The aim of this study was to determine the mRNA and protein expression for PGRMC1, PGRMC2, SERBP1 and PGR within the bovine endometrium during the estrous cycle and the first trimester of pregnancy. There were no changes in PGRMC1 and PGRMC2 mRNA and protein expression during the estrous cycle, however, mRNA levels of PGRMC1 and PGRMC2 were increased (P<0.001) in pregnant animals. SERBP1 mRNA expression was increased (P<0.05), while the level of this protein was decreased (P<0.05) on days 11-16 of the estrous cycle. The expression of PGR mRNA was higher (P<0.01) on days 17-20 compared to days 6-10 and 11-16 of the estrous cycle and pregnancy. PGR-A and PGR-B protein levels were elevated on days 1-5 and 17-20 of the estrous cycle as compared to other stages of the cycle and during pregnancy. In conclusion, our results indicate that P4 may influence endometrial cells through both genomic and nongenomic way. This mechanism may contribute to the regulation of the estrous cycle and provide protection during pregnancy.

  14. Toll-like receptor 4 and CD14 mRNA expression are lower in resistive exercise-trained elderly women.

    PubMed

    Flynn, Michael G; McFarlin, Brian K; Phillips, Melody D; Stewart, Laura K; Timmerman, Kyle L

    2003-11-01

    The purpose of this study was to examine the influence of resistive exercise training and hormone status on mRNA expression of toll-like receptor 4 (TLR4), CD14, IL-1beta, IL-6, and TNF-alpha. Resistive exercise-trained women on "traditional" hormone replacements [hormone replacement therapy (HRT), n = 9], not taking hormones (NHR, n = 6), or taking medications known to influence bone (MIB, n = 7) were compared with untrained subjects not taking supplemental hormones (Con, n = 6). Blood was taken from trained subjects before, immediately after, and 2 h after resistive exercise (same time points for resting Con). TLR4 mRNA expression (RT-PCR) was not different among groups or across time but was significantly (P = 0.044) lower (1.9-fold) when trained groups were collapsed and compared with Con. There was also a significant group effect (P < 0.0001) for TLR4 mRNA when expressed per monocyte. CD14 expression was significantly (P = 0.006) lower (2.3-fold) for training groups collapsed and compared with Con. CD14 mRNA, expressed per monocyte, was significantly lower immediately after resistive exercise for NHR, HRT, and MIB compared with Con. There were few significant effects detected for IL-6, IL-1beta, and TNF-alpha mRNA, but there was a significant group effect (P < 0.0001) for TNF-alpha mRNA expressed per monocyte (Con > HRT, NHR, MIB). These findings suggest that there may be a resistive exercise training-induced reduction in TLR4/CD14 expression in older women. Further research is needed to determine whether lower TLR4/CD14 could explain the lower LPS-stimulated inflammatory cytokines observed in these women.

  15. Distribution of androgen and estrogen receptor mRNA in the brain and reproductive tissues of the leopard gecko, Eublepharis macularius.

    PubMed

    Rhen, T; Crews, D

    2001-09-03

    Incubation temperature during embryonic development determines gonadal sex in the leopard gecko, Eublepharis macularius. In addition, both incubation temperature and gonadal sex influence behavioral responses to androgen and estrogen treatments in adulthood. Although these findings suggest that temperature and sex steroids act upon a common neural substrate to influence behavior, it is unclear where temperature and hormone effects are integrated. To begin to address this question, we identified areas of the leopard gecko brain that express androgen receptor (AR) and estrogen receptor (ER) mRNA. We gonadectomized adult female and male geckos from an incubation temperature that produces a female-biased sex ratio and another temperature that produces a male-biased sex ratio. Females and males from both temperatures were then treated with equivalent levels of various sex steroids. Region-specific patterns of AR mRNA expression and ER mRNA expression were observed upon hybridization of radiolabeled (35S) cRNA probes to thin sections of reproductive tissues (male hemipenes and female oviduct) and brain. Labeling for AR mRNA was very intense in the epithelium, but not within the body, of the male hemipenes. In contrast, expression of ER mRNA was prominent in most of the oviduct but not in the luminal epithelium. Within the brain, labeling for AR mRNA was conspicuous in the anterior olfactory nucleus, the lateral septum, the medial preoptic area, the periventricular preoptic area, the external nucleus of the amygdala, the anterior hypothalamus, the ventromedial hypothalamus, the premammillary nucleus, and the caudal portion of the periventricular nucleus of the hypothalamus. Expression of ER mRNA was sparse in the septum and was prominent in the ventromedial hypothalamus, the caudal portion of the periventricular nucleus of the hypothalamus, and a group of cells near the torus semicircularis. Many of these brain regions have been implicated in the regulation of hormone

  16. Expression of androgen receptor mRNA in the brain of Gekko gecko: implications for understanding the role of androgens in controlling auditory and vocal processes.

    PubMed

    Tang, Y Z; Piao, Y S; Zhuang, L Z; Wang, Z W

    2001-09-17

    The neuroanatomical distribution of androgen receptor (AR) mRNA-containing cells in the brain of a vocal lizard, Gekko gecko, was mapped using in situ hybridization. Particular attention was given to auditory and vocal nuclei. Within the auditory system, the cochlear nuclei, the central nucleus of the torus semicircularis, the nucleus medialis, and the medial region of the dorsal ventricular ridge contained moderate numbers of labeled neurons. Neurons labeled with the AR probe were located in many nuclei related to vocalization. Within the hindbrain, the mesencephalic nucleus of the trigeminal nerve, the vagal part of the nucleus ambiguus, and the dosal motor nucleus of the vagus nerve contained many neurons that exhibited strong expression of AR mRNA. Neurons located in the peripheral nucleus of the torus in the mesencephalon exhibited moderate levels of hybridization. Intense AR mRNA expression was also observed in neurons within two other areas that may be involved in vocalization, the medial preoptic area and the hypoglossal nucleus. The strongest mRNA signals identified in this study were found in cells of the pallium, hypothalamus, and inferior nucleus of the raphe. The expression patterns of AR mRNA in the auditory and vocal control nuclei of G. gecko suggest that neurons involved in acoustic communication in this species, and perhaps related species, are susceptible to regulation by androgens during the breeding season. The significance of these results for understanding the evolution of reptilian vocal communication is discussed.

  17. Tissue-specific mRNA expression profiles of porcine Toll-like receptors at different ages in germ-free and conventional pigs

    PubMed Central

    Shao, Lulu; Fischer, David D.; Kandasamy, Sukumar; Saif, Linda J.; Vlasova, Anastasia N.

    2016-01-01

    Toll-like receptors (TLRs), key initiators of innate immune responses, recognize antigens and are essential in linking innate and adaptive immune responses. Misrecognition and over-stimulation/expression of TLRs may contribute to the development of chronic inflammatory diseases and autoimmune diseases. However, appropriate and mature TLR responses are associated with the establishment of resistance against some infectious diseases. In this study, we assessed the mRNA expression profile of TLRs 1-10 in splenic and ileal mononuclear cells (MNCs) and dendritic cells (DCs) of germ-free (GF) and conventional pigs at different ages. We found that the TLR mRNA expression profiles were distinct between GF and conventional pigs. The expression profiles were also significantly different between splenic and ileal MNCs/DCs. Comparison of the TLR expression profiles in GF and conventional newborn and young pigs demonstrated that exposure to commensal microbiota may play a more important role than age in TLR mRNA expression profiles. To our knowledge, this is the first report that systematically assesses porcine TLRs 1-10 mRNA expression profiles in MNCs and DCs from GF and conventional pigs at different ages. These results further highlighted that the commensal microbiota of neonates play a critical role through TLR signaling in the development of systemic and mucosal immune systems. PMID:26964712

  18. Expression of IroN, the salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues.

    PubMed

    Balbontín, Roberto; Villagra, Nicolás; Pardos de la Gándara, Maria; Mora, Guido; Figueroa-Bossi, Nara; Bossi, Lionello

    2016-04-01

    The iroN gene of Salmonella enterica and uropathogenic Escherichia coli encodes the outer membrane receptor of Fe(3+) -bound salmochelin, a siderophore tailored to evade capture by the host's immune system. The iroN gene is under negative control of the Fur repressor and transcribed under iron limiting conditions. We show here that transcriptional de-repression is not sufficient to allow iroN expression, as this also requires activation by either of two partially homologous small RNAs (sRNAs), RyhB1 and RyhB2. The two sRNAs target the same sequence segment approximately in the middle of the 94-nucleotide 5' untranslated region (UTR) of iroN mRNA. Several lines of evidence suggest that base pair interaction stimulates iroN mRNA translation. Activation does not result from the disruption of a secondary structure masking the ribosome binding site; rather it involves sequences at the 5' end of iroN 5' UTR. In vitro 'toeprint' assays revealed that this upstream site binds the 30S ribosomal subunit provided that RyhB1 is paired with the mRNA. Altogether, our data suggest that RyhB1, and to lesser extent RyhB2, activate iroN mRNA translation by promoting entry of the ribosome at an upstream 'standby' site. These findings add yet an additional nuance to the polychromatic landscape of sRNA-mediated regulation.

  19. Time-course of SKF-81297-induced increase in glutamic acid decarboxylase 65 and 67 mRNA levels in striatonigral neurons and decrease in GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, in adult rats with a unilateral 6-hydroxydopamine lesion.

    PubMed

    Yamamoto, N; Soghomonian, J-J

    2008-06-26

    Striatal projection neurons use GABA as their neurotransmitter and express the rate-limiting synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter vGAT. The chronic systemic administration of an agonist of dopamine D1/D5-preferring receptors is known to alter GAD mRNA levels in striatonigral neurons in intact and dopamine-depleted rats. In the present study, the effects of a single or subchronic systemic administration of the dopamine D1/D5-preferring receptor agonist SKF-81297 on GAD65, GAD67, PPD and vGAT mRNA levels in the striatum and GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, were measured in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. After a single injection of SKF-81297, striatal GAD65 mRNA levels were significantly increased at 3 but not 72 h. In contrast, striatal GAD67 mRNA levels were increased and nigral alpha1 mRNA levels were decreased at 72 but not 3 h. Single cell analysis on double-labeled sections indicated that increased GAD or vGAT mRNA levels after acute SKF-81297 occurred in striatonigral neurons identified by their lack of preproenkephalin expression. Subchronic SKF-81297 induced significant increases in striatal GAD67, GAD65, preprodynorphin and vGAT mRNA levels and decreases in nigral alpha1 mRNA levels. In the striatum contralateral to the 6-OHDA lesion, subchronic but not acute SKF-81297 induced a significant increase in GAD65 mRNA levels. The other mRNA levels were not significantly altered. Finally, striatal GAD67 mRNA levels were negatively correlated with nigral alpha1 mRNA levels in the dopamine-depleted but not dopamine-intact side. The results suggest that different signaling pathways are involved in the modulation by dopamine D1/D5 receptors of GAD65 and GAD67 mRNA levels in striatonigral neurons. They also suggest that the down-regulation of nigral GABA(A) receptors is linked to the increase in striatal GAD67 mRNA levels in the dopamine

  20. Hodgkin's lymphoma cell lines express a fusion protein encoded by intergenically spliced mRNA for the multilectin receptor DEC-205 (CD205) and a novel C-type lectin receptor DCL-1.

    PubMed

    Kato, Masato; Khan, Seema; Gonzalez, Nelson; O'Neill, Brian P; McDonald, Kylie J; Cooper, Ben J; Angel, Nicola Z; Hart, Derek N J

    2003-09-05

    Classic Hodgkin's lymphoma (HL) tissue contains a small population of morphologically distinct malignant cells called Hodgkin and Reed-Sternberg (HRS) cells, associated with the development of HL. Using 3'-rapid amplification of cDNA ends (RACE) we identified an alternative mRNA for the DEC-205 multilectin receptor in the HRS cell line L428. Sequence analysis revealed that the mRNA encodes a fusion protein between DEC-205 and a novel C-type lectin DCL-1. Although the 7.5-kb DEC-205 and 4.2-kb DCL-1 mRNA were expressed independently in myeloid and B lymphoid cell lines, the DEC-205/DCL-1 fusion mRNA (9.5 kb) predominated in the HRS cell lines (L428, KM-H2, and HDLM-2). The DEC-205 and DCL-1 genes comprising 35 and 6 exons, respectively, are juxtaposed on chromosome band 2q24 and separated by only 5.4 kb. We determined the DCL-1 transcription initiation site within the intervening sequence by 5'-RACE, confirming that DCL-1 is an independent gene. Two DEC-205/DCL-1 fusion mRNA variants may result from cotranscription of DEC-205 and DCL-1, followed by splicing DEC-205 exon 35 or 34-35 along with DCL-1 exon 1. The resulting reading frames encode the DEC-205 ectodomain plus the DCL-1 ectodomain, the transmembrane, and the cytoplasmic domain. Using DCL-1 cytoplasmic domain-specific polyclonal and DEC-205 monoclonal antibodies for immunoprecipitation/Western blot analysis, we showed that the fusion mRNA is translated into a DEC-205/DCL-1 fusion protein, expressed in the HRS cell lines. These results imply an unusual transcriptional control mechanism in HRS cells, which cotranscribe an mRNA containing DEC-205 and DCL-1 prior to generating the intergenically spliced mRNA to produce a DEC-205/DCL-1 fusion protein.

  1. Stress and withdrawal from d-amphetamine alter 5-HT2A receptor mRNA expression in the prefrontal cortex.

    PubMed

    Murray, Ryan C; Hebbard, John C; Logan, Anna S; Vanchipurakel, Golda A; Gilbert, Yamiece E; Horner, Kristen A

    2014-01-24

    Psychostimulant withdrawal results in emotional, behavioral, and cognitive impairments, which may be exacerbated by stress. However, little is known about the neurochemical changes that occur when these two conditions are experienced concomitantly. 5-HT2A receptor (5-HT2AR) mRNA expression in the prefrontal cortex (PFC) is diminished following withdrawal from d-amphetamine (AMPH) and may underlie the emotional and cognitive impairments observed in psychostimulant withdrawal, but whether stress affects 5-HT2AR mRNA expression during psychostimulant withdrawal is unknown. The goal of this study was to examine the impact of forced swim test (FST) exposure during AMPH withdrawal on 5-HT2AR mRNA expression in PFC. Animals were treated 3 times a day for 4 days with escalating doses of AMPH (1-10mg/kg) and 24h or 4 days after the final injection, animals were subjected to FST. At 24h of withdrawal, AMPH-treated animals showed greater immobility in FST and at 4 days of withdrawal, AMPH-treated animals did not show immobility. At 24h of withdrawal, animals showed lower 5-HT2AR mRNA expression in the PFC relative to saline-treated animals, and exposure to FST did not further decrease expression in these animals. At 4 days of withdrawal, AMPH-treated animals showed greater 5-HT2AR mRNA expression relative to saline-treated animals in the PFC, an effect that was diminished by exposure to FST. These data indicate that stress and short-term AMPH withdrawal affect prefrontal 5-HT2AR mRNA expression to a similar degree, and stress experienced during long-term AMPH withdrawal can diminish the recovery of 5-HT2AR mRNA expression. Together, these data suggest that exposure to stress during extended AMPH withdrawal could prolong withdrawal-induced, 5-HT2AR mRNA expression which could be related to 5-HT2AR mediated deficits.

  2. Extracellular inorganic phosphate regulates gibbon ape leukemia virus receptor-2/phosphate transporter mRNA expression in rat bone marrow stromal cells.

    PubMed

    Wada, Keinoshin; Mizuno, Morimichi; Komori, Takahide; Tamura, Masato

    2004-01-01

    In mammalian cells, several observations indicate not only that phosphate transport probably regulates local inorganic phosphate (Pi) concentration, but also that Pi affects normal cellular metabolism, which in turn regulates apoptosis and the process of mineralization. To elucidate how extracellular Pi regulates cellular functions of pre-osteoblastic cells, we investigated the expression of type III sodium (Na)-dependent Pi transporters in rat bone marrow stromal cells and ROB-C26 pre-osteoblastic cells. The mRNA expression level of gibbon ape leukemia virus receptor (Glvr)-2 was increased by the addition of Pi in rat bone marrow stromal cells, but not in ROB-C26 or normal rat kidney (NRK) cells. In contrast, the level of Glvr-1 mRNA was not altered by the addition of extracellular Pi in these cells. The induction of Glvr-2 mRNA by Pi was inhibited in the presence of cycloheximide (CHX). Moreover, mitogen-activated protein kinase (MEK) /extracellular-signal-regulated kinase (ERK) pathway inhibitors; U0126 (1.4-diamino-2, 3-dicyano-1, 4-bis [2-amino-phenylthio] butadiene) and PD98059 (2'-Amino-3'-methoxyflavone) inhibited inducible Glvr-2 mRNA expression, but p38 MEK inhibitor SB203580 [4-(4'-fluorophenyl)-2-(4'-methyl-sulfinylphenyl)-5-(4'pyridyl) imidazole] did not inhibit the induction of Glvr-2 mRNA expression, suggesting that extracellular Pi regulates de novo protein synthesis and MEK/ERK activity in rat bone marrow stromal cells, and through these, induction of Glvr-2 mRNA. Although Pi also induced osteopontin mRNA expression in rat bone marrow stromal cells but not in ROB-C26 and NRK cells, changes in cell viability with the addition of Pi were similar in both cell types. These data indicate that extracellular Pi regulates Glvr-2 mRNA expression, provide insights into possible mechanisms whereby Pi may regulate protein phosphorylation, and suggest a potential role for the Pi transporter in rat bone marrow stromal cells.

  3. Glucocorticoid receptor 1B and 1C mRNA transcript alterations in schizophrenia and bipolar disorder, and their possible regulation by GR gene variants.

    PubMed

    Sinclair, Duncan; Fullerton, Janice M; Webster, Maree J; Shannon Weickert, Cynthia

    2012-01-01

    Abnormal patterns of HPA axis activation, under basal conditions and in response to stress, are found in individuals with schizophrenia and bipolar disorder. Altered glucocorticoid receptor (GR) mRNA and protein expression in the dorsolateral prefrontal cortex (DLPFC) in psychiatric illness have also been reported, but the cause of these abnormalities is not known. We quantified expression of GR mRNA transcript variants which employ different 5' promoters, in 35 schizophrenia cases, 31 bipolar disorder cases and 34 controls. We also explored whether sequence variation within the NR3C1 (GR) gene is related to GR mRNA variant expression. Total GR mRNA was decreased in the DLPFC in schizophrenia cases relative to controls (15.1%, p<0.0005) and also relative to bipolar disorder cases (8.9%, p<0.05). GR-1B mRNA was decreased in schizophrenia cases relative to controls (20.2%, p<0.05), while GR-1C mRNA was decreased in both schizophrenia and bipolar disorder cases relative to controls (16.1% and 17.2% respectively, both p<0.005). A dose-dependent effect of rs10052957 genotype on GR-1B mRNA expression was observed, where CC homozygotes displayed 18.4% lower expression than TC heterozygotes (p<0.05), and 31.8% lower expression than TT homozygotes (p<0.005). Similarly, a relationship between rs6190 (R23K) genotype and GR-1C expression was seen, with 24.8% lower expression in GG homozygotes than GA heterozygotes (p<0.01). We also observed an effect of rs41423247 (Bcl1) SNP on expression of 67 kDa GRα isoform, the most abundant GRα isoform in the DLPFC. These findings suggest possible roles for the GR-1B and GR-1C promoter regions in mediating GR gene expression changes in psychotic illness, and highlight the potential importance of sequence variation within the NR3C1 gene in modulating GR mRNA expression in the DLPFC.

  4. High ambient temperature reverses hypothalamic MC4 receptor overexpression in an animal model of anorexia nervosa.

    PubMed

    Gutiérrez, E; Churruca, I; Zárate, J; Carrera, O; Portillo, M P; Cerrato, M; Vázquez, R; Echevarría, E

    2009-04-01

    The potential involvement of the melanocortin system in the beneficial effects of heat application in rats submitted to activity-based anorexia (ABA), an analogous model of anorexia nervosa (AN), was studied. Once ABA rats had lost 20% of body weight, half of the animals were exposed to a high ambient temperature (HAT) of 32 degrees C, whereas the rest were maintained at 21 degrees C. Control sedentary rats yoked to ABA animals received the same treatment. ABA rats (21 degrees C) showed increased Melanocortin 4 (MC4) receptor and Agouti gene Related Peptide (AgRP) expression, and decreased pro-opiomelanocortin (POMC) mRNA levels (Real Time PCR), with respect to controls. Heat application increased weight gain and food intake, and reduced running rate in ABA rats, when compared with ABA rats at 21 degrees C. However, no changes in body weight and food intake were observed in sedentary rats exposed to heat. Moreover, heat application reduced MC4 receptor, AgRP and POMC expression in ABA rats, but no changes were observed in control rats. These results indicate that hypothalamic MC4 receptor overexpression could occur on the basis of the characteristic hyperactivity, weight loss, and self-starvation of ABA rats, and suggest the involvement of hypothalamic melanocortin neural circuits in behavioural changes shown by AN patients. Changes in AgRP and POMC expression could represent an adaptative response to equilibrate energy balance. Moreover, the fact that HAT reversed hypothalamic MC4 receptor overexpression in ABA rats indicates the involvement of brain melanocortin system in the reported beneficial effects of heat application in AN. A combination of MC4 receptor antagonists and heat application could improve the clinical management of AN.

  5. Reversible cardiac fibrosis and heart failure induced by conditional expression of an antisense mRNA of the mineralocorticoid receptor in cardiomyocytes

    PubMed Central

    Beggah, Ahmed T.; Escoubet, Brigitte; Puttini, Stefania; Cailmail, Stephane; Delage, Vanessa; Ouvrard-Pascaud, Antoine; Bocchi, Brigitte; Peuchmaur, Michel; Delcayre, Claude; Farman, Nicolette; Jaisser, Frederic

    2002-01-01

    Cardiac failure is a common feature in the evolution of cardiac disease. Among the determinants of cardiac failure, the renin–angiotensin–aldosterone system has a central role, and antagonism of the mineralocorticoid receptor (MR) has been proposed as a therapeutic strategy. In this study, we questioned the role of the MR, not of aldosterone, on heart function, using an inducible and cardiac-specific transgenic mouse model. We have generated a conditional knock-down model by expressing solely in the heart an antisense mRNA directed against the murine MR, a transcription factor with unknown targets in cardiomyocytes. Within 2–3 mo, mice developed severe heart failure and cardiac fibrosis in the absence of hypertension or chronic hyperaldosteronism. Moreover, cardiac failure and fibrosis were fully reversible when MR antisense mRNA expression was subsequently suppressed. PMID:11997477

  6. Antagonizing 5-HT₂A receptors with M100907 and stimulating 5-HT₂C receptors with Ro60-0175 blocks cocaine-induced locomotion and zif268 mRNA expression in Sprague-Dawley rats.

    PubMed

    Burton, Christie L; Rizos, Zoë; Diwan, Mustansir; Nobrega, José N; Fletcher, Paul J

    2013-03-01

    Serotonin (5-HT) plays a role in several psychiatric disorders including drug addiction. The 5-HT system modulates the activity of midbrain dopamine (DA) systems, and the behavioural effects of psychostimulants mediated by these systems. The direction of this modulation depends upon the 5-HT receptor subtypes involved, with 5-HT(2A) and 5-HT(2C) receptors having opposing effects. For example the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor agonist Ro60-0175 both attenuate several cocaine-induced behavioural and neurochemical effects. To investigate the possible brain regions involved in the interactions between 5-HT(2A) or 5-HT(2C) receptor ligands and cocaine-induced behaviour, we examined the effects of M100907 or Ro60-0175 on cocaine-induced locomotion and mRNA expression of the immediate early gene zif268. Sprague-Dawley rats were pre-treated with M100907 (0.5mg/kg), Ro60-0175 (1.0mg/kg) or vehicle, and then injected with cocaine (15mg/kg) or vehicle. Locomotor activity was monitored for 60 min before rats were sacrificed for zif268 mRNA in situ hybridization mapping. Cocaine increased locomotor activity and zif268 mRNA expression consistently in the nucleus accumbens core, the orbitofrontal cortex and the caudate. M100907 attenuated cocaine-induced locomotion and zif268 mRNA expression in these brain regions in a defined subset of rats but failed to alter any effects of cocaine in another defined subset of rats. Ro60-0175 blocked cocaine-induced locomotion and zif268 mRNA expression in similar brain regions. Our results suggest that despite the opposing actions of 5-HT at 5-HT(2A) and 5-HT(2C) receptors, ligands acting on these receptors likely modulate cocaine-induced locomotion via a common mechanism to influence DA-dependent circuitry.

  7. Alterations in urinary bladder M2-muscarinic receptor protein and mRNA in 2-week streptozotocin-induced diabetic rats.

    PubMed

    Tong, Y C; Chin, W T; Cheng, J T

    1999-12-31

    The M2 receptor (M2-mAChR) is quantitatively the dominant muscarinic subtype in animal bladders. The alterations in its protein quantity and biosynthesis during diabetic cystopathy were investigated. Three-month-old male Wistar rats were divided into two groups: (1) 2-week-old diabetics; and (2) normoglycemic control rats. Diabetes was induced by single intravenous injection of 60 mg/kg streptozotocin. The amount of M2 receptor protein in the rat bladder body tissue was measured by Western immunoblotting using monoclonal antibodies. For determination of M2 muscarinic receptor mRNA in the bladder tissue, the method of Northern blotting was employed. The results of the Western immunoblotting showed that the amount of M2-mAChR protein in the diabetic bladder was significantly increased by 40.0 +/- 6.2% when compared with the control bladder (P < 0.05, n = 8). The Northern blotting demonstrated a 69.3 +/- 8.5% increase of the M2-mAChR mRNA in the diabetic bladder (P < 0.05, n = 8). The findings of the present study demonstrated an up-regulation of M2-mAChR biosynthesis in the diabetic urinary bladder. This phenomenon could lead to increased reactivity to acetylcholine and thus results in detrusor instability.

  8. Molecular cloning and mRNA tissue expression of thyroid hormone receptors in yellow catfish Pelteobagrus fulvidraco and Javelin goby Synechogobius hasta.

    PubMed

    Chen, Qi-Liang; Luo, Zhi; Tan, Xiao-Ying; Pan, Ya-Xiong; Zheng, Jia-Lang; Zou, Ming

    2014-02-25

    Thyroid hormones (THs) play a pivotal role in many physiological functions in vertebrates, including fish. Their effects are mediated by thyroid hormone receptors (TRs), which are members of the nuclear hormone receptor superfamily. In this study, full-length cDNA sequences of TRs from yellow catfish Pelteobagrus fulvidraco and Javelin goby Synechogobius hasta were cloned and their mRNA tissue expression profiles were determined. In P. fulvidraco, the validated cDNAs encoding for TRα and TRβ were 1789 and 1848 bp in length, encoding peptides of 401 and 378 amino acid residues, respectively. In addition, a TRβ spliced variant (named P. fulvidraco-TRβv), containing a 60-bp insertion, was detected. In S. hasta, cDNAs encoding for TRαA, TRαB and TRβ were 1827, 2295 and 2258 bp in length, encoding peptides of 401, 409 and 393 amino acid residues, respectively. The phylogenetic analysis revealed that TRα and TRβ cDNAs grouped into two separate clusters with other vertebrate counterparts and two TRα sequences grouped separately, suggesting that the two TRαs derived from paralogous genes that might arise during a teleost-specific genome duplication event. All TR mRNAs were detected in various tissues sampled. The mRNA levels of both TRα and TRβ from P. fulvidraco were the highest in brain, followed by liver, and lowest in heart, intestine, muscle, gill and spleen. However, in S. hasta, TRαA, TRαB and TRβ showed the highest mRNA levels in brain and lowest in muscle. Identification and mRNA tissue expression of TR genes from P. fulvidraco and S. hasta provide an initial step towards understanding their biological roles in the two fish species.

  9. Effect of gsp oncogene on somatostatin receptor subtype 1 and 2 mRNA levels in GHRH-responsive GH3 cells.

    PubMed

    Kim, Eunhee; Sohn, Sookjin; Lee, Mina; Park, Cheolyoung; Jung, Jeechang; Park, Seungjoon

    2005-01-01

    Growth hormone releasing hormone (GHRH) signals via G protein-coupled receptors (GHRH-R) to enhance intracellular Galphas/adenylyl cyclase/cAMP signaling, which in turn has positive effects on GH synthesis and release, as well as proliferation of the GH-producing cells of the anterior pituitary gland. Some GH-producing pituitary tumors express a constitutively active mutant form of Galphas (gsp oncogene). It has been reported that these tumors are more responsive to octreotide therapy. In this study we used a rat GH-producing cell line (GH3) stably transfected with the human GHRH-R cDNA (GH3-GHRHR cells) as a model to study the effects of gsp oncogene on somatostatin (SRIH) receptor subtype 1 and 2 (sst1 and sst2) mRNA levels. Transient transfection of gsp oncogene in GH3-GHRHR cells for 48 h increased intracellular cAMP levels and GH release. Phosphodiesterase (PDE) 4, sst1 and sst2 mRNA levels were increased by G protein mutation as assessed by real-time RT-PCR. Increased PDE mRNA levels in gsp-transfected cells may be a compensatory mechanism to the constitutive activation of cAMP-dependent pathway by G protein mutation and is consistent with reports of higher PDE expression in human pituitary tumor that express gsp. Our data suggest that higher expression of sst1 and sst2 mRNA induced by the gsp oncogene may be a mechanism by which gsp-positive tumors show a greater response to SRIH. GH3 cells permanently transfected with GHRH-R can be used for in vitro studies of actions of GHRH.

  10. Altered mRNA Levels of Glucocorticoid Receptor, Mineralocorticoid Receptor, and Co-Chaperones (FKBP5 and PTGES3) in the Middle Frontal Gyrus of Autism Spectrum Disorder Subjects.

    PubMed

    Patel, Neil; Crider, Amanda; Pandya, Chirayu D; Ahmed, Anthony O; Pillai, Anilkumar

    2016-05-01

    Although stress has been implicated in the pathophysiology of autistic spectrum disorder (ASD), it is not known whether glucocorticoid receptor (GR) levels are altered in the brain of subjects with ASD. The messenger RNA (mRNA) levels of GR isoforms (GRα, GRβ, GRγ, and GRP), mineralocorticoid receptor (MR), GR co-chaperones (FKBP5, PTGES3, and BAG1), and inflammatory cytokines (IL-6, IL-1β, and IFN-γ) were examined in the postmortem middle frontal gyrus tissues of 13 ASD and 13 age-matched controls by qRT-PCR. The protein levels were examined by Western blotting. We found significant decreases in GRα (64%), GRγ (48%), GRP (20%) and MR (46%) mRNA levels in ASD subjects as compared to controls. However, significant increases in FKBP5 (42%) and PTGES3 (35%) mRNA levels were observed in ASD subjects. There were no differences in the mRNA levels of GRβ and BAG1 in ASD subjects as compared to controls. MR mRNA was found to be negatively correlated with the diagnostic score for abnormality of development. On the protein level, significant reductions in GR and MR, but no change in FKBP5 and PTGES3 were found in ASD subjects as compared to controls. Moreover, we observed significant increases in IL-1β and IFN-γ mRNA levels in ASD subjects, and these cytokines were negatively associated with GR levels. Our data, for the first time, reports dysregulation of GR, MR, FKBP5, and PTGES3 in ASD and suggest a possible role of inflammation in altered GR function in ASD.

  11. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    PubMed

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  12. Cloning of the growth hormone receptor and its muscle-specific mRNA expression in black Muscovy duck (Cairina moschata).

    PubMed

    Ji, W; Sun, G; Duan, X; Dong, B; Bian, Y

    2016-04-01

    The cDNA sequence of the growth hormone receptor (GHR) from the black Muscovy duck was obtained and compared to the mRNA expression of growth hormone (GH) in the breast and leg muscles during 2-13 weeks of age using quantitative RT-PCR. The cDNA sequence of the Muscovy duck GHR gene is 1903 bp in length, with an 1830 bp coding region that encodes 609 amino acids. It exhibits > 92.9% homology with the poultry GHR cDNA and amino acid sequences. Overall, GHR mRNA expression was the highest at 2 weeks and the lowest at 13 weeks of age, exhibiting different profiles in different muscles. In the breast muscles, the GHR mRNA level declined sharply at 2-4 weeks, maintained at a plateau at 4-10 weeks and decreased slightly at 10-13 weeks. In the leg muscles, a gradual and slow decrease was observed during the whole period of 2-13 weeks. Robust extra-pituitary GH mRNA expression was detected in the muscles and the expression profile was highly correlated with that of GHR mRNA, in contrast to the inverse correlation between the pituitary GH and tissue GHR levels shown previously. These data suggest that the locally synthesised GH in the muscles, rather than the pituitary GH, is more closely associated with GHR and may be more critical for the regulation of muscle growth and contribute to the tissue-specific effects of GH.

  13. Somatostatin receptor subtypes mRNA in TSH-secreting pituitary adenomas: a case showing a dramatic reduction in tumor size during short octreotide treatment.

    PubMed

    Horiguchi, Kazuhiko; Yamada, Masanobu; Umezawa, Ryohei; Satoh, Teturo; Hashimoto, Koshi; Tosaka, Masahiko; Yamada, Shozo; Mori, Masatomo

    2007-06-01

    TSH-secreting adenoma is a rare pituitary adenoma, and the expression levels of the specific subtypes of somatostatin receptors (sstr) mRNAs have remained obscure. To determine the quantitative expression of the sstr1-5 mRNAs in TSH-secreting adenomas that may be related to the efficacy of treatment with a somatostatin analogue, expression of the sstr1-5 mRNAs was examined and compared in TSH-secreting adenomas and other pituitary adenomas. The pituitary adenomas were obtained at transsphenoidal surgery from 4 cases of TSH-secreting adenoma, including 1 patient showing a significant shrinkage of the tumor size after only 10 days of octreotide treatment, 2 patients without tumor size reduction and 1 patient without treatment, and 5 GH-secreting adenomas, 6 prolactinomas, 5 nonfunctioning adenomas, 4 ACTH-secreting adenomas and normal pituitaries at autopsy from 4 normal subjects. In comparison to the normal pituitary, sstr2A>sstr1>sstr5>sstr3 mRNAs were expressed in the TSH-secreting adenomas examined. No expression of sstr2B or sstr4 mRNA was observed. The expression level of sstr2 mRNA was significantly higher than those in normal pituitary, prolactinomas, ACTH-secreting and nonfunctioning pituitary adenomas. The patient with marked shrinkage of the tumor showed the highest expression of both sstr2 and sstr5 mRNAs among all the cases of pituitary adenoma. A TSH-secreting tumor without shrinkage showed a similar expression level of sstr2 mRNA. These findings demonstrated that TSH-secreting adenomas express sstr1, 2A, 3 and 5 mRNAs, predominantly sstr2A, and in addition to the expression of sstr2 mRNA, the expression level of sstr5 mRNA may be a factor affecting the tumor shrinkage by somatostatin analogues against TSH-secreting adenomas.

  14. Increases in transient receptor potential vanilloid-1 mRNA and protein in primary afferent neurons stimulated by protein kinase C and their possible role in neurogenic inflammation

    PubMed Central

    Xu, Xijin; Wang, Peng; Zou, Xiaoju; Li, Dingge; Fang, Li; Lin, Qing

    2008-01-01

    A recent study by our group demonstrates pharmacologically that the transient receptor potential vanilloid-1 (TRPV1) is activated by intradermal injection of capsaicin to initiate neurogenic inflammation by the release of neuropeptides in the periphery. In this study, expression of TRPV1, phosphorylated protein kinase C (p-PKC) and calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons were visualized using immunofluorescence, real-time PCR and Western blots to examine whether increases in TRPV1 mRNA and protein levels evoked by capsaicin injection are subject to modulation by the activation of PKC and to analyze the role of this process in the pathogenesis of neurogenic inflammation. Capsaicin injection into the hindpaw skin of anesthetized rats evoked increases in the expression of TRPV1, CGRP and p-PKC in mRNA and/or protein levels and in the number of single labeled TRPV1, p-PKC and CGRP neurons in ipsilateral L4–5 DRGs. Co-expressions of TRPV1 with p-PKC and/or CGRP in DRG neurons were also significantly increased after CAP injection. These evoked expressions both at molecular and cellular levels were significantly inhibited after TRPV1 receptors were blocked by 5′-iodoresiniferatoxin (5 μg) or PKC was inhibited by chelerythrine chloride (5 μg). Taken together, these results provide evidence that up-regulation of TRPV1 mRNA and protein levels under inflammatory conditions evoked by capsaicin injection is subject to modulation by the PKC cascade in which increased CGRP level in DRG neurons may be related to the initiation of neurogenic inflammation. Thus, up-regulation of TRPV1 receptors in DRG neurons seems critical for initiating acute neurogenic inflammation. PMID:18752301

  15. Discovery of Novel Potent and Selective Agonists at the Melanocortin-3 Receptor.

    PubMed

    Carotenuto, Alfonso; Merlino, Francesco; Cai, Minying; Brancaccio, Diego; Yousif, Ali Munaim; Novellino, Ettore; Hruby, Victor J; Grieco, Paolo

    2015-12-24

    The melanocortin receptors 3 and 4 control energy homeostasis, food-intake behavior, and correlated pathophysiological conditions. The melanocortin-4 receptor (MC4R) has been broadly investigated. In contrast, the knowledge related to physiological roles of the melanocortin-3 receptor (MC3R) is lacking because of the limited number of known MC3R selective ligands. Here, we report the design, synthesis, biological activity, conformational analysis, and docking with receptors of two potent and selective agonists at the human MC3 receptor.

  16. Analysis of thyroid hormone receptor {beta}A mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    SciTech Connect

    Opitz, Robert . E-mail: r.opitz@igb-berlin.de; Lutz, Ilka; Nguyen, Ngoc-Ha; Scanlan, Thomas S.; Kloas, Werner

    2006-04-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors {alpha} (TR{alpha}) and {beta}A (TR{beta}A) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TR{alpha} gene expression whereas a marked up-regulation of TR{beta}A mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TR{beta}A mRNA in head and tail tissue within 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TR{beta}A mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TR{beta}A gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TR{beta}A expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TR{beta}A mRNA up-regulation. Results of this study suggest that TR{beta}A mRNA expression analysis could serve as a sensitive molecular testing approach to study effects

  17. Quantitative mRNA analysis of muscarinic acetylcholine receptors in the intestine of dairy cows with spontaneous caecal dilatation-dislocation.

    PubMed

    Ontsouka, E C; Steiner, A; Bruckmaier, R M; Blum, J W; Meylan, M

    2009-05-01

    Muscarinic receptors mediate acetylcholine-induced muscular contractions. In this study, mRNA levels of muscarinic receptor subtypes 2 and 3 (M(2) and M(3)) in the ileum, caecum, proximal loop of the ascending colon (PLAC) and external loop of the spiral colon (ELSC) were determined by quantitative polymerase chain reaction in seven cows with caecal dilatation-dislocation (CDD) and seven healthy control cows. Levels of M(2) were significantly lower in the caecum, PLAC and ELSC and levels of M(3) were significantly lower in the ileum, caecum, PLAC and ELSC of cows with CDD compared to healthy cows (P<0.05). Down-regulation of M(3) may play a role in the pathogenesis of CDD.

  18. Failure of MK-801 to suppress D1 receptor-mediated induction of locomotor activity and striatal preprotachykinin mRNA expression in the dopamine-depleted rat.

    PubMed

    Campbell, B M; Kreipke, C W; Walker, P D

    2006-01-01

    N-methyl-D-aspartate receptor antagonism exerts suppressive influences over dopamine D1 receptor-mediated striatal gene expression and locomotor behavior in the intact rat. The present study examined the effects of the N-methyl-D-aspartate receptor antagonist MK-801 on locomotor activity and striatal preprotachykinin mRNA expression stimulated by the D1 agonist (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide in rats with bilateral dopamine lesions. Two months after neonatal dopamine lesions with 6-hydroxydopamine, rats were challenged with (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) 15 min after administration of the N-methyl-D-aspartate receptor antagonist MK-801 (0.1 mg/kg). In the intact rat, MK-801 prevented the induction of striatal preprotachykinin mRNA by D1 agonism. Similarly, direct infusion of (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (3.0 microg) into the intact striatum produced an increase in locomotor activity that was suppressed by MK-801 (1.0 microg) co-infusion. In the dopamine-depleted rat, MK-801 (0.1 mg/kg) administered prior to (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) increased, rather than suppressed, striatal preprotachykinin mRNA levels. Intrastriatal infusion of MK-801 (1.0 microg) failed to inhibit D1-mediated induction of motor activity in dopamine-depleted animals. Together, these data provide further support that N-methyl-D-aspartate receptor antagonists lose their ability to block D1-mediated behavioral activation following dopamine depletion. The activation, rather than suppression, of tachykinin neurons of the direct striatonigral pathway may play a facilitatory role in this mechanism.

  19. Extracellular norepinephrine, norepinephrine receptor and transporter protein and mRNA levels are differentially altered in the developing rat brain due to dietary iron deficiency and manganese exposure.

    PubMed

    Anderson, Joel G; Fordahl, Steven C; Cooney, Paula T; Weaver, Tara L; Colyer, Christa L; Erikson, Keith M

    2009-07-24

    Manganese (Mn) is an essential trace element, but overexposure is characterized by Parkinson's like symptoms in extreme cases. Previous studies have shown that Mn accumulation is exacerbated by dietary iron deficiency (ID) and disturbances in norepinephrine (NE) have been reported. Because behaviors associated with Mn neurotoxicity are complex, the goal of this study was to examine the effects of Mn exposure and ID-associated Mn accumulation on NE uptake in synaptosomes, extracellular NE concentrations, and expression of NE transport and receptor proteins. Sprague-Dawley rats were assigned to four dietary groups: control (CN; 35 mg Fe/kg diet), iron-deficient (ID; 6 mg Fe/kg diet), CN with Mn exposure (via the drinking water; 1 g Mn/L) (CNMn), and ID with Mn (IDMn). (3)H-NE uptake decreased significantly (R=-0.753, p=0.001) with increased Mn concentration in the locus coeruleus, while decreased Fe was associated with decreased uptake of (3)H-NE in the caudate putamen (R=0.436, p=0.033) and locus coeruleus (R=0.86; p<0.001). Extracellular concentrations of NE in the caudate putamen were significantly decreased in response to Mn exposure and ID (p<0.001). A diverse response of Mn exposure and ID was observed on mRNA and protein expression of NE transporter (NET) and alpha(2) adrenergic receptor. For example, elevated brain Mn and decreased Fe caused an approximate 50% decrease in NET and alpha(2) adrenergic receptor protein expression in several brain regions, with reductions in mRNA expression also observed. These data suggest that Mn exposure results in a decrease in NE uptake and extracellular NE concentrations via altered expression of transport and receptor proteins.

  20. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    PubMed

    Zhang, Yixi; Wang, Xin; Yang, Baojun; Hu, Yuanyuan; Huang, Lixin; Bass, Chris; Liu, Zewen

    2015-11-01

    Target-site resistance is commonly caused by qualitative changes in insecticide target-receptors and few studies have implicated quantitative changes in insecticide targets in resistance. Here we show that resistance to imidacloprid in a selected strain of Nilaparvata lugens is associated with a reduction in expression levels of the nicotinic acetylcholine receptor (nAChR) subunit Nlα8. Synergism bioassays of the selected strain suggested resistance was conferred, in part, by a target-site mechanism. Sequencing of N. lugens nAChR subunit genes identified no mutations associated with resistance, however, a decrease in mRNA and protein levels of Nlα8 was observed during selection. RNA interference knockdown of Nlα8 decreased the sensitivity of N. lugens to imidacloprid, demonstrating that a decrease in Nlα8 expression is sufficient to confer resistance in vivo. Radioligand binding assays revealed that the affinity of the high-affinity imidacloprid-binding site of native nAChRs was reduced by selection, and reducing the amount of Nlα8 cRNA injected into Xenopus oocytes significantly decreased imidacloprid potency on recombinant receptors. Taken together, these results provide strong evidence that a decrease in Nlα8 levels confers resistance to imidacloprid in N. lugens, and thus provides a rare example of target-site resistance associated with a quantitative rather than qualitative change. In insects, target-site mutations often cause high resistance to insecticides, such as neonicotinoids acting on nicotinic acetylcholine receptors (nAChRs). Here we found that a quantitative change in target-protein level, decrease in mRNA and protein levels of Nlα8, contributed importantly to imidacloprid resistance in Nilaparvata lugens. This finding provides a new target-site mechanism of insecticide resistance.

  1. Kinetic mRNA Profiling in a Rat Model of Left-Ventricular Hypertrophy Reveals Early Expression of Chemokines and Their Receptors

    PubMed Central

    Nemska, Simona; Monassier, Laurent; Gassmann, Max; Frossard, Nelly; Tavakoli, Reza

    2016-01-01

    Left-ventricular hypertrophy (LVH), a risk factor for heart failure and death, is characterized by cardiomyocyte hypertrophy, interstitial cell proliferation, and leukocyte infiltration. Chemokines interacting with G protein-coupled chemokine receptors may play a role in LVH development by promoting recruitment of activated leukocytes or modulating left-ventricular remodeling. Using a pressure overload-induced kinetic model of LVH in rats, we examined during 14 days the expression over time of chemokine and chemokine receptor mRNAs in left ventricles from aortic-banded vs sham-operated animals. Two phases were clearly distinguished: an inflammatory phase (D3-D5) with overexpression of inflammatory genes such as il-1ß, tnfa, nlrp3, and the rela subunit of nf-kb, and a hypertrophic phase (D7-D14) where anp overexpression was accompanied by a heart weight/body weight ratio that increased by more than 20% at D14. No cardiac dysfunction was detectable by echocardiography at the latter time point. Of the 36 chemokines and 20 chemokine receptors analyzed by a Taqman Low Density Array panel, we identified at D3 (the early inflammatory phase) overexpression of mRNAs for the monocyte chemotactic proteins CCL2 (12-fold increase), CCL7 (7-fold increase), and CCL12 (3-fold increase), for the macrophage inflammatory proteins CCL3 (4-fold increase), CCL4 (2-fold increase), and CCL9 (2-fold increase), for their receptors CCR2 (4-fold increase), CCR1 (3-fold increase), and CCR5 (3-fold increase), and for CXCL1 (8-fold increase) and CXCL16 (2-fold increase). During the hypertrophic phase mRNA expression of chemokines and receptors returned to the baseline levels observed at D0. Hence, this first exhaustive study of chemokine and chemokine receptor mRNA expression kinetics reports early expression of monocyte/macrophage-related chemokines and their receptors during the development of LVH in rats, followed by regulation of inflammation as LVH progresses. PMID:27525724

  2. Structure and hibernation-associated expression of the transient receptor potential vanilloid 4 channel (TRPV4) mRNA in the Japanese grass lizard (Takydromus tachydromoides).

    PubMed

    Nagai, Kazuya; Saitoh, Yasushi; Saito, Shigeru; Tsutsumi, Ken-ichi

    2012-03-01

    Animals possess systems for sensing environmental temperature using temperature-sensitive ion channels called transient receptor potential channels (TRPs). Various TRPs have been identified and characterized in mammals. However, those of ectotherms, such as reptiles, are less well studied. Here, we identify the V subfamily of TRP (TRPV) in two reptile species: Japanese grass lizard (Takydromus tachydromoides) and Japanese four-lined ratsnake (Elaphe quadrivirgata). Phylogenetic analysis of TRPVs indicated that ectothermic reptilian TRPVs are more similar to those of endothermic chicken and mammals, than to other ectotherms, such as frog and fish. Expression analysis of TRPV4 mRNA in the lizard showed that its expression in tissues and organs is specifically controlled in cold environments and hibernation. The mRNA was ubiquitously expressed in seven tissues/organs examined. Both cold-treatment and hibernation lowered TRPV4 expression, but in a tissue/organ-specific manner. Cold-treatment reduced TRPV4 expression in tongue and muscle, while in hibernation it was reduced more widely in brain, tongue, heart, lung, and muscle. Interestingly, however, levels of TRPV4 mRNA in the skin remained unaffected after entering hibernation and cold-treatment, implying that TRPV4 in the skin may act as an environmental temperature sensor throughout the reptilian life cycle, including hibernation. This is the first report, to our knowledge, to describe reptilian TRPV4 in relation to hibernation.

  3. Age determines the magnitudes of angiotensin II-induced contractions, mRNA, and protein expression of angiotensin type 1 receptors in rat carotid arteries.

    PubMed

    Vamos, Zoltan; Cseplo, Peter; Ivic, Ivan; Matics, Robert; Hamar, Janos; Koller, Akos

    2014-05-01

    In this study, we hypothesized that aging alters angiotensin II (Ang II)-induced vasomotor responses and expression of vascular mRNA and protein angiotensin type 1 receptor (AT1R). Thus, carotid arteries were isolated from the following age groups of rats: 8 days, 2-9 months, 12-20 months, and 20-30 months, and their vasomotor responses were measured in a myograph after repeated administrations of Ang II. Vascular relative AT1R mRNA level was determined by quantitative reverse-transcriptase polymerase chain reaction and the AT1R protein density was measured by Western blot. Contractions to the first administration of Ang II increased from 8 days to 6 months and then they decreased to 30 months. In general, second administration of Ang II elicited reduced contractions, but they also increased from 8 days until 2 months and then they decreased to 30 months. Similarly the AT1R mRNA level increased from 8 days to 12 months and then decreased to 30 months. Similarly the AT1R protein density increased from 8 days until 16 months and then they decreased to 30 months. The pattern of these changes correlated with functional vasomotor data. We conclude that aging (newborn to senescence) has substantial effects on Ang II-induced vasomotor responses and AT1R signaling suggesting the importance of genetic programs.

  4. Antidepressant dose of taurine increases mRNA expression of GABAA receptor α2 subunit and BDNF in the hippocampus of diabetic rats.

    PubMed

    Caletti, Greice; Almeida, Felipe Borges; Agnes, Grasiela; Nin, Maurício Schüler; Barros, Helena Maria Tannhauser; Gomez, Rosane

    2015-04-15

    Diabetes mellitus is a metabolic disorder associated with higher risk for depression. Diabetic rats present depressive-like behaviors and taurine, one of the most abundant free amino acids in the brain, reverses this depressive behaviors. Because taurine is a GABAA agonist modulator, we hypothesize that its antidepressant effect results from the interaction on this system by changing α2 GABAA receptor subunit expression, beside changes on BDNF mRNA, and memory in diabetic rats. Streptozotocin-diabetic and non-diabetic Wistar rats were daily injected with 100mg/kg of taurine or saline, intraperitoneally, for 30 days. At the end of the experiment, rats were exposed to the novel object recognition memory. Later they were euthanized, the brains were weighed, and the hippocampus was dissected for α2 GABAA subunit and BDNF mRNA expression. Real-time quantitative PCR (qPCR) showed that diabetic rats presented lower α2 GABAA subunit and BDNF mRNA expression than non-diabetic rats and taurine increased both parameters in these sick rats. Taurine also reversed the lower brain weight and improved the short-term memory in diabetic rats. Thus, the taurine antidepressant effect may be explained by interference with the GABA system, in line to its neuroprotective effect showed here by preventing brain weight loss and improving memory in diabetic rats.

  5. Association of suboptimal health status with psychosocial stress, plasma cortisol and mRNA expression of glucocorticoid receptor α/β in lymphocyte.

    PubMed

    Yan, Yu-Xiang; Dong, Jing; Liu, You-Qin; Zhang, Jie; Song, Man-Shu; He, Yan; Wang, Wei

    2015-01-01

    Suboptimal health status (SHS) has become a new public health challenge in China. This study investigated whether high SHS is associated with psychosocial stress, changes in cortisol level and/or glucocorticoid receptor (GR) isoform expression. Three-hundred eighty-six workers employed in three companies in Beijing were recruited. The SHS score was derived from data collection in the SHS questionnaire (SHSQ-25). The short standard version of the Copenhagen Psychosocial Questionnaire (COPSOQ) was used to assess job-related psychosocial stress. The mean value of the five scales of COPSOQ and distribution of plasma cortisol and mRNA expression of GRα/GRβ between the high level of SHS group and the low level of SHS group were compared using a general linear model procedure. Multiple linear regression analysis was used to analyze the effect of psychosocial stress on SHS. We identified three factors that were predictive of SHS, including "demands at work", "interpersonal relations and leadership" and "insecurity at work". Significantly higher levels of plasma cortisol and GRβ/GRα mRNA ratio were observed among the high SHS group. High level of SHS is associated with decreased mRNA expression of GRα. This study confirmed the association between chronic psychosocial stress and SHS, indicating that improving the psychosocial work environment may reduce SHS and then prevent chronic diseases effectively.

  6. Development of Reverse Transcription Loop-Mediated Isothermal Amplification for Simple and Rapid Detection of Promyelocytic Leukemia–Retinoic Acid Receptor α mRNA

    PubMed Central

    Hashimoto, Yuki; Hatayama, Yuki; Kojima, Nao; Morishita, Shota; Matsumoto, Satoko; Hosoda, Yuzuru; Hara, Ayako; Motokura, Toru

    2016-01-01

    Background Acute promyelocytic leukemia (APL) is a disease characterized by expression of Promyelocytic Leukemia–Retinoic Acid Receptor α (PML-RARα) chimeric mRNA. Although APL is curable, early death due to hemorrhage is a major problem. Here, we report the development of a simple and rapid diagnostic method for APL based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). Methods An RT-LAMP primer set was designed to detect three types of PML-RARα mRNA in a single reaction. Serial dilutions of plasmid DNA containing bcr1, bcr2, or bcr3 PML-RARα sequences and RNA extracted from bone marrow aspirates of 6 patients with APL were used to compare the results of RT-LAMP and nested PCR assays. Results Plasmid DNA was amplified by RT-LAMP, for which the reaction time was > 4 h shorter and the lower detection limit was higher than for nested RT-PCR. Six of 7 samples tested positive by both methods. Conclusion We developed an RT-LAMP assay for simple and rapid PML-RARα mRNA detection that may be clinically useful for point-of-care testing and APL diagnosis. PMID:28070163

  7. Augmented motor activity and reduced striatal preprodynorphin mRNA induction in response to acute amphetamine administration in metabotropic glutamate receptor 1 knockout mice.

    PubMed

    Mao, L; Conquet, F; Wang, J Q

    2001-01-01

    Metabotropic glutamate receptor 1 (mGluR1) is a G-protein-coupled receptor and is expressed in the medium spiny projection neurons of mouse striatum. To define the role of mGluR1 in actions of psychostimulant, we compared both motor behavior and striatal neuropeptide mRNA expression between mGluR1 mutant and wild-type control mice after a single injection of amphetamine. We found that acute amphetamine injection increased motor activity in both mutant and control mice in a dose-dependent manner (1, 4, and 12 mg/kg, i.p.). However, the overall motor responses of mGluR1 -/- mice to all three doses of amphetamine were significantly greater than those of wild-type +/+ mice. Amphetamine also induced a dose-dependent elevation of preprodynorphin mRNA in the dorsal and ventral striatum of mutant and wild-type mice as revealed by quantitative in situ hybridization. In contrast to behavioral responses, the induction of dynorphin mRNA in both the dorsal and ventral striatum of mutant mice was significantly less than that of wild-type mice in response to the two higher doses of amphetamine. In addition, amphetamine elevated basal levels of substance P mRNA in the dorsal and ventral striatum of mGluR1 mutant mice to a similar level as that of wild-type mice. There were no differences in basal levels and distribution patterns of the two mRNAs between the two genotypes of mice treated with saline. These results demonstrate a clear augmented behavioral response of mGluR1 knockout mice to acute amphetamine exposure that is closely correlated with reduced dynorphin mRNA induction in the same mice. It appears that an intact mGluR1 is specifically critical for full dynorphin induction, and impaired mobilization of inhibitory dynorphin system as a result of lacking mGluR1 may contribute to an augmentation of motor stimulation in response to acute administration of psychostimulant.

  8. Differential regulation by MK801 of immediate-early genes, brain-derived neurotrophic factor and trk receptor mRNA induced by a kindling after-discharge.

    PubMed

    Hughes, P E; Young, D; Preston, K M; Yan, Q; Dragunow, M

    1998-01-01

    Transient changes in immediate-early genes and neurotrophin expression produced by kindling stimulation may mediate secondary downstream events involved in kindling development. Recent experiments have demonstrated conclusively that both kindling progression and mossy fibre sprouting are significantly impaired by administration of the N-methyl-D-aspartate (NMDA) receptor antagonist MK801. To further examine the link between kindling, changes in gene expression and the NMDA receptor, we examined the effects of MK801 on neuronal induction of immediate-early genes, brain-derived neurotrophic factor (BDNF) and trk receptor mRNA expression produced by a single electrically induced hippocampal after-discharge in rats. The after-discharge produced a rapid (after 1 h) increase in Fos, Jun-B, c-Jun, Krox-24 mRNA and protein and Krox-20 protein in dentate granule neurons and a delayed, selective expression of Fos, Jun-D and Krox-24 in hilar interneurons. MK801 pretreatment produced a very strong inhibition of Fos, Jun-D and Krox-20 increases in dentate neurons but had a much smaller effect on Jun-B and c-Jun expression. MK801 did not inhibit Krox-24 expression in granule neurons or the delayed expression of Fos, Jun-D and Krox-24 in hilar interneurons. BDNF protein and trk B and trk C mRNA expression were also strongly induced in dentate granule cells 4 h following an after-discharge. MK801 abolished the increase in BDNF protein and trk B, but not trk C mRNA in granule cells at 4 h. These results demonstrate that MK801 differentially regulates the AD-increased expression of a group of genes previously identified as being likely candidates for an involvement in kindling. Because MK801 significantly retards the development of kindling and mossy fibre sprouting, it can be argued that those genes whose induction is not significantly attenuated by MK801 are unlikely to play an important role in the MK801-sensitive component of kindling and the changes in neural connectivity

  9. TGF-beta(1) regulation of human AT(1) receptor mRNA splice variants harboring exon 2.

    PubMed

    Martin, Mickey M; Buckenberger, Jessica A; Knoell, Daren L; Strauch, Arthur R; Elton, Terry S

    2006-04-25

    At least four alternatively spliced mRNAs can be synthesized from the human AT(1)R (hAT(1)R) gene that differ only in the inclusion or exclusion of exon 2 and/or 3. RT-PCR experiments demonstrate that splice variants harboring exon 2 accounts for at least 30% of all the hAT(1)R mRNA transcripts expressed in the human tissues investigated. Since exon 2 contains two upstream AUGs or open reading frames (uORFs), we hypothesized that these AUGs would inhibit the translation of the downstream hAT(1)R protein ORF harbored in exon 4. This study demonstrates that the inclusion of exon 2 in hAT(1)R mRNA transcripts dramatically reduces hAT(1)R protein levels (nine-fold) and significantly attenuates Ang II responsiveness ( approximately four-fold). Interestingly, only when both AUGs were mutated in combination were the hAT(1)R density and Ang II signaling levels comparable with those values obtained using mRNA splice variants that did not include exon 2. This observation is consistent with a model where the majority of the ribosomes likely translate uORF#1 and are then unable to reinitiate at the downstream hAT(1)R ORF, in part due to the presence of AUG#2 and to the short intercistronic spacing. Importantly, TGF-beta(1) treatment (4ng/ml for 4h) of fibroblasts up-regulated hAT(1)R mRNA splice variants, which harbored exon 2, six-fold. Since AT(1)R activation is closely associated with cardiovascular disease, the inclusion of exon 2 by alternative splicing represents a novel mechanism to reduce the overall production of the hAT(1)R protein and possibly limit the potential pathological effects of AT(1)R activation.

  10. Silent exonic mutations in the low-density lipoprotein receptor gene that cause familial hypercholesterolemia by affecting mRNA splicing.

    PubMed

    Defesche, J C; Schuurman, E J M; Klaaijsen, L N; Khoo, K L; Wiegman, A; Stalenhoef, A F H

    2008-06-01

    In a large group of patients with the clinical phenotype of familial hypercholesterolemia, such as elevated low-density lipoprotein (LDL) cholesterol and premature atherosclerosis, but without functional mutations in the genes coding for the LDL receptor and apolipoprotein B, we examined the effect of 128 seemingly neutral exonic and intronic DNA variants, discovered by routine sequencing of these genes. Two variants, G186G and R385R, were found to be associated with altered splicing. The nucleotide change leading to G186G resulted in the generation of new 3'-splice donor site in exon 4 and R385R was associated with a new 5'-splice acceptor site in exon 9 of the LDL receptor gene. Splicing of these alternate splice sites leads to an in-frame 75-base pair deletion in a stable mRNA of exon 4 in case of G186G and R385R resulted in a 31-base pair frame-shift deletion in exon 9 and non-sense-mediated mRNA decay.

  11. Peroxisome Proliferator Activated Receptors Alpha, Beta, and Gamma mRNA and protein expression in human fetal tissues

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...

  12. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA.

    PubMed

    Kitamura, Yoshihisa; Fujitani, Yoshika; Kitagawa, Kouhei; Miyazaki, Toshiaki; Sagara, Hidenori; Kawasaki, Hiromu; Shibata, Kazuhiko; Sendo, Toshiaki; Gomita, Yutaka

    2008-02-01

    We examined the effect of chronic administration of imipramine and bupropion, monoamine reuptake inhibitors, on the duration of immobility in the forced swim test and serotonin (5-HT)(2A) receptor function in the form of 5-HT(2A) receptor mRNA levels in rats chronically treated with adrenocorticotropic hormone (ACTH). The immobility-decreasing effect of bupropion without imipramine did not influence the chronic ACTH treatment. The effect on the expression of 5-HT(2A) receptor mRNA of chronic ACTH treatment was decreased by bupropion, but not imipramine. These results suggest that bupropion has the effect of reducing immobility time in the forced swim test in the tricyclic antidepressant-resistant depressive model induced by chronic ACTH treatment in rats, and that decreased 5-HT(2A) receptor mRNA levels may be involved in this phenomenon.

  13. Developmental programming: Impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus

    SciTech Connect

    Mahoney, Megan M.; Padmanabhan, Vasantha

    2010-09-01

    Bisphenol-A (BPA) and methoxychlor (MXC), two endocrine-disrupting chemicals (EDCs) with estrogenic and antiandrogenic effects, disrupt the reproductive system. BPA has profound effects on luteinizing hormone (LH) surge amplitude, and MXC has profound effects on on LH surge timing in sheep. The neural mechanisms involved in the differential disruption of the LH surge by these two EDCs remain to be elucidated. We tested the hypothesis that the differential effects of BPA and MXC on LH surge system involved changes in hypothalamic gonadotropin-releasing hormone (GnRH) and estrogen receptors (ESR), ESR1 and ESR2, mRNA expression. Pregnant sheep were given daily injections of cottonseed oil (controls), MXC, or BPA (5 mg/kg/day) from day 30 to 90 of gestation (term 147 d). Offspring from these animals were euthanized as adults, during the late follicular phase following synchronization of estrus with prostaglandin F{sub 2{alpha}}, just before the expected onset of preovulatory LH surge and changes in mRNA expression of hypothalamic GnRH, ESR1, and ESR2 quantified following in situ hybridization. GnRH mRNA expression was significantly lower in both groups of EDC-treated females compared to controls. ESR1 expression was increased in prenatal BPA- but not MXC-treated females in medial preoptic area relative to controls. In contrast, ESR2 expression was reduced in the medial preoptic area of both EDC-treated groups. Differences in expression of ESR1/ESR2 receptors may contribute to the differential effects of BPA and MXC on the LH surge system. These findings provide support that prenatal exposure to EDCs alters the neural developmental trajectory leading to long-term reproductive consequences in the adult female.

  14. Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus.

    PubMed

    Mahoney, Megan M; Padmanabhan, Vasantha

    2010-09-01

    Bisphenol-A (BPA) and methoxychlor (MXC), two endocrine-disrupting chemicals (EDCs) with estrogenic and antiandrogenic effects, disrupt the reproductive system. BPA has profound effects on luteinizing hormone (LH) surge amplitude, and MXC has profound effects on on LH surge timing in sheep. The neural mechanisms involved in the differential disruption of the LH surge by these two EDCs remain to be elucidated. We tested the hypothesis that the differential effects of BPA and MXC on LH surge system involved changes in hypothalamic gonadotropin-releasing hormone (GnRH) and estrogen receptors (ESR), ESR1 and ESR2, mRNA expression. Pregnant sheep were given daily injections of cottonseed oil (controls), MXC, or BPA (5mg/kg/day) from day 30 to 90 of gestation (term 147d). Offspring from these animals were euthanized as adults, during the late follicular phase following synchronization of estrus with prostaglandin F(2alpha), just before the expected onset of preovulatory LH surge and changes in mRNA expression of hypothalamic GnRH, ESR1, and ESR2 quantified following in situ hybridization. GnRH mRNA expression was significantly lower in both groups of EDC-treated females compared to controls. ESR1 expression was increased in prenatal BPA- but not MXC-treated females in medial preoptic area relative to controls. In contrast, ESR2 expression was reduced in the medial preoptic area of both EDC-treated groups. Differences in expression of ESR1/ESR2 receptors may contribute to the differential effects of BPA and MXC on the LH surge system. These findings provide support that prenatal exposure to EDCs alters the neural developmental trajectory leading to long-term reproductive consequences in the adult female.

  15. mRNA Expression and DNA Methylation Analysis of Serotonin Receptor 2A (HTR2A) in the Human Schizophrenic Brain

    PubMed Central

    Cheah, Sern-Yih; Lawford, Bruce R.; Young, Ross McD.; Morris, Charles P.; Voisey, Joanne

    2017-01-01

    Serotonin receptor 2A (HTR2A) is an important signalling factor implicated in cognitive functions and known to be associated with schizophrenia. The biological significance of HTR2A in schizophrenia remains unclear as molecular analyses including genetic association, mRNA expression and methylation studies have reported inconsistent results. In this study, we examine HTR2A expression and methylation and the interaction with HTR2A polymorphisms to identify their biological significance in schizophrenia. Subjects included 25 schizophrenia and 25 control post-mortem brain samples. Genotype and mRNA data was generated by transcriptome sequencing. DNA methylation profiles were generated for CpG sites within promoter-exon I region. Expression, genotype and methylation data were examined for association with schizophrenia. HTR2A mRNA levels were reduced by 14% (p = 0.006) in schizophrenia compared to controls. Three CpG sites were hypermethylated in schizophrenia (cg5 p = 0.028, cg7 p = 0.021, cg10 p = 0.017) and HTR2A polymorphisms rs6314 (p = 0.008) and rs6313 (p = 0.026) showed genetic association with schizophrenia. Differential DNA methylation was associated with rs6314 and rs6313. There was a strong correlation between HTR2A DNA methylation and mRNA expression. The results were nominally significant but did not survive the rigorous Benjamini-Hochberg correction for multiple testing. Differential HTR2A expression in schizophrenia in our study may be the result of the combined effect of multiple differentially methylated CpG sites. Epigenetic HTR2A regulation may alter brain function, which contributes to the development of schizophrenia. PMID:28054990

  16. Peroxisome proliferator-activated receptor gamma (PPARγ) in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA expression and transcriptional regulation by insulin in vivo and in vitro.

    PubMed

    Zheng, Jia-Lang; Zhuo, Mei-Qin; Luo, Zhi; Pan, Ya-Xiong; Song, Yu-Feng; Huang, Chao; Zhu, Qing-Ling; Hu, Wei; Chen, Qi-Liang

    2015-02-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is ligand-inducible transcription factor and has important roles in lipid metabolism, cell proliferation and inflammation. In the present study, yellow catfish Pelteobagrus fulvidraco PPARγ cDNA was isolated from liver by RT-PCR and RACE, and its molecular characterization and transcriptional regulation by insulin in vivo and in vitro were determined. The generation of PPARγ1 and PPARγ2 was due to alternative promoter of PPARγ gene. PPARγ1 and PPARγ2 mRNA covered 2426 bp and 2537 bp, respectively, with an open reading frame (ORF) of 1584 bp encoding 527 amino acid residues. Yellow catfish PPARγ gene was organized in a manner similar to that of their mammalian homologs, implying a modular organization of the protein's domains. A comparison between the yellow catfish PPARγ amino acid sequence and the correspondent sequences of several other species revealed the identity of 55-76.2%. Two PPARγ transcripts (PPARγ1 and PPARγ2) mRNAs were expressed in a wide range of tissues, but the abundance of each PPARγ mRNA showed the tissue- and developmental stage-dependent expression patterns. Intraperitoneal injection of insulin in vivo significantly stimulated the mRNA expression of total PPARγ and PPARγ1, but not PPARγ2 in the liver of yellow catfish. In contrast, incubation of hepatocytes with insulin in vitro increased the mRNA levels of PPARγ1, PPARγ2 and total PPARγ. To our knowledge, for the first time, the present study provides evidence that PPARγ1 and PPARγ2 are differentially expressed with and among tissues during different developmental stages and also regulated by insulin both in vivo and in vitro, which serves to increase our understanding on PPARγ physiological function in fish.

  17. Irradiation with narrowband-ultraviolet B suppresses phorbol ester-induced up-regulation of H1 receptor mRNA in HeLa cells.

    PubMed

    Kitamura, Yoshiaki; Mizuguchi, Hiroyuki; Okamoto, Kentaro; Kitayama, Mika; Fujii, Tatsuya; Fujioka, Akira; Matsushita, Toshio; Mukai, Takashi; Kubo, Yoshiaki; Kubo, Nobuo; Fukui, Hiroyuki; Takeda, Noriaki

    2016-01-01

    Conclusion These findings suggest that low dose irradiation with 310 nm NB-UVB specifically suppressed the up-regulation of H1R gene expression without inducing apoptosis and that UVB of shorter or longer wavelength than 310 nm NB-UVB had no such effects. Objective To develop a narrowband-ultraviolet B(NB-UVB) phototherapy for allergic rhinitis, this study investigated the effects of irradiation with NB-UVB at wavelength of 310 nm on phorbol-12-myristate-13-acetate (PMA)-induced up-regulation of histamine H1 receptor (H1R) mRNA in HeLa cells. Methods The mRNA levels of H1R in HeLa cells were measured using real-time RT-PCR. Apoptosis were evaluated with DNA fragmentation assay. Results PMA induced a significant increase in H1R mRNA expression in HeLa cells. Irradiation with 305 nm UVB and 310 nm NB-UVB, but not with 315 nm UVB at doses of 200 and 300 mJ/cm(2) significantly suppressed PMA-induced up-regulation of H1R mRNA. At a dose of 200 mJ/cm(2), irradiation with 305 nm UVB, but not with 310 nm NB-UVB, induced apoptosis, although exposure of the cells to both 305 and 310 nm UVB induced apoptosis at a dose of 300 mJ/cm(2) after PMA treatment in HeLa cells. Conversely, irradiation with 315 nm UVB at doses of 200 and 300 mJ/cm(2) did not induce apoptosis.

  18. mRNA Expression and DNA Methylation Analysis of Serotonin Receptor 2A (HTR2A) in the Human Schizophrenic Brain.

    PubMed

    Cheah, Sern-Yih; Lawford, Bruce R; Young, Ross McD; Morris, Charles P; Voisey, Joanne

    2017-01-04

    Serotonin receptor 2A (HTR2A) is an important signalling factor implicated in cognitive functions and known to be associated with schizophrenia. The biological significance of HTR2A in schizophrenia remains unclear as molecular analyses including genetic association, mRNA expression and methylation studies have reported inconsistent results. In this study, we examine HTR2A expression and methylation and the interaction with HTR2A polymorphisms to identify their biological significance in schizophrenia. Subjects included 25 schizophrenia and 25 control post-mortem brain samples. Genotype and mRNA data was generated by transcriptome sequencing. DNA methylation profiles were generated for CpG sites within promoter-exon I region. Expression, genotype and methylation data were examined for association with schizophrenia. HTR2A mRNA levels were reduced by 14% (p = 0.006) in schizophrenia compared to controls. Three CpG sites were hypermethylated in schizophrenia (cg5 p = 0.028, cg7 p = 0.021, cg10 p = 0.017) and HTR2A polymorphisms rs6314 (p = 0.008) and rs6313 (p = 0.026) showed genetic association with schizophrenia. Differential DNA methylation was associated with rs6314 and rs6313. There was a strong correlation between HTR2A DNA methylation and mRNA expression. The results were nominally significant but did not survive the rigorous Benjamini-Hochberg correction for multiple testing. Differential HTR2A expression in schizophrenia in our study may be the result of the combined effect of multiple differentially methylated CpG sites. Epigenetic HTR2A regulation may alter brain function, which contributes to the development of schizophrenia.

  19. Expression of progesterone receptor membrane component 1, serpine mRNA binding protein 1 and nuclear progesterone receptor isoforms A and B in the bovine myometrium during the estrous cycle and early pregnancy.

    PubMed

    Slonina, Dominika; Kowalik, Magdalena K; Kotwica, Jan

    2012-01-01

    The aim of this study was to investigate the (1) expression of progesterone membrane component 1 (PGRMC1), serpine mRNA binding protein 1 (SERBP1) and progesterone receptor (PR) mRNA and (2) protein expression levels of PGRMC1, SERBP1 and PR isoforms A and B in the bovine myometrium during the estrous cycle and early pregnancy. Uteri from cows on days 1-5, 6-10, 11-16 and 17-21 of the estrous cycle and weeks 3-5, 6-8 and 9-12 of pregnancy were used (n=5-6 per period). There were no changes (P>0.05) in PGRMC1 mRNA expression during the estrous cycle, while expression of SERBP1 and PR mRNA was the lowest (P<0.05) on days 11-16 relative to other days of the cycle. The highest mRNA expression of PGRMC1, SERBP1 and PR was found during pregnancy. There were no changes (P>0.05) in SERBP1 protein expression in cycling and pregnant cows, while the highest (P<0.05) PGRMC1 protein expression was found during weeks 3-5 of pregnancy. Similar protein expression profiles for PRA and PRB were found, and protein levels were highest on days 1-5 of the estrous cycle. From day 6 of the cycle, PRA and PRB protein expression decreased and were maintained at this lower level during pregnancy. In conclusion, our study assessed mRNA and protein expression levels of PGRMC1, SERBP1 and PR in the bovine myometrium during the estrous cycle and the first trimester of pregnancy. It is possible that progesterone (P4) affects myometrial function in a genomic and nongenomic manner.

  20. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation.

    PubMed

    Davis, Christopher J; Taishi, Ping; Honn, Kimberly A; Koberstein, John N; Krueger, James M

    2016-12-01

    The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling.

  1. Mapping of Kisspeptin Receptor mRNA in the Whole Rat Brain and its Co-Localisation with Oxytocin in the Paraventricular Nucleus.

    PubMed

    Higo, S; Honda, S; Iijima, N; Ozawa, H

    2016-04-01

    The neuropeptide kisspeptin and its receptor play an essential role in reproduction as a potent modulator of the gonadotrophin-releasing hormone (GnRH) neurone. In addition to its reproductive function, kisspeptin signalling is also involved in extra-hypothalamic-pituitary-gonadal (HPG) axis systems, including oxytocin and arginine vasopressin (AVP) secretion. By contrast to the accumulating information for kisspeptin neurones and kisspeptin fibres, the histological distribution and function of the kisspeptin receptor in the rat brain remain poorly characterised. Using in situ hybridisation combined with immunofluorescence, the present study aimed to determine the whole brain map of Kiss1r mRNA (encoding the kisspeptin receptor), and to examine whether oxytocin or AVP neurones express Kiss1r. Neurones with strong Kiss1r expression were observed in several rostral brain areas, including the olfactory bulb, medial septum, diagonal band of Broca and throughout the preoptic area, with the most concentrated population being around 0.5 mm rostral to the bregma. Co-immunofluorescence staining revealed that, in these rostral brain areas, the vast majority of the Kiss1r-expressing neurones co-expressed GnRH. Moderate levels of Kiss1r mRNA were also noted in the rostral periventricular area, paraventricular nucleus (PVN), and throughout the arcuate nucleus. Relatively weak Kiss1r expression was observed in the supraoptic nucleus and supramammillary nuclei. Moderate to weak expression of Kiss1r was also observed in several regions in the midbrain, including the periaqueductal gray and dorsal raphe nucleus. We also examined whether oxytocin and AVP neurones in the PVN co-express Kiss1r. Immunofluorescence revealed the co-expression of Kiss1r in a subset of the oxytocin neurones but not in the AVP neurones in the PVN. The present study provides a fundamental anatomical basis for further examination of the kisspeptin signalling system in the extra-HPG axis, as well as in

  2. GABA-A and NMDA receptor subunit mRNA expression is altered in the caudate but not the putamen of the postmortem brains of alcoholics.

    PubMed

    Bhandage, Amol K; Jin, Zhe; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R; Birnir, Bryndis

    2014-01-01

    Chronic consumption of alcohol by humans has been shown to lead to impairment of executive and cognitive functions. Here, we have studied the mRNA expression of ion channel receptors for glutamate and GABA in the dorsal striatum of post-mortem brains from alcoholics (n = 29) and normal controls (n = 29), with the focus on the caudate nucleus that is associated with the frontal cortex executive functions and automatic thinking and on the putamen area that is linked to motor cortices and automatic movements. The results obtained by qPCR assay revealed significant changes in the expression of specific excitatory ionotropic glutamate and inhibitory GABA-A receptor subunit genes in the caudate but not the putamen. Thus, in the caudate we found reduced levels of mRNAs encoding the GluN2A glutamate receptor and the δ, ε, and ρ2 GABA-A receptor subunits, and increased levels of the mRNAs encoding GluD1, GluD2, and GABA-A γ1 subunits in the alcoholics as compared to controls. Interestingly in the controls, 11 glutamate and 5 GABA-A receptor genes were more prominently expressed in the caudate than the putamen (fold-increase varied from 1.24 to 2.91). Differences in gene expression patterns between the striatal regions may underlie differences in associated behavioral outputs. Our results suggest an altered balance between caudate-mediated voluntarily controlled and automatic behaviors in alcoholics, including diminished executive control on goal-directed alcohol-seeking behavior.

  3. Effects of ergot alkaloid exposure on serotonin receptor mRNA in the smooth muscle of the bovine gastrointestinal tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various serotonin (5HT) receptor subtypes have been located in the gastrointestinal tract and some are associated with gut motility. Cattle exposed to ergot alkaloids through consumption of contaminated feedstuffs have demonstrated signs (e.g. - increased rumen DM content and total content) that sug...

  4. Detection of three nonsense mutations and one missense mutation in the interleukin-2 receptor [gamma] chain gene in SCIDX1 that differently affect the mRNA processing

    SciTech Connect

    Markiewicz, S.; Fischer, A.; Saint Basile, G. de ); Subtil, A.; Dautry-Varsat, A. )

    1994-05-01

    The interleukin-2 receptor [gamma] (IL-2R[gamma]) chain gene encodes a 64-kDa protein that not only composes the high-affinity form of the IL-2 binding receptor in association with the 2R [alpha] and [beta] chains, but also participates in at least the IL-4 and IL-7 receptor complexes. Mutations in this gene have recently been shown to cause X-linked severe combined immunodeficiency (SCIDX1). This disease of the immune system results from an early block of T lymphocyte and natural killer (NK) cell differentiation, which leads to a severe cellular and humoral immune defect that is lethal unless treated by bone marrow transplantation. Analysis of the IL-2R[gamma] gene in SCIDX1 patients has revealed the presence of heterogeneous mutations principally located in the extracellular domain of the molecule. We report here three intraexonic mutations and one deletion in the IL-2R[gamma] gene in four SCIDX1 patients. These mutations appear to differentially affect RNA processing, either by decreasing IL-2R[gamma] mRNA level or by the skipping of a constitutive exon. 16 refs., 1 fig.

  5. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    SciTech Connect

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I. )

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA.

  6. On the origin of mRNA encoding the truncated dopamine D3-type receptor D3nf and detection of D3nf-like immunoreactivity in human brain.

    PubMed

    Liu, K; Bergson, C; Levenson, R; Schmauss, C

    1994-11-18

    A truncated dopamine D3-receptor-like mRNA, named D3nf, predicts a protein that differs from the D3-receptor only in the carboxyl terminus. However, such a protein has lost the predicted membrane topology typically found for G protein-coupled receptors. Results presented here show that D3nf mRNA arises from the D3-encoded primary transcript via alternative splicing. This splicing, however, appears to involve cleavage of an unusual 3' splice site. Therefore, we tested the possibility that D3nf mRNA results from a splicing error. If this were the case, D3nf mRNA would be expected to be present in the cytoplasm only at very low amounts, and it would not be expected to be translated into protein. However, the relative abundance of cytoplasmic D3/D3nf mRNA in human cortical tissues was found to be similar. Furthermore, we raised polyclonal antisera against the predicted carboxyl-terminal peptide sequence of D3nf that reacts specifically with a protein expressed in stably D3nf mRNA-expressing COS 7 cells. The use of this antiserum also revealed the presence of a approximately 68 kDa D3nf-like immunoreactive protein in human brain, suggesting that the atypically processed D3nf mRNA is translated.

  7. Effect of recombinant growth hormone on expression of growth hormone receptor, insulin-like growth factor mRNA and serum level of leptin in growing pigs.

    PubMed

    Xu, Qingfu; Zhao, Zhihui; Ni, Yingdong; Zhao, Ruqian; Chen, Jie

    2003-04-01

    Sixteen Large White x Landrace castrated male pigs were allotted into treatment and control group. The treatment group was injected intramuscularly with recombinant porcine growth hormone (rpGH, 4 mg d(-1)) and the control group with vehicle for 28 days. Animals were slaughtered 4 h after final injection for liver, longissimus dorsi (LD) muscle and blood sampling. Serum concentration of insulin-like growth factor 1 (IGF-I) and leptin were determined by RIA. The total RNA was extracted from tissues to measure the abundance of growth hormone receptor (GHR), IGF-I mRNA by RT-PCR with 18S rRNA internal standard. Results showed that rpGH enhanced the average daily weight gain by 26.1% (P < 0.05), the serum IGF-I concentration by 70.94% (P < 0.01), decreased serum leptin by 34.8% (P < 0.01). The relative abundance of GHR and IGF-I mRNA in liver were increased by 24.45% (P < 0.05) and 45.30% (P < 0.01), respectively, but no difference of GHR (P > 0.05) and IGF-I mRNA (P > 0.05) in LD between GH treated and control group was found. These results suggest that rpGH can up-regulate hepatic GHR and IGF-I gene expression and improve animal growth. However the effect of rpGH on GHR and IGF-I gene expression are tissue-specific.

  8. Haematopoietic cell lines capable of colonizing the thymus following in vivo transfer expressed T-cell receptor gamma-gene immature mRNA.

    PubMed Central

    Shimamura, M; Oku, M; Ohta, S; Yamagata, T

    1992-01-01

    To clarify the mechanism by which progenitor T (pro-T) cells recognize and enter the thymus, an attempt was made to produce haematopoietic cell lines by the fusion of BALB/c nude mouse bone marrow or foetal liver cells (gestation 14 and 15 days) with AKR thymoma BW5147, thereby immortalizing cells with potency to colonize the thymus, a characteristic of pro-T cells rarely found in adult bone marrow or foetal liver. The hybridomas thus produced were classified according to the phenotype of surface markers, T-cell receptor (TcR) gene configuration and expression. All hybridomas were negative in the surface expression of T-cell markers such as TcR alpha beta, TcR gamma delta, CD3, CD4 and CD8. They had TcR beta-, gamma- and delta-genes, each with a different status with respect to configuration and transcription. Some possessed partially rearranged TcR genes and others expressed immature TcR mRNA. The cell lines were examined for their capacity to colonize the thymus following intravenous injection into recipient mice. It was found that the cells with capacity of colonizing the thymus expressed immature TcR delta mRNA, while the cell lines lacking TcR delta-genes did not home to the thymus. These findings imply that the potency for migrating to thymus is closely associated with the particular stage of prethymic cell differentiation which could be estimated by the analysis of TcR genes, and that some cell lines with the expression of TcR delta-gene mRNA and the ability to colonize the thymus are derived from pro-T cells. Images Figure 2 Figure 3 PMID:1478683

  9. Effects of high-dose methadone maintenance on cocaine place conditioning, cocaine self-administration, and mu-opioid receptor mRNA expression in the rat brain.

    PubMed

    Leri, Francesco; Zhou, Yan; Goddard, Benjamin; Cummins, Erin; Kreek, Mary Jeanne

    2006-07-01

    Methadone maintenance at appropriate doses can effectively reduce cocaine abuse in heroin-dependent individuals. In the present studies, we investigated the effect of high-dose methadone maintenance cocaine conditioned place preference (CPP) and cocaine intravenous self-administration. Rats implanted with methadone-filled osmotic mini-pumps (20 and 55 mg/kg/day, SC) and conditioned with cocaine (1, 5, and 20 mg/kg, i.p.) did not express cocaine CPP. Similarly, rats implanted with methadone pumps (55 mg/kg/day) after cocaine conditioning (20 mg/kg) displayed neither spontaneous nor cocaine-precipitated (20 mg/kg, i.p.) CPP. In contrast, methadone maintenance (30 and 55 mg/kg/day, SC) did not alter the intravenous self-administration (continuous schedule of reinforcement) of various doses of cocaine (0.1, 0.5, and 2.0 mg/kg/inf). To explore neuropharmacological interactions between methadone maintenance and cocaine conditioning, we quantitatively measured mRNA levels of mu-opioid receptor (MOR) and proopiomelanocortin genes 10 days after methadone maintenance. MOR mRNA levels in both the nucleus accumbens core and frontal cortex were significantly elevated in rats exposed to cocaine during CPP conditioning. However, upregulation of MOR mRNA levels in the nucleus accumbens core were reduced by methadone maintenance in a dose-dependent manner. In conclusion, our results suggest that high-dose methadone maintenance does not alter the direct reinforcing effect of cocaine, but blocks spontaneous and cocaine-precipitated cocaine-seeking, possibly by preventing MOR alterations in the nucleus accumbens core induced by cocaine conditioning.

  10. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal.

    PubMed

    Martinez, Bridget; Soñanez-Organis, José G; Vázquez-Medina, José Pablo; Viscarra, Jose A; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2013-12-15

    Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism.

  11. Rapid PCR-mediated synthesis of competitor molecules for accurate quantification of beta(2) GABA(A) receptor subunit mRNA.

    PubMed

    Vela, J; Vitorica, J; Ruano, D

    2001-12-01

    We describe a fast and easy method for the synthesis of competitor molecules based on non-specific conditions of PCR. RT-competitive PCR is a sensitive technique that allows quantification of very low quantities of mRNA molecules in small tissue samples. This technique is based on the competition established between the native and standard templates for nucleotides, primers or other factors during PCR. Thus, the most critical parameter is the use of good internal standards to generate a standard curve from which the amount of native sequences can be properly estimated. At the present time different types of internal standards and methods for their synthesis have been described. Normally, most of these methods are time-consuming and require the use of different sets of primers, different rounds of PCR or specific modifications, such as site-directed mutagenesis, that need subsequent analysis of the PCR products. Using our method, we obtained in a single round of PCR and with the same primer pair, competitor molecules that were successfully used in RT-competitive PCR experiments. The principal advantage of this method is high versatility and economy. Theoretically it is possible to synthesize a specific competitor molecule for each primer pair used. Finally, using this method we have been able to quantify the increase in the expression of the beta(2) GABA(A) receptor subunit mRNA that occurs during rat hippocampus development.

  12. Pattern-Recognition Receptor Signaling Regulator mRNA Expression in Humans and Mice, and in Transient Inflammation or Progressive Fibrosis

    PubMed Central

    Günthner, Roman; Kumar, Vankayala Ramaiah Santhosh; Lorenz, Georg; Anders, Hans-Joachim; Lech, Maciej

    2013-01-01

    The cell type-, organ-, and species-specific expression of the pattern-recognition receptors (PRRs) are well described but little is known about the respective expression profiles of their negative regulators. We therefore determined the mRNA expression levels of A20, CYLD, DUBA, ST2, CD180, SIGIRR, TANK, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, SHP1, SHP2, TOLLIP, IRF4, SIKE, NLRX1, ERBIN, CENTB1, and Clec4a2 in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. Additionally, we characterized their expression profiles in mononuclear blood cells upon bacterial endotoxin, which showed a consistent induction of A20, SOCS3, IRAK-M, and Clec4a2 in human and murine cells. Furthermore, we studied the expression pattern in transient kidney ischemia-reperfusion injury versus post-ischemic atrophy and fibrosis in mice. A20, CD180, ST2, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, IRF4, CENTB1, and Clec4a2 were all induced, albeit at different times of injury and repair. Progressive fibrosis was associated with a persistent induction of these factors. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to PRR-mediated innate immunity, which seems to be involved in tissue injury, tissue regeneration and in progressive tissue scarring. PMID:24009023

  13. Toll-Like Receptor and Accessory Molecule mRNA Expression in Humans and Mice as Well as in Murine Autoimmunity, Transient Inflammation, and Progressive Fibrosis

    PubMed Central

    Ramaiah, Santhosh Kumar Vankayala; Günthner, Roman; Lech, Maciej; Anders, Hans-Joachim

    2013-01-01

    The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs) are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling. PMID:23803655

  14. Cinnamaldehyde up-regulates the mRNA expression level of TRPV1 receptor potential ion channel protein and its function in primary rat DRG neurons in vitro.

    PubMed

    Sui, Feng; Lin, Na; Guo, Jian-You; Zhang, Chang-Bin; Du, Xin-Liang; Zhao, Bao-Sheng; Liu, Hong-Bin; Yang, Na; Li, Lan-Fang; Guo, Shu-Ying; Huo, Hai-Ru; Jiang, Ting-Liang

    2010-01-01

    Cinnamaldehyde (1) is a pharmacologically active ingredient isolated from cassia twig (Ramulus Cinnamomi), which is commonly used in herbal remedies to treat fever-related diseases. Both TRPV1 and TRPM8 ion channel proteins are abundantly expressed in sensory neurons, and are assumed to act as a thermosensor, with the former mediating the feeling of warmth and the latter the feeling of cold in the body. Both of them have recently been reported to be involved in thermoregulation. The purpose of this paper is to further uncover the antipyretic mechanisms of 1 by investigating its effects on the mRNA expression levels and functions of both TRPV1 and TRPM8. The results showed that 1 could up-regulate the mRNA expression levels of TRPV1 at both 37 and 39 degrees C, and its calcium-mediating function was significantly increased at 39 degrees C, all of which could not be blocked by pretreatment of the neuronal cells with ruthenium red, a general transient receptor potential (TRP) blocker, indicating that the action of 1 was achieved through a non-TRPA1 channel pathway. In conclusion, the findings in our in vitro studies might account for part of the peripheral molecular mechanisms for the antipyretic action of 1.

  15. Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus.

    PubMed

    Pérez-Maceira, Jorge J; Otero-Rodiño, Cristina; Mancebo, María J; Soengas, José L; Aldegunde, Manuel

    2016-04-01

    In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 μg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance.

  16. Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneurons in the rat neostriatum, neocortex and hippocampus.

    PubMed

    Standaert, D G; Landwehrmeyer, G B; Kerner, J A; Penney, J B; Young, A B

    1996-11-01

    NMDA receptors are composed of proteins from two families: NMDAR1, which are required for channel activity, and NMDAR2, which modulate properties of the channels. The mRNA encoding the NMDAR2D subunit has a highly restricted pattern of expression: in the forebrain, it is found in only a small subset of cortical, neostriatal and hippocampal neurons. We have used a quantitative double-label in situ hybridization method to examine the expression of NMDAR2D mRNA in neurochemically defined populations of neurons. In the neostriatum, NMDAR2D was expressed by the interneuron populations marked by preprosomatostatin (SOM), the 67-kDa form of glutamic acid decarboxylase (GAD67), parvalbumin (PARV), and choline acetyltransferase (ChAT) mRNAs but not by the projection neurons expressing beta-preprotachykinin (SP) or preproenkephalin (ENK) mRNAs. In the neocortex, NMDAR2D expression was observed in only a small number of neurons, but these included almost all of the SOM-, GAD67-, and PARV-expressing interneurons. In the hippocampus, NMDAR2D was not present in pyramidal or granule cells, but was abundant in SOM-, GAD67-, and PARV-positive interneurons. NMDAR2D expression appears to be a property shared by interneurons in several regions of the brain. The unique electrophysiological characteristics conveyed by this subunit, which include resistance to blockade by magnesium ion and long channel offset latencies, may be important for the integrative functions of these neurons. NMDAR2D-containing receptor complexes may prove to be important therapeutic targets in human disorders of movement. In addition, the presence of NMDAR2D subunits may contribute to the differential vulnerability of interneurons to excitotoxic injury.

  17. Nerve growth factor affects Ca2+ currents via the p75 receptor to enhance prolactin mRNA levels in GH3 rat pituitary cells

    PubMed Central

    López-Domínguez, Adriana M; Espinosa, Juan Luis; Navarrete, Araceli; Avila, Guillermo; Cota, Gabriel

    2006-01-01

    In clonal pituitary GH3 cells, spontaneous action potentials drive the opening of Cav1 (L-type) channels, leading to Ca2+ transients that are coupled to prolactin gene transcription. Nerve growth factor (NGF) has been shown to stimulate prolactin synthesis by GH3 cells, but the underlying mechanisms are unknown. Here we studied whether NGF influences prolactin gene expression and Ca2+ currents. By using RT-PCR, NGF (50 ng ml−1) was found to augment prolactin mRNA levels by ∼80% when applied to GH3 cells for 3 days. A parallel change in the prolactin content was detected by Western blotting. Both NGF-induced responses were mimicked by an agonist (Bay K 8644) and prevented by a blocker (nimodipine) of L-type channels. In whole-cell patch-clamp experiments, NGF enhanced the L-type Ca2+ current by ∼2-fold within 60 min. This effect reversed quickly upon growth factor withdrawal, but was maintained for days in the continued presence of NGF. In addition, chronic treatment (≥ 24 h) with NGF amplified the T-type current, which flows through Cav3 channels and is thought to support pacemaking activity. Thus, NGF probably increases the amount of Ca2+ that enters per action potential and may also induce a late increase in spike frequency. MC192, a specific antibody for the p75 neurotrophin receptor, but not tyrosine kinase inhibitors (K252a and lavendustin A), blocked the effects of NGF on Ca2+ currents. Overall, the results indicate that NGF activates the p75 receptor to cause a prolonged increase in Ca2+ influx through L-type channels, which in turn up-regulates the prolactin mRNA. PMID:16690703

  18. Second-Generation HSP90 Inhibitor Onalespib Blocks mRNA Splicing of Androgen Receptor Variant 7 in Prostate Cancer Cells.

    PubMed

    Ferraldeschi, Roberta; Welti, Jonathan; Powers, Marissa V; Yuan, Wei; Smyth, Tomoko; Seed, George; Riisnaes, Ruth; Hedayat, Somaieh; Wang, Hannah; Crespo, Mateus; Nava Rodrigues, Daniel; Figueiredo, Ines; Miranda, Susana; Carreira, Suzanne; Lyons, John F; Sharp, Swee; Plymate, Stephen R; Attard, Gerhardt; Wallis, Nicola; Workman, Paul; de Bono, Johann S

    2016-05-01

    Resistance to available hormone therapies in prostate cancer has been associated with alternative splicing of androgen receptor (AR) and specifically, the expression of truncated and constitutively active AR variant 7 (AR-V7). The transcriptional activity of steroid receptors, including AR, is dependent on interactions with the HSP90 chaperone machinery, but it is unclear whether HSP90 modulates the activity or expression of AR variants. Here, we investigated the effects of HSP90 inhibition on AR-V7 in prostate cancer cell lines endogenously expressing this variant. We demonstrate that AR-V7 and full-length AR (AR-FL) were depleted upon inhibition of HSP90. However, the mechanisms underlying AR-V7 depletion differed from those for AR-FL. Whereas HSP90 inhibition destabilized AR-FL and induced its proteasomal degradation, AR-V7 protein exhibited higher stability than AR-FL and did not require HSP90 chaperone activity. Instead, HSP90 inhibition resulted in the reduction of AR-V7 mRNA levels but did not affect total AR transcript levels, indicating that HSP90 inhibition disrupted AR-V7 splicing. Bioinformatic analyses of transcriptome-wide RNA sequencing data confirmed that the second-generation HSP90 inhibitor onalespib altered the splicing of at least 557 genes in prostate cancer cells, including AR. These findings indicate that the effects of HSP90 inhibition on mRNA splicing may prove beneficial in prostate cancers expressing AR-V7, supporting further clinical investigation of HSP90 inhibitors in malignancies no longer responsive to androgen deprivation. Cancer Res; 76(9); 2731-42. ©2016 AACR.

  19. Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients

    PubMed Central

    Bădescu, George Mihai; Bogdan, Catalin; Weston, Ria; Slevin, Mark; Di Napoli, Mario; Popa-Wagner, Aurel

    2016-01-01

    Despite the fact that a high proportion of elderly stroke patients develop mood disorders, the mechanisms underlying late-onset neuropsychiatric and neurocognitive symptoms have so far received little attention in the field of neurobiology. In rodents, aged animals display depressive symptoms following stroke, whereas young animals recover fairly well. This finding has prompted us to investigate the expression of serotonin receptors 2A and 2B, which are directly linked to depression, in the brains of aged and young rats following stroke. Although the development of the infarct was more rapid in aged rats in the first 3 days after stroke, by day 14 the cortical infarcts were similar in size in both age groups i.e. 45% of total cortical volume in young rats and 55.7% in aged rats. We also found that the expression of serotonin receptor type B mRNA was markedly increased in the perilesional area of aged rats as compared to the younger counterparts. Furthermore, histologically, HTR2B protein expression in degenerating neurons was closely associated with activated microglia both in aged rats and human subjects. Treatment with fluoxetine attenuated the expression of Htr2B mRNA, stimulated post-stroke neurogenesis in the subventricular zone and was associated with an improved anhedonic behavior and an increased activity in the forced swim test in aged animals. We hypothesize that HTR2B expression in the infarcted territory may render degenerating neurons susceptible to attack by activated microglia and thus aggravate the consequences of stroke. PMID:27013593

  20. Effects of cysteamine on mRNA levels of growth hormone and its receptors and growth in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Li, Yun; Liu, Xiaochun; Zhang, Yong; Ma, Xilan; Lin, Haoran

    2013-06-01

    Effects of cysteamine (CS) on growth hormone (GH) mRNA, two types of growth hormone receptor (GHR) mRNAs and growth rate in orange-spotted grouper (Epinephelus coioides) were investigated. CS could cause a modification in the structure of somatostatin, which is the most important neuroendocrine inhibitor of basal and stimulated growth hormone synthesis and release, and renders it nonimmunoreactive probably through interaction with the disulfide bonds. In the present study, cysteamine hydrochloride (CSH) enhanced the level of pituitary GH mRNA in a dose-dependent manner through attenuating or deleting the inhibiting action of somatostatin on GH mRNA expression. CSH at relatively low doses (from 1 to 3 mg/g diet) enhanced the levels of two types of GHR mRNAs in dose-dependent manner, whereas the stimulation induced by CSH declined from the peak at higher dose of CSH (4 mg/g diet). It might be attributed to the variation in GH-induced up-regulation of GHRs at different doses of GH. Feeding of CSH could induce remarkable enhancement of growth rate in orange-spotted grouper. In addition, the stimulatory effect of CSH could be potentiated by the additive effect of luteinizing hormone-releasing hormone analog (LHRH-A). Compared with individual treatments, combined feeding of CSH and LHRH-A caused more efficient elevation of growth rate after 8 weeks of feeding. CSH and LHRH-A individually and in combination remarkably increased the levels of GH and GHR mRNAs compared with the control. The combined administration of CSH and LHRH-A in diet was most effective to enhance the level of GH and GHR1 mRNA. The morphological characteristics of the experimental fish were evaluated. Compared with control, the ratios of muscle RNA/DNA, condition factors (CF) and feed conversion efficiency (FCE) were significantly enhanced in the treated groups, while the highest values were observed in the combined treatment. All the results suggested that CSH (1-3 mg/g diet) is an effective

  1. Expression of mRNA for galanin, galanin-like peptide and galanin receptors 1-3 in the ovine hypothalamus and pituitary gland: effects of age and gender.

    PubMed

    Whitelaw, Christine Margaret; Robinson, Jane Elizabeth; Chambers, George Ballantine; Hastie, Peter; Padmanabhan, Vasantha; Thompson, Robert Charles; Evans, Neil Price

    2009-01-01

    The neurotransmitters/neuromodulators galanin (GAL) and galanin-like peptide (GALP) are known to operate through three G protein-coupled receptors, GALR1, GALR2 and GALR3. The aim of this study was to investigate changes in expression of mRNA for galanin, GALP and GALR1-3 in the hypothalamus and pituitary gland, of male and female sheep, to determine how expression changed in association with growth and the attainment of reproductive competence. Tissue samples from the hypothalami and pituitary glands were analysed from late foetal and pre-pubertal lambs and adult sheep. Although mRNA for galanin and GALR1-3 was present in both tissues, at all ages and in both genders, quantification of GALP mRNA was not possible due to its low levels of expression. mRNA expression for both galanin and its receptors was seen to change significantly in both tissues as a function of age. Specifically, hypothalamic galanin mRNA expression increased with age in the male, but decreased with age in the female pituitary gland. mRNA expression for all receptors increased between foetal and pre-pubertal age groups and decreased significantly between pre-pubertal and adult animals. The results indicate that the expression of mRNA for galanin and its receptors changes dynamically with age and those significant differences exist with regard to tissue type and gender. These changes suggest that galaninergic neuroendocrine systems could be involved in the regulation of ovine growth and or the development of reproductive competence. The roles played by these systems in the sheep, however, may differ from other species, in particular the neuroendocrine link between nutrition and reproduction and GALR1's role in pituitary signalling.

  2. Neuroanatomical distribution of μ-opioid receptor mRNA and binding in monogamous prairie voles (Microtus ochrogaster) and non-monogamous meadow voles (Microtus pennsylvanicus).

    PubMed

    Inoue, K; Burkett, J P; Young, L J

    2013-08-06

    The opiate system has long been implicated in the rewarding properties of social interactions. In particular, the μ-opioid receptor (MOR) mediates multiple forms of social attachment, including the attachment of offspring to the mother and social bonding between mates. We have previously shown that MOR in the caudate-putamen is involved in partner preference formation in monogamous prairie voles. Here, using in situ hybridization and receptor autoradiography, we mapped in detail the distribution of MOR mRNA and ligand binding in monogamous prairie vole brains and compared MOR binding density with that of promiscuous meadow vole brains. Comparison of MOR binding in these closely related species with distinctly different social behavior revealed that while the distribution of MOR is similar, prairie voles have significantly higher densities of MOR than meadow voles in a majority of regions in the forebrain, including the caudate-putamen, nucleus accumbens shell, lateral septum and several thalamic nuclei, including the anteroventral and anteromedial thalamic nuclei. These differences in MOR expression between prairie and meadow voles could potentially contribute to species differences in behavior, including social attachment.

  3. Identification of mRNA splicing factors as the endothelial receptor for carbohydrate-dependent lung colonization of cancer cells

    PubMed Central

    Hatakeyama, Shingo; Sugihara, Kazuhiro; Nakayama, Jun; Akama, Tomoya O.; Wong, Shuk-Man Annie; Kawashima, Hiroto; Zhang, Jianing; Smith, David F.; Ohyama, Chikara; Fukuda, Minoru; Fukuda, Michiko N.

    2009-01-01

    Cell surfaces of epithelial cancer are covered by complex carbohydrates, whose structures function in malignancy and metastasis. However, the mechanism underlying carbohydrate-dependent cancer metastasis has not been defined. Previously, we identified a carbohydrate-mimicry peptide designated I-peptide, which inhibits carbohydrate-dependent lung colonization of sialyl Lewis X-expressing B16-FTIII-M cells in E/P-selectin doubly-deficient mice. We hypothesized that lung endothelial cells express an unknown carbohydrate receptor, designated as I-peptide receptor (IPR), responsible for lung colonization of B16-FTIII-M cells. Here, we visualized IPR by in vivo biotinylation, which revealed that the major IPR is a group of 35-kDa proteins. IPR proteins isolated by I-peptide affinity chromatography were identified by proteomics as Ser/Arg-rich alternative pre-mRNA splicing factors or Sfrs1, Sfrs2, Sfrs5, and Sfrs7 gene products. Bacterially expressed Sfrs1 protein bound to B16-FTIII-M cells but not to parental B16 cells. Recombinant Sfrs1 protein bound to a series of fucosylated oligosaccharides in glycan array and plate-binding assays. When anti-Sfrs antibodies were injected intravenously into mice, antibodies labeled a subset of lung capillaries. Anti-Sfrs antibodies inhibited homing of I-peptide-displaying phage to the lung colonization of B16-FTIII-M cells in vivo in the mouse. These results strongly suggest that Sfrs proteins are responsible for fucosylated carbohydrate-dependent lung metastasis of epithelial cancers. PMID:19218444

  4. Water Sparing in Chronic Ethanol Exposure is Associated With Elevated Renal Estrogen Receptor Beta and Vasopressin V2 Receptor mRNA in the Female Rate

    DTIC Science & Technology

    2007-12-01

    quality as a thesis for the degree of Master of Science in Medical and Molecular Physiology. THESIS COMMITTEE Chairperson ii TABLE OF CONTENTS List of...of biology = Revista brasleira de biologia 62, 609-614 20. Bevan, D. R. (1978) Osmometry. 1. Terminology and principles of measurement. Anaesthesia 33... molecular endocrinology 24, 145-155 32. Suzuki, S., and Handa, R. J. (2004) Regulation of estrogen receptor-beta expression in the female rat

  5. Xenoestrogens down-regulate aryl-hydrocarbon receptor nuclear translocator 2 mRNA expression in human breast cancer cells via an estrogen receptor alpha-dependent mechanism.

    PubMed

    Qin, Xian-Yang; Zaha, Hiroko; Nagano, Reiko; Yoshinaga, Jun; Yonemoto, Junzo; Sone, Hideko

    2011-10-10

    Environmental chemicals with estrogenic activity, known as xenoestrogens, may cause impaired reproductive development and endocrine-related cancers in humans by disrupting endocrine functions. Aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) is believed to play important roles in a variety of physiological processes, including estrogen signaling pathways, that may be involved in the pathogenesis and therapeutic responses of endocrine-related cancers. However, much of the underlying mechanism remains unknown. In this study, we investigated whether ARNT2 expression is regulated by a range of representative xenoestrogens in human cancer cell lines. Bisphenol A (BPA), benzyl butyl phthalate (BBP), and 1,1,1-trichloro-2,2-bis(2-chlorophenyl-4-chlorophenyl)ethane (o,p'-DDT) were found to be estrogenic toward BG1Luc4E2 cells by an E-CALUX bioassay. ARNT2 expression was downregulated by BPA, BBP, and o,p'-DDT in a dose-dependent manner in estrogen receptor 1 (ESR1)-positive MCF-7 and BG1Luc4E2 cells, but not in estrogen receptor-negative LNCaP cells. The reduction in ARNT2 expression in cells treated with the xenoestrogens was fully recovered by the addition of a specific ESR1 antagonist, MPP. In conclusion, we have shown for the first time that ARNT2 expression is modulated by xenoestrogens by an ESR1-dependent mechanism in MCF-7 breast cancer cells.

  6. Expression of insulin-like growth factor I receptors at mRNA and protein levels during metamorphosis of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu

    2011-08-01

    Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder.

  7. Changes in salivary cortisol and corticosteroid receptor-alpha mRNA expression following a 3-week multidisciplinary treatment program in patients with fibromyalgia.

    PubMed

    Bonifazi, Marco; Suman, Anna Lisa; Cambiaggi, Caterina; Felici, Andrea; Grasso, Giovanni; Lodi, Leda; Mencarelli, Marzia; Muscettola, Michela; Carli, Giancarlo

    2006-10-01

    The aim of the present study was to investigate the effects of a 3-week residential multidisciplinary non-pharmacological treatment program (including individually prescribed aerobic exercise and cognitive-behavioral therapy) on fibromyalgia symptoms and hypothalamic-pituitary-adrenal (HPA) axis function. Salivary and venous blood samples were collected from 12 female patients with fibromyalgia (age: 25-58) the day before and the day after the treatment period: saliva, eight times (every two hours from 0800 to 2200 h); venous blood, at 0800 h. Peripheral blood mononuclear cells (PBMC) were separated and analyzed for glucocorticoid receptor-alpha (GR-alpha) mRNA expression by semi-quantitative RT-PCR, while the salivary cortisol concentration was determined by RIA. At the same time, pain and aerobic capacity were evaluated. Aerobic capacity improved at the end of the treatment program. The slope of the regression of salivary cortisol values on sampling time was steeper in all patients after treatment, indicating that the cortisol decline was more rapid. Concomitantly, the area under the cortisol curve "with respect to increase" (AUC(i)) was higher and there was a significant increase in GR-alpha mRNA expression in PBMC. The number of positive tender points, present pain, pain area and CES-D score were significantly reduced after the treatment, while the pressure pain threshold increased at most of the tender points. Our findings suggest that one of the active mechanisms underlying the effects of our treatment is an improvement of HPA axis function, consisting in increased resiliency and sensitivity of the stress system probably related to stimulation of GR-alpha synthesis by the components of the treatment.

  8. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors.

    PubMed

    Eraslan, Evren; Akyazi, Ibrahim; Erg L-Ekiz, Elif; Matur, Erdal

    2015-01-01

    Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH) system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON), acute noise exposure (ANE), and chronic noise exposure (CNE). The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR). The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB) leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  9. Expression of mRNA encoding the macrophage colony-stimulating factor receptor (c-fms) is controlled by a constitutive promoter and tissue-specific transcription elongation.

    PubMed Central

    Yue, X; Favot, P; Dunn, T L; Cassady, A I; Hume, D A

    1993-01-01

    The gene encoding the receptor for macrophage colony-stimulating factor 1 (CSF-1), the c-fms protooncogene, is selectively expressed in immature and mature mononuclear phagocytes and trophoblasts. Exon 1 is expressed only in trophoblasts. Isolation and sequencing of genomic DNA flanking exon 2 of the murine c-fms gene revealed a TATA-less promoter with significant homology to human c-fms. Reverse transcriptase primer extension analysis using exon 2 primers identified multiple clustered transcription initiation sites. Their position was confirmed by RNase protection. The same primer extension products were detected in equal abundance from macrophage or nonmacrophage sources of RNA. c-fms mRNA is acutely down-regulated in primary macrophages by CSF-1, bacterial lipopolysaccharide (LPS), and phorbol myristate acetate (PMA). Each of these agents reduced the abundance of c-fms RNA detectable by primer extension using an exon 3 primer without altering the abundance of presumptive short c-fms transcripts detected with exon 2 primers. Primer extension analysis with an intron 2 primer detected products at greater abundance in nonmacrophages. Templates detected with the intronic primer were induced in macrophages by LPS, PMA, and CSF-1, suggesting that each of the agents caused a shift from full-length c-fms mRNA production to production of unspliced, truncated transcripts. The c-fms promoter functioned constitutively in the RAW264 macrophage cell line, the B-cell line MOPC.31C, and several nonhematopoietic cell lines. Macrophage-specific expression and responsiveness to selective repression by LPS and PMA was achieved by the incorporation of intron 2 into the c-fms promoter-reporter construct. The results suggest that expression of the c-fms gene in macrophages is controlled by sequences in intron 2 that act by regulating transcription elongation. Images PMID:8497248

  10. Molecular Characterization, mRNA Expression and Alternative Splicing of Ryanodine Receptor Gene in the Brown Citrus Aphid, Toxoptera citricida (Kirkaldy)

    PubMed Central

    Wang, Ke-Yi; Jiang, Xuan-Zhao; Yuan, Guo-Rui; Shang, Feng; Wang, Jin-Jun

    2015-01-01

    Ryanodine receptors (RyRs) play a critical role in regulating the release of intracellular calcium, which enables them to be effectively targeted by the two novel classes of insecticides, phthalic acid diamides and anthranilic diamides. However, less information is available about this target site in insects, although the sequence and structure information of target molecules are essential for designing new control agents of high selectivity and efficiency, as well as low non-target toxicity. Here, we provided sufficient information about the coding sequence and molecular structures of RyR in T. citricida (TciRyR), an economically important pest. The full-length TciRyR cDNA was characterized with an open reading frame of 15,306 nucleotides, encoding 5101 amino acid residues. TciRyR was predicted to embrace all the hallmarks of ryanodine receptor, typically as the conserved C-terminal domain with consensus calcium-biding EF-hands (calcium-binding motif) and six transmembrane domains, as well as a large N-terminal domain. qPCR analysis revealed that the highest mRNA expression levels of TciRyR were observed in the adults, especially in the heads. Alternative splicing in TciRyR was evidenced by an alternatively spliced exon, resulting from intron retention, which was different from the case of RyR in Myzus persicae characterized with no alternative splicing events. Diagnostic PCR analysis indicated that the splicing of this exon was not only regulated in a body-specific manner but also in a stage-dependent manner. Taken together, these results provide useful information for new insecticide design and further insights into the molecular basis of insecticide action. PMID:26154764

  11. Follicle-stimulating hormone receptor (FSHR) in Chinese alligator, Alligator sinensis: molecular characterization, tissue distribution and mRNA expression changes during the female reproductive cycle.

    PubMed

    Zhang, Rui; Zhang, Shengzhou; Zhu, Xue; Zhou, Yongkang; Wu, Xiaobing

    2015-05-01

    The follicle-stimulating hormone (FSH) plays a central role in vertebrate reproduction, with the actions of FSH mediated by FSH receptors (FSHRs) on the granulosa cells of the ovary. The present study reports the cloning and characterization of FSHR in Chinese alligator, Alligator sinensis (caFSHR), and its tissue distribution and mRNA expression changes during the reproductive cycle. The mature protein of caFSHR displays typical features of the glycoprotein hormone receptor family, but also contains some remarkable differences when compared with other vertebrate FSHRs. The deduced amino acid sequence of the caFSHR shares identity of 85% with Chinese softshell turtle, 84-87% with birds, 77-78% with mammals, 67-73% with amphibians and 51-58% with fishes. Phylogenetic tree analysis of the FSHR amino acid sequence indicated that alligators cluster into the bird branch. Tissue expression analysis showed that caFSHR was not only expressed in the ovary, but also in the stomach, intestine, pancreas liver and oviduct at similar levels, while it was not detectable in heart, thymus or thyroid. Expression of caFSHR in the ovary is high in May (breeding prophase) and peaks in July during the breeding period, where it is maintained at high levels through September (breeding anaphase). Expression decreases significantly in November (hibernating period) and then remains relatively low from January to March (hibernating period). These temporal changes in FSHR expression suggest that it plays an important role in promoting ovarian development during the female reproductive cycle of Chinese alligator.

  12. Human complement C3b/C4b receptor (CR1) mRNA polymorphism that correlates with the CR1 allelic molecular weight polymorphism

    SciTech Connect

    Holers, V.M.; Chaplin, D.D.; Leykam, J.F.; Gruner, B.A.; Kumar, V.; Atkinson, J.P.

    1987-04-01

    The human C3b/C4b receptor (CR1) is a M/sub r/ approx. = 200,000 single-chain integral membrane glycoprotein of human erythrocytes and leukocytes. It functions both as a receptor for C3b- and C4b-coated ligands and as a regulator of complement activation. Prior structural studies have defined an unusual molecular weight allelic polymorphism in which the allelic products differ in molecular weight by as much as 90,000. On peripheral blood cells there is codominant expression of CR1 gene products of M/sub r/ 190,000 (A), 220,000 (B), 160,000 (C), and 250,000 (D). Results of prior biosynthetic and tryptic peptide mapping experiments have suggested that the most likely basis for the allelic molecular weight differences if at the polypeptide level. In order to define further the molecular basis for these molecular weight differences, human CR1 was purified to homogeneity, tryptic peptide fragments were isolated by HPLC and sequenced, oligonucleotide probes were prepared, and a CR1 cDNA was identified. A subclone of this CR1 cDNA was used as a probe of RNA blots of Epstein-Barr virus-transformed cell lines expressing the allelic variants. Each allelic variant encodes two distinct transcripts. A mRNA size polymorphism was identified that correlated with the gene product molecular weight polymorphism. This finding, in addition to a prior report of several homologous repeats in CR1, is consistent with the hypothesis that the molecular weight polymorphism is determined at the genomic level and may have been generated by unequal crossing-over.

  13. mRNA levels of kisspeptins, kisspeptin receptors, and GnRH1 in the brain of chub mackerel during puberty.

    PubMed

    Ohga, Hirofumi; Adachi, Hayato; Matsumori, Kojiro; Kodama, Ryoko; Nyuji, Mitsuo; Selvaraj, Sethu; Kato, Keitaro; Yamamoto, Shinji; Yamaguchi, Akihiko; Matsuyama, Michiya

    2015-01-01

    Kisspeptin (Kiss) and its cognate receptor (Kiss1R), implicated in the neuroendocrine control of GnRH secretion in mammals, have been proposed to be the key factors in regulating puberty. However, the mechanisms underlying the initiation of puberty in fish are poorly understood. The chub mackerel Scomber japonicus expresses two forms of Kiss (kiss1 and kiss2) and two Kiss receptor (kissr1 and kissr2) genes in the brain, which exhibit sexually dimorphic changes during the seasonal reproductive cycle. This indicates that the kisspeptin system plays an important role in gonadal recrudescence of chub mackerel; however, the involvement of the kisspeptin system in the pubertal process has not been identified. In the present study, we examined the mRNA expression of kiss1, kiss2, kissr1, kissr2, and gnrh1 (hypophysiotropic form) in the brain of a chub mackerel during puberty. In male fish, kiss2, kissr1 and kissr2 levels increased significantly at 14weeks post-hatch (wph), synchronously with an increase in type A spermatogonial populations in the testis; kiss2 and gnrh1 levels significantly increased at 22wph, just before the onset of meiosis in the testes. In female fish, kiss2 increased significantly at 14wph, synchronously with an increase in the number of perinucleolar oocytes in the ovary; kiss1 and kiss2 levels significantly increased concomitantly with an increase in the kissr1, kissr2, and gnrh1 levels at 24wph, just before the onset of vitellogenesis in oocytes. The present results suggest positive involvement of the kisspeptin-GnRH system in the pubertal process in the captive reared chub mackerel.

  14. Calcitriol May Down-Regulate mRNA Over-Expression of Toll-Like Receptor-2 and -4, LL-37 and Proinflammatory Cytokines in Cultured Human Keratinocytes

    PubMed Central

    Jeong, Mi Sook; Kim, Ji-Yun; Lee, He In

    2014-01-01

    Background Although vitamin D analogs have been used in the topical treatment of psoriasis, their mechanisms of action are not well understand. Calcitriol, the hormonally active vitamin D3 metabolite, has been demonstrated to exert immunomodulatory effects in the skin by down-regulating the expression of Toll-like receptors (TLRs) and proinflammatory cytokines. Objective We investigated the effects of calcitriol on the expression of TLR2, TLR4, antimicrobial peptide LL-37, and proinflammatory cytokines in cultured human keratinocytes. Methods The mRNA expression levels of TLR2, TLR4, tumor necrosis factor α (TNF-α), interleukin (IL)-1β and LL-37 in cultured human keratinocytes were measured by real-time polymerase chain reaction (PCR) and reverse transcription (RT). Furthermore, we measured supernatant TNF-α levels by an enzyme-linked immunosorbent assay (ELISA) to confirm the effects of calcitriol on TLR2 and TLR4. Results As measured by RT-PCR and real-time PCR, calcitriol was found to suppress the lipopolysaccharide- and ultraviolet B radiation-mediated induction of expression of TLRs, LL-37 and proinflammatory cytokines such as TNF-α and IL-1β in normal human keratinocytes. The supernatant TNF-α levels measured by ELISA were also suppressed after treatment with calcitriol. Conclusion Calcitriol may down-regulate inflammatory stated over-expression of LL-37 and proinflammatory cytokines. PMID:24966627

  15. Generation of Interleukin-2 Receptor Gamma Gene Knockout Pigs from Somatic Cells Genetically Modified by Zinc Finger Nuclease-Encoding mRNA

    PubMed Central

    Watanabe, Masahito; Nakano, Kazuaki; Matsunari, Hitomi; Matsuda, Taisuke; Maehara, Miki; Kanai, Takahiro; Kobayashi, Mirina; Matsumura, Yukina; Sakai, Rieko; Kuramoto, Momoko; Hayashida, Gota; Asano, Yoshinori; Takayanagi, Shuko; Arai, Yoshikazu; Umeyama, Kazuhiro; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi

    2013-01-01

    Zinc finger nuclease (ZFN) is a powerful tool for genome editing. ZFN-encoding plasmid DNA expression systems have been recently employed for the generation of gene knockout (KO) pigs, although one major limitation of this technology is the use of potentially harmful genome-integrating plasmid DNAs. Here we describe a simple, non-integrating strategy for generating KO pigs using ZFN-encoding mRNA. The interleukin-2 receptor gamma (IL2RG) gene was knocked out in porcine fetal fibroblasts using ZFN-encoding mRNAs, and IL2RG KO pigs were subsequently generated using these KO cells through somatic cell nuclear transfer (SCNT). The resulting IL2RG KO pigs completely lacked a thymus and were deficient in T and NK cells, similar to human X-linked SCID patients. Our findings demonstrate that the combination of ZFN-encoding mRNAs and SCNT provides a simple robust method for producing KO pigs without genomic integration. PMID:24130776

  16. Glucocorticoid-induced changes in glucocorticoid receptor mRNA and protein expression in the human placenta as a potential factor for altering fetal growth and development.

    PubMed

    Bivol, Svetlana; Owen, Suzzanne J; Rose'Meyer, Roselyn B

    2016-02-05

    Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.

  17. Changes in plasma gonadotropins, inhibin and testosterone concentrations and testicular gonadotropin receptor mRNA expression during testicular active, regressive and recrudescent phase in the captive Japanese black bear (Ursus thibetanus japonicus).

    PubMed

    Iibuchi, Ruriko; Kamine, Akari; Shimozuru, Michito; Nio-Kobayashi, Junko; Watanabe, Gen; Taya, Kazuyoshi; Tsubota, Toshio

    2010-02-01

    Male Japanese black bears (Ursus thibetanus japonicus) have an explicit reproductive cycle. The objective of this study was to clarify the variation of plasma testosterone, FSH, inhibin, LH levels and testicular gonadotropin receptor mRNA expression of male bears associated with their testicular activity. Notably, this study investigated peripheral FSH concentration and localization of gonadotropin receptor mRNAs for the first time in male bears. Blood and testicular tissue samples were taken from captive, mature, male Japanese black bears during testicular active, regressive and recrudescent phases. Plasma hormone concentrations were measured by immunoassays, and gonadotropin receptor mRNA expression in the testis was investigated by in situ hybridization technique and also by real-time PCR. There were significant variations in plasma testosterone and inhibin concentrations. Changes in FSH concentration preceded these hormones with a similar tendency. Hormones started to increase during denning, and achieved the highest values at the end of the recrudescent phase for FSH and in the active phase for testosterone and inhibin. These changes in hormone concentrations were accompanied by testicular growth. In situ hybridization analysis revealed that FSH and LH receptor mRNA was possibly expressed in Sertoli cells and Leydig cells, respectively, as they are in other mammals. However, neither plasma LH concentration nor testicular gonadotropin receptor mRNA expression level varied significantly among the sampling months. These results suggest that FSH, inhibin and testosterone have roles in testicular activity in male bears. This study provides important endocrine information for comprehending seasonal reproductivity in male Japanese black bears.

  18. Expression of ryanodine receptor mRNA and sarcoplasmic Ca²⁺-ATPase mRNA in the myocardium and intracellular reorganization of cardiomyocytes in dyslipidemia and during verapamil treatment.

    PubMed

    Yuzhik, E I; Lushnikova, E L; Klinnikova, M G; Pichigin, V I; Nepomnyashchikh, L M

    2015-02-01

    In experiments on rats, atherogenic diet led to hypercholesterolemia, while addition of verapamil to the diet led to the development of hypertriglyceridemia in these animals. Dyslipidemia induced significant changes in the cardiomyocyte ultrastructure (lytic changes in myofibrils and sarcoplasmic matrix and aggravation of autophagocytosis) that were most pronounced after addition of mercazolyl alone to the diet. After 30-day atherogenic diet, we observed a decrease in the relative content of RyR2 mRNA (by 67-73%, p<0.01) and SERCA2a mRNA (by 75-91%, p<0.01) in the myocardium. In 64 days these parameters remained reduced: by 64-72% (p<0.05) and 54-62% (p<0.05), respectively. Verapamil treatment reduced the severity and number of lytic lesions in cardiomyocytes, induced considerable glycogen accumulation in the sarcoplasm and its sequestration, promoted normalization, and prevented pronounced decrease of the relative RyR2 mRNA and SERCA2a mRNA in rat myocardium.

  19. Balancing Arc synthesis, mRNA decay, and proteasomal degradation: maximal protein expression triggered by rapid eye movement sleep-like bursts of muscarinic cholinergic receptor stimulation.

    PubMed

    Soulé, Jonathan; Alme, Maria; Myrum, Craig; Schubert, Manja; Kanhema, Tambudzai; Bramham, Clive R

    2012-06-22

    Cholinergic signaling induces Arc/Arg3.1, an immediate early gene crucial for synaptic plasticity. However, the molecular mechanisms that dictate Arc mRNA and protein dynamics during and after cholinergic epochs are little understood. Using human SH-SY5Y neuroblastoma cells, we show that muscarinic cholinergic receptor (mAchR) stimulation triggers Arc synthesis, whereas translation-dependent RNA decay and proteasomal degradation strictly limit the amount and duration of Arc expression. Chronic application of the mAchR agonist, carbachol (Cch), induces Arc transcription via ERK signaling and release of calcium from IP(3)-sensitive stores. Arc translation requires ERK activation, but not changes in intracellular calcium. Proteasomal degradation of Arc (half-life ∼37 min) was enhanced by thapsigargin, an inhibitor of the endoplasmic calcium-ATPase pump. Similar mechanisms of Arc protein regulation were observed in cultured rat hippocampal slices. Functionally, we studied the impact of cholinergic epoch duration and temporal pattern on Arc protein expression. Acute Cch treatment (as short as 2 min) induces transient, moderate Arc expression, whereas continuous treatment of more than 30 min induces maximal expression, followed by rapid decline. Cholinergic activity associated with rapid eye movement sleep may function to facilitate long term synaptic plasticity and memory. Employing a paradigm designed to mimic intermittent rapid eye movement sleep epochs, we show that application of Cch in a series of short bursts generates persistent and maximal Arc protein expression. The results demonstrate dynamic, multifaceted control of Arc synthesis during mAchR signaling, and implicate cholinergic epoch duration and repetition as critical determinants of Arc expression and function in synaptic plasticity and behavior.

  20. Changes in androgen receptor mRNA expression in the forebrain and oviduct during the reproductive cycle of female leopard geckos, Eublepharis macularius.

    PubMed

    Rhen, Turk; Sakata, Jon T; Woolley, Sarah; Porter, Raymond; Crews, David

    2003-06-01

    Successful reproduction requires the coordination of reproductive physiology with behavior. The neural correlates of reproductive behavior have been elucidated in a variety of amphibians, mammals, and birds but relatively few studies have examined reptiles. Here we investigate differences in androgen receptor (AR) mRNA expression in the forebrain and oviduct between previtellogenic and late vitellogenic female leopard geckos, Eublepharis macularius. Plasma concentrations of testosterone (T) are low when females are previtellogenic and sexually unreceptive but increase dramatically during late vitellogenesis when females are receptive. In addition, receptivity can be induced by treatment with exogenous T. The relative abundance of AR-mRNA across various nuclei was greater in late vitellogenic than in previtellogenic females. This general pattern was observed in the medial preoptic area, anterior hypothalamus, external nucleus of the amygdala, dorsolateral aspect of the ventromedial hypothalamus, lateral septum, and periventricular hypothalamus. There were also clear differences in AR-mRNA expression among these nuclei. The pattern of gene expression observed in the brain was reversed within stromal cells of the oviduct where expression of AR-mRNA decreased from the previtellogenic stage to the late vitellogenic stage. Overall, these data demonstrate that T concentration in the plasma, abundance of AR-mRNA in the brain and oviduct, and sexual behavior change coordinately during the reproductive cycle of female leopard geckos. Although the function of AR in the female leopard gecko is not yet clear, our results are in accord with growing evidence that androgens regulate numerous aspects of female physiology and behavior in vertebrates.

  1. Peroxisome proliferator-activated receptor γ controls ingestive behavior, agouti-related protein, and neuropeptide Y mRNA in the arcuate hypothalamus.

    PubMed

    Garretson, John T; Teubner, Brett J W; Grove, Kevin L; Vazdarjanova, Almira; Ryu, Vitaly; Bartness, Timothy J

    2015-03-18

    Peroxisome proliferator-activated receptor γ (PPARγ) is clinically targeted for type II diabetes treatment; however, rosiglitazone (ROSI), a PPARγ agonist, increases food intake and body/fat mass as side-effects. Mechanisms for these effects and the role of PPARγ in feeding are not understood. Therefore, we tested this role in Siberian hamsters, a model of human energy balance, and C57BL/6 mice. We tested the following: (1) how ROSI and/or GW9662 (2-chloro-5-nitro-N-phenylbenzamide; PPARγ antagonist) injected intraperitoneally or into the third ventricle (3V) affected Siberian hamster feeding behaviors; (2) whether food deprivation (FD) co-increases agouti-related protein (AgRP) and PPARγ mRNA expression in Siberian hamsters and mice; (3) whether intraperitoneally administered ROSI increases AgRP and NPY in ad libitum-fed animals; (4) whether intraperitoneally administered PPARγ antagonism blocks FD-induced increases in AgRP and NPY; and finally, (5) whether intraperitoneally administered PPARγ modulation affects plasma ghrelin. Third ventricular and intraperitoneally administered ROSI increased food hoarding and intake for 7 d, an effect attenuated by 3V GW9662, and also prevented (intraperitoneal) FD-induced feeding. FD hamsters and mice increased AgRP within the arcuate hypothalamic nucleus with concomitant increases in PPARγ exclusively within AgRP/NPY neurons. ROSI increased AgRP and NPY similarly to FD, and GW9662 prevented FD-induced increases in AgRP and NPY in both species. Neither ROSI nor GW9662 affected plasma ghrelin. Thus, we demonstrated that PPARγ activation is sufficient to trigger food hoarding/intake, increase AgRP/NPY, and possibly is necessary for FD-induced increases in feeding and AgRP/NPY. These findings provide initial evidence that FD-induced increases in AgRP/NPY may be a direct PPARγ-dependent process that controls ingestive behaviors.

  2. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  3. The effects of recombinant bovine somatotropin (rbST) on tissue IGF-I, IGF-I receptor, and GH mRNA levels in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Biga, Peggy R; Schelling, Gerald T; Hardy, Ronald W; Cain, Kenneth D; Overturf, Kenneth; Ott, Troy L

    2004-02-01

    Numerous studies demonstrated that rbST increased growth rates in several fish species, and several species exhibit GH production in tissues other than the pituitary. The role of tissue GH and IGF-I in regulating fish growth is poorly understood. Therefore an experiment was conducted to examine the effects of rbST treatment on tissue GH, IGF-I, and IGF-I receptor-A (rA) expression in rainbow trout. Rainbow trout (550 +/- 10 g) received either intra-peritoneal injections of rbST (120 microg/g body weight) or vehicle on days 0 and 21, and tissue samples were collected on days 0, 0.5, 1, 3, 7, and 28 (n = 6/day/trt). Total RNA was isolated and assayed for steady-state levels of IGF-I, IGF-IrA, and GH mRNA using quantitative RT-PCR. Insulin-like growth factor-I mRNA levels increased in liver, gill, gonad, muscle, brain, and intestine in response to rbST treatment (P < 0.10). Liver IGF-I mRNA increased (P < 0.01) 0.5 day after treatment and remained elevated throughout the trial. Intestine IGF-I mRNA increased (P < 0.05) in treated fish from day 1 to day 3, then decreased to day 7 and increased again at day 28, and remained elevated above control levels throughout the trial. Gill IGF-I mRNA levels increased (P < 0.05) 1 day after treatment and remained elevated throughout the trial. Heart IGF-IrA mRNA levels decreased (P < 0.05) while gonad GH mRNA levels increased (P < 0.10) following rbST treatment. These results demonstrate that rbST treatment increased IGF-I mRNA levels in extra-hepatic tissues, and decreased heart IGF-IrA and increased gonad GH mRNA levels. Because the primary source for endocrine IGF-I is liver, the increased IGF-I mRNA reported in extra-hepatic tissues may indicate local paracrine/autocrine actions for IGF-I for local physiological functions.

  4. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA

    PubMed Central

    Munroe, Stephen H.; Morales, Christopher H.; Duyck, Tessa H.; Waters, Paul D.

    2015-01-01

    The α-thyroid hormone receptor gene (TRα) codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3’ end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30) located downstream of the alternative 3’splice site of TRα2 mRNA and antisense to the 3’UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing. PMID:26368571

  5. Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression

    PubMed Central

    2013-01-01

    Background Caligid copepods, also called sea lice, are fish ectoparasites, some species of which cause significant problems in the mariculture of salmon, where the annual cost of infection is in excess of €300 million globally. At present, caligid control on farms is mainly achieved using medicinal treatments. However, the continued use of a restricted number of medicine actives potentially favours the development of drug resistance. Here, we report transcriptional changes in a laboratory strain of the caligid Lepeophtheirus salmonis (Krøyer, 1837) that is moderately (~7-fold) resistant to the avermectin compound emamectin benzoate (EMB), a component of the anti-salmon louse agent SLICE® (Merck Animal Health). Results Suppression subtractive hybridisation (SSH) was used to enrich transcripts differentially expressed between EMB-resistant (PT) and drug-susceptible (S) laboratory strains of L. salmonis. SSH libraries were subjected to 454 sequencing. Further L. salmonis transcript sequences were available as expressed sequence tags (EST) from GenBank. Contiguous sequences were generated from both SSH and EST sequences and annotated. Transcriptional responses in PT and S salmon lice were investigated using custom 15 K oligonucleotide microarrays designed using the above sequence resources. In the absence of EMB exposure, 359 targets differed in transcript abundance between the two strains, these genes being enriched for functions such as calcium ion binding, chitin metabolism and muscle structure. γ-aminobutyric acid (GABA)-gated chloride channel (GABA-Cl) and neuronal acetylcholine receptor (nAChR) subunits showed significantly lower transcript levels in PT lice compared to S lice. Using RT-qPCR, the decrease in mRNA levels was estimated at ~1.4-fold for GABA-Cl and ~2.8-fold for nAChR. Salmon lice from the PT strain showed few transcriptional responses following acute exposure (1 or 3 h) to 200 μg L-1 of EMB, a drug concentration tolerated by PT lice, but

  6. Expression and localization of progesterone receptor membrane component 1 and 2 and serpine mRNA binding protein 1 in the bovine corpus luteum during the estrous cycle and the first trimester of pregnancy.

    PubMed

    Kowalik, Magdalena K; Rekawiecki, Robert; Kotwica, Jan

    2014-11-01

    The aim of this study was to evaluate the mRNA and protein expression and the localization of progesterone receptor membrane component 1 (PGRMC1), PGRMC2, and the PGRMC1 partner serpine mRNA binding protein 1 (SERBP1) in the bovine CL on Days 2 to 5, 6 to 10, 11 to 16, and 17 to 20 of the estrous cycle as well as during Weeks 3 to 5, 6 to 8, and 9 to 12 of pregnancy (n = 5-6 per each period). The highest levels of PGRMC1 and PGRMC2 mRNA expression were found on Days 6 to 16 (P < 0.05) and 11 to 16, respectively, of the estrous cycle and during pregnancy (P < 0.001). The level of PGRMC1 protein was the highest (P < 0.05) on Days 11 to 16 of the estrous cycle compared with the other stages of the estrous cycle and pregnancy, whereas PGRMC2 protein expression (P < 0.001) was the highest on Days 17 to 20 and also during pregnancy. The mRNA expression of SERBP1 was increased (P < 0.05) on Days 11 to 16, whereas the level of its protein product was decreased (P < 0.05) on Days 6 to 10 of the estrous cycle and was at its lowest (P < 0.001) on Days 17 to 20. In pregnant cows, the patterns of SERBP1 mRNA and protein expression remained constant and were comparable with those observed during the estrous cycle. Progesterone receptor membrane component 1 and PGRMC2 localized to both large and small luteal cells, whereas SERBP1 was observed mainly in small luteal cells and much less frequently in large luteal cells. All proteins were also localized in the endothelial cells of blood vessels. The data obtained indicate the variable expression of PGRMC1, PGRMC2, and SERBP1 mRNA and protein in the bovine CL and suggest that progesterone may regulate CL function via its membrane receptors during both the estrous cycle and pregnancy.

  7. The gastrointestinal tract as target of steroid hormone action: quantification of steroid receptor mRNA expression (AR, ERalpha, ERbeta and PR) in 10 bovine gastrointestinal tract compartments by kinetic RT-PCR.

    PubMed

    Pfaffl, M W; Lange, I G; Meyer, H H D

    2003-02-01

    We have examined the tissue-specific mRNA expression pattern of androgen receptor (AR), both estrogen receptor (ER) subtypes ERalpha and ERbeta and progestin receptor (PR) in 10 bovine gastrointestinal compartments. Goal of this study was to evaluate the deviating tissue sensitivities and the influence of the estrogenic active preparation Ralgro on the compartment-specific expression regulation. Ralgro contains Zeranol which shows strong estrogenic and anabolic effects. Eight heifers were treated for 8 weeks with Ralgro at different dosages (0, 1, 3, and 10 times). To quantify the very low abundant steroid receptor mRNA transcripts sensitive and reliable real-time (kinetic) reverse transcription (RT)-PCR quantification methods were validated on the LightCycler. Expression results indicate the existence of AR and both ER subtypes in all 10 gastrointestinal compartments. PR receptor was expressed at very low abundancy. Gastrointestinal tissues exhibit a specific ERalpha and ERbeta expression pattern with high expression levels for both subtypes in rectum, colon and ileum. With increasing Zeranol concentrations a significant down-regulation for ERalpha and ERbeta was observed in jejunum (P<0.001 and <0.05, respectively). Significant up-regulations under estrogen treatment could be shown in abomasum for ERalpha (P<0.05) and in rectum for ERbeta (P<0.001). The authors conclude, that especially estrogens and the expression of their corresponding receptor subtypes may play an important role in the modulation and regulation in gastric as well as gut functions, cell proliferation and possibly in the pathophysiology of cell cancer. The different expression patterns of ERalpha and ERbeta can be regarded as support of the hypothesis that the subtype proteins may have different biological functions in the gastrointestinal tract. AR and PR seem to be not estrogen dependent.

  8. Medium dose ultraviolet A1 phototherapy and mRNA expression of interleukin 8, interferon γ, and chemokine receptor 4 in acute skin lesions in atopic dermatitis

    PubMed Central

    Malinowska, Karolina; Sysa-Jedrzejowska, Anna; Wozniacka, Anna

    2016-01-01

    Introduction Mechanisms responsible for UVA1 efficacy in atopic dermatitis (AD) are not fully elucidated. Aim To investigate IL-8, CCR-4, and IFN-γ mRNA expression in AD before and after UVA1, to identify correlations among them, and to determine whether and to what degree mRNA expression is influenced by UVA1. Material and methods Twenty-five patients with AD underwent medium dose UVA1-phototherapy at daily dosages of 10, 20, 30, 45, and then continuing 45 J/cm2 up to 20 days, from Monday to Friday for 4 weeks. Before and after UVA1, biopsies from acute skin lesions were studied using reverse-transcription and RT-PCR. Results The levels of CCR-4 mRNA correlated with those of IFN-γ, both before and after UVA1 phototherapy (p < 0.05). A significant correlation was found after UVA1 between mRNA levels of IL-8 and IFN-γ (p < 0.05). After UVA1 an increase in IL-8 mRNA expression in comparison to the baseline assessment (p = 0.02) was found, while no significant difference was revealed in the expression of CCR-4 and IFN-γ mRNA. UVA1 improved both SCORAD and severity of AD (p < 0.001). SCORAD and the severity of AD did not correlate with the degree of expression of measured cytokine mRNA, neither before nor after UVA1. Conclusions CCR-4 is expressed in parallel with IFN-γ in acute skin lesions of patients with AD both before and after UVA1 phototherapy. UVA1 significantly improves SCORAD index, lessens the severity of AD and increases the expression of IL-8, with no direct effects on other studied molecules. PMID:27512350

  9. Distribution of a Y1 receptor mRNA in the brain of two Lamprey species, the sea lamprey (Petromyzon marinus) and the river Lamprey (Lampetra fluviatilis).

    PubMed

    Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A

    2013-02-01

    The neuropeptide Y system consists of several neuropeptides acting through a broad number of receptor subtypes, the NPY family of receptors. NPY receptors are divided into three subfamilies (Y1, Y2, and Y5) that display a complex evolutionary history due to local and large-scale gene duplication events and gene losses. Lampreys emerged from a basal branch of the tree of vertebrates and they are in a key position to shed light on the evolutionary history of the NPY system. One member of the Y1 subfamily has been reported in agnathans, but the phylogenetic tree of the Y1 subfamily is not yet clear. We cloned the sequences of the Y1-subtype receptor of Petromyzon marinus and Lampetra fluviatilis to study the expression pattern of this receptor in lampreys by in situ hybridization and to analyze the phylogeny of the Y1-subfamily receptors in vertebrates. The phylogenetic study showed that the Y1 receptor of lampreys is basal to the Y1/6 branch of the Y1-subfamily receptors. In situ hybridization showed that the Y1 receptor is widely expressed throughout the brain of lampreys, with some regions showing numerous positive neurons, as well as the presence of numerous cerebrospinal fluid-contacting cells in the spinal cord. This broad distribution of the lamprey Y1 receptor is more similar to that found in other vertebrates for the Y1 receptor than that of the other members of the Y1 subfamily: Y4, Y8, and Y6 receptors. Both phylogenetic relationship and expression pattern suggest that this receptor is a Y1 receptor.

  10. Methamphetamine-induced stereotypy correlates negatively with patch-enhanced prodynorphin and arc mRNA expression in the rat caudate putamen: the role of mu opioid receptor activation.

    PubMed

    Horner, Kristen A; Noble, Erika S; Gilbert, Yamiece E

    2010-06-01

    Amphetamines induce stereotypy, which correlates with patch-enhanced c-Fos expression the patch compartment of caudate putamen (CPu). Methamphetamine (METH) treatment also induces patch-enhanced expression of prodynorphin (PD), arc and zif/268 in the CPu. Whether patch-enhanced activation of any of these genes correlates with METH-induced stereotypy is unknown, and the factors that contribute to this pattern of expression are poorly understood. Activation of mu opioid receptors, which are expressed by the neurons of the patch compartment, may underlie METH-induced patch-enhanced gene expression and stereotypy. The current study examined whether striatal mu opioid receptor blockade altered METH-induced stereotypy and patch-enhanced gene expression, and if there was a correlation between the two responses. Animals were intrastriatally infused with the mu antagonist CTAP (10 microg/microl), treated with METH (7.5 mg/kg, s.c.), placed in activity chambers for 3h, and then sacrificed. CTAP pretreatment attenuated METH-induced increases in PD, arc and zif/268 mRNA expression and significantly reduced METH-induced stereotypy. Patch-enhanced PD and arc mRNA expression in the dorsolateral CPu correlated negatively with METH-induced stereotypy. These data indicate that mu opioid receptor activation contributes to METH-induced gene expression in the CPu and stereotypy, and that patch-enhanced PD and arc expression may be a homeostatic response to METH treatment.

  11. Decreased α4β2 nicotinic receptor number in the absence of mRNA changes suggest post-transcriptional regulation in the spontaneously hypertensive rat model of ADHD

    PubMed Central

    Wigestrand, MB; Mineur, YS; Heath, CJ; Fonnum, F; Picciotto, MR; Walaas, SI

    2011-01-01

    The spontaneously hypertensive rat (SHR) is widely used as a model of attention-deficit/hyperactivity disorder (ADHD). Deficits in central nicotinic receptors (nAChRs) have previously been observed in SHRs, which is interesting since epidemiological studies have identified an association between smoking and ADHD symptoms in humans. Here we examine whether nAChR deficits in SHRs compared to Wistar Kyoto rat (WKY) controls are nAChR subtype-specific and whether these deficits correlate with changes at the level of mRNA transcription in specific brain regions. Levels of binding sites (Bmax) and dissociation constants (Kd) for nAChRs were determined from saturation curves of high-affinity [3H]epibatidine- and [3H]MLA binding to membranes from cortex, striatum, hippocampus and cerebellum. In additional brain regions, nAChRs were examined by autoradiography with [125I]A-85380 and [125I]α-bungarotoxin. Levels of mRNA encoding nAChR subunits were measured using quantitative real-time PCR (qPCR). We show that the number of α4β2 nAChR binding sites is lower globally in the SHR brain compared to WKY in the absence of significant differences in mRNA levels, with the exception of lower α4 mRNA in cerebellum of SHR compared to WKY. Further, nAChR deficits were subtype- specific because no strain difference was found in α7 nAChR binding or α7 mRNA levels. Our results suggest that the lower α4β2 nAChR number in SHR compared to WKY may be a consequence of dysfunctional post-transcriptional regulation of nAChRs. PMID:21824140

  12. Role of endothelium and nitric oxide in histamine-induced responses in human cranial arteries and detection of mRNA encoding H1- and H2-receptors by RT-PCR

    PubMed Central

    Jansen-Olesen, Inger; Ottosson, Anders; Cantera, Leonor; Strunk, Sebastian; Hjorth Lassen, Lisbeth; Olesen, Jes; Mortensen, Anders; Engel, Ulla; Edvinsson, Lars

    1997-01-01

    Histamine induces relaxation of human cranial arteries. Studies have revealed that the relaxant histamine H1-receptor predominates in human cerebral and the H2-receptor in temporal arteries, while H1- and H2-receptors are of equal importance in the middle meningeal artery. The purpose of the present study was to examine the role of the endothelium and nitric oxide in histamine-induced responses and to show the presence of mRNA encoding H1- and H2-receptors in human cranial arteries. Electrophoresis of polymerase chain reaction (PCR) products from human cerebral, middle meningeal and temporal arteries, demonstrated products corresponding to mRNA encoding both H1- and H2-receptors in arteries with and without endothelium. The amplified PCR products were sequenced and showed 100% homology with the published sequences of these histamine receptors. A sensitive in vitro system was used to study vasomotor responses to histamine. In precontracted cerebral, middle meningeal and temporal arteries with and without endothelium, histamine caused a concentration-dependent relaxation with Imax values between 87% and 81% and pIC50 values between 8.14 and 7.15. In arteries without endothelium the histamine-induced relaxation was significantly less potent (Imax values between 87% and 66% and pIC50 values between 7.01 and 6.67) than in cranial arteries with an intact endothelium. The addition of histamine to arteries without endothelium and pretreated with the histamine H2-antagonist, cimetidine (10−5 M), caused a concentration-dependent contraction of the cranial arteries with Emax values between 86% and 29% and pEC50 values between 7.53 and 6.77. This contraction was blocked by the histamine H1-receptor antagonist, mepyramine (10−7 M), and even turned into a relaxation with Imax values between 84% and 14% and pIC50 values between 7.42 and 5.86. The nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 3×10−5 M) significantly inhibited the relaxant

  13. In vivo intra-luteal implants of prostaglandin (PG) E1 or E2 (PGE1, PGE2) prevent luteolysis in cows. II: mRNA for PGF2α, EP1, EP2, EP3 (A-D), EP3A, EP3B, EP3C, EP3D, and EP4 prostanoid receptors in luteal tissue.

    PubMed

    Weems, Yoshie S; Bridges, Phillip J; Jeoung, Myoungkun; Arreguin-Arevalo, J Alejandro; Nett, Torrance M; Vann, Rhonda C; Ford, Stephen P; Lewis, Andrew W; Neuendorff, Don A; Welsh, Thomas H; Randel, Ronald D; Weems, Charles W

    2012-01-01

    Previously, it was reported that chronic intra-uterine infusion of PGE(1) or PGE(2) every 4h inhibited luteolysis in ewes by altering luteal mRNA for luteinizing hormone (LH) receptors and unoccupied and occupied luteal LH receptors. However, estradiol-17β or PGE(2) given intra-uterine every 8h did not inhibit luteolysis in cows, but infusion of estradiol+PGE(2) inhibited luteolysis. In contrast, intra-luteal implants containing PGE(1) or PGE(2) in Angus or Brahman cows also inhibited the decline in circulating progesterone, mRNA for LH receptors, and loss of unoccupied and occupied receptors for LH to prevent luteolysis. The objective of this experiment was to determine how intra-luteal implants of PGE(1) or PGE(2) alter mRNA for prostanoid receptors and how this could influence luteolysis in Brahman or Angus cows. On day-13 Angus cows received no intra-luteal implant and corpora lutea were retrieved or Angus and Brahman cows received intra-luteal silastic implants containing Vehicle, PGE(1), or PGE(2) and corpora lutea were retrieved on day-19. Corpora lutea slices were analyzed for mRNA for prostanoid receptors (FP, EP1, EP2, EP3 (A-D), EP3A, EP3B, EP3C, EP3D, and EP4) by RT-PCR. Day-13 Angus cow luteal tissue served as pre-luteolytic controls. mRNA for FP receptors decreased in day-19 Vehicle controls compared to day-13 Vehicle controls regardless of breed. PGE(1) and PGE(2) up-regulated FP gene expression on day-19 compared to day-19 Vehicle controls regardless of breed. EP1 mRNA was not altered by any treatment. PGE(1) and PGE(2) down-regulated EP2 and EP4 mRNA compared to day-19 Vehicle controls regardless of breed. PGE(1) or PGE(2) up-regulated mRNA EP3B receptor subtype compared to day-19 Vehicle control cows regardless of breed. The similarities in relative gene expression profiles induced by PGE(1) and PGE(2) support their agonistic effects. We conclude that both PGE(1) and PGE(2) may prevent luteolysis by altering expression of mRNA for prostanoid

  14. Glial inhibitors influence the mRNA and protein levels of mGlu2/3, 5 and 7 receptors and potentiate the analgesic effects of their ligands in a mouse model of neuropathic pain.

    PubMed

    Osikowicz, Maria; Skup, Malgorzata; Mika, Joanna; Makuch, Wioletta; Czarkowska-Bauch, Julita; Przewlocka, Barbara

    2009-12-15

    Metabotropic glutamate (mGlu) receptors, which are present on neurons and glial cells, have been shown to play a role in neuropathic pain. The present study sought to investigate how the glial inhibitors minocycline and pentoxifylline alter the effect that chronic constriction injury (CCI) has on the expression of mGlu receptors and on their associated ligands. RT-PCR analysis revealed that seven days after CCI, the mRNA levels of glial markers C1q and GFAP, as well as those of mGlu5 and mGlu3, but not mGlu7, were elevated in the lumbar spinal cord - ipsilateral to the injury. The protein levels of the microglial marker OX42, the astroglial marker GFAP, and mGlu5 receptor protein were increased, whereas the levels of mGlu2/3 and mGlu7 receptor proteins were reduced. Preemptive and repeated intraperitoneal (i.p.) administration (16 and 1h before nerve injury and then twice daily for seven days) of minocycline (30mg/kg) and pentoxifylline (20mg/kg) prevented the injury-induced changes in the levels of mGlu3 and mGlu5 receptor mRNAs and the injury-induced changes in the protein levels of all the receptors. Repeated administration of minocycline and pentoxifylline significantly attenuated CCI-induced allodynia (von Frey test) and hyperalgesia (cold plate test) measured on day seven after injury and potentiated the antiallodynic and antihyperalgesic effects of single i.p. and intrathecal (i.t.) injections of mGlu receptor ligands: MPEP, LY379268 or AMN082. We conclude that attenuation of injury-induced glial activation can reduce glutamatergic activity, thereby contributing to regulation of pain sensation.

  15. A spontaneous deletion of α-synuclein is associated with an increase in CB1 mRNA transcript and receptor expression in the hippocampus and amygdala: effects on alcohol consumption

    PubMed Central

    López-Jiménez, Alejandro; Walter, Nicole A. R.; Giné, Elena; Santos, Ángel; Echeverry-Alzate, Victor; Bühler, Kora-Mareen; Olmos, Pedro; Giezendanner, Stéphanie; Moratalla, Rosario; Montoliu, Lluis; Buck, Kari J.; López-Moreno, Jose Antonio

    2014-01-01

    α-Synuclein (α-syn) protein and endocannabinoid CB1 receptors are primarily located in presynaptic terminals. An association between α-syn and CB1 receptors has recently been established in Parkinson’s disease, but it is completely unknown whether there is an association between these two proteins in alcohol addiction. Therefore, we aimed to examine the α-syn mRNA transcript and protein expression levels in the prefrontal cortex, striatum, amygdala and hippocampus. These brain regions are the most frequently implicated in alcohol and other drug addiction. In these studies, we used C57BL/6 mice carrying a spontaneous deletion of the α-syn gene (C57BL/6Snca−/−) and their respective controls (C57BL/6Snca+/+). These animals were monitored for spontaneous alcohol consumption (3–10%) and their response to a hypnotic-sedative dose of alcohol (3 g/kg) was also assessed. Compared with the C57BL/6Snca+/+ mice, we found that the C57BL/6Snca−/− mice exhibited a higher expression level of the CB1 mRNA transcript and CB1 receptor in the hippocampus and amygdala. Furthermore, C57BL/6Snca−/− mice showed an increase in alcohol consumption when offered a 10% alcohol solution. There was no significant difference in sleep time after the injection of 3 g/kg alcohol. These results are the first to reveal an association between α-syn and the CB1 receptor in the brain regions that are most frequently implicated in alcohol and other drug addictions. PMID:23345080

  16. Modulation of hepatic apolipoprotein B, 3-hydroxy-3-methylglutaryl-CoA reductase and low-density lipoprotein receptor mRNA and plasma lipoprotein concentrations by defined dietary fats. Comparison of trimyristin, tripalmitin, tristearin and triolein.

    PubMed Central

    Bennett, A J; Billett, M A; Salter, A M; Mangiapane, E H; Bruce, J S; Anderton, K L; Marenah, C B; Lawson, N; White, D A

    1995-01-01

    Different dietary fatty acids exert specific effects on plasma lipids but the mechanism by which this occurs is unknown. Hamsters were fed on low-cholesterol diets containing triacylglycerols enriched in specific saturated fatty acids, and effects on plasma lipids and the expression of genes involved in hepatic lipoprotein metabolism were measured. Trimyristin and tripalmitin caused significant rises in low-density lipoprotein (LDL) cholesterol which were accompanied by significant reductions in hepatic LDL receptor mRNA levels. Tripalmitin also increased hepatic expression of the apolipoprotein B gene, implying an increased production of LDL via very-low-density lipoprotein (VLDL) and decreased removal of LDL in animals fed this fat. Hepatic levels of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA did not vary significantly between the groups. Compared with triolein, tristearin had little effect on hepatic gene expression or total plasma cholesterol. However, it caused a marked decrease in VLDL cholesterol and a rise in LDL cholesterol such that overall it appeared to be neutral. Lipid analysis suggested a rapid desaturation of much of the dietary stearate. The differential changes in plasma lipids and hepatic mRNA levels induced by specific dietary fats suggests a role for fatty acids or a metabolite thereof in the regulation of the expression of genes involved in lipoprotein metabolism. PMID:7575449

  17. Cloning of partial cDNAs for the chicken glucocorticoid and mineralocorticoid receptors and characterization of mRNA levels in the anterior pituitary gland during chick embryonic development.

    PubMed

    Porter, Tom E; Ghavam, Sarvin; Muchow, Michael; Bossis, Ioannis; Ellestad, Laura

    2007-08-01

    Virtually nothing is known about glucocorticoid receptor (GR) or mineralocorticoid receptor (MR) gene expression in any avian species. Here we report the cloning of partial cDNAs for chicken GR and MR. These partial cDNAs were used as probes to characterize expression of GR and MR mRNA and to identify the full-length transcripts within the chicken genome. Chicken GR and MR sequences predicted from the genome sequence were compared with those of representatives of other vertebrate classes. GR and MR genes are located on chicken chromosomes 13 and 4, respectively. Northern blotting and reverse transcription-polymerase chain reaction (RT-PCR) results indicate that GR and MR are widely expressed in many tissues. Characterization of mRNA levels in the anterior pituitary gland during chick embryonic development by quantitative real time RT-PCR demonstrates decreased MR and increased GR gene expression between embryonic days 12 and 17. Plasma levels of corticosteroids increased during this same period. This is the first study of GR and MR gene expression in any avian species and the first analysis of changes in pituitary MR gene expression during embryonic development of any species.

  18. Effects of PCB 126 and PCB 153 on secretion of steroid hormones and mRNA expression of steroidogenic genes (STAR, HSD3B, CYP19A1) and estrogen receptors (ERα, ERβ) in prehierarchical chicken ovarian follicles.

    PubMed

    Sechman, Andrzej; Batoryna, Marta; Antos, Piotr A; Hrabia, Anna

    2016-12-15

    The objective of this study was to assess the in vitro effects of dioxin-like PCB 126 and non-dioxin-like PCB 153 on basal and ovine LH (oLH)-stimulated testosterone (T) and estradiol (E2) secretion and expression of steroidogenic genes (STAR, HSD3B and CYP19A1) and estrogen receptors α (ERα) and β (ERβ) in white (WF) and yellowish (YF) prehierarchical follicles of the hen ovary. Steroid concentrations in a medium and gene expression in follicles following 6h of exposition were determined by RIA and real-time qPCR, respectively. Both PCBs increased basal and oLH-stimulated T secretion by the WF follicles. PCB 126 reduced basal E2 secretion by the WF follicles. PCB 153 elevated but PCB 126 reduced oLH-stimulated E2 secretion by the prehierarchical follicles. PCB 126 increased basal STAR and HSD3B and reduced CYP19A1 mRNA expression in these follicles. PCB 153 increased basal expression of STAR and HSD3B in YF follicles, but diminished HSD3B mRNA levels in the WF. The studied PCBs had an opposite effect on basal and oLH-stimulated CYP19A1 mRNA expression in prehierarchical follicles. Both PCBs modulated basal and inhibited oLH-stimulated ERα and ERβ gene expression in the prehierarchical follicles. In conclusion, data of the current study demonstrate the congener-specific effects of PCBs on sex steroid secretion by prehierarchical follicles of the chicken ovary, which are at least partly related to STAR, HSD3B and CYP19A1 gene expression. It is suggested that PCBs, by influencing follicular steroidogenesis and expression of estrogen receptors, may impair development and selection of yellowish follicles to the preovulatory hierarchy.

  19. Analysis of the Toll-Like Receptor 2-2 (TLR2-2) and TLR4 mRNA Expression in the Intestinal Mucosal Immunity of Broilers Fed on Diets Supplemented with Nickel Chloride

    PubMed Central

    Wu, Bangyuan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Huang, Jianying

    2014-01-01

    Toll-like receptor (TLRs) are important innate immune receptors, and TLR2 and TLR4 play an important role in intestinal mucosal innate immunity. It has been found that nickel (Ni) can affect the immune system in broilers. The purpose of this study was to analyze changes in TLR2-2 and TLR4 mRNA expression levels in the intestinal mucosal immunity system of broilers induced by dietary nickel chloride (NiCl2) using quantitative real-time polymerase chain reaction (qRT-PCR) assays. Two hundred and forty one-day-old avian broilers were divided into four groups and fed on a corn-soybean basal diet as control diet or the same basal diet supplemented with 300, 600 and 900 mg/kg of NiCl2 for 42 days. Results showed that the TLR2-2 and TLR4 mRNA expression levels in the intestinal mucosa and the cecal tonsil were lower (p < 0.05 or p < 0.01) in the 300, 600 and 900 mg/kg groups than those in the control group. It was concluded that dietary NiCl2 in excess of 300 mg/kg could reduce TLR2-2 and TLR4 mRNA expression levels in the intestinal mucosa and cecal tonsil in broilers, implying that the innate immunity in intestinal mucosal immune system could be impaired by pathways involving injured surface epithelium cells or/and the inhibition of the TLR signal transduction. PMID:24394214

  20. Evaluation of Alpha 1-Antitrypsin and the Levels of mRNA Expression of Matrix Metalloproteinase 7, Urokinase Type Plasminogen Activator Receptor and COX-2 for the Diagnosis of Colorectal Cancer

    PubMed Central

    Bujanda, Luis; Sarasqueta, Cristina; Cosme, Angel; Hijona, Elizabeth; Enríquez-Navascués, José M.; Placer, Carlos; Villarreal, Eloisa; Herreros-Villanueva, Marta; Giraldez, María D.; Gironella, Meritxell; Balaguer, Francesc; Castells, Antoni

    2013-01-01

    Background Colorectal cancer (CRC) is the second most common cause of death from cancer in both men and women in the majority of developed countries. Molecular tests of blood could potentially provide this ideal screening tool. Aim Our objective was to assess the usefulness of serum markers and mRNA expression levels in the diagnosis of CRC. Methods In a prospective study, we measured mRNA expression levels of 13 markers (carbonic anhydrase, guanylyl cyclase C, plasminogen activator inhibitor, matrix metalloproteinase 7 (MMP7), urokinase-type plasminogen activator receptor (uPAR), urokinase-type plasminogen activator, survivin, tetranectin, vascular endothelial growth factor (VEGF), cytokeratin 20, thymidylate synthase, cyclooxygenase 2 (COX-2), and CD44) and three proteins in serum (alpha 1 antitrypsin, carcinoembryonic antigen (CEA) and activated C3 in 42 patients with CRC and 33 with normal colonoscopy results. Results Alpha 1-antitrypsin was the serum marker that was most useful for CRC diagnosis (1.79±0.25 in the CRC group vs 1.27±0.25 in the control group, P<0.0005). The area under the ROC curve for alpha 1-antitrypsin was 0.88 (0.79–0.96). The mRNA expression levels of five markers were statistically different between CRC cases and controls: those for which the ROC area was over 75% were MMP7 (0.81) and tetranectin (0.80), COX-2 (0.78), uPAR (0.78) and carbonic anhydrase (0.77). The markers which identified early stage CRC (Stages I and II) were alpha 1-antitrypsin, uPAR, COX-2 and MMP7. Conclusions Serum alpha 1-antitrypsin and the levels of mRNA expression of MMP7, COX-2 and uPAR have good diagnostic accuracy for CRC, even in the early stages. PMID:23300952

  1. The thyroid hormone receptor (TR) beta-selective agonist GC-1 inhibits proliferation but induces differentiation and TR beta mRNA expression in mouse and rat osteoblast-like cells.

    PubMed

    Beber, Eduardo H; Capelo, Luciane P; Fonseca, Tatiana L; Costa, Cristiane C; Lotfi, Claudimara F; Scanlan, Thomas S; Gouveia, Cecilia H A

    2009-04-01

    Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta1 over TRalpha1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TRalpha1 than TRbeta1 mRNA in rat (approximately 20-90%) and mouse (approximately 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TRalpha1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TRbeta1 mRNA expression increases (approximately 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TRbeta1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TRbeta1 mRNA expression to a similar extent in both cell lineages (approximately 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TRbeta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.

  2. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory.

    PubMed

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-07-27

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R(2) of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system.

  3. Ligand, receptor, and cell type-dependent regulation of ABCA1 and ABCG1 mRNA in prostate cancer epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent evidence suggests that the liver X receptor (LXR) is a potential anti-cancer target in prostate carcinoma. There is little characterization, however, of how the two major isoforms LXRa or LXRß regulate the LXR-responsive genes ATP-binding cassette sub-family A 1 (ABCA1) and sub-family member ...

  4. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice.

    PubMed

    Moreno Ávila, Claudia Leticia; Limón-Pacheco, Jorge H; Giordano, Magda; Rodríguez, Verónica M

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system.

  5. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice

    PubMed Central

    Moreno Ávila, Claudia Leticia

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system. PMID:27375740

  6. Alteration in NMDA receptor subunit mRNA expression in vulnerable and resistant regions of in vitro ischemic rat hippocampal slices.

    PubMed

    Small, D L; Poulter, M O; Buchan, A M; Morley, P

    1997-08-29

    Brain insults, including cerebral ischemia, can alter glutamate receptor subunit expression in vulnerable neurons. Understanding these post-ischemic changes in glutamate receptors could enhance our ability to identify specific, novel neuroprotective compounds. Reverse transcription-polymerase chain reaction (RT-PCR) amplification was used to quantify the altered expression of the N-methyl-D-aspartate (NMDA) NR2A, NR2B and NR2C subunits relative to one another in rat hippocampal slices in resistant and vulnerable regions following in vitro oxygen-glucose deprivation. Ninety minutes after re-oxygenation and return to 10 mM glucose, there was a significant increase in the expression of NR2C relative to NR2B and NR2A in the slice as a whole, as well as in the selectively vulnerable CA1 region and the resistant CA3 and dentate gyrus regions.

  7. Selective estrogen receptor-beta (SERM-beta) compounds modulate raphe nuclei tryptophan hydroxylase-1 (TPH-1) mRNA expression and cause antidepressant-like effects in the forced swim test.

    PubMed

    Clark, J A; Alves, S; Gundlah, C; Rocha, B; Birzin, E T; Cai, S-J; Flick, R; Hayes, E; Ho, K; Warrier, S; Pai, L; Yudkovitz, J; Fleischer, R; Colwell, L; Li, S; Wilkinson, H; Schaeffer, J; Wilkening, R; Mattingly, E; Hammond, M; Rohrer, S P

    2012-11-01

    Estrogen acts through two molecularly distinct receptors termed estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) which bind estradiol with similar affinities and mediate the effects of estrogen throughout the body. ERα plays a major role in reproductive physiology and behavior, and mediates classic estrogen signaling in such tissues as the uterus, mammary gland, and skeleton. ERβ, however, modulates estrogen signaling in the ovary, the immune system, prostate, gastrointestinal tract, and hypothalamus, and there is some evidence that ERβ can regulate ERα activity. Moreover, ERβ knockout studies and receptor distribution analyses in the CNS suggest that this receptor may play a role in the modulation of mood and cognition. In recent years several ERβ-specific compounds (selective estrogen receptor beta modulators; SERM-beta) have become available, and research suggests potential utility of these compounds in menopausal symptom relief, breast cancer prevention, diseases that have an inflammatory component, osteoporosis, cardiovascular disease, and inflammatory bowel disease, as well as modulation of mood, and anxiety. Here we demonstrate an antidepressant-like effect obtained using two SERM-beta compounds, SERM-beta1 and SERM-beta2. These compounds exhibit full agonist activity at ERβ in a cell based estrogen response element (ERE) transactivation assay. SERM-beta1 and 2 are non-proliferative with respect to breast as determined using the MCF-7 breast cancer cell-based assay and non-proliferative in the uterus as determined by assessing the effects of SERM-beta compounds on immature rat uterine weight and murine uterine weight. In vivo SERM-beta1 and 2 are brain penetrant and display dose dependent efficacy in the murine dorsal raphe assays for induction of tryptophan hydroxylase mRNA and progesterone receptor protein. These compounds show activity in the murine forced swim test and promote hippocampal neurogenesis acutely in rats. Taken

  8. The effects of insulin and follicle-simulating hormone (FSH) during in vitro development of ovarian goat preantral follicles and the relative mRNA expression for insulin and FSH receptors and cytochrome P450 aromatase in cultured follicles.

    PubMed

    Chaves, Roberta N; Duarte, Ana Beatriz G; Rodrigues, Giovanna Q; Celestino, Juliana J H; Silva, Gerlane M; Lopes, Claudio Afonso P; Almeida, Anderson P; Donato, Mariana A M; Peixoto, C A; Moura, Arlindo A A; Lobo, Carlos H; Locatelli, Yann; Mermillod, Pascalle; Campello, Claudio C; Figueiredo, Jose Ricardo

    2012-09-01

    The actions of different concentrations of insulin alone or in combination with follicle-stimulating hormone (FSH) were evaluated by in vitro follicular development and mRNA expression of cytochrome P450 aromatase (CYP19A1) and as receptors for insulin (INSR) and FSH (FSHR) from isolated, cultured goat preantral follicles. Goat preantral follicles were microdissected and cultured for 18 days in the absence or presence of insulin (5 and 10 ng/ml or 10 μg/ml) alone or in combination with FSH. After 18 days, the addition of the maximum concentration of insulin to the culture medium reduced follicular survival and antrum formation rates significantly compared to the other treatments. However, when FSH was added to the culture medium, no differences between these two parameters were observed. Preantral and antral follicles from the fresh control as well as from all cultured follicles still presented a normal ultrastructural pattern. In medium supplemented with FSH, only insulin at 10 ng/ml presented oocytes with higher rates of meiosis resumption compared to control, as well as oocytes in metaphase II. Treatment with insulin (10 ng/ml) plus FSH resulted in significantly increased levels of INSR and CYP19A1 mRNA compared to that with other treatments. In conclusion, 10 ng/ml insulin associated with FSH was more efficient in promoting resumption of oocyte meiosis, maintaining survival, stimulating follicular development, and increasing expression of the INSR and CYP19A1 genes in goat preantral follicles.

  9. Peroxisome proliferator-activated receptor alpha1 in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA tissue expression and transcriptional regulation by insulin in vivo and in vitro.

    PubMed

    Zheng, Jia-Lang; Zhuo, Mei-Qin; Luo, Zhi; Song, Yu-Feng; Pan, Ya-Xiong; Huang, Chao; Hu, Wei; Chen, Qi-Liang

    2015-05-01

    Peroxisome proliferator-activated receptor alpha1 (PPARα1) cDNA was isolated from liver of yellow catfish Pelteobagrus fulvidraco by RT-PCR and RACE. Its molecular characterization, tissue expression and transcriptional regulation by insulin in vitro and in vivo were determined. PPARα1 mRNA covered 1879 bp, with an open reading frame (ORF) of 1410 bp encoding 469 amino acid residues, a 5'-untranslated region (UTR) of 49 bp, and a 3'-UTR of 421 bp. PPARα1 consisted of 4 domains, the A/B domain, DNA-binding domain (DBD), D domain, and ligand-binding domain (LBD). The predicted tertiary structure of yellow catfish PPARα1 showed an increased size of the main cavity that was made up of side chains from helices 3, 5, 10, 11, and 12. Changes of PPARα1 structure might affect binding of mammalian PPARα1-specific ligand and cofactor in yellow catfish and may endow yellow catfish PPARα1 with new ligand-independent or -dependent transactivation activity. PPARα1 was differentially expressed in various tissues during development. Furthermore, intraperitoneal injection in vivo and incubation in vitro of insulin reduced the mRNA expression of PPARα1 in the liver and hepatocytes of yellow catfish. Based on the observation above, the present study provides evidence that PPARα1 is differentially expressed within and among tissues during three developmental stages and also regulated by insulin both in vivo and in vitro, which warrants further investigation of PPARα1 physiological function in fish.

  10. Cooperative Effects of FOXL2 with the Members of TGF-β Superfamily on FSH Receptor mRNA Expression and Granulosa Cell Proliferation from Hen Prehierarchical Follicles

    PubMed Central

    Qin, Ning; Fan, Xian-Cong; Xu, Xiao-Xing; Tyasi, Thobela Louis; Li, Shi-Jun; Zhang, Ying-Ying; Wei, Man-Li; Xu, Ri-Fu

    2015-01-01

    Forkhead box L2 (FOXL2) is a member of the forkhead nuclear factor 3 gene family and plays an essential role in ovarian growth and maturation in mammals. However, its potential effects and regulative mechanism in development of chicken ovarian prehierarchical follicles remain unexplored. In this study, the cooperative effects of FOXL2 with activin A, growth differentiation factor-9 (GDF9) and follistatin, three members of the transforming growth factor beta (TGF-β) superfamily that were previously suggested to exert a critical role in follicle development was investigated. We demonstrated herein, using in-situ hybridization, Northern blot and immunohistochemical analyses of oocytes and granulosa cells in various sizes of prehierarchical follicles that both FOXL2 transcripts and FOXL2 proteins are predominantly expressed in a highly similar expression pattern to that of GDF9 gene. In addition, the FOXL2 transcript was found at lower levels in theca cells in the absence of GDF9. Furthermore, culture of granulosa cells (GCs) from the prehierarchical follicles (6–8 mm) in conditioned medium revealed that in the pcDNA3.0-FOXL2 transfected GCs, there was a more dramatic increase in FSHR mRNA expression after treatment with activin A (10 ng/ml) or GDF9 (100 ng/ml) for 24 h which caused a stimulatory effect on the GC proliferation. In contrast, a significant decrease of FSHR mRNA was detected after treatment with follistatin (50 ng/ml) and resulted in an inhibitory effect on the cell proliferation. The results of this suggested that FOXL2 plays a bidirectional modulating role involved in the intracellular FSHR transcription and GC proliferation via an autocrine regulatory mechanism in a positive or negative manner through cooperation with activin A and/or GDF9, and follistatin in the hen follicle development. This cooperative action may be mediated by the examined Smad signals and simultaneously implicated in modulation of the StAR, CCND2, and CYP11A1 expression. PMID

  11. Evolution of melanocortin receptors in cartilaginous fish: melanocortin receptors and the stress axis in elasmobranches.

    PubMed

    Liang, Liang; Reinick, Christina; Angleson, Joseph K; Dores, Robert M

    2013-01-15

    There is general agreement that the presence of five melanocortin receptor genes in tetrapods is the result of two genome duplications that occurred prior to the emergence of the gnathostomes, and at least one local gene duplication that occurred early in the radiation of the ancestral gnathostomes. Hence, it is assumed that representatives from the extant classes of gnathostomes (i.e., Chondrichthyes, Actinopterygii, Sarcopterygii) should also have five paralogous melanocortin genes. Current studies on cartilaginous fishes indicate that while there is evidence for five paralogous melanocortin receptor genes in this class, to date all five paralogs have not been detected in the genome of a single species. This mini-review will discuss the ligand selectivity properties of the melanocortin-3 receptor of the elephant shark (subclass Holocephali) and the ligand selectivity properties of the melanocortin-3 receptor, melanocortin-4 receptor, and the melanocortin-5 receptor of the dogfish (subclass Elasmobranchii). The potential relationship of these melanocortin receptors to the hypothalamus/pituitary/interrenal axis will be discussed.

  12. Neonatal paternal deprivation impairs social recognition and alters levels of oxytocin and estrogen receptor α mRNA expression in the MeA and NAcc, and serum oxytocin in mandarin voles.

    PubMed

    Cao, Yan; Wu, Ruiyong; Tai, Fadao; Zhang, Xia; Yu, Peng; An, Xiaolei; Qiao, Xufeng; Hao, Ping

    2014-01-01

    Paternal care is necessary for the healthy development of social behavior in monogamous rodents and social recognition underpins social behavior in these animals. The effects of paternal care on the development of social recognition and underlying neuroendocrine mechanisms, especially the involvement of oxytocin and estrogen pathways, remain poorly understood. We investigated the effects of paternal deprivation (PD: father was removed from neonatal pups and mother alone raised the offspring) on social recognition in mandarin voles (Microtus mandarinus), a socially monogamous rodent. Paternal deprivation was found to inhibit the development of social recognition in female and male offspring according to a habituation-dishabituation paradigm. Paternal deprivation resulted in increased inactivity and reduced investigation during new encounters with other animals. Paternal deprivation reduced oxytocin receptor (OTR) and estrogen receptor α (ERα) mRNA expression in the medial amygdala and nucleus accumbens. Paternal deprivation reduced serum oxytocin (OT) concentration in females, but had no effect on males. Our results provide substantial evidence that paternal deprivation inhibits the development of social recognition in female and male mandarin voles and alters social behavior later in life. This is possibly the result of altered expression of central OTR and ERα and serum OT levels caused by paternal deprivation.

  13. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5.

    PubMed

    Mock, Ulrike; Machowicz, Rafał; Hauber, Ilona; Horn, Stefan; Abramowski, Pierre; Berdien, Belinda; Hauber, Joachim; Fehse, Boris

    2015-06-23

    Homozygosity for a natural deletion variant of the HIV-coreceptor molecule CCR5, CCR5Δ32, confers resistance toward HIV infection. Allogeneic stem cell transplantation from a CCR5Δ32-homozygous donor has resulted in the first cure from HIV ('Berlin patient'). Based thereon, genetic disruption of CCR5 using designer nucleases was proposed as a promising HIV gene-therapy approach. Here we introduce a novel TAL-effector nuclease, CCR5-Uco-TALEN that can be efficiently delivered into T cells by mRNA electroporation, a gentle and truly transient gene-transfer technique. CCR5-Uco-TALEN mediated high-rate CCR5 knockout (>90% in PM1 and >50% in primary T cells) combined with low off-target activity, as assessed by flow cytometry, next-generation sequencing and a newly devised, very convenient gene-editing frequency digital-PCR (GEF-dPCR). GEF-dPCR facilitates simultaneous detection of wild-type and gene-edited alleles with remarkable sensitivity and accuracy as shown for the CCR5 on-target and CCR2 off-target loci. CCR5-edited cells were protected from infection with HIV-derived lentiviral vectors, but also with the wild-type CCR5-tropic HIV-1BaL strain. Long-term exposure to HIV-1BaL resulted in almost complete suppression of viral replication and selection of CCR5-gene edited T cells. In conclusion, we have developed a novel TALEN for the targeted, high-efficiency knockout of CCR5 and a useful dPCR-based gene-editing detection method.

  14. Expression of natriuretic peptide receptor mRNA and functional response to atrial natriuretic peptide and C-type natriuretic peptide in rainbow trout (Oncorhynchus mykiss) head kidney leucocytes.

    PubMed

    Powell, M D; McWilliam, H; McLeod, J; Nankervis, S; Butler, R; Toop, T

    2008-04-01

    The stimulatory effect of vasomodulatory natriuretic peptide hormones on macrophages and peripheral blood leucocytes in mammals is well-established. However, the relationship in lower vertebrates has not been characterised. Expression of atrial natriuretic peptide, ventricular natriuretic peptide and C-type natriuretic peptide-1, and the guanylyl cyclase-linked (GC) natriuretic peptide receptor-A and -B-type receptors (NPR-A and NPR-B, respectively) was determined by PCR from the mRNA of rainbow trout head kidney leucocytes yielding gene fragments with 100% homology to the same respective natriuretic peptide and NPR-A and -B sequences obtained from other rainbow trout tissues. A mixed population of isolated rainbow trout head kidney leucocytes was stimulated in vitro with trout atrial natriuretic peptide (specific NPR-A agonist) and trout C-type natriuretic peptide (NPR-A and -B agonist) as well as the cGMP agonist 8-bromo-cGMP or the GC inhibitor 8-bromo-phenyl-eutheno-cGMP. Respiratory burst was stimulated by trout atrial natriuretic peptide, trout C-type natriuretic peptide-1 and 8-bromo-cGMP in a dose dependant manner with the highest activity as a result of stimulation with trout C-type natriuretic peptide-1 in excess of that achieved by phorbol myristate acetate (PMA). Equimolar concentrations of the inhibitor, inhibited the respiratory burst caused by the natriuretic peptides and 8-bromo-cGMP. The natriuretic peptide receptors on rainbow trout head kidney leucocytes appear to have a stimulatory function with regard to respiratory burst that is activated through a cGMP second messenger pathway and the natriuretic peptides expressed in the head kidney leucocytes may well act in a paracrine/autocrine manner.

  15. Anti-Ephrin Type-B Receptor 2 (EphB2) and Anti-Three Prime Histone mRNA EXonuclease 1 (THEX1) Autoantibodies in Scleroderma and Lupus

    PubMed Central

    Azzouz, Doua F.; Martin, Gabriel V.; Arnoux, Fanny; Balandraud, Nathalie; Martin, Thierry; Dubucquoi, Sylvain; Hachulla, Eric; Farge-Bancel, Dominique; Tiev, Kiet; Cabane, Jean; Bardin, Nathalie; Chiche, Laurent; Martin, Marielle; Caillet, Eléonore C.; Kanaan, Sami B.; Harlé, Jean Robert; Granel, Brigitte; Diot, Elisabeth; Roudier, Jean; Auger, Isabelle; Lambert, Nathalie C.

    2016-01-01

    In a pilot ProtoArray analysis, we identified 6 proteins out of 9483 recognized by autoantibodies (AAb) from patients with systemic sclerosis (SSc). We further investigated the 6 candidates by ELISA on hundreds of controls and patients, including patients with Systemic Lupus Erythematosus (SLE), known for high sera reactivity and overlapping AAb with SSc. Only 2 of the 6 candidates, Ephrin type-B receptor 2 (EphB2) and Three prime Histone mRNA EXonuclease 1 (THEX1), remained significantly recognized by sera samples from SSc compared to controls (healthy or with rheumatic diseases) with, respectively, 34% versus 14% (P = 2.10−4) and 60% versus 28% (P = 3.10−8). Above all, EphB2 and THEX1 revealed to be mainly recognized by SLE sera samples with respectively 56%, (P = 2.10−10) and 82% (P = 5.10−13). As anti-EphB2 and anti-THEX1 AAb were found in both diseases, an epitope mapping was realized on each protein to refine SSc and SLE diagnosis. A 15-mer peptide from EphB2 allowed to identify 35% of SLE sera samples (N = 48) versus only 5% of any other sera samples (N = 157), including SSc sera samples. AAb titers were significantly higher in SLE sera (P<0.0001) and correlated with disease activity (p<0.02). We could not find an epitope on EphB2 protein for SSc neither on THEX1 for SSc or SLE. We showed that patients with SSc or SLE have AAb against EphB2, a protein involved in angiogenesis, and THEX1, a 3’-5’ exoribonuclease involved in histone mRNA degradation. We have further identified a peptide from EphB2 as a specific and sensitive tool for SLE diagnosis. PMID:27617966

  16. Molecular identification of an androgen receptor and its changes in mRNA levels during 17α-methyltestosterone-induced sex reversal in the orange-spotted grouper Epinephelus coioides.

    PubMed

    Shi, Yu; Liu, Xiaochun; Zhang, Haifa; Zhang, Yong; Lu, Danqi; Lin, Haoran

    2012-09-01

    Androgens play a crucial role in sex differentiation, sexual maturation, and spermatogenesis in vertebrates. The action of androgens is mediated via androgen receptors (ARs). The present study reports the cloning of the cDNA sequence of the ar in the orange-spotted grouper, with high expression in testis and relatively low in subdivision of brain areas. The cDNA sequence of ar was 2358 bp, encoding a protein of 759 amino acids (aa). Phylogenetic analysis showed that the ar cDNA sequence was closely related to that of threespot wrasse (Halichoeres trimaculatus) and medaka (Oryzias latipes) arβ. As deduced from the phylogenetic tree and the high amino acid identity with the ARβ subtype of other teleosts, grouper ar seems to be more closely related to the beta than the alpha subtype cloned to date. In the first week after 17α-methyltestosterone (MT) implantation, the transcript levels of ar in the hypothalamus declined significantly, and consistently stayed at low level expression to the second week, but increased back to the control levels in the third and fourth week. In the gonad, the mRNA expression of ar was not changed in the first week compared with the control, but increased significantly in the second week, consistently reached the highest level in the third week, dropped slightly but still higher than that of the control in the fourth week. The expression pattern of ar in hypothalamus and gonad during MT-induced sex reversal suggests the involvement of ar in regulating this process in the orange-spotted grouper. The present study provides the data of the changes in the mRNA levels of ar during MT-induced sex reversal in detail to help understand the complicated signals under sex reversal.

  17. The effects of n-3 PUFA and intestinal lymph drainage on high-mobility group box 1 and Toll-like receptor 4 mRNA in rats with intestinal ischaemia-reperfusion injury.

    PubMed

    He, Gui-Zhen; Zhou, Kai-Guo; Zhang, Rui; Chen, Xue-Feng

    2012-09-01

    The aim of the present study was to investigate the impacts of n-3 PUFA and lymph drainage (D) on intestinal ischaemia-reperfusion (I/R) injury in rats. A total of forty-eight Sprague-Dawley male rats were randomly divided into three groups (n 16): normal diet (N), enteral nutrition (EN) and EN plus n-3 PUFA. Each group was further divided into lymph drainage (I/R+D) and non-drainage (I/R) sub-groups (n 8). After 5 d with different nutrition regimens, the rats were subjected to 60 min ischaemia by clamping the superior mesenteric artery, followed by 120 min reperfusion. At the same time, the rats in the I/R+D sub-groups were treated with intestinal lymph drainage for 180 min. Organs were harvested and we detected the cytokine, endotoxin, and expression of Toll-like receptor (TLR) 4 mRNA and its endogenous ligand high-mobility group box 1 (HMGB1). We found that the serum levels of HMGB1, inflammatory cytokine and endotoxin in the three I/R+D sub-groups were significantly lower than those in the N (I/R) and EN (I/R) sub-groups (P < 0·05). The activation of NF-κB and the expression of HMGB1 and TLR4 mRNA significantly increased in the jejunum, ileum, liver and lung after intestinal I/R injury, but notably lower in the I/R+D groups than those in I/R (P < 0·05). The injury degree and HMGB1 expression were decreased in the n-3 PUFA group than in the N and EN groups. We preliminarily concluded that nutrition with n-3 PUFA and/or intestinal lymph drainage may reduce HMGB1 and inflammatory cytokine in serum and lymph and inhibit the expression and signal transmission of TLR4 mRNA, thereby alleviating intestinal I/R injury in rats.

  18. Molecular Characteristics, mRNA Expression, and Alternative Splicing of a Ryanodine Receptor Gene in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel)

    PubMed Central

    Yuan, Guo-Rui; Shi, Wen-Zhi; Yang, Wen-Jia; Jiang, Xuan-Zhao; Dou, Wei; Wang, Jin-Jun

    2014-01-01

    Ryanodine receptors (RyRs) are a distinct class of ligand-gated channels controlling the release of calcium from intracellular stores. The emergence of diamide insecticides, which selectively target insect RyRs, has promoted the study of insect RyRs. In the present study, the full-length RyR cDNA (BdRyR) was cloned and characterized from the oriental fruit fly, Bactrocera dorsalis (Hendel), a serious pest of fruits and vegetables throughout East Asia and the Pacific Rim. The cDNA of BdRyR contains a 15,420-bp open reading frame encoding 5,140 amino acids with a predicted molecular weight of 582.4 kDa and an isoelectric point of 5.38. BdRyR shows a high level of amino acid sequence identity (78 to 97%) to other insect RyR isoforms. All common structural features of the RyRs are present in the BdRyR, including a well-conserved C-terminal domain containing consensus calcium-binding EF-hands and six transmembrane domains, and a large N-terminal domain. Quantitative real-time PCR analyses revealed that BdRyR was expressed at the lowest and highest levels in egg and adult, respectively, and that the BdRyR expression levels in the third instar larva, pupa and adult were 166.99-, 157.56- and 808.56-fold higher, respectively, than that in the egg. Among different adult body parts, the highest expression level was observed in the thorax compared with the head and abdomen. In addition, four alternative splice sites were identified in the BdRyR gene, with the first, ASI, being located in the central part of the predicted second spore lysis A/RyR domain. Diagnostic PCR analyses revealed that alternative splice variants were generated not only in a tissue-specific manner but also in a developmentally regulated manner. These results lay the foundation for further understanding the structural and functional properties of BdRyR, and the molecular mechanisms for target site resistance in B. dorsalis. PMID:24740254

  19. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts

    SciTech Connect

    Antoniades, H.N. Center for Blood Research, Boston, MA Inst. of Molecular Biology, Boston, MA ); Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C.P. Inst. of Molecular Biology, Boston, MA ); Lynch, S.E. Inst. of Molecular Biology, Boston, MA Harvard School of Dental Medicine, Boston, MA )

    1991-01-15

    Platelet-derived growth factor (PDGF) stimulates many of the processes important in tissue repair, including proliferation of fibroblasts and synthesis of extracellular matrices. In this study, the authors have demonstrated with in situ hydridization and immunocytochemistry the reversible expression of 3-sis/PDGF-2 and PDGF receptor (PDGF-R) b mRNAs and their respective protein products in epithelial cells and fibroblasts following cutaneous injury in pigs. Epithelial cells in control, unwounded skin did not express c-sis and PDGF-R mRNAs, and fibroblasts expressed only PDGF-R mRNA. The expression levels in the injured site were correlated with the stage of tissue repair, being highest during the initial stages of the repair process and declining at the time of complete re-epithelialization and tissue remodeling. These studies provide a mulecular basis for understanding the mechanisms contributing to normal tissue repair. They suggest the possibility that a defect in these mechanisms may be associated with defective wound healing. It is also conceivable that chronic injury may induce irreversible gene expression leading to pathologic, unregulated cell growth.

  20. The down-regulation of IL-6-stimulated fibrinogen steady state mRNA and protein levels by human recombinant IL-1 is not PGE2-dependent: effects of IL-1 receptor antagonist (IL-1RA).

    PubMed

    Conti, P; Bartle, L; Barbacane, R C; Reale, M; Sipe, J D

    1995-01-26

    Infections, trauma and inflammatory processes induce a host response with increases in a large group of structurally and functionally diverse plasma proteins. Parental administration of foreign proteins also induce an increase in plasma fibrinogen. Interleukin-6 (IL-6) is a monocyte-derived mediator and has regulatory effects on acute phase protein genes which result in the induction of fibrinogen synthesis in primary hepatocytes, while the addition of interleukin-1 (IL-1) exerts a negative modulating influence on the IL-6-stimulated fibrinogen. In order to understand the mechanisms by which IL-1 inhibits IL-6-stimulated fibrinogen transcription and translation, and since IL-1 is believed to act through PGE2 stimulation, we have studied the influence of PGE2 in IL-6 or IL-1, alone and in combination, on Fg mRNA expression (by Northern blot analysis) and the influence of PGE2, indomethacin, and arachidonic acid on Fg secretion. Moreover, since human recombinant interleukin-1 receptor antagonist (hrIL-1ra) is a strong inhibitor of IL-1 induced IL-1 transcription and translation and has an inhibitory effect on PGE2, we have studied the effects of IL-1ra on the down-regulation of IL-6 stimulated fibrinogen by IL-1, using an Fg ELISA method.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle.

    PubMed

    Egan, Brendan; Carson, Brian P; Garcia-Roves, Pablo M; Chibalin, Alexander V; Sarsfield, Fiona M; Barron, Niall; McCaffrey, Noel; Moyna, Niall M; Zierath, Juleen R; O'Gorman, Donal J

    2010-05-15

    Skeletal muscle contraction increases intracellular ATP turnover, calcium flux, and mechanical stress, initiating signal transduction pathways that modulate peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha)-dependent transcriptional programmes. The purpose of this study was to determine if the intensity of exercise regulates PGC-1alpha expression in human skeletal muscle, coincident with activation of signalling cascades known to regulate PGC-1alpha transcription. Eight sedentary males expended 400 kcal (1674 kj) during a single bout of cycle ergometer exercise on two separate occasions at either 40% (LO) or 80% (HI) of . Skeletal muscle biopsies from the m. vastus lateralis were taken at rest and at +0, +3 and +19 h after exercise. Energy expenditure during exercise was similar between trials, but the high intensity bout was shorter in duration (LO, 69.9 +/- 4.0 min; HI, 36.0 +/- 2.2 min, P < 0.05) and had a higher rate of glycogen utilization (P < 0.05). PGC-1alpha mRNA abundance increased in an intensity-dependent manner +3 h after exercise (LO, 3.8-fold; HI, 10.2-fold, P < 0.05). AMP-activated protein kinase (AMPK) (2.8-fold, P < 0.05) and calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation (84%, P < 0.05) increased immediately after HI but not LO. p38 mitogen-activated protein kinase (MAPK) phosphorylation increased after both trials (2.0-fold, P < 0.05), but phosphorylation of the downstream transcription factor, activating transcription factor-2 (ATF-2), increased only after HI (2.4-fold, P < 0.05). Cyclic-AMP response element binding protein (CREB) phosphorylation was elevated at +3 h after both trials (80%, P < 0.05) and class IIa histone deacetylase (HDAC) phosphorylation increased only after HI (2.0-fold, P < 0.05). In conclusion, exercise intensity regulates PGC-1alpha mRNA abundance in human skeletal muscle in response to a single bout of exercise. This effect is mediated by differential activation of

  2. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators.

    PubMed

    Ramírez-López, María T; Arco, Rocío; Decara, Juan; Vázquez, Mariam; Rivera, Patricia; Blanco, Rosario Noemi; Alén, Francisco; Gómez de Heras, Raquel; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2016-01-01

    Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes (Faah, Daglα, Daglβ, Mgll) and several key regulators of fatty-acid β-oxidation (Cpt1b, Acox1), mitochondrial respiration (Cox4i1), and lipid flux (Pparγ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Pparα, Pparγ, the eCBs-degrading enzymes Faah and Mgll, the de novo lipogenic enzymes Acaca and Fasn, and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr. Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner.

  3. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators

    PubMed Central

    Ramírez-López, María T.; Arco, Rocío; Decara, Juan; Vázquez, Mariam; Rivera, Patricia; Blanco, Rosario Noemi; Alén, Francisco; Gómez de Heras, Raquel; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2016-01-01

    Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes (Faah, Daglα, Daglβ, Mgll) and several key regulators of fatty-acid β-oxidation (Cpt1b, Acox1), mitochondrial respiration (Cox4i1), and lipid flux (Pparγ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Pparα, Pparγ, the eCBs-degrading enzymes Faah and Mgll, the de novo lipogenic enzymes Acaca and Fasn, and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr. Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner. PMID:28082878

  4. Effects of Chinese traditional compound, JinSanE, on expression of TGF-β1 and TGF-β1 type II receptor mRNA, Smad3 and Smad7 on experimental hepatic fibrosis in vivo

    PubMed Central

    Song, Shi-Ling; Gong, Zuo-Jiong; Zhang, Quan-Rong; Huang, Tuan-Xin

    2005-01-01

    AIM: The transforming growth factor-beta (TGF-β)/Smad signaling pathway system plays a prominent role in the control of cell growth and extracellular matrix formation in the progression of liver fibrogenesis. Smad proteins can either positively or negatively regulate TGF-β responses. In this study, the therapeutic effects of Chinese traditional compound decoction, JinSanE, and the changes of TGF-β/Smad signaling pathway system in carbon tetrachloride (CCl4)-induced rat experimental liver fibrosis were examined. METHODS: Seventy-two healthy Wistar rats were assigned to groups including normal control group, CCl4 model group, JinSanE treatment group I and JinSanE treatment group II. Each group contained 18 rats. All groups, except the normal control group, received CCl4 subcutaneous injection for 8 wk. Rats in JinSanE groups I and II were orally treated with JinSanE daily at the 1st and 5th wk, respectively, after exposure to CCl4. The expression of TGF-β1 and TGF-β1 type II receptor (TRII) mRNA in the liver was determined by reverse transcription polymerase chain reaction, and the expression of TGF-β1, Smad3 and Smad7 by immunohistochemistry. The liver histopathology was also examined by HE staining and observed under electron microscope. The activities of several serum fibrosis-associated enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), the levels of serum hyaluronic acid (HA) were assayed. RESULTS: Hepatic fibrosis caused by CCl4 was significantly inhibited in the JinSanE-treated groups. The degrees of necrosis/degeneration and fibrosis scores were significantly lower in the JinSanE-treated groups than in the model control group. The expression of TGF-β1, TRII and Smad3 was significantly higher in the model group than that in the JinSanE-treated groups, and the active/total TGF-β1 ratio in the JinSanE groups was suppressed. Expression of TRII mRNA and Smad3 proteins showed a distribution pattern similar to that of TGF-β1 with a

  5. Peroxisome proliferator-activated receptor alpha (PPARalpha) activators, bezafibrate and Wy-14,643, increase uncoupling protein-3 mRNA levels without modifying the mitochondrial membrane potential in primary culture of rat preadipocytes.

    PubMed

    Cabrero, A; Alegret, M; Sánchez, R; Adzet, T; Laguna, J C; Vázquez, M

    2000-08-15

    Uncoupling proteins (UCPs) are inner mitochondrial membrane transporters which act as pores for H(+) ions, dissipating the electrochemical gradient that develops during mitochondrial respiration at the expense of ATP synthesis. We have studied the effects of two fibrates, bezafibrate and Wy-14,643, on UCP-3 and UCP-2 mRNA levels in primary monolayer cultures of rat adipocytes and undifferentiated preadipocytes. Treatment with both PPARalpha activators for 24 h up-regulated UCP-3 mRNA levels. Thus, bezafibrate treatment resulted in an 8-fold induction in UCP-3 mRNA levels in preadipocytes compared with the 3.5-fold induction observed in adipocytes. Differences in the induction of UCP-3 between these cells correlated well with the higher expression of PPARalpha and RXRalpha mRNA values in preadipocytes compared to adipocytes. Wy-14,643 caused similar effects on UCP-3 mRNA expression. In contrast to UCP-3, UCP-2 mRNA levels were only slightly modified by bezafibrate in adipocytes. The induction in UCP-3 expression was not accompanied by changes in the mitochondrial membrane potential of rat primary preadipocytes after bezafibrate or Wy-14,643 treatment. Since it has been proposed that UCP-3 could be involved in the regulation of the use of fatty acids as fuel substrates, the UCP-3 induction achieved after bezafibrate and Wy-14, 643 treatment may indicate a higher oxidation of fatty acids, limiting their availability to be stored as triglycerides. This change may result in a reduced rate of conversion of preadipocytes to adipocytes, which directly affects fat depots.

  6. Effects of antihistamine on up-regulation of histamine H1 receptor mRNA in the nasal mucosa of patients with pollinosis induced by controlled cedar pollen challenge in an environmental exposure unit.

    PubMed

    Kitamura, Yoshiaki; Nakagawa, Hideyuki; Fujii, Tatsuya; Sakoda, Takema; Enomoto, Tadao; Mizuguchi, Hiroyuki; Fukui, Hiroyuki; Takeda, Noriaki

    2015-11-01

    In the present study, we examined the effects of antihistamine on the up-regulation of H1R mRNA in the nasal mucosa of patients with pollinosis induced by controlled exposure to pollen using an environmental exposure unit. Out of 20 patients, we designated 14 responders, whose levels of H1R mRNA in the nasal mucosa were increased after the first pollen exposure and excluded 6 non-responders. Accordingly, the first exposure to pollen without treatment significantly induced both nasal symptoms and the up-regulation of H1R mRNA in the nasal mucosa of the responders. Subsequently, prophylactic administration of antihistamine prior to the second pollen exposure significantly inhibited both of the above effects in the responders. Moreover, the nasal expression of H1R mRNA before the second pollen exposure in the responders pretreated with antihistamine was significantly decreased, as compared with that before the first pollen exposure without treatment. These findings suggest that antihistamines suppressed histamine-induced transcriptional activation of H1R gene in the nasal mucosa, in addition to their blocking effect against histamine on H1R, resulting in a decrease of nasal symptoms. These findings further suggest that by their inverse agonistic activity, antihistamines suppress the basal transcription of nasal H1R in the absence of histamine in responders.

  7. Mouse astrocytes respond to the chemokines MCP-1 and KC, but reverse transcriptase-polymerase chain reaction does not detect mRNA for the KC or new MCP-1 receptor.

    PubMed

    Heesen, M; Tanabe, S; Berman, M A; Yoshizawa, I; Luo, Y; Kim, R J; Post, T W; Gerard, C; Dorf, M E

    1996-08-15

    Previous studies demonstrated the involvement of astrocytes in the development of astrogliosis, a condition in which these cells undergo proliferation and hypertrophy. To examine whether astrocytes could migrate into lesions, we tested the influence of the murine chemokines MCP-1, KC, TCA3, and MIP-1 beta on migration of cultured neonatal mouse astrocytes. Subnanomolar concentrations of MCP-1 and KC were active chemoattractants indicating that these molecules were effective at physiologic concentrations. Specificity of MCP-1 was demonstrated by antibody inhibition and by the finding that the chemokine MIP-1 beta failed to induce astrocyte migration. The migratory responses were sensitive to pertussis toxin; this finding is consistent with involvement of G protein-coupled receptors. To examine the receptors for these chemokines further, we cloned the mouse homolog of the human MCP-1 receptor from a mouse peritoneal exudate cell cDNA library. The gene had 78% nucleotide sequence homology with the human MCP-1 receptor (the nucleotide sequence of clone 1 encoding the mouse MCP-1 receptor can be obtained from the GenBank database, accession number U56819). However, reverse transcriptase-polymerase chain reaction (RT-PCR) failed to detect message for either the MCP-1 or KC receptors in astrocytes. The combined data suggest that mouse astrocytes use novel receptors to recognize these chemokines.

  8. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP)

    PubMed Central

    Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661

  9. The orphan G protein-coupled receptor GPR139 is activated by the peptides: Adrenocorticotropic hormone (ACTH), α-, and β-melanocyte stimulating hormone (α-MSH, and β-MSH), and the conserved core motif HFRW.

    PubMed

    Nøhr, Anne Cathrine; Shehata, Mohamed A; Hauser, Alexander S; Isberg, Vignir; Mokrosinski, Jacek; Andersen, Kirsten B; Farooqi, I Sadaf; Pedersen, Daniel Sejer; Gloriam, David E; Bräuner-Osborne, Hans

    2017-01-01

    GPR139 is an orphan G protein-coupled receptor that is expressed primarily in the brain. Not much is known regarding the function of GPR139. Recently we have shown that GPR139 is activated by the amino acids l-tryptophan and l-phenylalanine (EC50 values of 220 μM and 320 μM, respectively), as well as di-peptides comprised of aromatic amino acids. This led us to hypothesize that GPR139 may be activated by peptides. Sequence alignment of the binding cavities of all class A GPCRs, revealed that the binding pocket of the melanocortin 4 receptor is similar to that of GPR139. Based on the chemogenomics principle "similar targets bind similar ligands", we tested three known endogenous melanocortin 4 receptor agonists; adrenocorticotropic hormone (ACTH) and α- and β-melanocyte stimulating hormone (α-MSH and β-MSH) on CHO-k1 cells stably expressing the human GPR139 in a Fluo-4 Ca(2+)-assay. All three peptides, as well as their conserved core motif HFRW, were found to activate GPR139 in the low micromolar range. Moreover, we found that peptides consisting of nine or ten N-terminal residues of α-MSH activate GPR139 in the submicromolar range. α-MSH1-9 was found to correspond to the product of a predicted cleavage site in the pre-pro-protein pro-opiomelanocortin (POMC). Our results demonstrate that GPR139 is a peptide receptor, activated by ACTH, α-MSH, β-MSH, the conserved core motif HFRW as well as a potential endogenous peptide α-MSH1-9. Further studies are needed to determine the functional relevance of GPR139 mediated signaling by these peptides.

  10. Influence of Estradiol-17beta on Progesterone and Estrogen Receptor mRNA Expression in Porcine Follicular Granulosa Cells during Short-Term, In Vitro Real-Time Cell Proliferation

    PubMed Central

    Ciesiółka, Sylwia; Budna, Joanna; Jopek, Karol; Bryja, Artur; Kranc, Wiesława; Chachuła, Adrian; Borys, Sylwia; Dyszkiewicz Konwińska, Marta; Ziółkowska, Agnieszka; Antosik, Paweł; Bukowska, Dorota; Brüssow, Klaus P.; Bruska, Małgorzata; Nowicki, Michał

    2016-01-01

    Progesterone (P4) and estradiol (E2) play a significant role in mammalian reproduction. Our study demonstrated that separated porcine cumulus cells (CCs) and/or granulosa cells (GCs) might proliferate in vitro during short-term, real-time primary culture. The GCs were analyzed according to gene expression of the progesterone receptor (nuclear form) (pgr), progesterone receptor membrane component 1 (pgrmc1), and estrogen-related receptor beta 3 (esrrb3) in relation to two housekeeping genes: actb and pbgd. GCs were cultivated in medium with the E2. Both pgr/actb and pgr/pbgd revealed higher expression between 24 and 168 h of IVC of prolonged E2 treatment and at 48 h of IVC after acute E2 administration. The pgrmc1/actb and pgrmc1/pbgd displayed increased expression after prolonged E2 treatment between 24 and 120 h of IVC. The highest level of esrrb3/actb at 120 and 144 h, as well as esrrb3/pbgd at 120 h, in untreated controls as compared to the hormone-stimulated group, was observed. We suggest that E2 significantly influences the upregulation of pgr, pgrmc1, and esrrb3 expression in porcine GCs during real-time cell proliferation. Since esrrb3 expression is stimulated by E2 in both an acute and prolonged manner, estradiol may be recognized as a potential estrogen receptor agonist in GCs. PMID:28116305

  11. Enhancement of insulin-induced PI3K/Akt/GSK-3beta and ERK signaling by neuronal nicotinic receptor/PKC-alpha/ERK pathway: up-regulation of IRS-1/-2 mRNA and protein in adrenal chromaffin cells.

    PubMed

    Sugano, Takashi; Yanagita, Toshihiko; Yokoo, Hiroki; Satoh, Shinya; Kobayashi, Hideyuki; Wada, Akihiko

    2006-07-01

    In cultured bovine adrenal chromaffin cells treated with nicotine (10 microm for 24 h), phosphorylation of Akt, glycogen synthase kinase-3beta (GSK-3beta) and extracellular signal-regulated kinase (ERK)1/2 induced by insulin (100 nm for 10 min) was enhanced by approximately 62%, without altering levels of these protein kinases. Nicotine produced time (> 12 h)- and concentration (EC(50) 3.6 and 13 microm)-dependent increases in insulin receptor substrate (IRS)-1 and IRS-2 levels by approximately 125 and 105%, without altering cell surface density of insulin receptors. In these cells, insulin-induced tyrosine phosphorylation of IRS-1/IRS-2 and recruitment of phosphoinositide 3-kinase (PI3K) to IRS-1/IRS-2 were augmented by approximately 63%. The increase in IRS-1/IRS-2 levels induced by nicotine was prevented by nicotinic acetylcholine receptor (nAChR) antagonists, the Ca(2+) chelator 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid tetrakis-acetoxymethyl ester, cycloheximide or actinomycin D. Nicotine increased IRS-1 and IRS-2 mRNA levels by approximately 57 and approximately 50%, and this was prevented by conventional protein kinase C (cPKC) inhibitor Gö6976, or ERK kinase inhibitors PD98059 and U0126. Nicotine phosphorylated cPKC-alpha, thereby increasing phosphorylation of ERK1/ERK2, as demonstrated by using Gö6976, PD98059 or U0126. Selective activation of cPKC-alpha by thymeleatoxin mimicked these effects of nicotine. Thus, stimulation of nAChRs up-regulated expression of IRS-1/IRS-2 via Ca(2+)-dependent sequential activation of cPKC-alpha and ERK, and enhanced insulin-induced PI3K/Akt/GSK-3beta and ERK signaling pathways.

  12. Cloning and characterization of cDNAs for hormones and/or receptors of growth hormone, insulin-like growth factor-I, thyroid hormone, and corticosteroid and the gender-, tissue-, and developmental-specific expression of their mRNA transcripts in fathead minnow (Pimephales promelas).

    PubMed

    Filby, Amy L; Tyler, Charles R

    2007-01-01

    Growth hormone (GH), insulin-like growth factor-I (IGF-I), thyroid hormones, and corticosteroids play central roles in a wide range of body functions but, in fish, information on their interactions is limited. These axes of the endocrine system are also potential targets for disruption of signaling pathways by hormone-mimicking chemicals, but have received little study. Molecular approaches offer an effective way to help unravel these endocrine interactions but require the appropriate gene-specific assays to do so. In this study, the cDNAs for a suite of hormones and/or receptors involved in signaling for the effects of GH and IGF-I [GH, GH receptor (GHR), IGF-I, IGF-I receptor (IGF-IR)], thyroid hormones [thyroid hormone receptor alpha (TRalpha) and beta (TRbeta)], and corticosteroids [glucocorticoid receptor (GR)] were cloned from the fathead minnow (Pimephales promelas; fhm), and the tissue-, developmental-, and gender-related expression of their mRNA transcripts established. By polymerase chain reaction (PCR) strategy, we obtained full-length 1123-bp GH, 817-bp IGF-I, 1584-bp TRbeta, and 2571-bp GR cDNAs, coding for 210 amino acid (aa) GH, 161 aa IGF-I, 378 aa TRbeta, and 745 aa GR putative proteins, and partial-length 158-bp GHR, 811-bp IGF-IR, and 446-bp TRalpha cDNAs. Real-time PCR analyses revealed broad tissue expression for the target mRNAs; all targets were expressed in brain, pituitary, gill, liver, gonad, intestine, and muscle, with the exception of GH that was expressed only in the pituitary and gonad. Expression patterns in both juvenile and adult fhm were complex, with both temporal-, tissue-, and sex-specific characteristics. For example, hepatic expressions of GHR, IGF-I, and IGF-IR were far higher in males than in females, possibly reflecting the sex-related dimorphism in growth that occurs in this species, and TRalpha and TRbeta showed divergent expression patterns during development (where TRbeta predominated) and in adult tissues implying some

  13. Effects of 17α-ethinyl estradiol exposure on estrogen receptors α and β and vitellogenins A, B and C mRNA expression in the liver of sand goby (Pomatoschistus minutus).

    PubMed

    Humble, Joseph L; Saaristo, Minna; Lindström, Kai; Lehtonen, Kari K; Craft, John A

    2014-05-01

    This study aims to characterize the estrogen receptor (er) in sand goby (Pomatoschistus minutus) and determine the temporal effects of 17α-ethinyl estradiol (EE2) on erα and vitellogenin (vtg) gene expression in males. Two partial cDNA sequences (erα and erβ1) are presented showing conserved structural features with ers of other species. Transcript levels for both ers were low in control fish but EE2 exposure (11 ng/L, for 29 days) increased both to a pattern similar to vitellogenic females. The relative expression of three vtg genes (vtga, vtgb and vtgc) along with erα was determined in control and male fish exposed to EE2 (11 ng/L) at multiple time-points over 29 days. All four transcripts were significantly induced due to exposure and expression rose during the time course with distinct temporal patterns and vtga reached a substantially higher level at the end of the time course coinciding with rapid elevation in erα expression.

  14. Nuclear Retention of mRNA in Mammalian Tissues

    PubMed Central

    Bahar Halpern, Keren; Caspi, Inbal; Lemze, Doron; Levy, Maayan; Landen, Shanie; Elinav, Eran; Ulitsky, Igor; Itzkovitz, Shalev

    2015-01-01

    Summary mRNA is thought to predominantly reside in the cytoplasm, where it is translated and eventually degraded. Although nuclear retention of mRNA has a regulatory potential, it is considered extremely rare in mammals. Here, to explore the extent of mRNA retention in metabolic tissues, we combine deep sequencing of nuclear and cytoplasmic RNA fractions with single-molecule transcript imaging in mouse beta cells, liver, and gut. We identify a wide range of protein-coding genes for which the levels of spliced polyadenylated mRNA are higher in the nucleus than in the cytoplasm. These include genes such as the transcription factor ChREBP, Nlrp6, Glucokinase, and Glucagon receptor. We demonstrate that nuclear retention of mRNA can efficiently buffer cytoplasmic transcript levels from noise that emanates from transcriptional bursts. Our study challenges the view that transcripts predominantly reside in the cytoplasm and reveals a role of the nucleus in dampening gene expression noise. PMID:26711333

  15. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  16. Fragile X mental retardation protein control of neuronal mRNA metabolism: Insights into mRNA stability.

    PubMed

    De Rubeis, Silvia; Bagni, Claudia

    2010-01-01

    The fragile X mental retardation protein (FMRP) is an RNA binding protein that has an essential role in neurons. From the soma to the synapse, FMRP is associated with a specific subset of messenger RNAs and controls their posttranscriptional fates, i.e., dendritic localization and local translation. Because FMRP target mRNAs encode important neuronal proteins, the deregulation of their expression in the absence of FMRP leads to a strong impairment of synaptic function. Here, we review emerging evidence indicating a critical role for FMRP in the control of mRNA stability. To date, two mRNAs have been identified as being regulated in this manner: PSD-95 mRNA, encoding a scaffolding protein, and Nxf1 mRNA, encoding a general export factor. Moreover, expression studies suggest that the turnover of other neuronal mRNAs, including those encoding for the GABA(A) receptors subunits, could be affected by the loss of FMRP. According to the specific target and/or cellular context, FMRP could influence mRNA stability in the brain.

  17. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia.

    PubMed

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-06-08

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities.

  18. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia

    PubMed Central

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-01-01

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities. PMID:27273195

  19. Highest trkB mRNA expression in the entorhinal cortex among hippocampal subregions in the adult rat: contrasting pattern with BDNF mRNA expression.

    PubMed

    Tokuyama, W; Hashimoto, T; Li, Y X; Okuno, H; Miyashita, Y

    1998-11-20

    Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, regulate synaptic functions in the hippocampus of the adult rodent. In previous studies, in situ hybridization methods have been used to evaluate regional differences in BDNF and trkB mRNA expression levels in hippocampal subregions. However, these studies have failed to reach consensus regarding the regional differences in the mRNA expression levels. In the present study, we quantitated mRNA expression levels using two different methods, ribonuclease protection assays and a quantitative reverse-transcription polymerase chain reaction technique, in four hippocampal subregions: the entorhinal cortex, dentate gyrus (DG), CA3 and CA1. These two methods yielded the same results. We found that BDNF and trkB mRNA expression levels did not covary in the four subregions. BDNF and full length trkB (trkB FL) mRNA in the entorhinal cortex and the DG show contrasting expression patterns. The expression level of BDNF mRNA was highest in the DG among the hippocampal subregions and low in the entorhinal cortex and the CA1, whereas the trkB FL mRNA expression level was highest in the entorhinal cortex, low in the DG and lowest in the CA3. These results suggest regional differences in BDNF/TrkB signaling for maintenance and modifiability of neuronal connections in the hippocampal formation.

  20. Characterization of melanocortin NDP-MSH agonist peptide fragments at the mouse central and peripheral melanocortin receptors.

    PubMed

    Haskell-Luevano, C; Holder, J R; Monck, E K; Bauzo, R M

    2001-06-21

    The central melanocortin receptors, melanocortin-4 (MC4R) and melanocortin-3 (MC3R), are involved in the regulation of satiety and energy homeostasis. The MC4R in particular has become a pharmaceutical industry drug target due to its direct involvement in the regulation of food intake and its potential therapeutic application for the treatment of obesity-related diseases. The melanocortin receptors are stimulated by the native ligand, alpha-melanocyte stimulating hormone (alpha-MSH). The potent and enzymatically stable analogue NDP-MSH (Ac-Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2)) is a lead peptide for the identification of melanocortin amino acids important for receptor molecular recognition and stimulation. We have synthesized nine peptide fragments of NDP-MSH, deleting N- and C-terminal amino acids to determine the "minimally active" sequence of NDP-MSH. Additionally, five peptides were synthesized to study stereochemical inversion at the Phe 7 and Trp 9 positions in attempts to increase tetra- and tripeptide potencies. These peptide analogues were pharmacologically characterized at the mouse melanocortin MC1, MC3, MC4, and MC5 receptors. This study has identified the Ac-His-DPhe-Arg-Trp-NH(2) tetrapeptide as possessing 10 nM agonist activity at the brain MC4R. The tripeptide Ac-DPhe-Arg-Trp-NH(2) possessed micromolar agonist activities at the MC1R, MC4R, and MC5R but only slight stimulatory activity was observed at the MC3R (at up to 100 microM concentration). This study has also examined to importance of both N- and C-terminal NDP-MSH amino acids at the different melanocortin receptors, providing information for drug design and identification of putative ligand-receptor interactions.

  1. Expression of APOBEC3B mRNA in Primary Breast Cancer of Japanese Women

    PubMed Central

    Tokunaga, Eriko; Yamashita, Nami; Tanaka, Kimihiro; Inoue, Yuka; Akiyoshi, Sayuri; Saeki, Hiroshi; Oki, Eiji; Kitao, Hiroyuki; Maehara, Yoshihiko

    2016-01-01

    Recent studies have identified the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B (APOBEC3B) as a source of mutations in various malignancies. APOBEC3B is overexpressed in several human cancer types, including breast cancer. In this study, we analyzed APOBEC3B mRNA expression in 305 primary breast cancers of Japanese women using quantitative reverse transcription-PCR, and investigated the relationships between the APOBEC3B mRNA expression and clinicopathological characteristics, prognosis, and TP53 mutations. The expression of APOBEC3B mRNA was detected in 277 tumors and not detected in 28 tumors. High APOBEC3B mRNA expression was significantly correlated with ER- and PR-negativity, high grade and high Ki67 index. The APOBEC3B mRNA expression was highest in the triple-negative and lowest in the hormone receptor-positive/HER2-negative subtypes. The TP53 gene was more frequently mutated in the tumors with high APOBEC3B mRNA expression. High APOBEC3B mRNA expression was significantly associated with poor recurrence-free survival in all cases and the ER-positive cases. These findings were almost consistent with the previous reports from the Western countries. In conclusion, high APOBEC3B mRNA expression was related to the aggressive phenotypes of breast cancer, high frequency of TP53 mutation and poor prognosis, especially in ER-positive tumors. PMID:27977754

  2. Destabilization of TNF-α mRNA by Rapamycin

    PubMed Central

    Park, Jong-Woo; Jeon, Ye Ji; Lee, Jae Cheol; Ahn, So Ra; Ha, Shin Won; Bang, So Young; Park, Eun Kyung; Yi, Sang Ah; Lee, Min Gyu; Han, Jeung-Whan

    2012-01-01

    Stimulation of mast cells through the high affinity IgE receptor (FcεRI) induces degranulation, lipid mediator release, and cytokine secretion leading to allergic reactions. Although various signaling pathways have been characterized to be involved in the FcεRI-mediated responses, little is known about the precious mechanism for the expression of tumor necrosis factor-α (TNF-α) in mast cells. Here, we report that rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), reduces the expression of TNF-α in rat basophilic leukemia (RBL-2H3) cells. IgE or specific antigen stimulation of RBL-2H3 cells increases the expression of TNF-α and activates various signaling molecules including S6K1, Akt and p38 MAPK. Rapamycin specifically inhibits antigen-induced TNF-α mRNA level, while other kinase inhibitors have no effect on TNF-α mRNA level. These data indicate that mTOR signaling pathway is the main regulation mechanism for antigen-induced TNF-α expression. TNF-α mRNA stability analysis using reporter construct containing TNF-α adenylate/uridylate-rich elements (AREs) shows that rapamycin destabilizes TNF-α mRNA via regulating the AU-rich element of TNF-α mRNA. The antigen-induced activation of S6K1 is inhibited by specific kinase inhibitors including mTOR, PI3K, PKC and Ca2+chelator inhibitor, while TNF-α mRNA level is reduced only by rapamycin treatment. These data suggest that the effects of rapamycin on the expression of TNF-α mRNA are not mediated by S6K1 but regulated by mTOR. Taken together, our results reveal that mTOR signaling pathway is a novel regulation mechanism for antigen-induced TNF-α expression in RBL-2H3 cells. PMID:24116273

  3. Steroid hormone receptor gene expression in human breast cancer cells: inverse relationship between oestrogen and glucocorticoid receptor messenger RNA levels.

    PubMed

    Hall, R E; Lee, C S; Alexander, I E; Shine, J; Clarke, C L; Sutherland, R L

    1990-12-15

    The relative expression in human breast cancer cells of messenger ribonucleic acids (mRNA) encoding different steroid hormone receptors is unknown. Accordingly, mRNA levels in total RNA extracted from 13 human breast cancer cell lines were measured by Northern analysis employing complementary DNA probes for the human oestrogen (ER), progesterone (PR), androgen (AR), vitamin D3 (VDR) and glucocorticoid receptors (GR). The 7 ER+ lines expressed a single 6.4 kilobases (kb) ER mRNA. Interestingly, low concentrations of ER mRNA were detected in the ER- cell lines, MDA-MB-330 and BT 20. PR mRNA, predominantly a 13.5 kb species, was expressed in the 6 lines known to be ER+, PR+ by radioligand binding; however, one ER+ cell line, MDA-MB-134, failed to express PR mRNA. A 10.5 kb AR mRNA was expressed at significantly higher levels in ER+ than ER- cell lines. All cell lines expressed a single 4.6 kb mRNA for VDR and a single 7.4 kb mRNA for GR. ER and PR mRNA levels were positively correlated (p = 0.011) and each was positively correlated with androgen receptor (AR) mRNA levels (p less than or equal to 0.009). ER, PR and AR mRNAs were negatively associated with GR levels (p less than or equal to 0.012), while ER and AR mRNA levels were negatively correlated with mRNA for the epidermal growth factor receptor. In contrast, levels of VDR mRNA were unrelated to the concentration of any other steroid receptor mRNA. Our data demonstrate the coordinate expression of ER, PR and AR genes, and an inverse relationship between sex steroid hormone receptor and GR gene expression in human breast cancer cell lines.

  4. Regulation of corepressor alternative mRNA splicing by hormonal and metabolic signaling.

    PubMed

    Snyder, Chelsea A; Goodson, Michael L; Schroeder, Amy C; Privalsky, Martin L

    2015-09-15

    Alternative mRNA splicing diversifies the products encoded by the NCoR and SMRT corepressor loci. There is a programmed alteration in NCoR mRNA splicing during adipocyte differentiation from an NCoRω isoform, which contains three nuclear receptor interaction domains, to an NCoRδ isoform that contains two nuclear receptor interaction domains. This alternative mRNA splicing of NCoR has profound effects on adiposity and on diabetes in mouse models. We report here that dexamethasone, a powerful regulator of metabolism and of adipocyte differentiation, confers this change in NCoR mRNA splicing in cultured adipocytes. We also demonstrate that changes in dietary components can consistently, if moderately, modulate the total transcript levels and the mRNA splicing of NCoR and SMRT in both cultured cells and intact mice. This ability of alternative corepressor mRNA splicing to respond to nutritional changes confirms its importance in regulating glucose and lipid metabolism, and its promise as a therapeutic candidate for metabolic disorders such as type 2 diabetes.

  5. Regulation of corepressor alternative mRNA splicing by hormonal and metabolic signaling

    PubMed Central

    Snyder, Chelsea A.; Goodson, Michael L.; Schroeder, Amy C.; Privalsky, Martin L.

    2015-01-01

    Alternative mRNA splicing diversifies the products encoded by the NCoR and SMRT corepressor loci. There is a programmed alteration in NCoR mRNA splicing during adipocyte differentiation from an NCoRδ isoform, which contains three nuclear receptor interaction domains, to an NCoRδ isoform that contains two nuclear receptor interaction domains. This alternative mRNA splicing of NCoR has profound effects on adiposity and on diabetes in mouse models. We report here that dexamethasone, a powerful regulator of metabolism and of adipocyte differentiation, confers this change in NCoR mRNA splicing in cultured adipocytes. We also demonstrate that changes in dietary components can consistently, if moderately, modulate the total transcript levels and the mRNA splicing of NCoR and SMRT in both cultured cells and intact mice. This ability of alternative corepressor mRNA splicing to respond to nutritional changes confirms its importance in regulating glucose and lipid metabolism, and its promise as a therapeutic candidate for metabolic disorders such as type 2 diabetes. PMID:26166430

  6. Identification of phloem-mobile mRNA.

    PubMed

    Notaguchi, Michitaka

    2015-01-01

    Signaling between cells, tissues and organs is essential for multicellular organisms to coordinate and adapt their development and growth to internal and environmental changes. Plants have evolved a plant-specific symplasmic pathway, called plasmodesmata, for efficient intercellular communication, in addition to the receptor-ligand-based apoplasmic pathway. Long-distance signaling between distant organs is enabled via the phloem tube system, where plasmodesmata contribute to phloem loading and unloading for photosynthate allocation. In addition to signaling by small molecules such as metabolites and phytohormones, the transport of proteins, small RNAs and mRNAs is also considered an important mechanism to achieve long-distance signaling in plants. Recent studies on phloem-mobile proteins and small RNAs have revealed their role in crucial physiological processes including flowering, systemic silencing and nutrient allocation. However, the biological role of mRNAs found in the phloem tube is not yet clear, though their mobility over long-distances has been well evidenced. To gain this knowledge, it is important to collect further information on mRNA profiles in the phloem translocation stream. In this review, I summarize the current approaches to identifying the mRNA population in the phloem translocation system, and discuss the possible role of short- and long-distance mRNA transport.

  7. Insights into Basal Signaling Regulation, Oligomerization, and Structural Organization of the Human G-Protein Coupled Receptor 83

    PubMed Central

    Scheerer, Patrick; Biebermann, Heike; Kleinau, Gunnar

    2016-01-01

    The murine G-protein coupled receptor 83 (mGPR83) is expressed in the hypothalamus and was previously suggested to be involved in the regulation of metabolism. The neuropeptide PEN has been recently identified as a potent GPR83 ligand. Moreover, GPR83 constitutes functionally relevant hetero-oligomers with other G-protein coupled receptors (GPCR) such as the ghrelin receptor (GHSR) or GPR171. Previous deletion studies also revealed that the long N-terminal extracellular receptor domain (eNDo) of mGPR83 may act as an intra-molecular ligand, which participates in the regulation of basal signaling activity, which is a key feature of GPCR function. Here, we investigated particular amino acids at the eNDo of human GPR83 (hGPR83) by side-directed mutagenesis to identify determinants of the internal ligand. These studies were accompanied by structure homology modeling to combine functional insights with structural information. The capacity for hetero-oligomer formation of hGPR83 with diverse family A GPCRs such as the melanocortin-4 receptor (MC4R) was also investigated, with a specific emphasis on the impact of the eNDo on oligomerization and basal signaling properties. Finally, we demonstrate that hGPR83 exhibits an unusual basal signaling for different effectors, which also supports signaling promiscuity. hGPR83 interacts with a variety of hypothalamic GPCRs such as the MC4R or GHSR. These interactions are not dependent on the ectodomain and most likely occur at interfaces constituted in the transmembrane regions. Moreover, several amino acids at the transition between the eNDo and transmembrane helix 1 were identified, where mutations lead also to biased basal signaling modulation. PMID:27936173

  8. Cytoplasmic mRNA turnover and ageing

    PubMed Central

    Borbolis, Fivos; Syntichaki, Popi

    2015-01-01

    Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms. PMID:26432921

  9. Unravelling the mysterious roles of melanocortin-3 receptors in metabolic homeostasis and obesity using mouse genetics.

    PubMed

    Girardet, C; Begriche, K; Ptitsyn, A; Koza, R A; Butler, A A

    2014-07-01

    The central nervous melanocortin system maintains body mass and adiposity within a 'healthy' range by regulating satiety and metabolic homeostasis. Neural melanocortin-4 receptors (MC4R) modulate satiety signals and regulate autonomic outputs governing glucose and lipid metabolism in the periphery. The functions of melanocortin-3 receptors (MC3R) have been less well defined. We have observed that food anticipatory activity (FAA) is attenuated in Mc3r-/- mice housed in light:dark or constant dark conditions. Mc3r-/- mice subjected to the restricted feeding protocol that was used to induce FAA also developed insulin resistance, dyslipidaemia, impaired glucose tolerance and evidence of a cellular stress response in the liver. MC3Rs may thus function as modulators of oscillator systems that govern circadian rhythms, integrating signals from nutrient sensors to facilitate synchronizing peak foraging behaviour and metabolic efficiency with nutrient availability. To dissect the functions of MC3Rs expressed in hypothalamic and extra-hypothalamic structures, we inserted a 'lox-stop-lox' (TB) sequence into the Mc3r gene. Mc3r (TB/TB) mice recapitulate the phenotype reported for Mc3r-/- mice: increased adiposity, accelerated diet-induced obesity and attenuated FAA. The ventromedial hypothalamus exhibits high levels of Mc3r expression; however, restoring the expression of the LoxTB Mc3r allele in this nucleus did not restore FAA. However, a surprising outcome came from studies using Nestin-Cre to restore the expression of the LoxTB Mc3r allele in the nervous system. These data suggest that 'non-neural' MC3Rs have a role in the defence of body weight. Future studies examining the homeostatic functions of MC3Rs should therefore consider actions outside the central nervous system.

  10. Structure-function Studies of Nucleocytoplasmic Transport of Retroviral Genomic RNA by mRNA Export Factor TAP

    SciTech Connect

    M Teplova; L Wohlbold; N Khin; E Izaurralde; D Patel

    2011-12-31

    mRNA export is mediated by the TAP-p15 heterodimer, which belongs to the family of NTF2-like export receptors. TAP-p15 heterodimers also bind to the constitutive transport element (CTE) present in simian type D retroviral RNAs, and they mediate the export of viral unspliced RNAs to the host cytoplasm. We have solved the crystal structure of the RNA recognition and leucine-rich repeat motifs of TAP bound to one symmetrical half of the CTE RNA. L-shaped conformations of protein and RNA are involved in a mutual molecular embrace on complex formation. We have monitored the impact of structure-guided mutations on binding affinities in vitro and transport assays in vivo. Our studies define the principles by which CTE RNA subverts the mRNA export receptor TAP, thereby facilitating the nuclear export of viral genomic RNAs, and, more generally, provide insights on cargo RNA recognition by mRNA export receptors.

  11. Mechanisms of mRNA translation of interferon stimulated genes.

    PubMed

    Joshi, Sonali; Kaur, Surinder; Kroczynska, Barbara; Platanias, Leonidas C

    2010-01-01

    Over the last two decades, a lot of research work has been focused on the interferon (IFN)-regulated JAK-STAT pathway and understanding the mechanisms governing the transcription of interferon stimulated genes (ISGs). Evidence suggests that the JAK-STAT pathway alone does not account in its entirety for mediating cellular responses to IFNs. There is emerging evidence that non-Stat pathways play important roles in mediating signals for the generation of IFN-responses. Various studies have underscored the importance of mitogen activated protein kinases (MAPKs), especially p38 and ERK1/2, as well as the PI 3'K/AKT pathway in transmitting signals that are of critical importance for the biological effects of IFNs. Besides regulating the transcription of ISGs in some cases, engagement of these signaling pathways by the IFN-receptor (IFNR) associated complexes also plays an important role in mediating the translation of ISGs. The mechanisms regulating mRNA translation of ISGs is an area of ongoing active research and a lot more efforts will be required to complete our understanding of the various cellular elements involved in this process. In this review we highlight the mechanisms regulating translation of ISGs. We focus on the proteins regulated by the PI 3'K/AKT pathway, their role in mediating mRNA translation of ISGs and the functional consequences of this regulation. In addition, MAPKs are known to regulate the phosphorylation of various eukaryotic initiation factors and we summarize the roles of eIF4B and eIF4E phosphorylations on the translation of ISGs. The emerging roles of microRNAs in mRNA translation of ISGs are also discussed.

  12. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    PubMed Central

    Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2016-01-01

    The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048

  13. Self-amplifying mRNA vaccines.

    PubMed

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization.

  14. OPIATE EXPOSURE AND WITHDRAWAL DYNAMICALLY REGULATE mRNA EXPRESSION IN THE SEROTONERGIC DORSAL RAPHE NUCLEUS

    PubMed Central

    Lunden, Jason; Kirby, Lynn G.

    2013-01-01

    Previous results from our lab suggest that hypofunctioning of the serotonergic (5-HT) dorsal raphe nucleus (DRN) is involved in stress-induced opiate reinstatement. To further investigate the effects of morphine dependence and withdrawal on the 5-HT DRN system, we measured gene expression at the level of mRNA in the DRN during a model of morphine dependence, withdrawal and post withdrawal stress exposure in rats. Morphine pellets were implanted for 72h and then either removed or animals were injected with naloxone to produce spontaneous or precipitated withdrawal, respectively. Animals exposed to these conditions exhibited withdrawal symptoms including weight loss, wet dog shakes and jumping behavior. Gene expression for brain-derived neurotrophic factor (BDNF), TrkB, corticotrophin releasing-factor (CRF)-R1, CRF-R2, GABAA-α1, μ-opioid receptor (MOR), 5-HT1A, tryptophan hydroxylase2 and the 5-HT transporter was then measured using quantitative real-time PCR at multiple time-points across the model of morphine exposure, withdrawal and post withdrawal stress. Expression levels of BDNF, TrkB and CRF-R1 mRNA were decreased during both morphine exposure and following seven days of withdrawal. CRF-R2 mRNA expression was elevated after seven days of withdrawal. 5-HT1A receptor mRNA expression was decreased following 3 hours of morphine exposure, while TPH2 mRNA expression was decreased after seven days of withdrawal with swim stress. There were no changes in the expression of GABAA-α1, MOR or 5-HT transporter mRNA. Collectively these results suggest that alterations in neurotrophin support, CRF-dependent stress signaling, 5-HT synthesis and release may underlie 5-HT DRN hypofunction that can potentially lead to stress-induced opiate relapse. PMID:24055683

  15. Sensitivity of mRNA Translation.

    PubMed

    Poker, Gilad; Margaliot, Michael; Tuller, Tamir

    2015-08-04

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5' end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies.

  16. Sensitivity of mRNA Translation

    PubMed Central

    Poker, Gilad; Margaliot, Michael; Tuller, Tamir

    2015-01-01

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5′ end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies. PMID:26238363

  17. DDR2 polymorphisms and mRNA expression in lung cancers of Japanese patients.

    PubMed

    Sasaki, Hidefumi; Shitara, Masayuki; Yokota, Keisuke; Okuda, Katsuhiro; Hikosaka, Yu; Moriyama, Satoru; Yano, Motoki; Fujii, Yoshitaka

    2012-07-01

    Discoidin domain receptor 2, DDR2, is a tyrosine kinase receptor for fibrillar collagen that is involved in postnatal development, tissue repair and primary and metastatic cancer progression. Recently, mutations in the DDR2 kinase gene were identified in squamous cell lung cancer from large-scale Sanger sequencing. The present study investigated the DDR2 gene mutations and mRNA expression in surgically treated non-small cell lung cancer (NSCLC) of squamous histology cases. The presence or absence of DDR2 mutations at the kinase and discoidin domain was analyzed by direct sequencing. In this cohort, DDR2 mutations were not observed in the 166 patients with lung cancer, although DDR2 polymorphisms were observed (H136H, n=14) at the discoidin domain. mRNA levels of DDR2 in lung tumor samples and the adjacent normal lung samples were simultaneously analyzed. DDR2 mRNA levels were significantly decreased in tumor samples compared with normal lung samples. However, the DDR2 mRNA levels were elevated in the DDR2 polymorphism cases.

  18. Chemokines mRNA expression in relation to the Macrophage Migration Inhibitory Factor (MIF) mRNA and Vascular Endothelial Growth Factor (VEGF) mRNA expression in the microenvironment of endometrial cancer tissue and normal endometrium: a pilot study.

    PubMed

    Giannice, Raffaella; Erreni, Marco; Allavena, Paola; Buscaglia, Mauro; Tozzi, Roberto

    2013-11-01

    Tumor microenvironment inflammatory cells play a major role in cancer progression. Among these, the Tumor Associated Macrophages (TAMs) infiltration depends on the kind of chemokine, cytokines and growth factors secreted by the tumor cells and by the stroma in response to the cancer invasion. TAMs have been found to promote anti-tumor response in early stages and to stimulate neovascularization and metastases in advanced disease. In the microenvironment chemo-attractants of many human cancers, MIF and VEGF correlate with an increased TAMs recruitment. In addition, MIF enhances tumor cells metastases by modulating the immune responses and by promoting the angiogenesis related to VEGF. On the contrary the inhibition of MIF can lead to cell cycle arrest and apoptosis. Some chemokines (e.g. CXCL12, CXCL11, CXCL8) and their receptors, thanks to their ability to modulate migration and proliferation, are involved in the angiogenetic process. In this study we compared the expression of MIF mRNA with VEGF mRNA expression and with mRNA expression of other chemokines related to neo-angiogenesis, such as CXCL12, CXCL11, CXCL8 and CXCR4, in human endometrial cancer tissue (EC) and normal endometrium (NE). Fresh samples of EC tissue and NE were extracted from 15 patients with FIGO stage I-III undergoing primary surgery. Some of the tissue was sent for histology and part of it was treated with RNA later and stored at -80°C. Four patients dropped out. A significant up-regulation of MIF mRNA in EC tissue versus NE samples (P=0.01) was observed in all 11 patients. The MIF mRNA over-expression was coincident with a VEGF mRNA overexpression in 54% of patients (P=NS). MIF mRNA was inversely related to CXCL12 mRNA expression (P=0.01). MIF over-expression was significantly related to low grading G1-2 (P=0.01), endometrial type I (P=0.05), no lymphovascular spaces invasion (P=0.01) and 3years DFS (P=0.01). As reported in previous studies on patients with breast cancer, our data suggest

  19. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability

    PubMed Central

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-01-01

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication. PMID:27265729

  20. Targeting of cytosolic mRNA to mitochondria: naked RNA can bind to the mitochondrial surface.

    PubMed

    Michaud, Morgane; Maréchal-Drouard, Laurence; Duchêne, Anne-Marie

    2014-05-01

    Mitochondria contain hundreds of proteins but only a few are encoded by the mitochondrial genome. The other proteins are nuclear-encoded and imported into mitochondria. These proteins can be translated on free cytosolic polysomes, then targeted and imported into mitochondria. Nonetheless, numerous cytosolic mRNAs encoding mitochondrial proteins are detected at the surface of mitochondria in yeast, plants and animals. The localization of mRNAs to the vicinity of mitochondria would be a way for mitochondrial protein sorting. The mechanisms responsible for mRNA targeting to mitochondria are not clearly identified. Sequences within the mRNA molecules (cis-elements), as well as a few trans-acting factors, have been shown to be essential for targeting of some mRNAs. In order to identify receptors involved in mRNA docking to the mitochondrial surface, we have developed an in vitro mRNA binding assay with isolated plant mitochondria. We show that naked mRNAs are able to bind to isolated mitochondria, and our results strongly suggest that mRNA docking to the plant mitochondrial outer membrane requires at least one component of TOM complex.

  1. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells.

    PubMed

    Thompson, Alison M; Gansen, Alexander; Paguirigan, Amy L; Kreutz, Jason E; Radich, Jerald P; Chiu, Daniel T

    2014-12-16

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques.

  2. Discoidin Domain Receptor 1

    PubMed Central

    Song, Sunmi; Shackel, Nicholas A.; Wang, Xin M.; Ajami, Katerina; McCaughan, Geoffrey W.; Gorrell, Mark D.

    2011-01-01

    Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and is activated by collagens. Transcriptional profiling of cirrhosis in human liver using a DNA array and quantitative PCR detected elevated mRNA expression of DDR1 compared with that in nondiseased liver. The present study characterized DDR1 expression in cirrhotic and nondiseased human liver and examined the cellular effects of DDR1 expression. mRNA expression of all five isoforms of DDR1 was detected in human liver, whereas DDR1a demonstrated differential expression in liver with hepatitis C virus and primary biliary cirrhosis compared with nondiseased liver. In addition, immunoblot analysis detected shed fragments of DDR1 more readily in cirrhotic liver than in nondiseased liver. Inasmuch as DDR1 is subject to protease-mediated cleavage after prolonged interaction with collagen, this differential expression may indicate more intense activation of DDR1 protein in cirrhotic compared with nondiseased liver. In situ hybridization and immunofluorescence localized intense DDR1 mRNA and protein expression to epithelial cells including hepatocytes at the portal-parenchymal interface and the luminal aspect of the biliary epithelium. Overexpression of DDR1a altered hepatocyte behavior including increased adhesion and less migration on extracelular matrix substrates. DDR1a regulated extracellular expression of matrix metalloproteinases 1 and 2. These data elucidate DDR1 function pertinent to cirrhosis and indicate the importance of epithelial cell–collagen interactions in chronic liver injury. PMID:21356365

  3. Weight Loss After RYGB Is Independent of and Complementary to Serotonin 2C Receptor Signaling in Male Mice.

    PubMed

    Carmody, Jill S; Ahmad, Nadia N; Machineni, Sriram; Lajoie, Scott; Kaplan, Lee M

    2015-09-01

    Roux-en-Y gastric bypass (RYGB) typically leads to substantial, long-term weight loss (WL) and diabetes remission, although there is a wide variation in response to RYGB among individual patients. Defining the pathways through which RYGB works should aid in the development of less invasive anti-obesity treatments, whereas identifying weight-regulatory pathways unengaged by RYGB could facilitate the development of therapies that complement the beneficial effects of surgery. Activation of serotonin 2C receptors (5-HT2CR) by serotonergic drugs causes WL in humans and animal models. 5-HT2CR are located on neurons that activate the melanocortin-4 receptors, which are essential for WL after RYGB. We therefore sought to determine whether 5-HT2CR signaling is also essential for metabolic effects of RYGB or whether it is a potentially complementary pathway, the activation of which could extend the benefits of RYGB. Diet-induced obese male mice deficient for the 5-HT2CR and their wild-type littermates underwent RYGB or sham operation. Both groups lost similar amounts of weight after RYGB, demonstrating that the improved metabolic phenotype after RYGB is 5-HT2CR independent. Consistent with this hypothesis, wild-type RYGB-treated mice lost additional weight after the administration of the serotonergic drugs fenfluramine and meta-chlorophenylpiperazine but not the nonserotonergic agent topiramate. The fact that RYGB does not depend on 5-HT2CR signaling suggests that there are important WL mechanisms not fully engaged by surgery that could potentially be harnessed for medical treatment. These results suggest a rational basis for designing medical-surgical combination therapies to optimize clinical outcomes by exploiting complementary physiological mechanisms of action.

  4. Weight Loss After RYGB Is Independent of and Complementary to Serotonin 2C Receptor Signaling in Male Mice

    PubMed Central

    Carmody, Jill S.; Ahmad, Nadia N.; Machineni, Sriram; Lajoie, Scott

    2015-01-01

    Roux-en-Y gastric bypass (RYGB) typically leads to substantial, long-term weight loss (WL) and diabetes remission, although there is a wide variation in response to RYGB among individual patients. Defining the pathways through which RYGB works should aid in the development of less invasive anti-obesity treatments, whereas identifying weight-regulatory pathways unengaged by RYGB could facilitate the development of therapies that complement the beneficial effects of surgery. Activation of serotonin 2C receptors (5-HT2CR) by serotonergic drugs causes WL in humans and animal models. 5-HT2CR are located on neurons that activate the melanocortin-4 receptors, which are essential for WL after RYGB. We therefore sought to determine whether 5-HT2CR signaling is also essential for metabolic effects of RYGB or whether it is a potentially complementary pathway, the activation of which could extend the benefits of RYGB. Diet-induced obese male mice deficient for the 5-HT2CR and their wild-type littermates underwent RYGB or sham operation. Both groups lost similar amounts of weight after RYGB, demonstrating that the improved metabolic phenotype after RYGB is 5-HT2CR independent. Consistent with this hypothesis, wild-type RYGB-treated mice lost additional weight after the administration of the serotonergic drugs fenfluramine and meta-chlorophenylpiperazine but not the nonserotonergic agent topiramate. The fact that RYGB does not depend on 5-HT2CR signaling suggests that there are important WL mechanisms not fully engaged by surgery that could potentially be harnessed for medical treatment. These results suggest a rational basis for designing medical-surgical combination therapies to optimize clinical outcomes by exploiting complementary physiological mechanisms of action. PMID:26066076

  5. Expression of luteinizing hormone and chorionic gonadotropin receptor messenger ribonucleic acid in human corpora lutea during menstrual cycle and pregnancy.

    PubMed

    Nishimori, K; Dunkel, L; Hsueh, A J; Yamoto, M; Nakano, R

    1995-04-01

    In the present study, we examined the expression of LH and CG receptor messenger RNA (mRNA) in human corpora lutea (CL) during the menstrual cycle and pregnancy. Poly(A)-enriched RNA was extracted from CL and analyzed by Northern and slot blots, using a radiolabeled complementary RNA probe derived from the human LH receptor complementary DNA. Northern blot analysis indicated the presence of multiple LH receptor mRNA transcripts with molecular sizes of 8.0, 7.0 and 4.5 kilobases in human CL during the menstrual cycle. The predominant transcript was 4.5 kilobases in size. However, no hybridization signals were observed in nongonadal tissues (heart, liver, and kidney). Densitometric analyses revealed that the levels of LH receptor mRNA increased from early luteal phase to midluteal phase and subsequently decreased during late luteal phase. After the onset of menstruation, the LH receptor mRNA level was undetectable in the regressing CL. Moreover, radioligand receptor assay (RRA) showed a close parallelism between LH receptor mRNA levels and LH receptor content in CL throughout the menstrual cycle. LH receptor mRNA expression was also found in CL during early pregnancy. The level of LH receptor mRNA was relatively high in early pregnancy CL, whereas LH receptor content was low. Using in situ hybridization, LH receptor mRNAs were uniformly expressed in both large and small luteal cells during early and midluteal phase and early pregnancy, but not in regressing CL. In conclusion, these data demonstrate that the regulation of LH receptor content in human CL during luteal phase is associated with similar changes in the receptor message levels, suggesting the physiological roles for LH receptor mRNA during the menstrual cycle in the human. In addition, the expression of LH receptor mRNA was demonstrated in human CL during early pregnancy.

  6. Design, synthesis, and testing of multivalent compounds targeted to melanocortin receptors

    NASA Astrophysics Data System (ADS)

    Dehigaspitiya, Dilani Chathurika

    Our focus is on developing non-invasive molecular imaging reagents, which target human cancers that presently are difficult to detect, such as melanoma. We wish to apply the multivalency concept to differentiate between healthy cells and melanoma cells. Melanoma cells are known to over-express alpha melanocyte stimulating hormone receptors. A successful multivalent construct should show greater avidity towards melanoma cells than healthy cells due to the synergistic effects arising from multivalency. Both oligomeric and shorter linear constructs bearing the minimum active sequence of melanocyte stimulating hormone, His-DPhe-Arg-Trp-NH2(MSH4), which binds with low micromolar affinity to alpha melanocyte stimulating hormone receptors, were synthesized. Binding affinities of these constructs were evaluated in a competitive binding assay by competing with labeled ligands, Eu-DTPA-PEGO-MSH7 and/or Eu-DTPA-PEGO-NDP-alpha-MSH on the engineered cell line HEK293 CCK2R/hMC4R, which is genetically modified to over-express both the cholecystokinin 2 receptor (CCK2R) and human melanocortin 4 receptor (hMC4R). The oligomers were rapidly assembled using microwave-assisted copper catalyzed azide-alkyne cycloaddition between a dialkyne derivative of MSH4 and a diazide derivative of (Pro-Gly)3 as co-monomers. Three oligomer mixtures were further analyzed based on their degree of oligomerization and the route by which the MSH4 monomers were oligomerized, protected vs deprotected. Completive binding assay against Eu-DTPA-PEGO-MSH7 showed only a statistical enhancement of binding when calculated based on the total MSH4 concentration. However, when the calculation of avidity is based on an estimation of the particles numbers, there was a seven times enhancement of binding compared to a monovalent MSH4 control. The shorter linear multivalent MSH4 constructs were synthesized using ethylene glycol, glycerol, and mannitol as core scaffolds with maximum inter-ligand distances ranging from 27

  7. Mechanism of Cytoplasmic mRNA Translation

    PubMed Central

    2015-01-01

    Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings. PMID:26019692

  8. Potential Osteoinductive Effects of Calcitriol on the m-RNA of Mesenchymal Stem Cells Derived from Human Alveolar Periosteum

    PubMed Central

    Hong, Hsiang-Hsi; Hong, Adrienne

    2016-01-01

    This study characterized alveolar periosteum-derived mesenchymal stem cells (P-MSCs) and examined the hypothesis that 1,25-(OH)2D3 (calcitriol) exerts osteoinductive effects on P-MSCs. The mRNA expressions of alkaline phosphatase (ALP), bone sialoprotein (BSP), core-binding factor alpha-1 (CBFA1), collagen-1 (Col-1), osteocalcin (OCN), and vitamin D3 receptor (VDR) were assessed after incubation with calcitriol for 2 weeks. Vitamin C as positive control (Vit. C-p) increased ALP and CBFA1 mRNA expression at both 1 and 2 weeks and increased BSP and Col-1 mRNA expression only at the first week. A concentration of 10−8 M calcitriol enhanced ALP, CBFA1, Col-1, and OCN mRNA expression at both weeks and BSP mRNA expression at the first week. Furthermore, 10−7 M calcitriol increased the mRNA expressions of all compounds at both weeks, except that of CBFA1 at the first week. 10−8 M calcitriol and Vit. C-p enhanced ALP activity at the second and third weeks. The results revealed that 10−9, 10−8, and 10−7 M calcitriol induced osteoinduction in alveolar P-MSCs by increasing ALP, CBFA1, Col-1, and OCN mRNA expression. A 10−7 M calcitriol yielded a higher mRNA expression than Vit. Cp on VDR and OCN mRNA expression at both weeks and on Col-1 mRNA at the second week. PMID:28105418

  9. Staufen-mediated mRNA decay

    PubMed Central

    Park, Eonyoung; Maquat, Lynne E.

    2013-01-01

    Staufen1 (STAU1)-mediated mRNA decay (SMD) is an mRNA degradation process in mammalian cells that is mediated by the binding of STAU1 to a STAU1-binding site (SBS) within the 3'-untranslated region (3'UTR) of target mRNAs. During SMD, STAU1, a double-stranded (ds) RNA-binding protein, recognizes dsRNA structures formed either by intramolecular base-pairing of 3'UTR sequences or by intermolecular base-pairing of 3'UTR sequences with a long noncoding RNA (lncRNA) via partially complementary Alu elements. Recently, STAU2, a paralog of STAU1, has also been reported to mediate SMD. Both STAU1 and STAU2 interact directly with the ATP-dependent RNA helicase UPF1, a key SMD factor, enhancing its helicase activity to promote effective SMD. Moreover, STAU1 and STAU2 form homodimeric and heterodimeric interactions via domain-swapping. Since both SMD and the mechanistically related nonsense-mediated mRNA decay (NMD) employ UPF1, SMD and NMD are competitive pathways. Competition contributes to cellular differentiation processes, such as myogenesis and adipogenesis, placing SMD at the heart of various physiologically important mechanisms. PMID:23681777

  10. Investigation of the melanocyte stimulating hormones on food intake. Lack Of evidence to support a role for the melanocortin-3-receptor.

    PubMed

    Abbott, C R; Rossi, M; Kim, M; AlAhmed, S H; Taylor, G M; Ghatei, M A; Smith, D M; Bloom, S R

    2000-06-30

    The melanocortin receptors, melanocortin-3-receptor (MC3-R) and melanocortin-4-receptor (MC4-R), are expressed in many discrete medial hypothalamic nuclei implicated in feeding regulation. The pro-opiomelanocortin product alpha-melanocyte stimulating hormone (alpha-MSH), an MC3/4-R agonist, decreases food intake following intracerebroventricular (ICV) injection in rats. MC4-R's involvement in feeding has been established although a function for the MC3-R is unclear. We investigated endogenous melanocortin ligand binding and activation at the MC3-R and MC4-R and their effects on feeding. We have shown that alpha-MSH, desacetyl-alpha-MSH and beta-MSH bound to the MC3-R and MC4-R with similar affinity and stimulated cAMP with similar potency in HEK 293 cells transfected with MC3-R and MC4-R. In contrast gamma(2)-MSH showed selectivity for the MC3-R over the MC4-R both in binding affinity and cAMP stimulation. alpha-MSH and beta-MSH injected ICV into fasted rats at doses of 1, 3 and 6 nmol resulted in a decrease in food intake, (2 h food intake: alpha-MSH 6 nmol, 1.7+/-0.3 g; beta-MSH 6 nmol, 1.5+/-0.3 g vs. saline 6.0+/-0.5 g, P<0.001). Desacetyl alpha-MSH did not reduce food intake at low doses but was significant at 25 nmol (2 h food intake: desacetyl-alpha-MSH 6.1+/-1.0 g vs. saline 9.5+/-1.4 g, P<0.05). In contrast, gamma(2)-MSH had no effect on food intake when administered ICV to fasted rats. We were unable to establish a role for the MC3-R in feeding regulation. Our evidence, however, strengthens the hypothesis that the melanocortin's effects on food intake are mediated via the MC4-R.

  11. Enhancing recombinant protein production in human cell lines with a constitutive transport element and mRNA export proteins.

    PubMed

    Aihara, Yuki; Fujiwara, Naoko; Yamazaki, Tomohiro; Kambe, Taiho; Nagao, Masaya; Hirose, Yutaka; Masuda, Seiji

    2011-05-20

    Recent research into mRNA maturation processes in the nucleus has identified a number of proteins involved in mRNA transcription, capping, splicing, end processing and export. Among them, the Tap-p15 heterodimer acts as an mRNA export receptor. Tap-p15 is recruited onto fully processed mRNA in the nucleus, which is ready for export to the cytoplasm, through associating with Aly or SR proteins on mRNA, or by directly associating with a constitutive transport element (CTE), an RNA element derived from type D retroviruses. mRNA containing a CTE is exported to the cytoplasm by directly associating with Tap-p15, even in the absence of Tap-recruiting proteins such as Aly or SR proteins on the mRNA. Here, we showed that the use of a CTE enhanced the expression of recombinant protein in human cell lines. The co-expression of reporter proteins and Tap-p15 also enhanced recombinant protein expression. Moreover, the use of a CTE and Tap-p15 synergistically further enhanced the recombinant protein expression. In addition to Tap-p15, several Tap-p15-recruiting proteins, including Aly and SR proteins, enhanced recombinant protein expression, albeit independently of the CTE. The incorporation of a CTE and Tap-p15-recruiting proteins into protein expression system is useful to increase recombinant protein yield in human cells.

  12. Frequent up-regulation of WNT5A mRNA in primary gastric cancer.

    PubMed

    Saitoh, Tetsuroh; Mine, Tetsuya; Katoh, Masaru

    2002-05-01

    WNT signal is transduced to the beta-catenin - TCF pathway, the JNK pathway, or the Ca2+-releasing pathway through seven-transmembrane-type WNT receptors encoded by Frizzled genes (FZD1-FZD10). We have previously cloned and characterized human WNT2B/WNT13, WNT3, WNT3A, WNT5B, WNT6, WNT7B, WNT8A, WNT8B, WNT10A, WNT10B, WNT11, WNT14, and WNT14B/WNT15 by using bioinformatics, cDNA-library screening, and cDNA-PCR. Here, we investigated expression of human WNT5A mRNA in various normal tissues, 66 primary tumors derived from various tissues, and 15 human cancer cell lines. WNT5A mRNA was relatively highly expressed in salivary gland, bladder, uterus, placenta, and fetal kidney. Up-regulation of WNT5A mRNA was detected in 5 out of 8 cases of primary gastric cancer, 5 out of 18 cases of primary colorectal tumors, and in 2 out of 7 cases of primary uterus tumors by using matched tumor/normal expression array analysis. Up-regulation of WNT5A mRNA was also detected in 7 out of 10 other cases of primary gastric cancer by using cDNA-PCR. Although low-level expression of WNT5A mRNA was detected in gastric cancer cell line MKN45, WNT5A mRNA was almost undetectable in gastric cancer cell lines OKAJIMA, TMK1, MKN7, MKN28, MKN74, and KATO-III. Compared with frequent up-regulation of WNT5A mRNA in primary gastric cancer, expression levels of WNT5A mRNA in 7 gastric cancer cell lines were significantly lower than that in normal stomach. Frequent up-regulation of WNT5A mRNA in human primary gastric cancer might be due to cancer-stromal interaction.

  13. Structural insight into the MC4R conformational changes via different agonist-mediated receptor signaling.

    PubMed

    Yang, Yingkui; Chen, Min; Dimmitt, Reed; Harmon, Carroll M

    2014-11-18

    The melanocortin-4 receptor (MC4R) plays a key role in the regulation of food intake and body weight. Previous studies indicate that α-melanocyte stimulating hormone (α-MSH) binds to MC4R and activates three signal pathways (cAMP, calcium, and mitogen-activated protein kinase pathways), whereas MC4R synthetic agonist THIQ can activate only the cAMP pathway. The molecular basis of the MC4R responsible for different ligand-mediated signaling is unknown. We hypothesize that different MC4R agonists can stabilize different MC4R conformations and result in ligand-mediated signal transduction. In this study, we examined the effect of the MC4R conformational change in cAMP signaling pathways mediated by different agonists by cross-linking two transmembrane helices (TM3 and TM6). We generated and tested 11 single and 8 double mutations that are located at the end of TM3 and beginning of TM6 in MC4R. Our results indicate that (1) single or double mutations of the MC4R did not significantly alter cAMP production induced by NDP-MSH compared to that of wild-type MC4R except single mutation 243H (the mutation 243H significantly decreased cAMP production mediated by NDP-MSH or THIQ due to a low level of receptor expression at the cell surface), (2) the mutation 247H significantly decreased THIQ-mediated cAMP production but not NDP-MSH, and (3) the receptor cAMP signaling pathway activation by THIQ is blocked in the presence of Zn(2+) with the double mutation I150/242H but activation by NDP-MSH is not, suggesting that the activated conformation of MC4R mediated by NDP-MSH and THIQ is different. This study provides insight into the molecular basis of MC4R responsible for receptor signaling mediated by different agonists.

  14. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle

    PubMed Central

    Mündel, Toby; Pilegaard, Henriette; Hawke, Emma; Leikis, Murray; Lopez-Villalobos, Nicolas; Oliveira, Rodrigo S. F.; Bishop, David J.

    2015-01-01

    Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% V˙O2peak intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID) or calcium carbonate (PLA) the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1α (PGC-1α), citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P<0.05). During the PLA condition, the mRNA content of mitochondrial- and glucose-regulating proteins was elevated immediately following exercise (P<0.05). In the early phase (0–2 h) of post-exercise recovery during ACID, PGC-1α, citrate synthase, cytochome C, FOXO1, GLUT4, and HKII mRNA levels were not different from resting levels (P>0.05); the difference in PGC-1α mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08). Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1α mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle. PMID:26656911

  15. Circulating RANKL is inversely related to RANKL mRNA levels in bone in osteoarthritic males

    PubMed Central

    Findlay, David; Chehade, Mellick; Tsangari, Helen; Neale, Susan; Hay, Shelley; Hopwood, Blair; Pannach, Susan; O'Loughlin, Peter; Fazzalari, Nicola

    2008-01-01

    Introduction The relationship of circulating levels of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) with the expression of these molecules in bone has not been established. The objective of this study was to measure, in humans, the serum levels of RANKL and OPG, and the corresponding levels in bone of mRNA encoding these proteins. Methods Fasting blood samples were obtained on the day of surgery from patients presenting for hip replacement surgery for primary osteoarthritis (OA). Intraoperatively, samples of intertrochanteric trabecular bone were collected for analysis of OPG and RANKL mRNA, using real time RT-PCR. Samples were obtained from 40 patients (15 men with age range 50 to 79 years, and 25 women with age range 47 to 87 years). Serum total RANKL and free OPG levels were measured using ELISA. Results Serum OPG levels increased over the age range of this cohort. In the men RANKL mRNA levels were positively related to age, whereas serum RANKL levels were negatively related to age. Again, in the men serum RANKL levels were inversely related (r = -0.70, P = 0.007) to RANKL mRNA levels. Also in the male group, RANKL mRNA levels were associated with a number of indices of bone structure (bone volume fraction relative to bone tissue volume, specific surface of bone relative to bone tissue volume, and trabecular thickness), bone remodelling (eroded surface and osteoid surface), and biochemical markers of bone turnover (serum alkaline phosphatase and osteocalcin, and urinary deoxypyridinoline). Conclusion This is the first report to show a relationship between serum RANKL and the expression of RANKL mRNA in bone. PMID:18182105

  16. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway

    PubMed Central

    Belew, Ashton Trey; Meskauskas, Arturas; Musalgaonkar, Sharmishtha; Advani, Vivek M.; Sulima, Sergey O.; Kasprzak, Wojciech K.; Shapiro, Bruce A.; Dinman, Jonathan D.

    2015-01-01

    Programmed –1 ribosomal frameshift (–1 PRF) signals redirect translating ribosomes to slip back one base on messenger RNAs. Although well characterized in viruses, how these elements may regulate cellular gene expression is not understood. Here we describe a –1 PRF signal in the human mRNA encoding CCR5, the HIV-1 co-receptor. CCR5 mRNA-mediated –1 PRF is directed by an mRNA pseudoknot, and is stimulated by at least two microRNAs. Mapping the mRNA–miRNA interaction suggests that formation of a triplex RNA structure stimulates –1 PRF. A –1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay pathway. At least one additional mRNA decay pathway is also involved. Functional –1 PRF signals that seem to be regulated by miRNAs are also demonstrated in mRNAs encoding six other cytokine receptors, suggesting a novel mode through which immune responses may be fine-tuned in mammalian cells. PMID:25043019

  17. BDNF and trkB mRNA expression in the rat hippocampus following entorhinal cortex lesions.

    PubMed

    Lapchak, P A; Araujo, D M; Hefti, F

    1993-02-01

    Quantitative in situ hybridization was used to determine whether the prevalence or topographical distribution of brain-derived neurotrophic factor (BDNF) or tyrosine receptor kinase (trk) B mRNA is altered in the hippocampal formation following lesions of excitatory afferents from the entorhinal cortex which provides an external source of innervation for the hippocampal formation. BDNF mRNA levels were not altered in the hippocampal formation up to 10 days following entorhinal cortex lesions (ECLs). The levels of mRNA coding for all known forms of trkB receptors also remained unchanged. The prevalence of the synaptic plasticity marker SNAP-25 mRNA was increased in the CA2 and CA3 pyramidal cell layers and the dentate gyrus by 6 days following ECLs and remained elevated at 10 days following ECLs. Our findings indicate that hippocampal neuron sprouting which occurs in response to ECLs is not the result of changes in the expression of the BDNF or trkB mRNA.

  18. Light-dark condition regulates sirtuin mRNA levels in the retina.

    PubMed

    Ban, Norimitsu; Ozawa, Yoko; Inaba, Takaaki; Miyake, Seiji; Watanabe, Mitsuhiro; Shinmura, Ken; Tsubota, Kazuo

    2013-11-01

    Sirtuins (Sirt1-7) are nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases/ADP-ribosyltransferases that modulate many metabolic responses affecting aging. Sirtuins expressed in tissues and organs involved in systemic metabolism have been extensively studied. However, the characteristics of sirtuins in the retina, where local energy expenditure changes dynamically in response to light stimuli, are largely unknown. Here we analyzed sirtuin mRNA levels by real-time PCR, and found that all seven sirtuins are highly expressed in the retina compared with other tissues, such as liver. We then analyzed the sirtuin mRNA profiles in the retina over time, under a 12-h light/12-h dark cycle (LD condition) and in constant darkness (DD condition). All seven sirtuins showed significant daily variation under the LD condition, with all except Sirt6 being increased in the dark phase. The expression patterns were different under the DD condition, suggesting that sirtuin mRNA levels except Sirt6 are affected by light-dark condition. These findings were not obtained in the brain and liver. In addition, the mRNA expression patterns of Nicotinamide phosphoribosyltransferase (Nampt), peroxisome proliferator-activated receptor gamma coactivator (PGC1α), and transcription factor A, mitochondrial (Tfam) in the retina, were similar to those of the sirtuins except Sirt6. Our observations provide new insights into the metabolic mechanisms of the retina and the sirtuins' regulatory systems.

  19. Androgen-dependent loss of muscle BDNF mRNA in two mouse models of SBMA.

    PubMed

    Halievski, Katherine; Henley, Casey L; Domino, Laurel; Poort, Jessica E; Fu, Martina; Katsuno, Masahisa; Adachi, Hiroaki; Sobue, Gen; Breedlove, S Marc; Jordan, Cynthia L

    2015-07-01

    Transgenic expression of neurotrophic factors in skeletal muscle has been found to protect mice from neuromuscular disease, including spinal bulbar muscular atrophy (SBMA), triggering renewed interest in neurotrophic factors as therapeutic agents for treating neuromuscular disease. Because SBMA is an androgen-dependent disease, and brain-derived neurotrophic factor (BDNF) mediates effects of androgens on neuromuscular systems, we asked whether BDNF expression is impaired in two different transgenic (Tg) mouse models of SBMA, the so called "97Q" and "myogenic" SBMA models. The 97Q model globally overexpresses a full length human AR with 97 glutamine repeats whereas the myogenic model of SBMA overexpresses a wild-type rat androgen receptor (AR) only in skeletal muscle fibers. Using quantitative PCR, we find that muscle BDNF mRNA declines in an androgen-dependent manner in both models, paralleling changes in motor function, with robust deficits (6-8 fold) in both fast and slow twitch muscles of impaired Tg males. Castration rescues or reverses disease-related deficits in muscle BDNF mRNA in both models, paralleling its effect on motor function. Moreover, when disease is acutely induced in Tg females, both motor function and muscle BDNF mRNA expression plummet, with the deficit in muscle BDNF emerging before overt motor dysfunction. That androgen-dependent motor dysfunction is tightly associated with a robust and early down-regulation of muscle BDNF mRNA suggests that BDNF delivered to skeletal muscle may have therapeutic value for SBMA.

  20. NOX4 Regulates CCR2 and CCL2 mRNA Stability in Alcoholic Liver Disease

    PubMed Central

    Sasaki, Yu; Dehnad, Ali; Fish, Sarah; Sato, Ai; Jiang, Joy; Tian, Jijing; Schröder, Kathrin; Brandes, Ralf; Török, Natalie J.

    2017-01-01

    Recruitment of inflammatory cells is a major feature of alcoholic liver injury however; the signals and cellular sources regulating this are not well defined. C-C chemokine receptor type 2 (CCR2) is expressed by active hepatic stellate cells (HSC) and is a key monocyte recruitment signal. Activated HSC are also important sources of hydrogen peroxide resulting from the activation of NADPH oxidase 4 (NOX4). As the role of this NOX in early alcoholic liver injury has not been addressed, we studied NOX4-mediated regulation of CCR2/CCL2 mRNA stability. NOX4 mRNA was significantly induced in patients with alcoholic liver injury, and was co-localized with αSMA-expressing activated HSC. We generated HSC-specific NOX4 KO mice and these were pair-fed on alcohol diet. Lipid peroxidation have not changed significantly however, the expression of CCR2, CCL2, Ly6C, TNFα, and IL-6 was significantly reduced in NOX4HSCKO compared to fl/fl mice. NOX4 promoter was induced in HSC by acetaldehyde treatment, and NOX4 has significantly increased mRNA half-life of CCR2 and CCL2 in conjunction with Ser221 phosphorylation and cytoplasmic shuttling of HuR. In conclusion, NOX4 is induced in early alcoholic liver injury and regulates CCR2/CCL2 mRNA stability thereby promoting recruitment of inflammatory cells and production of proinflammatory cytokines. PMID:28383062

  1. Effect of gamma radiation on the expression of mRNA growth factors in glycerol cryopreserved human amniotic membrane.

    PubMed

    Yatim, Rusidah Mat; Kannan, Thirumulu Ponnuraj; Ab Hamid, Suzina Sheikh

    2016-12-01

    Human amniotic membrane (HAM) due to its high biocompatibility, low immunogenicity, anti-microbial, anti-viral properties as well as the presence of growth factors has been used in various clinical applications. The growth factors play an important role in wound healing. The current study aimed to explore the effect of 15 kGy gamma radiation dose on selected growth factors and receptors mRNA present in HAM. Eight growth factors, namely, EGF, HGF, KGF, TGF-α, TGF-β1, TGF-β2, TGF-β3 and bFGF and two growth factor receptors, HGFR and KGFR were evaluated in this study. The total RNA was extracted and converted to complimentary DNA using commercial kits. Subsequently, the mRNA expressions of these growth factors were evaluated using real-time PCR and the results were statistically analyzed using REST-MCS software. This study confirmed the presence of these mRNA growth factors and receptors in fresh, glycerol cryopreserved and irradiated glycerol cryopreserved HAM. In glycerol cryopreserved HAM, the results showed up-regulation of HGF and bFGF and down-regulation of EGF, HGFR, KGF, KGFR, TGF-α, TGF-β1, TGF-β2 and TGF-β3 relative to the fresh HAM which acted as the control, whereas in irradiated glycerol cryopreserved HAM, the results showed up-regulation of EGF, HGF, KGF, KGFR, TGF-β1, TGF-β2 and TGF-β3 and down-regulation of HGFR, TGF-α and bFGF relative to the glycerol cryopreserved HAM which acted as the control. However, these mRNA expressions did not show any statistical significant difference compared to the control groups. This study concluded that a dose of 15 kGy of gamma radiation did not affect the mRNA expression for the growth factors' and receptors' in the glycerol cryopreserved HAM.

  2. Messenger RNA (mRNA) nanoparticle tumour vaccination

    NASA Astrophysics Data System (ADS)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  3. Mammalian pre-mRNA 3′ End Processing Factor CF Im68 Functions in mRNA Export

    PubMed Central

    Ruepp, Marc-David; Aringhieri, Chiara; Vivarelli, Silvia; Cardinale, Stefano; Paro, Simona; Schümperli, Daniel

    2009-01-01

    Export of mRNA from the nucleus is linked to proper processing and packaging into ribonucleoprotein complexes. Although several observations indicate a coupling between mRNA 3′ end formation and export, it is not known how these two processes are mechanistically connected. Here, we show that a subunit of the mammalian pre-mRNA 3′ end processing complex, CF Im68, stimulates mRNA export. CF Im68 shuttles between the nucleus and the cytoplasm in a transcription-dependent manner and interacts with the mRNA export receptor NXF1/TAP. Consistent with the idea that CF Im68 may act as a novel adaptor for NXF1/TAP, we show that CF Im68 promotes the export of a reporter mRNA as well as of endogenous mRNAs, whereas silencing by RNAi results in the accumulation of mRNAs in the nucleus. Moreover, CF Im68 associates with 80S ribosomes but not polysomes, suggesting that it is part of the mRNP that is remodeled in the cytoplasm during the initial stages of translation. These results reveal a novel function for the pre-mRNA 3′ end processing factor CF Im68 in mRNA export. PMID:19864460

  4. MRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas.

    PubMed

    Castelli, Martina Galatea; Rusten, Marte; Goksøyr, Anders; Routti, Heli

    2014-01-01

    There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes encoding hepatic PPARγ, adipose FABP4, adipose ADIPOQ and ΣPOP concentrations was observed. These findings suggest that lipid metabolism may be affected by contaminant exposure in the Baltic population. mRNA expression of genes encoding PPARβ, PPARγ, FABP4 and ADIPOQ were similar between the mid and inner adipose layer. Hepatic mRNA expression of genes encoding PPARα and PPARγ was higher in the pre

  5. An mRNA encoding a putative GABA-gated chloride channel is expressed in the human cardiac conduction system.

    PubMed

    Garret, M; Bascles, L; Boue-Grabot, E; Sartor, P; Charron, G; Bloch, B; Margolskee, R F

    1997-04-01

    GABA-gated chloride channels are the main inhibitory neurotransmitter receptors in the CNS. Conserved domains among members of previously described GABAA receptor subunits were used to design degenerate sense and antisense oligonucleotides. A PCR product from this amplification was used to isolate a full-length cDNA. The predicted protein has many of the features shared by other members of the ligand-gated ion channel family. This channel subunit has significant amino acid identity (25-40%) with members of GABAA and GABAC receptor subunits and thus may represent a new subfamily of the GABA receptor channel. Although we cannot rule out that this clone encodes a receptor for an unidentified ligand, it was termed GABA chi. This gene is mainly expressed in placenta and in heart; however, placenta appears to express only an unspliced mRNA. In situ hybridization reveals that the GABA chi subunit mRNA is present in the electrical conduction system of the human heart. Our results suggest that novel GABA receptors expressed outside of the CNS may regulate cardiac function.

  6. Regional expression of inducible heat shock protein-70 mRNA in the rat brain following administration of convulsant drugs.

    PubMed

    Planas, A M; Soriano, M A; Ferrer, I; Rodríguez Farré, E

    1994-11-01

    Expression of inducible heat shock protein-70 mRNA (hsp-70 mRNA) was studied in the rat brain following systemic administration of different convulsant agents: an L-type voltage-dependent calcium channel agonist, (+/-)-BAY K 8644 (BAY-K); the excitotoxic glutamate agonists kainic acid and N-methyl-D-aspartic acid (NMDA); and the GABAA receptor complex antagonists pentylenetetrazole (PTZ) and lindane (gamma-hexaclorocyclohexane). BAY-K induced minimal hsp-70 mRNA expression in the hippocampus of convulsant rats, localized in the dentate gyrus and the pyramidal cell layer of Ammon's horn. Kainic acid treatment in rats, showing severe limbic convulsions, caused intense expression of hsp-70 mRNA and protein (HSP-70). Expression was localized in select cerebral regions, notably the pyramidal cell layer of the hippocampal CA3 field of Ammon's horn and the piriform cortex, and also the subicular complex and the amygdala, and, to a lesser extent, the entorhinal cortex, the pyramidal cell layer of CA1, several thalamic nuclei, and the parietal cortex. In contrast, systemic administration of NMDA, PTZ or lindane led to no detectable induction of hsp-70 mRNA in the rat brain, despite producing convulsions. Histological examination revealed cell injury only following kainic acid treatment. Damage was most apparent in the piriform and entorhinal cortices, pyramidal cell layer of the CA1 field, and cortical amygdaloid nuclei. BAY-K, NMDA, PTZ and lindane did not lead to any observable histopathological changes. These results show that convulsions of different aetiology do not inevitably induce hsp-70 mRNA expression or cell damage. Intense expression of hsp-70 mRNA was generally associated with regions that later showed variable degrees of nerve cell damage, although hsp-70 mRNA expression was not always predictive of subsequent cell death or survival.

  7. Localization and local translation of Arc/Arg3.1 mRNA at synapses: some observations and paradoxes.

    PubMed

    Steward, Oswald; Farris, Shannon; Pirbhoy, Patricia S; Darnell, Jennifer; Driesche, Sarah J Van

    2014-01-01

    Arc is a unique immediate early gene whose expression is induced as synapses are being modified during learning. The uniqueness comes from the fact that newly synthesized Arc mRNA is rapidly transported throughout dendrites where it localizes near synapses that were recently activated. Here, we summarize aspects of Arc mRNA translation in dendrites in vivo, focusing especially on features of its expression that are paradoxical or that donot fit in with current models of how Arc protein operates. Findings from in vivo studies that donot quite fit include: (1) Following induction of LTP in vivo, Arc mRNA and protein localize near active synapses, but are also distributed throughout dendrites. In contrast, Arc mRNA localizes selectively near active synapses when stimulation is continued as Arc mRNA is transported into dendrites; (2) Strong induction of Arc expression as a result of a seizure does not lead to a rundown of synaptic efficacy in vivo as would be predicted by the hypothesis that high levels of Arc cause glutamate receptor endocytosis and LTD. (3) Arc protein is synthesized in the perinuclear cytoplasm rapidly after transcriptional activation, indicating that at least a pool of Arc mRNA is not translationally repressed to allow for dendritic delivery; (4) Increases in Arc mRNA in dendrites are not paralleled by increases in levels of exon junction complex (EJC) proteins. These results of studies of mRNA trafficking in neurons in vivo provide a new perspective on the possible roles of Arc in activity-dependent synaptic modifications.

  8. Enhanced translational efficiency of a novel transforming growth factor beta 3 mRNA in human breast cancer cells.

    PubMed Central

    Arrick, B A; Grendell, R L; Griffin, L A

    1994-01-01

    The mRNA for transforming growth factor beta 3 (TGF-beta 3) includes a long (1.1-kb) 5' noncoding region which exerts a potent inhibitory effect on translational efficiency. We now report that many human breast cancer cell lines (T47-D, SK-BR-3, ZR-75-1, and BT-474) express two mRNA species for TGF-beta 3: the 3.5-kb transcript previously described as the only TGF-beta 3 mRNA species in cells and a novel 2.6-kb transcript which lacks approximately 870 nucleotides from the 5' noncoding region. The 5' end of the shorter transcript was sequenced, establishing it to be a 5' truncation of the full-length TGF-beta 3 transcript. Estradiol decreased mRNA levels of both TGF-beta 3 mRNA transcripts to an equivalent degree in estrogen receptor-positive cells. In contrast, the synthetic progestin gestodene altered the relative abundance of the two transcripts, preferentially diminishing the expression of the 2.6-kb transcript. The potential for enhanced mRNA translation attributable to the shorter 5' noncoding region was evaluated by transfection of cells with chimeric plasmid constructs in which the transcription unit consisted of coding sequence for chloramphenicol acetyltransferase downstream of the 5' noncoding sequence from TGF-beta 3. The translational efficiency of chloramphenicol acetyltransferase-encoding mRNA containing the shorter 5' noncoding region of the 2.6-kb TGF-beta 3 transcript was approximately seven times greater than with the full-length 5' noncoding region of TGF-beta 3. Polysome analysis of TGF-beta 3 mRNA in SK-BR-3 cells supported the hypothesis that the 2.6-kb transcript was more actively engaged in translation. Images PMID:8264630

  9. Sequences controlling histone H4 mRNA abundance.

    PubMed Central

    Capasso, O; Bleecker, G C; Heintz, N

    1987-01-01

    The post-transcriptional regulation of histone mRNA abundance is manifest both by accumulation of histone mRNA during the S phase, and by the rapid degradation of mature histone mRNA following the inhibition of DNA synthesis. We have constructed a comprehensive series of substitution mutants within a human H4 histone gene, introduced them into the mouse L cell genome, and analyzed their effects on the post-transcriptional control of the H4 mRNA. Our results demonstrate that most of the H4 mRNA is dispensable for proper regulation of histone mRNA abundance. However, recognition of the 3' terminus of the mature H4 mRNA is critically important for regulating its cytoplasmic half-life. Thus, this region of the mRNA functions both in the nucleus as a signal for proper processing of the mRNA terminus, and in the cytoplasm as an essential element in the control of mRNA stability. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3608993

  10. GABAergic mRNA expression is upregulated in the prefrontal cortex of rats sensitized to methamphetamine.

    PubMed

    Wearne, Travis A; Parker, Lindsay M; Franklin, Jane L; Goodchild, Ann K; Cornish, Jennifer L

    2016-01-15

    Inhibitory gamma-aminobutyric acid (GABA)-mediated neurotransmission plays an important role in the regulation of the prefrontal cortex (PFC), with increasing evidence suggesting that dysfunctional GABAergic processing of the PFC may underlie certain deficits reported across psychotic disorders. Methamphetamine (METH) is a psychostimulant that induces chronic psychosis in a subset of users, with repeat administration producing a progressively increased vulnerability to psychotic relapse following subsequent drug administration (sensitization). The aim here was to investigate changes to GABAergic mRNA expression in the PFC of rats sensitized to METH using quantitative polymerase chain reaction (qPCR). Male Sprague-Dawley rats (n=12) underwent repeated methamphetamine (intraperitoneal (i.p.) or saline injections for 7 days. Following 14 days of withdrawal, rats were challenged with acute methamphetamine (1mg/kg i.p.) and RNA was isolated from the PFC to compare the relative mRNA expression of a range of GABA enzymes, transporters and receptors subunits. METH challenge resulted in a significant sensitized behavioral (locomotor) response in METH pre-treated animals compared with saline pre-treated controls. The mRNAs of transporters (GAT1 and GAT3), ionotropic GABAA receptor subunits (α3 and β1), together with the metabotropic GABAB1 receptor, were upregulated in the PFC of sensitized rats compared with saline controls. These findings indicate that GABAergic mRNA expression is significantly altered at the pre and postsynaptic level following sensitization to METH, with sensitization resulting in the transcriptional upregulation of several inhibitory genes. These changes likely have significant consequences on GABA-mediated neurotransmission in the PFC and may underlie certain symptoms conserved across psychotic disorders, such as executive dysfunction.

  11. Regulation of interferon-dependent mRNA translation of target genes.

    PubMed

    Kroczynska, Barbara; Mehrotra, Swarna; Arslan, Ahmet Dirim; Kaur, Surinder; Platanias, Leonidas C

    2014-04-01

    Interferons (IFNs) are released by cells on exposure to various stimuli, including viruses, double-stranded RNA, and other cytokines and various polypeptides. These IFNs play important physiological and pathophysiological roles in humans. Many clinical studies have established activity for these cytokines in the treatment of several malignancies, viral syndromes, and autoimmune disorders. In this review, the regulatory effects of type I and II IFN receptors on the translation-initiation process mediated by mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and the known mechanisms of control of mRNA translation of IFN-stimulated genes are summarized and discussed.

  12. CXCR4 mRNA expression in colon, esophageal and gastric cancers and hepatitis C infected liver.

    PubMed

    Mitra, P; Shibuta, K; Mathai, J; Shimoda, K; Banner, B F; Mori, M; Barnard, G F

    1999-05-01

    We have recently demonstrated by Northern blot and RT-PCR that the mRNA expression of the alpha-chemokine hIRH/SDF-1alpha is reduced in hepatocellular carcinoma (HCC), several digestive tract cancers and premalignant colon adenomas, and that its receptor CXCR4 mRNA expression is reduced in HCC. Here we investigate the expression of CXCR4 mRNA expression in several digestive tract cancers and hepatitis C viral (HCV) infected liver, a premalignant condition. There was no difference in the CXCR4 mRNA expression in colon, esophageal or gastric cancers compared to non-cancerous tissues. This is significantly different from the reduced expression we have seen with hepatocellular carcinoma (p<0.05). To better refine regional tumor or hepatic cytokine mRNA analysis within a biopsy sample we describe a micro-isolation technique for RNA extraction from portal and triad areas of liver biopsies or other small malignant or non-malignant biopsy samples suitable for use in RT-PCR and differential display reactions. In HCV liver biopsies, the expression of hIRH and its receptor CXCR4 mRNA, corrected for G3PDH, was not significantly different from that of control non-HCV (steatosis) biopsies. CXCR4 is expressed on leukocytes and its expression was predicted to correlate with hepatic inflammation. CXCR4 receptor mRNA expression did correlate significantly with that of its ligand hIRH/SDF-1alpha (p=0.001), and with the severity of fibrosis (p<0.05), but not with portal inflammation (p<0.10), piecemeal necrosis (p<0.10), lobular inflammation (p>0.10), the presence of lymphoid aggregates (p>0.10), or the total histological activity index (p=0.07). There was no difference in expression of hIRH or CXCR4 between responders and non-responders to interferon (IFN) treatment, while as a control, the responder group of patients did show a higher expression of IFNalpha receptor than the non-responder group (p=0.05).

  13. Links between mRNA splicing, mRNA quality control, and intellectual disability

    PubMed Central

    Fasken, Milo B.; Corbett, Anita H.

    2016-01-01

    In recent years, the impairment of RNA binding proteins that play key roles in the post-transcriptional regulation of gene expression has been linked to numerous neurological diseases. These RNA binding proteins perform critical mRNA processing steps in the nucleus, including splicing, polyadenylation, and export. In many cases, these RNA binding proteins are ubiquitously expressed raising key questions about why only brain function is impaired. Recently, mutations in the ZC3H14 gene, encoding an evolutionarily conserved, polyadenosine RNA binding protein, have been linked to a nonsyndromic form of autosomal recessive intellectual disability. Thus far, research on ZC3H14 and its Nab2 orthologs in budding yeast and Drosophila reveals that ZC3H14/Nab2 is important for mRNA processing and neuronal patterning. Two recent studies now provide evidence that ZC3H14/Nab2 may function in the quality control of mRNA splicing and export and could help to explain the molecular defects that cause neuronal dysfunction and lead to an inherited form of intellectual disability. These studies on ZC3H14/Nab2 reveal new clues to the puzzle of why loss of the ubiquitously expressed ZC3H14 protein specifically affects neurons. PMID:27868086

  14. The effect of hypothermia on the expression of neurotrophin mRNA in the hippocampus following transient cerebral ischemia in the rat.

    PubMed

    Boris-Möller, F; Kamme, F; Wieloch, T

    1998-12-10

    The expression of the mRNAs of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and the neurotrophin receptor, TrkB, was studied in the rat hippocampus by in situ hybridization following normothermic (37 degreesC) and protective hypothermic (33 degreesC) transient cerebral ischemia of 15 min duration. In the resistant dentate gyrus, normothermic ischemia transiently induced NGF mRNA at around 8 h of recovery, while the NT3 mRNA levels were depressed over at least a 24-h recovery period. The levels of BDNF and TrkB were transiently and markedly elevated with a maximal expression at 24 h of recovery. Intraischemic hypothermia reduced the induction of NGF mRNA, while the increase of BDNF mRNA expression occurred earlier during recovery, and the post-ischemic NT3 mRNA depression was not affected. Also, the expression of TrkB mRNA was enhanced, and occurred concomitantly with the elevation of BDNF mRNA. In contrast, there were no changes in neurotrophin and TrkB mRNA in the CA3 and CA1 regions. The expression of BDNF mRNA at 24 h after normothermic ischemia, was attenuated by intraischemic hypothermia. We conclude that, the expressions of NGF, BDNF, NT3 or TrkB mRNA in ischemia-sensitive hippocampal subregions are not increased by protective hypothermia. In contrast, hypothermia induces neurotrophin mRNA alterations in the ischemia-resistant dentate gyrus that may convey protection to sensitive regions.

  15. The collagen receptor DDR2 is expressed during early cardiac development.

    PubMed

    Goldsmith, Edie C; Zhang, Xiadong; Watson, James; Hastings, Josh; Potts, Jay D

    2010-05-01

    Discoidin Domain Receptor 2 (DDR2) is a receptor tyrosine kinase which has been shown to regulate cell migration upon binding its ligand, collagen. Expression studies determined that DDR2 mRNA and protein are present in the atrioventricular canal during epithelial-mesenchymal transformation (EMT) and the receptor is expressed in both activated endothelial and migrating mesenchymal cells in vivo.

  16. Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus.

    PubMed

    Solum, Derek T; Handa, Robert J

    2002-04-01

    During development, estrogen has a variety of effects on morphological and electrophysiological properties of hippocampal neurons. Brain-derived neurotrophic factor (BDNF) also plays an important role in the survival and differentiation of neurons during development. We examined the effects of gonadectomy with and without estrogen replacement on the mRNA and protein of BDNF and its receptor, trkB, during early postnatal development of the rat hippocampus. We used immunocytochemistry to demonstrate that estrogen receptor alpha (ERalpha) and BDNF were localized to the same cells within the developing hippocampus. BDNF and ERalpha were colocalized in pyramidal cells of the CA3 subregion and to a lesser extent in CA1. To determine whether BDNF mRNA was regulated by estrogen during development, we gonadectomized male rat pups at postnatal day 0 (P0) and examined mRNA and protein levels from P0 to P25 using real-time reverse transcription-PCR and Western blot analysis. After gonadectomy, BDNF mRNA levels are significantly reduced on P7, but after treatment of gonadectomized animals with estradiol benzoate on P0, levels at all ages were similar to those in intact animals. BDNF mRNA changes after gonadectomy are accompanied by an increase in the levels of BDNF protein, which were reduced by estrogen treatment at P0. We also examined the effect of postnatal estrogen treatment on trkB. There were no significant changes in trkB mRNA or protein in gonadectomized or estrogen-replaced animals. These results suggest that a direct interaction may exist between ERalpha and BDNF to alter hippocampal physiology during development in the rat.

  17. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles.

    PubMed

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte; Pedersen, Bente K; Saltin, Bengt; Pilegaard, Henriette

    2006-09-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle. Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity was more than twofold higher in soleus and vastus than in triceps. Contrary, phosphofructokinase and total lactate dehydrogenase (LDH) activity was approximately three- and twofold higher in triceps than in both soleus and vastus. Expression of metabolic genes was assessed by determining the mRNA content of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly, such mRNA differences were not evident for any of the genes encoding mitochondrial oxidative proteins, 3-hydroxyacyl dehydrogenase, carnitine palmitoyl transferase I, citrate synthase, alpha-ketogluterate dehydrogenase, and cytochrome c, nor for the transcriptional regulators peroxisome proliferator activator receptor gamma coactivator-1alpha, forkhead box O1, or peroxisome proliferator activator receptor-alpha. Thus the mRNA expression of genes encoding mitochondrial proteins and transcriptional regulators does not seem to be fiber type specific as the genes encoding glycolytic and lipid metabolism genes, which suggests that basal mRNA regulation of genes encoding mitochondrial proteins does not match the wide differences in mitochondrial content of these muscles.

  18. Suppression of prostaglandin E(2)-mediated c-fos mRNA induction by interleukin-4 in murine macrophages.

    PubMed

    Zhuang, D; Kawajiri, H; Takahashi, Y; Yoshimoto, T

    2000-03-01

    When murine peritoneal macrophages were stimulated for 30 min with arachidonic acid, the growth-associated immediate early gene c-fos was induced in a concentration-dependent manner as assessed by Northern blot analysis. The arachidonic acid-induced c-fos mRNA expression was inhibited by a cyclooxygenase inhibitor, indomethacin, but not by a lipoxygenase inhibitor, nordihydroguaiaretic acid. Macrophages produced prostaglandin (PG) E(2) from arachidonic acid as determined by an enzyme immunoassay. Northern blot analysis revealed the expression of PGE receptor EP2 and EP4 subtypes, but not EP1 and EP3 in murine macrophages. PGE(2) brought about a marked elevation of cAMP, and c-fos mRNA expression was increased by PGE(2) and dibutyryl cAMP in these cells. These results suggest that arachidonic acid is transformed to PGE(2), which then binds to EP2 and EP4 receptors to increase intracellular cAMP and c-fos mRNA expression. Furthermore, the induction of c-fos by arachidonic acid, PGE(2), and cAMP was suppressed by pretreatment with interleukin (IL)-4. We also showed that the tyrosine phosphorylation of a Janus kinase, JAK3, is enhanced by IL-4 treatment, suggesting that the PGE(2)-mediated c-fos mRNA induction is inhibited by IL-4 through the tyrosine phosphorylation of JAK3.

  19. Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions.

    PubMed Central

    Luoma, J; Hiltunen, T; Särkioja, T; Moestrup, S K; Gliemann, J; Kodama, T; Nikkari, T; Ylä-Herttuala, S

    1994-01-01

    Macrophage- and smooth muscle cell (SMC)-derived foam cells are typical constituents of human atherosclerotic lesions. At least three receptor systems have been characterized that could be involved in the development of foam cells: alpha 2-macroglobulin receptor/LDL receptor-related protein (alpha 2 MR/LRP), scavenger receptor, and LDL receptor. We studied the expression of these receptors in human atherosclerotic lesions with in situ hybridization and immunocytochemistry. An abundant expression of alpha 2MR/LRP mRNA and protein was found in SMC and macrophages in both early and advanced lesions in human aortas. alpha 2MR/LRP was also present in SMC in normal aortas. Scavenger receptor mRNA and protein were expressed in lesion macrophages but no expression was found in lesion SMC. LDL receptor was absent from the lesion area but was expressed in some aortas in medial SMC located near the adventitial border. The results demonstrate that (a) alpha 2MR/LRP is, so far, the only lipoprotein receptor expressed in lesions SMC in vivo; (b) scavenger receptors are expressed only in lesion macrophages; and (c) both receptors may play important roles in the development of human atherosclerotic lesions. Images PMID:8182133

  20. Relative mRNA expression and immunolocalization for transforming growth factor-beta (TGF-β) and their effect on in vitro development of caprine preantral follicles.

    PubMed

    Rodrigues, G Q; Bertoldo, M J; Brito, I R; Silva, C M G; Sales, A D; Castro, S V; Duffard, N; Locatelli, Y; Mermillod, P; Lobo, C H; Campello, C C; Rodrigues, A P R; Freitas, V J F; Figueiredo, J R

    2014-09-01

    This study aimed to evaluate the immunolocalization and messenger RNA (mRNA) expression for transforming growth factor-beta (TGF-β) and its receptors (TGF-βRI and RII), as well as mRNA expression for P450 aromatase and FSH receptor in caprine preantral follicles. The effects of TGF-β, FSH alone, or in association on the in vitro follicular development were also assessed. Immunohistochemical analyses showed the expression of TGF-β and its receptors in oocytes of all follicle stages and granulosa cells of primary and secondary follicles. mRNA for TGF-β receptors and for FSH receptor (FSHR) was present in preantral follicles as well as in oocytes and granulosa cells of antral follicles. Isolated secondary follicles were cultured in α-minimum essential medium (MEM) alone or supplemented with either FSH (100 ng/ml), TGF-β (10 ng/ml), or TGF-β + FSH for 18 d. TGF-β increased significantly oocyte diameter when compared to FSH alone and control. After 18 d of culture, all groups showed a significant reduction in P450 aromatase and FSHR mRNA levels in comparison to fresh control. In contrast, treatment with FSH significantly increased the mRNA expression for TGF-β in comparison to fresh control and other treatments. In conclusion, the findings showed that TGF-β and its receptors are present in caprine ovarian follicles. Furthermore, they showed a positive effect on oocyte growth in vitro.

  1. Nucleocytoplasmic transport of luciferase gene mRNA requires CRM1/Exportin1 and RanGTPase.

    PubMed

    Kimura, Tominori; Hashimoto, Iwao; Nishikawa, Masao; Yamada, Hisao

    2009-06-01

    Human immunodeficiency virus type 1 Rev (regulator of the expression of the virion) protein was shown to reduce the expression level of the co-transfected luciferase reporter gene (luc+) introduced to monitor transfection efficiency. We studied the mechanism of the inhibitory Rev effect. The effect, caused by nuclear retention of luc+ mRNA, was reversed if rev had a point mutation that makes its nuclear export signal (NES) unable to associate with cellular transport factors. The Rev NES receptor CRM1 (chromosome region maintenance 1)-specific inhibitor, leptomycin B, blocked luc+ mRNA export. This finding was also supported by the overexpression of delta CAN, another specific CRM1 inhibitor that caused inhibition of luciferase gene expression. Experiments involving tsBN2 cells, which have a temperature-sensitive RCC1 (regulator of chromosome condensation 1) allele, demonstrated that luc+ expression required generation of the GTP-bound form of RanGTPase (RanGTP) by RCC1. The constitutive transport element (CTE)-mediated nuclear export of luc+ mRNA was found to also depend upon RanGTP. Nuclear export of luc+ mRNA is thus suggested to involve CRM1 and RanGTP, which Rev employs to transport viral mRNA. The Rev effect is therefore considered to involve competition between two molecules for common transport factors.

  2. Olive Leaf Extract Elevates Hepatic PPAR α mRNA Expression and Improves Serum Lipid Profiles in Ovariectomized Rats.

    PubMed

    Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin; Kim, Hyun-Sook

    2015-07-01

    We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats.

  3. Expression of trkB mRNA is altered in rat hippocampus after experimental brain trauma.

    PubMed

    Hicks, R R; Zhang, L; Dhillon, H S; Prasad, M R; Seroogy, K B

    1998-08-31

    Recent investigations have shown that expression of mRNAs for the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) is differentially altered in the hippocampus following traumatic brain injury. In the present study, modulation of neurotrophin receptor expression was examined in the hippocampus in a rat model of traumatic brain injury using in situ hybridization. Messenger RNA for trkB, the high-affinity receptor for BDNF and neurotrophin-4 (NT-4), was increased between 3 and 6 h bilaterally in the dentate gyrus following a lateral fluid-percussion brain injury of moderate severity (2.0-2.1 atm). No time-dependent alterations were observed for trkB mRNA in hippocampal subfields CA1 and CA3. Levels of mRNA for trkC, the high-affinity receptor for NT-3, did not change in any region of the hippocampus. These data demonstrate that lateral fluid-percussion injury modulates expression of trkB mRNA in the hippocampus and support a role for BDNF/trkB signalling mechanisms in secondary events associated with traumatic brain injury.

  4. Growth hormone mRNA in mammary gland tumors of dogs and cats.

    PubMed Central

    Mol, J A; van Garderen, E; Selman, P J; Wolfswinkel, J; Rijinberk, A; Rutteman, G R

    1995-01-01

    We have shown recently that in the dog progestin administration results in mammary production of immunoreactive growth hormone (GH). At present we demonstrate the expression of the gene encoding GH in the mammary gland of dogs and cats using reverse-transcriptase PCR. GH mRNA was found in the great majority of normal mammary tissues as well as benign and malignant mammary tumors of the dog and was associated with the presence of immunoreactive GH in cryostat sections. The mammary PCR product proved to be identical to that of the pituitary. The highest expression levels were found after prolonged treatment with progestins. In carcinomas GH mRNA was also found in progesterone receptor-negative tissue samples, indicating that after malignant transformation GH gene expression may become progestin independent. GH mRNA was also present in mammary tissues of cats with progestin-induced fibroadenomatous changes. It is concluded that GH gene expression occurs in normal, hyperplastic, and neoplastic mammary tissue of the dog. The expression in normal tissue is stimulated by progestins and might mediate the progestin-stimulated development of canine mammary tumors. The demonstration of progestin-stimulated GH expression in mammary tissue of cats indicates that the phenomenon is more generalized among mammals. Images PMID:7738169

  5. Functional Integration of mRNA Translational Control Programs

    PubMed Central

    MacNicol, Melanie C.; Cragle, Chad E.; Arumugam, Karthik; Fosso, Bruno; Pesole, Graziano; MacNicol, Angus M.

    2015-01-01

    Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease. PMID:26197342

  6. Probing dimensionality beyond the linear sequence of mRNA.

    PubMed

    Del Campo, Cristian; Ignatova, Zoya

    2016-05-01

    mRNA is a nexus entity between DNA and translating ribosomes. Recent developments in deep sequencing technologies coupled with structural probing have revealed new insights beyond the classic role of mRNA and place it more centrally as a direct effector of a variety of processes, including translation, cellular localization, and mRNA degradation. Here, we highlight emerging approaches to probe mRNA secondary structure on a global transcriptome-wide level and compare their potential and resolution. Combined approaches deliver a richer and more complex picture. While our understanding on the effect of secondary structure for various cellular processes is quite advanced, the next challenge is to unravel more complex mRNA architectures and tertiary interactions.

  7. Expression of gonadotropin-releasing hormone receptor in cerebral cortical neurons of embryos and adult rats.

    PubMed

    Quintanar, J Luis; Salinas, Eva; González, Rodolfo

    2007-01-03

    Mammalian gonadotropin-releasing hormone (GnRH) was initially isolated from hypothalamus and its receptor from anterior pituitary, although extrapituitary GnRH receptors have been reported. The aim of the present study was to investigate whether GnRH receptor and its mRNA are expressed in cerebral cortical neurons of rat embryos and adult rats using immunohistochemical and reverse transcriptase polymerase chain reaction (RT-PCR) techniques. The immunohistochemistry and RT-PCR analysis showed expression of GnRH receptor and presence of its mRNA, in both cerebral cortical neurons of rat embryos and cerebral cortical tissues of adult rats. Additional experiments showed a decrease in the receptor mRNA expression when cultured neurons of rat embryos were treated with GnRH. It is possible that the presence of GnRH receptors in cortical neurons of rat may be involved in other physiological roles such as neurohormone or neuromodulator.

  8. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  9. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor

    PubMed Central

    Walker, Christopher S; Eftekhari, Sajedeh; Bower, Rebekah L; Wilderman, Andrea; Insel, Paul A; Edvinsson, Lars; Waldvogel, Henry J; Jamaluddin, Muhammad A; Russo, Andrew F; Hay, Debbie L

    2015-01-01

    Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine. PMID:26125036

  10. African lungfish, Protopterus annectens, possess an arginine vasotocin receptor homologous to the tetrapod V2-type receptor.

    PubMed

    Konno, Norifumi; Hyodo, Susumu; Yamaguchi, Yoko; Kaiya, Hiroyuki; Miyazato, Mikiya; Matsuda, Kouhei; Uchiyama, Minoru

    2009-07-01

    In tetrapods, arginine vasopressin and its counterpart, arginine vasotocin (AVT), are involved in renal water conservation through vascular V1a-type and tubular V2-type receptors, and only the former has thus far been cloned in fish. We successfully cloned the V1a-type and V2-type AVT receptor from the kidney of the African lungfish, Protopterus annectens, and the deduced amino acid sequences exhibited high homology with amphibian V1a- and V2-type receptors, respectively. Functional analysis showed that AVT addition to CHO cells transfected with lungfish V1a-type receptor increased [Ca2+]i in a concentration-dependent manner, whereas CHO cells transfected with lungfish V2-type receptor responded with cAMP accumulation after AVT stimulation. Lungfish V2-type receptor mRNA was strongly expressed in the heart and kidney, while V1a-type receptor mRNA was ubiquitously expressed in all the tissues examined. In the kidney, immunohistochemistry using a specific antibody to lungfish V2-type receptor showed localization in the basolateral area of the cells in the late part of the distal tubules. Artificial estivation (EST) for 90 days significantly increased plasma osmolality and sodium and urea concentrations. There was no significant difference in the V2-type receptor mRNA and protein expression levels in the kidney between the freshwater and EST lungfish, while the AVT precursor mRNA level in the hypothalamus was remarkably higher in the EST lungfish. Our results indicate that African lungfish possess a functional V2-type receptor similar to that in tetrapods, suggesting that elevated plasma AVT during estivation exerts a renal tubular antidiuretic effect through the V2-type receptor expressed in the distal segments of lungfish kidney.

  11. Second harmonic super-resolution microscopy for quantification of mRNA at single copy sensitivity.

    PubMed

    Liu, Jing; Cho, Il-Hoon; Cui, Yi; Irudayaraj, Joseph

    2014-12-23

    Cell-specific information on the quantity and localization of key mRNAs at single copy sensitivity in single cells is critical for evaluating basic cellular process, disease risk, and efficacy of therapy. Quantification of overexpressed mRNAs beyond the diffraction limit is constrained by the optical property of the probes and microscopy techniques. In this report, nanosized barium titanium oxide (BaTiO3, BTO) crystals were utilized as probes for mRNA quantification by a second harmonic super-resolution microscopy (SHaSM). The SHaSM was able to detect a single copy of the human epidermal growth factor receptor 2 (Her2) mRNA at a resolution of 55.6 nm with the ability to resolve multiple mRNA copies in a diffraction-limited spot. Her2 mRNA per cell was counted in SK-BR-3, MCF-7, and HeLa cell lines as 595±79.1, 38.9±8.26, and 1.5±2.8, respectively. Our single-cell quantification results were validated with the fluorescence in situ hybridization studies and quantitative PCR, showing better specificity and selectivity over current single-molecule approaches for transcript detection. The SHaSM is expected to have an upper limit of resolving ∼10(4) transcripts in a single cell with the ability to monitor intracellular transcriptional dynamics at video rate. The developed approach has strong potential in clinical research and in the early diagnosis of life-threatening diseases such as cancer.

  12. Progressive APOBEC3B mRNA expression in distant breast cancer metastases

    PubMed Central

    Dalm, Simone U.; de Weerd, Vanja; Moelans, Cathy B.; ter Hoeve, Natalie; van Diest, Paul J.; Martens, John W. M.; van Deurzen, Carolien H. M.

    2017-01-01

    Background APOBEC3B was recently identified as a gain-of-function enzymatic source of mutagenesis, which may offer novel therapeutic options with molecules that specifically target this enzyme. In primary breast cancer, APOBEC3B mRNA is deregulated in a substantial proportion of cases and its expression is associated with poor prognosis. However, its expression in breast cancer metastases, which are the main causes of breast cancer-related death, remained to be elucidated. Patients and methods RNA was isolated from 55 primary breast cancers and paired metastases, including regional lymph node (N = 20) and distant metastases (N = 35). APOBEC3B mRNA levels were measured by RT-qPCR. Expression levels of the primary tumors and corresponding metastases were compared, including subgroup analysis by estrogen receptor (ER/ESR1) status. Results Overall, APOBEC3B mRNA levels of distant metastases were significantly higher as compared to the corresponding primary breast tumor (P = 0.0015), an effect that was not seen for loco-regional lymph node metastases (P = 0.23). Subgroup analysis by ER-status showed that increased APOBEC3B levels in distant metastases were restricted to metastases arising from ER-positive primary breast cancers (P = 0.002). However, regarding ER-negative primary tumors, only loco-regional lymph node metastases showed increased APOBEC3B expression when compared to the corresponding primary tumor (P = 0.028). Conclusion APOBEC3B mRNA levels are significantly higher in breast cancer metastases as compared to the corresponding ER-positive primary tumors. This suggests a potential role for APOBEC3B in luminal breast cancer progression, and consequently, a promising role for anti-APOBEC3B therapies in advanced stages of this frequent form of breast cancer. PMID:28141868

  13. Decreased AMPA GluR2, but not GluR3, mRNA expression in rat amygdala and dorsal hippocampus following morphine-induced behavioural sensitization.

    PubMed

    Sepehrizadeh, Zargham; Bahrololoumi Shapourabadi, Mina; Ahmadi, Shamseddin; Hashemi Bozchlou, Saeed; Zarrindast, Mohammad-Reza; Sahebgharani, Mousa

    2008-11-01

    1. Repeated administration of psychostimulants and micro-opioid receptor agonists elicits a progressive enhancement of drug-induced behavioural responses, a phenomenon termed behavioural sensitization. These changes in behaviour may reflect plastic changes requiring regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptor function. 2. In the present study, rats were treated for 7 days with saline or morphine (10 mg/kg). After a washout period of either 24 h or 7 days, locomotion, oral stereotypy and state-dependent memory in a passive avoidance test were measured in the presence or absence of 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt (CNQX; 3 mg/kg), an AMPA receptor antagonist. In order to evaluate the mechanism underlying the behavioural responses, quantitative real-time reverse transcription-polymerase chain reaction was used to evaluate mRNA expression of the AMPA receptor subunits GluR2 and GluR3 in the striatum, prefrontal cortex, hippocampus, hypothalamus and amygdala of animals treated repeatedly with morphine. 3. The results indicate that repeated morphine treatment followed by 7 days (but not 24 h) washout produces behavioural sensitization, as determined by locomotion, oral stereotypy and state-dependent memory. Blockade of AMPA receptors with CNQX on the test day did not alter these behavioural responses. In addition, repeated morphine treatment followed by 7 days (but not 24 h) washout decreased GluR2 mRNA expression in both the amygdala (by 50%) and hippocampus (by 35%). Repeated morphine treatment did not alter GluR3 mRNA expression in any brain area assessed. 4. These data imply that AMPA receptors are involved in the development (but not expression) phase of behavioural sensitization. The decreases in GluR2 mRNA expression in the amygdala and hippocampus may result in the formation of calcium-permeable AMPA receptors, which are believed to play an important role in behavioural sensitization.

  14. Cloning of a C-terminally truncated NK-1 receptor from guinea-pig nervous system.

    PubMed

    Baker, Sarah J; Morris, Judy L; Gibbins, Ian L

    2003-03-17

    In order to examine the possibility that some actions of substance P may be mediated by a variant of the neurokinin-1 (NK-1) receptor, we isolated and sequenced the cDNA encoding a truncated NK-1 receptor from guinea-pig celiac ganglion and brain mRNA by two-step RT-PCR based on the 3'RACE method. The truncated NK-1 receptor sequence corresponded to a splice variant missing the final exon 5, and encoded a 311-amino acid protein that was truncated just after transmembrane domain 7, in an identical position to a truncated variant of the human NK-1 receptor. Thus, the truncated NK-1 receptor lacked the intracellular C-terminus sequence required for the phosphorylation and internalisation of the full-length NK-1 receptor. Using a sensitive one-step semi-quantitative RT-PCR assay, we detected mRNA for both the full length and truncated NK-1 receptors throughout the brain, spinal cord, sensory and autonomic ganglia, and viscera. Truncated NK-1 receptor mRNA was present in lower quantities than mRNA for the full-length NK-1R in all tissues. Highest levels of mRNA for the truncated NK-1 receptor were detected in coeliac ganglion, spinal cord, basal ganglia and hypothalamus. An antiserum to the N-terminus of the NK-1 receptor labelled dendrites of coeliac ganglion neurons that were not labelled with antisera to the C-terminus of the full length NK-1 receptor. These results show that a C-terminally truncated variant of the NK-1 receptor is likely to be widespread in central and peripheral nervous tissue. We predict that this receptor will mediate actions of substance P on neurons where immunohistochemical evidence for a full-length NK-1 receptor is lacking.

  15. Effects of DNA replication on mRNA noise.

    PubMed

    Peterson, Joseph R; Cole, John A; Fei, Jingyi; Ha, Taekjip; Luthey-Schulten, Zaida A

    2015-12-29

    There are several sources of fluctuations in gene expression. Here we study the effects of time-dependent DNA replication, itself a tightly controlled process, on noise in mRNA levels. Stochastic simulations of constitutive and regulated gene expression are used to analyze the time-averaged mean and variation in each case. The simulations demonstrate that to capture mRNA distributions correctly, chromosome replication must be realistically modeled. Slow relaxation of mRNA from the low copy number steady state before gene replication to the high steady state after replication is set by the transcript's half-life and contributes significantly to the shape of the mRNA distribution. Consequently both the intrinsic kinetics and the gene location play an important role in accounting for the mRNA average and variance. Exact analytic expressions for moments of the mRNA distributions that depend on the DNA copy number, gene location, cell doubling time, and the rates of transcription and degradation are derived for the case of constitutive expression and subsequently extended to provide approximate corrections for regulated expression and RNA polymerase variability. Comparisons of the simulated models and analytical expressions to experimentally measured mRNA distributions show that they better capture the physics of the system than previous theories.

  16. Altered EphA5 mRNA expression in rat brain with a single methamphetamine treatment.

    PubMed

    Numachi, Yohtaro; Yoshida, Sumiko; Yamashita, Motoyasu; Fujiyama, Ko; Toda, Shigenobu; Matsuoka, Hiroo; Kajii, Yasushi; Nishikawa, Toru

    2007-09-07

    Methamphetamine is a potent and indirect dopaminergic agonist which can cause chronic brain dysfunctions including drug abuse, drug dependence and drug-induced psychosis. Methamphetamine is known to trigger molecular mechanisms involved in associative learning and memory, and thereby alter patterns of synaptic connectivity. The persistent risk of relapse in methamphetamine abuse, dependence and psychosis may be caused by such alterations in synaptic connectivity. EphA5 receptors constitute large families of tyrosine kinase receptor and are expressed almost exclusively in the nervous system, especially in the limbic structures. Recent studies suggest EphA5 to be important in the topographic projection, development, and plasticity of limbic structures, and to be involved in dopaminergic neurotransmission. We used in situ hybridization to examine whether methamphetamine alters EphA5 mRNA expression in the brains of adult male Wister rats. EphA5 mRNA was widely distributed in the medial frontal cortex, cingulate cortex, piriform cortex, hippocampus, habenular nucleus and amygdala. Compared to baseline expression at 0h, EphA5 mRNA was significantly decreased (by 20%) in the medial frontal cortex at 24h, significantly increased (by 30%) in the amygdala at 9 and 24h, significantly but transiently decreased (by 30%) in the habenular nucleus at 1h after a single injection of methamphetamine. Methamphetamine did not change EphA5 mRNA expression in the cingulate cortex, piriform cortex or hippocampus. Our results that methamphetamine altered EphA5 mRNA expression in rat brain suggest methamphetamine could affect patterns of synaptic connectivity, which might be responsible for methamphetamine-induced chronic brain dysfunctions.

  17. Histamine H1 Receptor Gene Expression and Drug Action of Antihistamines.

    PubMed

    Fukui, Hiroyuki; Mizuguchi, Hiroyuki; Nemoto, Hisao; Kitamura, Yoshiaki; Kashiwada, Yoshiki; Takeda, Noriaki

    2016-11-25

    The upregulation mechanism of histamine H1 receptor through the activation of protein kinase C-δ (PKCδ) and the receptor gene expression was discovered. Levels of histamine H1 receptor mRNA and IL-4 mRNA in nasal mucosa were elevated by the provocation of nasal hypersensitivity model rats. Pretreatment with antihistamines suppressed the elevation of mRNA levels. Scores of nasal symptoms were correlatively alleviated to the suppression level of mRNAs above. A correlation between scores of nasal symptoms and levels of histamine H1 receptor mRNA in the nasal mucosa was observed in patients with pollinosis. Both scores of nasal symptoms and the level of histamine H1 receptor mRNA were improved by prophylactic treatment of antihistamines. Similar to the antihistamines, pretreatment with antiallergic natural medicines showed alleviation of nasal symptoms with correlative suppression of gene expression in nasal hypersensitivity model rats through the suppression of PKCδ. Similar effects of antihistamines and antiallergic natural medicines support that histamine H1 receptor-mediated activation of histamine H1 receptor gene expression is an important signaling pathway for the symptoms of allergic diseases. Antihistamines with inverse agonist activity showed the suppression of constitutive histamine H1 receptor gene expression, suggesting the advantage of therapeutic effect.

  18. Linking gene regulation to mRNA production and export.

    PubMed

    Rodríguez-Navarro, Susana; Hurt, Ed

    2011-06-01

    Regulation of gene expression can occur at many different levels. One important step in the gene expression process is the transport of mRNA from the nucleus to the cytoplasm. In recent years, studies have described how nuclear mRNA export depends on the steps preceding and following transport through nuclear pore complexes. These include gene activation, transcription, mRNA processing and mRNP assembly and disassembly. In this review, we summarise recent insights into the links between these steps in the gene expression cascade.

  19. Activin Acts with Nerve Growth Factor to Regulate Calcitonin Gene-Related Peptide mRNA in Sensory Neurons

    PubMed Central

    Xu, Pin; Hall, Alison K.

    2009-01-01

    Calcitonin Gene-Related Peptide (CGRP) increases in sensory neurons after inflammation and plays an important role in abnormal pain responses, but how this neuropeptide is regulated is not well understood. Both activin A and Nerve Growth Factor (NGF) increase in skin after inflammation and induce CGRP in neurons in vivo and in vitro. This study was designed to understand how neurons integrate these two signals to regulate the neuropeptide important for inflammatory pain. In adult dorsal root ganglion neurons, NGF but not activin alone produced a dose-dependent increase in CGRP mRNA. When added together with NGF, activin synergistically increased CGRP mRNA, indicating that sensory neurons combine these signals. Studies were then designed to learn if that combination occurred at a common receptor or shared intracellular signals. Studies with Activin IB receptor or trkA inhibitors suggested that each ligand required its cognate receptor to stimulate the neuropeptide. Further, activin did not augment NGF-initiated intracellular MAPK signals but instead stimulated Smad phosphorylation, suggesting these ligands initiated parallel signals in the cytoplasm. Activin synergy required several NGF intracellular signals to be present. Because activin did not further stimulate, but did require NGF intracellular signals, it appears that activin and NGF converge not in receptor or cytoplasmic signals, but in transcriptional mechanisms to regulate CGRP in sensory neurons after inflammation. PMID:17964731

  20. Recombinant interleukin 2 regulates levels of c-myc mRNA in a cloned murine T lymphocyte.

    PubMed Central

    Reed, J C; Sabath, D E; Hoover, R G; Prystowsky, M B

    1985-01-01

    The cellular oncogene c-myc has been implicated in the regulation of growth of normal and neoplastic cells. Recently, it was suggested that c-myc gene expression may control the G0----G1-phase transition in normal lymphocytes that were stimulated to enter the cell cycle by the lectin concanavalin A (ConA). Here we describe the effects of purified recombinant interleukin 2 (rIL2) and of ConA on levels of c-myc mRNA in the noncytolytic murine T-cell clone L2. In contrast to resting (G0) primary cultures of lymphocytes, quiescent L2 cells have a higher RNA content than resting splenocytes and express receptors for interleukin 2 (IL2). Resting L2 cells are therefore best regarded as early G1-phase cells. Purified rIL2 was found to stimulate the rapid accumulation of c-myc mRNA in L2 cells. Levels of c-myc mRNA became maximal within 1 h and declined gradually thereafter. In contrast, ConA induced slower accumulation of c-myc mRNA in L2 cells, with increased levels of c-myc mRNA becoming detectable 4 to 8 h after stimulation. Experiments with the protein synthesis inhibitor cycloheximide demonstrated that the increase in levels of c-myc mRNA that were induced by ConA was a direct effect of this lectin and not secondary to IL2 production. Cyclosporin A, an immunosuppressive agent, markedly reduced the accumulation of c-myc mRNA that was induced by ConA but only slightly diminished the accumulation of c-myc mRNA that was induced by rIL2. Taken together, these data provide evidence that (i) c-myc gene expression can be regulated by at least two distinct pathways in T lymphocytes, only one of which is sensitive to cyclosporine A, and (ii) the accumulation of c-myc mRNA can be induced in T cells by IL2 during the G1 phase of the cell cycle. Images PMID:3879814

  1. Regulation of nonclassical renin-angiotensin system receptor gene expression in the adrenal medulla by acute and repeated immobilization stress.

    PubMed

    Nostramo, Regina; Serova, Lidia; Laukova, Marcela; Tillinger, Andrej; Peddu, Chandana; Sabban, Esther L

    2015-03-15

    The involvement of the nonclassical renin-angiotensin system (RAS) in the adrenomedullary response to stress is unclear. Therefore, we examined basal and immobilization stress (IMO)-triggered changes in gene expression of the classical and nonclassical RAS receptors in the rat adrenal medulla, specifically the angiotensin II type 2 (AT2) and type 4 (AT4) receptors, (pro)renin receptor [(P)RR], and Mas receptor (MasR). All RAS receptors were identified, with AT2 receptor mRNA levels being the most abundant, followed by the (P)RR, AT1A receptor, AT4 receptor, and MasR. Following a single IMO, AT2 and AT4 receptor mRNA levels decreased by 90 and 50%, respectively. Their mRNA levels were also transiently decreased by repeated IMO. MasR mRNA levels displayed a 75% transient decrease as well. Conversely, (P)RR mRNA levels were increased by 50% following single or repeated IMO. Because of its abundance, the function of the (P)RR was explored in PC-12 cells. Prorenin activation of the (P)RR increased phosphorylation of extracellular signal-regulated kinase 1/2 and tyrosine hydroxylase at Ser(31), likely increasing its enzymatic activity and catecholamine biosynthesis. Together, the broad and dynamic changes in gene expression of the nonclassical RAS receptors implicate their role in the intricate response of the adrenomedullary catecholaminergic system to stress.

  2. Prospects of Targeting the Gastrin Releasing Peptide Receptor and Somatostatin Receptor 2 for Nuclear Imaging and Therapy in Metastatic Breast Cancer

    PubMed Central

    Dalm, Simone U.; Schrijver, Willemijne A. M. E.; Sieuwerts, Anieta M.; Look, Maxime P.; Ziel - van der Made, Angelique C. J.; de Weerd, Vanja; Martens, John W.; van Diest, Paul J.; de Jong, Marion; van Deurzen, Carolien H. M.

    2017-01-01

    Background The gastrin releasing peptide receptor (GRPR) and the somatostatin receptor 2 (SSTR2) are overexpressed on primary breast cancer (BC), making them ideal candidates for receptor-mediated nuclear imaging and therapy. The aim of this study was to determine whether these receptors are also suitable targets for metastatic BC. Methods mRNA expression of human BC samples were studied by in vitro autoradiography and associated with radioligand binding. Next, GRPR and SSTR2 mRNA levels of 60 paired primary BCs and metastases from different sites were measured by quantitative reverse transcriptase polymerase chain reaction. Receptor mRNA expression levels were associated with clinico-pathological factors and expression levels of primary tumors and corresponding metastases were compared. Results Binding of GRPR and SSTR radioligands to tumor tissue correlated significantly with receptor mRNA expression. High GRPR and SSTR2 mRNA levels were associated with estrogen receptor (ESR1)-positive tumors (p<0.001 for both receptors). There was no significant difference in GRPR mRNA expression of primary tumors versus paired metastases. Regarding SSTR2 mRNA expression, there was also no significant difference in the majority of cases, apart from liver and ovarian metastases which showed a significantly lower expression compared to the corresponding primary tumors (p = 0.02 and p = 0.03, respectively). Conclusion Targeting the GRPR and SSTR2 for nuclear imaging and/or treatment has the potential to improve BC care in primary as well as metastatic disease. PMID:28107508

  3. Quantitation of the mRNA levels of Epo and EpoR in various tissues in the ovine fetus.

    PubMed

    David, R Bruce; Lim, Gaik Bee; Moritz, Karen M; Koukoulas, Irene; Wintour, E Marelyn

    2002-02-25

    A partial cDNA of the sheep erythropoietin receptor (EpoR) was obtained and used in real-time PCR to quantitate mRNA levels in placenta, liver and kidney throughout development (term=150 days). This was compared with Epo mRNA levels in the same tissues. Both Epo and EpoR mRNA were present in the placenta throughout gestation at low levels from 66 days onwards and these did not vary throughout gestation. Compared with the expression levels in the placenta, the levels of EpoR gene expression in the liver at 66, 99 and 140 days were, median (range)-288 (120-343), 278 (63-541) and 7 (3-15), respectively, reflecting the disappearance of erythropoiesis after 130 days. Low levels of EpoR gene expression were seen in the kidney at 3 (2-5), 5 (2-7), and 7 (2-10) times that in the placenta at 66, 99, and 140 days, respectively. By hybridization histochemistry the EpoR mRNA was located in the proximal tubular cells of the mesonephros and metanephros at 42 days. Epo mRNA levels in the kidney were 215 (116-867), 528 (113-765) and 46 (15-204) times those in the placenta at 69, 99, and 140 days, respectively. In the liver at the same ages the concentrations of mRNA were lower than in the kidney, the liver/placenta ratios being 50 (11-90), 17 (3-39), 9 (5-14). At 130 days Epo/EpoR levels in the hippocampus were 6+/-3 and 8+/-3 times that in the term placenta, respectively. These studies demonstrate that the ovine placenta expresses the Epo gene from at least 66 days of gestation. However, gene expression levels are very low compared with those in the liver and kidney, and even the hippocampus.

  4. Selenium requirements are higher for glutathione peroxidase-1 mRNA than gpx1 activity in rat testis.

    PubMed

    Schriever, Sonja C; Barnes, Kimberly M; Evenson, Jacqueline K; Raines, Anna M; Sunde, Roger A

    2009-05-01

    Selenium (Se) plays a critical role in testis, sperm, and reproduction, and testis Se levels are remarkably maintained in Se deficiency. In most other tissues, Se levels decrease dramatically as do levels of most selenoproteins and levels of a subset of Se-regulated selenoprotein mRNAs. Because of the recent identification of key molecules in the targeted trafficking of Se to the testis, we examined the hierarchy of Se regulation in testis by determining the dietary Se regulation of the full testis selenoproteome in rats fed graded levels of Se (0 to 0.8 microg Se/g) as Na2SeO3 for 28 d. Se status did not significantly affect testis weight or glutathione peroxidase 4 (Gpx4) activity (P>0.05). qRT-PCR analysis of selenoprotein mRNA expression revealed that 21 of the 24 selenoprotein mRNAs and ApoER2 mRNA (the selenoprotein P [Sepp1] receptor) were also not regulated significantly by dietary Se status. In contrast, Gpx1 activity decreased to 28% of Se-adequate levels, and mRNA levels for Gpx1, Sepp1, and Sepw1 (selenoprotein W) decreased significantly in Se-deficient rats to 45, 46, and 55%, respectively, of Se-adequate plateau levels. Overlap of hyperbolic Gpx4 activity and Sepw1 mRNA response curves with testis Se concentration, all with minimum dietary Se requirements<0.016 microg Se/g, showed the priority for synthesis of Gpx4. Higher minimum dietary Se requirements of 0.04 microg Se/g for Gpx1 activity and Sepp1 mRNA, and the even higher minimum dietary Se requirement of 0.08 microg Se/g for Gpx1 mRNA, suggest that the hierarchy of these biomarkers reflects distinct, lower priority pools, cell types, and roles for Se within the testis.

  5. Translation initiation of the HIV-1 mRNA

    PubMed Central

    Ohlmann, Théophile; Mengardi, Chloé; López-Lastra, Marcelo

    2014-01-01

    Translation initiation of the full-length mRNA of the human immunodeficiency virus can occur via several different mechanisms to maintain production of viral structural proteins throughout the replication cycle. HIV-1 viral protein synthesis can occur by the use of both a cap-dependant and IRES-driven mechanism depending on the physiological conditions of the cell and the status of the ongoing infection. For both of these mechanisms there is a need for several viral and cellular co-factors for optimal translation of the viral mRNA. In this review we will describe the mechanism used by the full-length mRNA to initiate translation highlighting the role of co-factors within this process. A particular emphasis will be given to the role of the DDX3 RNA helicase in HIV-1 mRNA translation initiation. PMID:26779410

  6. Translation initiation of the HIV-1 mRNA.

    PubMed

    Ohlmann, Théophile; Mengardi, Chloé; López-Lastra, Marcelo

    2014-09-01

    Translation initiation of the full-length mRNA of the human immunodeficiency virus can occur via several different mechanisms to maintain production of viral structural proteins throughout the replication cycle. HIV-1 viral protein synthesis can occur by the use of both a cap-dependant and IRES-driven mechanism depending on the physiological conditions of the cell and the status of the ongoing infection. For both of these mechanisms there is a need for several viral and cellular co-factors for optimal translation of the viral mRNA. In this review we will describe the mechanism used by the full-length mRNA to initiate translation highlighting the role of co-factors within this process. A particular emphasis will be given to the role of the DDX3 RNA helicase in HIV-1 mRNA translation initiation.

  7. Signaling Pathways That Control mRNA Turnover

    PubMed Central

    Thapar, Roopa; Denmon, Andria P.

    2013-01-01

    Cells regulate their genomes mainly at the level of transcription and at the level of mRNA decay. While regulation at the level of transcription is clearly important, the regulation of mRNA turnover by signaling networks is essential for a rapid response to external stimuli. Signaling pathways result in posttranslational modification of RNA binding proteins by phosphorylation, ubiquitination, methylation, acetylation etc. These modifications are important for rapid remodeling of dynamic ribonucleoprotein complexes and triggering mRNA decay. Understanding how these posttranslational modifications alter gene expression is therefore a fundamental question in biology. In this review we highlight recent findings on how signaling pathways and cell cycle checkpoints involving phosphorylation, ubiquitination, and arginine methylation affect mRNA turnover. PMID:23602935

  8. Detection of AR-V7 mRNA in whole blood may not predict the effectiveness of novel endocrine drugs for castration-resistant prostate cancer.

    PubMed

    Takeuchi, Takumi; Okuno, Yumiko; Hattori-Kato, Mami; Zaitsu, Masayoshi; Mikami, Koji

    2016-01-01

    A splice variant of androgen receptor (AR), AR-V7, lacks in androgen-binding portion and leads to aggressive cancer characteristics. Reverse transcription-polymerase chain reactions (PCRs) and subsequent nested PCRs for the amplification of AR-V7 and prostate-specific antigen (PSA) transcripts were done for whole blood of patients with prostate cancer and male controls. With primary reverse transcription PCRs, AR-V7 and PSA were detected in 4.5% and 4.7% of prostate cancer, respectively. With nested PCRs, AR-V7 messenger RNA (mRNA) was positive in 43.8% of castration-sensitive prostate cancer and 48.1% of castration-resistant prostate cancer (CRPC), while PSA mRNA was positive in 6.3% of castration-sensitive prostate cancer and 18.5% of CRPC. Whole-blood samples of controls showed AR-V7 mRNA expression by nested PCR. Based on multivariate analysis, expression of AR-V7 mRNA in whole blood was not significantly correlated with clinical parameters and PSA mRNA in blood, while univariate analysis showed a correlation between AR-V7 mRNA and metastasis at initial diagnosis. Detection of AR-V7 mRNA did not predict the reduction of serum PSA in patients with CRPC following abiraterone and enzalutamide administration. In conclusion, AR-V7 mRNA expression in normal hematopoietic cells may have annihilated the manifestation of aggressiveness of prostate cancer and the prediction of the effectiveness of abiraterone and enzalutamide by the assessment of AR-V7 mRNA in blood.

  9. Multiple crosstalks between mRNA biogenesis and SUMO.

    PubMed

    Rouvière, Jérôme O; Geoffroy, Marie-Claude; Palancade, Benoit

    2013-10-01

    mRNA metabolism involves the orchestration of multiple nuclear events, including transcription, processing (e.g., capping, splicing, polyadenylation), and quality control. This leads to the accurate formation of messenger ribonucleoparticles (mRNPs) that are finally exported to the cytoplasm for translation. The production of defined sets of mRNAs in given environmental or physiological situations relies on multiple regulatory mechanisms that target the mRNA biogenesis machineries. Among other regulations, post-translational modification by the small ubiquitin-like modifier SUMO, whose prominence in several cellular processes has been largely demonstrated, also plays a key role in mRNA biogenesis. Analysis of the multiple available SUMO proteomes and functional validations of an increasing number of sumoylated targets have revealed the key contribution of SUMO-dependent regulation in nuclear mRNA metabolism. While sumoylation of transcriptional activators and repressors is so far best documented, SUMO contribution to other stages of mRNA biogenesis is also emerging. Modification of mRNA metabolism factors by SUMO determine their subnuclear targeting and biological activity, notably by regulating their molecular interactions with nucleic acids or protein partners. In particular, sumoylation of DNA-bound transcriptional regulators interfere with their association to target sequences or chromatin modifiers. In addition, the recent identification of enzymes of the SUMO pathway within specialized mRNA biogenesis machineries may provide a further level of regulation to their specificity. These multiple crosstalks between mRNA metabolism and SUMO appear therefore as important players in cellular regulatory networks.

  10. Transduction of light in the suprachiasmatic nucleus: evidence for two different neurochemical cascades regulating the levels of Per1 mRNA and pineal melatonin.

    PubMed

    Paul, K N; Fukuhara, C; Tosini, G; Albers, H E

    2003-01-01

    The suprachiasmatic nucleus (SCN) contains a circadian clock and regulates melatonin synthesis in the pineal gland. Light exposure during the subjective night acutely increases the mRNA levels of the Period (Per)1 gene in the SCN and acutely suppresses melatonin levels in the pineal gland. Activation of N-methyl-D-aspartate (NMDA) receptors in the SCN has been demonstrated to phase-shift the circadian clock in a manner similar to light. We tested the hypothesis that activation of excitatory amino acid (EAA) receptors in the SCN mediates the acute effects of light on Per1 mRNA levels and pineal melatonin. NMDA, injected into the SCN of Syrian hamsters during the night, acutely suppressed melatonin levels in the pineal gland. Both the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5) and the alpha-amino-3-hydroxy-5-methylisoxazoleproprionic acid (AMPA)/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) inhibited the light-induced increase of Per1 mRNA levels in the SCN. In the same animals, however, these antagonists had no effect on the ability of light to suppress pineal melatonin. These results support the hypothesis that EAA receptor activation in the SCN is necessary for the acute effects of light on Per1 mRNA levels. They also indicate that NMDA receptor activation in the SCN is sufficient but may not be necessary for the acute effects of light on pineal melatonin. These data suggest that there may be at least two different neurochemical cascades that transduce the effects of light in the SCN

  11. Transforming Growth Factor β1 (TGF-β1) Activates Hepcidin mRNA Expression in Hepatocytes.

    PubMed

    Chen, Simeng; Feng, Teng; Vujić Spasić, Maja; Altamura, Sandro; Breitkopf-Heinlein, Katja; Altenöder, Jutta; Weiss, Thomas S; Dooley, Steven; Muckenthaler, Martina U

    2016-06-17

    The hepatic hormone hepcidin is the master regulator of systemic iron homeostasis. Its expression level is adjusted to alterations in iron levels, inflammatory cues, and iron requirements for erythropoiesis. Bone morphogenetic protein 6 (BMP6) contributes to the iron-dependent control of hepcidin. In addition, TGF-β1 may stimulate hepcidin mRNA expression in murine hepatocytes and human leukocytes. However, receptors and downstream signaling proteins involved in TGF-β1-induced hepcidin expression are still unclear. Here we show that TGF-β1 treatment of mouse and human hepatocytes, as well as ectopic expression of TGF-β1 in mice, increases hepcidin mRNA levels. The hepcidin response to TGF-β1 depends on functional TGF-β1 type I receptor (ALK5) and TGF-β1 type II receptor (TβRII) and is mediated by a noncanonical mechanism that involves Smad1/5/8 phosphorylation. Interestingly, increasing availability of canonical Smad2/3 decreases TGF-β1-induced hepcidin regulation, whereas the BMP6-hepcidin signal was enhanced, indicating a signaling component stoichiometry-dependent cross-talk between the two pathways. Although ALK2/3-dependent hepcidin activation by BMP6 can be modulated by each of the three hemochromatosis-associated proteins: HJV (hemojuvelin), HFE (hemochromatosis protein), and TfR2 (transferrin receptor 2), these proteins do not control the ALK5-mediated hepcidin response to TGF-β1. TGF-β1 mRNA levels are increased in mouse models of iron overload, indicating that TGF-β1 may contribute to hepcidin synthesis under these conditions. In conclusion, these data demonstrate that a complex regulatory network involving TGF-β1 and BMP6 may control the sensing of systemic and/or hepatic iron levels.

  12. Model of ribosome translation and mRNA unwinding.

    PubMed

    Xie, Ping

    2013-05-01

    A ribosome is an enzyme that catalyzes translation of the genetic information encoded in messenger RNA (mRNA) into proteins. Besides translation through the single-stranded mRNA, the ribosome is also able to translate through the duplex region of mRNA via unwinding the duplex. Here, based on our proposed ribosome translation model, we study analytically the dynamics of Escherichia coli ribosome translation through the duplex region of mRNA, and compare with the available single molecule experimental data. It is shown that the ribosome uses only one active mechanism (mechanical unwinding), rather than two active mechanisms (open-state stabilization and mechanical unwinding), as proposed before, to unwind the duplex. The reduced rate of translation through the duplex region is due to the occurrence of futile transitions, which are induced by the energy barrier from the duplex unwinding to the forward translocation along the single-stranded mRNA. Moreover, we also present predicted results of the average translation rate versus the external force acting on the ribosome translating through the duplex region and through the single-stranded region of mRNA, which can be easily tested by future experiments.

  13. Effect of cortisol on neurophysin I/oxytocin and peptidyl glycine-alpha-amidating mono-oxygenase mRNA expression in bovine luteal and granulosa cells.

    PubMed

    Ziolkowska, A; Mlynarczuk, J; Kotwica, J

    2013-01-01

    Cortisol stimulates the synthesis and secretion of oxytocin (OT) from bovine granulosa and luteal cells, but the molecular mechanisms of cortisol action remain unknown. In this study, granulosa cells or luteal cells from days 1-5 and 11-15 of the oestrous cycle were incubated for 4 or 8 h with cortisol (1 x 10(-5), 1 x 10(-7) M). After testing cell viability and hormone secretion (OT, progesterone, estradiol), we studied the effect of cortisol on mRNA expression for precursor of OT (NP-I/OT) and peptidyl glycine-alpha-amidating mono-oxygenase (PGA). The influence of RU 486 (1 x 10(-5) M), a progesterone receptor blocker and inhibitor of the glucocorticosteroid receptor (GR), on the expression for both genes was tested. Cortisol increased the mRNA expression for NP-I/OT and PGA in granulosa cells and stimulated the expression for NP-I/OT mRNA in luteal cells obtained from days 1-5 and days 11-15 of the oestrous cycle. Expression for PGA mRNA was increased only in luteal cells from days 11-15 of the oestrous cycle. In addition, RU 486 blocked the cortisol-stimulated mRNA expression for NP-I/OT and PGA in both types of cells. These data suggest that cortisol affects OT synthesis and secretion in bovine ovarian cells, by acting on the expression of key genes, that may impair ovary

  14. TLR2 and TLR4 polymorphisms influence mRNA and protein expression in colorectal cancer

    PubMed Central

    Proença, Marcela Alcântara; de Oliveira, Juliana Garcia; Cadamuro, Aline Cristina Targa; Succi, Maysa; Netinho, João Gomes; Goloni-Bertolo, Eny Maria; Pavarino, Érika Cristina; Silva, Ana Elizabete

    2015-01-01

    AIM: To evaluate the effect of promoter region polymorphisms of toll-like receptor (TLR)2-196 to -174del and TLR4-1607T/C (rs10759932) on mRNA and protein expression in tumor tissue and of TLR4+896A/G (rs4986790) on colorectal cancer (CRC) risk. METHODS: The TLR2-196 to -174del polymorphism was investigated using allele-specific polymerase chain reaction (PCR) and the TLR4-1607T/C and TLR4+896A/G by PCR-restriction fragment length polymorphism (RFLP). We genotyped 434 DNA samples from 194 CRC patients and 240 healthy individuals. The mRNA relative quantification (RQ) was performed in 40 tumor tissue samples by quantitative PCR TaqMan assay, using specific probes for TLR2 and TLR4 genes, and ACTB and GAPDH reference genes were used as endogenous controls. Protein expression was analyzed by immunohistochemistry with specific primary antibodies. RESULTS: No association was found for TLR4-1607T/C and TLR4+896A/G by three statistical models (log-additive, dominant and recessive). However, based on dominant and log-additive models, the polymorphic variant TLR2-196 to -174del was associated with increased CRC risk [dominant: odds ratio (OR) = 1.72, 95%CI: 1.03-2.89; P = 0.038 and log-additive: OR =1.59, 95%CI: 1.02-2.48; P = 0.039]. TLR2 mRNA expression was increased in tumor tissue (RQ = 2.36) when compared to adjacent normal tissue (RQ = 1; P < 0.0001), whereas the TLR4 mRNA showed a basal expression (RQ = 0.74 vs RQ = 1, P = 0.452). Immunohistochemistry analysis of TLR2 and TLR4 protein expression was concordant with the findings of mRNA expression. In addition, the TLR2-196 to -174del variant carriers showed mRNA relative expression 2.19 times higher than wild-genotype carriers. The TLR2 protein expression was also higher for the TLR2-196 to -174del variant carriers [117 ± 10 arbitrary unit (a.u.) vs 95 ± 4 a.u., P = 0.03]. However, for the TLR4 -1607T/C polymorphism no significant difference was found for both mRNA (P = 0.56) and protein expression (P = 0

  15. The FMRP/GRK4 mRNA interaction uncovers a new mode of binding of the Fragile X mental retardation protein in cerebellum

    PubMed Central

    Maurin, Thomas; Melko, Mireille; Abekhoukh, Sabiha; Khalfallah, Olfa; Davidovic, Laetitia; Jarjat, Marielle; D'Antoni, Simona; Catania, Maria Vincenza; Moine, Hervé; Bechara, Elias; Bardoni, Barbara

    2015-01-01

    Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors. PMID:26250109

  16. The FMRP/GRK4 mRNA interaction uncovers a new mode of binding of the Fragile X mental retardation protein in cerebellum.

    PubMed

    Maurin, Thomas; Melko, Mireille; Abekhoukh, Sabiha; Khalfallah, Olfa; Davidovic, Laetitia; Jarjat, Marielle; D'Antoni, Simona; Catania, Maria Vincenza; Moine, Hervé; Bechara, Elias; Bardoni, Barbara

    2015-09-30

    Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors.

  17. Corticosterone regulates expression of BDNF and trkB but not NT-3 and trkC mRNA in the rat hippocampus.

    PubMed

    Schaaf, M J; Hoetelmans, R W; de Kloet, E R; Vreugdenhil, E

    1997-05-15

    Corticosterone has profound effects on growth, differentiation, and synaptic transmission of hippocampal neurons by activation of mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). In the present study we tested if neurotrophins can be implicated in these effects. For this purpose we injected 30, 300, and 1,000 microg corticosterone s.c. (per kg body weight) in adrenalectomized rats and measured the mRNA levels of brain-derived neurotrophic factor (BDNF), tyrosine receptor kinase (trk)B, neurotrophin (NT)-3, and trkC in hippocampal cell fields at 6 hr after steroid administration by in situ hybridization. NT-3 and trkC mRNA did not show significant changes in any hippocampal region after the various doses of corticosterone. BDNF mRNA decreased after corticosterone administration dose dependently, resulting in a maximal suppression of 35, 20, and 50% in dentate gyrus, CA3, and CA1, respectively. Interestingly, trkB responded to corticosterone in an inverted U-shaped fashion in CA3 and dentate gyrus: the low dose of corticosterone increased trkB mRNA expression in both regions by approximately 30%, while the effect of the two higher doses was not different from the vehicle injected controls. In conclusion, we found differential effects of low and high doses of corticosterone on BDNF and trkB expression in hippocampus, which suggests involvement of a coordinated MR- and GR-mediated action.

  18. Selective suppression of interleukin-12 induction after macrophage receptor ligation.

    PubMed

    Sutterwala, F S; Noel, G J; Clynes, R; Mosser, D M

    1997-06-02

    Interleukin (IL)-12 is a monocyte- and macrophage-derived cytokine that plays a crucial role in both the innate and the acquired immune response. In this study, we examined the effects that ligating specific macrophage receptors had on the induction of IL-12 by lipopolysaccharide (LPS). We report that ligation of the macrophage Fcgamma, complement, or scavenger receptors inhibited the induction of IL-12 by LPS. Both mRNA synthesis and protein secretion were diminished to near-undetectable levels following receptor ligation. Suppression was specific to IL-12 since IL-10 and tumor necrosis factor-alpha (TNF-alpha) production were not inhibited by ligating macrophage receptors. The results of several different experimental approaches suggest that IL-12 downregulation was due to extracellular calcium influxes that resulted from receptor ligation. First, preventing extracellular calcium influxes, by performing the assays in EGTA, abrogated FcgammaR-mediated IL-12(p40) mRNA suppression. Second, exposure of macrophages to the calcium ionophores, ionomycin or A23187, mimicked receptor ligation and inhibited IL-12(p40) mRNA induction by LPS. Finally, bone marrow-derived macrophages from FcR gamma chain-deficient mice, which fail to flux calcium after receptor ligation, failed to inhibit IL-12(p40) mRNA induction. These results indicate that the calcium influxes that occur as a result of receptor ligation are responsible for inhibiting the induction of IL-12 by LPS. Hence, the ligation of phagocytic receptors on macrophages can lead to a dramatic decrease in IL-12 induction. This downregulation may be a way of limiting proinflammatory responses of macrophages to extracellular pathogens, or suppressing the development of cell-mediated immunity to intracellular pathogens.

  19. Higher LPA2 and LPA6 mRNA Levels in Hepatocellular Carcinoma Are Associated with Poorer Differentiation, Microvascular Invasion and Earlier Recurrence with Higher Serum Autotaxin Levels

    PubMed Central

    Ikeda, Hitoshi; Kurano, Makoto; Sato, Masaya; Kudo, Hiroki; Maki, Harufumi; Koike, Kazuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    Hepatocellular carcinoma (HCC) commonly develops in patients with liver fibrosis; in these patients, the blood levels of lysophosphatidic acid (LPA) and its generating enzyme autotaxin (ATX) increase with the liver fibrosis stage. We aimed to examine the potential relevance of ATX and LPA in HCC. Fifty-eight HCC patients who underwent surgical treatment were consecutively enrolled in the study. Among the LPA receptors in HCC, higher LPA2 mRNA levels correlated with poorer differentiation, and higher LPA6 mRNA levels correlated with microvascular invasion, which suggested a higher malignant potential of HCC with increased LPA2 and LPA6 expression. In patients with primary HCC, neither LPA2 nor LPA6 mRNA levels were associated with recurrence. However, when serum ATX levels were combined for analysis as a surrogate for plasma LPA levels, the cumulative intra-hepatic recurrence rate was higher in patients in whom both serum ATX levels and LPA2 or LPA6 mRNA levels were higher than the median. However, the mRNA level of phosphatidic acid-selective phospholipase A1ɑ, another LPA-generating enzyme, in HCC patients was not associated with pathological findings or recurrence, even in combination with the expression of LPA receptors. Higher LPA2 mRNA levels were associated with poorer differentiation, and higher LPA6 levels were associated with microvascular invasion in HCC; both became a risk factor for recurrence after surgical treatment when combined with increased serum ATX levels. ATX and LPA receptors merit consideration as therapeutic targets of HCC. PMID:27583415

  20. Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs.

    PubMed

    Bai, Ou; Chlan-Fourney, Jennifer; Bowen, Rudy; Keegan, David; Li, Xin-Min

    2003-01-01

    Typical and atypical antipsychotic drugs, though both effective, act on different neurotransmitter receptors and are dissimilar in some clinical effects and side effects. The typical antipsychotic drug haloperidol has been shown to cause a decrease in the expression of brain-derived neurotrophic factor (BDNF), which plays an important role in neuronal cell survival, differentiation, and neuronal connectivity. However, it is still unknown whether atypical antipsychotic drugs similarly regulate BDNF expression. We examined the effects of chronic (28 days) administration of typical and atypical antipsychotic drugs on BDNF mRNA expression in the rat hippocampus using in situ hybridization. Quantitative analysis revealed that the typical antipsychotic drug haloperidol (1 mg/kg) down-regulated BDNF mRNA expression in both CA1 (P < 0.05) and dentate gyrus (P < 0.01) regions compared with vehicle control. In contrast, the atypical antipsychotic agents clozapine (10 mg/kg) and olanzapine (2.7 mg/kg) up-regulated BDNF mRNA expression in CA1, CA3, and dentate gyrus regions of the rat hippocampus compared with their respective controls (P < 0.01). These findings demonstrate that the typical and atypical antipsychotic drugs differentially regulate BDNF mRNA expression in rat hippocampus.

  1. Loss of CD4 membrane expression and CD4 mRNA during acute human immunodeficiency virus replication

    PubMed Central

    1988-01-01

    Using mAbs and genomic probe to the CD4 molecule, the HIV receptor, we demonstrated that HIV replication induces the disappearance of its functional receptor from the cell surface by two distinct mechanisms. First, after being expressed onto the cell surface, HIV envelope gp110 will complex CD4, efficiently masking the CD4 epitope used by the virus to bind its receptor. This phenomenon occurs on the surface of each infected cell and is not due to the release of soluble gp110; infection with recombinant HIV/vaccinia viruses expressing a mutated HIV env gene designed to prevent gp110 release from the cell surface induces a similar gp/CD4 complexes formation. Second, virus replication induces a dramatic and rapid loss of CD4 mRNA transcripts, preventing new CD4 molecules from being synthesized. These two mechanisms of receptor modulation could have been developed to avoid reinfection of cells replicating the virus as well as to produce more infectious particles. These results suggest that the classical virus interference documented for other retroviruses might not only be due to receptor/envelope interaction, but might also depend on receptor gene expression. PMID:3264318

  2. Cortisol increases growth hormone-receptor expression in human osteoblast-like cells.

    PubMed

    Swolin-Eide, D; Nilsson, A; Ohlsson, C

    1998-01-01

    It is well known that high levels of glucocorticoids cause osteoporosis and that physiologic levels of growth hormone (GH) are required for normal bone remodeling. It has been suggested that glucocorticoids regulate GH-responses via the regulation of GH-receptor expression. The aim of the present study was to investigate whether cortisol plays a role in the regulation of GH-receptor expression in cultured human osteoblasts. The effect of serum starvation and cortisol on GH-receptor expression was tested in human osteoblast (hOB)-like cells. Serum starvation for 24 h resulted in an increase in GH-receptor mRNA levels (90 +/- 1% over control culture). Cortisol increased GH-receptor mRNA levels in a dose-dependent manner with a maximal effect at 10(-6)M. The stimulating effect of cortisol on GH-receptor mRNA levels was time-dependent, reaching a peak 12 h after the addition of cortisol (126 +/- 29% over control culture) and remaining up to 12 h later. The increase in GH-receptor mRNA levels was accompanied by an increase in 125I-GH binding which reached a maximum at 24 h (196 +/- 87% over control culture). In conclusion, glucocorticoids increase GH-receptor expression in hOB-like cells. Further studies are needed to clarify whether glucocorticoid-induced regulation of the GH-receptor is important in human bone physiology.

  3. Inflammation and peripheral 5-HT7 receptors: the role of 5-HT7 receptors in carrageenan induced inflammation in rats.

    PubMed

    Albayrak, Abdulmecit; Halici, Zekai; Cadirci, Elif; Polat, Beyzagul; Karakus, Emre; Bayir, Yasin; Unal, Deniz; Atasoy, Mustafa; Dogrul, Ahmet

    2013-09-05

    The aim of this study was: (1) to investigate possible role for 5-HT7 receptors in carrageenan induced inflammatory paw oedema in rats; (2) to determine the presence of 5-HT7 receptors in rat paw tissue; (3) to observe the effects of 5-HT7 receptor agonist and antagonist administration on inflammation; and (4) to determine a unique mechanism for inflammatory processes via 5-HT7 receptors. Effects of 5-HT7 receptor agonist, antagonist and indomethacin were investigated in carrageenan induced paw oedema in rats. Blood and tissue samples were collected and evaluated biochemically for serum cytokine levels, tissue oxidant-antioxidant balance and histopathologically for inflammatory cell accumulation. We performed Real Time PCR analyses for tissue 5-HT7 receptor and COX mRNA expressions. The 5-HT7 receptor agonist AS-19 exerted significant anti-inflammatory effect both alone and in combination with indomethacin. Antagonist, SB269970, did not affect inflammation alone but decreased the effects of agonist when co-administered. 5-HT7 mRNA levels were higher in the carrageenan group than healthy control. Carrageenan+indometacin group decreased the mRNA expression of 5-HT7 when compared to carrageenan group. While agonist administration decreased 5-HT7 mRNA expression when compared to carrageenan group. Agonist decreased paw COX expression. Agonist also decreased serum cytokine levels and tissue oxidative stress. In conclusion, this study demonstrated for the first time that 5-HT7 receptors are expressed in rat paw tissue and that this expression responds to inflammatory stimuli. The 5-HT7 receptor may be a promising new therapeutic target for prevention of inflammation and inflammatory disorders and may also provide a new glimpse into inflammation pathophysiology.

  4. IL-22 mRNA in peripheral blood mononuclear cells from allergic rhinitic and asthmatic pediatric patients.

    PubMed

    Farfariello, Valerio; Amantini, Consuelo; Nabissi, Massimo; Morelli, Maria Beatrice; Aperio, Cristiana; Caprodossi, Sara; Carlucci, Antonio; Bianchi, Anna Maria; Santoni, Giorgio

    2011-06-01

    T helper (T(H) )-17 lymphocytes are characterized by the expression of many regulatory cytokines, including IL-17A and IL-22, but at present no clinical data are available on the expression of these cytokines in peripheral blood mononuclear cells (PBMC) from allergic asthmatic and rhinitic (AR) children. The aim of this study was to investigate a possible relationship between IL-22 and IL-17A mRNAs and clinical parameters in seroatopic, AR, and asthmatic children. The study, conducted during the pollen season, included 18 healthy and 18 allergic (n=9 asthmatic and n=9 rhinitic) children. Serum total and specific IgE, eosinophil count, and skin prick test were performed; in addition, IL-22 and IL-17A mRNA levels were detected in PBMC from healthy and allergic subjects by quantitative real-time PCR. Despite the absence of the mRNA for the IL-17A cytokine, IL-22 expression was found in PBMC from asthmatic patients, with increased IL-22 mRNA levels in patients with chronic severe respect to those with moderate asthma. A positive correlation between IL-22 mRNA and serum total IgE levels was found in asthmatic children. In addition, higher IL-22 and IL-17A mRNA levels were detected in both AR and asymptomatic seroatopic children, compared to healthy individuals, and a correlation between IL-22 and IL17A mRNA and serum total IgE levels was demonstrated. Moreover, the mRNA level of retinoic acid-related orphan receptor C, the T(H) 17 transcription factor, was found to be increased in AR but not in asthmatic patients. This study provides the first evidence that IL-22 mRNA might be expressed in chronic severe asthmatic and AR children. The expression of IL-22 and IL-17A mRNAs in asymptomatic monosensitized seroatopic children suggests a role of these cytokines in the early events involved in the development of these allergic diseases.

  5. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors.

  6. Optimal Down Regulation of mRNA Translation

    NASA Astrophysics Data System (ADS)

    Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2017-01-01

    Down regulation of mRNA translation is an important problem in various bio-medical domains ranging from developing effective medicines for tumors and for viral diseases to developing attenuated virus strains that can be used for vaccination. Here, we study the problem of down regulation of mRNA translation using a mathematical model called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as a chain of n sites. The flow of ribosomes between consecutive sites is regulated by n + 1 transition rates. Given a set of feasible transition rates, that models the outcome of all possible mutations, we consider the problem of maximally down regulating protein production by altering the rates within this set of feasible rates. Under certain conditions on the feasible set, we show that an optimal solution can be determined efficiently. We also rigorously analyze two special cases of the down regulation optimization problem. Our results suggest that one must focus on the position along the mRNA molecule where the transition rate has the strongest effect on the protein production rate. However, this rate is not necessarily the slowest transition rate along the mRNA molecule. We discuss some of the biological implications of these results.

  7. Optimal Down Regulation of mRNA Translation

    PubMed Central

    Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2017-01-01

    Down regulation of mRNA translation is an important problem in various bio-medical domains ranging from developing effective medicines for tumors and for viral diseases to developing attenuated virus strains that can be used for vaccination. Here, we study the problem of down regulation of mRNA translation using a mathematical model called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as a chain of n sites. The flow of ribosomes between consecutive sites is regulated by n + 1 transition rates. Given a set of feasible transition rates, that models the outcome of all possible mutations, we consider the problem of maximally down regulating protein production by altering the rates within this set of feasible rates. Under certain conditions on the feasible set, we show that an optimal solution can be determined efficiently. We also rigorously analyze two special cases of the down regulation optimization problem. Our results suggest that one must focus on the position along the mRNA molecule where the transition rate has the strongest effect on the protein production rate. However, this rate is not necessarily the slowest transition rate along the mRNA molecule. We discuss some of the biological implications of these results. PMID:28120903

  8. PCB-associated changes in mRNA expression in killer whales (Orcinus orca) from the NE Pacific Ocean.

    PubMed

    Buckman, Andrea H; Veldhoen, Nik; Ellis, Graeme; Ford, John K B; Helbing, Caren C; Ross, Peter S

    2011-12-01

    Killer whales in the NE Pacific Ocean are among the world's most PCB-contaminated marine mammals, raising concerns about implications for their health. Sixteen health-related killer whale mRNA transcripts were analyzed in blubber biopsies collected from 35 free-ranging killer whales in British Columbia using real-time quantitative polymerase chain reaction. We observed PCB-related increases in the expression of five gene targets, including the aryl hydrocarbon receptor (AhR; r(2) = 0.83; p < 0.001), thyroid hormone α receptor (TRα; r(2) = 0.64; p < 0.001), estrogen α receptor (ERα; r(2) = 0.70; p < 0.001), interleukin 10 (IL-10; r(2) = 0.74 and 0.68, males and females, respectively; p < 0.001), and metallothionein 1 (MT1; r(2) = 0.58; p < 0.001). Best-fit models indicated that population (dietary preference), age, and sex were not confounding factors, except for IL-10, where males differed from females. While the population-level consequences are unclear, the PCB-associated alterations in mRNA abundance of such pivotal end points provide compelling evidence of adverse physiological effects of persistent environmental contaminants in these endangered killer whales.

  9. Towards a multi protein and mRNA expression of biological predictive and distinguish model for post stroke depression

    PubMed Central

    Yue, Yingying; Jiang, Haitang; Liu, Rui; Yin, Yingying; Zhang, Yuqun; Liang, Jinfeng; Li, Shenghua; Wang, Jun; Lu, Jianxin; Geng, Deqin; Wu, Aiqin; Yuan, Yonggui

    2016-01-01

    Previous studies suggest that neurotrophic factors participate in the development of stroke and depression. So we investigated the utility of these biomarkers as predictive and distinguish model for post stroke depression (PSD). 159 individuals including PSD, stroke without depression (Non-PSD), major depressive disorder (MDD) and normal control groups were recruited and examined the protein and mRNA expression levels of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptors (VEGFR2), placental growth factor (PIGF), insulin-like growth factor (IGF-1) and insulin-like growth factor receptors (IGF-1R). The chi-square test was used to evaluate categorical variable, while nonparametric test and one-way analysis of variance were applied to continuous variables of general characteristics, clinical and biological changes. In order to explore the predictive and distinguish role of these factors in PSD, discriminant analysis and receiver operating characteristic curve were calculated. The four groups had statistical differences in these neurotrophic factors (all P < 0.05) except VEGF concentration and IGF-1R mRNA (P = 0.776, P = 0.102 respectively). We identified these mRNA expression and protein analytes with general predictive performance for PSD and Non-PSD groups [area under the curve (AUC): 0.805, 95% CI, 0.704-0.907, P < 0.001]. Importantly, there is an excellent predictive performance (AUC: 0.984, 95% CI, 0.964-1.000, P < 0.001) to differentiate PSD patients from MDD patients. This was the first study to explore the changes of neurotrophic factors family in PSD patients, the results intriguingly demonstrated that the combination of protein and mRNA expression of biological factors could use as a predictive and discriminant model for PSD. PMID:27527872

  10. NEURON SPECIFIC α-ADRENERGIC RECEPTOR EXPRESSION IN HUMAN CEREBELLUM: IMPLICATIONS FOR EMERGING CEREBELLAR ROLES IN NEUROLOGIC DISEASE

    PubMed Central

    SCHAMBRA, U. B.; MACKENSEN, G. B.; STAFFORD-SMITH, M.; HAINES, D. E.; SCHWINN, D. A.

    2008-01-01

    Recent data suggest novel functional roles for cerebellar involvement in a number of neurologic diseases. Function of cerebellar neurons is known to be modulated by norepinephrine and adrenergic receptors. The distribution of adrenergic receptor subtypes has been described in experimental animals, but corroboration of such studies in the human cerebellum, necessary for drug treatment, is still lacking. In the present work we studied cell-specific localizations of α1 adrenergic receptor subtype mRNA (α1a, α1b, α1d), and α2 adrenergic receptor subtype mRNA (α2a, α2b, α2c) by in situ hybridization on cryostat sections of human cerebellum (cortical layers and dentate nucleus). We observed unique neuron-specific α1 adrenergic receptor and α2 adrenergic receptor subtype distribution in human cerebellum. The cerebellar cortex expresses mRNA encoding all six α adrenergic receptor subtypes, whereas dentate nucleus neurons express all subtype mRNAs, except α2a adrenergic receptor mRNA. All Purkinje cells label strongly for α2a and α2b adrenergic receptor mRNA. Additionally, Purkinje cells of the anterior lobe vermis (lobules I to V) and uvula/tonsil (lobules IX/HIX) express α1a and α2c subtypes, and Purkinje cells in the ansiform lobule (lobule HVII) and uvula/tonsil express α1b and α2c adrenergic receptor subtypes. Basket cells show a strong signal for α1a, moderate signal for α2a and light label for α2b adrenergic receptor mRNA. In stellate cells, besides a strong label of α2a adrenergic receptor mRNA in all and moderate label of α2b message in select stellate cells, the inner stellate cells are also moderately positive for α1b adrenergic receptor mRNA. Granule and Golgi cells express high levels of α2a and α2b adrenergic receptor mRNAs. These data contribute new information regarding specific location of adrenergic receptor subtypes in human cerebellar neurons. We discuss our observations in terms of possible modulatory roles of adrenergic

  11. Variants of TRP ion channel mRNA present in horseshoe crab ventral eye and brain.

    PubMed

    Bandyopadhyay, Bidhan C; Payne, Richard

    2004-11-01

    Transient receptor potential (TRP) channels mediate light-induced Ca(2+) entry and the electrical response in Drosophila photoreceptors. The role of TRP channels in other invertebrate photoreceptors is unknown, particularly those, exemplified by Limulus ventral eye photoreceptors, in which calcium release from intracellular stores is prominent. We have amplified cDNA encoding three variants of a Limulus TRP channel. LptrpA and LptrpBencode proteins of 896 and 923 amino acids, differing by a 27 amino acid insert within the C-terminus. LptrpC encodes an alternative 63 amino acid sequence in the pore domain compared with LptrpB. LptrpB and LptrpC are present in ventral eye mRNA, while LptrpA is only present in brain mRNA. In situ hybridization indicates the presence of Lptrp in photoreceptors of the Limulus ventral eye. Some canonical TRP channels can be activated by diacylglycerol analogs. Injection of a diacylglycerol analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG), into Limulus photoreceptors can activate an inward current with electrical characteristics similar to the light-activated current. However, simultaneous elevation of cytosolic calcium concentration appears to be necessary. Illumination attenuates the response to OAG injections and vice versa. These results provide molecular and pharmacological evidence for a TRP channel in Limulus ventral eye that may contribute to the light-sensitive conductance.

  12. Prognostic value of amphiregulin and epiregulin mRNA expression in metastatic colorectal cancer patients

    PubMed Central

    You, Zhai; Qiong, Qian; Jun, Zhou

    2016-01-01

    Epidermal growth factor receptor (EGFR) and its ligands amphiregulin (AREG) and epiregulin (EREG) play a central role in the development of colorectal cancer, but the prognostic values of AREG and EREG are controversial. We conducted a meta-analysis of studies that investigated AREG and/or EREG mRNA levels in primary tumors to determine their prognostic value in metastatic colorectal cancer (mCRC). In addition, RAS status was assessed. Relevant articles were identified by searching the EMBASE, PubMed, and Cochrane Library databases. Hazard ratios (HR) with 95% confidence intervals (CIs) were calculated using a random-effects model. Nine studies involving 2167 patients were included in this meta-analysis. High AREG expression was associated with longer overall survival (OS) and progression-free survival (PFS). High EREG expression was also associated with prolonged OS and PFS. In RAS wild-type (WT) patients who received anti-EGFR therapy, high AREG and EREG expression was associated with longer OS. Our results indicate that high AREG and EREG mRNA expression are independent favorable prognostic biomarkers in mCRC. The expression of these ligands should be considered when evaluating prognoses in RAS-WT patients receiving anti-EGFR therapy. PMID:27344184

  13. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    SciTech Connect

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh; Ohno, Hideki; Takemasa, Tohru

    2008-04-04

    Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor of p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological condition