Science.gov

Sample records for melanogaster dutpase isoforms

  1. Nuclear localization signal-dependent and -independent movements of Drosophila melanogaster dUTPase isoforms during nuclear cleavage

    SciTech Connect

    Muha, Villo; Zagyva, Imre; Venkei, Zsolt; Szabad, Janos; Vertessy, Beata G.

    2009-04-03

    Two dUTPase isoforms (23 kDa and 21 kDa) are present in the fruitfly with the sole difference of an N-terminal extension. In Drosophila embryo, both isoforms are detected inside the nucleus. Here, we investigated the function of the N-terminal segment using eYFP-dUTPase constructs. In Schneider 2 cells, only the 23 kDa construct showed nuclear localization arguing that it may contain a nuclear localization signal (NLS). Sequence comparisons identified a lysine-rich nonapeptide with similarity to the human c-myc NLS. In Drosophila embryos during nuclear cleavages, the 23 kDa isoform showed the expected localization shifts. Contrariwise, although the 21 kDa isoform was excluded from the nuclei during interphase, it was shifted to the nucleus during prophase and forthcoming mitotic steps. The observed dynamic localization character showed strict timing to the nuclear cleavage phases and explained how both isoforms can be present within the nuclear microenvironment, although at different stages of cell cycle.

  2. Life without dUTPase

    PubMed Central

    Kerepesi, Csaba; Szabó, Judit E.; Papp-Kádár, Veronika; Dobay, Orsolya; Szabó, Dóra; Grolmusz, Vince; Vértessy, Beáta G.

    2016-01-01

    Fine-tuned regulation of the cellular nucleotide pools is indispensable for faithful replication of Deoxyribonucleic Acid (DNA). The genetic information is also safeguarded by DNA damage recognition and repair processes. Uracil is one of the most frequently occurring erroneous bases in DNA; it can arise from cytosine deamination or thymine-replacing incorporation. Two enzyme activities are primarily involved in keeping DNA uracil-free: dUTPase (dUTP pyrophosphatase) activity that prevent thymine-replacing incorporation and uracil-DNA glycosylase activity that excise uracil from DNA and initiate uracil-excision repair. Both dUTPase and the most efficient uracil-DNA glycosylase (UNG) is thought to be ubiquitous in free-living organisms. In the present work, we have systematically investigated the genotype of deposited fully sequenced bacterial and Archaeal genomes. We have performed bioinformatic searches in these genomes using the already well described dUTPase and UNG gene sequences. For dUTPases, we have included the trimeric all-beta and the dimeric all-alpha families and also, the bifunctional dCTP (deoxycytidine triphosphate) deaminase-dUTPase sequences. Surprisingly, we have found that in contrast to the generally held opinion, a wide number of bacterial and Archaeal species lack all of the previously described dUTPase gene(s). The dut– genotype is present in diverse bacterial phyla indicating that loss of this (or these) gene(s) has occurred multiple times during evolution. We discuss potential survival strategies in lack of dUTPases, such as simultaneous lack or inhibition of UNG and possession of exogenous or alternate metabolic enzymes involved in uracil-DNA metabolism. The potential that genes previously not associated with dUTPase activity may still encode enzymes capable of hydrolyzing dUTP is also discussed. Our data indicate that several unicellular microorganisms may efficiently cope with a dut– genotype lacking all of the previously described dUTPase

  3. Broad Complex isoforms have unique distributions during central nervous system metamorphosis in Drosophila melanogaster.

    PubMed

    Spokony, Rebecca F; Restifo, Linda L

    2009-11-01

    Broad Complex (BRC) is a highly conserved, ecdysone-pathway gene essential for metamorphosis in Drosophila melanogaster, and possibly all holometabolous insects. Alternative splicing among duplicated exons produces several BRC isoforms, each with one zinc-finger DNA-binding domain (Z1, Z2, Z3, or Z4), highly expressed at the onset of metamorphosis. BRC-Z1, BRC-Z2, and BRC-Z3 represent distinct genetic functions (BRC complementation groups rbp, br, and 2Bc, respectively) and are required at discrete stages spanning final-instar larva through very young pupa. We showed previously that morphogenetic movements necessary for adult CNS maturation require BRC-Z1, -Z2, and -Z3, but not at the same time: BRC-Z1 is required in the mid-prepupa, BRC-Z2 and -Z3 are required earlier, at the larval-prepupal transition. To explore how BRC isoforms controlling the same morphogenesis events do so at different times, we examined their central nervous system (CNS) expression patterns during the approximately 16 hours bracketing the hormone-regulated start of metamorphosis. Each isoform had a unique pattern, with BRC-Z3 being the most distinctive. There was some colocalization of isoform pairs, but no three-way overlap of BRC-Z1, -Z2, and -Z3. Instead, their most prominent expression was in glia (BRC-Z1), neuroblasts (BRC-Z2), or neurons (BRC-Z3). Despite sequence similarity to BRC-Z1, BRC-Z4 was expressed in a unique subset of neurons. These data suggest a switch in BRC isoform choice, from BRC-Z2 in proliferating cells to BRC-Z1, BRC-Z3, or BRC-Z4 in differentiating cells. Together with isoform-selective temporal requirements and phenotype considerations, this cell-type-selective expression suggests a model of BRC-dependent CNS morphogenesis resulting from intercellular interactions, culminating in BRC-Z1-controlled, glia-mediated CNS movements in late prepupa.

  4. Alternative RNA splicing generates transcripts encoding a thorax-specific isoform of Drosophila melanogaster myosin heavy chain.

    PubMed

    Bernstein, S I; Hansen, C J; Becker, K D; Wassenberg, D R; Roche, E S; Donady, J J; Emerson, C P

    1986-07-01

    Genomic and cDNA sequencing studies show that transcripts from the muscle myosin heavy-chain (MHC) gene of Drosophila melanogaster are alternatively spliced, producing RNAs that encode at least two MHC isoforms with different C termini. Transcripts encoding an MHC isoform with 27 unique C-terminal amino acids accumulate during both larval and adult muscle differentiation. Transcripts for the second isoform encode one unique C-terminal amino acid and accumulate almost exclusively in pupal and adult thoracic segments, the location of the indirect flight muscles. The 3' splice acceptor site preceding the thorax-specific exon is unusually purine rich and thus may serve as a thorax-specific splicing signal. We suggest that the alternative C termini of these two MHC isoforms control myofilament assembly and may play a role in generating the distinctive myofilament organizations of flight muscle and other muscle types.

  5. Phosphorylation of Herpes Simplex Virus 1 dUTPase Upregulated Viral dUTPase Activity To Compensate for Low Cellular dUTPase Activity for Efficient Viral Replication

    PubMed Central

    Kato, Akihisa; Hirohata, Yoshitaka; Arii, Jun

    2014-01-01

    ABSTRACT We recently reported that herpes simplex virus 1 (HSV-1) protein kinase Us3 phosphorylated viral dUTPase (vdUTPase) at serine 187 (Ser-187) to upregulate its enzymatic activity, which promoted HSV-1 replication in human neuroblastoma SK-N-SH cells but not in human carcinoma HEp-2 cells. In the present study, we showed that endogenous cellular dUTPase activity in SK-N-SH cells was significantly lower than that in HEp-2 cells and that overexpression of cellular dUTPase in SK-N-SH cells increased the replication of an HSV-1 mutant with an alanine substitution for Ser-187 (S187A) in vdUTPase to the wild-type level. In addition, we showed that knockdown of cellular dUTPase in HEp-2 cells significantly reduced replication of the mutant vdUTPase (S187A) virus but not that of wild-type HSV-1. Furthermore, the replacement of Ser-187 in vdUTPase with aspartic acid, which mimics constitutive phosphorylation, and overexpression of cellular dUTPase restored viral replication to the wild-type level in cellular dUTPase knockdown HEp-2 cells. These results indicated that sufficient dUTPase activity was required for efficient HSV-1 replication and supported the hypothesis that Us3 phosphorylation of vdUTPase Ser-187 upregulated vdUTPase activity in host cells with low cellular dUTPase activity to produce efficient viral replication.virus. IMPORTANCE It has long been assumed that dUTPase activity is important for replication of viruses encoding a dUTPase and that the viral dUTPase (vdUTPase) activity was needed if host cell dUTPase activity was not sufficient for efficient viral replication. In the present study, we showed that the S187A mutation in HSV-1 vdUTPase, which impaired its enzymatic activity, reduced viral replication in SK-N-SH cells, which have low endogenous cellular dUTPase activity, and that overexpression of cellular dUTPase restored viral replication to the wild-type level. We also showed that knockdown of cellular dUTPase in HEp-2 cells, which have higher

  6. The dUTPase Enzyme Is Essential in Mycobacterium smegmatis

    PubMed Central

    Pecsi, Ildiko; Hirmondo, Rita; Brown, Amanda C.; Lopata, Anna; Parish, Tanya; Vertessy, Beata G.; Tóth, Judit

    2012-01-01

    Thymidine biosynthesis is essential in all cells. Inhibitors of the enzymes involved in this pathway (e.g. methotrexate) are thus frequently used as cytostatics. Due to its pivotal role in mycobacterial thymidylate synthesis dUTPase, which hydrolyzes dUTP into the dTTP precursor dUMP, has been suggested as a target for new antitubercular agents. All mycobacterial genomes encode dUTPase with a mycobacteria-specific surface loop absent in the human dUTPase. Using Mycobacterium smegmatis as a fast growing model for Mycobacterium tuberculosis, we demonstrate that dUTPase knock-out results in lethality that can be reverted by complementation with wild-type dUTPase. Interestingly, a mutant dUTPase gene lacking the genus-specific loop was unable to complement the knock-out phenotype. We also show that deletion of the mycobacteria-specific loop has no major effect on dUTPase enzymatic properties in vitro and thus a yet to be identified loop-specific function seems to be essential within the bacterial cell context. In addition, here we demonstrated that Mycobacterium tuberculosis dUTPase is fully functional in Mycobacterium smegmatis as it rescues the lethal knock-out phenotype. Our results indicate the potential of dUTPase as a target for antitubercular drugs and identify a genus-specific surface loop on the enzyme as a selective target. PMID:22655049

  7. Troponin-T is a calcium-binding protein in insect muscle: in vivo phosphorylation, muscle-specific isoforms and developmental profile in Drosophila melanogaster.

    PubMed

    Domingo, A; González-Jurado, J; Maroto, M; Díaz, C; Vinós, J; Carrasco, C; Cervera, M; Marco, R

    1998-05-01

    Two sets of muscle polypeptides showing calcium-binding capacity and intense labelling in vivo with 32P were purified and characterized from Drosophila melanogaster adult extracts. The polypeptides exhibit crossed immunoreactivity and share similar biochemical properties such as those involved in purification. They have been identified as isoforms of troponin-T (TnT) by sequence analysis of a cDNA clone isolated from an embryonic library. The two sets of TnT polypeptides correspond to the fibrillar and non-fibrillar muscle isoforms, respectively. The non-fibrillar muscle isoforms separate into two bands which are differentially expressed during development. Analysis of TnT isoforms in bee thoraces indicates that the expression of the fibrillar muscle isoform correlates with the acquisition of functional flight capability. In vivo labelling experiments reveal that the two TnT sets are readily phosphorylated. The Drosophila TnTs show calcium-binding properties by three different types of assays. Our results suggest that this property could be specific to insect TnTs and may be related to the long, extremely acidic polyglutamic carboxy-terminus present in these polypeptides, which does not occur in non-arthropod TnTs.

  8. Visna Virus dUTPase Is Dispensable for Neuropathogenicity

    PubMed Central

    Pétursson, Gudmundur; Turelli, Priscilla; Matthíasdóttir, Sigrídur; Georgsson, Gudmundur; Andrésson, Ólafur S.; Torsteinsdóttir, Sigurbjörg; Vigne, Robert; Andrésdóttir, Valgerdur; Gunnarsson, Eggert; Agnarsdóttir, Gudrún; Quérat, Gilles

    1998-01-01

    The major part of the dUTPase-encoding region of the visna virus genome was deleted. Intracerebral injection of the mutant virus resulted in a somewhat reduced viral load compared to that resulting from injection of the wild type, especially in the lungs, but the neuropathogenic effects were comparable. The dUTPase gene is dispensable for induction of lesions in the brain. PMID:9445073

  9. Maturation stage and proliferation-dependent expression of dUTPase in human T cells.

    PubMed Central

    Strahler, J R; Zhu, X X; Hora, N; Wang, Y K; Andrews, P C; Roseman, N A; Neel, J V; Turka, L; Hanash, S M

    1993-01-01

    We have developed a database of lymphoid polypeptides detected by two-dimensional polyacrylamide gel electrophoresis to aid in studies of leukemogenesis and of mutation affecting protein structure. In prior studies, we observed a 19-kDa phosphopolypeptide which was induced with proliferation in mature T cells and constitutively expressed in immature thymocytes. In this report we describe the identification of this polypeptide as the phosphorylated form of dUTPase (EC 3.6.1.23), following cDNA cloning of the gene, based on a partial amino acid sequence of the phosphopolypeptide. Studies of the expression and phosphorylation of dUTPase in human T cells indicate that accumulation and phosphorylation of dUTPase in mature T cells occur in a cell cycle-dependent manner. Interestingly, noncycling immature thymocytes express constitutively high levels of phosphorylated and unphosphorylated dUTPase. These results suggest an important role for dUTPase in immature thymocytes that is independent of proliferation. Images Fig. 1 Fig. 4 PMID:8389461

  10. H2O2-Sensitive Isoforms of Drosophila melanogaster TRPA1 Act in Bitter-Sensing Gustatory Neurons to Promote Avoidance of UV During Egg-Laying.

    PubMed

    Guntur, Ananya R; Gou, Bin; Gu, Pengyu; He, Ruo; Stern, Ulrich; Xiang, Yang; Yang, Chung-Hui

    2017-02-01

    The evolutionarily conserved TRPA1 channel can sense various stimuli including temperatures and chemical irritants. Recent results have suggested that specific isoforms of Drosophila TRPA1 (dTRPA1) are UV-sensitive and that their UV sensitivity is due to H2O2 sensitivity. However, whether such UV sensitivity served any physiological purposes in animal behavior was unclear. Here, we demonstrate that H2O2-sensitive dTRPA1 isoforms promote avoidance of UV when adult Drosophila females are selecting sites for egg-laying. First, we show that blind/visionless females are still capable of sensing and avoiding UV during egg-laying when intensity of UV is high yet within the range of natural sunlight. Second, we show that such vision-independent UV avoidance is mediated by a group of bitter-sensing neurons on the proboscis that express H2O2-sensitive dTRPA1 isoforms. We show that these bitter-sensing neurons exhibit dTRPA1-dependent UV sensitivity. Importantly, inhibiting activities of these bitter-sensing neurons, reducing their dTRPA1 expression, or reducing their H2O2-sensitivity all significantly reduced blind females' UV avoidance, whereas selectively restoring a H2O2-sensitive isoform of dTRPA1 in these neurons restored UV avoidance. Lastly, we show that specifically expressing the red-shifted channelrhodopsin CsChrimson in these bitter-sensing neurons promotes egg-laying avoidance of red light, an otherwise neutral cue for egg-laying females. Together, these results demonstrate a physiological role of the UV-sensitive dTRPA1 isoforms, reveal that adult Drosophila possess at least two sensory systems for detecting UV, and uncover an unexpected role of bitter-sensing taste neurons in UV sensing.

  11. dUTPase (DUT) Is Mutated in a Novel Monogenic Syndrome With Diabetes and Bone Marrow Failure.

    PubMed

    Dos Santos, Reinaldo Sousa; Daures, Mathilde; Philippi, Anne; Romero, Sophie; Marselli, Lorella; Marchetti, Piero; Senée, Valérie; Bacq, Delphine; Besse, Céline; Baz, Baz; Marroquí, Laura; Ivanoff, Sarah; Masliah-Planchon, Julien; Nicolino, Marc; Soulier, Jean; Socié, Gérard; Eizirik, Decio L; Gautier, Jean-François; Julier, Cécile

    2017-04-01

    We describe a new syndrome characterized by early-onset diabetes associated with bone marrow failure, affecting mostly the erythrocytic lineage. Using whole-exome sequencing in a remotely consanguineous patient from a family with two affected siblings, we identified a single homozygous missense mutation (chr15.hg19:g.48,626,619A>G) located in the dUTPase (DUT) gene (National Center for Biotechnology Information Gene ID 1854), affecting both the mitochondrial (DUT-M p.Y142C) and the nuclear (DUT-N p.Y54C) isoforms. We found the same homozygous mutation in an unrelated consanguineous patient with diabetes and bone marrow aplasia from a family with two affected siblings, whereas none of the >60,000 subjects from the Exome Aggregation Consortium (ExAC) was homozygous for this mutation. This replicated observation probability was highly significant, thus confirming the role of this DUT mutation in this syndrome. DUT is a key enzyme for maintaining DNA integrity by preventing misincorporation of uracil into DNA, which results in DNA toxicity and cell death. We showed that DUT silencing in human and rat pancreatic β-cells results in apoptosis via the intrinsic cell death pathway. Our findings support the importance of tight control of DNA metabolism for β-cell integrity and warrant close metabolic monitoring of patients treated by drugs affecting dUTP balance. © 2017 by the American Diabetes Association.

  12. Crystallization and preliminary X-ray studies of dUTPase from Mason–Pfizer monkey retrovirus

    SciTech Connect

    Barabás, Orsolya; Németh, Veronika; Vértessy, Beáta G.

    2006-04-01

    Deoxyuridine 5′-triphosphate nucleotidohydrolase from Mason–Pfizer monkey retrovirus (M-PMV dUTPase) is a betaretroviral member of the dUTPase enzyme family. The nucleocapsid-free dUTPase (48426 Da) was co-crystallized with a dUTP substrate analogue using the hanging-drop vapour-diffusion method. Deoxyuridine 5′-triphosphate nucleotidohydrolase from Mason–Pfizer monkey retrovirus (M-PMV dUTPase) is a betaretroviral member of the dUTPase enzyme family. In the mature M-PMV virion, this enzyme is present as the C-terminal domain of the fusion protein nucleocapsid-dUTPase. The homotrimeric organization characteristic of dUTPases is retained in this bifunctional fusion protein. The fusion protein supposedly plays a role in adequate localization of dUTPase activity in the vicinity of nucleic acids during reverse transcription and integration. Here, the nucleocapsid-free dUTPase (48 426 Da) was cocrystallized with a dUTP substrate analogue using the hanging-drop vapour-diffusion method. The obtained crystals belong to the primitive hexagonal space group P6{sub 3}, with unit-cell parameters a = 60.6, b = 60.6, c = 63.6 Å, α = 90, β = 90, γ = 120°. Native and PtCl{sub 4}-derivative data sets were collected using synchrotron radiation to 1.75 and 2.3 Å, respectively. Phasing was successfully performed by isomorphous replacement combined with anomalous scattering.

  13. Central Regulation of Locomotor Behavior of Drosophila melanogaster Depends on a CASK Isoform Containing CaMK-Like and L27 Domains

    PubMed Central

    Slawson, Justin B.; Kuklin, Elena A.; Ejima, Aki; Mukherjee, Konark; Ostrovsky, Lilly; Griffith, Leslie C.

    2011-01-01

    Genetic causes for disturbances of locomotor behavior can be due to muscle, peripheral neuron, or central nervous system pathologies. The Drosophila melanogaster homolog of human CASK (also known as caki or camguk) is a molecular scaffold that has been postulated to have roles in both locomotion and plasticity. These conclusions are based on studies using overlapping deficiencies that largely eliminate the entire CASK locus, but contain additional chromosomal aberrations as well. More importantly, analysis of the sequenced Drosophila genome suggests the existence of multiple protein variants from the CASK locus, further complicating the interpretation of experiments using deficiency strains. In this study, we generated small deletions within the CASK gene that eliminate gene products containing the CaMK-like and L27 domains (CASK-β), but do not affect transcripts encoding the smaller forms (CASK-α), which are structurally homologous to vertebrate MPP1. These mutants have normal olfactory habituation, but exhibit a striking array of locomotor problems that includes both initiation and motor maintenance defects. Previous studies had suggested that presynaptic release defects at the neuromuscular junction in the multigene deficiency strain were the likely basis of its locomotor phenotype. The locomotor phenotype of the CASK-β mutant, however, cannot be rescued by expression of a CASK-β transgene in motor neurons. Expression in a subset of central neurons that does not include the ellipsoid body, a well-known pre-motor neuropil, provides complete rescue. Full-length CASK-β, while widely expressed in the nervous system, appears to have a unique role within central circuits that control motor output. PMID:21059886

  14. Molecular modeling of Mycobacterium tuberculosis dUTpase: docking and catalytic mechanism studies.

    PubMed

    Ramalho, Teodorico C; Caetano, Melissa S; Josa, Daniela; Luz, Gustavo P; Freitas, Elisangela A; da Cunha, Elaine F F

    2011-06-01

    Mycobacterium tuberculosis is a leading cause of infectious disease in the world today. This outlook is aggravated by a growing number of M. tuberculosis infections in individuals who are immunocompromised as a result of HIV infections. Thus, new and more potent anti-TB agents are necessary. Therefore, dUTpase was selected as a target enzyme to combat M. tuberculosis. In this work, molecular modeling methods involving docking and QM/MM calculations were carried out to investigate the binding orientation and predict binding affinities of some potential dUTpase inhibitors. Our results suggest that the best potential inhibitor investigated, among the compounds studied in this work, is the compound dUPNPP. Regarding the reaction mechanism, we concluded that the decisive stage for the reaction is the stage 1. Furthermore, it was also observed that the compounds with a -1 electrostatic charge presented lower activation energy in relation to the compounds with a -2 charge.

  15. Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity

    PubMed Central

    Ariza, Maria Eugenia; Glaser, Ronald; Williams, Marshall V.

    2014-01-01

    We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses. PMID:25309527

  16. Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity.

    PubMed

    Ariza, Maria Eugenia; Glaser, Ronald; Williams, Marshall V

    2014-01-01

    We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses.

  17. Chronic Physical Stress Does Not Interact with Epstein-Barr Virus (EBV)-Encoded Dutpase to Alter the Sickness Response

    PubMed Central

    Weil, Zachary M.; Abi Salloum, Bachir; Ariza, Maria Eugenia; Williams, Marshall; Reader, Brenda; Glaser, Ronald; Sheridan, John; Nelson, Randy J.

    2016-01-01

    Most adult humans have been infected with Epstein-Barr virus (EBV), which is thought to contribute to the development of chronic fatigue syndrome. Stress is known to influence the immune system and can exacerbate the sickness response. Although a role for psychological stress in the sickness response, particularly in combination with EBV-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) has been established, and the role of physical stressors in these interactions remains unspecified. In this study, we seek to determine the interaction of chronic physical (swim) stress and EBV-encoded dUTPase injection. We hypothesize that a chronic physical stressor will exacerbate the sickness response following EBV-encoded dUTPase injection. To test this hypothesis mice receive daily injections of EBV-encoded dUTPase or vehicle and are subjected to 15 min of swim stress each day for 14 days or left unmanipulated. On the final evening of injections mice undergo behavioral testing. EBV-encoded dUTPase injection alone produces some sickness behaviors. The physical swimming stress does not alter the sickness response. PMID:27175311

  18. Characterization of equine infectious anemia virus dUTPase: growth properties of a dUTPase-deficient mutant.

    PubMed Central

    Threadgill, D S; Steagall, W K; Flaherty, M T; Fuller, F J; Perry, S T; Rushlow, K E; Le Grice, S F; Payne, S L

    1993-01-01

    The putative dUTPase domain was deleted from the polymerase (pol) gene of equine infectious anemia virus (EIAV) to produce a recombinant delta DUpol Escherichia coli expression cassette and a delta DU proviral clone. Expression of the recombinant delta DUpol polyprotein yielded a properly processed and enzymatically active reverse transcriptase, as determined by immunoblot analysis and DNA polymerase activity gels. Transfection of delta DU provirus into feline (FEA) cells resulted in production of virus that replicated to wild-type levels in both FEA cells and fetal equine kidney cells. In contrast, the delta DU virus replicated poorly (less than 1% of wild-type levels) in primary equine macrophage cultures, as measured by reverse transcriptase assays. Preparations of delta DU virus contained negligible dUTPase activity, which confirms that virion-associated dUTPase is encoded in the pol gene region between the RNase H domain and integrase, as has been demonstrated previously for feline immunodeficiency virus (J. H. Elder, D. L. Lerner, C. S. Hasselkus-Light, D. J. Fontenot, E. Hunter, P. A. Luciw, R. C. Montelaro, and T. R. Phillips, J. Virol. 66:1791-1794, 1992). Our results suggest that virus-encoded dUTPase is dispensable for virus replication in dividing cells in vitro but may be required for efficient replication of EIAV in nondividing equine macrophages, the natural host cells for this virus. Images PMID:8386267

  19. Crystallization and preliminary crystallographic analysis of dUTPase from the ϕ11 helper phage of Staphylococcus aureus

    PubMed Central

    Leveles, Ibolya; Róna, Gergely; Zagyva, Imre; Bendes, Ábris; Harmat, Veronika; Vértessy, Beáta G.

    2011-01-01

    Staphylococcus aureus superantigen-carrying pathogenicity islands (SaPIs) play a determinant role in spreading virulence genes among bacterial populations that constitute a major health hazard. Repressor (Stl) proteins are responsible for the transcriptional regulation of pathogenicity island genes. Recently, a derepressing interaction between the repressor Stl SaPIbov1 and dUTPase from the ϕ11 helper phage has been suggested [Tormo-Más et al. (2010 ▶), Nature (London), 465, 779–782]. Towards elucidation of the molecular mechanism of this interaction, this study reports the expression, purification and X-ray analysis of ϕ11 dUTPase, which contains a phage-specific polypeptide segment that is not present in other dUTPases. Crystals were obtained using the hanging-drop vapour-diffusion method at room temperature. Data were collected to 2.98 Å resolution from one type of crystal. The crystal of ϕ11 dUTPase belonged to the cubic space group I23, with unit-cell parameters a = 98.16 Å, α = β = γ = 90.00°. PMID:22102244

  20. The structure of the genomic Bacillus subtilis dUTPase: novel features in the Phe-lid.

    PubMed

    García-Nafría, Javier; Burchell, Lynn; Takezawa, Mine; Rzechorzek, Neil J; Fogg, Mark J; Wilson, Keith S

    2010-09-01

    dUTPases are a ubiquitous family of enzymes that are essential for all organisms and catalyse the breakdown of 2-deoxyuridine triphosphate (dUTP). In Bacillus subtilis there are two homotrimeric dUTPases: a genomic and a prophage form. Here, the structures of the genomic dUTPase and of its complex with the substrate analogue dUpNHpp and calcium are described, both at 1.85 A resolution. The overall fold resembles that of previously solved trimeric dUTPases. The C-terminus, which contains one of the conserved sequence motifs, is disordered in both structures. The crystal of the complex contains six independent protomers which accommodate six dUpNHpp molecules, with three triphosphates in the trans conformation and the other three in the active gauche conformation. The structure of the complex confirms the role of several key residues that are involved in ligand binding and the position of the catalytic water. Asp82, which has previously been proposed to act as a general base, points away from the active site. In the complex Ser64 reorients in order to hydrogen bond the phosphate chain of the substrate. A novel feature has been identified: the position in the sequence of the ;Phe-lid', which packs against the uracil moiety, is adjacent to motif III, whereas in all other dUTPase structures the lid is in a conserved position in motif V of the flexible C-terminal arm. This requires a reconsideration of some aspects of the accepted mechanism.

  1. A human endogenous retrovirus K dUTPase triggers a TH1, TH17 cytokine response: does it have a role in psoriasis?

    PubMed

    Ariza, Maria-Eugenia; Williams, Marshall V

    2011-12-01

    Psoriasis is a chronic inflammatory immune disease of the skin characterized by a complex interplay between multiple risk genes and their interactions with environmental factors. Recent haplotype analyses have suggested that deoxyuridine triphosphate nucleotidohydrolase (dUTPase) encoded by a human endogenous retrovirus K (HERV-K) may be a candidate gene for the psoriasis susceptibility 1 locus. However, no functional studies have been conducted to determine the role of HERV-K dUTPase in psoriasis. For this purpose, we constructed an HERV-K dUTPase wild-type sequence, as well as specific mutations reflecting the genotype characteristic of high- and low-risk haplotypes, purified the recombinant proteins, and evaluated whether they could modulate innate and/or adaptive immune responses. In this study, we demonstrate that wild-type and mutant HERV-K dUTPase proteins induce the activation of NF-κB through Toll-like receptor 2, independent of enzymatic activity. Proteome array studies revealed that treatment of human primary cells with wild-type and mutant HERV-K dUTPase proteins triggered the secretion of T(H)1 and T(H)17 cytokines involved in the formation of psoriatic plaques, including IL-12p40, IL-23, IL-17, tumor necrosis factor-α, IL-8, and CCL20, in dendritic/Langerhans-like cells and to a lesser extent in keratinocytes. These data support HERV-K dUTPase as a potential contributor to psoriasis pathophysiology.

  2. Modified 5'-trityl nucleosides as inhibitors of Plasmodium falciparum dUTPase.

    PubMed

    Ruda, Gian Filippo; Nguyen, Corinne; Ziemkowski, Przemysław; Felczak, Krzysztof; Kasinathan, Ganasan; Musso-Buendia, Alexander; Sund, Christian; Zhou, Xiao Xiong; Kaiser, Marcel; Ruiz-Pérez, Luis M; Brun, Reto; Kulikowski, Tadeusz; Johansson, Nils Gunnar; González-Pacanowska, Dolores; Gilbert, Ian H

    2011-02-07

    2'-Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is a potential drug target for the treatment of malaria. We previously reported the discovery of 5'-tritylated analogues of deoxyuridine as selective inhibitors of this Plasmodium falciparum enzyme. Herein we report further structure-activity studies; in particular, variations of the 5'-trityl group, the introduction of various substituents at the 3'-position of deoxyuridine, and modifications of the base. Compounds were tested against both the enzyme and the parasite. Variations of the 5'-trityl group and of the 3'-substituent were well tolerated and yielded active compounds. However, there is a clear requirement for the uracil base for activity, because modifications of the uracil ring result in loss of enzyme inhibition and significant decreases in antiplasmodial action. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Epstein-Barr Virus Encoded dUTPase Containing Exosomes Modulate Innate and Adaptive Immune Responses in Human Dendritic Cells and Peripheral Blood Mononuclear Cells

    PubMed Central

    Ariza, Maria Eugenia; Rivailler, Pierre; Glaser, Ronald; Chen, Min; Williams, Marshall V.

    2013-01-01

    We have recently demonstrated that Epstein-Barr virus (EBV)-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) modulates innate immunity in human primary monocyte-derived macrophages through toll-like receptor (TLR) 2 leading to NF-κB activation and the production of pro-inflammatory cytokines. Our previous depletion studies indicated that dendritic cells (DCs) may also be a target of the EBV-encoded dUTPase. However, the role of EBV-encoded dUTPase in DC activation/function and its potential contribution to the inflammatory cellular milieu characteristic of EBV-associated diseases remains poorly understood. In the present study, we demonstrate that EBV-encoded dUTPase significantly altered the expression of genes involved in oncogenesis, inflammation and viral defense mechanisms in human primary DCs by microarray analysis. Proteome array studies revealed that EBV-encoded dUTPase modulates DC immune responses by inducing the secretion of pro-inflammatory TH1/TH17 cytokines. More importantly, we demonstrate that EBV-encoded dUTPase is secreted in exosomes from chemically induced Raji cells at sufficient levels to induce NF-κB activation and cytokine secretion in primary DCs and peripheral blood mononuclear cells (PBMCs). Interestingly, the production of pro-inflammatory cytokines in DCs and PBMCs was TLR2-dependent. Together these findings suggest that the EBV-encoded dUTPase may act as an intercellular signaling molecule capable of modulating the cellular microenvironment and thus, it may be important in the pathophysiology of EBV related diseases. PMID:23894549

  4. Epstein-Barr virus encoded dUTPase containing exosomes modulate innate and adaptive immune responses in human dendritic cells and peripheral blood mononuclear cells.

    PubMed

    Ariza, Maria Eugenia; Rivailler, Pierre; Glaser, Ronald; Chen, Min; Williams, Marshall V

    2013-01-01

    We have recently demonstrated that Epstein-Barr virus (EBV)-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) modulates innate immunity in human primary monocyte-derived macrophages through toll-like receptor (TLR) 2 leading to NF-κB activation and the production of pro-inflammatory cytokines. Our previous depletion studies indicated that dendritic cells (DCs) may also be a target of the EBV-encoded dUTPase. However, the role of EBV-encoded dUTPase in DC activation/function and its potential contribution to the inflammatory cellular milieu characteristic of EBV-associated diseases remains poorly understood. In the present study, we demonstrate that EBV-encoded dUTPase significantly altered the expression of genes involved in oncogenesis, inflammation and viral defense mechanisms in human primary DCs by microarray analysis. Proteome array studies revealed that EBV-encoded dUTPase modulates DC immune responses by inducing the secretion of pro-inflammatory TH1/TH17 cytokines. More importantly, we demonstrate that EBV-encoded dUTPase is secreted in exosomes from chemically induced Raji cells at sufficient levels to induce NF-κB activation and cytokine secretion in primary DCs and peripheral blood mononuclear cells (PBMCs). Interestingly, the production of pro-inflammatory cytokines in DCs and PBMCs was TLR2-dependent. Together these findings suggest that the EBV-encoded dUTPase may act as an intercellular signaling molecule capable of modulating the cellular microenvironment and thus, it may be important in the pathophysiology of EBV related diseases.

  5. A Hidden Active Site in the Potential Drug Target Mycobacterium tuberculosis dUTPase Is Accessible through Small Amplitude Protein Conformational Changes.

    PubMed

    Lopata, Anna; Leveles, Ibolya; Bendes, Ábris Ádám; Viskolcz, Béla; Vértessy, Beáta G; Jójárt, Balázs; Tóth, Judit

    2016-12-16

    dUTPases catalyze the hydrolysis of dUTP into dUMP and pyrophosphate to maintain the proper nucleotide pool for DNA metabolism. Recent evidence suggests that dUTPases may also represent a selective drug target in mycobacteria because of the crucial role of these enzymes in maintaining DNA integrity. Nucleotide-hydrolyzing enzymes typically harbor a buried ligand-binding pocket at interdomain or intersubunit clefts, facilitating proper solvent shielding for the catalyzed reaction. The mechanism by which substrate binds this hidden pocket and product is released in dUTPases is unresolved because of conflicting crystallographic and spectroscopic data. We sought to resolve this conflict by using a combination of random acceleration molecular dynamics (RAMD) methodology and structural and biochemical methods to study the dUTPase from Mycobacterium tuberculosis In particular, the RAMD approach used in this study provided invaluable insights into the nucleotide dissociation process that reconciles all previous experimental observations. Specifically, our data suggest that nucleotide binding takes place as a small stretch of amino acids transiently slides away and partially uncovers the active site. The in silico data further revealed a new dUTPase conformation on the pathway to a relatively open active site. To probe this model, we developed the Trp(21) reporter and collected crystallographic, spectroscopic, and kinetic data that confirmed the interaction of Trp(21) with the active site shielding C-terminal arm, suggesting that the RAMD method is effective. In summary, our computational simulations and spectroscopic results support the idea that small loop movements in dUTPase allow the shuttlingof the nucleotides between the binding pocket and the solvent. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization.

    PubMed

    Donderis, Jorge; Bowring, Janine; Maiques, Elisa; Ciges-Tomas, J Rafael; Alite, Christian; Mehmedov, Iltyar; Tormo-Mas, María Angeles; Penadés, José R; Marina, Alberto

    2017-09-01

    The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules.

  7. Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization

    PubMed Central

    Ciges-Tomas, J. Rafael; Mehmedov, Iltyar; Tormo-Mas, María Angeles; Penadés, José R.

    2017-01-01

    The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules. PMID:28892519

  8. Herpesviruses dUTPases: A New Family of Pathogen-Associated Molecular Pattern (PAMP) Proteins with Implications for Human Disease

    PubMed Central

    Williams, Marshall V.; Cox, Brandon; Ariza, Maria Eugenia

    2016-01-01

    The human herpesviruses are ubiquitous viruses and have a prevalence of over 90% in the adult population. Following a primary infection they establish latency and can be reactivated over a person’s lifetime. While it is well accepted that human herpesviruses are implicated in numerous diseases ranging from dermatological and autoimmune disease to cancer, the role of lytic proteins in the pathophysiology of herpesvirus-associated diseases remains largely understudies. Only recently have we begun to appreciate the importance of lytic proteins produced during reactivation of the virus, in particular the deoxyuridine triphosphate nucleotidohydrolases (dUTPase), as key modulators of the host innate and adaptive immune responses. In this review, we provide evidence from animal and human studies of the Epstein–Barr virus as a prototype, supporting the notion that herpesviruses dUTPases are a family of proteins with unique immunoregulatory functions that can alter the inflammatory microenvironment and thus exacerbate the immune pathology of herpesvirus-related diseases including myalgic encephalomyelitis/chronic fatigue syndrome, autoimmune diseases, and cancer. PMID:28036046

  9. Herpesviruses dUTPases: A New Family of Pathogen-Associated Molecular Pattern (PAMP) Proteins with Implications for Human Disease.

    PubMed

    Williams, Marshall V; Cox, Brandon; Ariza, Maria Eugenia

    2016-12-28

    The human herpesviruses are ubiquitous viruses and have a prevalence of over 90% in the adult population. Following a primary infection they establish latency and can be reactivated over a person's lifetime. While it is well accepted that human herpesviruses are implicated in numerous diseases ranging from dermatological and autoimmune disease to cancer, the role of lytic proteins in the pathophysiology of herpesvirus-associated diseases remains largely understudies. Only recently have we begun to appreciate the importance of lytic proteins produced during reactivation of the virus, in particular the deoxyuridine triphosphate nucleotidohydrolases (dUTPase), as key modulators of the host innate and adaptive immune responses. In this review, we provide evidence from animal and human studies of the Epstein-Barr virus as a prototype, supporting the notion that herpesviruses dUTPases are a family of proteins with unique immunoregulatory functions that can alter the inflammatory microenvironment and thus exacerbate the immune pathology of herpesvirus-related diseases including myalgic encephalomyelitis/chronic fatigue syndrome, autoimmune diseases, and cancer.

  10. Direct contacts between conserved motifs of different subunits provide major contribution to active site organization in human and mycobacterial dUTPases

    PubMed Central

    Takács, Enikő; Nagy, Gergely; Leveles, Ibolya; Harmat, Veronika; Lopata, Anna; Tóth, Judit; Vértessy, Beáta G.

    2010-01-01

    dUTPases are essential for genome integrity. Recent results allowed characterization of the role of conserved residues. Here we analyzed the Asp/Asn mutation within conserved Motif I of human and mycobacterial dUTPases, wherein the Asp residue was previously implicated in Mg2+-coordination. Our results on transient/steady-state kinetics, ligand-binding and a 1.80 Å-resolution structure of the mutant mycobacterial enzyme, in comparison with wild type and C-terminally truncated structures, argue that this residue has a major role in providing intra- and intersubunit contacts, but is not essential for Mg2+ accommodation. We conclude that in addition to the role of conserved motifs in substrate accommodation, direct subunit interaction between protein atoms of active site residues from different conserved motifs are crucial for enzyme function. PMID:20493855

  11. The Type 2 dUTPase of Bacteriophage ϕNM1 Initiates Mobilization of Staphylococcus aureus Bovine Pathogenicity Island 1.

    PubMed

    Hill, Rosanne L L; Dokland, Terje

    2016-01-16

    Staphylococcus aureus pathogenicity islands (SaPIs) are genetic elements that are mobilized by specific helper phages. The initial step in mobilization is the derepression of the SaPI by the interaction of a phage protein with the SaPI master repressor Stl. Stl proteins are highly divergent between different SaPIs and respond to different phage-encoded derepressors. One such SaPI, SaPIbov1, is derepressed by the dUTPase (Dut) of bacteriophage 80α (Dut80α) and its phage ϕ11 homolog, Dut11. We previously showed that SaPIbov1 could also be mobilized by phage ϕNM1, even though its dut gene is not homologous with that of 80α. Here, we show that ϕNM1 dut encodes a type 2 dUTPase (DutNM1), which has an α-helical structure that is distinct from the type 1 trimeric, β-sheet structure of Dut80α. Deletion of dutNM1 abolishes the ability of ϕNM1 to mobilize SaPIbov1. Like Dut80α, DutNM1 forms a direct interaction with SaPIbov1 Stl both in vivo and in vitro, leading to inhibition of the dUTPase activity and Stl release from its target DNA. This work provides novel insights into the diverse mechanisms of genetic mobilization in S. aureus.

  12. The function of Drosophila p53 isoforms in apoptosis

    PubMed Central

    Zhang, B; Rotelli, M; Dixon, M; Calvi, B R

    2015-01-01

    The p53 protein is a major mediator of the cellular response to genotoxic stress and is a crucial suppressor of tumor formation. In a variety of organisms, p53 and its paralogs, p63 and p73, each encode multiple protein isoforms through alternative splicing, promoters, and translation start sites. The function of these isoforms in development and disease are still being defined. Here, we evaluate the apoptotic potential of multiple isoforms of the single p53 gene in the genetic model Drosophila melanogaster. Most previous studies have focused on the p53A isoform, but it has been recently shown that a larger p53B isoform can induce apoptosis when overexpressed. It has remained unclear, however, whether one or both isoforms are required for the apoptotic response to genotoxic stress. We show that p53B is a much more potent inducer of apoptosis than p53A when overexpressed. Overexpression of two newly identified short isoforms perturbed development and inhibited the apoptotic response to ionizing radiation. Analysis of physiological protein expression indicated that p53A is the most abundant isoform, and that both p53A and p53B can form a complex and co-localize to sub-nuclear compartments. In contrast to the overexpression results, new isoform-specific loss-of-function mutants indicated that it is the shorter p53A isoform, not full-length p53B, that is the primary mediator of pro-apoptotic gene transcription and apoptosis after ionizing radiation. Together, our data show that it is the shorter p53A isoform that mediates the apoptotic response to DNA damage, and further suggest that p53B and shorter isoforms have specialized functions. PMID:25882045

  13. The developmental transcriptome of Drosophila melanogaster

    SciTech Connect

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes

  14. Identification and characterization of Drosophila melanogaster paramyosin.

    PubMed

    Vinós, J; Domingo, A; Marco, R; Cervera, M

    1991-08-05

    Paramyosin, a major structural component of thick filaments in invertebrates has been isolated, purified and characterized from whole adult Drosophila melanogaster extracts and a specific polyclonal antibody against it has been prepared. Paramyosin has been identified on the basis of several criteria, including molecular weight, alpha-helicity, species distribution, capability of fiber formation in vitro and sequence. We have used the immunopurified polyclonal antibody to isolate eight clones from a lambda gt11 expression library of Drosophila 1 to 22 h embryo cDNA. The largest clone (pJV9) has been sequenced and encodes the coiled-coil region of D. melanogaster paramyosin that is 47% identical to Caenorhabditis elegans paramyosin. Indirect immunofluorescence in semi-thin sections of adult flies show fluorescence mainly in tubular muscle. Freshly prepared tubular myofibrils decorated with the immunoabsorbed antibody show the A region in the sarcomere as the specific localization of paramyosin. The amount of paramyosin in tubular synchronous muscles of insects appears to be five times higher than in fibrillar insect muscles. There are at least three paramyosin isoforms as shown by isoelectrofocusing separation. The more acidic and less abundant form is phosphorylated as shown by 32P in vivo labeling experiments in adult flies. The developmental pattern of expression of Drosophila paramyosin is presented. This mesoderm-specific protein, immunologically undetectable during gastrulation and early phases of germ band formation, progressively increases during organogenesis to the adult stage. Interestingly, it is also expressed as a major maternal product in the insoluble cytoskeletal fraction of the mature oocyte.

  15. Specific calcineurin isoforms are involved in Drosophila toll immune signaling.

    PubMed

    Li, Yi-Xian; Dijkers, Pascale F

    2015-01-01

    Because excessive or inadequate responses can be detrimental, immune responses to infection require appropriate regulation. Networks of signaling pathways establish versatility of immune responses. Drosophila melanogaster is a powerful model organism for dissecting conserved innate immune responses to infection. For example, the Toll pathway, which promotes activation of NF-κB transcription factors Dorsal/Dorsal-related immune factor (Dif), was first identified in Drosophila. Together with the IMD pathway, acting upstream of NF-κB transcription factor Relish, these pathways constitute a central immune signaling network. Inputs in these pathways contribute to specific and appropriate responses to microbial insults. Relish activity during infection is modulated by Ca(2+)-dependent serine/threonine phosphatase calcineurin, an important target of immunosuppressants in transplantation biology. Only one of the three Drosophila calcineurin isoforms, calcineurin A1, acts on Relish during infection. However, it is not known whether there is a role for calcineurin in Dorsal/Dif immune signaling. In this article, we demonstrate involvement of specific calcineurin isoforms, protein phosphatase at 14D (Pp2B-14D)/calcineurin A at 14F (CanA-14F), in Toll-mediated immune signaling. These isoforms do not affect IMD signaling. In cell culture, pharmacological inhibition of calcineurin or RNA interference against homologous calcineurin isoforms Pp2B-14D/CanA-14F, but not against isoform calcineurin A1, decreased Toll-dependent Dorsal/Dif activity. A Pp2B-14D gain-of-function transgene promoted Dorsal nuclear translocation and Dorsal/Dif activity. In vivo, Pp2B-14D/CanA-14F RNA interference attenuated the Dorsal/Dif-dependent response to infection without affecting the Relish-dependent response. Altogether, these data identify a novel input, calcineurin, in Toll immune signaling and demonstrate involvement of specific calcineurin isoforms in Drosophila NF-κB signaling. Copyright

  16. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

    PubMed

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I; Wilmanns, Matthias; Vértessy, Beáta G

    2013-12-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure.

  17. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling

    PubMed Central

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I.; Wilmanns, Matthias; Vértessy, Beáta G.

    2013-01-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason–Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy (31P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme–product complex structure. PMID:23982515

  18. DNA signals at isoform promoters

    PubMed Central

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  19. Long Oskar Controls Mitochondrial Inheritance in Drosophila melanogaster.

    PubMed

    Hurd, Thomas Ryan; Herrmann, Beate; Sauerwald, Julia; Sanny, Justina; Grosch, Markus; Lehmann, Ruth

    2016-12-05

    Inherited mtDNA mutations cause severe human disease. In most species, mitochondria are inherited maternally through mechanisms that are poorly understood. Genes that specifically control the inheritance of mitochondria in the germline are unknown. Here, we show that the long isoform of the protein Oskar regulates the maternal inheritance of mitochondria in Drosophila melanogaster. We show that, during oogenesis, mitochondria accumulate at the oocyte posterior, concurrent with the bulk streaming and churning of the oocyte cytoplasm. Long Oskar traps and maintains mitochondria at the posterior at the site of primordial germ cell (PGC) formation through an actin-dependent mechanism. Mutating long oskar strongly reduces the number of mtDNA molecules inherited by PGCs. Therefore, Long Oskar ensures germline transmission of mitochondria to the next generation. These results provide molecular insight into how mitochondria are passed from mother to offspring, as well as how they are positioned and asymmetrically partitioned within polarized cells.

  20. Another look at the mechanism involving trimeric dUTPases in Staphylococcus aureus pathogenicity island induction involves novel players in the party

    PubMed Central

    Maiques, Elisa; Quiles-Puchalt, Nuria; Donderis, Jorge; Ciges-Tomas, J. Rafael; Alite, Christian; Bowring, Janine Z.; Humphrey, Suzanne; Penadés, José R.

    2016-01-01

    Abstract We have recently proposed that the trimeric staphylococcal phage encoded dUTPases (Duts) are signaling molecules that act analogously to eukaryotic G-proteins, using dUTP as a second messenger. To perform this regulatory role, the Duts require their characteristic extra motif VI, present in all the staphylococcal phage coded trimeric Duts, as well as the strongly conserved Dut motif V. Recently, however, an alternative model involving Duts in the transfer of the staphylococcal islands (SaPIs) has been suggested, questioning the implication of motifs V and VI. Here, using state-of the-art techniques, we have revisited the proposed models. Our results confirm that the mechanism by which the Duts derepress the SaPI cycle depends on dUTP and involves both motifs V and VI, as we have previously proposed. Surprisingly, the conserved Dut motif IV is also implicated in SaPI derepression. However, and in agreement with the proposed alternative model, the dUTP inhibits rather than inducing the process, as we had initially proposed. In summary, our results clarify, validate and establish the mechanism by which the Duts perform regulatory functions. PMID:27112567

  1. Dissecting the link between the enzymatic activity and the SaPI inducing capacity of the phage 80α dUTPase.

    PubMed

    Alite, Christian; Humphrey, Suzanne; Donderis, Jordi; Maiques, Elisa; Ciges-Tomas, J Rafael; Penadés, José R; Marina, Alberto

    2017-09-11

    The trimeric staphylococcal phage-encoded dUTPases (Duts) are signalling molecules that induce the cycle of some Staphylococcal pathogenicity islands (SaPIs) by binding to the SaPI-encoded Stl repressor. To perform this regulatory role, these Duts require an extra motif VI, as well as the Dut conserved motifs IV and V. While the apo form of Dut is required for the interaction with the Stl repressor, usually only those Duts with normal enzymatic activity can induce the SaPI cycle. To understand the link between the enzymatic activities and inducing capacities of the Dut protein, we analysed the structural, biochemical and physiological characteristics of the Dut80α D95E mutant, which loses the SaPI cycle induction capacity despite retaining enzymatic activity. Asp95 is located at the threefold central channel of the trimeric Dut where it chelates a divalent ion. Here, using state-of-the-art techniques, we demonstrate that D95E mutation has an epistatic effect on the motifs involved in Stl binding. Thus, ion binding in the central channel correlates with the capacity of motif V to twist and order in the SaPI-inducing disposition, while the tip of motif VI is disturbed. These alterations in turn reduce the affinity for the Stl repressor and the capacity to induce the SaPI cycle.

  2. Another look at the mechanism involving trimeric dUTPases in Staphylococcus aureus pathogenicity island induction involves novel players in the party.

    PubMed

    Maiques, Elisa; Quiles-Puchalt, Nuria; Donderis, Jorge; Ciges-Tomas, J Rafael; Alite, Christian; Bowring, Janine Z; Humphrey, Suzanne; Penadés, José R; Marina, Alberto

    2016-06-20

    We have recently proposed that the trimeric staphylococcal phage encoded dUTPases (Duts) are signaling molecules that act analogously to eukaryotic G-proteins, using dUTP as a second messenger. To perform this regulatory role, the Duts require their characteristic extra motif VI, present in all the staphylococcal phage coded trimeric Duts, as well as the strongly conserved Dut motif V. Recently, however, an alternative model involving Duts in the transfer of the staphylococcal islands (SaPIs) has been suggested, questioning the implication of motifs V and VI. Here, using state-of the-art techniques, we have revisited the proposed models. Our results confirm that the mechanism by which the Duts derepress the SaPI cycle depends on dUTP and involves both motifs V and VI, as we have previously proposed. Surprisingly, the conserved Dut motif IV is also implicated in SaPI derepression. However, and in agreement with the proposed alternative model, the dUTP inhibits rather than inducing the process, as we had initially proposed. In summary, our results clarify, validate and establish the mechanism by which the Duts perform regulatory functions.

  3. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms.

    PubMed

    Talbot, W S; Swyryd, E A; Hogness, D S

    1993-07-02

    In D. melanogaster a pulse of the steroid hormone ecdysone triggers the larval-to-adult metamorphosis, a complex process in which this hormone induces imaginal tissues to generate adult structures and larval tissues to degenerate. We show that the EcR gene encodes three ecdysone receptor isoforms (EcR-A, EcR-B1, and EcR-B2) that have common DNA- and hormone-binding domains but different N-terminal regions. We have used isoform-specific monoclonal antibodies to show that at the onset of metamorphosis different ecdysone target tissues express different isoform combinations in a manner consistent with the proposition that the different metamorphic responses of these tissues require different combinations of the EcR isoforms. We have also determined temporal developmental profiles of the EcR isoforms and their mRNAs in whole animals, showing that different isoforms predominate at different developmental stages that are marked by a pulse of ecdysone.

  4. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  5. ICAM-1: isoforms and phenotypes.

    PubMed

    Ramos, Theresa N; Bullard, Daniel C; Barnum, Scott R

    2014-05-15

    ICAM-1 plays an important role in leukocyte trafficking, immunological synapse formation, and numerous cellular immune responses. Although considered a single glycoprotein, there are multiple membrane-bound and soluble ICAM-1 isoforms that arise from alternative splicing and proteolytic cleavage during inflammatory responses. The function and expression of these isoforms on various cell types are poorly understood. In the generation of ICAM-1-deficient mice, two isoform-deficient ICAM-1 mutants were inadvertently produced as a result of alternative splicing. These mice, along with true ICAM-1-deficient mice and newly generated ICAM-1-transgenic mice, have provided the opportunity to begin examining the role of ICAM-1 isoforms (singly or in combination) in various disease settings. In this review, we highlight the sharply contrasting disease phenotypes using ICAM-1 isoform mutant mice. These studies demonstrate that ICAM-1 immunobiology is highly complex but that individual isoforms, aside from the full-length molecule, make significant contributions to disease development and pathogenesis.

  6. ICAM-1: Isoforms and Phenotypes

    PubMed Central

    Ramos, Theresa N.; Bullard, Daniel C.; Barnum, Scott R.

    2014-01-01

    Intercellular adhesion molecule-1 (ICAM-1) plays an important role in leukocyte trafficking, immunological synapse formation and, numerous cellular immune responses. Although considered a single glycoprotein, there are multiple membrane bound and soluble ICAM-1 isoforms which arise from alternative splicing and proteolytic cleavage during inflammatory responses. The function and expression of these isoforms on various cell types is poorly understood. In the generation of ICAM-1-deficient mice, two isoform-deficient ICAM-1 mutants were inadvertently produced due to alternative splicing. These mice along with true ICAM-1-deficient mice and newly generated ICAM-1 transgenic mice have provided the opportunity to begin examining the role of ICAM-1 isoforms (singly or in combination) in various disease settings. In this review we highlight the sharply contrasting disease phenotypes using ICAM-1 isoform mutant mice. These studies demonstrate that ICAM-1 immunobiology is highly complex but that individual isoforms, aside from the full-length molecule, make significant contributions to disease development and pathogenesis. PMID:24795464

  7. Functional redundancy and nonredundancy between two Troponin C isoforms in Drosophila adult muscles.

    PubMed

    Chechenova, Maria B; Maes, Sara; Oas, Sandy T; Nelson, Cloyce; Kiani, Kaveh G; Bryantsev, Anton L; Cripps, Richard M

    2017-03-15

    We investigated the functional overlap of two muscle Troponin C (TpnC) genes that are expressed in the adult fruit fly, Drosophila melanogaster: TpnC4 is predominantly expressed in the indirect flight muscles (IFMs), whereas TpnC41C is the main isoform in the tergal depressor of the trochanter muscle (TDT; jump muscle). Using CRISPR/Cas9, we created a transgenic line with a homozygous deletion of TpnC41C and compared its phenotype to a line lacking functional TpnC4 We found that the removal of either of these genes leads to expression of the other isoform in both muscle types. The switching between isoforms occurs at the transcriptional level and involves minimal enhancers located upstream of the transcription start points of each gene. Functionally, the two TpnC isoforms were not equal. Although ectopic TpnC4 in TDT muscles was able to maintain jumping ability, TpnC41C in IFMs could not effectively support flying. Simultaneous functional disruption of both TpnC genes resulted in jump-defective and flightless phenotypes of the survivors, as well as abnormal sarcomere organization. These results indicated that TpnC is required for myofibril assembly, and that there is functional specialization among TpnC isoforms in Drosophila.

  8. IIIDB: a database for isoform-isoform interactions and isoform network modules

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are key to understanding diverse cellular processes and disease mechanisms. However, current PPI databases only provide low-resolution knowledge of PPIs, in the sense that "proteins" of currently known PPIs generally refer to "genes." It is known that alternative splicing often impacts PPI by either directly affecting protein interacting domains, or by indirectly impacting other domains, which, in turn, impacts the PPI binding. Thus, proteins translated from different isoforms of the same gene can have different interaction partners. Results Due to the limitations of current experimental capacities, little data is available for PPIs at the resolution of isoforms, although such high-resolution data is crucial to map pathways and to understand protein functions. In fact, alternative splicing can often change the internal structure of a pathway by rearranging specific PPIs. To fill the gap, we systematically predicted genome-wide isoform-isoform interactions (IIIs) using RNA-seq datasets, domain-domain interaction and PPIs. Furthermore, we constructed an III database (IIIDB) that is a resource for studying PPIs at isoform resolution. To discover functional modules in the III network, we performed III network clustering, and then obtained 1025 isoform modules. To evaluate the module functionality, we performed the GO/pathway enrichment analysis for each isoform module. Conclusions The IIIDB provides predictions of human protein-protein interactions at the high resolution of transcript isoforms that can facilitate detailed understanding of protein functions and biological pathways. The web interface allows users to search for IIIs or III network modules. The IIIDB is freely available at http://syslab.nchu.edu.tw/IIIDB. PMID:25707505

  9. Leigh Syndrome in Drosophila melanogaster

    PubMed Central

    Da-Rè, Caterina; von Stockum, Sophia; Biscontin, Alberto; Millino, Caterina; Cisotto, Paola; Zordan, Mauro A.; Zeviani, Massimo; Bernardi, Paolo; De Pittà, Cristiano; Costa, Rodolfo

    2014-01-01

    Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LSSurf1 patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS based on the post-transcriptional silencing of CG9943, the Drosophila homolog of SURF1. Knockdown of Surf1 was induced ubiquitously in larvae and adults, which led to lethality; in the mesodermal derivatives, which led to pupal lethality; or in the central nervous system, which allowed survival. A biochemical characterization was carried out in knockdown individuals, which revealed that larvae unexpectedly displayed defects in all complexes of the mitochondrial respiratory chain and in the F-ATP synthase, while adults had a COX-selective impairment. Silencing of Surf1 expression in Drosophila S2R+ cells led to selective loss of COX activity associated with decreased oxygen consumption and respiratory reserve. We conclude that Surf1 is essential for COX activity and mitochondrial function in D. melanogaster, thus providing a new tool that may help clarify the pathogenic mechanisms of LS. PMID:25164807

  10. Histamine H3-receptor isoforms.

    PubMed

    Bakker, R A

    2004-10-01

    Increasing evidence supports a role for HA as a neurotransmitter and neuromodulator in various brain functions, including emotion, cognition, and feeding. The recent cloning of the histamine H3 receptor allowed for the subsequent cloning of a variety of H3 receptor isoforms from different species as well as the H4 receptor. As a result a wide variety of H3-receptor isoforms are now known that display differential brain expression patterns and signalling properties. These recent discoveries are discussed in view of the growing interest of the H3 receptor as a target for the development of potential therapeutics.

  11. Ecdysteroid receptors in Drosophila melanogaster adult females

    USDA-ARS?s Scientific Manuscript database

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  12. Drosophila melanogaster model for Mycobacterium abscessus infection.

    PubMed

    Oh, Chun-Taek; Moon, Cheol; Jeong, Myeong Seon; Kwon, Seung-Hae; Jang, Jichan

    2013-11-01

    Mycobacterium abscessus is a human pathogen that is responsible for a broad spectrum of tissue infections and disseminated infections in immunodeficient patients. This pathogen is one of the most resistant organisms to chemotherapeutic agents. Therefore, we tested the hypothesis that the fruit fly, Drosophila melanogaster, is a genetically tractable model host for M. abscessus. In this context, we infected D. melanogaster with M. abscessus. This M. abscessus infection results in dissemination in the fly body, followed by death, which is accompanied by severe indirect flight muscle and brain damage. Our data show that M. abscessus can grow and replicate in D. melanogaster w(1118) and that it elicited a humoral immune response, especially of the Toll antimicrobial peptide pathway. To the best of our knowledge, this is the first report that mycobacteria induce the production of antimicrobial peptides in D. melanogaster.

  13. The Drosophila melanogaster host model

    PubMed Central

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  14. Short and long-term memory are modulated by multiple isoforms of the fragile X mental retardation protein

    PubMed Central

    Banerjee, Paromita; Schoenfeld, Brian P.; Bell, Aaron J.; Choi, Catherine H.; Bradley, Michael P.; Hinchey, Paul; Kollaros, Maria; Park, Jae H.; McBride, Sean M.J.; Dockendorff, Thomas C.

    2010-01-01

    The diversity of protein isoforms arising from alternative splicing is thought to modulate fine-tuning of synaptic plasticity. Fragile X mental retardation protein (FMRP), a neuronal RNA binding protein, exists in isoforms as a result of alternative splicing, but the contribution of these isoforms to neural plasticity are not well understood. We show that two isoforms of D. melanogaster FMRP (dFMR1) have differential roles in mediating neural development and behavior functions conferred by the dfmr1 gene. These isoforms differ in the presence of a protein interaction module that is related to prion domains and is functionally conserved between FMRPs. Expression of both isoforms is necessary for optimal performance in tests of short and long-term memory of courtship training. The presence or absence of the protein interaction domain may govern the types of ribonucleoprotein (RNP) complexes dFMR1 assembles into, with different RNPs regulating gene expression in a manner necessary for establishing distinct phases of memory formation. PMID:20463240

  15. Functional specificity of PMCA isoforms?

    PubMed

    Domi, Teuta; Di Leva, Francesca; Fedrizzi, Laura; Rimessi, Alessandro; Brini, Marisa

    2007-03-01

    In mammals, four different genes encode four PMCA isoforms. PMCA1 and PMCA4 are expressed ubiquitously. PMCA2 and PMCA3 are expressed prevalently in the central nervous systems. More than 30 variants are generated by mechanisms of alternative splicing. The physiological meaning of the existence of such elevated number of isoforms is not clear, but it would be plausible to relate it to the cell-specific demands of Ca2+ homeostasis. To characterize functional specificity of PMCA variants we have investigated two aspects: the effects of the overexpression of the different PMCA variants on cellular Ca2+ handling and the existence of possible isoform-specific interactions with partner proteins using a yeast two-hybrid technique. The four basic PMCA isoforms were coexpressed in CHO cells together with the Ca2+-sensitive recombinant photoprotein aequorin. The effects of their overexpression on Ca2+ homeostasis were monitored in the living cells. They had revealed that the ubiquitous isoforms 1 and 4 are less effective in reducing the Ca2+ peaks generated by cell stimulation as compared to the neuron-specific isoforms 2 and 3. To establish whether these differences were related to different and new physiological regulators of the pump, the 90 N-terminal residues of PMCA2 and PMCA4 have been used as baits for the search of molecular partners. Screening of a human brain cDNA library with the PMCA4 bait specified the epsilon-isoform of protein 14-3-3, whereas no 14-3-3 epsilon clone was obtained with the PMCA2 bait. Overexpression of PMCA4/14-3-3 epsilon (but not of PMCA2/14-3-3 epsilon) in HeLa cells together with targeted aequorins showed that the ability of the cells to export Ca2+ was impaired. Thus, the interaction with 14-3-3 epsilon inhibited PMCA4 but not PMCA2. The role of PMCA2 has been further characterized by Ca2+ measurements in cells overexpressing different splicing variants. The results indicated that the combination of alternative splicing at two different

  16. Identification and Characterization of the Nuclear Isoform of Drosophila melanogaster CTP:Phosphocholine Cytidylyltransferase

    USDA-ARS?s Scientific Manuscript database

    CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the conversion of phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline for the eventual synthesis of phosphatidylcholine (PC). The enzyme is regulated by reversible association with cellular membranes, with the rate of catalysis in...

  17. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  18. Iron absorption in Drosophila melanogaster.

    PubMed

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-05-17

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration.

  19. Drosophila melanogaster Models of Galactosemia.

    PubMed

    Daenzer, J M I; Fridovich-Keil, J L

    2017-01-01

    The galactosemias are a family of autosomal recessive genetic disorders resulting from impaired function of the Leloir pathway of galactose metabolism. Type I, or classic galactosemia, results from profound deficiency of galactose-1-phosphate uridylyltransferase, the second enzyme in the Leloir pathway. Type II galactosemia results from profound deficiency of galactokinase, the first enzyme in the Leloir pathway. Type III galactosemia results from partial deficiency of UDP galactose 4'-epimerase, the third enzyme in the Leloir pathway. Although at least classic galactosemia has been recognized clinically for more than 100 years, and detectable by newborn screening for more than 50 years, all three galactosemias remain poorly understood. Early detection and dietary restriction of galactose prevent neonatal lethality, but many affected infants grow to experience a broad range of developmental and other disabilities. To date, there is no intervention known that prevents or reverses these long-term complications. Drosophila melanogaster provides a genetically and biochemically facile model for these conditions, enabling studies that address mechanism and open the door for novel approaches to intervention.

  20. Optogenetic pacing in Drosophila melanogaster

    PubMed Central

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  1. Inference of Isoforms from Short Sequence Reads

    NASA Astrophysics Data System (ADS)

    Feng, Jianxing; Li, Wei; Jiang, Tao

    Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms (or splicing variants) is a difficult problem. Traditional experimental methods for this purpose are time consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective method to address this problem. Although the advantages of RNA-Seq over traditional methods in transcriptome analysis have been confirmed by many studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa reads) has remained computationally challenging. In this work, we propose a method to calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) information. We first formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the isoforms are known and infer novel isoforms from scratch. Our experimental tests on known mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is able to calculate the expression levels of isoforms with an accuracy comparable to the state-of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both simulated and real reads show that it achieves a good precision and sensitivity in inferring isoforms when given accurate exon-intron boundary, TSS and PAS information, especially for isoforms whose expression levels are significantly high.

  2. Cytoplasmic myosin from Drosophila melanogaster

    PubMed Central

    1986-01-01

    Myosin is identified and purified from three different established Drosophila melanogaster cell lines (Schneider's lines 2 and 3 and Kc). Purification entails lysis in a low salt, sucrose buffer that contains ATP, chromatography on DEAE-cellulose, precipitation with actin in the absence of ATP, gel filtration in a discontinuous KI-KCl buffer system, and hydroxylapatite chromatography. Yield of pure cytoplasmic myosin is 5-10%. This protein is identified as myosin by its cross-reactivity with two monoclonal antibodies against human platelet myosin, the molecular weight of its heavy chain, its two light chains, its behavior on gel filtration, its ATP-dependent affinity for actin, its characteristic ATPase activity, its molecular morphology as demonstrated by platinum shadowing, and its ability to form bipolar filaments. The molecular weight of the cytoplasmic myosin's light chains and peptide mapping and immunochemical analysis of its heavy chains demonstrate that this myosin, purified from Drosophila cell lines, is distinct from Drosophila muscle myosin. Two-dimensional thin layer maps of complete proteolytic digests of iodinated muscle and cytoplasmic myosin heavy chains demonstrate that, while the two myosins have some tryptic and alpha-chymotryptic peptides in common, most peptides migrate with unique mobility. One-dimensional peptide maps of SDS PAGE purified myosin heavy chain confirm these structural data. Polyclonal antiserum raised and reacted against Drosophila myosin isolated from cell lines cross-reacts only weakly with Drosophila muscle myosin isolated from the thoraces of adult Drosophila. Polyclonal antiserum raised against Drosophila muscle myosin behaves in a reciprocal fashion. Taken together our data suggest that the myosin purified from Drosophila cell lines is a bona fide cytoplasmic myosin and is very likely the product of a different myosin gene than the muscle myosin heavy chain gene that has been previously identified and characterized. PMID

  3. A non-canonical start codon in the Drosophila fragile X gene yields two functional isoforms

    PubMed Central

    Beerman, Rebecca W.; Jongens, Thomas A.

    2011-01-01

    Fragile X syndrome is caused by the loss of expression of the fragile X mental retardation protein (FMRP). As a RNA binding protein, FMRP functions in translational regulation, localization, and stability of its neuronal target transcripts. The Drosophila homologue, dFMR1, is well conserved in sequence and function with respect to human FMRP. Although dFMR1 is known to express two main isoforms, the mechanism behind production of the second, more slowly migrating isoform has remained elusive. Furthermore, it remains unknown whether the two isoforms may also contribute differentially to dFMR1 function. We have found that this second dFMR1 isoform is generated through an alternative translational start site in the dfmr1 5’UTR. This 5'UTR coding sequence is well conserved in the melanogaster group. Translation of the predominant, smaller form of dFMR1 (dFMR1-SN) begins at a canonical start codon (ATG), whereas translation of the minor, larger form (dFMR1-LN) begins upstream at a non-canonical start codon (CTG). To assess the contribution of the N-terminal extension toward dFMR1 activity, we generated transgenic flies that exclusively express either dFMR1-SN or dFMR1-LN. Expression analyses throughout development revealed that dFMR1-SN is required for normal dFMR1-LN expression levels in adult brains. In situ expression analyses showed that either dFMR1-SN or dFMR1-LN is individually sufficient for proper dFMR1 localization in the nervous system. Functional studies demonstrated that both dFMR1-SN and dFMR1-LN can function independently to rescue dfmr1 null defects in synaptogenesis and axon guidance. Thus, dfmr1 encodes two functional isoforms with respect to expression and activity throughout neuronal development. PMID:21333716

  4. Drosophila melanogaster NEP2 is a new soluble member of the neprilysin family of endopeptidases with implications for reproduction and renal function

    PubMed Central

    2004-01-01

    The mammalian neprilysin (NEP) family members are typically type II membrane endopeptidases responsible for the activation/inactivation of neuropeptides and peptide hormones. Differences in substrate specificity and subcellular localization of the seven mammalian NEPs contribute to their functional diversity. The sequencing of the Drosophila melanogaster genome has revealed a large expansion of this gene family, resulting in over 20 fly NEP-like genes, suggesting even greater diversity in structure and function than seen in mammals. We now report that one of these genes (Nep2) codes for a secreted endopeptidase with a highly restricted pattern of expression. D. melanogaster NEP2 is expressed in the specialized stellate cells of the renal tubules and in the cyst cells that surround the elongating spermatid bundles in adult testis, suggesting roles for the peptidase in renal function and in spermatogenesis. D. melanogaster NEP2 was found in vesicle-like structures in the syncytial cytoplasm of the spermatid bundles, suggesting that the protein was acquired by endocytosis of protein secreted from the cyst cells. Expression of NEP2 cDNA in D. melanogaster S2 cells confirmed that the peptidase is secreted and is only weakly inhibited by thiorphan, a potent inhibitor of human NEP. D. melanogaster NEP2 also differs from human NEP in the manner in which the peptidase cleaves the tachykinin, GPSGFYGVR-amide. Molecular modelling suggests that there are important structural differences between D. melanogaster NEP2 and human NEP in the S1′ and S2′ ligand-binding subsites, which might explain the observed differences in inhibitor and substrate specificities. A soluble isoform of a mouse NEP-like peptidase is strongly expressed in spermatids, suggesting an evolutionarily conserved role for a soluble endopeptidase in spermatogenesis. PMID:15554877

  5. Phosphorylation of a Herpes Simplex Virus 1 dUTPase by a Viral Protein Kinase, Us3, Dictates Viral Pathogenicity in the Central Nervous System but Not at the Periphery

    PubMed Central

    Kato, Akihisa; Shindo, Keiko; Maruzuru, Yuhei

    2014-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) encodes Us3 protein kinase, which is critical for viral pathogenicity in both mouse peripheral sites (e.g., eyes and vaginas) and in the central nervous systems (CNS) of mice after intracranial and peripheral inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. We recently reported that Us3 phosphorylated HSV-1 dUTPase (vdUTPase) at serine 187 (Ser-187) in infected cells, and this phosphorylation promoted viral replication by regulating optimal enzymatic activity of vdUTPase. In the present study, we show that the replacement of vdUTPase Ser-187 by alanine (S187A) significantly reduced viral replication and virulence in the CNS of mice following intracranial inoculation and that the phosphomimetic substitution at vdUTPase Ser-187 in part restored the wild-type viral replication and virulence. Interestingly, the S187A mutation in vdUTPase had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. Similarly, the enzyme-dead mutation in vdUTPase significantly reduced viral replication and virulence in the CNS of mice after intracranial inoculation, whereas the mutation had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. These observations suggested that vdUTPase was one of the Us3 substrates responsible for Us3 pathogenicity in the CNS and that the CNS-specific virulence of HSV-1 involved strict regulation of vdUTPase activity by Us3 phosphorylation. IMPORTANCE Herpes simplex virus 1 (HSV-1) encodes a viral protein kinase Us3 which is critical for pathogenicity both in peripheral sites and in the central nervous systems (CNS) of mice following peripheral and intracranial inoculations, respectively. Whereas some Us3

  6. Neurotoxicology of bis(n)-tacrines on Blattella germanica and Drosophila melanogaster acetylcholinesterase.

    PubMed

    Mutunga, James M; Boina, Dhana Raj; Anderson, Troy D; Bloomquist, Jeffrey R; Carlier, Paul R; Wong, Dawn M; Lam, Polo C-H; Totrov, Maxim M

    2013-08-01

    A series of bis(n)-tacrines were used as pharmacological probes of the acetylcholinesterase (AChE) catalytic and peripheral sites of Blattella germanica and Drosophila melanogaster, which express AChE-1 and AChE-2 isoforms, respectively. In general, the potency of bis(n)-tacrines was greater in D. melanogaster AChE (DmAChE) than in B. germanica AChE (BgAChE). The change in potency with tether length was high in DmAChE and low in BgAChE, associated with 90-fold and 5.2-fold maximal potency gain, respectively, compared to the tacrine monomer. The optimal tether length for Blattella was 8 carbons and for Drosophila was 10 carbons. The two species differed by only about twofold in their sensitivity to tacrine monomer, indicating that differential potency occurred among dimeric bis(n)-tacrines due to structural differences in the peripheral site. Multiple sequence alignment and in silico homology modeling suggest that aromatic residues of DmAChE confer higher affinity binding, and the lack of same at the BgAChE peripheral site may account, at least in part, to the greater overall sensitivity of DmAChE to bis(n)-tacrines, as reflected by in vitro assay data. Topical and injection assays in cockroaches found minimal toxicity of bis(n)-tacrines. Electrophysiological studies on D. melanogaster central nervous system showed that dimeric tacrines do not readily cross the blood brain barrier, explaining the observed nonlethality to insects. Although the bis(n)-tacrines were not good insecticide candidates, the information obtained in this study should aid in the design of selective bivalent ligands targeting insect, pests, and disease vectors.

  7. Ca²⁺/calmodulin-dependent protein kinase II in the cockroach Periplaneta americana: identification of five isoforms and their tissues distribution.

    PubMed

    Taillebois, Emiliane; Heuland, Emilie; Bourdin, Céline M; Griveau, Audrey; Quinchard, Sophie; Tricoire-Leignel, Helene; Legros, Christian; Thany, Steeve H

    2013-07-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is a key kinase that transduces Ca²⁺ signals into downstream effects acting on a range of cellular processes in nervous system and muscular tissues. In insects, different CaMKII isoforms have been reported in Drosophila melanogaster, Apis florae, Bombus terrestris, and Bombus impatiens but little is known on the organization and tissue-specific expression of these isoforms with the exception of Drosophila. The present study reports the cloning of five CaMKII splice variants issued from a single gene and their tissue-specific expression in the cockroach Periplaneta americana. Each CaMKII isoform shared 82-90% identity with Drosophila CaMKII isoforms and accordingly were named PaCaMKII-A, PaCaMKII-B,PaCaMKII-C,PaCaMKII-D, and PaCaMKII-E. PaCaMKII-A and PaCaMKII-D isoforms are ubiquitously expressed in all tissues, but some such as PaCaMKII-B andPaCaMKII-C are preferentially expressed in the nerve cord and muscle. In addition, using single-cell reverse transcriptase-polymerase chain reaction (RT-PCR), we found a tissue-specific expression of PaCaMKII-E in the dorsal unpaired median neurons. Alternative splicing of PaCaMKII transcripts is likely a common mechanism in insects to control the pattern of isoform expression in the different tissues.

  8. Magnetic compass orientation by larval Drosophila melanogaster.

    PubMed

    Dommer, David H; Gazzolo, Patrick J; Painter, Michael S; Phillips, John B

    2008-04-01

    We report evidence for magnetic compass orientation by larval Drosophila melanogaster. Groups of larvae were exposed from the time of hatching to directional ultraviolet (365nm) light emanating from one of four magnetic directions. Larvae were then tested individually on a circular agar plate under diffuse light in one of four magnetic field alignments. The larvae exhibited magnetic compass orientation in a direction opposite that of the light source in training. Evidence for a well-developed magnetic compass in a larval insect that moves over distances of at most a few tens of centimeters has important implications for understanding the adaptive significance of orientation mechanisms like the magnetic compass. Moreover, the development of an assay for studying magnetic compass orientation in larval D. melanogaster will make it possible to use a wide range of molecular genetic techniques to investigate the neurophysiological, biophysical, and molecular mechanisms underlying the magnetic compass.

  9. The translation factors of Drosophila melanogaster

    PubMed Central

    Marygold, Steven J.; Attrill, Helen; Lasko, Paul

    2017-01-01

    ABSTRACT Synthesis of polypeptides from mRNA (translation) is a fundamental cellular process that is coordinated and catalyzed by a set of canonical ‘translation factors’. Surprisingly, the translation factors of Drosophila melanogaster have not yet been systematically identified, leading to inconsistencies in their nomenclature and shortcomings in functional (Gene Ontology, GO) annotations. Here, we describe the complete set of translation factors in D. melanogaster, applying nomenclature already in widespread use in other species, and revising their functional annotation. The collection comprises 43 initiation factors, 12 elongation factors, 3 release factors and 6 recycling factors, totaling 64 of which 55 are cytoplasmic and 9 are mitochondrial. We also provide an overview of notable findings and particular insights derived from Drosophila about these factors. This catalog, together with the incorporation of the improved nomenclature and GO annotation into FlyBase, will greatly facilitate access to information about the functional roles of these important proteins. PMID:27494710

  10. The translation factors of Drosophila melanogaster.

    PubMed

    Marygold, Steven J; Attrill, Helen; Lasko, Paul

    2017-01-02

    Synthesis of polypeptides from mRNA (translation) is a fundamental cellular process that is coordinated and catalyzed by a set of canonical 'translation factors'. Surprisingly, the translation factors of Drosophila melanogaster have not yet been systematically identified, leading to inconsistencies in their nomenclature and shortcomings in functional (Gene Ontology, GO) annotations. Here, we describe the complete set of translation factors in D. melanogaster, applying nomenclature already in widespread use in other species, and revising their functional annotation. The collection comprises 43 initiation factors, 12 elongation factors, 3 release factors and 6 recycling factors, totaling 64 of which 55 are cytoplasmic and 9 are mitochondrial. We also provide an overview of notable findings and particular insights derived from Drosophila about these factors. This catalog, together with the incorporation of the improved nomenclature and GO annotation into FlyBase, will greatly facilitate access to information about the functional roles of these important proteins.

  11. [Development of Drosophila melanogaster in space flight].

    PubMed

    Ogneva, I V; Larina, I M; Sarantseva, S V

    2014-01-01

    The review deals with the available literary data on different aspects of Drosophila melanogaster vital functions in the conditions of real and modeled microgravity. The developmental stages, embryogenesis and aging, specifically, and behavioral reactions are discussed. The presented results of morphological as well as molecular genetic analyses are indicative of structural changes in early Drosophila embryos and their compensation during subsequent development, and formation of an adaptive gene-expression pattern in microgravity.

  12. Creatine kinase isoforms in ischemic heart disease.

    PubMed

    Wu, A H

    1989-01-01

    The MM and MB isoenzymes of creatine kinase exist in serum as a collection of at least three major MM and two major MB isoforms. Each of these are derived from single tissue MM and MB isoforms, which are converted to these other forms by carboxypeptidase N after their release from necrotic skeletal and myocardial tissue. Measurement of the MM isoforms in ischemic heart disease is useful for early diagnosis of acute myocardial infarction and for the noninvasive determination of coronary artery reperfusion for infarction patients receiving thrombolytic therapy. Because MM is also released in acute skeletal-muscle disease, MB isoform measurements may have the highest clinical sensitivity. These determinations are important for providing objective information to cardiologists who need to make critical decisions concerning the management of these patients. I review the procedures for treating patients with myocardial infarction, the potential role of CK isoforms, and the methods currently available for isoform analysis, including high-resolution electrophoresis, isoelectric and chromatofocusing, and liquid chromatography. Rapid and highly sensitive methods are needed for implementation of CK-MM and MB isoforms for prospective emergency determinations for patients with acute myocardial infarction.

  13. Sample displacement chromatography of plasmid DNA isoforms.

    PubMed

    Černigoj, Urh; Martinuč, Urška; Cardoso, Sara; Sekirnik, Rok; Krajnc, Nika Lendero; Štrancar, Aleš

    2015-10-02

    Sample displacement chromatography (SDC) is a chromatographic technique that utilises different relative binding affinities of components in a sample mixture and has been widely studied in the context of peptide and protein purification. Here, we report a use of SDC to separate plasmid DNA (pDNA) isoforms under overloading conditions, where supercoiled (sc) isoform acts as a displacer of open circular (oc) or linear isoform. Since displacement is more efficient when mass transfer between stationary and mobile chromatographic phases is not limited by diffusion, we investigated convective interaction media (CIM) monoliths as stationary phases for pDNA isoform separation. CIM monoliths with different hydrophobicities and thus different binding affinities for pDNA (CIM C4 HLD, CIM-histamine and CIM-pyridine) were tested under hydrophobic interaction chromatography (HIC) conditions. SD efficiency for pDNA isoform separation was shown to be dependent on column selectivity for individual isoform, column efficiency and on ammonium sulfate (AS) concentration in loading buffer (binding strength). SD and negative mode elution often operate in parallel, therefore negative mode elution additionally influences the efficiency of the overall purification process. Optimisation of chromatographic conditions achieved 98% sc pDNA homogeneity and a dynamic binding capacity of over 1mg/mL at a relatively low concentration of AS. SDC was successfully implemented for the enrichment of sc pDNA for plasmid vectors of different sizes, and for separation of linear and and sc isoforms, independently of oc:sc isoform ratio, and flow-rate used. This study therefore identifies SDC as a promising new approach to large-scale pDNA purification, which is compatible with continuous, multicolumn chromatography systems, and could therefore be used to increase productivity of pDNA production in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. PKC Isoform Expression in Modeled Microgravity

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Sundaresan, Alamelu; Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Our previous studies showed that modeled (MMG) and true (USA Space Shuttle Missions STS-54 and STS-56) microgravity (MG) inhibit human lymphocyte locomotion, Modeled MG also suppressed polyclonal and antigen-specific lymphocyte activation. Activation of PKC by phorbol myristate acetate (PMA) restored the microgravity-inhibited lymphocyte locomotion as well as activation by phytohaemagglutinin (PHA), whereas calcium ionophore (ionomycin) was unable to restore these functions. Based on these results we hypothesized that MG-induced changes in lymphocyte functions are caused by a fundamental defect in signal transduction mechanism. This defect may be localized either at the PKC level or upstream of PKC, most likely, at the cell membrane level. In this study we examined the expression of PKC isoforms alpha, epsilon and delta in PBMC cultured in rotating wall vessel bioreactor, developed at NASA JSC, which models microgravity by sustaining cells in continuous free fall. The assessment of the isoforms was performed by FACS analysis following cell permeabilization. A decrease in the expression of isoforms epsilon and delta, but not isoform a, was observed in PBMC cultured in microgravity conditions. These data suggest that MMG might selectively affect the expression of Ca2+ independent isoforms of PKC Molecular analysis confirm selective suppression of Ca2+ independent isoforms of PKC.

  15. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    ERIC Educational Resources Information Center

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  16. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    ERIC Educational Resources Information Center

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  17. The Drosophila melanogaster Eip74EF-PA transcription factor directly binds the sciarid BhC4-1 promoter.

    PubMed

    Frank, Henrique Oliveira; Sanchez, Danilo Garcia; de Freitas Oliveira, Lucas; Kobarg, Jörg; Monesi, Nadia

    2017-10-03

    The DNA puff BhC4-1 gene of Bradysia hygida (Diptera, Sciaridae) is amplified and expressed in the salivary glands at the end of the last larval instar. Even though there are no BhC4-1 orthologs in Drosophila melanogaster, the mechanisms that regulate BhC4-1 gene expression in B. hygida are for the most part conserved in D. melanogaster. The BhC4-1 promoter contains a 129bp (-186/-58) cis-regulatory module (CRM) that drives developmentally regulated expression in transgenic salivary glands at the onset of metamorphosis. Both in the sciarid and in transgenic D. melanogaster, BhC4-1 gene expression is induced by the increase in ecdysone titers that triggers metamorphosis. Genetic interaction experiments revealed that in the absence of the Eip74EF-PA early gene isoform BhC4-1-lacZ levels of expression in the salivary gland are severely reduced. Here we show that the overexpression of the Eip74EF-PA transcription factor is sufficient to anticipate BhC4-1-lacZ expression in transgenic D. melanogaster. Through yeast one-hybrid assays we confirm that the Eip74EF-PA transcription factor directly binds to the 129 bp sciarid CRM. Together, these results contribute to the characterization of an insect CRM and indicate that the ecdysone gene regulatory network that promotes metamorphosis is conserved between D. melanogaster and the sciarid B. hygida. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  18. Identifying potential PARIS homologs in D. melanogaster.

    PubMed

    Merzetti, E M; Staveley, B E

    2016-11-03

    Mitochondrial destruction leads to the formation of reactive oxygen species, increases cellular stress, causes apoptotic cell death, and involves a cascade of proteins including PARKIN, PINK1, and Mitofusin2. Mitochondrial biogenesis pathways depend upon the activity of the protein PGC-1α. These two processes are coordinated by the activity of a transcriptional repressor, Parkin interacting substrate (PARIS). The PARIS protein is degraded through the activity of the PARKIN protein, which in turn eliminates the transcriptional repression that PARIS imposes upon a downstream target, PGC-1α. Genes in this pathway have been implicated in Parkinson's disease, and there is a strong relationship between mitochondrial dysfunction and pre-mature neuron death. The identification of a PARIS homolog in Drosophila melanogaster would increase our understanding of the roles that PARIS and interacting genes play in higher organisms. We identified three potential PARIS homologs in D. melanogaster, one of which encodes a protein with similar domains to the Homo sapiens PARIS protein, CG15436. The Drosophila eye is formed from neuronal precursors, making it an ideal system to assay the effects of altered gene expression on neuronal tissue formation. The eye-specific expression of RNAi constructs for these genes revealed that both CG15269 and Crol caused neurodegenerative phenotypes, whereas CG15436 produced a phenotype similar to srl-EY. Crol-RNAi expression reduced mean lifespan when expressed in dopaminergic neurons, whereas CG15436-RNAi significantly increased lifespan. CG15436 was PARIS-like in both structure and function, and we characterized the effects of decreased gene expression in both the neuron-rich D. melanogaster eye and in dopaminergic neurons.

  19. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    SciTech Connect

    Knecht, Wolfgang; Mikkelsen, Nils Egil; Clausen, Anders Ranegaard; Willer, Mette; Gojkovic, Zoran

    2009-05-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  20. Crystal structure of enolase from Drosophila melanogaster.

    PubMed

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  1. In vitro maturation of Drosophila melanogaster Spätzle protein with refolded Easter reveals a novel cleavage site within the prodomain.

    PubMed

    Ursel, Christian; Fandrich, Uwe; Hoffmann, Anita; Sieg, Torsten; Ihling, Christian; Stubbs, Milton T

    2013-08-01

    Dorsoventral patterning during Drosophila melanogaster embryogenesis is mediated by a well-defined gradient of the mature NGF-like ligand Spätzle. Easter, the ultimate protease of a ventrally-restricted serine protease cascade, plays a key role in the regulation of the morphogenic gradient, catalyzing the activation cleavage of proSpätzle. As a result of alternative splicing, proSpätzle exists in multiple isoforms, almost all of which differ only in their prodomain. Although this domain is unstructured in isolation, it has a stabilizing influence on the mature cystine knot domain and is involved in the binding to the Toll receptor. Here, we report the expression and refolding of Easter, and show that the renatured enzyme performs the activation cleavage of two Spätzle isoforms. We determine the affinity of the prodomain for the cystine knot domain, and show that Easter performs a previously unknown secondary cleavage in each prodomain.

  2. Antiangiogenic VEGF Isoform in Inflammatory Myopathies

    PubMed Central

    Volpi, Nila; Pecorelli, Alessandra; Lorenzoni, Paola; Di Lazzaro, Francesco; Belmonte, Giuseppe; Aglianò, Margherita; Giannini, Fabio; Grasso, Giovanni

    2013-01-01

    Objective. To investigate expression of vascular endothelial growth factor (VEGF) antiangiogenic isoform A-165b on human muscle in idiopathic inflammatory myopathies (IIM) and to compare distribution of angiogenic/antiangiogenic VEGFs, as isoforms shifts are described in other autoimmune disorders. Subjects and Methods. We analyzed VEGF-A165b and VEGF-A by western blot and immunohistochemistry on skeletal muscle biopsies from 21 patients affected with IIM (polymyositis, dermatomyositis, and inclusion body myositis) and 6 control muscle samples. TGF-β, a prominent VEGF inductor, was analogously evaluated. Intergroup differences of western blot bands density were statistically examined. Endomysial vascularization, inflammatory score, and muscle regeneration, as pathological parameters of IIM, were quantitatively determined and their levels were confronted with VEGF expression. Results. VEGF-A165b was significantly upregulated in IIM, as well as TGF-β. VEGF-A was diffusely expressed on unaffected myofibers, whereas regenerating/atrophic myofibres strongly reacted for both VEGF-A isoforms. Most inflammatory cells and endomysial vessels expressed both isoforms. VEGF-A165b levels were in positive correlation to inflammatory score, endomysial vascularization, and TGF-β. Conclusions. Our findings indicate skeletal muscle expression of antiangiogenic VEGF-A165b and preferential upregulation in IIM, suggesting that modulation of VEGF-A isoforms may occur in myositides. PMID:23840094

  3. Characterization of endogenous human promyelocytic leukemia isoforms.

    PubMed

    Condemine, Wilfried; Takahashi, Yuki; Zhu, Jun; Puvion-Dutilleul, Francine; Guegan, Sarah; Janin, Anne; de Thé, Hugues

    2006-06-15

    Promyelocytic leukemia (PML) has been implicated in a variety of functions, including control of TP53 function and modulation of cellular senescence. Sumolated PML is the organizer of mature PML bodies, recruiting a variety of proteins onto these nuclear domains. The PML gene is predicted to encode a variety of protein isoforms. Overexpression of only one of them, PML-IV, promotes senescence in human diploid fibroblasts, whereas PML-III was proposed to specifically interact with the centrosome. We show that all PML isoform proteins are expressed in cell lines or primary cells. Unexpectedly, we found that PML-III, PML-IV, and PML-V are quantitatively minor isoforms compared with PML-I/II and could not confirm the centrosomal targeting of PML-III. Stable expression of each isoform, in a pml-null background, yields distinct subcellular localization patterns, suggesting that, like in other RBCC/TRIM proteins, the COOH-terminal domains of PML are involved in interactions with specific cellular components. Only the isoform-specific sequences of PML-I and PML-V are highly conserved between man and mouse. That PML-I contains all conserved exons and is more abundantly expressed than PML-IV suggests that it is a critical contributor to PML function(s).

  4. Absolute Quantification of Endogenous Ras Isoform Abundance

    PubMed Central

    Mageean, Craig J.; Griffiths, John R.; Smith, Duncan L.; Clague, Michael J.; Prior, Ian A.

    2015-01-01

    Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data. PMID:26560143

  5. Allozyme-Associated Heterosis in Drosophila Melanogaster

    PubMed Central

    Houle, D.

    1989-01-01

    Two large experiments designed to detect allozyme-associated heterosis for growth rate in Drosophila melanogaster were performed. Heterosis associated with allozyme genotypes may be explained either by functional overdominance at the allozyme loci, or closely linked loci; or by genotypic correlations between allozyme loci and loci at which deleterious recessive alleles segregate. Such genotypic correlations would be favored by consanguineous mating, small effective population size, population mixing and strong natural or artificial selection. D. melanogaster is outbred, has large effective population size and there is little evidence for genotypic disequilibria. Therefore it would be unlikely to show allozyme heterosis due to genotypic correlations. In the first experiment I estimated the genotypic values of 97 replicated genotypes. In the second experiment, 500 individuals were raised in a fluctuating, stressful environment. In neither experiment was there any consistent evidence for allozyme heterosis in size or development rate, fluctuating asymmetry for size or in tendency to deviate from the population mean. In the first experiment, heterosis explained less than 5.6% of the genetic variance in growth characters. In the second, heterosis explained less than 0.1% of the phenotypic variance in growth characters. Outside of the molluscs, species which show allozyme heterosis have population structures or histories which tend to promote genotypic correlations. There is little evidence that functional overdominance is responsible for observations of allozyme-associated heterosis. PMID:2482224

  6. A Drosophila melanogaster model of classic galactosemia

    PubMed Central

    Kushner, Rebekah F.; Ryan, Emily L.; Sefton, Jennifer M. I.; Sanders, Rebecca D.; Lucioni, Patricia Jumbo; Moberg, Kenneth H.; Fridovich-Keil, Judith L.

    2010-01-01

    SUMMARY Classic galactosemia is a potentially lethal disorder that results from profound impairment of galactose-1-phosphate uridylyltransferase (GALT). Despite decades of research, the underlying pathophysiology of classic galactosemia remains unclear, in part owing to the lack of an appropriate animal model. Here, we report the establishment of a Drosophila melanogaster model of classic galactosemia; this is the first whole-animal genetic model to mimic aspects of the patient phenotype. Analogous to humans, GALT-deficient D. melanogaster survive under conditions of galactose restriction, but accumulate elevated levels of galactose-1-phosphate and succumb during larval development following galactose exposure. As in patients, the potentially lethal damage is reversible if dietary galactose restriction is initiated early in life. GALT-deficient Drosophila also exhibit locomotor complications despite dietary galactose restriction, and both the acute and long-term complications can be rescued by transgenic expression of human GALT. Using this new Drosophila model, we have begun to dissect the timing, extent and mechanism(s) of galactose sensitivity in the absence of GALT activity. PMID:20519569

  7. Molecular characterization and expression profiles of four transformer-2 isoforms in the Chinese mitten crab Eriocheir sinensis

    NASA Astrophysics Data System (ADS)

    Luo, Danli; Liu, Yuan; Hui, Min; Song, Chengwen; Liu, Hourong; Cui, Zhaoxia

    2017-07-01

    The transformer-2 ( tra-2) gene plays a key role in the regulatory hierarchy of sexual differentiation in somatic tissues and in the germline of Drosophila melanogaster. In this study, sequences and expression profiles of tra-2 in the Chinese mitten crab Eriocheir sinensis were characterized. Four tra-2 isoforms, designated as Estra-2a, Estra-2b, Estra-2c, and Estra-2d, were isolated. They all contained an RNA-recognition motif (RRM) and a linker region, which shared high similarity with other reported tra-2s. Sequence analysis revealed that Estra-2a, Estra-2b and Estra-2c are encoded by the same genomic locus and are generated by alternative splicing of the pre-mRNA. Compared with the other three isoforms, Estra-2d lacks the RS2 domain. Quantitative real-time PCR showed that all four isoforms were highly expressed in the fertilized egg, and in the 2-4 cell and blastula stages compared with larval stages ( P≤0.01), suggesting their maternal origin in early embryonic developmental stages. Notably, Estra-2a was highly expressed in male somatic tissues, while Estra-2c was significantly highly expressed in the ovary. These results suggest that Estra-2c is involved in sexual differentiation of the Chinese mitten crab. Our findings provide basic information for further functional studies of the tra-2 gene/protein in this species.

  8. Molecular characterization and expression profiles of four transformer-2 isoforms in the Chinese mitten crab Eriocheir sinensis

    NASA Astrophysics Data System (ADS)

    Luo, Danli; Liu, Yuan; Hui, Min; Song, Chengwen; Liu, Hourong; Cui, Zhaoxia

    2016-09-01

    The transformer-2 (tra-2) gene plays a key role in the regulatory hierarchy of sexual differentiation in somatic tissues and in the germline of Drosophila melanogaster. In this study, sequences and expression profiles of tra-2 in the Chinese mitten crab Eriocheir sinensis were characterized. Four tra-2 isoforms, designated as Estra-2a, Estra-2b, Estra-2c and Estra-2d, were isolated. They all contained an RNA-recognition motif (RRM) and a linker region, which shared high similarity with other reported tra-2s. Sequence analysis revealed that Estra-2a, Estra-2b and Estra-2c are encoded by the same genomic locus and are generated by alternative splicing of the pre-mRNA. Compared with the other three isoforms, Estra-2d lacks the RS2 domain. Quantitative real-time PCR showed that all four isoforms were highly expressed in the fertilized egg, and in the 2-4 cell and blastula stages compared with larval stages (P≤ 0.01), suggesting their maternal origin in early embryonic developmental stages. Notably, Estra-2a was highly expressed in male somatic tissues, while Estra-2c was significantly highly expressed in the ovary. These results suggest that Estra-2c is involved in sexual differentiation of the Chinese mitten crab. Our findings provide basic information for further functional studies of the tra-2 gene/protein in this species.

  9. Effects of tannery wastewater exposure on adult Drosophila melanogaster.

    PubMed

    Dos Santos Moysés, Felipe; Bertoldi, Karine; Lovatel, Gisele; Vaz, Sabrina; Ferreira, Kelly; Junqueira, Juliana; Bagatini, Pamela Brambilla; Rodrigues, Marco Antônio Siqueira; Xavier, Léder Leal; Siqueira, Ionara Rodrigues

    2017-09-25

    Our aim was to evaluate the effects of exposure to tannery wastewater on mortality and/or antioxidant enzyme system in adult wild-type Canton-S Drosophila melanogaster. Exposure to tannery wastewater induced a concentration-dependent lethality in adult Canton-S flies. Tannery wastewater was able to alter antioxidant enzyme activities, specifically glutathione peroxidase-like and glutathione S-transferase, in adult Canton-S D. melanogaster. We conclude that D. melanogaster is a reliable model to evaluate the toxicity induced by tannery wastewater.

  10. Myosin isoforms in female human detrusor.

    PubMed

    FitzGerald, M P; Manaves, V; Martin, A F; Shott, S; Brubaker, L

    2001-01-01

    The aim of this study was to document the relative proportions of two isoforms of myosin heavy chain in detrusor smooth muscle of women with detrusor overactivity and in asymptomatic controls. Women aged 35-65 with documented detrusor overactivity and without a history of neurologic disease, prior incontinence surgery, elevated post-void residual urine volume, or indwelling urinary catheter were eligible for the study. Full-thickness biopsies of extraperitoneal bladder dome were obtained at the time of laparotomy in six patients with documented detrusor overactivity and in a control group of eight continent patients. Biopsies were frozen in liquid nitrogen, crushed with a frozen mortar and pestle at -80 degrees C, and homogenized in buffer, and the extracts were electrophoresed on 6% polyacrylamide sodium dodecyl sulfate gels and stained with Coomassie blue. The gels were de-stained and then the protein bands were scanned with a densitometer. The mean patient age was 48 years (range, 36-59). Seven patients were Caucasian and seven patients were African American. Detrusor smooth muscle contains a mean of 34% (range, 27-43%) SM1 and 66% (range, 57-73%) SM2 isoforms. There was no difference in isoform composition when patients were compared according to urogynecologic diagnosis or according to race. In detrusor biopsies from women, approximately 34% of myosin is of the SM1 isoform and approximately 66% is of the SM2 isoform. This ratio is relatively constant in the two races studied and unchanged in women with detrusor overactivity. Animal models utilizing outlet obstruction of the bladder to provoke detrusor instability and detrusor hypertrophy are known to alter myosin isoform distribution and may not be appropriate models of detrusor instability in human females.

  11. Mitochondrial glutamate carriers from Drosophila melanogaster: biochemical, evolutionary and modeling studies.

    PubMed

    Lunetti, Paola; Cappello, Anna Rita; Marsano, René Massimiliano; Pierri, Ciro Leonardo; Carrisi, Chiara; Martello, Emanuela; Caggese, Corrado; Dolce, Vincenza; Capobianco, Loredana

    2013-10-01

    The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata. © 2013.

  12. A Glycine Insertion in the Estrogen-Related Receptor (ERR) Is Associated with Enhanced Expression of Three Cytochrome P450 Genes in Transgenic Drosophila melanogaster

    PubMed Central

    Sun, Weilin; Valero, M. Carmen; Seong, Keon Mook; Steele, Laura D.; Huang, I-Ting; Lee, Chien-Hui; Clark, John M.; Qiu, Xinghui; Pittendrigh, Barry R.

    2015-01-01

    Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4’-dichlorodiphenyltrichloroethane (DDT) resistant strains the glucocorticoid receptor-like (GR-like) potential transcription factor binding motifs (TFBMs) have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR) in D. melanogaster is an estrogen-related receptor (ERR) gene, which has two predicted alternative splice isoforms (ERRa and ERRb). Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G) codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G). Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera. PMID:25761142

  13. Structural Insights into the Drosophila melanogaster Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family

    PubMed Central

    Hofmann, Lukas; Tsybovsky, Yaroslav; Alexander, Nathan S.; Babino, Darwin; Leung, Nicole Y.; Montell, Craig; Banerjee, Surajit; von Lintig, Johannes; Palczewski, Krzysztof

    2016-01-01

    The 11-cis-retinylidene chromophore of visual pigments isomerizes upon interaction with a photon, initiating a downstream cascade of signaling events that ultimately lead to visual perception. 11-cis-Retinylidene is regenerated through enzymatic transformations collectively called the visual cycle. The first and rate-limiting enzymatic reaction within this cycle, i.e., the reduction of all-trans-retinal to all-trans-retinol, is catalyzed by retinol dehydrogenases. Here, we determined the structure of Drosophila melanogaster photoreceptor retinol dehydrogenase (PDH) isoform C that belongs to the short-chain dehydrogenase/reductase (SDR) family. This is the first reported structure of a SDR that possesses this biologically important activity. Two crystal structures of the same enzyme grown under different conditions revealed a novel conformational change of the NAD+ cofactor, likely representing a change during catalysis. Amide hydrogen–deuterium exchange of PDH demonstrated changes in the structure of the enzyme upon dinucleotide binding. In D. melanogaster, loss of PDH activity leads to photoreceptor degeneration that can be partially rescued by transgenic expression of human RDH12. Based on the structure of PDH, we analyzed mutations causing Leber congenital amaurosis 13 in a homology model of human RDH12 to obtain insights into the molecular basis of RDH12 disease-causing mutations. PMID:27809489

  14. Predatory cannibalism in Drosophila melanogaster larvae.

    PubMed

    Vijendravarma, Roshan K; Narasimha, Sunitha; Kawecki, Tadeusz J

    2013-01-01

    Hunting live prey is risky and thought to require specialized adaptations. Therefore, observations of predatory cannibalism in otherwise non-carnivorous animals raise questions about its function, adaptive significance and evolutionary potential. Here we document predatory cannibalism on larger conspecifics in Drosophila melanogaster larvae and address its evolutionary significance. We found that under crowded laboratory conditions younger larvae regularly attack and consume 'wandering-stage' conspecifics, forming aggregations mediated by chemical cues from the attacked victim. Nutrition gained this way can be significant: an exclusively cannibalistic diet was sufficient for normal development from eggs to fertile adults. Cannibalistic diet also induced plasticity of larval mouth parts. Finally, during 118 generations of experimental evolution, replicated populations maintained under larval malnutrition evolved enhanced propensity towards cannibalism. These results suggest that, at least under laboratory conditions, predation on conspecifics in Drosophila is a functional, adaptive behaviour, which can rapidly evolve in response to nutritional conditions.

  15. Characterization of the DNA in DROSOPHILA MELANOGASTER

    PubMed Central

    Travaglini, E. C.; Petrovic, J.; Schultz, J.

    1972-01-01

    DNA has been quantitatively extracted from Drosophila melanogaster at various stages of embryonic development and analyzed by isopycnic centrifugation in CsCl and by fractionation on methylated albumin columns. The DNA is composed of three main classes of DNA, as defined by their buoyant density, ρ, in CsCl: a bulk DNA, ρ = 1.699 g cm-3, and two satellite DNAs, ρ = 1.685 g cm-3 and ρ = 1.669 g cm-3. These three types of DNA persist throughout the development of the insect. In the unfertilized egg, 80% of the total DNA consists of the satellite DNAs; this amount decreases to 18% during the first three hours after fertilization and then remains constant through embryogenesis. There is a concomitant increase of the satellite DNA's with the bulk DNA after blastoderm formation. PMID:4630028

  16. Exquisite light sensitivity of Drosophila melanogaster cryptochrome.

    PubMed

    Vinayak, Pooja; Coupar, Jamie; Hughes, S Emile; Fozdar, Preeya; Kilby, Jack; Garren, Emma; Yoshii, Taishi; Hirsh, Jay

    2013-01-01

    Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY) have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity than previously appreciated, and show a surprising sensitivity increase with pulse duration, implying a process of photic integration active up to at least 6 hours. The CRY target timeless (TIM) shows dim light dependent degradation in circadian pacemaker neurons that parallels phase shift amplitude, indicating that integration occurs at this step, with the strongest effect in a single identified pacemaker neuron. Our findings indicate that CRY compensates for limited light sensitivity in vivo by photon integration over extraordinarily long times, and point to select circadian pacemaker neurons as having important roles.

  17. Transplantation of Nuclei in Drosophila melanogaster

    PubMed Central

    Zalokar, Marko

    1971-01-01

    Nuclei surrounded by ooplasm of the syncytial stage of developing eggs of wild-type Drosophila melanogaster were implanted into freshly laid fertilized eggs of females of a y w stock. More than half of the recipient eggs produced larvae, but few of the larvae hatched or developed further. The best sets of experiments gave about twelve percent of imagos, mostly y w in appearance. Several larvae were mosaics with yellow Malpighian tubes, and two flies had part of the abdominal segments of the wild type. Half of the flies were fertile, but they produced only y w offspring, except for two males that had y w appearance, but wild-type gonads. When crossed with y w females, they gave wild-type females and y w males. Images PMID:5283944

  18. Studying circadian rhythms in Drosophila melanogaster.

    PubMed

    Tataroglu, Ozgur; Emery, Patrick

    2014-06-15

    Circadian rhythms have a profound influence on most bodily functions: from metabolism to complex behaviors. They ensure that all these biological processes are optimized with the time-of-day. They are generated by endogenous molecular oscillators that have a period that closely, but not exactly, matches day length. These molecular clocks are synchronized by environmental cycles such as light intensity and temperature. Drosophila melanogaster has been a model organism of choice to understand genetically, molecularly and at the level of neural circuits how circadian rhythms are generated, how they are synchronized by environmental cues, and how they drive behavioral cycles such as locomotor rhythms. This review will cover a wide range of techniques that have been instrumental to our understanding of Drosophila circadian rhythms, and that are essential for current and future research.

  19. Maintenance of a Drosophila melanogaster Population Cage

    PubMed Central

    Caravaca, Juan Manuel; Lei, Elissa P.

    2016-01-01

    Large quantities of DNA, RNA, proteins and other cellular components are often required for biochemistry and molecular biology experiments. The short life cycle of Drosophila enables collection of large quantities of material from embryos, larvae, pupae and adult flies, in a synchronized way, at a low economic cost. A major strategy for propagating large numbers of flies is the use of a fly population cage. This useful and common tool in the Drososphila community is an efficient way to regularly produce milligrams to tens of grams of embryos, depending on uniformity of developmental stage desired. While a population cage can be time consuming to set up, maintaining a cage over months takes much less time and enables rapid collection of biological material in a short period. This paper describes a detailed and flexible protocol for the maintenance of a Drosophila melanogaster population cage, starting with 1.5 g of harvested material from the previous cycle. PMID:27023790

  20. A holidic medium for Drosophila melanogaster

    PubMed Central

    Piper, Matthew DW; Blanc, Eric; Leitão-Gonçalves, Ricardo; Yang, Mingyao; He, Xiaoli; Linford, Nancy J.; Hoddinott, Matthew P; Hopfen, Corinna; Soultoukis, George A; Niemeyer, Christine; Kerr, Fiona; Pletcher, Scott D.; Ribeiro, Carlos; Partridge, Linda

    2013-01-01

    A critical requirement for research using model organisms is an appropriate, well-defined and consistent diet. There is currently no complete chemically defined (holidic) diet available for Drosophila melanogaster. We describe a holidic medium that is equal in performance to an oligidic diet optimized for adult fecundity and lifespan. It is also sufficient to support development over multiple generations, but at a reduced rate. During seven years of experiments, the holidic diet yielded more consistent experimental outcomes than oligidic food for adult fitness traits. Furthermore, nutrients and drugs are more accessible to flies in holidic medium and, similar to dietary restriction on oligidic food, amino acid dilution increases fly lifespan. We also report amino acid specific effects on food choice behavior and that folic acid from the microbiota is sufficient for development. These insights could not be gained using oligidic or meridic diets. PMID:24240321

  1. Studying circadian rhythms in Drosophila melanogaster

    PubMed Central

    Tataroglu, Ozgur; Emery, Patrick

    2014-01-01

    Circadian rhythms have a profound influence on most bodily functions: from metabolism to complex behaviors. They ensure that all these biological processes are optimized with the time-of-day. They are generated by endogenous molecular oscillators that have a period that closely, but not exactly, matches day length. These molecular clocks are synchronized by environmental cycles such as light intensity and temperature. Drosophila melanogaster has been a model organism of choice to understand genetically, molecularly and at the level of neural circuits how circadian rhythms are generated, how they are synchronized by environmental cues, and how they drive behavioral cycles such as locomotor rhythms. This review will cover a wide range of techniques that have been instrumental to our understanding of Drosophila circadian rhythms, and that are essential for current and future research. PMID:24412370

  2. Live cell imaging in Drosophila melanogaster.

    PubMed

    Parton, Richard M; Vallés, Ana Maria; Dobbie, Ian M; Davis, Ilan

    2010-04-01

    Although many of the techniques of live cell imaging in Drosophila melanogaster are also used by the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties with regard to keeping the cells alive, introducing fluorescent probes, and imaging through thick, hazy cytoplasm. This article outlines the major tissue types amenable to study by time-lapse cinematography and different methods for keeping the cells alive. It describes various imaging and associated techniques best suited to following changes in the distribution of fluorescently labeled molecules in real time in these tissues. Imaging, in general, is a rapidly developing discipline, and recent advances in imaging technology are able to greatly extend what can be achieved with live cell imaging of Drosophila tissues. As far as possible, this article includes the latest technical developments and discusses likely future developments in imaging methods that could have an impact on research using Drosophila.

  3. The genome sequence of Drosophila melanogaster.

    SciTech Connect

    2000-03-24

    The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the {approximately}120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes {approximately}13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.

  4. Drosophila melanogaster: Deciphering Alzheimer’s Disease

    PubMed Central

    Tan, Florence Hui Ping; Azzam, Ghows

    2017-01-01

    Alzheimer’s disease (AD) is the most widespread neurodegenerative disorder worldwide. Its pathogenesis involves two hallmarks: aggregation of amyloid beta (Aβ) and occurrence of neurofibrillary tangles (NFTs). The mechanism behind the disease is still unknown. This has prompted the use of animal models to mirror the disease. The fruit fly, Drosophila melanogaster has garnered considerable attention as an organism to recapitulate human disorders. With the ability to monopolise a multitude of traditional and novel genetic tools, Drosophila is ideal for studying not only cellular aspects but also physiological and behavioural traits of human neurodegenerative diseases. Here, we discuss the use of the Drosophila model in understanding AD pathology and the insights gained in discovering drug therapies for AD. PMID:28894399

  5. Maintenance of a Drosophila melanogaster Population Cage.

    PubMed

    Caravaca, Juan Manuel; Lei, Elissa P

    2016-03-15

    Large quantities of DNA, RNA, proteins and other cellular components are often required for biochemistry and molecular biology experiments. The short life cycle of Drosophila enables collection of large quantities of material from embryos, larvae, pupae and adult flies, in a synchronized way, at a low economic cost. A major strategy for propagating large numbers of flies is the use of a fly population cage. This useful and common tool in the Drososphila community is an efficient way to regularly produce milligrams to tens of grams of embryos, depending on uniformity of developmental stage desired. While a population cage can be time consuming to set up, maintaining a cage over months takes much less time and enables rapid collection of biological material in a short period. This paper describes a detailed and flexible protocol for the maintenance of a Drosophila melanogaster population cage, starting with 1.5 g of harvested material from the previous cycle.

  6. The genome sequence of Drosophila melanogaster.

    PubMed

    Adams, M D; Celniker, S E; Holt, R A; Evans, C A; Gocayne, J D; Amanatides, P G; Scherer, S E; Li, P W; Hoskins, R A; Galle, R F; George, R A; Lewis, S E; Richards, S; Ashburner, M; Henderson, S N; Sutton, G G; Wortman, J R; Yandell, M D; Zhang, Q; Chen, L X; Brandon, R C; Rogers, Y H; Blazej, R G; Champe, M; Pfeiffer, B D; Wan, K H; Doyle, C; Baxter, E G; Helt, G; Nelson, C R; Gabor, G L; Abril, J F; Agbayani, A; An, H J; Andrews-Pfannkoch, C; Baldwin, D; Ballew, R M; Basu, A; Baxendale, J; Bayraktaroglu, L; Beasley, E M; Beeson, K Y; Benos, P V; Berman, B P; Bhandari, D; Bolshakov, S; Borkova, D; Botchan, M R; Bouck, J; Brokstein, P; Brottier, P; Burtis, K C; Busam, D A; Butler, H; Cadieu, E; Center, A; Chandra, I; Cherry, J M; Cawley, S; Dahlke, C; Davenport, L B; Davies, P; de Pablos, B; Delcher, A; Deng, Z; Mays, A D; Dew, I; Dietz, S M; Dodson, K; Doup, L E; Downes, M; Dugan-Rocha, S; Dunkov, B C; Dunn, P; Durbin, K J; Evangelista, C C; Ferraz, C; Ferriera, S; Fleischmann, W; Fosler, C; Gabrielian, A E; Garg, N S; Gelbart, W M; Glasser, K; Glodek, A; Gong, F; Gorrell, J H; Gu, Z; Guan, P; Harris, M; Harris, N L; Harvey, D; Heiman, T J; Hernandez, J R; Houck, J; Hostin, D; Houston, K A; Howland, T J; Wei, M H; Ibegwam, C; Jalali, M; Kalush, F; Karpen, G H; Ke, Z; Kennison, J A; Ketchum, K A; Kimmel, B E; Kodira, C D; Kraft, C; Kravitz, S; Kulp, D; Lai, Z; Lasko, P; Lei, Y; Levitsky, A A; Li, J; Li, Z; Liang, Y; Lin, X; Liu, X; Mattei, B; McIntosh, T C; McLeod, M P; McPherson, D; Merkulov, G; Milshina, N V; Mobarry, C; Morris, J; Moshrefi, A; Mount, S M; Moy, M; Murphy, B; Murphy, L; Muzny, D M; Nelson, D L; Nelson, D R; Nelson, K A; Nixon, K; Nusskern, D R; Pacleb, J M; Palazzolo, M; Pittman, G S; Pan, S; Pollard, J; Puri, V; Reese, M G; Reinert, K; Remington, K; Saunders, R D; Scheeler, F; Shen, H; Shue, B C; Sidén-Kiamos, I; Simpson, M; Skupski, M P; Smith, T; Spier, E; Spradling, A C; Stapleton, M; Strong, R; Sun, E; Svirskas, R; Tector, C; Turner, R; Venter, E; Wang, A H; Wang, X; Wang, Z Y; Wassarman, D A; Weinstock, G M; Weissenbach, J; Williams, S M; WoodageT; Worley, K C; Wu, D; Yang, S; Yao, Q A; Ye, J; Yeh, R F; Zaveri, J S; Zhan, M; Zhang, G; Zhao, Q; Zheng, L; Zheng, X H; Zhong, F N; Zhong, W; Zhou, X; Zhu, S; Zhu, X; Smith, H O; Gibbs, R A; Myers, E W; Rubin, G M; Venter, J C

    2000-03-24

    The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.

  7. Structure and characterization of AAT-1 isoforms.

    PubMed

    Matsuda, Eiko; Ishizaki, Ray; Taira, Takahiro; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2005-05-01

    A novel protein, AAT-1, was identified as a AMY-1-binding protein and three splicing variants of AAT-1, AAT-1alpha, -beta and -gamma were identified. The function of AAT-1 is thought to be related to spermatogenesis. In this study, we further identified other splicing isoforms of AAT-1, AAT-1L, AAT-1M and AAT-1S, consisting of 767, 603 and 252 amino acids, respectively. These isoforms were found to use a promoter different from that used by AAT-1alpha, -beta and -gamma in the aat-1 gene, which contains 20 exons. Only 60 amino acids in the C-terminal portion of AAT-1 derived from exons 15-17 are common among AAT-1L, AAT-1M, AAT-1S and AAT-1alpha. While AAT-1alpha is specifically expressed in the testis, AAT-1L, AAT-1M, AAT-1S were found to be differentially expressed in human tissues. All of the isoforms of AAT-1 were found to bind to and colocalized with AMY-1 in human cells. While AAT-1L and AAT-1M were found to be localized diffusely in the cytoplasm, AAT-1S, like AAT-1alpha, was found to be localized in the mitochondria-like structure, suggesting different roles of AAT-1 isoforms in cells.

  8. Genome Engineering: Drosophila melanogaster and beyond

    PubMed Central

    Venken, Koen J.T.; Sarrion-Perdigones, Alejandro; Vandeventer, Paul J.; Abel, Nicholas S.; Christiansen, Audrey E.; Hoffman, Kristi L.

    2015-01-01

    A central challenge to investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is

  9. Absolute quantitation of protein posttranslational modification isoform.

    PubMed

    Yang, Zhu; Li, Ning

    2015-01-01

    Mass spectrometry has been widely applied in characterization and quantification of proteins from complex biological samples. Because the numbers of absolute amounts of proteins are needed in construction of mathematical models for molecular systems of various biological phenotypes and phenomena, a number of quantitative proteomic methods have been adopted to measure absolute quantities of proteins using mass spectrometry. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with internal peptide standards, i.e., the stable isotope-coded peptide dilution series, which was originated from the field of analytical chemistry, becomes a widely applied method in absolute quantitative proteomics research. This approach provides more and more absolute protein quantitation results of high confidence. As quantitative study of posttranslational modification (PTM) that modulates the biological activity of proteins is crucial for biological science and each isoform may contribute a unique biological function, degradation, and/or subcellular location, the absolute quantitation of protein PTM isoforms has become more relevant to its biological significance. In order to obtain the absolute cellular amount of a PTM isoform of a protein accurately, impacts of protein fractionation, protein enrichment, and proteolytic digestion yield should be taken into consideration and those effects before differentially stable isotope-coded PTM peptide standards are spiked into sample peptides have to be corrected. Assisted with stable isotope-labeled peptide standards, the absolute quantitation of isoforms of posttranslationally modified protein (AQUIP) method takes all these factors into account and determines the absolute amount of a protein PTM isoform from the absolute amount of the protein of interest and the PTM occupancy at the site of the protein. The absolute amount of the protein of interest is inferred by quantifying both the absolute amounts of a few PTM

  10. Tunable protein synthesis by transcript isoforms in human cells.

    PubMed

    Floor, Stephen N; Doudna, Jennifer A

    2016-01-06

    Eukaryotic genes generate multiple RNA transcript isoforms though alternative transcription, splicing, and polyadenylation. However, the relationship between human transcript diversity and protein production is complex as each isoform can be translated differently. We fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed regulatory features that control ribosome occupancy and translational output of each transcript isoform. We extracted a panel of 5' and 3' untranslated regions that control protein production from an unrelated gene in cells over a 100-fold range. Select 5' untranslated regions exert robust translational control between cell lines, while 3' untranslated regions can confer cell type-specific expression. These results expose the large dynamic range of transcript-isoform-specific translational control, identify isoform-specific sequences that control protein output in human cells, and demonstrate that transcript isoform diversity must be considered when relating RNA and protein levels.

  11. Isoform-specific monoubiquitination, endocytosis, and degradation of alternatively spliced ErbB4 isoforms.

    PubMed

    Sundvall, Maria; Korhonen, Anna; Paatero, Ilkka; Gaudio, Eugenio; Melino, Gerry; Croce, Carlo M; Aqeilan, Rami I; Elenius, Klaus

    2008-03-18

    Endocytosis and subsequent lysosomal degradation serve as a well characterized mechanism to fine-tune and down-regulate EGFR signaling. However, other members of the EGFR/ErbB receptor family have been reported to be endocytosis-impaired. Here we demonstrate that endocytosis of ErbB4 is regulated in an isoform-specific manner: CYT-1 isoforms were efficiently endocytosed whereas CYT-2 isoforms were endocytosis-impaired. CYT-1 isoforms in endocytic vesicles colocalized with Rab5 and Rab7 indicating trafficking via early endosomes to late endosomal/lysosomal structures. A PPXY motif within the CYT-1-specific sequence that lacks from CYT-2 was necessary both for ubiquitination and endocytosis of CYT-1 isoforms and provided a binding site for a WW domain-containing ubiquitin ligase Itch. Itch catalyzed ubiquitination of ErbB4 CYT-1, promoted its localization into intracellular vesicles, and stimulated degradation of ErbB4 CYT-1. Dominant negative Itch suppressed ErbB4 CYT-1 endocytosis and degradation. These data indicate that ErbB4 isoforms differ in endocytosis and degradation by a mechanism mediated by CYT-1-specific PPXY motif interacting with a WW domain-containing E3 ubiquitin ligase.

  12. Studies on two ecdysone receptor isoforms of the spruce budworm, Choristoneura fumiferana.

    PubMed

    Perera, S C; Ladd, T R; Dhadialla, T S; Krell, P J; Sohi, S S; Retnakaran, A; Palli, S R

    1999-06-25

    A full-length cDNA clone corresponding to the Choristoneura fumiferana ecdysone receptor-A isoform (CfEcR-A) was isolated. The deduced amino acid sequence of CfEcR-A differed from CfEcR-B in the NH2-terminal region of the A/B domain. The CfEcR-A-specific region showed high amino acid identity with EcR-A isoforms of Manduca sexta, Bombyx mori, Drosophila melanogaster and Tenebrio molitor. Isoform-specific probes were used to study the expression of EcR-A and EcR-B mRNAs. Both probes detected 6 kb mRNAs that were present in second-sixth larval instars and in the pupae. Both EcR-A and EcR-B mRNA levels increased during the molting periods. In the sixth instar larvae, the increase in EcR-A and EcR-B mRNA levels were more pronounced in the midgut than in epidermis and fat body. Both EcR-A and EcR-B mRNAs were induced in CF-203 cells (a cell line developed from C. fumiferana midgut) grown in the presence of 4 x 10(-6) M 20E. EcR-B specific mRNAs were induced within 1 h of exposure to 20E, but EcR-A specific mRNAs were induced only after 3 h of exposure to 20E. Induction of mRNAs for both isoforms was unaffected by the presence of a protein synthesis inhibitor, cyclohexamide, in the culture medium. RH-5992, a stable ecdysone agonist, caused a similar induction pattern of EcR-A and EcR-B mRNAs in the midgut, epidermis and fat body of sixth instar larvae. In vitro translated CfEcR-A, CfEcR-B and CfUSP proteins were used to study the DNA binding and ligand binding properties of EcR-A/USP and EcR-B/USP protein complexes. The Kd values indicated that both complexes have similar binding affinities for ecdysone response elements and ponasterone A.

  13. Isoform-specific translocation of PKC isoforms in NIH3T3 cells by TPA

    SciTech Connect

    Kazi, Julhash U.; Soh, Jae-Won

    2007-12-14

    Protein kinase C (PKC), a multi-gene family of enzymes, plays key roles in the pathways of signal transduction, growth control and tumorigenesis. Variations in the intracellular localization of the individual isoforms are thought to be an important mechanism for the isoform-specific regulation of enzyme activity and substrate specificity. To provide a dynamic method of analyzing the localization of the specific isoforms of PKC in living cells, we generated fluorescent fusion proteins of the various PKC isoforms by using the green fluorescent protein (GFP) as a fluorescent marker at the carboxyl termini of these enzymes. The intracellular localization of the specific PKC isoforms was then examined by fluorescence microscopy after transient transfection of the respective PKC-GFP expression vector into NIH3T3 cells and subsequent TPA stimulation. We found that the specific isoforms of PKC display distinct localization patterns in untreated NIH3T3 cells. For example, PKC{alpha} is localized mainly in the cytoplasm while PKC{epsilon} is localized mainly in the Golgi apparatus. We also observed that PKC{alpha}, {beta}1, {beta}2, {gamma}, {delta}, {epsilon}, and {eta} translocate to the plasma membrane within 10 min of the start of TPA treatment, while the cellular localizations of PKC{zeta} and {iota} were not affected by TPA. Using a protein kinase inhibitor, we also showed that the kinase activity was not important for the translocation of PKC. These results suggest that specific PKC isoforms exert spatially distinct biological effects by virtue of their directed translocation to different intracellular sites.

  14. Analysis of protein isoforms: can we do it better?

    PubMed

    Stastna, Miroslava; Van Eyk, Jennifer E

    2012-10-01

    Protein isoforms/splice variants can play important roles in various biological processes and can potentially be used as biomarkers or therapeutic targets/mediators. Thus, there is a need for efficient and, importantly, accurate methods to distinguish and quantify specific protein isoforms. Since protein isoforms can share a high percentage of amino acid sequence homology and dramatically differ in their cellular concentration, the task for accuracy and efficiency in methodology and instrumentation is challenging. The analysis of intact proteins has been perceived to provide a more accurate and complete result for isoform identification/quantification in comparison to analysis of the corresponding peptides that arise from protein enzymatic digestion. Recently, novel approaches have been explored and developed that can possess the accuracy and reliability important for protein isoform differentiation and isoform-specific peptide targeting. In this review, we discuss the recent development in methodology and instrumentation for enhanced detection of protein isoforms as well as the examples of their biological importance.

  15. The Steroid Molting Hormone Ecdysone Regulates Sleep in Adult Drosophila melanogaster

    PubMed Central

    Ishimoto, Hiroshi; Kitamoto, Toshihiro

    2010-01-01

    Ecdysone is the major steroid hormone in insects and plays essential roles in coordinating developmental transitions such as larval molting and metamorphosis through its active metabolite 20-hydroxyecdysone (20E). Although ecdysone is present throughout life in both males and females, its functions in adult physiology remain largely unknown. In this study we demonstrate that ecdysone-mediated signaling in the adult is intimately involved in transitions between the physiological states of sleep and wakefulness. First, administering 20E to adult Drosophila melanogaster promoted sleep in a dose-dependent manner, and it did so primarily by altering the length of sleep and wake bouts without affecting waking activity. Second, mutants for ecdysone synthesis displayed the “short-sleep phenotype,” and this was alleviated by administering 20E at the adult stage. Third, mutants for nuclear ecdysone receptors showed reduced sleep, and conditional overexpression of wild-type ecdysone receptors in the adult mushroom bodies resulted in an isoform-specific increase in sleep. Finally, endogenous ecdysone levels increased after sleep deprivation, and mutants defective for ecdysone signaling displayed little sleep rebound, suggesting that ecdysone is involved in homeostatic sleep regulation. In light of the recent finding that lethargus—a period at larval-stage transitions in the nematode worm Caenorhabditis elegans—is a sleep-like state, our results suggest that sleep is functionally and mechanistically linked to a genetically programmed, quiescent behavioral state during development. PMID:20215472

  16. Structural Basis of Dscam Isoform Specificity

    SciTech Connect

    Meijers,R.; Puettmann-Holgado, R.; Skiniotis, G.; Liu, J.; Walz, T.; Wang, J.; Schmucker, D.

    2007-01-01

    The Dscam gene gives rise to thousands of diverse cell surface receptors1 thought to provide homophilic and heterophilic recognition specificity for neuronal wiring and immune responses. Mutually exclusive splicing allows for the generation of sequence variability in three immunoglobulin ecto-domains, D2, D3 and D7. We report X-ray structures of the amino-terminal four immunoglobulin domains (D1-D4) of two distinct Dscam isoforms. The structures reveal a horseshoe configuration, with variable residues of D2 and D3 constituting two independent surface epitopes on either side of the receptor. Both isoforms engage in homo-dimerization coupling variable domain D2 with D2, and D3 with D3. These interactions involve symmetric, antiparallel pairing of identical peptide segments from epitope I that are unique to each isoform. Structure-guided mutagenesis and swapping of peptide segments confirm that epitope I, but not epitope II, confers homophilic binding specificity of full-length Dscam receptors. Phylogenetic analysis shows strong selection of matching peptide sequences only for epitope I. We propose that peptide complementarity of variable residues in epitope I of Dscam is essential for homophilic binding specificity.

  17. FSH isoform pattern in classic galactosemia.

    PubMed

    Gubbels, Cynthia S; Thomas, Chris M G; Wodzig, Will K W H; Olthaar, André J; Jaeken, Jaak; Sweep, Fred C G J; Rubio-Gozalbo, M Estela

    2011-04-01

    Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfunction. An earlier study showed less acidic isoforms of FSH in serum samples of two classic galactosemia patients compared to controls, indicating hypoglycosylation. In this study, FSH isoform patterns of five classic galactosemia patients with POI were compared to the pattern obtained in two patients with a primary glycosylation disorder (phosphomannomutase-2-deficient congenital disorders of glycosylation, PMM2-CDG) and POI, and in five postmenopausal women as controls. We used FPLC chromatofocussing with measurement of FSH concentration per fraction, and discovered that there were no significant differences between galactosemia patients, PMM2-CDG patients and postmenopausal controls. Our results do not support that FSH dysfunction due to a less acidic isoform pattern because of hypoglycosylation is a key mechanism of POI in this disease.

  18. Phylogenetic incongruence in the Drosophila melanogaster species group

    PubMed Central

    Wong, Alex; Jensen, Jeffrey D.; Pool, John E.; Aquadro, Charles F.

    2007-01-01

    Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) The node joining the D. erecta-D. orena, D. melanogaster-D. simulans, and D. yakuba-D. teissieri lineages, and (2) The node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection. PMID:17071113

  19. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems

    PubMed Central

    Choma, Michael A.; Suter, Melissa J.; Vakoc, Benjamin J.; Bouma, Brett E.; Tearney, Guillermo J.

    2011-01-01

    SUMMARY The physiology of the Drosophila melanogaster cardiovascular system remains poorly characterized compared with its vertebrate counterparts. Basic measures of physiological performance remain unknown. It also is unclear whether subtle physiological defects observed in the human cardiovascular system can be reproduced in D. melanogaster. Here we characterize the cardiovascular physiology of D. melanogaster in its pre-pupal stage by using high-speed dye angiography and optical coherence tomography. The heart has vigorous pulsatile contractions that drive intracardiac, aortic and extracellular-extravascular hemolymph flow. Several physiological measures, including weight-adjusted cardiac output, body-length-adjusted aortic velocities and intracardiac shear forces, are similar to those in the closed vertebrate cardiovascular systems, including that of humans. Extracellular-extravascular flow in the pre-pupal D. melanogaster circulation drives convection-limited fluid transport. To demonstrate homology in heart dysfunction, we showed that, at the pre-pupal stage, a troponin I mutant, held-up2 (hdp2), has impaired systolic and diastolic heart wall velocities. Impaired heart wall velocities occur in the context of a non-dilated phenotype with a mildly depressed fractional shortening. We additionally derive receiver operating characteristic curves showing that heart wall velocity is a potentially powerful discriminator of systolic heart dysfunction. Our results demonstrate physiological homology and support the use of D. melanogaster as an animal model of complex cardiovascular disease. PMID:21183476

  20. Lutein extends the lifespan of Drosophila melanogaster.

    PubMed

    Zhang, Zesheng; Han, Shunkai; Wang, Hao; Wang, Tingting

    2014-01-01

    Lutein is one of the major carotenoids in most fruits and vegetables. The effect of lutein on the lifespan of Drosophila melanogaster was investigated. Results revealed that 0.1mg lutein/ml diet could prolong their mean lifespan from 49.0 to 54.6 days. This was consistent with a significant reduction in malonyldialdehyde (MDA) level and increase in antioxidant enzyme activities of the flies fed with lutein-treated diet compared with those fed with basal diet. Paraquat (PQ) and H2O2 treatment tests demonstrated that lutein could prolong the survival time of the flies. Real-time polymerase chain reaction (RT-PCR) analysis indicated the gene expression of superoxide dismutase (SOD; SOD1 and SOD2), and catalase (CAT) in the lutein-treated group was up-regulated relative to that of the control group. It was concluded that the lifespan-prolonging activity of lutein was partially by up-regulation of endogenous antioxidant enzymes.

  1. The Ran Pathway in Drosophila melanogaster Mitosis

    PubMed Central

    Chen, Jack W. C.; Barker, Amy R.; Wakefield, James G.

    2015-01-01

    Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance, and regulation of the microtubule (MT)-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs)—a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that it can provide important insights into the conserved functions on Ran during spindle formation. PMID:26636083

  2. Drosophila melanogaster metallothionein genes: Selection for duplications

    SciTech Connect

    Lange, B.W.

    1989-01-01

    The metallothionein genes of Drosophila melanogaster, Mtn and Mto, may play an important role in heavy-metal detoxification. In order to investigate the possibility of increased selection for duplications of these genes in natural populations exposed to high levels of heavy metals, I compared the frequencies of such duplications among flies collected from metal-contaminated and non-contaminated orchards in Pennsylvania, Tennessee, and Georgia. Contaminated of collection sites and of local flies was confirmed by atomic absorption spectrosphotometry. Six-nucleotide-recognizing restriction enzyme analysis was used to screen 1666 wild third chromosomes for Mtn duplications. A subset (327) of these lines was screened for Mto duplications: none were found. Cadmium tolerance test performed on F{sub 2} progeny of wild females failed to detect a difference in tolerance levels between flies from contaminated orchards and flies from control orchards. Estimates of sequence diversity among a subsample (92) of the chromosomes used in the duplication survey, including all 27 Mtn duplication chromosomes, were obtained using four-nucleotide-recognizing restriction enzyme analysis.

  3. Sleep and wakefulness in Drosophila melanogaster

    PubMed Central

    Cirelli, Chiara; Bushey, Daniel

    2009-01-01

    Summary Sleep is present and tightly regulated in every vertebrate species in which it has been carefully investigated, but what sleep is for remains a mystery. Sleep is also present in invertebrates, and an extensive analysis in Drosophila melanogaster has shown that sleep in fruit flies show most of the fundamental features that characterize sleep in mammals. In Drosophila, fly sleep consists of sustained periods of quiescence associated with an increased arousal threshold. Fly sleep is modulated by several of the same stimulants and hypnotics that affect mammalian sleep. Moreover, like in mammals, fly sleep shows remarkable interindividual variability. The expression of several genes involved in energy metabolism, synaptic plasticity, and the response to cellular stress varies in Drosophila between sleep and wakefulness, and the same occurs in rodents. Brain activity also changes in flies as a function of behavioral state. Furthermore, Drosophila sleep is tightly regulated in a circadian and homeostatic manner, and the homeostatic regulation is largely independent of the circadian regulation. After sleep deprivation recovery sleep in flies is longer in duration and more consolidated, as indicated by an increase in arousal threshold and fewer brief awakenings. Finally, sleep deprivation in flies impairs vigilance and performance. Because of the extensive similarities between flies and mammals, Drosophila is now being used as a promising model system for the genetic dissection of sleep. Over the last few years, mutagenesis screens have isolated several short sleeping mutants, a demonstration that that single genes can have a powerful effect on a complex trait like sleep. PMID:18591491

  4. Odor and pheromone detection in Drosophila melanogaster.

    PubMed

    Smith, Dean P

    2007-08-01

    Drosophila melanogaster has proven to be a useful model system to probe the mechanisms underlying the detection, discrimination, and perception of volatile odorants. The relatively small receptor repertoire of 62 odorant receptors makes the goal of understanding odor responses from the total receptor repertoire approachable in this system, and recent work has been directed toward this goal. In addition, new work not only sheds light but also raises more questions about the initial steps in odor perception in this system. Odorant receptor genes in Drosophila are predicted to encode seven transmembrane receptors, but surprising data suggest that these receptors may be inverted in the plasma membrane compared to classical G-protein coupled receptors. Finally, although some Drosophila odorant receptors are activated directly by odorant molecules, detection of a volatile pheromone, 11-cis vaccenyl acetate requires an extracellular adapter protein called LUSH for activation of pheromone sensitive neurons. Because pheromones are used by insects to trigger mating and other behaviors, these insights may herald new approaches to control behavior in pathogenic and agricultural pest insects.

  5. NECTARINE PROMOTES LONGEVITY IN DROSOPHILA MELANOGASTER

    PubMed Central

    Boyd, Olga; Weng, Peter; Sun, Xiaoping; Alberico, Thomas; Laslo, Mara; Obenland, David M.; Kern, Bradley; Zou, Sige

    2011-01-01

    Fruits containing high antioxidant capacities and other bioactivities are ideal for promoting longevity and healthspan. However, few fruits are known to improve the survival and healthspan in animals, let alone the underlying mechanisms. Here we investigate the effect of nectarine, a globally consumed fruit, on lifespan and healthspan in Drosophila melanogaster. Wild-type flies were fed the standard, dietary restriction (DR) or high fat diets supplemented with 0–4% nectarine extract. We measured lifespan, food intake, locomotor activity, fecundity, gene expression changes, and oxidative damage indicated by the level of 4-Hydroxynonenal-protein adduct in these flies. We also measured lifespan, locomotor activity and oxidative damage of sod1 mutant flies on the standard diet supplemented with 0–4% nectarine. Supplementation of 4% nectarine extended lifespan, increased fecundity and decreased expression of some metabolic genes, including a key gluconeogenesis gene PEPCK, and oxidative stress response genes, including peroxiredoxins, in female wild-type flies fed the standard, DR or high fat diet. Nectarine reduced oxidative damage in wild-type females fed the high fat diet. Moreover, nectarine improved the survival and reduced oxidative damage in female sod1 mutant flies. Together, these findings suggest that nectarine promotes longevity and healthspan partly through modulating glucose metabolism and reducing oxidative damage. PMID:21406223

  6. piRNA Biogenesis in Drosophila melanogaster.

    PubMed

    Huang, Xiawei; Fejes Tóth, Katalin; Aravin, Alexei A

    2017-09-27

    The PIWI-interacting RNA (piRNA) pathway is a conserved defense system that protects the genome integrity of the animal germline from deleterious transposable elements. Targets of silencing are recognized by small noncoding piRNAs that are processed from long precursor molecules. Although piRNAs and other classes of small noncoding RNAs, such as miRNAs and small interfering (si)RNAs, interact with members of the same family of Argonaute (Ago) proteins and their function in target repression is similar, the biogenesis of piRNAs differs from those of the other two small RNAs. Recently, many aspects of piRNA biogenesis have been revealed in Drosophila melanogaster. In this review, we elaborate on piRNA biogenesis in Drosophila somatic and germline cells. We focus on the mechanisms by which piRNA precursor transcription is regulated and highlight recent work that has advanced our understanding of piRNA precursor processing to mature piRNAs. We finish by discussing current models to the still unresolved question of how piRNA precursors are selected and channeled into the processing machinery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of Autophagic Responses in Drosophila melanogaster.

    PubMed

    Xu, T; Kumar, S; Denton, D

    2017-01-01

    Drosophila is an excellent model system for studying autophagy during animal development due to the availability of genetic reagents and opportunity for in vivo cell biological analysis. The regulation and mechanism of autophagy are highly evolutionarily conserved and the role of autophagy has been characterized during various stages of Drosophila development as well as following starvation. Studies in Drosophila have revealed novel insights into the role of distinct components of the autophagy machinery. This chapter describes protocols for examining autophagy during Drosophila development. A crucial step in the induction of autophagy is the incorporation of Atg8a into the autophagosome. This can be measured as autophagic puncta using live fluorescent imaging, immunostaining, or immunoblot analysis of LC3/Atg8a processing. The level of autophagy can also be examined using other specific components of the autophagy pathway as markers detected by immunofluorescent imaging. Based on the distinct morphology of autophagy, it can also be examined by transmission electron microscopy. In addition, one of the advantages of using Drosophila as a model is the ability to undertake genetic analysis of individual components of the autophagy machinery. Current approaches that can be used to monitor autophagy, including the overall flux and individual steps in Drosophila melanogaster, will be discussed. © 2017 Elsevier Inc. All rights reserved.

  8. The Role of AMPK in Drosophila melanogaster.

    PubMed

    Sinnett, Sarah E; Brenman, Jay E

    2016-01-01

    In the fruit fly, Drosophila melanogaster, mono-allelic expression of AMPK-α, -β, and -γ yields a single heterotrimeric energy sensor that regulates cellular and whole-body energetic homeostasis. The genetic simplicity of Drosophila, with only a single gene for each subunit, makes the fruit fly an appealing organism for elucidating the effects of AMPK mutations on signaling pathways and phenotypes. In addition, Drosophila presents researchers with an opportunity to use straightforward genetic approaches to elucidate metabolic signaling pathways that contain a level of complexity similar to that observed in mammalian pathways. Just as in mammals, however, the regulatory realm of AMPK function extends beyond metabolic rates and lipid metabolism. Indeed, experiments using Drosophila have shown that AMPK may exert protective effects with regard to life span and neurodegeneration. This chapter addresses a few of the research areas in which Drosophila has been used to elucidate the physiological functions of AMPK. In doing so, this chapter provides a primer for basic Drosophila nomenclature, thereby eliminating a communication barrier that persists for AMPK researchers trained in mammalian genetics.

  9. Alzheimer's Disease, Drosophila melanogaster and Polyphenols.

    PubMed

    Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2015-01-01

    Alzheimer's disease (AD) is an insidious neurological disorder that affects memory, one of the human brain's main cognitive functions. Around 5.2 million Americans currently have AD, and the number threatens to climb to 7 million by 2020. Our native country, Colombia, is no exception with an estimated 260,000 individuals to be affected by AD in 2020. A large, genetically-isolated community in Antioquia, Colombia, with early-onset familial Alzheimer's disease due to a presenilin-1 mutation is ideally suited for the study of molecular mechanisms of AD, and hence accelerate the discovery of new or alternative treatment approaches. In this regard, polyphenols--also known as polyhydroxyphenols--have shown antioxidant activity, gene regulation, metal chelator and anti-amyloidogenic aggregation effects. However, further in vitro and in vivo investigations are warranted to validate their use in clinical trials. Drosophila melanogaster is increasingly being used as a valid in vivo model of AD. Here, we summarise data published within the past 16 years (1998-2014) on the molecular biology of AD and the use of polyphenols in the fly to understand the molecular actions and feasibility of these compounds in the treatment of AD.

  10. Ferritin Assembly in Enterocytes of Drosophila melanogaster.

    PubMed

    Rosas-Arellano, Abraham; Vásquez-Procopio, Johana; Gambis, Alexis; Blowes, Liisa M; Steller, Hermann; Mollereau, Bertrand; Missirlis, Fanis

    2016-02-05

    Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated.

  11. Ferritin Assembly in Enterocytes of Drosophila melanogaster

    PubMed Central

    Rosas-Arellano, Abraham; Vásquez-Procopio, Johana; Gambis, Alexis; Blowes, Liisa M.; Steller, Hermann; Mollereau, Bertrand; Missirlis, Fanis

    2016-01-01

    Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated. PMID:26861293

  12. Gut-associated microbes of Drosophila melanogaster

    PubMed Central

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  13. Neurogenetics of female reproductive behaviors in Drosophila melanogaster.

    PubMed

    Laturney, Meghan; Billeter, Jean-Christophe

    2014-01-01

    We follow an adult Drosophila melanogaster female through the major reproductive decisions she makes during her lifetime, including habitat selection, precopulatory mate choice, postcopulatory physiological changes, polyandry, and egg-laying site selection. In the process, we review the molecular and neuronal mechanisms allowing females to integrate signals from both environmental and social sources to produce those behavioral outputs. We pay attention to how an understanding of D. melanogaster female reproductive behaviors contributes to a wider understanding of evolutionary processes such as pre- and postcopulatory sexual selection as well as sexual conflict. Within each section, we attempt to connect the theories that pertain to the evolution of female reproductive behaviors with the molecular and neurobiological data that support these theories. We draw attention to the fact that the evolutionary and mechanistic basis of female reproductive behaviors, even in a species as extensively studied as D. melanogaster, remains poorly understood.

  14. Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73

    PubMed Central

    Hoshino, Masataka; Qi, Mei-ling; Yoshimura, Natsue; Miyashita, Tomoyuki; Tagawa, Kazuhiko; Wada, Yo-ichi; Enokido, Yasushi; Marubuchi, Shigeki; Harjes, Phoebe; Arai, Nobutaka; Oyanagi, Kiyomitsu; Blandino, Giovanni; Sudol, Marius; Rich, Tina; Kanazawa, Ichiro; Wanker, Erich E.; Saitoe, Minoru; Okazawa, Hitoshi

    2006-01-01

    Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis, necrosis, or autophagy. The progression of TRIAD was extremely slow in comparison with other types of cell death. Gene expression profiling revealed the reduction of full-length yes-associated protein (YAP), a p73 cofactor to promote apoptosis, as specific to TRIAD. Furthermore, novel neuron-specific YAP isoforms (YAPΔCs) were sustained during TRIAD to suppress neuronal death in a dominant-negative fashion. YAPΔCs and activated p73 were colocalized in the striatal neurons of HD patients and mutant huntingtin (htt) transgenic mice. YAPΔCs also markedly attenuated Htt-induced neuronal death in primary neuron and Drosophila melanogaster models. Collectively, transcriptional repression induces a novel prototype of neuronal death associated with the changes of YAP isoforms and p73, which might be relevant to the HD pathology. PMID:16461361

  15. Quantitative trait locus mapping of gravitaxis behaviour in Drosophila melanogaster.

    PubMed

    Desroches, Christie E; Busto, Macarena; Riedl, Craig A L; Mackay, Trudy F C; Sokolowski, Marla B

    2010-06-01

    Drosophila melanogaster, like other organisms, move and orient themselves in response to the earth's gravitational force. The ability to sense and respond to gravity is essential for an organism to navigate and thrive in its environment. The genes underlying this behaviour in Drosophila remain elusive. Using 88 recombinant inbred lines, we have identified four quantitative trait loci (QTLs) that contribute to adult gravitaxis (geotaxis) behaviour in Drosophila. Candidate genes of interest were selected from the QTLs of highest significance based on their function in chordotonal organ formation. Quantitative complementation tests with these candidate genes revealed a role for skittles in adult gravitaxis behaviour in D. melanogaster.

  16. Regulation of CDPK isoforms during tuber development.

    PubMed

    Raíces, Marcela; Gargantini, Pablo Rubén; Chinchilla, Delphine; Crespi, Martín; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2003-07-01

    CDPK activities present during tuber development were analysed. A high CDPK activity was detected in the soluble fraction of early stolons and a lower one was detected in soluble and particulate fractions of induced stolons. The early and late CDPK activities displayed diverse specificity for in vitro substrates and different subcellular distribution. Western blot analysis revealed two CDPKs of 55 and 60 kDa that follow a precise spatial and temporal profile of expression. The 55 kDa protein was only detected in early-elongating stolons and the 60 kDa one was induced upon stolon swelling, correlating with early and late CDPK activities. A new member of the potato CDPK family, StCDPK3, was identified from a stolon cDNA library. Gene specific RT-PCR demonstrated that this gene is only expressed in early stolons, while the previously identified StCDPK1 is expressed upon stolon swelling. This expression profile suggests that StCDPK3 could correspond to the 55 kDa isoform while StCDPK1 could encode the 60 kDa isoform present in swelling stolons. StCDPK1 has myristoylation and palmitoylation consensus possibly involved in its dual intracellular localization. Transient expression studies with wild-type and mutated forms of StCDPK1 fused to GFP were used to show that subcellular localization of this isoform is controlled by myristoylation and palmitoylation. Altogether, our data suggest that sequential activation of StCDPK3 and StCDPK1 and the subcellular localisation of StCDPK1 might be critical regulatory steps of calcium signalling during potato tuber development.

  17. Genetics of alcohol consumption in Drosophila melanogaster.

    PubMed

    Fochler, S; Morozova, T V; Davis, M R; Gearhart, A W; Huang, W; Mackay, T F C; Anholt, R R H

    2017-09-01

    Individual variation in alcohol consumption in human populations is determined by genetic, environmental, social and cultural factors. In contrast to humans, genetic contributions to complex behavioral phenotypes can be readily dissected in Drosophila, where both the genetic background and environment can be controlled and behaviors quantified through simple high-throughput assays. Here, we measured voluntary consumption of ethanol in ∼3000 individuals of each sex from an advanced intercross population derived from 37 lines of the Drosophila melanogaster Genetic Reference Panel. Extreme quantitative trait loci mapping identified 385 differentially segregating allelic variants located in or near 291 genes at P < 10(-8) . The effects of single nucleotide polymorphisms associated with voluntary ethanol consumption are sex-specific, as found for other alcohol-related phenotypes. To assess causality, we used RNA interference knockdown or P{MiET1} mutants and their corresponding controls and functionally validated 86% of candidate genes in at least one sex. We constructed a genetic network comprised of 23 genes along with a separate trio and a pair of connected genes. Gene ontology analyses showed enrichment of developmental genes, including development of the nervous system. Furthermore, a network of human orthologs showed enrichment for signal transduction processes, protein metabolism and developmental processes, including nervous system development. Our results show that the genetic architecture that underlies variation in voluntary ethanol consumption is sexually dimorphic and partially overlaps with genetic factors that control variation in feeding behavior and alcohol sensitivity. This integrative genetic architecture is rooted in evolutionarily conserved features that can be extrapolated to human genetic interaction networks. © 2017 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley

  18. Optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.

  19. Expression of Contractile Protein Isoforms in Microgravity

    NASA Technical Reports Server (NTRS)

    Anderson, Page A. W.

    1996-01-01

    The general objective of this experiment is to determine the effect of space flight parameters, including microgravity, on ontogenesis and embryogenesis of Japanese quail. Nine U.S. and two Russian investigators are cooperating in this study. Specific objectives of the participating scientists include assessing the gross and microscopic morphological and histological development of the embryo, as well as the temporal and spacial development of specific cells, tissues, and organs. Temporally regulated production of specific proteins is also being investigated. Our objective is to determine the effects of microgravity on developmentally programmed expression of Troponin T and I isoforms known to regulate cardiac and skeletal muscle contraction.

  20. Multiple isoforms of GAGA factor, a critical component of chromatin structure.

    PubMed Central

    Benyajati, C; Mueller, L; Xu, N; Pappano, M; Gao, J; Mosammaparast, M; Conklin, D; Granok, H; Craig, C; Elgin, S

    1997-01-01

    The GAGA transcription factor of Drosophila melanogaster is ubiquitous and plays multiple roles. Characterization of cDNA clones and detection by domain- specific antibodies has revealed that the 70-90 kDa major GAGA species are encoded by two open reading frames producing GAGA factor proteins of 519 amino acids (GAGA-519) and 581 amino acids (GAGA-581), which share a common N-terminal region that is linked to two different glutamine-rich C-termini. Purified recombinant GAGA-519 and GAGA-581 proteins can form homomeric complexes that bind specifically to a single GAGA sequence in vitro. The two GAGA isoforms also function similarly in transient transactivation assays in tissue culture cells and in chromatin remodeling experiments in vitro . Only GAGA-519 protein accumulates during the first 6 h of embryogenesis. Thereafter, both GAGA proteins are present in nearly equal amounts throughout development; in larval salivary gland nuclei they colocalize completely to specific regions along the euchromatic arms of the polytene chromosomes. Coimmunoprecipitation of GAGA-519 and GAGA-581 from crude nuclear extracts and from mixtures of purified recombinant proteins, indicates direct interactions. We suggest that homomeric complexes of GAGA-519 may function during early embryogenesis; both homomeric and heteromeric complexes of GAGA-519 and GAGA-581 may function later. PMID:9241251

  1. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    SciTech Connect

    Ivanov, Sergey V.; Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I.

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  2. VEGFA splicing: divergent isoforms regulate spermatogonial stem cell maintenance

    PubMed Central

    Sargent, Kevin M.; Clopton, Debra T.; Lu, Ningxia; Pohlmeier, William E.

    2015-01-01

    Despite being well-known for regulating angiogenesis in both normal and tumorigenic environments, vascular endothelial growth factor A (VEGFA) has been recently implicated in male fertility, namely in the maintenance of spermatogonial stem cells (SSC). The VEGFA gene can be spliced into multiple distinct isoforms that are either angiogenic or antiangiogenic in nature. Although studies have demonstrated the alternative splicing of VEGFA, including the divergent roles of the two isoform family types, many investigations do not differentiate between them. Data concerning VEGFA in the mammalian testis are limited, but the various angiogenic isoforms appear to promote seminiferous cord formation and to form a gradient across which cells may migrate. Treatment with either antiangiogenic isoforms of VEGFA or with inhibitors to angiogenic signaling impair these processes. Serendipitously, expression of KDR, the primary receptor for both types of VEGFA isoforms, was observed on male germ cells. These findings led to further investigation of the way that VEGFA elicits avascular functions within testes. Following treatment of donor perinatal male mice with either antiangiogenic VEGFA165b or angiogenic VEGFA164 isoforms, seminiferous tubules were less colonized following transplantation with cells from VEGFA165b-treated donors. Thus, VEGFA165b and possibly other antiangiogenic isoforms of VEGFA reduce SSC number either by promoting premature differentiation, inducing cell death, or by preventing SSC formation. Thus, angiogenic isoforms of VEGFA are hypothesized to promote SSC self-renewal, and the divergent isoforms are thought to balance one another to maintain SSC homeostasis in vivo. PMID:26553653

  3. A systematic nomenclature for mammalian tropomyosin isoforms.

    PubMed

    Geeves, Michael A; Hitchcock-DeGregori, Sarah E; Gunning, Peter W

    2015-04-01

    Tropomyosin, a ubiquitous protein in animals and fungi, is associated with the actin cytoskeleton and is involved with stabilising actin filaments and regulating the interaction of the filament with other actin binding proteins. The protein is best known for its role in regulating the interaction between actin and myosin in muscle contraction but in recent years its role as a major player in the organisation and dynamics of the cytoskeleton has been increasingly recognised. In mammals Tpm is expressed from four distinct genes and alternate splicing of each gene can produce a total of up to 40 different mRNA variants most of which are expressed as proteins. We are expecting a renaissance in the study of tropomyosins as the roles of these different isoforms are beginning to be deciphered. However, it is our belief that such a renaissance is being limited by confusion over the naming systems for the tropomyosin isoforms. These result in even experienced workers struggling to reconcile work done in different laboratories and at different times. We propose here a systematic nomenclature for tropomyosin based on the best current practice. We recommend the adoption of these names and a cross-reference to the table of alternate names and accession numbers for protein sequences is included here. The National Center for Biotechnology Information (NCBI) website has been amended to include the nomenclature for the human, mouse and rat genes.

  4. Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster

    PubMed Central

    Dembeck, Lauren M.; Huang, Wen; Magwire, Michael M.; Lawrence, Faye; Lyman, Richard F.; Mackay, Trudy F. C.

    2015-01-01

    Pigmentation varies within and between species and is often adaptive. The amount of pigmentation on the abdomen of Drosophila melanogaster is a relatively simple morphological trait, which serves as a model for mapping the genetic basis of variation in complex phenotypes. Here, we assessed natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel, derived from the Raleigh, NC population. We quantified the proportion of melanization on the two most posterior abdominal segments, tergites 5 and 6 (T5, T6). We found significant genetic variation in the proportion of melanization and high broad-sense heritabilities for each tergite. Genome-wide association studies identified over 150 DNA variants associated with the proportion of melanization on T5 (84), T6 (34), and the difference between T5 and T6 (35). Several of the top variants associated with variation in pigmentation are in tan, ebony, and bric-a-brac1, genes known to affect D. melanogaster abdominal pigmentation. Mutational analyses and targeted RNAi-knockdown showed that 17 out of 28 (61%) novel candidate genes implicated by the genome-wide association study affected abdominal pigmentation. Several of these genes are involved in developmental and regulatory pathways, chitin production, cuticle structure, and vesicle formation and transport. These findings show that genetic variation may affect multiple steps in pathways involved in tergite development and melanization. Variation in these novel candidates may serve as targets for adaptive evolution and sexual selection in D. melanogaster. PMID:25933381

  5. Geographical analysis of diapause inducibility in European Drosophila melanogaster populations.

    PubMed

    Pegoraro, Mirko; Zonato, Valeria; Tyler, Elizabeth R; Fedele, Giorgio; Kyriacou, Charalambos P; Tauber, Eran

    2017-04-01

    Seasonal overwintering in insects represents an adaptation to stressful environments and in European Drosophila melanogaster females, low temperatures and short photoperiods can induce an ovarian diapause. Diapause may represent a recent (<15Ky) adaptation to the colonisation of temperate Europe by D. melanogaster from tropical sub-Saharan Africa, because African D. melanogaster and the sibling species D. simulans, have been reported to fail to undergo diapause. Over the past few centuries, D. melanogaster have also invaded North America and Australia, and eastern populations on both continents show a predictable latitudinal cline in diapause induction. In Europe however, a new diapause-enhancing timeless allele, ls-tim, is observed at high levels in southern Italy (∼80%), where it appears to have arisen and has spread throughout the continent with a frequency of ∼20% in Scandinavia. Given the phenotype of ls-tim and its geographical distribution, we might predict that it would work against any latitudinal cline in diapause induction within Europe. Indeed we reveal that any latitudinal cline for diapause in Europe is very weak, as predicted by ls-tim frequencies. In contrast, we determine ls-tim frequencies in North America and observe that they would be expected to strengthen the latitudinal pattern of diapause. Our results reveal how a newly arisen mutation, can, via the stochastic nature of where it initially arose, blur an otherwise adaptive geographical pattern. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. P element excision in drosophila melanogaster and related drosophilids

    USDA-ARS?s Scientific Manuscript database

    The frequency of P element excision and the structure of the resulting excision products were determined in three drosophilid species, Drosophila melanogaster, D. virilis, and Chymomyza procnemis. A transient P element mobility assay was conducted in the cells of developing insect embryos, but unlik...

  7. Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster.

    PubMed

    Dembeck, Lauren M; Huang, Wen; Magwire, Michael M; Lawrence, Faye; Lyman, Richard F; Mackay, Trudy F C

    2015-05-01

    Pigmentation varies within and between species and is often adaptive. The amount of pigmentation on the abdomen of Drosophila melanogaster is a relatively simple morphological trait, which serves as a model for mapping the genetic basis of variation in complex phenotypes. Here, we assessed natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel, derived from the Raleigh, NC population. We quantified the proportion of melanization on the two most posterior abdominal segments, tergites 5 and 6 (T5, T6). We found significant genetic variation in the proportion of melanization and high broad-sense heritabilities for each tergite. Genome-wide association studies identified over 150 DNA variants associated with the proportion of melanization on T5 (84), T6 (34), and the difference between T5 and T6 (35). Several of the top variants associated with variation in pigmentation are in tan, ebony, and bric-a-brac1, genes known to affect D. melanogaster abdominal pigmentation. Mutational analyses and targeted RNAi-knockdown showed that 17 out of 28 (61%) novel candidate genes implicated by the genome-wide association study affected abdominal pigmentation. Several of these genes are involved in developmental and regulatory pathways, chitin production, cuticle structure, and vesicle formation and transport. These findings show that genetic variation may affect multiple steps in pathways involved in tergite development and melanization. Variation in these novel candidates may serve as targets for adaptive evolution and sexual selection in D. melanogaster.

  8. Biases in Drosophila melanogaster protein trap screens

    PubMed Central

    Aleksic, Jelena; Lazic, Ranko; Müller, Ilka; Russell, Steven R; Adryan, Boris

    2009-01-01

    Background The ability to localise or follow endogenous proteins in real time in vivo is of tremendous utility for cell biology or systems biology studies. Protein trap screens utilise the random genomic insertion of a transposon-borne artificial reporter exon (e.g. encoding the green fluorescent protein, GFP) into an intron of an endogenous gene to generate a fluorescent fusion protein. Despite recent efforts aimed at achieving comprehensive coverage of the genes encoded in the Drosophila genome, the repertoire of genes that yield protein traps is still small. Results We analysed the collection of available protein trap lines in Drosophila melanogaster and identified potential biases that are likely to restrict genome coverage in protein trap screens. The protein trap screens investigated here primarily used P-element vectors and thus exhibit some of the same positional biases associated with this transposon that are evident from the comprehensive Drosophila Gene Disruption Project. We further found that protein trap target genes usually exhibit broad and persistent expression during embryonic development, which is likely to facilitate better detection. In addition, we investigated the likely influence of the GFP exon on host protein structure and found that protein trap insertions have a significant bias for exon-exon boundaries that encode disordered protein regions. 38.8% of GFP insertions land in disordered protein regions compared with only 23.4% in the case of non-trapping P-element insertions landing in coding sequence introns (p < 10-4). Interestingly, even in cases where protein domains are predicted, protein trap insertions frequently occur in regions encoding surface exposed areas that are likely to be functionally neutral. Considering the various biases observed, we predict that less than one third of intron-containing genes are likely to be amenable to trapping by the existing methods. Conclusion Our analyses suggest that the utility of P

  9. Circadian Rhythms and Sleep in Drosophila melanogaster.

    PubMed

    Dubowy, Christine; Sehgal, Amita

    2017-04-01

    The advantages of the model organism Drosophila melanogaster, including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful

  10. Biases in Drosophila melanogaster protein trap screens.

    PubMed

    Aleksic, Jelena; Lazic, Ranko; Müller, Ilka; Russell, Steven R; Adryan, Boris

    2009-05-28

    The ability to localise or follow endogenous proteins in real time in vivo is of tremendous utility for cell biology or systems biology studies. Protein trap screens utilise the random genomic insertion of a transposon-borne artificial reporter exon (e.g. encoding the green fluorescent protein, GFP) into an intron of an endogenous gene to generate a fluorescent fusion protein. Despite recent efforts aimed at achieving comprehensive coverage of the genes encoded in the Drosophila genome, the repertoire of genes that yield protein traps is still small. We analysed the collection of available protein trap lines in Drosophila melanogaster and identified potential biases that are likely to restrict genome coverage in protein trap screens. The protein trap screens investigated here primarily used P-element vectors and thus exhibit some of the same positional biases associated with this transposon that are evident from the comprehensive Drosophila Gene Disruption Project. We further found that protein trap target genes usually exhibit broad and persistent expression during embryonic development, which is likely to facilitate better detection. In addition, we investigated the likely influence of the GFP exon on host protein structure and found that protein trap insertions have a significant bias for exon-exon boundaries that encode disordered protein regions. 38.8% of GFP insertions land in disordered protein regions compared with only 23.4% in the case of non-trapping P-element insertions landing in coding sequence introns (p < 10(-4)). Interestingly, even in cases where protein domains are predicted, protein trap insertions frequently occur in regions encoding surface exposed areas that are likely to be functionally neutral. Considering the various biases observed, we predict that less than one third of intron-containing genes are likely to be amenable to trapping by the existing methods. Our analyses suggest that the utility of P-element vectors for protein trap screens

  11. Isoforms of Melanopsin Mediate Different Behavioral Responses to Light.

    PubMed

    Jagannath, Aarti; Hughes, Steven; Abdelgany, Amr; Pothecary, Carina A; Di Pretoro, Simona; Pires, Susana S; Vachtsevanos, Athanasios; Pilorz, Violetta; Brown, Laurence A; Hossbach, Markus; MacLaren, Robert E; Halford, Stephanie; Gatti, Silvia; Hankins, Mark W; Wood, Matthew J A; Foster, Russell G; Peirson, Stuart N

    2015-09-21

    Melanopsin (OPN4) is a retinal photopigment that mediates a wide range of non-image-forming (NIF) responses to light including circadian entrainment, sleep induction, the pupillary light response (PLR), and negative masking of locomotor behavior (the acute suppression of activity in response to light). How these diverse NIF responses can all be mediated by a single photopigment has remained a mystery. We reasoned that the alternative splicing of melanopsin could provide the basis for functionally distinct photopigments arising from a single gene. The murine melanopsin gene is indeed alternatively spliced, producing two distinct isoforms, a short (OPN4S) and a long (OPN4L) isoform, which differ only in their C terminus tails. Significantly, both isoforms form fully functional photopigments. Here, we show that different isoforms of OPN4 mediate different behavioral responses to light. By using RNAi-mediated silencing of each isoform in vivo, we demonstrated that the short isoform (OPN4S) mediates light-induced pupillary constriction, the long isoform (OPN4L) regulates negative masking, and both isoforms contribute to phase-shifting circadian rhythms of locomotor behavior and light-mediated sleep induction. These findings demonstrate that splice variants of a single receptor gene can regulate strikingly different behaviors.

  12. Isoforms of Melanopsin Mediate Different Behavioral Responses to Light

    PubMed Central

    Jagannath, Aarti; Hughes, Steven; Abdelgany, Amr; Pothecary, Carina A.; Di Pretoro, Simona; Pires, Susana S.; Vachtsevanos, Athanasios; Pilorz, Violetta; Brown, Laurence A.; Hossbach, Markus; MacLaren, Robert E.; Halford, Stephanie; Gatti, Silvia; Hankins, Mark W.; Wood, Matthew J.A.; Foster, Russell G.; Peirson, Stuart N.

    2015-01-01

    Summary Melanopsin (OPN4) is a retinal photopigment that mediates a wide range of non-image-forming (NIF) responses to light [1, 2] including circadian entrainment [3], sleep induction [4], the pupillary light response (PLR) [5], and negative masking of locomotor behavior (the acute suppression of activity in response to light) [6]. How these diverse NIF responses can all be mediated by a single photopigment has remained a mystery. We reasoned that the alternative splicing of melanopsin could provide the basis for functionally distinct photopigments arising from a single gene. The murine melanopsin gene is indeed alternatively spliced, producing two distinct isoforms, a short (OPN4S) and a long (OPN4L) isoform, which differ only in their C terminus tails [7]. Significantly, both isoforms form fully functional photopigments [7]. Here, we show that different isoforms of OPN4 mediate different behavioral responses to light. By using RNAi-mediated silencing of each isoform in vivo, we demonstrated that the short isoform (OPN4S) mediates light-induced pupillary constriction, the long isoform (OPN4L) regulates negative masking, and both isoforms contribute to phase-shifting circadian rhythms of locomotor behavior and light-mediated sleep induction. These findings demonstrate that splice variants of a single receptor gene can regulate strikingly different behaviors. PMID:26320947

  13. Tunable protein synthesis by transcript isoforms in human cells

    PubMed Central

    Floor, Stephen N; Doudna, Jennifer A

    2016-01-01

    Eukaryotic genes generate multiple RNA transcript isoforms though alternative transcription, splicing, and polyadenylation. However, the relationship between human transcript diversity and protein production is complex as each isoform can be translated differently. We fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed regulatory features that control ribosome occupancy and translational output of each transcript isoform. We extracted a panel of 5′ and 3′ untranslated regions that control protein production from an unrelated gene in cells over a 100-fold range. Select 5′ untranslated regions exert robust translational control between cell lines, while 3′ untranslated regions can confer cell type-specific expression. These results expose the large dynamic range of transcript-isoform-specific translational control, identify isoform-specific sequences that control protein output in human cells, and demonstrate that transcript isoform diversity must be considered when relating RNA and protein levels. DOI: http://dx.doi.org/10.7554/eLife.10921.001 PMID:26735365

  14. Spinach pyruvate kinase isoforms: partial purification and regulatory properties

    SciTech Connect

    Baysdorfer, C.; Bassham, J.A.

    1984-02-01

    Pyruvate kinase from spinach (Spinacea oleracea L.) leaves consists of two isoforms, separable by blue agarose chromatography. Both isoforms share similar pH profiles and substrate and alternate nucleotide K/sub m/ values. In addition, both isoforms are inhibited by oxalate and ATP and activated by AMP. The isoforms differ in their response to three key metabolites; citrate, aspartate, and glutamate. The first isoform is similar to previously reported plant pyruvate kinases in its sensitivity to citrate inhibition. The K/sub i/ for this inhibition is 1.2 millimolar citrate. The second isoform is not affected by citrate but is regulated by aspartate and glutamate. Aspartate is an activator with a K/sub a/ of 0.05 millimolar, and glutamate is an inhibitor with a K/sub i/ of 0.68 millimolar. A pyruvate kinase with these properties has not been previously reported. Based on these considerations, the authors suggest that the activity of the first isoform is regulated by respiratory metabolism. The second isoform, in contrast, may be regulated by the demand for carbon skeletons for use in ammonia assimilation.

  15. A novel functional rabbit IL- 7 isoform

    PubMed Central

    Siewe, Basile T.; Kalis, Susan L.; Esteves, Pedro J.; Zhou, Tong; Knight, Katherine L.

    2010-01-01

    IL-7 is required for B cell development in mouse and is a key regulator of T cell development and peripheral T cell homeostasis in mouse and human. Recently, we found that IL-7 is expressed in rabbit bone marrow and in vitro, is required for differentiation of lymphoid progenitors to B and T lineage cells. Herein, we report the identification of a novel rabbit IL-7 isoform, IL-7II. Recombinant IL-7II (rIL-7II) binds lymphocytes via the IL-7R and induces phosphorylation of STAT5. Further, rIL-7II supports proliferation and differentiation of BM progenitor cells into B and T lineage cells. IL7-II is generated by alternative splicing, with an 11 amino acid insertion encoded by a separate exon, exon 2b. Exon 2b is conserved in other lagomorphs, in Perissodactyla, Artiodactyla, and Carnivora, but is absent in mouse and human. PMID:20304004

  16. Evidence for leptin receptor isoforms heteromerization at the cell surface.

    PubMed

    Bacart, Johan; Leloire, Audrey; Levoye, Angélique; Froguel, Philippe; Jockers, Ralf; Couturier, Cyril

    2010-06-03

    Leptin mediates its metabolic effects through several leptin receptor (LEP-R) isoforms. In humans, long (LEPRb) and short (LEPRa,c,d) isoforms are generated by alternative splicing. Most of leptin's effects are believed to be mediated by the OB-Rb isoform. However, the role of short LEPR isoforms and the possible existence of heteromers between different isoforms are poorly understood. Using BRET1 and optimized co-immunoprecipitation, we observed LEPRa/b and LEPRb/c heteromers located at the plasma membrane and stabilized by leptin. Given the widespread coexpression of LEPRa and LEPRb, our results suggest that LEPRa/b heteromers may represent a major receptor species in most tissues. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Shaking B Mediates Synaptic Coupling between Auditory Sensory Neurons and the Giant Fiber of Drosophila melanogaster

    PubMed Central

    Bacon, Jonathan P.; Blagburn, Jonathan M.

    2016-01-01

    The Johnston’s Organ neurons (JONs) form chemical and electrical synapses onto the giant fiber neuron (GF), as part of the neuronal circuit that mediates the GF escape response in Drosophila melanogaster. The purpose of this study was to identify which of the 8 Drosophila innexins (invertebrate gap junction proteins) mediates the electrical connection at this synapse. The GF is known to express Shaking B (ShakB), specifically the ShakB(N+16) isoform only, at its output synapses in the thorax. The shakB2 mutation disrupts these GF outputs and also abolishes JON-GF synaptic transmission. However, the identity of the innexin that forms the presynaptic hemichannels in the JONs remains unknown. We used electrophysiology, immunocytochemistry and dye injection, along with presynaptically-driven RNA interference, to investigate this question. The amplitude of the compound action potential recorded in response to sound from the base of the antenna (sound-evoked potential, or SEP) was reduced by RNAi of the innexins Ogre, Inx3, Inx6 and, to a lesser extent Inx2, suggesting that they could be required in JONs for proper development, excitability, or synchronization of action potentials. The strength of the JON-GF connection itself was reduced to background levels only by RNAi of shakB, not of the other seven innexins. ShakB knockdown prevented Neurobiotin coupling between GF and JONs and removed the plaques of ShakB protein immunoreactivity that are present at the region of contact. Specific shakB RNAi lines that are predicted to target the ShakB(L) or ShakB(N) isoforms alone did not reduce the synaptic strength, implying that it is ShakB(N+16) that is required in the presynaptic neurons. Overexpression of ShakB(N+16) in JONs caused the formation of ectopic dye coupling, whereas ShakB(N) prevented it altogether, supporting this conclusion and also suggesting that gap junction proteins may have an instructive role in synaptic target choice. PMID:27043822

  18. Molecular cloning and expression of a new rat liver cell-CAM105 isoform. Differential phosphorylation of isoforms.

    PubMed Central

    Culic, O; Huang, Q H; Flanagan, D; Hixson, D; Lin, S H

    1992-01-01

    An hepatocyte cell-adhesion molecule (cell-CAM105) was recently shown to be identical with the liver plasma-membrane ecto-ATPase. This protein has structural features of the immunoglobulin superfamily and is homologous with carcinoembryonic antigen proteins. We have cloned a cDNA encoding a new form of the cell-CAM105 which is a variant of the previously isolated clone. In addition to having a shorter cytoplasmic domain, the new isoform also has substitutions clustered in the first 130 amino acids of the extracellular domain. Both of these isoforms are expressed on the surface of hepatocytes with the shorter variant being the predominant form. The previously isolated cell-CAM105 (long form) has more potential phosphorylation sites than does the new isoform (short form). Both isoforms are found to be phosphorylated after incubation with [32P]phosphate in vitro, with the long form being phosphorylated to a significantly higher extent. This observed differential phosphorylation could be one of the mechanisms for the regulation of isoform functions. Using antipeptide antibodies specific for the long form and antibodies that are reactive with both isoforms, we have shown that both isoforms are localized in the canalicular domain of hepatocytes. The sequence differences between these two isoforms suggest that they are probably derived from different genes rather than from alternative splicing. Images Fig. 2. Fig. 3. Fig. 4. PMID:1637321

  19. Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster.

    PubMed

    Allen, Aaron M; Anreiter, Ina; Neville, Megan C; Sokolowski, Marla B

    2017-02-01

    Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging's functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for(0) null allele, and used recombineering to reintegrate a full copy of the gene, generating the {for(BAC)} rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging's transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1-4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging's functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis.

  20. Highly Structured Asian Drosophila melanogaster Populations: A New Tool for Hitchhiking Mapping?

    PubMed Central

    Schlötterer, Christian; Neumeier, Hannah; Sousa, Carla; Nolte, Viola

    2006-01-01

    Mark-recapture experiments showed that D. melanogaster has high dispersal capabilities. Consistent with a highly migratory species, only very low levels of differentiation were described for D. melanogaster populations from the same continent. We reinvestigated the population structure in D. melanogaster using 49 polymorphic markers in 23 natural populations. While European and American D. melanogaster populations showed very low differentiation, Asian D. melanogaster populations were highly structured. Despite the high differentiation of Asian flies, we confirm that all non-African populations are derived from a single colonization event. We propose that the availability of D. melanogaster populations with high and low population structure provides a novel tool for the identification of ecologically important adaptations by hitchhiking mapping. PMID:16204221

  1. Engineering of Insulin Receptor Isoform-Selective Insulin Analogues

    PubMed Central

    Glendorf, Tine; Stidsen, Carsten E.; Norrman, Mathias; Nishimura, Erica; Sørensen, Anders R.; Kjeldsen, Thomas

    2011-01-01

    Background The insulin receptor (IR) exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues. Methodology/Principal Findings Insulin analogue libraries were constructed by total amino acid scanning mutagenesis. The relative binding affinities for the A and B isoform of the IR were determined by competition assays using scintillation proximity assay technology. Structural information was obtained by X-ray crystallography. Introduction of B25A or B25N mutations resulted in analogues with a 2-fold preference for the B compared to the A isoform, whereas the opposite was observed with a B25Y substitution. An acidic amino acid residue at position B27 caused an additional 2-fold selective increase in affinity for the receptor B isoform for analogues bearing a B25N mutation. Furthermore, the combination of B25H with either B27D or B27E also resulted in B isoform-preferential analogues (2-fold preference) even though the corresponding single mutation analogues displayed no differences in relative isoform binding affinity. Conclusions/Significance We have discovered a new class of IR isoform-selective insulin analogues with 2–4-fold differences in relative binding affinities for either the A or the B isoform of the IR compared to human insulin. Our results demonstrate that a mutation at position B25 alone or in combination with a mutation at position B27 in the insulin molecule confers IR isoform selectivity. Isoform-preferential analogues may provide new opportunities for developing insulin analogues with improved clinical benefits. PMID:21625452

  2. Adiponectin isoforms: a potential therapeutic target in rheumatoid arthritis?

    PubMed

    Frommer, Klaus W; Schäffler, Andreas; Büchler, Christa; Steinmeyer, Jürgen; Rickert, Markus; Rehart, Stefan; Brentano, Fabia; Gay, Steffen; Müller-Ladner, Ulf; Neumann, Elena

    2012-10-01

    Several clinical studies have suggested the adipocytokine adiponectin is involved in the progression of rheumatoid arthritis (RA). From this point of view, adiponectin might present a new therapeutic target. However, as adiponectin also exerts beneficial effects in the human organism, a strategy that would allow its detrimental effects to be abolished while maintaining the positive effects would be highly favourable. To elucidate such a strategy, the authors analysed whether the different adiponectin isoforms induce diverging effects, especially with regard to rheumatoid arthritis synovial fibroblasts (RASF), a central cell type in RA pathogenesis capable of invading into and destroying cartilage. Affymetrix microarrays were used to screen for changes in gene expression of RASF. Messenger RNA levels were quantified by real-time PCR, protein levels by immunoassay. The migration of RASF and primary human lymphocytes was analysed using a two-chamber migration assay. In RASF, the individual adiponectin isoforms induced numerous genes/proteins relevant in RA pathogenesis to clearly different extents. In general, the most potent isoforms were the high molecular weight/middle molecular weight isoforms and the globular isoform, while the least potent isoform was the adiponectin trimer. The chemokines secreted by RASF upon adiponectin stimulation resulted in an increased migration of RASF and lymphocytes. The results clearly suggest a pro-inflammatory and joint-destructive role of all adiponectin isoforms in RA pathophysiology, indicating that in chronic inflammatory joint diseases the detrimental effects outweigh the beneficial effects of adiponectin.

  3. Structural Basis of Protein Kinase C Isoform Function

    PubMed Central

    STEINBERG, SUSAN F.

    2010-01-01

    Protein kinase C (PKC) isoforms comprise a family of lipid-activated enzymes that have been implicated in a wide range of cellular functions. PKCs are modular enzymes comprised of a regulatory domain (that contains the membrane-targeting motifs that respond to lipid cofactors, and in the case of some PKCs calcium) and a relatively conserved catalytic domain that binds ATP and substrates. These enzymes are coexpressed and respond to similar stimulatory agonists in many cell types. However, there is growing evidence that individual PKC isoforms subserve unique (and in some cases opposing) functions in cells, at least in part as a result of isoform-specific subcellular compartmentalization patterns, protein-protein interactions, and posttranslational modifications that influence catalytic function. This review focuses on the structural basis for differences in lipid cofactor responsiveness for individual PKC isoforms, the regulatory phosphorylations that control the normal maturation, activation, signaling function, and downregulation of these enzymes, and the intra-/intermolecular interactions that control PKC isoform activation and subcellular targeting in cells. A detailed understanding of the unique molecular features that underlie isoform-specific posttranslational modification patterns, protein-protein interactions, and subcellular targeting (i.e., that impart functional specificity) should provide the basis for the design of novel PKC isoform-specific activator or inhibitor compounds that can achieve therapeutically useful changes in PKC signaling in cells. PMID:18923184

  4. Alternative relay domains of Drosophila melanogaster myosin differentially affect ATPase activity, in vitro motility, myofibril structure and muscle function.

    PubMed

    Kronert, William A; Dambacher, Corey M; Knowles, Aileen F; Swank, Douglas M; Bernstein, Sanford I

    2008-06-06

    The relay domain of myosin is hypothesized to function as a communication pathway between the nucleotide-binding site, actin-binding site and the converter domain. In Drosophila melanogaster, a single myosin heavy chain gene encodes three alternative relay domains. Exon 9a encodes the indirect flight muscle isoform (IFI) relay domain, whereas exon 9b encodes one of the embryonic body wall isoform (EMB) relay domains. To gain a better understanding of the function of the relay domain and the differences imparted by the IFI and the EMB versions, we constructed two transgenic Drosophila lines expressing chimeric myosin heavy chains in indirect flight muscles lacking endogenous myosin. One expresses the IFI relay domain in the EMB backbone (EMB-9a), while the second expresses the EMB relay domain in the IFI backbone (IFI-9b). Our studies reveal that the EMB relay domain is functionally equivalent to the IFI relay domain when it is substituted into IFI. Essentially no differences in ATPase activity, actin-sliding velocity, flight ability at room temperature or muscle structure are observed in IFI-9b compared to native IFI. However, when the EMB relay domain is replaced with the IFI relay domain, we find a 50% reduction in actin-activated ATPase activity, a significant increase in actin affinity, abolition of actin sliding, defects in myofibril assembly and rapid degeneration of muscle structure compared to EMB. We hypothesize that altered relay domain conformational changes in EMB-9a impair intramolecular communication with the EMB-specific converter domain. This decreases transition rates involving strongly bound actomyosin states, leading to a reduced ATPase rate and loss of actin motility.

  5. [Ecological imprinting and protein biosynthesis. Experiments with Drosophila melanogaster Meigen].

    PubMed

    Laudien, H; Iken, H H

    1977-06-01

    According to the "host selection principle", butterflies and other herbivorous insects preferentially lay their eggs on those plant races that they fed on when young. This is also true for karpophagic and parasitic insects. The selection of specific chemical conditions could be either inherited or acquired. If learned information determines host selection, we have a case of imprinting, as a) reception and use of the information are not simultaneous, b) there is no reward. In experiments with Drosophila melanogaster we marked the egg deposition medium with ethanol, acetic acid, peppermint oil, or benzaldehyd. The flies spontaneously prefer mediums with ethanol and acetic acid, and reject peppermint oil and benzaldehyd. If they are reared in one of these media, the preference for it is increased, or the rejection rate lowered. Rearing with actinomycin C neutralizes the effect of the other markers. It is concluded that actinomycin C blocks imprinting on the egg deposition substrate in Drosophila melanogaster.

  6. Complete mitochondrial genome of the Père David's Vole, Eothenomys melanogaster (Rodentia: Arvicolinae).

    PubMed

    Chen, Shunde; Chen, Guiying; Wei, Haixue; Wang, Qiong

    2016-07-01

    The Père David's Vole, Eothenomys melanogaster belongs to subfamily Arvicolinae. It is widespread in south China, and ranges into northern Southeast Asia. In this study, the complete mitochondrial genome sequence of Eothenomys melanogaster was determined. The mitogenome is 16,331 base pairs in length. The nucleotide sequence data of 12 heavy-strand protein-coding genes of E. melanogaster and other 17 rodents were used for phylogenetic analyses. Tree constructed using Bayesian phylogenetic methods demonstrated that E. melanogaster as a sister to E. chinensis, was clustered in subfamily Arvicolinae. The monophyly of the genus Eothenomys was supported as well with Eothenomys sister to the genus Myodes.

  7. Nonmuscle myosin II isoforms coassemble in living cells.

    PubMed

    Beach, Jordan R; Shao, Lin; Remmert, Kirsten; Li, Dong; Betzig, Eric; Hammer, John A

    2014-05-19

    Nonmuscle myosin II (NM II) powers myriad developmental and cellular processes, including embryogenesis, cell migration, and cytokinesis [1]. To exert its functions, monomers of NM II assemble into bipolar filaments that produce a contractile force on the actin cytoskeleton. Mammalian cells express up to three isoforms of NM II (NM IIA, IIB, and IIC), each of which possesses distinct biophysical properties and supports unique as well as redundant cellular functions [2-8]. Despite previous efforts [9-13], it remains unclear whether NM II isoforms assemble in living cells to produce mixed (heterotypic) bipolar filaments or whether filaments consist entirely of a single isoform (homotypic). We addressed this question using fluorescently tagged versions of NM IIA, IIB, and IIC, isoform-specific immunostaining of the endogenous proteins, and two-color total internal reflection fluorescence structured-illumination microscopy, or TIRF-SIM, to visualize individual myosin II bipolar filaments inside cells. We show that NM II isoforms coassemble into heterotypic filaments in a variety of settings, including various types of stress fibers, individual filaments throughout the cell, and the contractile ring. We also show that the differential distribution of NM IIA and NM IIB typically seen in confocal micrographs of well-polarized cells is reflected in the composition of individual bipolar filaments. Interestingly, this differential distribution is less pronounced in freshly spread cells, arguing for the existence of a sorting mechanism acting over time. Together, our work argues that individual NM II isoforms are potentially performing both isoform-specific and isoform-redundant functions while coassembled with other NM II isoforms.

  8. Differential localization of tropomyosin isoforms in cultured nonmuscle cells

    PubMed Central

    1988-01-01

    We have previously shown that chicken embryo fibroblast (CEF) cells and human bladder carcinoma (EJ) cells contain multiple isoforms of tropomyosin, identified as a, b, 1, 2, and 3 in CEF cells and 1, 2, 3, 4, and 5 in human EJ cells by one-dimensional SDS-PAGE (Lin, J. J.-C., D. M. Helfman, S. H. Hughes, and C.-S. Chou. 1985. J. Cell Biol. 100: 692-703; and Lin, J. J.-C., S. Yamashiro-Matsumura, and F. Matsumura. 1984. Cancer Cells 1:57-65). Both isoform 3 (TM-3) of CEF and isoforms 4,5 (TM-4,-5) of human EJ cells are the minor isoforms found respectively in normal chicken and human cells. They have a lower apparent molecular mass and show a weaker affinity to actin filaments when compared to the higher molecular mass isoforms. Using individual tropomyosin isoforms immobilized on nitrocellulose papers and sequential absorption of polyclonal antiserum on these papers, we have prepared antibodies specific to CEF TM-3 and to CEF TM-1,-2. In addition, two of our antitropomyosin mAbs, CG beta 6 and CG3, have now been demonstrated by Western blots, immunoprecipitation, and two- dimensional gel analysis to have specificities to human EJ TM-3 and TM- 5, respectively. By using these isoform-specific reagents, we are able to compare the intracellular localizations of the lower and higher molecular mass isoforms in both CEF and human EJ cells. We have found that both lower and higher molecular mass isoforms of tropomyosin are localized along stress fibers of cells, as one would expect. However, the lower molecular mass isoforms are also distributed in regions near ruffling membranes. Further evidence for this different localization of different tropomyosin isoforms comes from double-label immunofluorescence microscopy on the same CEF cells with affinity- purified antibody against TM-3, and monoclonal CG beta 6 antibody against TM-a, -b, -1, and -2 of CEF tropomyosin. The presence of the lower molecular mass isoform of tropomyosin in ruffling membranes may indicate a novel

  9. Distribution of caveolin isoforms in the lemur retina

    PubMed Central

    Berta, Ágnes I; Kiss, Anna L; Lukáts, Ákos; Szabó, Arnold

    2007-01-01

    The distribution of caveolin isoforms was previously evaluated in the retinas of different species, but has not yet been described in the primate retina. In this study, the distribution of caveolins was assessed via immunochemistry using isoform-specific antibodies in the retina of the black-and-white ruffed lemur. Here, we report the presence of a variety of caveolin isoforms in many layers of the lemur retina. As normal human retinas were not available for research and the retinas of primates are fairly similar to those of humans, the lemur retina can be utilized as a model for caveolin distribution in normal humans. PMID:17679778

  10. IsoSel: Protein Isoform Selector for phylogenetic reconstructions

    PubMed Central

    Philippon, Héloïse; Souvane, Alexia; Brochier-Armanet, Céline

    2017-01-01

    The reliability of molecular phylogenies is strongly dependent on the quality of the assembled datasets. In the case of eukaryotes, the selection of only one protein isoform per genomic locus is mandatory to avoid biases linked to redundancy. Here, we present IsoSel, a tool devoted to the selection of alternative isoforms in the context of phylogenetic reconstruction. It provides a better alternative to the widely used approach consisting in the selection of the longest isoforms and it performs better than Guidance, its only available counterpart. IsoSel is publicly available at http://doua.prabi.fr/software/isosel. PMID:28323858

  11. Progesterone and the distribution of pituitary gonadotropin isoforms in cattle.

    PubMed

    Perera-Marín, G; Gutiérrez, C G; Murcia, C; León, H; González-Padilla, E

    2008-03-03

    The objective of the present study was to determine the relative proportion of gonadotropin isoforms in bovine pituitary glands affected by progesterone. Twelve postpubertal heifers (Swiss-Zebu) were assigned to three groups (n=4): intact animals in the luteal phase of the estrous cycle (diestrus group); ovariectomized heifers with (OVXP) or without progesterone treatment (OVX). Prior to pituitary gland collection, a blood sample was taken from each animal to determine the circulating progesterone concentration. Pituitary protein extractions processed by chromatofocusing were eluted with a pH gradient ranging from 10.5 to 3.5. The LH and FSH eluent was grouped on the basis of the following three criteria: (1) as either a basic (pH>or=7.5), neutral (pH 7.4-6.5) and acid (pHor=10.5-3.5); (3) on the basis of distinct isoforms 12 peaks of which (A-L) were identified for LH and 11 (I-XI) for FSH. The analysis by range of pH and by pH of elution in the OVX and OVXP groups showed no difference in the LH and FSH isoform ratio, but diestrus cattle differs having a greater ratio (p<0.05) of basic LH isoforms (87.5+/-0.4%) and lesser ratio (p<0.05) of acid isoforms (5.4+/-0.7%). In the diestrus group, the ratio of acid FSH isoform increased (62.1+/-1.7%), while neutral isoforms decreased (5.7+/-0.4%, P<0.05). The analysis by isoform type of LH revealed a greater proportion of isoforms C (pH 9.4) and E (pH 9.0) in the groups with circulating progesterone when compared to the OVX group. The heterogeneity of FSH was quantitatively similar in most isoforms in the three groups, with the exception of the predominant isoform (VIII, pH 4.9) that was more abundant in the diestrus group (p<0.05). These results indicate that progesterone with other gonad factors influence the pituitary glicosylation altering the relative proportions of gonadotropin isoforms.

  12. Distribution of caveolin isoforms in the lemur retina.

    PubMed

    Berta, Agnes I; Kiss, Anna L; Lukáts, Akos; Szabó, Arnold; Szél, Agoston

    2007-09-01

    The distribution of caveolin isoforms was previously evaluated in the retinas of different species, but has not yet been described in the primate retina. In this study, the distribution of caveolins was assessed via immunochemistry using isoform-specific antibodies in the retina of the black-and-white ruffed lemur. Here, we report the presence of a variety of caveolin isoforms in many layers of the lemur retina. As normal human retinas were not available for research and the retinas of primates are fairly similar to those of humans, the lemur retina can be utilized as a model for caveolin distribution in normal humans.

  13. "Cost" of virginity in wild Drosophila melanogaster females.

    PubMed

    Markow, Therese Ann

    2011-12-01

    Laboratory studies have revealed a significant "cost of mating" to Drosophila melanogaster females in the form of reduced longevity. The effect is attributable to nonsperm components of the ejaculate. Female D. melanogaster are known to mate up to six times in nature, and given that they do not typically remate daily, it raises the question as to the extent to which the longevity of wild mated females is reduced. Here I addressed this question by comparing the longevity of wild virgin females, collected as they emerged from rotting fruit, to the longevity of randomly collected mature females at the same site. Because the randomly collected females all were inseminated and were fully pigmented at the time of collection, they already were older than the virgins when the experiment began. Contrary to expectations from laboratory studies, the older, mated females lived significantly longer than the virgins. Rather than a "cost of mating," there appears to be a "cost of virginity" to female D. melanogaster in the wild.

  14. Principles of Genome Evolution in the Drosophila melanogaster Species Group

    PubMed Central

    Ranz, José M; Maurin, Damien; Chan, Yuk S; von Grotthuss, Marcin; Hillier, LaDeana W; Roote, John; Ashburner, Michael; Bergman, Casey M

    2007-01-01

    That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of related species now allows us to study in detail the mechanisms that generate interspecific inversions. We have analyzed the breakpoint regions of the 29 inversions that differentiate the chromosomes of Drosophila melanogaster and two closely related species, D. simulans and D. yakuba, and reconstructed the molecular events that underlie their origin. Experimental and computational analysis revealed that the breakpoint regions of 59% of the inversions (17/29) are associated with inverted duplications of genes or other nonrepetitive sequences. In only two cases do we find evidence for inverted repetitive sequences in inversion breakpoints. We propose that the presence of inverted duplications associated with inversion breakpoint regions is the result of staggered breaks, either isochromatid or chromatid, and that this, rather than ectopic exchange between inverted repetitive sequences, is the prevalent mechanism for the generation of inversions in the melanogaster species group. Outgroup analysis also revealed evidence for widespread breakpoint recycling. Lastly, we have found that expression domains in D. melanogaster may be disrupted in D. yakuba, bringing into question their potential adaptive significance. PMID:17550304

  15. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    PubMed Central

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  16. Drosophila Melanogaster as an Emerging Translational Model of Human Nephrolithiasis

    PubMed Central

    Miller, Joe; Chi, Thomas; Kapahi, Pankaj; Kahn, Arnold J.; Kim, Man Su; Hirata, Taku; Romero, Michael F.; Dow, Julian A.T.; Stoller, Marshall L.

    2013-01-01

    Purpose The limitations imposed by human clinical studies and mammalian models of nephrolithiasis have hampered the development of effective medical treatments and preventative measures for decades. The simple but elegant Drosophila melanogaster is emerging as a powerful translational model of human disease, including nephrolithiasis and may provide important information essential to our understanding of stone formation. We present the current state of research using D. melanogaster as a model of human nephrolithiasis. Materials and Methods A comprehensive review of the English language literature was performed using PUBMED. When necessary, authoritative texts on relevant subtopics were consulted. Results The genetic composition, anatomic structure and physiologic function of Drosophila Malpighian tubules are remarkably similar to those of the human nephron. The direct effects of dietary manipulation, environmental alteration, and genetic variation on stone formation can be observed and quantified in a matter of days. Several Drosophila models of human nephrolithiasis, including genetically linked and environmentally induced stones, have been developed. A model of calcium oxalate stone formation is among the most recent fly models of human nephrolithiasis. Conclusions The ability to readily manipulate and quantify stone formation in D. melanogaster models of human nephrolithiasis presents the urologic community with a unique opportunity to increase our understanding of this enigmatic disease. PMID:23500641

  17. The neurogenetics of group behavior in Drosophila melanogaster.

    PubMed

    Ramdya, Pavan; Schneider, Jonathan; Levine, Joel D

    2017-01-01

    Organisms rarely act in isolation. Their decisions and movements are often heavily influenced by direct and indirect interactions with conspecifics. For example, we each represent a single node within a social network of family and friends, and an even larger network of strangers. This group membership can affect our opinions and actions. Similarly, when in a crowd, we often coordinate our movements with others like fish in a school, or birds in a flock. Contributions of the group to individual behaviors are observed across a wide variety of taxa but their biological mechanisms remain largely unknown. With the advent of powerful computational tools as well as the unparalleled genetic accessibility and surprisingly rich social life of Drosophila melanogaster, researchers now have a unique opportunity to investigate molecular and neuronal determinants of group behavior. Conserved mechanisms and/or selective pressures in D. melanogaster can likely inform a much wider phylogenetic scale. Here, we highlight two examples to illustrate how quantitative and genetic tools can be combined to uncover mechanisms of two group behaviors in D. melanogaster: social network formation and collective behavior. Lastly, we discuss future challenges towards a full understanding how coordinated brain activity across many individuals gives rise to the behavioral patterns of animal societies. © 2017. Published by The Company of Biologists Ltd.

  18. A portrait of copy-number polymorphism in Drosophila melanogaster.

    PubMed

    Dopman, Erik B; Hartl, Daniel L

    2007-12-11

    Thomas Hunt Morgan and colleagues identified variation in gene copy number in Drosophila in the 1920s and 1930s and linked such variation to phenotypic differences [Bridges CB (1936) Science 83:210]. Yet the extent of variation in the number of chromosomes, chromosomal regions, or gene copies, and the importance of this variation within species, remain poorly understood. Here, we focus on copy-number variation in Drosophila melanogaster. We characterize copy-number polymorphism (CNP) across genomic regions, and we contrast patterns to infer the evolutionary processes acting on this variation. Copy-number variation in D. melanogaster is nonrandomly distributed, presumably because of a mutational bias produced by tandem repeats or other mechanisms. Comparisons of coding and noncoding CNPs, however, reveal a strong effect of purifying selection in the removal of structural variation from functionally constrained regions. Most patterns of CNP in D. melanogaster suggest that negative selection and mutational biases are the primary agents responsible for shaping structural variation.

  19. The Hippo pathway regulates hematopoiesis in Drosophila melanogaster.

    PubMed

    Milton, Claire C; Grusche, Felix A; Degoutin, Joffrey L; Yu, Eefang; Dai, Qi; Lai, Eric C; Harvey, Kieran F

    2014-11-17

    The Salvador-Warts-Hippo (Hippo) pathway is an evolutionarily conserved regulator of organ growth and cell fate. It performs these functions in epithelial and neural tissues of both insects and mammals, as well as in mammalian organs such as the liver and heart. Despite rapid advances in Hippo pathway research, a definitive role for this pathway in hematopoiesis has remained enigmatic. The hematopoietic compartments of Drosophila melanogaster and mammals possess several conserved features. D. melanogaster possess three types of hematopoietic cells that most closely resemble mammalian myeloid cells: plasmatocytes (macrophage-like cells), crystal cells (involved in wound healing), and lamellocytes (which encapsulate parasites). The proteins that control differentiation of these cells also control important blood lineage decisions in mammals. Here, we define the Hippo pathway as a key mediator of hematopoiesis by showing that it controls differentiation and proliferation of the two major types of D. melanogaster blood cells, plasmatocytes and crystal cells. In animals lacking the downstream Hippo pathway kinase Warts, lymph gland cells overproliferated, differentiated prematurely, and often adopted a mixed lineage fate. The Hippo pathway regulated crystal cell numbers by both cell-autonomous and non-cell-autonomous mechanisms. Yorkie and its partner transcription factor Scalloped were found to regulate transcription of the Runx family transcription factor Lozenge, which is a key regulator of crystal cell fate. Further, Yorkie or Scalloped hyperactivation induced ectopic crystal cells in a non-cell-autonomous and Notch-pathway-dependent fashion.

  20. Multiple capacitors for natural genetic variation in Drosophila melanogaster.

    PubMed

    Takahashi, Kazuo H

    2013-03-01

    Cryptic genetic variation (CGV) or a standing genetic variation that is not ordinarily expressed as a phenotype is released when the robustness of organisms is impaired under environmental or genetic perturbations. Evolutionary capacitors modulate the amount of genetic variation exposed to natural selection and hidden cryptically; they have a fundamental effect on the evolvability of traits on evolutionary timescales. In this study, I have demonstrated the effects of multiple genomic regions of Drosophila melanogaster on CGV in wing shape. I examined the effects of 61 genomic deficiencies on quantitative and qualitative natural genetic variation in the wing shape of D. melanogaster. I have identified 10 genomic deficiencies that do not encompass a known candidate evolutionary capacitor, Hsp90, exposing natural CGV differently depending on the location of the deficiencies in the genome. Furthermore, five genomic deficiencies uncovered qualitative CGV in wing morphology. These findings suggest that CGV in wing shape of wild-type D. melanogaster is regulated by multiple capacitors with divergent functions. Future analysis of genes encompassed by these genomic regions would help elucidate novel capacitor genes and better understand the general features of capacitors regarding natural genetic variation.

  1. Differential sexual survival of Drosophila melanogaster on copper sulfate.

    PubMed

    Balinski, Michael A; Woodruff, Ronny C

    2017-04-01

    Based on studies of the influence of X-chromosomes on the viability of Drosophila melanogaster exposed to cadmium, and on the role of X-linked genes on copper homeostasis, we examined the effect of copper sulfate (CuSO4) on offspring viability using three independent, inbred D. melanogaster crosses (ensuring identical autosomes for males and females within each cross). Each cross was performed with attached X-chromosome females and males with a single X-chromosome. As female D. melanogaster have less metallothionein RNA expression than males, we predicted fewer female offspring than male offspring in crosses exposed to CuSO4, even though females have two copies of X-chromosome genes, possibly resulting in overdominant heterozygosity. In two of three crosses, CuSO4 caused significantly higher numbers of male offspring compared to female offspring. We hypothesized that these gender-based viability differences to copper exposure are caused by X-chromosome ploidy and X-linked genetic variation affecting metallothionein expression. Observed differential offspring viability responses among crosses to copper exposure also showed that different genetic backgrounds (autosomal and/or X-chromosome) can result in significant differences in heavy metal and metallothionein regulation. These results suggest that the effect of copper on offspring viability depends on both genetic background and gender, as both factors can affect the regulation of metallothionein proteins as well as homeostasis of biologically necessary heavy metals.

  2. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster.

    PubMed

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E

    2016-02-18

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.

  3. Targeted Proteomics Enables Simultaneous Quantification of Folate Receptor Isoforms and Potential Isoform-based Diagnosis in Breast Cancer

    PubMed Central

    Yang, Ting; Xu, Feifei; Fang, Danjun; Chen, Yun

    2015-01-01

    The distinct roles of protein isoforms in cancer are becoming increasingly evident. FRα and FRβ, two major isoforms of the folate receptor family, generally have different cellular distribution and tissue specificity. However, the presence of FRβ in breast tumors, where FRα is normally expressed, complicates this situation. Prior to applying any FR isoform-based diagnosis and therapeutics, it is essential to monitor the expression profile of FR isoforms in a more accurate manner. An LC-MS/MS-based targeted proteomics assay was developed and validated in this study because of the lack of suitable methodology for the simultaneous and specific measurement of highly homologous isoforms occurring at low concentrations. FRα and FRβ monitoring was achieved by measuring their surrogate isoform-specific peptides. Five human breast cell lines, isolated macrophages and 60 matched pairs of breast tissue samples were subjected to the analysis. The results indicated that FRβ was overexpressed in tumor-associated macrophages (TAMs) but not epithelial cells, in addition to an enhanced level of FRα in breast cancer cells and tissue samples. Moreover, the levels of the FR isoforms were evaluated according to the histology, histopathological features and molecular subtypes of breast cancer. Several positive associations with PR/ER and HER2 status and metastasis were revealed. PMID:26573433

  4. Identification of target genes regulated by homeotic proteins in Drosophila melanogaster through genetic selection of Ultrabithorax protein-binding sites in yeast

    SciTech Connect

    Mastick, G.S.; McKay, R.; Oligino, T.

    1995-01-01

    A method based on the transcriptional activation of a selectable reporter in yeast cells was used to identify genes regulated by the Utrabithorax homeoproteins in Drosophila melanogaster. Fifty-three DNA fragments that can mediate activation by UBX isoform Ia in this test were recovered after screening 15% of the Drosophila genome. Half of these fragments represent single-copy sequences in the genome. Six single-copy fragments were investigated in detail, and each was found to reside near a transcription unit whose expression in the embryo is segmentally modulated as expected for targets of homeotic genes. Four of these putative target genes are expressed in patterns that suggest roles in the development of regional specializations within mesoderm derivatives; in three cases these expression patterns depend on Ultrabithorax function. Extrapolation from this pilot study indicates that 85-170 candidate target genes can be identified by screening the entire Drosophila genome with UBX isoform Ia. With appropriate modifications, this approach should be applicable to other transcriptional regulators in diverse organisms. 69 refs., 9 figs., 2 tabs.

  5. Survivin isoform Delta Ex3 regulates tumor spheroid formation.

    PubMed

    Espinosa, Magali; Ceballos-Cancino, Gisela; Callaghan, Richard; Maldonado, Vilma; Patiño, Nelly; Ruíz, Víctor; Meléndez-Zajgla, Jorge

    2012-05-01

    Survivin is an important member of the Inhibitor of Apoptosis Proteins (IAPs) family and has essential roles in apoptosis and cell cycle progression. This gene is commonly upregulated in human cancer and provides an exciting diagnostic and therapeutic target. Survivin is expressed as several isoforms that are generated by alternative splicing, and some of these present antagonistic activities. Currently, information regarding the regulation of these isoforms is lacking. In this study, we sought to analyze survivin Delta Ex3 expression in a three-dimensional model of avascular tumors and its overexpression effects in processes such as proliferation, clonogenicity and apoptosis. We found a positive correlation between spheroid growth and survivin Delta Ex3 expression during the exponential phase. We demonstrated that this isoform not only decreased apoptosis but also inhibited tumor spheroid formation by decreasing proliferation and clonogenic survival. These results point toward a dual and antagonistic effect of this spliced survivin isoform in cancer development.

  6. Diverse cap-binding properties of Drosophila eIF4E isoforms.

    PubMed

    Zuberek, Joanna; Kuchta, Krzysztof; Hernández, Greco; Sonenberg, Nahum; Ginalski, Krzysztof

    2016-10-01

    The majority of eukaryotic mRNAs are translated in a cap-dependent manner, which requires recognition of the mRNA 5' cap by eIF4E protein. Multiple eIF4E family members have been identified in most eukaryotic organisms. Drosophila melanogaster (Dm) has eight eIF4E related proteins; seven of them belong to Class I and one to Class II. Their biological roles with the exception of Dm eIF4E-1, Dm eIF4E-3 and Dm 4EHP, remain unknown. Here, we compare the molecular basis of Dm eIF4E's interactions with cap and eIF4G peptide by using homology modelling and fluorescence binding assays with various cap analogues. We found that despite the presence of conserved key residues responsible for cap recognition, the differences in binding different cap analogues among Class I Dm eIF4E isoforms are up to 14-fold. The highest affinity for cap analogues was observed for Dm eIF4E-3. We suggest that Dm eIF4E-3 and Dm eIF4E-5 bind the second nucleoside of the cap in an unusual manner via stacking interactions with a histidine or a phenylalanine residue, respectively. Moreover, the analysis of ternary complexes of eIF4G peptide-eIF4E-cap analogue showed cooperativity between eIF4G and cap binding only for Dm eIF4E-4, which exhibits the lowest affinity for cap analogues among all Dm eIF4Es. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Expression and modulation of CD44 variant isoforms in humans

    PubMed Central

    1994-01-01

    CD44 is a ubiquitous surface molecule that exists as a number of isoforms, generated by alternative splicing of 10 "variant" exons. Little is known about the expression and function of the variant isoforms, except that certain isoforms may play a role in cancer metastasis. We produced mAbs against CD44 variant regions encoded by exons 4v, 6v, and 9v, by immunizing mice with a fusion protein spanning variant exons 3v to 10v. A comprehensive analysis of human tissues revealed that CD44 variant isoforms were expressed widely throughout the body, principally by epithelial cells. However there was differential expression of CD44 variant exons by different epithelia. Most epithelia expressed exon 9v, but much fewer expressed 6v or 4v. The regions of epithelia that expressed the highest levels of the variant isoforms were the generative cells, particularly the basal cells of stratified squamous epithelium, and of glandular epithelium. CD44 variant isoforms were also expressed differentially by leukocytes, with CD44-9v expressed at very low levels and CD44-6v and 4v virtually absent. However, CD44-9v and CD44-6v were the main variants that were transiently upregulated on T cells after mitogenic stimulation and on myelomonocytic cell lines by TNF alpha and IFN gamma treatment. Some epithelial cell lines could preferentially upregulate CD44-6v upon IFN gamma incubation. These results show that CD44 variant isoforms are expressed much more widely than first appreciated, and that expression of the variant isoforms on some cell types can be modulated by particular cytokines. PMID:7507492

  8. Isoform dependent regulation of human HCN channels by cholesterol.

    PubMed

    Fürst, Oliver; D'Avanzo, Nazzareno

    2015-09-25

    Cholesterol has been shown to regulate numerous ion channels. HCN channels represent the molecular correlate of If or Ih in sinoatrial node (SAN) and neuronal cells. Previous studies have implicated a role for cholesterol in the regulation of rabbit HCN4 channels with effects on pacing in the rabbit SAN. Using electrophysiological and biochemical approaches, we examined the effect of cholesterol modulation on human HCN1, HCN2 and HCN4 isoforms. Patch-clamp experiments uncovered isoform specific differences in the effect of cholesterol on gating kinetics upon depletion by MβCD or mevastatin or enrichment using MβCD/cholesterol. Most dramatically cholesterol had isoform specific effects on mode-shifting, which has been suggested to play a key role in stabilizing firing rate and preventing arrhythmic firing in SAN cells and neurons. Mode-shifting in HCN1 channels was insensitive to cholesterol manipulation, while HCN2 and HCN4 were strongly affected. Trafficking of each isoform to the plasma membrane was also affected by cholesterol modulation differentially between isoforms, however, each isoform remained localized in lipid raft domains after cholesterol depletion. These effects may contribute to the side effects of cholesterol reducing therapies including disrupted heart rhythm and neuropathic pain, as well as the susceptibility of sinus dysfunction in patients with elevated cholesterol.

  9. Cell-specific expression of TLR9 isoforms in inflammation.

    PubMed

    McKelvey, Kelly J; Highton, John; Hessian, Paul A

    2011-02-01

    Toll-like receptors (TLRs) are key pattern recognition receptors during an immune response. With five isoforms of human TLR9 described, we hypothesised that differential expression of TLR9 isoforms in different cell types would result in variable contributions to the overall input from TLR9 during inflammation. We assessed the molecular expression of the TLR9 isoforms, TLR9-A, -C and -D. In normal peripheral blood mononuclear cells, B-lymphocytes express ∼100-fold more TLR9-A transcript than monocytes or T-lymphocytes, which predominantly express the TLR9-C transcript. Switches in isoform predominance accompany B-lymphocyte development. TLR9 protein expression in rheumatoid inflammatory lesions reflected the TLR9 isoform expression by immune cells. Herein we suggest that B-lymphocytes and plasmacytoid dendritic cells contribute the ∼3-fold higher TLR9-A transcript levels observed in inflamed synovium when compared to subcutaneous rheumatoid nodules. In contrast, macrophages and T-lymphocytes contribute the ∼4-fold higher TLR9-C transcript levels seen in nodules, compared to synovia. From protein sequence, predictions of subcellular localisation suggest TLR9-B may locate to the mitochondria, whereas TLR9-D adopts an opposing orientation in the endoplasmic reticulum. Consistent with this, structure models raise the possibility of alternative ligands for the TLR9-B and TLR9-D variants. Our results highlight differences in the expression of human TLR9 isoforms in normal and inflamed tissues, with differing contributions to inflammation.

  10. Constitutive nuclear localization of an alternatively spliced sirtuin-2 isoform.

    PubMed

    Rack, Johannes G M; VanLinden, Magali R; Lutter, Timo; Aasland, Rein; Ziegler, Mathias

    2014-04-17

    Sirtuin-2 (SIRT2), the cytoplasmic member of the sirtuin family, has been implicated in the deacetylation of nuclear proteins. Although the enzyme has been reported to be located to the nucleus during G2/M phase, its spectrum of targets suggests functions in the nucleus throughout the cell cycle. While a nucleocytoplasmic shuttling mechanism has been proposed for SIRT2, recent studies have indicated the presence of a constitutively nuclear isoform. Here we report the identification of a novel splice variant (isoform 5) of SIRT2 that lacks a nuclear export signal and encodes a predominantly nuclear isoform. This novel isoform 5 fails to show deacetylase activity using several assays, both in vitro and in vivo, and we are led to conclude that this isoform is catalytically inactive. Nevertheless, it retains the ability to interact with p300, a known interaction partner. Moreover, changes in intrinsic tryptophan fluorescence upon denaturation indicate that the protein is properly folded. These data, together with computational analyses, confirm the structural integrity of the catalytic domain. Our results suggest an activity-independent nuclear function of the novel isoform.

  11. Yeast ADP/ATP Carrier Isoform 2

    PubMed Central

    Clémençon, Benjamin; Rey, Martial; Trézéguet, Véronique; Forest, Eric; Pelosi, Ludovic

    2011-01-01

    The mitochondrial ADP/ATP carrier, or Ancp, is a member of the mitochondrial carrier family responsible for exchanging ADP and ATP across the mitochondrial inner membrane. ADP/ATP transport involves Ancp switching between two conformational states. These can be analyzed using specific inhibitors, carboxyatractyloside (CATR) and bongkrekic acid (BA). The high resolution three-dimensional structure of bovine Anc1p (bAnc1p), as a CATR-carrier complex, has been solved. However, because the structure of the BA-carrier complex has not yet been determined, the detailed mechanism of transport remains unknown. Recently, sample processing for hydrogen/deuterium exchange experiments coupled to mass spectrometry was improved, providing novel insights into bAnc1p conformational transitions due to inhibitor binding. In this work we performed both hydrogen/deuterium exchange-mass spectrometry experiments and genetic manipulations. Because these are very difficult to apply with bovine Anc1p, we used Saccharomyces cerevisiae Anc isoform 2 (ScAnc2p). Significant differences in solvent accessibility were observed throughout the amino acid sequence for ScAnc2p complexed to either CATR or BA. Interestingly, in detergent solution, the conformational dynamics of ScAnc2p were dissimilar to those of bAnc1p, in particular for the upper half of the cavity, toward the intermembrane space, and the m2 loop, which is thought to be easily accessible to the solvent from the matrix in bAnc1p. Our study then focused on the methionyl residues of the Ancp signature sequence, RRRMMM. All our results indicate that the methionine cluster is involved in the ADP/ATP transport mechanism and confirm that the Ancp cavity is a highly dynamic structure. PMID:21868387

  12. Analysis of a cDNA from the neurologically active locus shaking-B (Passover) of Drosophila melanogaster.

    PubMed

    Crompton, D E; Griffin, A; Davies, J A; Miklos, G L

    1992-12-15

    We have isolated and sequenced a cDNA from the shaking-B locus of Drosophila melanogaster. The cDNA contains an open reading frame with extensive homology to another D. melanogaster gene, l(1)ogre. This suggests the existence of a new family of proteins required for the development and maintenance of the D. melanogaster nervous system.

  13. Insulin Receptor Isoform Variations in Prostate Cancer Cells

    PubMed Central

    Perks, Claire M.; Zielinska, H. A.; Wang, Jing; Jarrett, Caroline; Frankow, A.; Ladomery, Michael R.; Bahl, Amit; Rhodes, Anthony; Oxley, Jon; Holly, Jeff M. P.

    2016-01-01

    Men who develop prostate cancer (PCa) increasingly have one of the co-morbidities associated with a Western lifestyle that are characterized by hyperinsulinemia, hyperglycemia and increased expression of insulin-like growth factors-I (IGF-I) and IGF-II. Each have been associated with poor prognosis and more aggressive cancers that exhibit increased metabolism and increased glucose uptake. The insulin receptor (IR) has two splice isoforms IR-A and IR-B: IR-A has a higher affinity for IGF-II comparable to that for insulin, whereas the IR-B isoform predominantly just binds to insulin. In this study, we assessed alterations in the IR-A and IR-B isoform ratio and associated changes in cell proliferation and migration of PCa cell lines following exposure to altered concentrations of glucose and treatment with IGF-II and insulin. We observed that where IR-B predominated insulin had a greater effect on migration than IGF-II and IGF-II was more effective when IR-A was the main isoform. With regard to proliferation IGF-II was more effective than insulin regardless of which isoform was dominant. We assessed the abundance of the IR isoforms both in vivo and in vitro and observed that the majority of the tissue samples and cell lines expressed more IR-A than IR-B. Alterations in the isoforms in response to changes in their hormonal milieu could have a profound impact on how malignant cells behave and play a role in promoting carcinogenesis. A greater understanding of the mechanisms underlying changes in alternative splicing of the IR may provide additional targets for future cancer therapies. PMID:27733843

  14. Expression of various sarcomeric tropomyosin isoforms in equine striated muscles.

    PubMed

    Dube, Syamalima; Chionuma, Henry; Matoq, Amr; Alshiekh-Nasany, Ruham; Abbott, Lynn; Poiesz, Bernard J; Dube, Dipak K

    2017-01-01

    In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM), a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4) generate a multitude of TPM isoforms via alternate splicing and/or using different promoters. Unfortunately, our knowledge of TPM isoform diversity in the horse is very limited. Hence, we undertook a comprehensive exploratory study of various TPM isoforms from horse heart and skeletal muscle. We have cloned and sequenced two sarcomeric isoforms of the TPM1 gene called TPM1α and TPM1κ, one sarcomeric isoform of the TPM2 and one of the TPM3 gene, TPM2α and TPM3α respectively. By qRT-PCR using both relative expression and copy number, we have shown that TPM1α expression compared to TPM1κ is very high in heart. On the other hand, the expression of TPM1α is higher in skeletal muscle compared to heart. Further, the expression of TPM2α and TPM3α are higher in skeletal muscle compared to heart. Using western blot analyses with CH1 monoclonal antibody we have shown the high expression levels of sarcomeric TPM proteins in cardiac and skeletal muscle. Due to the paucity of isoform specific antibodies we cannot specifically detect the expression of TPM1κ in horse striated muscle. To the best of our knowledge this is the very first report on the characterization of sarcmeric TPMs in horse striated muscle.

  15. Expression of various sarcomeric tropomyosin isoforms in equine striated muscles

    PubMed Central

    Dube, Syamalima; Chionuma, Henry; Matoq, Amr; Alshiekh-Nasany, Ruham; Abbott, Lynn; Poiesz, Bernard J.; Dube, Dipak K.

    2017-01-01

    In order to better understand the training and athletic activity of horses, we must have complete understanding of the isoform diversity of various myofibrillar protein genes like tropomyosin. Tropomyosin (TPM), a coiled-coil dimeric protein, is a component of thin filament in striated muscles. In mammals, four TPM genes (TPM1, TPM2, TPM3, and TPM4) generate a multitude of TPM isoforms via alternate splicing and/or using different promoters. Unfortunately, our knowledge of TPM isoform diversity in the horse is very limited. Hence, we undertook a comprehensive exploratory study of various TPM isoforms from horse heart and skeletal muscle. We have cloned and sequenced two sarcomeric isoforms of the TPM1 gene called TPM1α and TPM1κ, one sarcomeric isoform of the TPM2 and one of the TPM3 gene, TPM2α and TPM3α respectively. By qRT-PCR using both relative expression and copy number, we have shown that TPM1α expression compared to TPM1κ is very high in heart. On the other hand, the expression of TPM1α is higher in skeletal muscle compared to heart. Further, the expression of TPM2α and TPM3α are higher in skeletal muscle compared to heart. Using western blot analyses with CH1 monoclonal antibody we have shown the high expression levels of sarcomeric TPM proteins in cardiac and skeletal muscle. Due to the paucity of isoform specific antibodies we cannot specifically detect the expression of TPM1κ in horse striated muscle. To the best of our knowledge this is the very first report on the characterization of sarcmeric TPMs in horse striated muscle. PMID:28717602

  16. Regulation of PGC-1α Isoform Expression in Skeletal Muscles

    PubMed Central

    Popov, D. V.; Lysenko, E. A.; Kuzmin, I. V.; Vinogradova, Vinogradova; Grigoriev, A. I.

    2015-01-01

    The coactivator PGC-1α is the key regulator of mitochondrial biogenesis in skeletal muscle. Skeletal muscle expresses several PGC-1α isoforms. This review covers the functional role of PGC-1α isoforms and the regulation of their exercise-associated expression in skeletal muscle. The patterns of PGC-1α mRNA expression may markedly differ at rest and after muscle activity. Different signaling pathways are activated by different physiological stimuli, which regulate the expression of the PGC-1α gene from the canonical and alternative promoters: expression from a canonical (proximal) promoter is regulated by activation of the AMPK; expression from an alternative promoter, via a β2-adrenergic receptor. All transcripts from both promoters are subject to alternative splicing. As a result, truncated isoforms that possess different properties are translated: truncated isoforms are more stable and predominantly activate angiogenesis, whereas full-length isoforms manly regulate mitochondrial biogenesis. The existence of several isoforms partially explains the broad-spectrum function of this protein and allows the organism to adapt to different physiological stimuli. Regulation of the PGC-1α gene expression by different signaling pathways provides ample opportunity for pharmacological influence on the expression of this gene. Those opportunities might be important for the treatment and prevention of various diseases, such as metabolic syndrome and diabetes mellitus. Elucidation of the regulatory mechanisms of the PGC-1α gene expression and their functional role may provide an opportunity to control the expression of different isoforms through exercise and/or pharmacological intervention. PMID:25927001

  17. Akt isoform specific effects in ovarian cancer progression

    PubMed Central

    Linnerth-Petrik, Nicolle M.; Santry, Lisa A.; Moorehead, Roger; Jücker, Manfred

    2016-01-01

    Ovarian cancer remains a significant therapeutic problem and novel, effective therapies are needed. Akt is a serine-threonine kinase that is overexpressed in numerous cancers, including ovarian. Mammalian cells express three Akt isoforms which are encoded by distinct genes. Although there are several Akt inhibitors in clinical trials, most indiscriminately target all isoforms. Current in vitro data and animal knockout experiments suggest that the Akt isoforms may have divergent roles. In this paper, we determined the isoform-specific functions of Akt in ovarian cancer cell proliferation in vitro and in ovarian cancer progression in vivo. For in vitro experiments, murine and human ovarian cancer cells were treated with Akt inhibitors and cell viability was assessed. We used two different in vivo approaches to identify the roles of Akt isoforms in ovarian cancer progression and their influence on the primary tumor and tumor microenvironment. In one experiment, wild-type C57Bl6 mice were orthotopically injected with ID8 cells with stable knockdown of Akt isoforms. In a separate experiment, mice null for Akt 1-3 were orthotopically injected with WT ID8 cells (Figure 1). Our data show that inhibition of Akt1 significantly reduced ovarian cancer cell proliferation and inhibited tumor progression in vivo. Conversely, disruption of Akt2 increased tumor growth. Inhibition of Akt3 had an intermediate phenotype, but also increased growth of ovarian cancer cells. These data suggest that there is minimal redundancy between the Akt isoforms in ovarian cancer progression. These findings have important implications in the design of Akt inhibitors for the effective treatment of ovarian cancer. PMID:27533079

  18. Differential activities of glucocorticoid-induced leucine zipper protein isoforms.

    PubMed

    Soundararajan, Rama; Wang, Jian; Melters, Daniël; Pearce, David

    2007-12-14

    Glucocorticoid-induced leucine zipper protein (GILZ) is expressed in both epithelial and immune tissues and modulates a variety of cellular functions, including proliferation and epithelial sodium channel (ENaC) activity. A number of reports have described various GILZ activities, focusing on a single isoform with molecular mass of approximately 17 kDa, now termed GILZ1. In GILZ immunoblots using a newly developed antiserum, we detected multiple species in extracts from cultured kidney cells. Mass spectrometric analysis revealed that one of these represented a previously uncharacterized distinct isoform of GILZ, GILZ2. Rapid amplification of cDNA ends was used to clone cDNAs corresponding to four isoforms, which, in addition to GILZ1 and GILZ2, included new isoforms GILZ3 and GILZ4. Heterologous expression of these four GILZ isoforms in cultured cells revealed striking functional differences. Notably, GILZ1 was the only isoform that significantly stimulated ENaC-mediated Na+ current in a kidney collecting duct cell line, although GILZ2 and GILZ3 also stimulated ENaC surface expression in HEK 293 cells. GILZ1 and GILZ3, and to a lesser extent GILZ2, inhibited ERK phosphorylation. Interestingly, GILZ4, which had no effect on either ENaC or ERK, potently suppressed cellular proliferation, as did GILZ1, but not GILZ2 or GILZ3. Finally, rat and mouse tissues all expressed multiple GILZ species but varied in the relative abundance of each. These data suggest that multiple GILZ isoforms are expressed in most cells and tissues and that these play distinct roles in regulating key cellular functions, including proliferation and ion transport. Furthermore, GILZ inhibition of ERK appears to play an essential role in stimulation of cell surface ENaC but not in inhibition of proliferation.

  19. Characterization of Reproductive Dormancy in Male Drosophila melanogaster

    PubMed Central

    Kubrak, Olga I.; Kučerová, Lucie; Theopold, Ulrich; Nylin, Sören; Nässel, Dick R.

    2016-01-01

    Insects are known to respond to seasonal and adverse environmental changes by entering dormancy, also known as diapause. In some insect species, including Drosophila melanogaster, dormancy occurs in the adult organism and postpones reproduction. This adult dormancy has been studied in female flies where it is characterized by arrested development of ovaries, altered nutrient stores, lowered metabolism, increased stress and immune resistance and drastically extended lifespan. Male dormancy, however, has not been investigated in D. melanogaster, and its physiology is poorly known in most insects. Here we show that unmated 3–6 h old male flies placed at low temperature (11°C) and short photoperiod (10 Light:14 Dark) enter a state of dormancy with arrested spermatogenesis and development of testes and male accessory glands. Over 3 weeks of diapause we see a dynamic increase in stored carbohydrates and an initial increase and then a decrease in lipids. We also note an up-regulated expression of genes involved in metabolism, stress responses and innate immunity. Interestingly, we found that male flies that entered reproductive dormancy do not attempt to mate females kept under non-diapause conditions (25°C, 12L:12D), and conversely non-diapausing males do not mate females in dormancy. In summary, our study shows that male D. melanogaster can enter reproductive dormancy. However, our data suggest that dormant male flies deplete stored nutrients faster than females, studied earlier, and that males take longer to recover reproductive capacity after reintroduction to non-diapause conditions. PMID:27932997

  20. Population Genomics of the Wolbachia Endosymbiont in Drosophila melanogaster

    PubMed Central

    Richardson, Mark F.; Weinert, Lucy A.; Welch, John J.; Linheiro, Raquel S.; Magwire, Michael M.; Jiggins, Francis M.; Bergman, Casey M.

    2012-01-01

    Wolbachia are maternally inherited symbiotic bacteria, commonly found in arthropods, which are able to manipulate the reproduction of their host in order to maximise their transmission. The evolutionary history of endosymbionts like Wolbachia can be revealed by integrating information on infection status in natural populations with patterns of sequence variation in Wolbachia and host mitochondrial genomes. Here we use whole-genome resequencing data from 290 lines of Drosophila melanogaster from North America, Europe, and Africa to predict Wolbachia infection status, estimate relative cytoplasmic genome copy number, and reconstruct Wolbachia and mitochondrial genome sequences. Overall, 63% of Drosophila strains were predicted to be infected with Wolbachia by our in silico analysis pipeline, which shows 99% concordance with infection status determined by diagnostic PCR. Complete Wolbachia and mitochondrial genomes show congruent phylogenies, consistent with strict vertical transmission through the maternal cytoplasm and imperfect transmission of Wolbachia. Bayesian phylogenetic analysis reveals that the most recent common ancestor of all Wolbachia and mitochondrial genomes in D. melanogaster dates to around 8,000 years ago. We find evidence for a recent global replacement of ancestral Wolbachia and mtDNA lineages, but our data suggest that the derived wMel lineage arose several thousand years ago, not in the 20th century as previously proposed. Our data also provide evidence that this global replacement event is incomplete and is likely to be one of several similar incomplete replacement events that have occurred since the out-of-Africa migration that allowed D. melanogaster to colonize worldwide habitats. This study provides a complete genomic analysis of the evolutionary mode and temporal dynamics of the D. melanogaster–Wolbachia symbiosis, as well as important resources for further analyses of the impact of Wolbachia on host biology. PMID:23284297

  1. Linkage Disequilibrium in Natural Populations of DROSOPHILA MELANOGASTER. Seasonal Variation

    PubMed Central

    Langley, Charles H.; Ito, Kazuko; Voelker, Robert A.

    1977-01-01

    Linkage disequilibrium among ten polymorphic allozyme loci and polymorphic inversions on chromosomes 2 and 3 in a natural population of Drosophila melanogaster was examined early and late in the annual season. Similar to previous studies, little linkage disequilibrium was observed among allozymes. The two significant cases that were observed in the first sample behaved in a contradictory way. One declined much more rapidly than expected due simply to recombination; the other declined slowly as expected. There was little change in allozyme or inversion frequencies during the season. PMID:407131

  2. Biosynthesis of drosopterins, the red eye pigments of Drosophila melanogaster.

    PubMed

    Kim, Heuijong; Kim, Kiyoung; Yim, Jeongbin

    2013-04-01

    Drosophila melanogaster has red eyes. Scientists have been curious about the biosynthesis of the red eye pigments and have completed a number of investigations on these compounds. Scientific contributions made over the past 50 years have improved our understanding of the red eye pigments. Researchers have elucidated the chemical structures of some pigments and have successfully purified and identified the enzymes that participate in the biosynthesis of the red eye pigments. In this article, we will review the characteristics of the Drosophila red eye pigments and of the enzymes and genes involved in its biosynthetic pathway. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  3. Gene expression during the life cycle of Drosophila melanogaster.

    PubMed

    Arbeitman, Michelle N; Furlong, Eileen E M; Imam, Farhad; Johnson, Eric; Null, Brian H; Baker, Bruce S; Krasnow, Mark A; Scott, Matthew P; Davis, Ronald W; White, Kevin P

    2002-09-27

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  4. Gene Expression During the Life Cycle of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Arbeitman, Michelle N.; Furlong, Eileen E. M.; Imam, Farhad; Johnson, Eric; Null, Brian H.; Baker, Bruce S.; Krasnow, Mark A.; Scott, Matthew P.; Davis, Ronald W.; White, Kevin P.

    2002-09-01

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  5. Genome-wide approaches to understanding behaviour in Drosophila melanogaster.

    PubMed

    Neville, Megan; Goodwin, Stephen F

    2012-09-01

    Understanding how an organism exhibits specific behaviours remains a major and important biological question. Studying behaviour in a simple model organism like the fruit fly Drosophila melanogaster has the advantages of advanced molecular genetics approaches along with well-defined anatomy and physiology. With advancements in functional genomic technologies, researchers are now attempting to uncover genes and pathways involved in complex behaviours on a genome-wide scale. A systems-level network approach, which will include genomic approaches, to study behaviour will be key to understanding the regulation and modulation of behaviours and the importance of context in regulating them.

  6. Partial reversion at the bobbed locus of Drosophila melanogaster.

    PubMed

    Terracol, R; Iturbide, Y; Prud'Homme, N

    1990-01-01

    In Drosophila melanogaster the tandemly arranged repetitive sequences coding for 18S and 28S rRNA are heterogenous at the level of the spacers between units and insertions that interrupt many 28S rRNA genes. This heterogeneity contrasts with the homogeneity of the regions transcribed into 18S and 28S rRNA. Homogenization and evolution of repetitive genes are usually explained by conversion, amplification events or unequal crossovers. In this paper we studied the change in rDNA patterns associated with partial reversion of bobbed mutations. In most cases, no increase in rDNA gene number, but a new repartition of gene types were found.

  7. Quantal basis of photoreceptor spectral sensitivity of Drosophila melanogaster

    PubMed Central

    1975-01-01

    Small potential fluctuations ("bumps"), boyh spontaneous and light induced, can be recorded intracellularly from the photoreceptors of Drosophila melanogaster. Statistical analyses of these bumps in the spectral range, 400-600 nm, lead to the following interpretations; (a) For weak stimuli at least, these bumps are the quantal units of the receptor potential. (b) Quanta of various wavelengths, when effectively absorbed, will elicit bumps of the same average size. (c) The spectral sensitivity of the receptor potential appears to have its origin in the relative efficiency of quantum bump production at different wavelengths, and not in the intrinsic difference in the properties of bumps produced by quanta of differenct wavelengths. PMID:809537

  8. Fitness and density-dependent population growth in Drosophila melanogaster

    SciTech Connect

    Mueller, L.D.; Ayala, F.J.

    1981-03-01

    The density-dependent rates of population growth were determined for 26 populations of Drosophila melanogaster maintained in the serial transfer system. Twenty-five populations were homozygous for an entire chromosome 2 sampled from nature; the other was a random heterozygous population. Rates of population growth around the carrying capacity cannot explain the large fitness depression of these lines. However, the homozygous lines show large differences in rates of population growth at low densities relative to the random heterozygous standard. The average relative fitness of the homozygous lines, as determined from the growth rates at the lowest density, is 0.51.

  9. Isoform-targeted regulation of cardiac adenylyl cyclase.

    PubMed

    Ishikawa, Yoshihiro

    2003-01-01

    Numerous attempts have been made to develop strategies for regulating the intracellular cyclic AMP signal pharmacologically, with an intention to establish either new medical therapeutic methods or experimental tools. In the past decades, many pharmacological reagents have been identified that regulate this pathway at the level of the receptor. G protein, adenylyl cyclase, cyclic AMP, protein kinase A and phosphodiesterase. Since the cloning of adenylyl cyclase isoforms during the 1990s, investigators including ourselves have tried to find reagents that regulate the activity of this enzyme directly in an isoform-dependent manner. The ultimate goal of developing such reagents would be to regulate the cyclic AMP signal in an organ-dependent manner. Ourselves and other workers have reported that such reagents may vary from a simple cation to kinases. In a more recent study, using the results from crystallographic studies and computer-assisted drug design programs, we have identified subtype-selective regulators of adenylyl cyclase. Such regulators are mostly based upon forskolin, a diterpene compound obtained from Coleus forskolii, that acts directly on adenylyl cyclase to increase the intracellular levels of cyclic AMP. Similarly, novel reagents have been identified that inhibit a specific adenylyl cyclase isoform (e.g. type 5 adenylyl cyclase). Such reagents would potentially provide a new therapeutic strategy to treat hypertension, for example, as well as methods to selectively stimulate or inhibit this adenylyl cyclase isoform, which may be reminiscent of overexpression or knocking out of the cardiac adenylyl cyclase isoform by the use of a pharmacological method.

  10. Chemical origins of isoform selectivity in histone deacetylase inhibitors.

    PubMed

    Butler, Kyle V; Kozikowski, Alan P

    2008-01-01

    Histones undergo extensive posttranslational modifications that affect gene expression. Acetylation is a key histone modification that is primarily regulated by two enzymes, one of which is histone deacetylase (HDAC). The activity of HDAC causes transcriptional silencing of DNA. Eleven distinct zinc-dependent histone deacetylase isoforms have been identified in humans. Each isoform has a unique structure and function, and regulates a unique set of genes. HDAC is responsible for the regulation of many genes involved in cancer cell proliferation, and it has been implicated in the pathogenesis of many neurological conditions. HDAC inhibitors are known to be very effective anti-cancer agents, and research has shown them to be potential treatments for many other conditions. Histone deacetylase inhibitors modify the expression of many genes, and it is possible that inhibition of one isoform could cause epigenetic changes that are beneficial to treatment of a disease, while inhibition of another isoform could cause contradictory changes. Selective HDAC inhibitors will be better able to avoid these types of situations than non-specific inhibitors, and may also be less toxic than pan-HDAC inhibitors. Many potent pan-HDAC inhibitors have already been developed, leaving the development of selective inhibitors at the forefront of HDAC drug development. Certain structural moieties may be added to HDAC inhibitors to give isoform selectivity, and these will be discussed in this review. This review will focus on the applications of selective HDAC inhibitors, inhibitors reported to show selectivity, and the relationship between inhibitor structure and selectivity.

  11. Opposing roles of glutaminase isoforms in determining glioblastoma cell phenotype.

    PubMed

    Szeliga, Monika; Albrecht, Jan

    2015-09-01

    Glutamine (Gln) and glutamate (Glu) play pivotal roles in the malignant phenotype of brain tumors via multiple mechanisms. Glutaminase (GA, EC 3.5.1.2) metabolizes Gln to Glu and ammonia. Human GA isoforms are encoded by two genes: GLS gene codes for kidney-type isoforms, KGA and GAC, whereas GLS2 codes for liver-type isoforms, GAB and LGA. The expression pattern of both genes in different neoplastic cell lines and tissues implicated that the kidney-type isoforms are associated with cell proliferation, while the liver-type isoforms dominate in, and contribute to the phenotype of quiescent cells. GLS gene has been demonstrated to be regulated by oncogene c-Myc, whereas GLS2 gene was identified as a target gene of p53 tumor suppressor. In glioblastomas (GBM, WHO grade IV), the most aggressive brain tumors, high levels of GLS and only traces or lack of GLS2 transcripts were found. Ectopic overexpression of GLS2 in human glioblastoma T98G cells decreased their proliferation and migration and sensitized them to the alkylating agents often used in the chemotherapy of gliomas. GLS silencing reduced proliferation of glioblastoma T98G cells and strengthen the antiproliferative effect evoked by previous GLS2 overexpression.

  12. Differential expression of serum clusterin isoforms in colorectal cancer.

    PubMed

    Rodríguez-Piñeiro, Ana M; de la Cadena, María Páez; López-Saco, Angel; Rodríguez-Berrocal, Francisco J

    2006-09-01

    Clusterin is an enigmatic protein altered in tumors of colorectal cancer patients. Because there is no information available about serum clusterin regarding this pathology, we applied proteomic techniques to analyze its isoforms in donors and patients. First we separated serum proteins through concanavalin A, obtaining a fraction with non- and O-glycosylated proteins (FI) and a second fraction enriched in N-glycoproteins (FII) wherein clusterin was supposed to elute on the basis of its glycosylation. Surprisingly analysis of the FI fraction revealed the existence of an unexpected and aberrantly N-glycosylated clusterin that was overexpressed in patients and comprised at least five isoforms with different isoelectric points. On the other hand, two-dimensional electrophoretic analysis of the clusterin eluted in FII detected one isoform that was increased and 15 isoforms that were decreased or absent in serum of patients. Finally immunoquantification by slot blot showed that in total serum and in FI the clusterin levels were significantly increased in patients, whereas in FII there was no significant variation. Therefore, serum clusterin and some of its isoforms could have a potential value as colorectal tumor markers and are interesting subjects for biomarker studies.

  13. Lobster (Panulirus argus) hepatopancreatic trypsin isoforms and their digestion efficiency.

    PubMed

    Perera, Erick; Rodríguez-Casariego, Javier; Rodríguez-Viera, Leandro; Calero, Jorge; Perdomo-Morales, Rolando; Mancera, Juan M

    2012-04-01

    It is well known that crustaceans exhibit several isoforms of trypsin in their digestive system. Although the number of known crustacean trypsin isoforms continues increasing, especially those derived from cDNA sequences, the role of particular isoenzymes in digestion remains unknown. Among invertebrates, significant advances in the understanding of the role of multiple trypsins have been made only in insects. Since it has been demonstrated that trypsin isoenzyme patterns (phenotypes) in lobster differ in digestion efficiency, we used this crustacean as a model for assessing the biochemical basis of such differences. We demonstrated that the trypsin isoform known to be present in all individuals of Panulirus argus has a high catalytic efficiency (k(cat)/K(m) ) and is the most reactive toward native proteinaceous substrates, whereas one of the isoforms present in less efficient individuals has a lower k(cat) and a lower k(cat)/K(m), and it is less competent at digesting native proteins. A fundamental question in biology is how genetic differences produce different physiological performances. This work is the first to demonstrate that trypsin phenotypic variation in crustacean protein digestion relies on the biochemical properties of the different isoforms. Results are relevant for understanding trypsin polymorphism and protein digestion in lobster.

  14. Metabolic effects of CO2 anaesthesia in Drosophila melanogaster

    PubMed Central

    Colinet, H.; Renault, D.

    2012-01-01

    Immobilization of insects is necessary for various experimental purposes, and CO2 exposure remains the most popular anaesthetic method in entomological research. A number of negative side effects of CO2 anaesthesia have been reported, but CO2 probably brings about metabolic modifications that are poorly known. In this work, we used GC/MS-based metabolic fingerprinting to assess the effect of CO2 anaesthesia in Drosophila melanogaster adults. We analysed metabolic variation of flies submitted to acute CO2 exposure and assessed the temporal metabolic changes during short- and long-term recovery. We found that D. melanogaster metabotypes were significantly affected by the anaesthetic treatment. Metabolic changes caused by acute CO2 exposure were still manifested after 14 h of recovery. However, we found no evidence of metabolic alterations when a long recovery period was allowed (more than 24 h). This study points to some metabolic pathways altered during CO2 anaesthesia (e.g. energetic metabolism). Evidence of short-term metabolic changes indicates that CO2 anaesthesia should be used with utmost caution in physiological studies when a short recovery is allowed. In spite of this, CO2 treatment seems to be an acceptable anaesthetic method provided that a long recovery period is allowed (more than 24 h). PMID:22915627

  15. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster.

    PubMed

    Rogers, Rebekah L; Bedford, Trevor; Lyons, Ana M; Hartl, Daniel L

    2010-06-15

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3' segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5' and 3' regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution.

  16. Discovery of Supernumerary B Chromosomes in Drosophila melanogaster

    PubMed Central

    Bauerly, Elisabeth; Hughes, Stacie E.; Vietti, Dana R.; Miller, Danny E.; McDowell, William; Hawley, R. Scott

    2014-01-01

    B chromosomes are small, heterochromatic chromosomes that are transmitted in a non-Mendelian manner. We have identified a stock of Drosophila melanogaster that recently (within the last decade) acquired an average of 10 B chromosomes per fly. These B chromosomes are transmitted by both males and females and can be maintained for multiple generations in a wild-type genetic background despite the fact that they cause high levels of 4th chromosome meiotic nondisjunction in females. Most curiously, these B chromosomes are mitotically unstable, suggesting either the absence of critical chromosomal sites or the inability of the meiotic or mitotic systems to cope with many additional chromosomes. These B chromosomes also contain centromeres and are primarily composed of the heterochromatic AATAT satellite sequence. Although the AATAT sequence comprises the majority of the 4th chromosome heterochromatin, the B chromosomes lack most, if not all, 4th chromosome euchromatin. Presumably as a consequence of their heterochromatic content, these B chromosomes significantly modify position-effect variegation in two separate reporter systems, acting as enhancers of variegation in one case and suppressors in the other. The identification of B chromosomes in a genetically tractable organism like D. melanogaster will facilitate studies of chromosome evolution and the analysis of the mechanisms by which meiotic and mitotic processes cope with additional chromosomes. PMID:24478336

  17. Cocoa confers life span extension in Drosophila melanogaster.

    PubMed

    Bahadorani, Sepehr; Hilliker, Arthur J

    2008-06-01

    Cocoa is thought to be an excellent source of antioxidants. Here, we investigated the effects of cocoa supplementation on Drosophila melanogaster life span under different oxidative stress conditions. Our results illustrate that a moderate supplementation of cocoa under normoxia increases the average life span, whereas, at higher concentrations, average life span is normal. Under hyperoxia or in a Cu/Zn-superoxide dismutase-deficient background, cocoa exhibited a strong antioxidant activity, significantly increasing the average life span. Nevertheless, cocoa supplementation in a Mn-superoxide dismutase-deficient background enhanced an earlier mortality accompanied by a loss of climbing ability, indicating that cocoa may act as a pro-oxidant in mitochondria under conditions of extreme oxidative stress. Finally, we illustrate that cocoa also acts as a metal chelator in the presence of excess heavy metals, enhancing larval survival to the adult stage on copper or iron-supplemented medium. Taken together, our results document the antioxidative, pro-oxidative, and metal-chelating effects of cocoa on Drosophila melanogaster life span.

  18. Stochastic model for gene transcription on Drosophila melanogaster embryos

    NASA Astrophysics Data System (ADS)

    Prata, Guilherme N.; Hornos, José Eduardo M.; Ramos, Alexandre F.

    2016-02-01

    We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ˜1 % of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.

  19. Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster

    PubMed Central

    Kuo, Tsung-Han; Yew, Joanne Y.; Fedina, Tatyana Y.; Dreisewerd, Klaus; Dierick, Herman A.; Pletcher, Scott D.

    2012-01-01

    SUMMARY Attractiveness is a major component of sexual selection that is dependent on sexual characteristics, such as pheromone production, which often reflect an individual’s fitness and reproductive potential. Aging is a process that results in a steady decline in survival and reproductive output, yet little is known about its effect on specific aspects of attractiveness. In this report we asked how aging impacts pheromone production and sexual attractiveness in Drosophila melanogaster. Evidence suggests that key pheromones in Drosophila are produced as cuticular hydrocarbons (CHC), whose functions in attracting mates and influencing behavior have been widely studied. We employed gas chromatography/mass spectrometry and laser desorption/ionization mass spectrometry to show that the composition of D. melanogaster CHC is significantly affected by aging in both sexes and that these changes are robust to different genetic backgrounds. Aging affected the relative levels of many individual CHC, and it shifted overall hydrocarbon profiles to favor compounds with longer chain lengths. We also show that the observed aging-related changes in CHC profiles are responsible for a significant reduction in sexual attractiveness. These studies illuminate causal links among pheromones, aging and attractiveness and suggest that CHC production may be an honest indicator of animal health and fertility. PMID:22323204

  20. Transcriptomic response of Drosophila melanogaster pupae developed in hypergravity.

    PubMed

    Hateley, Shannon; Hosamani, Ravikumar; Bhardwaj, Shilpa R; Pachter, Lior; Bhattacharya, Sharmila

    2016-10-01

    Altered gravity can perturb normal development and induce corresponding changes in gene expression. Understanding this relationship between the physical environment and a biological response is important for NASA's space travel goals. We use RNA-Seq and qRT-PCR techniques to profile changes in early Drosophila melanogaster pupae exposed to chronic hypergravity (3g, or three times Earth's gravity). During the pupal stage, D. melanogaster rely upon gravitational cues for proper development. Assessing gene expression changes in the pupae under altered gravity conditions helps highlight gravity-dependent genetic pathways. A robust transcriptional response was observed in hypergravity-treated pupae compared to controls, with 1513 genes showing a significant (q<0.05) difference in gene expression. Five major biological processes were affected: ion transport, redox homeostasis, immune response, proteolysis, and cuticle development. This outlines the underlying molecular and biological changes occurring in Drosophila pupae in response to hypergravity; gravity is important for many biological processes on Earth. Published by Elsevier Inc.

  1. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior.

    PubMed

    Shorter, John; Couch, Charlene; Huang, Wen; Carbone, Mary Anna; Peiffer, Jason; Anholt, Robert R H; Mackay, Trudy F C

    2015-07-07

    Aggression is an evolutionarily conserved complex behavior essential for survival and the organization of social hierarchies. With the exception of genetic variants associated with bioamine signaling, which have been implicated in aggression in many species, the genetic basis of natural variation in aggression is largely unknown. Drosophila melanogaster is a favorable model system for exploring the genetic basis of natural variation in aggression. Here, we performed genome-wide association analyses using the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and replicate advanced intercross populations derived from the most and least aggressive DGRP lines. We identified genes that have been previously implicated in aggressive behavior as well as many novel loci, including gustatory receptor 63a (Gr63a), which encodes a subunit of the receptor for CO2, and genes associated with development and function of the nervous system. Although genes from the two association analyses were largely nonoverlapping, they mapped onto a genetic interaction network inferred from an analysis of pairwise epistasis in the DGRP. We used mutations and RNAi knock-down alleles to functionally validate 79% of the candidate genes and 75% of the candidate epistatic interactions tested. Epistasis for aggressive behavior causes cryptic genetic variation in the DGRP that is revealed by changing allele frequencies in the outbred populations derived from extreme DGRP lines. This phenomenon may pertain to other fitness traits and species, with implications for evolution, applied breeding, and human genetics.

  2. FRACTIONATION OF THE EYE PIGMENTS OF DROSOPHILA MELANOGASTER

    PubMed Central

    Wald, George; Allen, Gordon

    1946-01-01

    Eye pigments of normal and mutant types of D. melanogaster have been extracted with water and fractionated by chromatographic adsorption on powdered talc. Spectra of all the fractions obtainable in solution have been measured and the general chemical behavior of the pigments is described. Two chemically distinct groups of pigments are found, to be identified with the earlier designated red and brown components. The red component in the wild-type eye contains three well defined pigments, two of them capable of further subdivision so that the total number of fractions obtained is five. There is also present a brown component pigment which could not be treated quantitatively by the methods employed. All members of the wild-type red component are found in cinnabar eyes, unaccompanied by the brown component. Conversely, brown eyes contain a pigment indistinguishable from the wild-type brown component, virtually alone. In sepia eyes, one red component and two brown component pigments can be distinguished, all three pigments differing from those of wild-type eyes. Pigments apparently identical with those found in wild-type melanogaster eyes have also been found in D. virilis. PMID:19873476

  3. FRACTIONATION OF THE EYE PIGMENTS OF DROSOPHILA MELANOGASTER.

    PubMed

    Wald, G; Allen, G

    1946-09-20

    Eye pigments of normal and mutant types of D. melanogaster have been extracted with water and fractionated by chromatographic adsorption on powdered talc. Spectra of all the fractions obtainable in solution have been measured and the general chemical behavior of the pigments is described. Two chemically distinct groups of pigments are found, to be identified with the earlier designated red and brown components. The red component in the wild-type eye contains three well defined pigments, two of them capable of further subdivision so that the total number of fractions obtained is five. There is also present a brown component pigment which could not be treated quantitatively by the methods employed. All members of the wild-type red component are found in cinnabar eyes, unaccompanied by the brown component. Conversely, brown eyes contain a pigment indistinguishable from the wild-type brown component, virtually alone. In sepia eyes, one red component and two brown component pigments can be distinguished, all three pigments differing from those of wild-type eyes. Pigments apparently identical with those found in wild-type melanogaster eyes have also been found in D. virilis.

  4. Sexual Experience Enhances Drosophila melanogaster Male Mating Behavior and Success

    PubMed Central

    Saleem, Sehresh; Ruggles, Patrick H.; Abbott, Wiley K.; Carney, Ginger E.

    2014-01-01

    Competition for mates is a wide-spread phenomenon affecting individual reproductive success. The ability of animals to adjust their behaviors in response to changing social environment is important and well documented. Drosophila melanogaster males compete with one another for matings with females and modify their reproductive behaviors based on prior social interactions. However, it remains to be determined how male social experience that culminates in mating with a female impacts subsequent male reproductive behaviors and mating success. Here we show that sexual experience enhances future mating success. Previously mated D. melanogaster males adjust their courtship behaviors and out-compete sexually inexperienced males for copulations. Interestingly, courtship experience alone is not sufficient in providing this competitive advantage, indicating that copulation plays a role in reinforcing this social learning. We also show that females use their sense of hearing to preferentially mate with experienced males when given a choice. Our results demonstrate the ability of previously mated males to learn from their positive sexual experiences and adjust their behaviors to gain a mating advantage. These experienced-based changes in behavior reveal strategies that animals likely use to increase their fecundity in natural competitive environments. PMID:24805129

  5. Hygienic grooming is induced by contact chemicals in Drosophila melanogaster

    PubMed Central

    Yanagawa, Aya; Guigue, Alexandra M. A.; Marion-Poll, Frédéric

    2014-01-01

    In social insects, grooming is considered as a behavioral defense against pathogen and parasite infections since it contributes to remove microbes from their cuticle. However, stimuli which trigger this behavior are not well characterized yet. We examined if activating contact chemoreceptive sensilla could trigger grooming activities in Drosophila melanogaster. We monitored the grooming responses of decapitated flies to compounds known to activate the immune system, e.g., dead Escherichia coli (Ec) and lipopolysaccharides (LPS), and to tastants such as quinine, sucrose, and salt. LPS, quinine, and Ec were quite effective in triggering grooming movements when touching the distal border of the wings and the legs, while sucrose had no effect. Contact chemoreceptors are necessary and sufficient to elicit such responses, as grooming could not be elicited by LPS in poxn mutants deprived of external taste sensilla, and as grooming was elicited by light when a channel rhodopsin receptor was expressed in bitter-sensitive cells expressing Gr33a. Contact chemoreceptors distributed along the distal border of the wings respond to these tastants by an increased spiking activity, in response to quinine, Ec, LPS, sucrose, and KCl. These results demonstrate for the first time that bacterial compounds trigger grooming activities in D. melanogaster, and indicate that contact chemoreceptors located on the wings participate in the detection of such chemicals. PMID:25100963

  6. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior

    PubMed Central

    Shorter, John; Couch, Charlene; Huang, Wen; Carbone, Mary Anna; Peiffer, Jason; Anholt, Robert R. H.; Mackay, Trudy F. C.

    2015-01-01

    Aggression is an evolutionarily conserved complex behavior essential for survival and the organization of social hierarchies. With the exception of genetic variants associated with bioamine signaling, which have been implicated in aggression in many species, the genetic basis of natural variation in aggression is largely unknown. Drosophila melanogaster is a favorable model system for exploring the genetic basis of natural variation in aggression. Here, we performed genome-wide association analyses using the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and replicate advanced intercross populations derived from the most and least aggressive DGRP lines. We identified genes that have been previously implicated in aggressive behavior as well as many novel loci, including gustatory receptor 63a (Gr63a), which encodes a subunit of the receptor for CO2, and genes associated with development and function of the nervous system. Although genes from the two association analyses were largely nonoverlapping, they mapped onto a genetic interaction network inferred from an analysis of pairwise epistasis in the DGRP. We used mutations and RNAi knock-down alleles to functionally validate 79% of the candidate genes and 75% of the candidate epistatic interactions tested. Epistasis for aggressive behavior causes cryptic genetic variation in the DGRP that is revealed by changing allele frequencies in the outbred populations derived from extreme DGRP lines. This phenomenon may pertain to other fitness traits and species, with implications for evolution, applied breeding, and human genetics. PMID:26100892

  7. Laminin isoforms in endothelial and perivascular basement membranes.

    PubMed

    Yousif, Lema F; Di Russo, Jacopo; Sorokin, Lydia

    2013-01-01

    Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis.

  8. Laminin isoforms in endothelial and perivascular basement membranes

    PubMed Central

    Yousif, Lema F.; Di Russo, Jacopo; Sorokin, Lydia

    2013-01-01

    Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis. PMID:23263631

  9. Actin isoform specificity is required for the maintenance of lactation

    PubMed Central

    Weymouth, Nate; Shi, Zengdun; Rockey, Don C.

    2014-01-01

    Smooth muscle α-actin (Acta2) is one of six highly conserved mammalian actin isoforms that appear to exhibit functional redundancy. Nonetheless, we have postulated a specific functional role for the smooth muscle specific isoform. Here, we show that Acta2 deficient mice have a remarkable mammary phenotype such that dams lacking Acta2 are unable to nurse their offspring effectively. The phenotype was rescued in cross fostering experiments with wild type mice, excluding a developmental defect in Acta2 null pups. The mechanism for the underlying phenotype is due to myoepithelial dysfunction postpartum resulting in precocious involution. Further, we demonstrate a specific defect in myoepithelial cell contractility in Acta2 null mammary glands, despite normal expression of cytoplasmic actins. We conclude that Acta2 specifically mediates myoepithelial cell contraction during lactation and that this actin isoform therefore exhibits functional specificity. PMID:22123032

  10. Vitamin E isoforms as modulators of lung inflammation.

    PubMed

    Abdala-Valencia, Hiam; Berdnikovs, Sergejs; Cook-Mills, Joan M

    2013-10-31

    Asthma and allergic diseases are complex conditions caused by a combination of genetic and environmental factors. Clinical studies suggest a number of protective dietary factors for asthma, including vitamin E. However, studies of vitamin E in allergy commonly result in seemingly conflicting outcomes. Recent work indicates that allergic inflammation is inhibited by supplementation with the purified natural vitamin E isoform α-tocopherol but elevated by the isoform γ-tocopherol when administered at physiological tissue concentrations. In this review, we discuss opposing regulatory effects of α-tocopherol and γ-tocopherol on allergic lung inflammation in clinical trials and in animal studies. A better understanding of the differential regulation of inflammation by isoforms of vitamin E provides a basis towards the design of clinical studies and diets that would effectively modulate inflammatory pathways in lung disease.

  11. Oxygenation properties and isoform diversity of snake hemoglobins

    PubMed Central

    Natarajan, Chandrasekhar; Moriyama, Hideaki; Hoffmann, Federico G.; Wang, Tobias; Fago, Angela; Malte, Hans; Overgaard, Johannes; Weber, Roy E.

    2015-01-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform. PMID:26354849

  12. Oxygenation properties and isoform diversity of snake hemoglobins.

    PubMed

    Storz, Jay F; Natarajan, Chandrasekhar; Moriyama, Hideaki; Hoffmann, Federico G; Wang, Tobias; Fago, Angela; Malte, Hans; Overgaard, Johannes; Weber, Roy E

    2015-11-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform. Copyright © 2015 the American Physiological Society.

  13. Autocrine VEGF Isoforms Differentially Regulate Endothelial Cell Behavior

    PubMed Central

    Yamamoto, Hideki; Rundqvist, Helene; Branco, Cristina; Johnson, Randall S.

    2016-01-01

    Vascular endothelial growth factor A (VEGF) is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration, and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2). We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO) synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell homeostasis in

  14. Identification and characterization of novel NuMA isoforms

    SciTech Connect

    Wu, Jin; Xu, Zhe; He, Dacheng; Lu, Guanting

    2014-11-21

    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  15. Modulation of neuronal differentiation by CD40 isoforms

    SciTech Connect

    Hou Huayu; Obregon, Demian; Lou, Deyan; Ehrhart, Jared; Fernandez, Frank; Silver, Archie; Tan Jun

    2008-05-02

    Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40{sup -/-} deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40{sup -/-} mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may

  16. Expression of insect α6-like nicotinic acetylcholine receptors in Drosophila melanogaster highlights a high level of conservation of the receptor:spinosyn interaction.

    PubMed

    Perry, Trent; Somers, Jason; Yang, Ying Ting; Batterham, Philip

    2015-09-01

    Insecticide research has often relied on model species for elucidating the resistance mechanisms present in the targeted pests. The accuracy and applicability of extrapolations of these laboratory findings to field conditions varies but, for target site resistance, conserved mechanisms are generally the rule rather than the exception (Perry et al., 2011). The spinosyn class of insecticides appear to fit this paradigm and are a pest control option with many uses in both crop and animal protection. Resistance to spinosyns has been identified in both laboratory-selected and field-collected pest insects. Studies using the model insect, Drosophila melanogaster, have identified the nicotinic acetylcholine receptor subunit, Dα6 as an important target of the insecticide spinosad (Perry et al., 2007; Watson et al., 2010). Field-isolated resistant strains of several agricultural pest insects provide evidence that resistance cases are often associated with mutations in orthologues to Dα6 (Baxter et al., 2010; Puinean et al., 2013). The expression of these receptors is difficult in heterologous systems. In order to examine the biology of the Dα6 receptor subunit further, we used Drosophila as a model and developed an in vivo rescue system. This allowed us to express four different isoforms of Dα6 and show that each is able to rescue the response to spinosad. Regulatory sequences upstream of the Dα6 gene able to rescue the resistance phenotype were identified. Expression of other D. melanogaster subunits revealed that the rescue phenotype appears to be Dα6 specific. We also demonstrate that expression of pest insect orthologues of Dα6 from a variety of species are capable of rescuing the spinosad response phenotype, verifying the relevance of this receptor to resistance monitoring in the field. In the absence of a robust heterologous expression system, this study presents an in vivo model that will be useful in analysing many other aspects of these receptors and

  17. Allelic asymmetry of the Lethal hybrid rescue (Lhr) gene expression in the hybrid between Drosophila melanogaster and D. simulans: confirmation by using genetic variations of D. melanogaster.

    PubMed

    Shirata, Mika; Araye, Quenta; Maehara, Kazunori; Enya, Sora; Takano-Shimizu, Toshiyuki; Sawamura, Kyoichi

    2014-02-01

    In the cross between Drosophila melanogaster females and D. simulans males, hybrid males die at the late larval stage, and the sibling females also die at later stages at high temperatures. Removing the D. simulans allele of the Lethal hybrid rescue gene (Lhr (sim) ) improves the hybrid incompatibility phenotypes. However, the loss-of-function mutation of Lhr (sim) (Lhr (sim0) ) does not rescue the hybrid males in crosses with several D. melanogaster strains. We first describe the genetic factor possessed by the D. melanogaster strains. It has been suggested that removing the D. melanogaster allele of Lhr (Lhr (mel) ), that is Lhr (mel0) , does not have the hybrid male rescue effect, contrasting to Lhr (sim0) . Because the expression level of the Lhr gene is known to be Lhr (sim) > Lhr (mel) in the hybrid, Lhr (mel0) may not lead to enough of a reduction in total Lhr expression. Then, there is a possibility that the D. melanogaster factor changes the expression level to Lhr (sim) < Lhr (mel) . But in fact, the expression level was Lhr (sim) > Lhr (mel) in the hybrid irrespectively of the presence of the factor. At last, we showed that Lhr (mel0) slightly improves the viability of hybrid females, which was not realized previously. All of the present results are consistent with the allelic asymmetry model of the Lhr gene expression in the hybrid.

  18. Molecular Evolution between Drosophila Melanogaster and D. Simulans: Reduced Codon Bias, Faster Rates of Amino Acid Substitution, and Larger Proteins in D. Melanogaster

    PubMed Central

    Akashi, H.

    1996-01-01

    Both natural selection and mutational biases contribute to variation in codon usage bias within Drosophila species. This study addresses the cause of codon bias differences between the sibling species, Drosophila melanogaster and D. simulans. Under a model of mutation-selection-drift, variation in mutational processes between species predicts greater base composition differences in neutrally evolving regions than in highly biased genes. Variation in selection intensity, however, predicts larger base composition differences in highly biased loci. Greater differences in the G+C content of 34 coding regions than 46 intron sequences between D. melanogaster and D. simulans suggest that D. melanogaster has undergone a reduction in selection intensity for codon bias. Computer simulations suggest at least a fivefold reduction in N(e)s at silent sites in this lineage. Other classes of molecular change show lineage effects between these species. Rates of amino acid substitution are higher in the D. melanogaster lineage than in D. simulans in 14 genes for which outgroup sequences are available. Surprisingly, protein sizes are larger in D. melanogaster than in D. simulans in the 34 genes compared between the two species. A substantial fraction of silent, replacement, and insertion/deletion mutations in coding regions may be weakly selected in Drosophila. PMID:8913769

  19. Drosophila melanogaster larvae make nutritional choices that minimize developmental time.

    PubMed

    Rodrigues, Marisa A; Martins, Nelson E; Balancé, Lara F; Broom, Lara N; Dias, António J S; Fernandes, Ana Sofia D; Rodrigues, Fábio; Sucena, Élio; Mirth, Christen K

    2015-10-01

    Organisms from slime moulds to humans carefully regulate their macronutrient intake to optimize a wide range of life history characters including survival, stress resistance, and reproductive success. However, life history characters often differ in their response to nutrition, forcing organisms to make foraging decisions while balancing the trade-offs between these effects. To date, we have a limited understanding of how the nutritional environment shapes the relationship between life history characters and foraging decisions. To gain insight into the problem, we used a geometric framework for nutrition to assess how the protein and carbohydrate content of the larval diet affected key life history traits in the fruit fly, Drosophila melanogaster. In no-choice assays, survival from egg to pupae, female and male body size, and ovariole number - a proxy for female fecundity - were maximized at the highest protein to carbohydrate (P:C) ratio (1.5:1). In contrast, development time was minimized at intermediate P:C ratios, around 1:2. Next, we subjected larvae to two-choice tests to determine how they regulated their protein and carbohydrate intake in relation to these life history traits. Our results show that larvae targeted their consumption to P:C ratios that minimized development time. Finally, we examined whether adult females also chose to lay their eggs in the P:C ratios that minimized developmental time. Using a three-choice assay, we found that adult females preferentially laid their eggs in food P:C ratios that were suboptimal for all larval life history traits. Our results demonstrate that D. melanogaster larvae make foraging decisions that trade-off developmental time with body size, ovariole number, and survival. In addition, adult females make oviposition decisions that do not appear to benefit the larvae. We propose that these decisions may reflect the living nature of the larval nutritional environment in rotting fruit. These studies illustrate the

  20. Regulatory Divergence of Transcript Isoforms in a Mammalian Model System

    PubMed Central

    Thybert, David; Stefflova, Klara; Watt, Stephen; Flicek, Paul; Brazma, Alvis; Marioni, John C.; Odom, Duncan T.

    2015-01-01

    Phenotypic differences between species are driven by changes in gene expression and, by extension, by modifications in the regulation of the transcriptome. Investigation of mammalian transcriptome divergence has been restricted to analysis of bulk gene expression levels and gene-internal splicing. Using allele-specific expression analysis in inter-strain hybrids of Mus musculus, we determined the contribution of multiple cellular regulatory systems to transcriptome divergence, including: alternative promoter usage, transcription start site selection, cassette exon usage, alternative last exon usage, and alternative polyadenylation site choice. Between mouse strains, a fifth of genes have variations in isoform usage that contribute to transcriptomic changes, half of which alter encoded amino acid sequence. Virtually all divergence in isoform usage altered the post-transcriptional regulatory instructions in gene UTRs. Furthermore, most genes with isoform differences between strains contain changes originating from multiple regulatory systems. This result indicates widespread cross-talk and coordination exists among different regulatory systems. Overall, isoform usage diverges in parallel with and independently to gene expression evolution, and the cis and trans regulatory contribution to each differs significantly. PMID:26339903

  1. Murine Sirt3 protein isoforms have variable half-lives

    USDA-ARS?s Scientific Manuscript database

    Sirt3 is a NAD+-dependent protein deacetylase mainly localized in mitochondria. Recent studies indicate that the murine Sirt3 gene expresses different transcript variants resulting in three possible Sirt3 protein isoforms with variable lengths at the N-terminus: M1 (aa 1-334), M2 (aa 15-334), and M3...

  2. Arabidopsis UDP-sugar pyrophosphorylase: evidence for two isoforms.

    PubMed

    Gronwald, John W; Miller, Susan S; Vance, Carroll P

    2008-12-01

    Arabidopsis UDP-sugar pyrophosphorylase (AtUSP, EC 2.7.7.64) is a broad substrate pyrophosphorylase that exhibits activity with GlcA-1-P, Gal-1-P and Glc-1-P. Immunoblots using polyclonal antibodies raised to recombinant AtUSP demonstrated the presence of two USP isoforms of approximately 70 kDa (USP1) and 66 kDa (USP2) in crude extracts of Arabidopsis tissues. The 66 kDa isoform was not the result of proteolytic cleavage of USP1 during extraction. Trypsin digestion of bands on SDS gels corresponding to the location of the two isoforms followed by tandem mass spectrometry confirmed that USP peptides were present in both bands. Both USP isoforms were detected in the cytosol as determined by immunoblots of cellular fractions obtained by differential centrifugation. However, some USP1 was also detected in the microsomal fraction. Immunoprecipitation assays demonstrated that AtUSP antibodies removed USP activity (UDP-GlcA-->GlcA-1-P) measured in floret extracts. These results indicate that USP is the only pyrophosphorylase that utilizes UDP-GlcA as a substrate and suggest that it serves as the terminal enzyme of the myo-inositol oxidation pathway.

  3. APPRIS: annotation of principal and alternative splice isoforms

    PubMed Central

    Rodriguez, Jose Manuel; Maietta, Paolo; Ezkurdia, Iakes; Pietrelli, Alessandro; Wesselink, Jan-Jaap; Lopez, Gonzalo; Valencia, Alfonso; Tress, Michael L.

    2013-01-01

    Here, we present APPRIS (http://appris.bioinfo.cnio.es), a database that houses annotations of human splice isoforms. APPRIS has been designed to provide value to manual annotations of the human genome by adding reliable protein structural and functional data and information from cross-species conservation. The visual representation of the annotations provided by APPRIS for each gene allows annotators and researchers alike to easily identify functional changes brought about by splicing events. In addition to collecting, integrating and analyzing reliable predictions of the effect of splicing events, APPRIS also selects a single reference sequence for each gene, here termed the principal isoform, based on the annotations of structure, function and conservation for each transcript. APPRIS identifies a principal isoform for 85% of the protein-coding genes in the GENCODE 7 release for ENSEMBL. Analysis of the APPRIS data shows that at least 70% of the alternative (non-principal) variants would lose important functional or structural information relative to the principal isoform. PMID:23161672

  4. APPRIS: annotation of principal and alternative splice isoforms.

    PubMed

    Rodriguez, Jose Manuel; Maietta, Paolo; Ezkurdia, Iakes; Pietrelli, Alessandro; Wesselink, Jan-Jaap; Lopez, Gonzalo; Valencia, Alfonso; Tress, Michael L

    2013-01-01

    Here, we present APPRIS (http://appris.bioinfo.cnio.es), a database that houses annotations of human splice isoforms. APPRIS has been designed to provide value to manual annotations of the human genome by adding reliable protein structural and functional data and information from cross-species conservation. The visual representation of the annotations provided by APPRIS for each gene allows annotators and researchers alike to easily identify functional changes brought about by splicing events. In addition to collecting, integrating and analyzing reliable predictions of the effect of splicing events, APPRIS also selects a single reference sequence for each gene, here termed the principal isoform, based on the annotations of structure, function and conservation for each transcript. APPRIS identifies a principal isoform for 85% of the protein-coding genes in the GENCODE 7 release for ENSEMBL. Analysis of the APPRIS data shows that at least 70% of the alternative (non-principal) variants would lose important functional or structural information relative to the principal isoform.

  5. Role of p53 isoforms and aggregations in cancer

    PubMed Central

    Kim, SeJin; An, Seong Soo A.

    2016-01-01

    Abstract p53 is a master regulatory protein that is involved in diverse cellular metabolic processes such as apoptosis, DNA repair, and cell cycle arrest. The protective function of p53 (in its homotetrameric form) as a tumor suppressor is lost in more than 50% of human cancers. Despite considerable experimental evidence suggesting the presence of multiple p53 states, it has been difficult to correlate the status of p53 with cancer response to treatments and clinical outcomes, which suggest the importance of complex but essential p53 regulatory pathways. Recent studies have indicated that the expression pattern of p53 isoforms may play a crucial role in regulating normal and cancer cell fates in response to diverse stresses. The human TP53 gene encodes at least 12 p53 isoforms, which are produced in normal tissue through alternative initiation of translation, usage of alternative promoters, and alternative splicing. Furthermore, some researchers have suggested that the formation of mutant p53 aggregates may be associated with cancer pathogenesis due to loss-of function (LoF), dominant-negative (DN), and gain-of function (GoF) effects. As different isoforms or the aggregation state of p53 may influence tumorigenesis, this review aims to examine the correlation of p53 isoforms and aggregation with cancer. PMID:27368003

  6. Plectin isoforms as organizers of intermediate filament cytoarchitecture.

    PubMed

    Wiche, Gerhard; Winter, Lilli

    2011-01-01

    Intermediate filaments (IFs) form cytoplamic and nuclear networks that provide cells with mechanical strength. Perturbation of this structural support causes cell and tissue fragility and accounts for a number of human genetic diseases. In recent years, important additional roles, nonmechanical in nature, were ascribed to IFs, including regulation of signaling pathways that control survival and growth of the cells, and vectorial processes such as protein targeting in polarized cellular settings. The cytolinker protein plectin anchors IF networks to junctional complexes, the nuclear envelope and cytoplasmic organelles and it mediates their cross talk with the actin and tubulin cytoskeleton. These functions empower plectin to wield significant influence over IF network cytoarchitecture. Moreover, the unusual diversity of plectin isoforms with different N termini and a common IF-binding (C-terminal) domain enables these isoforms to specifically associate with and thereby bridge IF networks to distinct cellular structures. Here we review the evidence for IF cytoarchitecture being controlled by specific plectin isoforms in different cell systems, including fibroblasts, endothelial cells, lens fibers, lymphocytes, myocytes, keratinocytes, neurons and astrocytes, and discuss what impact the absence of these isoforms has on IF cytoarchitecture-dependent cellular functions.

  7. Characterization of a novel periodontal ligament-specific periostin isoform.

    PubMed

    Yamada, S; Tauchi, T; Awata, T; Maeda, K; Kajikawa, T; Yanagita, M; Murakami, S

    2014-09-01

    Periostin is a mesenchymal cell marker predominantly expressed in collagen-rich fibrous connective tissues, including heart valves, tendons, perichondrium, periosteum, and periodontal ligament (PDL). Knockdown of periostin expression in mice results in early-onset periodontitis and failure of cardiac healing after acute myocardial infarction, suggesting that periostin is essential for connective tissue homeostasis and regeneration. However, its role(s) in periodontal tissues has not yet been fully defined. In this study, we describe a novel human isoform of periostin (PDL-POSTN). Isoform-specific analysis by reverse-transcription polymerase chain-reaction (RT-PCR) revealed that PDL-POSTN was predominantly expressed in the PDL, with much lower expression in other tissues and organs. A PDL cell line transfected with PDL-POSTN showed enhanced alkaline phosphatase (ALPase) activity and calcified nodule formation, compared with cells transfected with the full-length periostin isoform. A neutralizing antibody against integrin-αv inhibited both ALPase activity and calcified nodule formation in cells transfected with PDL-POSTN. Furthermore, co-immunoprecipitation assays revealed that PDL-POSTN bound to integrin αvβ3 more strongly than the common isoform of periostin, resulting in strong activation of the integrin αvβ3-focal adhesion kinase (FAK) signaling pathway. These results suggest that PDL-POSTN positively regulates cytodifferentiation and mineralization in PDL cells through integrin αvβ3.

  8. Actin and myosin isoforms in aneural and malformed chick hearts.

    PubMed

    Kirby, M L; Shimizu, N; Gagnon, J; Toyofuku, T; Kennedy, J; Conrad, D C; Zak, R

    1990-09-01

    Although it is generally accepted that actin and myosin isoforms adapt to their functional requirements, the sequence of expression of these proteins in hearts developing abnormally is unknown. In the chick embryo it is possible to change various aspects of heart development without direct manipulation of the cardiovascular system, by removing various regions of the neural crest from early embryos. The neural crest provides both neural (sympathetic and parasympathetic) and ectomesenchymal components to the heart, and selective removal of various areas results in embryos with sympathetically aneural hearts, or persistent truncus arteriosus with or without parasympathetic denervation. Myosin isoform expression was studied in each of these types of hearts using an array of myosin antibodies specific for atrium, ventricle or the conduction system. Myosin expression in experimental hearts was found to follow the normal pattern of development using these antibodies. Actin expression was studied using cDNA probes for the 3' untranslated region of actin mRNA of the alpha-skeletal, alpha-cardiac and beta-actin isoforms. Using slot-blot hybridization analysis, the pattern of actin expression in atrium and ventricle was followed throughout the period of incubation in normal hearts. The pattern of actin expression was found to be abnormal in hearts which were sympathetically aneural and those which had persistent truncus arteriosus combined with parasympathetic denervation. ATPase activity was increased only in atria of hearts with persistent truncus arteriosus. It appears from these experiments that actin isoform expression is influenced in the chick heart by autonomic innervation.

  9. Conformational Flexibility Differentiates Naturally Occurring Bet v 1 Isoforms.

    PubMed

    Grutsch, Sarina; Fuchs, Julian E; Ahammer, Linda; Kamenik, Anna S; Liedl, Klaus R; Tollinger, Martin

    2017-06-03

    The protein Bet v 1 represents the main cause for allergic reactions to birch pollen in Europe and North America. Structurally homologous isoforms of Bet v 1 can have different properties regarding allergic sensitization and Th2 polarization, most likely due to differential susceptibility to proteolytic cleavage. Using NMR relaxation experiments and molecular dynamics simulations, we demonstrate that the initial proteolytic cleavage sites in two naturally occurring Bet v 1 isoforms, Bet v 1.0101 (Bet v 1a) and Bet v 1.0102 (Bet v 1d), are conformationally flexible. Inaccessible cleavage sites in helices and strands are highly flexible on the microsecond-millisecond time scale, whereas those located in loops display faster nanosecond-microsecond flexibility. The data consistently show that Bet v 1.0102 is more flexible and conformationally heterogeneous than Bet v 1.0101. Moreover, NMR hydrogen-deuterium exchange measurements reveal that the backbone amides in Bet v 1.0102 are significantly more solvent exposed, in agreement with this isoform's higher susceptibility to proteolytic cleavage. The differential conformational flexibility of Bet v 1 isoforms, along with the transient exposure of inaccessible sites to the protein surface, may be linked to proteolytic susceptibility, representing a potential structure-based rationale for the observed differences in Th2 polarization and allergic sensitization.

  10. Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus.

    PubMed

    Watthanasurorot, Apiruck; Jiravanichpaisal, Pikul; Liu, Haipeng; Söderhäll, Irene; Söderhäll, Kenneth

    2011-06-01

    The Down syndrome cell adhesion molecule, also known as Dscam, is a member of the immunoglobulin super family. Dscam plays an essential function in neuronal wiring and appears to be involved in innate immune reactions in insects. The deduced amino acid sequence of Dscam in the crustacean Pacifastacus leniusculus (PlDscam), encodes 9(Ig)-4(FNIII)-(Ig)-2(FNIII)-TM and it has variable regions in the N-terminal half of Ig2 and Ig3 and the complete Ig7 and in the transmembrane domain. The cytoplasmic tail can generate multiple isoforms. PlDscam can generate more than 22,000 different unique isoforms. Bacteria and LPS injection enhanced the expression of PlDscam, but no response in expression occurred after a white spot syndrome virus (WSSV) infection or injection with peptidoglycans. Furthermore, PlDscam silencing did not have any effect on the replication of the WSSV. Bacterial specific isoforms of PlDscam were shown to have a specific binding property to each tested bacteria, E. coli or S. aureus. The bacteria specific isoforms of PlDscam were shown to be associated with bacterial clearance and phagocytosis in crayfish.

  11. Can Drosophila melanogaster represent a model system for the detection of reproductive adverse drug reactions?

    PubMed

    Avanesian, Agnesa; Semnani, Sahar; Jafari, Mahtab

    2009-08-01

    Once a molecule is identified as a potential drug, the detection of adverse drug reactions is one of the key components of its development and the FDA approval process. We propose using Drosophila melanogaster to screen for reproductive adverse drug reactions in the early stages of drug development. Compared with other non-mammalian models, D. melanogaster has many similarities to the mammalian reproductive system, including putative sex hormones and conserved proteins involved in genitourinary development. Furthermore, the D. melanogaster model would present significant advantages in time efficiency and cost-effectiveness compared with mammalian models. We present data on methotrexate (MTX) reproductive adverse events in multiple animal models, including fruit flies, as proof-of-concept for the use of the D. melanogaster model.

  12. The Phenotypic Effects of Royal Jelly on Wild-Type D. melanogaster Are Strain-Specific

    PubMed Central

    Morgan, Stefanie L.; Seggio, Joseph A.; Hicks, Jasmin A.; Sharp, Katherine A.; Axelrod, Jeffrey D.; Wang, Kevin C.

    2016-01-01

    The role for royal jelly (RJ) in promoting caste differentiation of honeybee larvae into queens rather than workers is well characterized. A recent study demonstrated that this poorly understood complex nutrition drives strikingly similar phenotypic effects in Drosophila melanogaster, such as increased body size and reduced developmental time, making possible the use of D. melanogaster as a model system for the genetic analysis of the cellular mechanisms underlying RJ and caste differentiation. We demonstrate here that RJ increases the body size of some wild-type strains of D. melanogaster but not others, and report significant delays in developmental time in all flies reared on RJ. These findings suggest that cryptic genetic variation may be a factor in the D. melanogaster response to RJ, and should be considered when attempting to elucidate response mechanisms to environmental changes in non-honeybee species. PMID:27486863

  13. Method for the Simultaneous Quantitation of Apolipoprotein E Isoforms using Tandem Mass Spectrometry

    PubMed Central

    Wildsmith, Kristin R.; Han, Bomie; Bateman, Randall J.

    2009-01-01

    Using Apolipoprotein E (ApoE) as a model protein, we developed a protein isoform analysis method utilizing Stable Isotope Labeling Tandem Mass Spectrometry (SILT MS). ApoE isoforms are quantitated using the intensities of the b and y ions of the 13C-labeled tryptic isoform-specific peptides versus unlabeled tryptic isoform-specific peptides. The ApoE protein isoform analysis using SILT allows for the simultaneous detection and relative quantitation of different ApoE isoforms from the same sample. This method provides a less biased assessment of ApoE isoforms compared to antibody-dependent methods, and may lead to a better understanding of the biological differences between isoforms. PMID:19653990

  14. Distinct Metal Isoforms Underlie Promiscuous Activity Profiles of Metalloenzymes.

    PubMed

    Baier, Florian; Chen, John; Solomonson, Matthew; Strynadka, Natalie C J; Tokuriki, Nobuhiko

    2015-07-17

    Within a superfamily, functionally diverged metalloenzymes often favor different metals as cofactors for catalysis. One hypothesis is that incorporation of alternative metals expands the catalytic repertoire of metalloenzymes and provides evolutionary springboards toward new catalytic functions. However, there is little experimental evidence that incorporation of alternative metals changes the activity profile of metalloenzymes. Here, we systematically investigate how metals alter the activity profiles of five functionally diverged enzymes of the metallo-β-lactamase (MBL) superfamily. Each enzyme was reconstituted in vitro with six different metals, Cd(2+), Co(2+), Fe(2+), Mn(2+), Ni(2+), and Zn(2+), and assayed against eight catalytically distinct hydrolytic reactions (representing native functions of MBL enzymes). We reveal that each enzyme metal isoform has a significantly different activity level for native and promiscuous reactions. Moreover, metal preferences for native versus promiscuous activities are not correlated and, in some cases, are mutually exclusive; only particular metal isoforms disclose cryptic promiscuous activities but often at the expense of the native activity. For example, the L1 B3 β-lactamase displays a 1000-fold catalytic preference for Zn(2+) over Ni(2+) for its native activity but exhibits promiscuous thioester, phosphodiester, phosphotriester, and lactonase activity only with Ni(2+). Furthermore, we find that the five MBL enzymes exist as an ensemble of various metal isoforms in vivo, and this heterogeneity results in an expanded activity profile compared to a single metal isoform. Our study suggests that promiscuous activities of metalloenzymes can stem from an ensemble of metal isoforms in the cell, which could facilitate the functional divergence of metalloenzymes.

  15. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Pinto, Cibele; Papa, Dan; Hübner, Melanie; Mou, Tung-Chung; Lushington, Gerald H; Seifert, Roland

    2008-04-01

    Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.

  16. Mast cells express novel functional IL-15 receptor alpha isoforms.

    PubMed

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Krause, Hans; Paus, Ralf; Bulfone-Paus, Silvia

    2003-05-15

    Mast cells previously have been reported to be regulated by IL-15 and to express a distinct IL-15R, termed IL-15RX. To further examine IL-15 binding and signaling in mast cells, we have studied the nature of the IL-15R and some of its biological activities in these cells. In this study, we report the existence of three novel isoforms of the IL-15R alpha chain in murine bone marrow-derived mast cells as a result of an alternative exon-splicing mechanism within the IL-15R alpha gene. These correspond to new mRNA transcripts lacking exon 4; exons 3 and 4; or exons 3, 4, and 5 (IL-15R alpha Delta 4, IL-15R alpha Delta 3,4, IL-15R alpha Delta 3,4,5). After transient transfection in COS-7 cells, all IL-15R alpha isoforms associate with the Golgi apparatus, the endoplasmic reticulum, the perinuclear space, and the cell membrane. Analysis of glycosylation pattern demonstrates the usage of a single N-glycosylation site, while no O-glycosylation is observed. Importantly, IL-15 binds with high affinity to, and promotes the survival of, murine BA/F3 cells stably transfected with the IL-15R alpha isoforms. Furthermore, we report that signaling mediated by IL-15 binding to the newly identified IL-15R alpha isoforms involves the phosphorylation of STAT3, STAT5, STAT6, Janus kinase 2, and Syk kinase. Taken together, our data indicate that murine mast cells express novel, fully functional IL-15R alpha isoforms, which can explain the selective regulatory effects of IL-15 on these cells.

  17. Cell, isoform, and environment factors shape gradients and modulate chemotaxis.

    PubMed

    Chang, S Laura; Cavnar, Stephen P; Takayama, Shuichi; Luker, Gary D; Linderman, Jennifer J

    2015-01-01

    Chemokine gradient formation requires multiple processes that include ligand secretion and diffusion, receptor binding and internalization, and immobilization of ligand to surfaces. To understand how these events dynamically shape gradients and influence ensuing cell chemotaxis, we built a multi-scale hybrid agent-based model linking gradient formation, cell responses, and receptor-level information. The CXCL12/CXCR4/CXCR7 signaling axis is highly implicated in metastasis of many cancers. We model CXCL12 gradient formation as it is impacted by CXCR4 and CXCR7, with particular focus on the three most highly expressed isoforms of CXCL12. We trained and validated our model using data from an in vitro microfluidic source-sink device. Our simulations demonstrate how isoform differences on the molecular level affect gradient formation and cell responses. We determine that ligand properties specific to CXCL12 isoforms (binding to the migration surface and to CXCR4) significantly impact migration and explain differences in in vitro chemotaxis data. We extend our model to analyze CXCL12 gradient formation in a tumor environment and find that short distance, steep gradients characteristic of the CXCL12-γ isoform are effective at driving chemotaxis. We highlight the importance of CXCL12-γ in cancer cell migration: its high effective affinity for both extracellular surface sites and CXCR4 strongly promote CXCR4+ cell migration. CXCL12-γ is also more difficult to inhibit, and we predict that co-inhibition of CXCR4 and CXCR7 is necessary to effectively hinder CXCL12-γ-induced migration. These findings support the growing importance of understanding differences in protein isoforms, and in particular their implications for cancer treatment.

  18. Growth hormone isoforms in a girl with gigantism.

    PubMed

    Ng, L L; Chasalow, F I; Escobar, O; Blethen, S L

    1999-01-01

    Several previous investigations have suggested that there may be different growth hormone isoforms in patients with acromegaly. We used three different site-specific monoclonal antibodies (MAbs) to investigate growth hormone (GH) isoforms in serum from an 8 year-old girl with a GH and prolactin secreting adenoma. The pattern of GH-immunoreactivity was dependent on the circumstances of collection. Serum obtained after oral glucose had very little cross reactivity with MAb 352 although concentrations of up to 15 micrograms/l were found with two other MAbs, 033 and 665. MAb 352 does not recognize the 20,000 dalton isoform of GH (20K) while both MAb 033 and 665 do. The same pattern of GH immunoreactivity (low MAb 352, equal and higher MAb 033 and 665) was seen in other baseline samples. In contrast, samples obtained after TRH/GnRH showed immunoreactivity patterns expected for a mixture of 22,000 dalton isoform of GH (22K) with only a small amount of 20K. GH samples obtained during sleep showed both patterns with episodic peaks with equal immunoreactivity superimposed on the basal pattern (decreased activity with MAb 352). Affinity chromatography of basal samples showed that a portion of the GH immunoreactivity was neither 22K nor 20K, although in stimulated samples, over 70% of GH was 22K or 20K GH. In conclusion, the nature of GH isoforms present in serum varies with GH concentration. These differences may contribute to the known difficulty in correlating disease activity and random GH measurements in patients with GH secreting adenomas.

  19. Molecular vibration-sensing component in Drosophila melanogaster olfaction.

    PubMed

    Franco, Maria Isabel; Turin, Luca; Mershin, Andreas; Skoulakis, Efthimios M C

    2011-03-01

    A common explanation of molecular recognition by the olfactory system posits that receptors recognize the structure or shape of the odorant molecule. We performed a rigorous test of shape recognition by replacing hydrogen with deuterium in odorants and asking whether Drosophila melanogaster can distinguish these identically shaped isotopes. We report that flies not only differentiate between isotopic odorants, but can be conditioned to selectively avoid the common or the deuterated isotope. Furthermore, flies trained to discriminate against the normal or deuterated isotopes of a compound, selectively avoid the corresponding isotope of a different odorant. Finally, flies trained to avoid a deuterated compound exhibit selective aversion to an unrelated molecule with a vibrational mode in the energy range of the carbon-deuterium stretch. These findings are inconsistent with a shape-only model for smell, and instead support the existence of a molecular vibration-sensing component to olfactory reception.

  20. Drosophila melanogaster as a model organism to study nanotoxicity.

    PubMed

    Ong, Cynthia; Yung, Lin-Yue Lanry; Cai, Yu; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2015-05-01

    Drosophila melanogaster has been used as an in vivo model organism for the study of genetics and development since 100 years ago. Recently, the fruit fly Drosophila was also developed as an in vivo model organism for toxicology studies, in particular, the field of nanotoxicity. The incorporation of nanomaterials into consumer and biomedical products is a cause for concern as nanomaterials are often associated with toxicity in many in vitro studies. In vivo animal studies of the toxicity of nanomaterials with rodents and other mammals are, however, limited due to high operational cost and ethical objections. Hence, Drosophila, a genetically tractable organism with distinct developmental stages and short life cycle, serves as an ideal organism to study nanomaterial-mediated toxicity. This review discusses the basic biology of Drosophila, the toxicity of nanomaterials, as well as how the Drosophila model can be used to study the toxicity of various types of nanomaterials.

  1. Loss of mitochondrial DNA with aging in Drosophila melanogaster.

    PubMed

    Massie, H R; Baird, M B; McMahon, M M

    1975-01-01

    The buoyant densities of nuclear and mitochondrial DNA from Drosophila melanogaster lysates has been found to show no change with increasing age in both CsCl and Cs2SO4 equilibrium density gradients. Whole fly homogenates were used to demonstrate no change in nuclear DNA content during adult life. Mitochondrial DNA increased from 1.2 to 4.3% of the total DNA during the first week of adult life and then decreased during senescence to a minimum of 1.5% at 10 weeks of age which represented a 65% loss in mitochondrial DNA content with age. These data are interpreted to support the proposal that mitochondria destruction occurs during senescence.

  2. Gene Model Annotations for Drosophila melanogaster: The Rule-Benders

    PubMed Central

    Crosby, Madeline A.; Gramates, L. Sian; dos Santos, Gilberto; Matthews, Beverley B.; St. Pierre, Susan E.; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Emmert, David B.; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads. PMID:26109356

  3. Frequent Replenishment Sustains the Beneficial Microbiome of Drosophila melanogaster

    PubMed Central

    Blum, Jessamina E.; Fischer, Caleb N.; Miles, Jessica; Handelsman, Jo

    2013-01-01

    ABSTRACT We report that establishment and maintenance of the Drosophila melanogaster microbiome depend on ingestion of bacteria. Frequent transfer of flies to sterile food prevented establishment of the microbiome in newly emerged flies and reduced the predominant members, Acetobacter and Lactobacillus spp., by 10- to 1,000-fold in older flies. Flies with a normal microbiome were less susceptible than germfree flies to infection by Serratia marcescens and Pseudomonas aeruginosa. Augmentation of the normal microbiome with higher populations of Lactobacillus plantarum, a Drosophila commensal and probiotic used in humans, further protected the fly from infection. Replenishment represents an unexplored strategy by which animals can sustain a gut microbial community. Moreover, the population behavior and health benefits of L. plantarum resemble features of certain probiotic bacteria administered to humans. As such, L. plantarum in the fly gut may serve as a simple model for dissecting the population dynamics and mode of action of probiotics in animal hosts. PMID:24194543

  4. Molecular vibration-sensing component in Drosophila melanogaster olfaction

    PubMed Central

    Franco, Maria Isabel; Turin, Luca; Mershin, Andreas; Skoulakis, Efthimios M. C.

    2011-01-01

    A common explanation of molecular recognition by the olfactory system posits that receptors recognize the structure or shape of the odorant molecule. We performed a rigorous test of shape recognition by replacing hydrogen with deuterium in odorants and asking whether Drosophila melanogaster can distinguish these identically shaped isotopes. We report that flies not only differentiate between isotopic odorants, but can be conditioned to selectively avoid the common or the deuterated isotope. Furthermore, flies trained to discriminate against the normal or deuterated isotopes of a compound, selectively avoid the corresponding isotope of a different odorant. Finally, flies trained to avoid a deuterated compound exhibit selective aversion to an unrelated molecule with a vibrational mode in the energy range of the carbon–deuterium stretch. These findings are inconsistent with a shape-only model for smell, and instead support the existence of a molecular vibration-sensing component to olfactory reception. PMID:21321219

  5. Addition of molecular methods to mutation studies with Drosophila melanogaster

    SciTech Connect

    Lee, W.R. )

    1989-01-01

    For 80 years, Drosophila melanogaster has been used as a major tool in analyzing Mendelian genetics. By using chromosome inversions that suppress crossing over, geneticists have developed a large number of stocks for mutation analysis. These stocks permit numerous tests for specific locus mutations, lethals at multiple loci on any chromosome, chromosome exchanges, insertions, and deletions. The entire genome can be manipulated for a degree of genetic control not found in other germ-line systems. Recombinant DNA techniques now permit analysis of mutations to the nucleotide level. By combining classical genetic analysis with recombinant DNA techniques, it is possible to analyze mutations that range from chromosome aberrations and multilocus deficiencies to single nucleotide transitions.

  6. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster

    PubMed Central

    Cheung, Samantha K.

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation. PMID:28362856

  7. Integrative neuromechanics of crawling in D. melanogaster larvae

    PubMed Central

    Pehlevan, Cengiz; Paoletti, Paolo; Mahadevan, L

    2016-01-01

    Locomotion in an organism is a consequence of the coupled interaction between brain, body and environment. Motivated by qualitative observations and quantitative perturbations of crawling in Drosophila melanogaster larvae, we construct a minimal integrative mathematical model for its locomotion. Our model couples the excitation-inhibition circuits in the nervous system to force production in the muscles and body movement in a frictional environment, thence linking neural dynamics to body mechanics via sensory feedback in a heterogeneous environment. Our results explain the basic observed phenomenology of crawling with and without proprioception, and elucidate the stabilizing role that proprioception plays in producing a robust crawling phenotype in the presence of biological perturbations. More generally, our approach allows us to make testable predictions on the effect of changing body-environment interactions on crawling, and serves as a step in the development of hierarchical models linking cellular processes to behavior. DOI: http://dx.doi.org/10.7554/eLife.11031.001

  8. Metallothionein genes in Drosophila melanogaster constitute a dual system.

    PubMed Central

    Mokdad, R; Debec, A; Wegnez, M

    1987-01-01

    We have selected a metallothionein (MT) cDNA clone from a cadmium-resistant Drosophila melanogaster cell line. This clone includes an open reading frame coding for a 43-amino acid protein whose characteristics are a high cysteine content (12 cysteines, 28% of all residues) and a lack of aromatic amino acids. This protein differs markedly from the Drosophila MT (Mtn gene) previously reported [Lastowski-Perry, D., Otto, E. & Maroni, G. (1985) J. Biol. Chem. 260, 1527-1530). The MT system of Drosophila thus consists of at least two distantly related genes, in sharp contrast with vertebrate MT systems, in which the different members of MT gene families display high similarity. The gene corresponding to our MT cDNA (Mto) is inducible in Drosophila cell lines and in both larval and adult flies. Images PMID:3106973

  9. Functional analysis of an olfactory receptor in Drosophila melanogaster

    PubMed Central

    Störtkuhl, Klemens F.; Kettler, Raffael

    2001-01-01

    Fifty nine candidate olfactory receptor (Or) genes have recently been identified in Drosophila melanogaster, one of which is Or43a. In wild-type flies, Or43a is expressed at the distal edge of the third antennal segment in about 15 Or neurons. To identify ligands for the receptor we used the Gal4/UAS system to misexpress Or43a in the third antennal segment. Or43a mRNA expression in the antenna of transformed and wild-type flies was visualized by in situ hybridization with a digoxigenin-labeled probe. Electroantennogram recordings from transformed and wild-type flies were used to identify cyclohexanol, cyclohexanone, benzaldehyde, and benzyl alcohol as ligands for the Or43a. This in vivo analysis reveals functional properties of one member of the recently isolated Or family in Drosophila and will provide further insight into our understanding of olfactory coding. PMID:11481495

  10. A misexpression study examining dorsal thorax formation in Drosophila melanogaster.

    PubMed Central

    Peña-Rangel, María Teresa; Rodriguez, Isabel; Riesgo-Escovar, Juan Rafael

    2002-01-01

    We studied thorax formation in Drosophila melanogaster using a misexpression screen with EP lines and thoracic Gal4 drivers that provide a genetically sensitized background. We identified 191 interacting lines showing alterations of thoracic bristles (number and/or location), thorax and scutellum malformations, lethality, or suppression of the thoracic phenotype used in the screen. We analyzed these lines and showed that known genes with different functional roles (selector, prepattern, proneural, cell cycle regulation, lineage restriction, signaling pathways, transcriptional control, and chromatin organization) are among the modifier lines. A few lines have previously been identified in thorax formation, but others, such as chromatin-remodeling complex genes, are novel. However, most of the interacting loci are uncharacterized, providing a wealth of new genetic data. We also describe one such novel line, poco pelo (ppo), where both misexpression and loss-of-function phenotypes are similar: loss of bristles and scutellum malformation. PMID:11901120

  11. Immune stimulation reduces sleep and memory ability in Drosophila melanogaster.

    PubMed

    Mallon, Eamonn B; Alghamdi, Akram; Holdbrook, Robert T K; Rosato, Ezio

    2014-01-01

    Psychoneuroimmunology studies the increasing number of connections between neurobiology, immunology and behaviour. We demonstrate the effects of the immune response on two fundamental behaviours: sleep and memory ability in Drosophila melanogaster. We used the Geneswitch system to upregulate peptidoglycan receptor protein (PGRP) expression, thereby stimulating the immune system in the absence of infection. Geneswitch was activated by feeding the steroid RU486, to the flies. We used an aversive classical conditioning paradigm to quantify memory and measures of activity to infer sleep. Immune stimulated flies exhibited reduced levels of sleep, which could not be explained by a generalised increase in waking activity. Immune stimulated flies also showed a reduction in memory abilities. These results lend support to Drosophila as a model for immune-neural interactions and provide a possible role for sleep in the interplay between the immune response and memory.

  12. Dosage-Dependent Modifiers of Homoeotic Mutations in Drosophila melanogaster

    PubMed Central

    Kennison, James A.; Russell, Michael A.

    1987-01-01

    The determination of segment identity in Drosophila melanogaster appears to be controlled by a small number of genes. In order to identity new components in the process, we have systematically screened the autosomal complement for loci that show a dosage-dependent interaction with mutations in previously characterized genes thought to be important in the determination of segment identity. The dominant homoeotic phenotype of mutations at four loci involved in thoracic leg determination (Pc, Pcl, Antp and Scr) were quantitated in flies bearing a series of synthetic duplications covering more than 99% of the autosomal complement. Twelve regions were identified that when present in three wild-type copies strongly enhanced or suppressed the phenotype of mutations at one or more of the four homoeotic loci examined. The effects of five of these regions appear to correspond to previously described homoeotic loci; the effects of the remaining seven appear to identify new loci involved in the determination of segment identity. PMID:17246380

  13. Conserved family of glycerol kinase loci in Drosophila melanogaster

    PubMed Central

    Martinez Agosto, Julian A.; McCabe, Edward R.B.

    2009-01-01

    Glycerol kinase (GK) is an enzyme that catalyzes the formation of glycerol 3-phosphate from ATP and glycerol, the rate-limiting step in glycerol utilization. We analyzed the genome of the model organism Drosophila melanogaster and identified five GK orthologs, including two loci with sequence homology to the mammalian Xp21 GK protein. Using a combination of sequence analysis and evolutionary comparisons of orthologs between species, we characterized functional domains in the protein required for GK activity. Our findings include additional conserved domains that suggest novel nuclear and mitochondrial functions for glycerol kinase in apoptosis and transcriptional regulation. Investigation of GK function in Drosophila will inform us about the role of this enzyme in development and will provide us with a tool to examine genetic modifiers of human metabolic disorders. PMID:16545593

  14. Drosophila melanogaster as a Model Organism of Brain Diseases

    PubMed Central

    Jeibmann, Astrid; Paulus, Werner

    2009-01-01

    Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches. PMID:19333415

  15. Location and Underreplication of Satellite DNA in DROSOPHILA MELANOGASTER

    PubMed Central

    Wollenzien, Paul; Barsanti, Paolo; Hearst, John E.

    1977-01-01

    The two light nuclear satellites (ρCsCl = 1.672 and ρCsCl = 1.687) have been quantified in DNA isolated from the larvel imaginal discs and brains of Drosophila melanogaster with the genotypes X/O, X/X and X/Y. By comparing the results from these different genotypes, the amounts of the two satellites in the X and Y chromosomes and in the autosomes have been determined. The lightest satellite is not located to any appreciable extent in the X chromosome. The heterochromatic regions are not completely filled by these satellites.—Satellite DNA has also been quantified in DNA isolated from adults containing different genotypes. The two satellites are underreplicated to different extents. The apparent amount of underreplication for one of the satellites is different in different parts of the genome. PMID:410698

  16. Multiple pheromone system controlling mating in Drosophila melanogaster.

    PubMed

    Averhoff, W W; Richardson, R H

    1976-02-01

    The signals essential to Drosophila melanogaster courtship include pheromones emitted by the female which stimulate the male to court and pheromones emitted by the courting male which stimulate the female to accept. Genetic variation among these phermones is a common (if not universal) requirement for stimulation of either sex. The signal from the courting male to the female involves both a volatile and a nonvolatile component. The volatile component is associated with loci on the second and/or third chromosomes, while the monvolatile component is associated with the X and/or fourth chromosomes. This widespread distribution in the genome of loci controlling various components in the communication network inevitably results in linkage associations with other loci. The genetic array of gametes was limited. When combined with the negative assortitative mating pattern produced by the stimulation by dissimilar pheromones, linkage disequilibrium creates a strong counterforce to inbreeding during population bottlenecks.

  17. Incipient speciation in Drosophila melanogaster involves chemical signals

    PubMed Central

    Grillet, Micheline; Everaerts, Claude; Houot, Benjamin; Ritchie, Michael G.; Cobb, Matthew; Ferveur, Jean-François

    2012-01-01

    The sensory and genetic bases of incipient speciation between strains of Drosophila melanogaster from Zimbabwe and those from elsewhere are unknown. We studied mating behaviour between eight strains – six from Zimbabwe, together with two cosmopolitan strains. The Zimbabwe strains showed significant sexual isolation when paired with cosmopolitan males, due to Zimbabwe females discriminating against these males. Our results show that flies' cuticular hydrocarbons (CHs) were involved in this sexual isolation, but that visual and acoustic signals were not. The mating frequency of Zimbabwe females was highly significantly negatively correlated with the male's relative amount of 7-tricosene (%7-T), while the mating of cosmopolitan females was positively correlated with %7-T. Variation in transcription levels of two hydrocarbon-determining genes, desat1 and desat2, did not correlate with the observed mating patterns. Our study represents a step forward in our understanding of the sensory processes involved in this classic case of incipient speciation. PMID:22355738

  18. Multiple pheromone system controlling mating in Drosophila melanogaster.

    PubMed Central

    Averhoff, W W; Richardson, R H

    1976-01-01

    The signals essential to Drosophila melanogaster courtship include pheromones emitted by the female which stimulate the male to court and pheromones emitted by the courting male which stimulate the female to accept. Genetic variation among these phermones is a common (if not universal) requirement for stimulation of either sex. The signal from the courting male to the female involves both a volatile and a nonvolatile component. The volatile component is associated with loci on the second and/or third chromosomes, while the monvolatile component is associated with the X and/or fourth chromosomes. This widespread distribution in the genome of loci controlling various components in the communication network inevitably results in linkage associations with other loci. The genetic array of gametes was limited. When combined with the negative assortitative mating pattern produced by the stimulation by dissimilar pheromones, linkage disequilibrium creates a strong counterforce to inbreeding during population bottlenecks. PMID:813229

  19. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster.

    PubMed

    Cheung, Samantha K; Scott, Kristin

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.

  20. Genetic control of cadmium tolerance in Drosophila melanogaster

    SciTech Connect

    Maroni, G.; Ann-Shu Ho; Theodore, L.

    1995-12-01

    Flies from a transgenic line of Drosophila melanogaster with two copies of the metallothionein allele Mtn{sup 3} were more tolerant to cadmium than strains with only one copy of the gene. However, flies with the Mtn{sup 3} allele were as tolerant as flies with the Mtn{sup 1} allele, despite the level of expression of Mtn{sup {minus}3} allele were as tolerant as flies with the Mtn{sup 1} allele, despite the level of expression of Mtn{sup 1} being three times higher than that of Mtn{sup {minus}3}. We propose that the substitution of Lys-40 (in Mtn{sup 3}) for Glu-40 (in Mtn{sup 1}) accounts for a reduction in binding affinity of Mtn{sup 1}, which offsets the increased expression levels. 6 refs., 3 figs., 2 tabs.

  1. A pulsed magnetic stress applied to Drosophila melanogaster flies

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  2. Drosophila melanogaster: a fly through its history and current use.

    PubMed

    Stephenson, R; Metcalfe, N H

    2013-01-01

    Drosophila melanogaster, the common fruit fly, has been used as a model organism in both medical and scientific research for over a century. Work by Thomas Hunt Morgan (1866-1945) and his students at Columbia University at the beginning of the twentieth century led to great discoveries such as sex-linked inheritance and that ionising radiation causes mutations in genes. However, the use of Drosophila was not limited to genetic research. Experimentation with this model organism has also led to discoveries in neuroscience and neurodevelopment, including the basis of circadian rhythms. Its complex nervous system, conserved neurological function, and human disease-related loci allow Drosophila to be an ideal model organism for the study of neurodegenerative disease, for which it is used today, aiding research into diseases such as Alzheimer's and Parkinson's, which are becoming more prevalent in today's ageing population.

  3. Effect of deleterious mutations on life span in Drosophila melanogaster.

    PubMed

    Gong, Yi; Thompson, James N; Woodruff, R C

    2006-12-01

    Evolutionary theories of aging assume that the accumulation of deleterious mutations will reduce life span. We tested this assumption in Drosophila melanogaster by a newly designed mating scheme, in which mutations accumulate on the Binscy balancer X chromosome in heterozygous females in the absence of selection and recombination. We found that the life span of Binscy/RY(L) males from this cross decreased faster than the life span of their sibling controls over time in two of three runs, and that there was an age-specific increase in mortality in the Binscy/RY(L) males with time in one of three runs. Therefore, the accumulation of deleterious mutations can decrease life span by increasing fragility and can cause age-specific changes in mortality. These results support the evolutionary theory of aging.

  4. Listeria monocytogenes Infection Causes Metabolic Shifts in Drosophila melanogaster

    PubMed Central

    Chambers, Moria C.; Song, Kyung Han; Schneider, David S.

    2012-01-01

    Immunity and metabolism are intimately linked; manipulating metabolism, either through diet or genetics, has the power to alter survival during infection. However, despite metabolism's powerful ability to alter the course of infections, little is known about what being “sick” means metabolically. Here we describe the metabolic changes occurring in a model system when Listeria monocytogenes causes a lethal infection in Drosophila melanogaster. L. monocytogenes infection alters energy metabolism; the flies gradually lose both of their energy stores, triglycerides and glycogen, and show decreases in both intermediate metabolites and enzyme message for the two main energy pathways, beta-oxidation and glycolysis. L. monocytogenes infection also causes enzymatic reduction in the anti-oxidant uric acid, and knocking out the enzyme uric oxidase has a complicated effect on immunity. Free amino acid levels also change during infection, including a drop in tyrosine levels which may be due to robust L. monocytogenes induced melanization. PMID:23272066

  5. Ontogeny of Drosophila melanogaster in a system of dysgenic crosses

    SciTech Connect

    Grishaeva, T.M.; Ivashchenko, N.I.

    1995-09-01

    Three families of mobile elements that induce P-M, H-E, and I-R hybrid dysgenesis in Drosophila melanogaster were activated by crossing flies of different cytotypes. Manifestation of gonadal sterility in F{sub 1} hybrid progeny was dependent on the temperature of development. The systems differed significantly in lethality of F{sub 2} hybrids at various stages of ontogeny (embyros, larvae, pupae, and adult flies). The highest embryo lethality was found in the P-M system at the cleavage stage. In the I-R and H-E systems, the peak of embryonic death corresponded to the stages of blastoderm and organogenesis, respectively. Experimental results are discussed in view of molecular and cytological characteristics of interacting strains and existing hypotheses for regulation of transposition of P, hobo, and I mobile elements. 44 refs., 4 figs., 4 tabs.

  6. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster.

    PubMed

    Schnorrenberg, Sebastian; Grotjohann, Tim; Vorbrüggen, Gerd; Herzig, Alf; Hell, Stefan W; Jakobs, Stefan

    2016-06-29

    Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grotjohann et al., 2012). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of.

  7. Permutation Entropy Applied to Movement Behaviors of Drosophila Melanogaster

    NASA Astrophysics Data System (ADS)

    Liu, Yuedan; Chon, Tae-Soo; Baek, Hunki; Do, Younghae; Choi, Jin Hee; Chung, Yun Doo

    Movement of different strains in Drosophila melanogaster was continuously observed by using computer interfacing techniques and was analyzed by permutation entropy (PE) after exposure to toxic chemicals, toluene (0.1 mg/m3) and formaldehyde (0.01 mg/m3). The PE values based on one-dimensional time series position (vertical) data were variable according to internal constraint (i.e. strains) and accordingly increased in response to external constraint (i.e. chemicals) by reflecting diversity in movement patterns from both normal and intoxicated states. Cross-correlation function revealed temporal associations between the PE values and between the component movement patterns in different chemicals and strains through the period of intoxication. The entropy based on the order of position data could be a useful means for complexity measure in behavioral changes and for monitoring the impact of stressors in environment.

  8. Chromosomal distribution of rapidly reannealing DNA in Drosophila melanogaster.

    PubMed

    Rae, P M

    1970-10-01

    Cytological hybridization has been used to localize fractions of rapidly reannealing DNA in salivary chromosomes of Drosophila melanogaster. Complementary RNA of high specific activity was transcribed from hydroxyapatite-fractionated rapidly reannealing sequences and from selected buoyant-density fractions of total DNA. It was then hybridized to chromosome squashes after denaturation of DNA in NaOH. Highly "repeated" DNA sequences were detected over much of the chromosome, but were concentrated in chromocentric heterochromatin. A family of sequences with a low percentage of guanosine plus cytidine was highly concentrated in a particular region within the chromo-center. One "euchromatic" region near the tip of chromosome arm 3L also exhibited a concentration of repeated sequences.

  9. A natural genetic polymorphism affects retroactive interference in Drosophila melanogaster

    PubMed Central

    Reaume, Christopher J.; Sokolowski, Marla B.; Mery, Frederic

    2011-01-01

    As environments change, animals update their internal representations of the external world. New information about the environment is learned and retained whereas outdated information is disregarded or forgotten. Retroactive interference (RI) occurs when the retrieval of previously learned information is less available owing to the acquisition of recently acquired information. Even though RI is thought to be a major cause of forgetting, its functional significance is still under debate. We find that natural allelic variants of the Drosophila melanogaster foraging gene known to affect rover and sitter behaviour differ in RI. More specifically, rovers who were previously shown to experience greater environmental heterogeneity while foraging display RI whereas sitters do not. Rover responses are biased towards more recent learning events. These results provide an ecological context to investigate the function of forgetting via RI and a suitable genetic model organism to address the evolutionary relevance of cognitive tasks. PMID:20667877

  10. Gustatory receptors required for sensing umbelliferone in Drosophila melanogaster.

    PubMed

    Poudel, Seeta; Kim, Yunjung; Kim, Yun Tai; Lee, Youngseok

    2015-11-01

    Studies of taste modality using the animal model Drosophila melanogaster have elucidated a number of uncharacterized mechanisms of sensory responses. Gustatory receptors expressed in taste organs are not only responsible for the acceptance and rejection of different foods, but are also involved in the process of selecting an oviposition site. This contact-chemosensation is essential for animals to discriminate between nutritious and contaminated foods. In this study, we characterized the function of gustatory receptors that play a dual role in feeding and oviposition using the plant metabolite umbelliferone. The combined electrophysiological and behavioral evidence demonstrated that two broadly tuned gustatory receptors, GR33a and GR66a, and one narrowly tuned gustatory receptor, GR93a, are all required to generate a functional umbelliferone receptor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Drosophila melanogaster as a Model of Muscle Degeneration Disorders.

    PubMed

    Kreipke, R E; Kwon, Y V; Shcherbata, H R; Ruohola-Baker, H

    2017-01-01

    Drosophila melanogaster provides a powerful platform with which researchers can dissect complex genetic questions and biochemical pathways relevant to a vast array of human diseases and disorders. Of particular interest, much work has been done with flies to elucidate the molecular mechanisms underlying muscle degeneration diseases. The fly is particularly useful for modeling muscle degeneration disorders because there are no identified satellite muscle cells to repair adult muscle following injury. This allows for the identification of endogenous processes of muscle degeneration as discrete events, distinguishable from phenotypes due to the lack of stem cell-based regeneration. In this review, we will discuss the ways in which the fruit fly provides a powerful platform with which to study human muscle degeneration disorders.

  12. Live Imaging Of Drosophila melanogaster Embryonic Hemocyte Migrations

    PubMed Central

    Evans, Iwan R.; Zanet, Jennifer; Wood, Will; Stramer, Brian M.

    2010-01-01

    Many studies address cell migration using in vitro methods, whereas the physiologically relevant environment is that of the organism itself. Here we present a protocol for the mounting of Drosophila melanogaster embryos and subsequent live imaging of fluorescently labeled hemocytes, the embryonic macrophages of this organism. Using the Gal4-uas system1 we drive the expression of a variety of genetically encoded, fluorescently tagged markers in hemocytes to follow their developmental dispersal throughout the embryo. Following collection of embryos at the desired stage of development, the outer chorion is removed and the embryos are then mounted in halocarbon oil between a hydrophobic, gas-permeable membrane and a glass coverslip for live imaging. In addition to gross migratory parameters such as speed and directionality, higher resolution imaging coupled with the use of fluorescent reporters of F-actin and microtubules can provide more detailed information concerning the dynamics of these cytoskeletal components. PMID:20154641

  13. Methods for quantifying simple gravity sensing in Drosophila melanogaster.

    PubMed

    Inagaki, Hidehiko K; Kamikouchi, Azusa; Ito, Kei

    2010-01-01

    Perception of gravity is essential for animals: most animals possess specific sense organs to detect the direction of the gravitational force. Little is known, however, about the molecular and neural mechanisms underlying their behavioral responses to gravity. Drosophila melanogaster, having a rather simple nervous system and a large variety of molecular genetic tools available, serves as an ideal model for analyzing the mechanisms underlying gravity sensing. Here we describe an assay to measure simple gravity responses of flies behaviorally. This method can be applied for screening genetic mutants of gravity perception. Furthermore, in combination with recent genetic techniques to silence or activate selective sets of neurons, it serves as a powerful tool to systematically identify neural substrates required for the proper behavioral responses to gravity. The assay requires 10 min to perform, and two experiments can be performed simultaneously, enabling 12 experiments per hour.

  14. Genotoxic effects of cisplatin in somatic tissue of Drosophila melanogaster

    SciTech Connect

    Katz, A.J.

    1987-01-01

    Third instar larvae of Drosophila melanogaster transdihybrid for mwh and flr were exposed to varying concentrations of cisplatin by feeding on dry media wetted with aqueous solutions of the test compound. Larval feeding continued until pupation, and surviving transdihybrid adults were collected seven days following commencement of feeding. Wings of adults were removed and scored under 400X magnification for the presence of twin spots and single spots comprised of clones of cells possessing malformed wing hairs. Cisplatin was found to induce both twin spots and single spots, and significant linear concentration-response relationships were obtained with respect to the induction of all endpoints. This capacity to induce mitotic exchange in the somatic tissue of Drosophila compares well with the compound's reported ability to induce chromosome breaks in Drosophila germ cells. However, not all compounds possess similar genotoxic profiles in the somatic an germ tissue of Drosophila.

  15. Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster.

    PubMed

    Carmona, Erico R; Inostroza-Blancheteau, Claudio; Obando, Veroska; Rubio, Laura; Marcos, Ricard

    2015-09-01

    Copper oxide nanoparticles (CuONPs) are used as semiconductors, catalysts, gas sensors, and antimicrobial agents. We have used the comet and wing-spot assays in Drosophila melanogaster to assess the genotoxicity of CuONPs and ionic copper (CuSO4). Lipid peroxidation analysis was also performed (Thiobarbituric Acid Assay, TBARS). In larval hemocytes, both CuONPs and CuSO4 caused significant dose-dependent increases in DNA damage (comet assay). In the wing-spot assay, an increase in the frequency of mutant spots was observed in the wings of the adults; CuONPs were more effective than was CuSO4. Both agents induced TBARS; again, CuONPs were more active than was CuSO4. The results indicate that CuONPs are genotoxic in Drosophila, and these effects may be mediated by oxidative stress. Most of the effects appear to be related to the presence of copper ions.

  16. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Bedford, Trevor; Lyons, Ana M.; Hartl, Daniel L.

    2010-01-01

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3′ segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5′ and 3′ regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution. PMID:20534482

  17. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps

    PubMed Central

    Xie, J; Butler, S; Sanchez, G; Mateos, M

    2014-01-01

    Maternally transmitted associations between endosymbiotic bacteria and insects are diverse and widespread in nature. Owing to imperfect vertical transmission, many heritable microbes have evolved compensational mechanisms to enhance their persistence in host lineages, such as manipulating host reproduction and conferring fitness benefits to host. Symbiont-mediated defense against natural enemies of hosts is increasingly recognized as an important mechanism by which endosymbionts enhance host fitness. Members of the genus Spiroplasma associated with distantly related Drosophila hosts are known to engage in either reproductive parasitism (i.e., male killing) or defense against natural enemies (the parasitic wasp Leptopilina heterotoma and a nematode). A male-killing strain of Spiroplasma (strain Melanogaster Sex Ratio Organism (MSRO)) co-occurs with Wolbachia (strain wMel) in certain wild populations of the model organism Drosophila melanogaster. We examined the effects of Spiroplasma MSRO and Wolbachia wMel on Drosophila survival against parasitism by two common wasps, Leptopilina heterotoma and Leptopilina boulardi, that differ in their host ranges and host evasion strategies. The results indicate that Spiroplasma MSRO prevents successful development of both wasps, and confers a small, albeit significant, increase in larva-to-adult survival of flies subjected to wasp attacks. We modeled the conditions under which defense can contribute to Spiroplasma persistence. Wolbachia also confers a weak, but significant, survival advantage to flies attacked by L. heterotoma. The host protective effects exhibited by Spiroplasma and Wolbachia are additive and may provide the conditions for such cotransmitted symbionts to become mutualists. Occurrence of Spiroplasma-mediated protection against distinct parasitoids in divergent Drosophila hosts suggests a general protection mechanism. PMID:24281548

  18. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps.

    PubMed

    Xie, J; Butler, S; Sanchez, G; Mateos, M

    2014-04-01

    Maternally transmitted associations between endosymbiotic bacteria and insects are diverse and widespread in nature. Owing to imperfect vertical transmission, many heritable microbes have evolved compensational mechanisms to enhance their persistence in host lineages, such as manipulating host reproduction and conferring fitness benefits to host. Symbiont-mediated defense against natural enemies of hosts is increasingly recognized as an important mechanism by which endosymbionts enhance host fitness. Members of the genus Spiroplasma associated with distantly related Drosophila hosts are known to engage in either reproductive parasitism (i.e., male killing) or defense against natural enemies (the parasitic wasp Leptopilina heterotoma and a nematode). A male-killing strain of Spiroplasma (strain Melanogaster Sex Ratio Organism (MSRO)) co-occurs with Wolbachia (strain wMel) in certain wild populations of the model organism Drosophila melanogaster. We examined the effects of Spiroplasma MSRO and Wolbachia wMel on Drosophila survival against parasitism by two common wasps, Leptopilina heterotoma and Leptopilina boulardi, that differ in their host ranges and host evasion strategies. The results indicate that Spiroplasma MSRO prevents successful development of both wasps, and confers a small, albeit significant, increase in larva-to-adult survival of flies subjected to wasp attacks. We modeled the conditions under which defense can contribute to Spiroplasma persistence. Wolbachia also confers a weak, but significant, survival advantage to flies attacked by L. heterotoma. The host protective effects exhibited by Spiroplasma and Wolbachia are additive and may provide the conditions for such cotransmitted symbionts to become mutualists. Occurrence of Spiroplasma-mediated protection against distinct parasitoids in divergent Drosophila hosts suggests a general protection mechanism.

  19. Experimental evolution under hyper-promiscuity in Drosophila melanogaster.

    PubMed

    Perry, Jennifer C; Joag, Richa; Hosken, David J; Wedell, Nina; Radwan, Jacek; Wigby, Stuart

    2016-06-16

    The number of partners that individuals mate with over their lifetime is a defining feature of mating systems, and variation in mate number is thought to be a major driver of sexual evolution. Although previous research has investigated the evolutionary consequences of reductions in the number of mates, we know little about the costs and benefits of increased numbers of mates. Here, we use a genetic manipulation of mating frequency in Drosophila melanogaster to create a novel, highly promiscuous mating system. We generated D. melanogaster populations in which flies were deficient for the sex peptide receptor (SPR) gene - resulting in SPR- females that mated more frequently - and genetically-matched control populations, and allowed them to evolve for 55 generations. At several time-points during this experimental evolution, we assayed behavioural, morphological and transcriptional reproductive phenotypes expected to evolve in response to increased population mating frequencies. We found that males from the high mating frequency SPR- populations evolved decreased ability to inhibit the receptivity of their mates and decreased copulation duration, in line with predictions of decreased per-mating investment with increased sperm competition. Unexpectedly, SPR- population males also evolved weakly increased sex peptide (SP) gene expression. Males from SPR- populations initially (i.e., before experimental evolution) exhibited more frequent courtship and faster time until mating relative to controls, but over evolutionary time these differences diminished or reversed. In response to experimentally increased mating frequency, SPR- males evolved behavioural responses consistent with decreased male post-copulatory investment at each mating and decreased overall pre-copulatory performance. The trend towards increased SP gene expression might plausibly relate to functional differences in the two domains of the SP protein. Our study highlights the utility of genetic

  20. Occupational allergy to fruit flies (Drosophila melanogaster) in laboratory workers.

    PubMed

    Jones, Meinir; Blair, Sue; MacNeill, Stephanie; Welch, Jennifer; Hole, Alice; Baxter, Peter; Cullinan, Paul

    2017-06-01

    Drosophila melanogaster (the 'fruit fly') is commonly used in genetic research, but there is only one report of IgE-associated allergy in exposed workers. 4 newly identified cases prompted us to examine the extent of this problem in a university laboratory. Our aim in this study is to determine the prevalence and determinants of sensitisation to fruit flies in a population of exposed workers. In a cross-sectional study, we surveyed 286 employees working in a department carrying out research involving D. melanogaster. Sensitisation was assessed by specific IgE measurement in serum and examined in relation to symptoms and to estimated exposure to fruit flies. The overall prevalence of specific sensitisation was 6% with a clear relationship to increasing frequency/intensity of exposure (p trend<0.001). Work-related eye/nose, chest or skin symptoms were reported by substantial proportions of participants but for most of these there was no evidence of specific sensitisation to fruit fly. The overall prevalence of any work-related symptoms and sensitisation was 2.4%, rising to 7.1% in those working in high exposure groups. We were able to demonstrate, for the first time, a clear exposure-response relationship between fruit fly exposure and specific sensitisation. Facilities housing fruit flies should carefully consider methods to reduce exposure levels in the workplace. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Quantitative Genetics of Food Intake in Drosophila melanogaster

    PubMed Central

    Garlapow, Megan E.; Huang, Wen; Yarboro, Michael T.; Peterson, Kara R.; Mackay, Trudy F. C.

    2015-01-01

    Food intake is an essential animal activity, regulated by neural circuits that motivate food localization, evaluate nutritional content and acceptance or rejection responses through the gustatory system, and regulate neuroendocrine feedback loops that maintain energy homeostasis. Excess food consumption in people is associated with obesity and metabolic and cardiovascular disorders. However, little is known about the genetic basis of natural variation in food consumption. To gain insights in evolutionarily conserved genetic principles that regulate food intake, we took advantage of a model system, Drosophila melanogaster, in which food intake, environmental conditions and genetic background can be controlled precisely. We quantified variation in food intake among 182 inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP). We found significant genetic variation in the mean and within-line environmental variance of food consumption and observed sexual dimorphism and genetic variation in sexual dimorphism for both food intake traits (mean and variance). We performed genome wide association (GWA) analyses for mean food intake and environmental variance of food intake (using the coefficient of environmental variation, CVE, as the metric for environmental variance) and identified molecular polymorphisms associated with both traits. Validation experiments using RNAi-knockdown confirmed 24 of 31 (77%) candidate genes affecting food intake and/or variance of food intake, and a test cross between selected DGRP lines confirmed a SNP affecting mean food intake identified in the GWA analysis. The majority of the validated candidate genes were novel with respect to feeding behavior, and many had mammalian orthologs implicated in metabolic diseases. PMID:26375667

  2. The ribosomal protein genes and Minute loci of Drosophila melanogaster

    PubMed Central

    Marygold, Steven J; Roote, John; Reuter, Gunter; Lambertsson, Andrew; Ashburner, Michael; Millburn, Gillian H; Harrison, Paul M; Yu, Zhan; Kenmochi, Naoya; Kaufman, Thomas C; Leevers, Sally J; Cook, Kevin R

    2007-01-01

    Background Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. Results We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. Conclusion This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome. PMID:17927810

  3. Population Genomics of Inversion Polymorphisms in Drosophila melanogaster

    PubMed Central

    Corbett-Detig, Russell B.; Hartl, Daniel L.

    2012-01-01

    Chromosomal inversions have been an enduring interest of population geneticists since their discovery in Drosophila melanogaster. Numerous lines of evidence suggest powerful selective pressures govern the distributions of polymorphic inversions, and these observations have spurred the development of many explanatory models. However, due to a paucity of nucleotide data, little progress has been made towards investigating selective hypotheses or towards inferring the genealogical histories of inversions, which can inform models of inversion evolution and suggest selective mechanisms. Here, we utilize population genomic data to address persisting gaps in our knowledge of D. melanogaster's inversions. We develop a method, termed Reference-Assisted Reassembly, to assemble unbiased, highly accurate sequences near inversion breakpoints, which we use to estimate the age and the geographic origins of polymorphic inversions. We find that inversions are young, and most are African in origin, which is consistent with the demography of the species. The data suggest that inversions interact with polymorphism not only in breakpoint regions but also chromosome-wide. Inversions remain differentiated at low levels from standard haplotypes even in regions that are distant from breakpoints. Although genetic exchange appears fairly extensive, we identify numerous regions that are qualitatively consistent with selective hypotheses. Finally, we show that In(1)Be, which we estimate to be ∼60 years old (95% CI 5.9 to 372.8 years), has likely achieved high frequency via sex-ratio segregation distortion in males. With deeper sampling, it will be possible to build on our inferences of inversion histories to rigorously test selective models—particularly those that postulate that inversions achieve a selective advantage through the maintenance of co-adapted allele complexes. PMID:23284285

  4. The Selfish Segregation Distorter Gene Complex of Drosophila melanogaster

    PubMed Central

    Larracuente, Amanda M.; Presgraves, Daven C.

    2012-01-01

    Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD+ spermatids so that SD/SD+ males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily “selfish,” enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci—the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)—and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd–RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd–RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection. PMID:22964836

  5. Purification, crystallization and preliminary X-ray studies of two isoforms of Rubisco from Alcaligenes eutrophus.

    PubMed

    Hansen, S; Hough, E; Andersen, K

    1999-01-01

    Two different isoforms of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Alcaligenes eutrophus have been purified and crystallized. Both isoforms crystallize in space group P43212. Crystals of isoform I (unit-cell dimensions a = 112.0 and c = 402.7 A) diffract to 2.7 A, whereas isoform II (unit-cell dimensions a = 111.8 and c = 400.0 A) presently diffract to 3.2 A, using synchrotron radiation in both cases.

  6. Functional roles of the alpha isoforms of the Na,K-ATPase.

    PubMed

    Lingrel, Jerry; Moseley, Amy; Dostanic, Iva; Cougnon, Marc; He, Suiwen; James, Paul; Woo, Alison; O'Connor, Kyle; Neumann, Jonathan

    2003-04-01

    The Na,K-ATPase is composed of two subunits, alpha and beta, and each subunit consists of multiple isoforms. In the case of alpha, four isoforms, alpha1, alpha2, alpha3, and alpha4 are present in mammalian cells. The distribution of these isoforms is tissue- and developmental-specific, suggesting that they may play specific roles, either during development or coupled to specific physiological processes. In order to understand the functional properties of each of these isoforms, we are using gene targeting, where animals are produced lacking either one copy or both copies of the corresponding gene or have a modified gene. To date, we have produced animals lacking the alpha1 and alpha2 isoform genes. Animals lacking both copies of the alpha1 isoform gene are not viable, while animals lacking both copies of the alpha2 isoform gene make it to birth, but are either born dead or die very soon after. In the case of animals lacking one copy of the alpha1 or alpha2 isoform gene, the animals survive and appear healthy. Heart and EDL muscle from animals lacking one copy of the alpha2 isoform exhibit an increase in force of contraction, while there is reduced force of contraction in both muscles from animals lacking one copy of the alpha1 isoform gene. These studies indicate that the alpha1 and alpha2 isoforms carry out different physiological roles. The alpha2 isoform appears to be involved in regulating Ca(2+) transients involved in muscle contraction, while the alpha1 isoform probably plays a more generalized role. While we have not yet knocked out the alpha3 or alpha4 isoform genes, studies to date indicate that the alpha4 isoform is necessary to maintain sperm motility. It is thus possible that the alpha2, alpha3, and alpha4 isoforms are involved in specialized functions of various tissues, helping to explain their tissue- and developmental-specific regulation.

  7. N Termini of apPDE4 Isoforms Are Responsible for Targeting the Isoforms to Different Cellular Membranes

    ERIC Educational Resources Information Center

    Jang, Deok-Jin; Park, Soo-Won; Lee, Jin-A; Lee, Changhoon; Chae, Yeon-Su; Park, Hyungju; Kim, Min-Jeong; Choi, Sun-Lim; Lee, Nuribalhae; Kim, Hyoung; Kaang, Bong-Kiun

    2010-01-01

    Phosphodiesterases (PDEs) are known to play a key role in the compartmentalization of cAMP signaling; however, the molecular mechanisms underlying intracellular localization of different PDE isoforms are not understood. In this study, we have found that each of the supershort, short, and long forms of apPDE4 showed distinct localization in the…

  8. N Termini of apPDE4 Isoforms Are Responsible for Targeting the Isoforms to Different Cellular Membranes

    ERIC Educational Resources Information Center

    Jang, Deok-Jin; Park, Soo-Won; Lee, Jin-A; Lee, Changhoon; Chae, Yeon-Su; Park, Hyungju; Kim, Min-Jeong; Choi, Sun-Lim; Lee, Nuribalhae; Kim, Hyoung; Kaang, Bong-Kiun

    2010-01-01

    Phosphodiesterases (PDEs) are known to play a key role in the compartmentalization of cAMP signaling; however, the molecular mechanisms underlying intracellular localization of different PDE isoforms are not understood. In this study, we have found that each of the supershort, short, and long forms of apPDE4 showed distinct localization in the…

  9. Drosophila melanogaster as a High-Throughput Model for Host–Microbiota Interactions

    PubMed Central

    Trinder, Mark; Daisley, Brendan A.; Dube, Josh S.; Reid, Gregor

    2017-01-01

    Microbiota research often assumes that differences in abundance and identity of microorganisms have unique influences on host physiology. To test this concept mechanistically, germ-free mice are colonized with microbial communities to assess causation. Due to the cost, infrastructure challenges, and time-consuming nature of germ-free mouse models, an alternative approach is needed to investigate host–microbial interactions. Drosophila melanogaster (fruit flies) can be used as a high throughput in vivo screening model of host–microbiome interactions as they are affordable, convenient, and replicable. D. melanogaster were essential in discovering components of the innate immune response to pathogens. However, axenic D. melanogaster can easily be generated for microbiome studies without the need for ethical considerations. The simplified microbiota structure enables researchers to evaluate permutations of how each microbial species within the microbiota contribute to host phenotypes of interest. This enables the possibility of thorough strain-level analysis of host and microbial properties relevant to physiological outcomes. Moreover, a wide range of mutant D. melanogaster strains can be affordably obtained from public stock centers. Given this, D. melanogaster can be used to identify candidate mechanisms of host–microbe symbioses relevant to pathogen exclusion, innate immunity modulation, diet, xenobiotics, and probiotic/prebiotic properties in a high throughput manner. This perspective comments on the most promising areas of microbiota research that could immediately benefit from using the D. melanogaster model. PMID:28503170

  10. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    SciTech Connect

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A.

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  11. EGFR Soluble Isoforms and Their Transcripts Are Expressed in Meningiomas

    PubMed Central

    Bessette, Barbara; Chaunavel, Alain; Pommepuy, Isabelle; Projetti, Fabrice; Robert, Sandrine; Caire, François; Rabinovitch-Chable, Hélène; Labrousse, François

    2012-01-01

    The EGFR (epidermal growth factor receptor) is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a), normal and tumor cells produce soluble EGFR isoforms (sEGFR) that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2), 3 (v3) and 4 (v4) mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab) and intracellular domain targeted antibody (ICD-Ab). EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade), histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS). PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%.Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types. PMID:22623992

  12. Heart wall velocimetry and exogenous contrast-based cardiac flow imaging in Drosophila melanogaster using Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choma, Michael A.; Suter, Melissa J.; Vakoc, Benjamin J.; Bouma, Brett E.; Tearney, Guillermo J.

    2010-09-01

    Drosophila melanogaster (fruit fly) is a central organism in biology and is becoming increasingly important in the cardiovascular sciences. Prior work in optical imaging of the D. melanogaster heart has focused on static and dynamic structural anatomy. In the study, it is demonstrated that Doppler optical coherence tomography can quantify dynamic heart wall velocity and hemolymph flow in adult D. melanogaster. Since hemolymph is optically transparent, a novel exogenous contrast technique is demonstrated to increase the backscatter-based intracardiac Doppler flow signal. The results presented here open up new possibilities for functional cardiovascular phenotyping of normal and mutant D. melanogaster.

  13. An unconventional myosin heavy chain gene from Drosophila melanogaster.

    PubMed

    Kellerman, K A; Miller, K G

    1992-11-01

    As part of a study of cytoskeletal proteins involved in Drosophila embryonic development, we have undertaken the molecular analysis of a 140-kD ATP-sensitive actin-binding protein (Miller, K. G., C. M. Field, and B. M. Alberts. 1989. J. Cell Biol. 109:2963-2975). Analysis of cDNA clones encoding this protein revealed that it represents a new class of unconventional myosin heavy chains. The amino-terminal two thirds of the protein comprises a head domain that is 29-33% identical (60-65% similar) to other myosin heads, and contains ATP-binding, actin-binding and calmodulin/myosin light chain-binding motifs. The carboxy-terminal tail has no significant similarity to other known myosin tails, but does contain a approximately 100-amino acid region that is predicted to form an alpha-helical coiled-coil. Since the unique gene that encodes this protein maps to the polytene map position 95F, we have named the new gene Drosophila 95F myosin heavy chain (95F MHC). The expression profile of the 95F MHC gene is complex. Examination of multiple cDNAs reveals that transcripts are alternatively spliced and encode at least three protein isoforms; in addition, a fourth isoform is detected on Western blots. Developmental Northern and Western blots show that transcripts and protein are present throughout the life cycle, with peak expression occurring during mid-embryogenesis and adulthood. Immunolocalization in early embryos demonstrates that the protein is primarily located in a punctate pattern throughout the peripheral cytoplasm. Most cells maintain a low level of protein expression throughout embryogenesis, but specific tissues appear to contain more protein. We speculate that the 95F MHC protein isoforms are involved in multiple dynamic processes during Drosophila development.

  14. Disulfide isoforms of recombinant glia maturation factor beta.

    PubMed

    Zaheer, A; Lim, R

    1990-09-14

    Recombinant human glia maturation factor beta (r-hGMF-beta) is a single-chain polypeptide (141 amino acid residues) containing three cysteines, at positions 7, 86 and 95. Nascent r-hGMF-beta exists in the reduced state and has no biological activity. The protein can be activated through oxidative refolding by incubation with a mixture of reduced and oxidized glutathione. Reverse-phase HPLC analysis of the refolded r-hGMF-beta shows the presence of four peaks, corresponding to the reduced form plus three newly generated intrachain disulfide-containing isoforms predicted from the number of cysteine residues. Only one isoform shows biological activity when tested for growth suppression on C6 glioma cells. We infer from the HPLC elution pattern that the active form contains the disulfide bridge Cys86-Cys95.

  15. Functional impact of splice isoform diversity in individual cells

    PubMed Central

    Yap, Karen; Makeyev, Eugene V.

    2016-01-01

    Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a ‘splicing noise’, co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities. PMID:27528755

  16. Functional impact of splice isoform diversity in individual cells.

    PubMed

    Yap, Karen; Makeyev, Eugene V

    2016-08-15

    Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a 'splicing noise', co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities.

  17. AMPK beta subunits display isoform specific affinities for carbohydrates.

    PubMed

    Koay, Ann; Woodcroft, Ben; Petrie, Emma J; Yue, Helen; Emanuelle, Shane; Bieri, Michael; Bailey, Michael F; Hargreaves, Mark; Park, Jong-Tae; Park, Kwan-Hwa; Ralph, Stuart; Neumann, Dietbert; Stapleton, David; Gooley, Paul R

    2010-08-04

    AMP-activated protein kinase (AMPK) is a heterotrimer of catalytic (alpha) and regulatory (beta and gamma) subunits with at least two isoforms for each subunit. AMPK beta1 is widely expressed whilst AMPK beta2 is highly expressed in muscle and both beta isoforms contain a mid-molecule carbohydrate-binding module (beta-CBM). Here we show that beta2-CBM has evolved to contain a Thr insertion and increased affinity for glycogen mimetics with a preference for oligosaccharides containing a single alpha-1,6 branched residue. Deletion of Thr-101 reduces affinity for single alpha-1,6 branched oligosaccharides by 3-fold, while insertion of this residue into the equivalent position in the beta1-CBM sequence increases affinity by 3-fold, confirming the functional importance of this residue. Copyright (c) 2010. Published by Elsevier B.V.

  18. 5-lipoxygenase mRNA and protein isoforms.

    PubMed

    Ochs, Meike J; Suess, Beatrix; Steinhilber, Dieter

    2014-01-01

    5-Lipoxygenase (5-LO) catalyses the two initial steps in the biosynthesis of leukotrienes, a group of inflammatory lipid mediators derived from arachidonic acid. An increased level of leukotrienes is associated with chronic inflammatory diseases such as asthma or atherosclerosis. In this MiniReview, we focus on recent findings regarding alternative splice variants of 5-LO with a special emphasis on two potential protein isoforms expressed in human B-lymphocytes which might be of interest as new drug targets.

  19. Characterization of the human LPIN1-encoded phosphatidate phosphatase isoforms.

    PubMed

    Han, Gil-Soo; Carman, George M

    2010-05-07

    The human LPIN1 gene encodes the protein lipin 1, which possesses phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase; EC 3.1.3.4) activity (Han, G.-S., Wu, W.-I., and Carman, G. M. (2006) J. Biol. Chem. 281, 9210-9218). In this work, we characterized human lipin 1 alpha, beta, and gamma isoforms that were expressed in Escherichia coli and purified to near homogeneity. PA phosphatase activities of the alpha, beta, and gamma isoforms were dependent on Mg(2+) or Mn(2+) ions at pH 7.5 at 37 degrees C. The activities were inhibited by concentrations of Mg(2+) and Mn(2+) above their optimums and by Ca(2+), Zn(2+), N-ethylmaleimide, propranolol, and the sphingoid bases sphingosine and sphinganine. The activities were thermally labile at temperatures above 40 degrees C. The alpha, beta, and gamma activities followed saturation kinetics with respect to the molar concentration of PA (K(m) values of 0.35, 0.24, and 0.11 mm, respectively) but followed positive cooperative (Hill number approximately 2) kinetics with respect to the surface concentration of PA (K(m) values of 4.2, 4.5, and 4.3 mol %, respectively) in Triton X-100/PA-mixed micelles. The turnover numbers (k(cat)) for the alpha, beta, and gamma isoforms were 68.8 + or - 3.5, 42.8 + or - 2.5, and 5.7 + or - 0.2 s(-1), respectively, whereas their energy of activation values were 14.2, 15.5, and 18.5 kcal/mol, respectively. The isoform activities were dependent on PA as a substrate and required at least one unsaturated fatty acyl moiety for maximum activity.

  20. Characterization of the Human LPIN1-encoded Phosphatidate Phosphatase Isoforms*

    PubMed Central

    Han, Gil-Soo; Carman, George M.

    2010-01-01

    The human LPIN1 gene encodes the protein lipin 1, which possesses phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase; EC 3.1.3.4) activity (Han, G.-S., Wu, W.-I., and Carman, G. M. (2006) J. Biol. Chem. 281, 9210–9218). In this work, we characterized human lipin 1 α, β, and γ isoforms that were expressed in Escherichia coli and purified to near homogeneity. PA phosphatase activities of the α, β, and γ isoforms were dependent on Mg2+ or Mn2+ ions at pH 7.5 at 37 °C. The activities were inhibited by concentrations of Mg2+ and Mn2+ above their optimums and by Ca2+, Zn2+, N-ethylmaleimide, propranolol, and the sphingoid bases sphingosine and sphinganine. The activities were thermally labile at temperatures above 40 °C. The α, β, and γ activities followed saturation kinetics with respect to the molar concentration of PA (Km values of 0.35, 0.24, and 0.11 mm, respectively) but followed positive cooperative (Hill number ∼2) kinetics with respect to the surface concentration of PA (Km values of 4.2, 4.5, and 4.3 mol %, respectively) in Triton X-100/PA-mixed micelles. The turnover numbers (kcat) for the α, β, and γ isoforms were 68.8 ± 3.5, 42.8 ± 2.5, and 5.7 ± 0.2 s−1, respectively, whereas their energy of activation values were 14.2, 15.5, and 18.5 kcal/mol, respectively. The isoform activities were dependent on PA as a substrate and required at least one unsaturated fatty acyl moiety for maximum activity. PMID:20231281

  1. A short CEP135 splice isoform controls centriole duplication

    PubMed Central

    Dahl, Kristin D.; Sankaran, Divya Ganapathi; Bayless, Brian A.; Pinter, Mary E.; Galati, Domenico F.; Heasley, Lydia R.; Giddings, Thomas H.; Pearson, Chad G.

    2015-01-01

    Summary Centriole duplication is coordinated such that a single round of duplication occurs during each cell cycle. Disruption of this synchrony causes defects including supernumerary centrosomes in cancer and perturbed ciliary signaling [1–5]. To preserve the normal number of centrioles, the level, localization, and post-translational modification of centriole proteins is regulated so that when centriole protein expression and/or activity is increased, centrioles self-assemble. Assembly is initiated by the formation of the cartwheel structure that comprises the base of centrioles [6–11]. SAS-6 constitutes the cartwheel and SAS-6 levels remain low until centriole assembly is initiated at S-phase onset [3, 12, 13]. Cep135 physically links to SAS-6 near the site of microtubule nucleation and binds to CPAP for triplet microtubule formation [13, 14]. We identify two distinct protein isoforms of Cep135 that antagonize each other to modulate centriole duplication: full length Cep135 (Cep135full) promotes new assembly while a short isoform, Cep135mini, represses it. Cep135mini represses centriole duplication by limiting the centriolar localization of Cep135full binding proteins (SAS-6 and CPAP) and the pericentriolar localization of γ-tubulin. The Cep135 isoforms exhibit distinct and complementary centrosomal localization during the cell cycle. Cep135mini protein decreases from centrosomes upon anaphase onset. We suggest that the decrease in Cep135mini from centrosomes promotes centriole assembly. The repression of centriole duplication by a splice isoform of a protein that normally promotes it serves as a novel mechanism to limit centriole duplication. PMID:26412126

  2. Regulation of NADPH Oxidase 5 by Protein Kinase C Isoforms

    PubMed Central

    Chen, Feng; Yu, Yanfang; Haigh, Steven; Johnson, John; Lucas, Rudolf; Stepp, David W.; Fulton, David J. R.

    2014-01-01

    NADPH oxidase5 (Nox5) is a novel Nox isoform which has recently been recognized as having important roles in the pathogenesis of coronary artery disease, acute myocardial infarction, fetal ventricular septal defect and cancer. The activity of Nox5 and production of reactive oxygen species is regulated by intracellular calcium levels and phosphorylation. However, the kinases that phosphorylate Nox5 remain poorly understood. Previous studies have shown that the phosphorylation of Nox5 is PKC dependent, but this contention was based on the use of pharmacological inhibitors and the isoforms of PKC involved remain unknown. Thus, the major goals of this study were to determine whether PKC can directly regulate Nox5 phosphorylation and activity, to identify which isoforms are involved in the process, and to understand the functional significance of this pathway in disease. We found that a relatively specific PKCα inhibitor, Ro-32-0432, dose-dependently inhibited PMA-induced superoxide production from Nox5. PMA-stimulated Nox5 activity was significantly reduced in cells with genetic silencing of PKCα and PKCε, enhanced by loss of PKCδ and the silencing of PKCθ expression was without effect. A constitutively active form of PKCα robustly increased basal and PMA-stimulated Nox5 activity and promoted the phosphorylation of Nox5 on Ser490, Thr494, and Ser498. In contrast, constitutively active PKCε potently inhibited both basal and PMA-dependent Nox5 activity. Co-IP and in vitro kinase assay experiments demonstrated that PKCα directly binds to Nox5 and modifies Nox5 phosphorylation and activity. Exposure of endothelial cells to high glucose significantly increased PKCα activation, and enhanced Nox5 derived superoxide in a manner that was in prevented by a PKCα inhibitor, Go 6976. In summary, our study reveals that PKCα is the primary isoform mediating the activation of Nox5 and this maybe of significance in our understanding of the vascular complications of diabetes

  3. [Clinical relevance of myosin isoforms in the diaphragm].

    PubMed

    Gayan-Ramirez, G; Decramer, M

    2000-06-01

    The diaphragm as a striated muscle is characterized by the repetition of a single element arranged in series: the sarcomere containing two kinds of myofilaments: a thick one constituted by the myosin, and a thin one primarily composed of actin. The myosin molecule consists of two heads where two myosin heavy chains (MHC) are fixed, a flexible hinge with two light (MLC) chains, and long rod-shaped tails. The diaphragm contains 4 MHC isoforms (MHC-slow, MHC-2A, MHC-2B, MHC-2X) and 6 MLC isoforms (MLC-1f, MLC-3f, MLC-1sa, MLC-1sb, MLC-2f, MLC-2s/v). In humans, the diaphragm contains mainly fibers expressing the isoforms MHC-slow, MHC-2A, and MLC-2f, MLC-2s et MLC-1f. For the mechanical properties of the different isoforms, there is a gradient from the MHC-slow to the MHC-2A, MHC-2B and MHC-2X/2B. According to the circumstances, the diaphragm will adapt towards a slow profile (COPD, cardiac failure and in animals: Duchenne muscular dystrophy, denervation-1 week, age-female, corticosteroids, chronic stimulation), or a fast profile (in animals: chronic hypoxia, denervation-2 weeks, age-males) or a more oxidative profile (in animals: cachexia, obesity). The reasons why the diaphragm adapts towards a slower or a faster muscle are not known. In fact, for a given pathological situation, several factors are able to influence the fiber composition of the diaphragm. Therefore, the net result of the influence of these different factors in terms of MHC and MLC diaphragm adaptation is difficult to predict.

  4. Functional differences between L- and T-plastin isoforms.

    PubMed

    Arpin, M; Friederich, E; Algrain, M; Vernel, F; Louvard, D

    1994-12-01

    Fimbrins/plastins are a family of highly conserved actin-bundling proteins. They are present in all eukaryotic cells including yeast, but each isoform displays a remarkable tissue specificity. T-plastin is normally found in epithelial and mesenchymal cells while L-plastin is present in hematopoietic cells. However, L-plastin has been also found in tumor cells of non-hematopoietic origin (Lin, C.-S., R. H. Aebersold, S. B. Kent, M. Varma, and J. Leavitt. 1988. Mol. Cell. Biol. 8:4659-4668; Lin, C.-S., R. H. Aebersold, and J. Leavitt. 1990. Mol. Cell. Biol. 10: 1818-1821). To learn more about the biological significance of their tissue specificity, we have overproduced the T- and L-plastin isoforms in a fibroblast-like cell line, CV-1, and in a polarized epithelial cell line, LLC-PK1. In CV-1 cells, overproduction of T- and L-plastins induces cell rounding and a concomitant reorganization of actin stress fibers into geodesic structures. L-plastin remains associated with microfilaments while T-plastin is almost completely extracted after treatment of the cells with non-ionic detergent. In LLC-PK1 cells, T-plastin induces shape changes in microvilli and remains associated with microvillar actin filaments after detergent extraction while L-plastin has no effect on these structures and is completely extracted. The effect of T-plastin on the organization of microvilli differs from that of villin, another actin-bundling protein. Our experiments indicate that these two isoforms play differing roles in actin filament organization, and do so in a cell type-specific fashion. Thus it is likely that these plastin isoforms play fundamentally different roles in cell function.

  5. Gene Isoform Specificity through Enhancer-Associated Antisense Transcription

    PubMed Central

    Onodera, Courtney S.; Underwood, Jason G.; Katzman, Sol; Jacobs, Frank; Greenberg, David; Salama, Sofie R.; Haussler, David

    2012-01-01

    Enhancers and antisense RNAs play key roles in transcriptional regulation through differing mechanisms. Recent studies have demonstrated that enhancers are often associated with non-coding RNAs (ncRNAs), yet the functional role of these enhancer:ncRNA associations is unclear. Using RNA-Sequencing to interrogate the transcriptomes of undifferentiated mouse embryonic stem cells (mESCs) and their derived neural precursor cells (NPs), we identified two novel enhancer-associated antisense transcripts that appear to control isoform-specific expression of their overlapping protein-coding genes. In each case, an enhancer internal to a protein-coding gene drives an antisense RNA in mESCs but not in NPs. Expression of the antisense RNA is correlated with expression of a shorter isoform of the associated sense gene that is not present when the antisense RNA is not expressed. We demonstrate that expression of the antisense transcripts as well as expression of the short sense isoforms correlates with enhancer activity at these two loci. Further, overexpression and knockdown experiments suggest the antisense transcripts regulate expression of their associated sense genes via cis-acting mechanisms. Interestingly, the protein-coding genes involved in these two examples, Zmynd8 and Brd1, share many functional domains, yet their antisense ncRNAs show no homology to each other and are not present in non-murine mammalian lineages, such as the primate lineage. The lack of homology in the antisense ncRNAs indicates they have evolved independently of each other and suggests that this mode of lineage-specific transcriptional regulation may be more widespread in other cell types and organisms. Our findings present a new view of enhancer action wherein enhancers may direct isoform-specific expression of genes through ncRNA intermediates. PMID:22937057

  6. RSK isoforms in cancer cell invasion and metastasis.

    PubMed

    Sulzmaier, Florian J; Ramos, Joe W

    2013-10-15

    Metastasis, the spreading of cancer cells from a primary tumor to secondary sites throughout the body, is the primary cause of death for patients with cancer. New therapies that prevent invasion and metastasis in combination with current treatments could therefore significantly reduce cancer recurrence and morbidity. Metastasis is driven by altered signaling pathways that induce changes in cell-cell adhesion, the cytoskeleton, integrin function, protease expression, epithelial-to-mesenchymal transition and cell survival. The ribosomal S6 kinase (RSK) family of kinases is a group of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) effectors that can regulate these steps of metastasis by phosphorylating both nuclear and cytoplasmic targets. However, our understanding of RSK function in metastasis remains incomplete and is complicated by the fact that the four RSK isoforms perform nonredundant, sometimes opposing functions. Although some isoforms promote cell motility and invasion by altering transcription and integrin activity, others impair cell motility and invasion through effects on the actin cytoskeleton. The mechanism of RSK action depends both on the isoform and the cancer type. However, despite the variance in RSK-mediated outcomes, chemical inhibition of this group of kinases has proven effective in blocking invasion and metastasis of several solid tumors in preclinical models. RSKs are therefore a promising drug target for antimetastatic cancer treatments that could supplement and improve current therapeutic approaches. This review highlights contradiction and agreement in the current data on the function of RSK isoforms in metastasis and suggests ways forward in developing RSK inhibitors as new antimetastasis drugs.

  7. Isoform expression in the multiple soluble malate dehydrogenase of Hoplias malabaricus (Erythrinidae, Characiformes).

    PubMed

    Aquino-Silva, M R; Schwantes, M L; Schwantes, A R

    2003-02-01

    Kinetic properties and thermal stabilities of Hoplias malabaricus liver and skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37) and its isolated isoforms were analyzed to further study the possible sMDH-A* locus duplication evolved from a recent tandem duplication. Both A (A1 and A2) and B isoforms had similar optima pH (7.5-8.0). While Hoplias A isoform could not be characterized as thermostable, B could as thermolabile. A isoforms differed from B isoform in having higher Km values for oxaloacetate. The possibly duplicated A2 isoform showed higher substrate affinity than the A1. Hoplias duplicated A isoforms may influence the direction of carbon flow between glycolisis and gluconeogenesis.

  8. PAX6 Isoforms, along with Reprogramming Factors, Differentially Regulate the Induction of Cornea-specific Genes.

    PubMed

    Sasamoto, Yuzuru; Hayashi, Ryuhei; Park, Sung-Joon; Saito-Adachi, Mihoko; Suzuki, Yutaka; Kawasaki, Satoshi; Quantock, Andrew J; Nakai, Kenta; Tsujikawa, Motokazu; Nishida, Kohji

    2016-02-22

    PAX6 is the key transcription factor involved in eye development in humans, but the differential functions of the two PAX6 isoforms, isoform-a and isoform-b, are largely unknown. To reveal their function in the corneal epithelium, PAX6 isoforms, along with reprogramming factors, were transduced into human non-ocular epithelial cells. Herein, we show that the two PAX6 isoforms differentially and cooperatively regulate the expression of genes specific to the structure and functions of the corneal epithelium, particularly keratin 3 (KRT3) and keratin 12 (KRT12). PAX6 isoform-a induced KRT3 expression by targeting its upstream region. KLF4 enhanced this induction. A combination of PAX6 isoform-b, KLF4, and OCT4 induced KRT12 expression. These new findings will contribute to furthering the understanding of the molecular basis of the corneal epithelium specific phenotype.

  9. Isoform-specific targeting of ROCK proteins in immune cells.

    PubMed

    Zanin-Zhorov, Alexandra; Flynn, Ryan; Waksal, Samuel D; Blazar, Bruce R

    2016-07-02

    Rho-associated kinase 1 (ROCK1) and ROCK2 are activated by Rho GTPase and control cytoskeleton rearrangement through modulating the phosphorylation of their down-stream effector molecules. Although these 2 isoforms share more than 90% homology within their kinase domain the question of whether ROCK proteins function identically in different cell types is not clear. By using both pharmacological inhibition and genetic knockdown approaches recent studies suggest that the ROCK2 isoform plays an exclusive role in controlling of T-cell plasticity and macrophage polarization. Specifically, selective ROCK2 inhibition shifts the balance between pro-inflammatory and regulatory T-cell subsets via concurrent regulation of STAT3 and STAT5 phosphorylation, respectively. Furthermore, the administration of an orally available selective ROCK2 inhibitor effectively ameliorates clinical manifestations in experimental models of autoimmunity and chronic graft-vs.-host disease (cGVHD). Because ROCK2 inhibition results in the suppression of M2-type macrophages while favoring polarization of M1-type macrophages, ROCK2 inhibition can correct the macrophage imbalance seen during age-related macular degeneration (AMD). In summary, the exclusive role of ROCK2 in immune system modulation argues for the development and testing of isoform-specific ROCK2 inhibitors for the treatment of inflammatory disorders.

  10. Isoform-specific targeting of ROCK proteins in immune cells

    PubMed Central

    Zanin-Zhorov, Alexandra; Flynn, Ryan; Waksal, Samuel D.; Blazar, Bruce R.

    2016-01-01

    ABSTRACT Rho-associated kinase 1 (ROCK1) and ROCK2 are activated by Rho GTPase and control cytoskeleton rearrangement through modulating the phosphorylation of their down-stream effector molecules. Although these 2 isoforms share more than 90% homology within their kinase domain the question of whether ROCK proteins function identically in different cell types is not clear. By using both pharmacological inhibition and genetic knockdown approaches recent studies suggest that the ROCK2 isoform plays an exclusive role in controlling of T-cell plasticity and macrophage polarization. Specifically, selective ROCK2 inhibition shifts the balance between pro-inflammatory and regulatory T-cell subsets via concurrent regulation of STAT3 and STAT5 phosphorylation, respectively. Furthermore, the administration of an orally available selective ROCK2 inhibitor effectively ameliorates clinical manifestations in experimental models of autoimmunity and chronic graft-vs.-host disease (cGVHD). Because ROCK2 inhibition results in the suppression of M2-type macrophages while favoring polarization of M1-type macrophages, ROCK2 inhibition can correct the macrophage imbalance seen during age-related macular degeneration (AMD). In summary, the exclusive role of ROCK2 in immune system modulation argues for the development and testing of isoform-specific ROCK2 inhibitors for the treatment of inflammatory disorders. PMID:27254302

  11. Conformational Flexibility Differentiates Naturally Occurring Bet v 1 Isoforms

    PubMed Central

    Grutsch, Sarina; Fuchs, Julian E.; Ahammer, Linda; Kamenik, Anna S.; Liedl, Klaus R.; Tollinger, Martin

    2017-01-01

    The protein Bet v 1 represents the main cause for allergic reactions to birch pollen in Europe and North America. Structurally homologous isoforms of Bet v 1 can have different properties regarding allergic sensitization and Th2 polarization, most likely due to differential susceptibility to proteolytic cleavage. Using NMR relaxation experiments and molecular dynamics simulations, we demonstrate that the initial proteolytic cleavage sites in two naturally occurring Bet v 1 isoforms, Bet v 1.0101 (Bet v 1a) and Bet v 1.0102 (Bet v 1d), are conformationally flexible. Inaccessible cleavage sites in helices and strands are highly flexible on the microsecond-millisecond time scale, whereas those located in loops display faster nanosecond-microsecond flexibility. The data consistently show that Bet v 1.0102 is more flexible and conformationally heterogeneous than Bet v 1.0101. Moreover, NMR hydrogen-deuterium exchange measurements reveal that the backbone amides in Bet v 1.0102 are significantly more solvent exposed, in agreement with this isoform’s higher susceptibility to proteolytic cleavage. The differential conformational flexibility of Bet v 1 isoforms, along with the transient exposure of inaccessible sites to the protein surface, may be linked to proteolytic susceptibility, representing a potential structure-based rationale for the observed differences in Th2 polarization and allergic sensitization. PMID:28587205

  12. The alternative translated MDMXp60 isoform regulates MDM2 activity

    PubMed Central

    Tournillon, Anne-Sophie; López, Ignacio; Malbert-Colas, Laurence; Naski, Nadia; Olivares-Illana, Vanesa; Fåhraeus, Robin

    2015-01-01

    Isoforms derived from alternative splicing, mRNA translation initiation or promoter usage extend the functional repertoire of the p53, p63 and p73 genes family and of their regulators MDM2 and MDMX. Here we show cap-independent translation of an N-terminal truncated isoform of hMDMX, hMDMXp60, which is initiated at the 7th AUG codon downstream of the initiation site for full length hMDMXFL at position +384. hMDMXp60 lacks the p53 binding motif but retains the RING domain and interacts with hMDM2 and hMDMXFL. hMDMXp60 shows higher affinity for hMDM2, as compared to hMDMXFL. In vitro data reveal a positive cooperative interaction between hMDMXp60 and hMDM2 and in cellulo data show that low levels of hMDMXp60 promote degradation of hMDM2 whereas higher levels stabilize hMDM2 and prevent hMDM2-mediated degradation of hMDMXFL. These results describe a novel alternatively translated hMDMX isoform that exhibits unique regulatory activity toward hMDM2 autoubiquitination. The data illustrate how the N-terminus of hMDMX regulates its C-terminal RING domain and the hMDM2 activity. PMID:25659040

  13. Desmoglein Isoform Distribution Affects Stratum Corneum Structure and Function

    PubMed Central

    Elias, Peter M.; Matsuyoshi, Norihisa; Wu, Hong; Lin, Chenyan; Wang, Zhi Hong; Brown, Barbara E.; Stanley, John R.

    2001-01-01

    Desmogleins are desmosomal cadherins that mediate cell–cell adhesion. In stratified squamous epithelia there are two major isoforms of desmoglein, 1 and 3, with different distributions in epidermis and mucous membrane. Since either desmoglein isoform alone can mediate adhesion, the reason for their differential distribution is not known. To address this issue, we engineered transgenic mice with desmoglein 3 under the control of the involucrin promoter. These mice expressed desmoglein 3 with the same distribution in epidermis as found in normal oral mucous membranes, while expression of other major differentiation molecules was unchanged. Although the nucleated epidermis appeared normal, the epidermal stratum corneum was abnormal with gross scaling, and a lamellar histology resembling that of normal mucous membrane. The mice died shortly after birth with severe dehydration, suggesting excessive transepidermal water loss, which was confirmed by in vitro and in vivo measurement. Ultrastructure of the stratum corneum showed premature loss of cohesion of corneocytes. This dysadhesion of corneocytes and its contribution to increased transepidermal water loss was confirmed by tape stripping. These data demonstrate that differential expression of desmoglein isoforms affects the major function of epidermis, the permeability barrier, by altering the structure of the stratum corneum. PMID:11309406

  14. Glutaminases in brain: Multiple isoforms for many purposes.

    PubMed

    Campos-Sandoval, José A; Martín-Rufián, Mercedes; Cardona, Carolina; Lobo, Carolina; Peñalver, Ana; Márquez, Javier

    2015-09-01

    Glutaminase is expressed in most mammalian tissues and cancer cells, but recent studies are now revealing a considerably degree of complexity in its pattern of expression and functional regulation. Novel transcript variants of the mammalian glutaminase Gls2 gene have been recently found and characterized in brain. Co-expression of different isoforms in the same cell type would allow cells to fine-tune their Gln/Glu levels under a wide range of metabolic states. Moreover, the discovery of protein interacting partners and novel subcellular localizations, for example nucleocytoplasmic in neurons and astrocytes, strongly suggest non-neurotransmission roles for Gls2 isoforms associated with transcriptional regulation and cellular differentiation. Of note, Gls isoforms have been considered as an important trophic factor for neuronal differentiation and postnatal development of brain regions. On the other hand, glutaminases are taking center stage in tumor biology as new therapeutic targets to inhibit metabolic reprogramming of cancer cells. Interestingly, glutaminase isoenzymes play seemingly opposing roles in cancer cell growth and proliferation; this issue will be also succinctly discussed with special emphasis on brain tumors.

  15. Comparison of the Drosophila melanogaster, human and murine Sm B cDNAs: evolutionary conservation.

    PubMed

    Brunet, C; Quan, T; Craft, J

    1993-02-28

    To analyze the evolutionary stability of the Sm B polypeptides, the cDNA nucleotide (nt) sequence was derived for the Drosophila melanogaster Sm B polypeptide and compared to the cDNAs encoding human and murine Sm B. The three cDNAs were transcribed and translated in reticulocyte lysates followed by analysis of the synthesized proteins by SDS-PAGE. D. melanogaster B migrated at approximately 25 kDa, in comparison to 28 kDa for the murine and human B proteins, although all three proteins were immunoprecipitated by human anti-Sm autoantibodies and by the Y12 anti-Sm murine monoclonal antibody (Y12 mAb). Immunoblots and immunoprecipitations of [35S]methionine-labeled D. melanogaster S2/M3 cells confirmed the smaller size of the D. melanogaster protein, and revealed that B' was absent in this cell line, as in murine cells. In comparison to the 231 amino acids (aa) of human and murine B, the deduced sequence for the D. melanogaster clone was 199 aa (predicted M(r) of 24,598) with two 5-aa deletions and a 19-aa truncation at the 3' end, compared to the other two clones. D. melanogaster protein B shared 65% aa sequence identity with the human and mouse clones, and 80% similarity when conservative aa substitutions were noted. The C-terminal portion of the D. melanogaster protein was the most evolutionarily variable in comparison to the deduced aa sequences for the other two proteins; however, autoantigenic epitopes bound by human anti-Sm antibodies and the Y12 mAb in this region of the protein were conserved across species lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Effect of curcumin on aged Drosophila melanogaster: a pathway prediction analysis.

    PubMed

    Zhang, Zhi-guo; Niu, Xu-yan; Lu, Ai-ping; Xiao, Gary Guishan

    2015-02-01

    To re-analyze the data published in order to explore plausible biological pathways that can be used to explain the anti-aging effect of curcumin. Microarray data generated from other study aiming to investigate effect of curcumin on extending lifespan of Drosophila melanogaster were further used for pathway prediction analysis. The differentially expressed genes were identified by using GeneSpring GX with a criterion of 3.0-fold change. Two Cytoscape plugins including BisoGenet and molecular complex detection (MCODE) were used to establish the protein-protein interaction (PPI) network based upon differential genes in order to detect highly connected regions. The function annotation clustering tool of Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for pathway analysis. A total of 87 genes expressed differentially in D. melanogaster melanogaster treated with curcumin were identified, among which 50 were up-regulated significantly and 37 were remarkably down-regulated in D. melanogaster melanogaster treated with curcumin. Based upon these differential genes, PPI network was constructed with 1,082 nodes and 2,412 edges. Five highly connected regions in PPI networks were detected by MCODE algorithm, suggesting anti-aging effect of curcumin may be underlined through five different pathways including Notch signaling pathway, basal transcription factors, cell cycle regulation, ribosome, Wnt signaling pathway, and p53 pathway. Genes and their associated pathways in D. melanogaster melanogaster treated with anti-aging agent curcumin were identified using PPI network and MCODE algorithm, suggesting that curcumin may be developed as an alternative therapeutic medicine for treating aging-associated diseases.

  17. Hormetic efficacy of rutin to promote longevity in Drosophila melanogaster.

    PubMed

    Chattopadhyay, Debarati; Chitnis, Atith; Talekar, Aishwarya; Mulay, Prajakta; Makkar, Manyata; James, Joel; Thirumurugan, Kavitha

    2017-04-07

    Hormetins are compounds that mediate hormesis by being beneficial at low doses but detrimental at high doses. Recent studies have highlighted that many compounds that extended lifespan in model organisms did so by mediating hormesis. Rutin is a glycosylate conjugate of quercetin and rutinose and is abundant in citrus fruits and buckwheat seeds. Rutin possess ROS scavenging, anti-cancer, cardio-protective, skin-regenerative and neuro-protective properties. Drosophila melanogaster is an attractive model organism for longevity studies owing to its homology of organ and cellular-pathways with mammals. In this study, we aimed to understand the effect of rutin on extending longevity in Drosophila melanogaster. Male and female flies were administered with a range of rutin doses (100-800 µM) to analyse whether rutin mediated lifespan-extension by hormesis. Effect of rutin on physiological parameters like food intake, fecundity, climbing activity, development and resistance to various stresses was also studied. Lifespan assays showed that rutin at 200 and 400 µM significantly extended median lifespan in both male and female flies beyond which flies exhibited drastically reduced longevity. Increase in survival at 400 µM was associated with reduced food intake and fecundity. Flies exhibited improved climbing capability with both 200 and 400 µM rutin. Flies fed with 100 and 200 µM rutin exhibited enhanced survival upon exposure to oxidative stress with 400 µM rutin exhibiting no improvement in median lifespan following oxidative stress. Analysis of endogenous peroxide upon treatment with rutin (100-400 µM) with or without 5% H2O2 showed elevated levels of endogenous peroxide with 400 µM rutin whereas no increase in hydrogen peroxide level was observed with rutin at 100 and 200 µM. Finally, gene expression studies in male flies revealed that rutin treatment at 200 and/or 400 µM elevated transcript levels of dFoxO, MnSod, Cat, dTsc1, dTsc2, Thor, dAtg1, dAtg5

  18. Tissue localization of Drosophila melanogaster insulin receptor transcripts during development.

    PubMed Central

    Garofalo, R S; Rosen, O M

    1988-01-01

    The Drosophila melanogaster insulin receptor (Drosophila insulin receptor homolog [dIRH]) is similar to its mammalian counterpart in deduced amino acid sequence, subunit structure, and ligand-stimulated protein tyrosine kinase activity. The function of this receptor in D. melanogaster is not yet known. However, a role in development is suggested by the observations that levels of insulin-stimulated kinase activity and expression of dIRH mRNA are maximal during Drosophila midembryogenesis. In this study, a 2.9-kilobase (kb) cDNA clone corresponding to both the dIRH tyrosine kinase domain and some of the 3' untranslated sequence was used to determine the tissue distribution of dIRH mRNA during development. Two principal mRNAs of 11 and 8.6 kb hybridized with the dIRH cDNA in Northern (RNA) blot analysis. The abundance of the 8.6-kb mRNA increased transiently in early embryos, whereas the 11-kb species was most abundant during midembryogenesis. A similar pattern of expression was previously determined by Northern analysis, using a dIRH genomic clone (L. Petruzzelli, R. Herrera, R. Arenas-Garcia, R. Fernandez, M. J. Birnbaum, and O. M. Rosen, Proc. Natl. Acad. Sci. USA 83:4710-4714, 1986). In situ hybridization revealed dIRH transcripts in the ovaries of adult flies, in which the transcripts appeared to be synthesized by nurse cells for eventual storage as maternal RNA in the mature oocyte. Throughout embryogenesis, dIRH transcripts were ubiquitously expressed, although after midembryogenesis, higher levels were detected in the developing nervous system. Nervous system expression remained elevated throughout the larval stages and persisted in the adult, in which the cortex of the brain and ganglion cells were among the most prominently labeled tissues. In larvae, the imaginal disk cells exhibited comparatively high levels of dIRH mRNA expression. The broad distribution of dIRH mRNA in embryos and imaginal disks is compatible with a role for dIRH in anabolic processes

  19. [Effect of heat shock on courtship behavior, sound production, and learning in comparison with the brain content of LIMK1 in Drosophila melanogaster males with altered structure of the LIMK1 gene].

    PubMed

    2014-01-01

    In this paper we present results of a comprehensive analysis of the effect of heat shock at different stages of ontogenesis (adult stage, development of the mushroom bodies and the central complex) on courtship behavior (latency, duration and efficacy of courtship), sound production (pulse interval, dispersion of interpulse interval, the percentage of distorted pulses, the mean duration of the pulse parcels), learning and memory formation compared with the content of isoforms LIMK1 in Drosophila melanogaster male with altered structure of the limk1 gene. The heat shock is shown to affect the behavior parameters and LIMK1 content in analyzed strains of Drosophila. The most pronounced effect of the heat shock was observed at the stage of development of the central complex (CC). Heat shock at CC and adult restores the ability of learning and memory formation in the mutant strain agn(ts3), which normally is not able to learn and form memory. Correlations between changes of content of isoforms LIMK1 and behavioral parameters due to heat shock have not been established.

  20. Signaling by the Engulfment Receptor Draper: A Screen in Drosophila melanogaster Implicates Cytoskeletal Regulators, Jun N-Terminal Kinase, and Yorkie

    PubMed Central

    Fullard, John F.; Baker, Nicholas E.

    2015-01-01

    Draper, the Drosophila melanogaster homolog of the Ced-1 protein of Caenorhabditis elegans, is a cell-surface receptor required for the recognition and engulfment of apoptotic cells, glial clearance of axon fragments and dendritic pruning, and salivary gland autophagy. To further elucidate mechanisms of Draper signaling, we screened chromosomal deficiencies to identify loci that dominantly modify the phenotype of overexpression of Draper isoform II (suppressed differentiation of the posterior crossvein in the wing). We found evidence for 43 genetic modifiers of Draper II. Twenty-four of the 37 suppressor loci and 3 of the 6 enhancer loci were identified. An additional 5 suppressors and 2 enhancers were identified among mutations in functionally related genes. These studies reveal positive contributions to Drpr signaling for the Jun N-terminal Kinase pathway, supported by genetic interactions with hemipterous, basket, jun, and puckered, and for cytoskeleton regulation as indicated by genetic interactions with rac1, rac2, RhoA, myoblast city, Wiskcott–Aldrich syndrome protein, and the formin CG32138, and for yorkie and expanded. These findings indicate that Jun N-terminal Kinase activation and cytoskeletal remodeling collaborate in Draper signaling. Relationships between Draper signaling and Decapentaplegic signaling, insulin signaling, Salvador/Warts/Hippo signaling, apical-basal cell polarity, and cellular responses to mechanical forces are also discussed. PMID:25395664

  1. Invasive Drosophila suzukii facilitates Drosophila melanogaster infestation and sour rot outbreaks in the vineyards

    PubMed Central

    Guilhot, R.; Xuéreb, A.; Benoit, L.; Chapuis, M. P. ; Gibert, P.

    2017-01-01

    How do invasive pests affect interactions between members of pre-existing agrosystems? The invasive pest Drosophila suzukii is suspected to be involved in the aetiology of sour rot, a grapevine disease that otherwise develops following Drosophila melanogaster infestation of wounded berries. We combined field observations with laboratory assays to disentangle the relative roles of both Drosophila in disease development. We observed the emergence of numerous D. suzukii, but no D. melanogaster flies, from bunches that started showing mild sour rot symptoms days after field collection. However, bunches that already showed severe rot symptoms in the field mostly contained D. melanogaster. In the laboratory, oviposition by D. suzukii triggered sour rot development. An independent assay showed the disease increased grape attractiveness to ovipositing D. melanogaster females. Our results suggest that in invaded vineyards, D. suzukii facilitates D. melanogaster infestation and, consequently, favours sour rot outbreaks. Rather than competing with close species, the invader subsequently permits their reproduction in otherwise non-accessible resources and may cause more frequent, or more extensive, disease outbreaks. PMID:28405407

  2. Effects of zinc on programmed cell death of Musca domestica and Drosophila melanogaster blood cells.

    PubMed

    Filipiak, Marta; Bilska, Ewelina; Tylko, Grzegorz; Pyza, Elzbieta

    2010-04-01

    Programmed cell death (PCD) and phagocytotic activity of immune cells play a pivotal role in insect development. We examined the influence of Zn(2+), an important element to fundamental biological processes, on phagocytosis and apoptosis of hemocytes in two fly species: Musca domestica and Drosophila melanogaster. Hemocytes were isolated from the third instar larvae of both species and treated for 3h with zinc chloride solutions, containing 0.35 mM or 1.7 mM of Zn(2+), and untreated as control. Phagocytotic activity of hemocytes was examined by flow cytometry after adding latex fluorescent beads to the medium, while apoptosis was evaluated by application of annexinV-FITC and pan-caspase-FITC inhibitor. Mitochondrial viability was determined by measuring resazurin absorbancy in the cell medium. The obtained results showed that Zn(2+) increases phagocytosis and affects PCD of both species hemocytes but each in a different way. Zinc decreases fraction of annexin-positive hemocytes in M. domestica but increases it in D. melanogaster. The pan-caspase analysis revealed low and high activity of caspases in hemocytes of M. domestica and D. melanogaster, respectively. Zn(2+) also decreased the viability of hemocyte mitochondria but only in D. melanogaster. It suggests that flies use different pathways of PCD, or that Zn plays a different role in this process in M. domestica than in D. melanogaster. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  3. Comparative Analysis of Satellite DNA in the Drosophila melanogaster Species Complex.

    PubMed

    Jagannathan, Madhav; Warsinger-Pepe, Natalie; Watase, George J; Yamashita, Yukiko M

    2017-02-09

    Satellite DNAs are highly repetitive sequences that account for the majority of constitutive heterochromatin in many eukaryotic genomes. It is widely recognized that sequences and locations of satellite DNAs are highly divergent even in closely related species, contributing to the hypothesis that satellite DNA differences may underlie speciation. However, due to its repetitive nature, the mapping of satellite DNAs has been mostly left out of recent genomics analyses, hampering the use of molecular genetics techniques to better understand their role in speciation and evolution. Satellite DNAs are most extensively and comprehensively mapped in Drosophila melanogaster, a species that is also an excellent model system with which to study speciation. Yet the lack of comprehensive knowledge regarding satellite DNA identity and location in its sibling species (D. simulans, D. mauritiana, and D. sechellia) has prevented the full utilization of D. melanogaster in studying speciation. To overcome this problem, we initiated the mapping of satellite DNAs on the genomes of the D. melanogaster species complex (D. melanogaster, D. simulans, D. mauritiana, and D. sechellia) using multi-color fluorescent in situ hybridization (FISH) probes. Our study confirms a striking divergence of satellite DNAs in the D. melanogaster species complex, even among the closely related species of the D. simulans clade (D. simulans, D. mauritiana, and D. sechellia), and suggests the presence of unidentified satellite sequences in these species.

  4. In vivo imaging of the Drosophila Melanogaster heart using a novel optical coherence tomography microscope

    NASA Astrophysics Data System (ADS)

    Izatt, Susan D.; Choma, Michael A.; Israel, Steven; Wessells, Robert J.; Bodmer, Rolf; Izatt, Joseph A.

    2005-03-01

    Real time in vivo optical coherence tomography (OCT) imaging of the adult fruit fly Drosophila melanogaster heart using a newly designed OCT microscope allows accurate assessment of cardiac anatomy and function. D. melanogaster has been used extensively in genetic research for over a century, but in vivo evaluation of the heart has been limited by available imaging technology. The ability to assess phenotypic changes with micrometer-scale resolution noninvasively in genetic models such as D. melanogaster is needed in the advancing fields of developmental biology and genetics. We have developed a dedicated small animal OCT imaging system incorporating a state-of-the-art, real time OCT scanner integrated into a standard stereo zoom microscope which allows for simultaneous OCT and video imaging. System capabilities include A-scan, B-scan, and M-scan imaging as well as automated 3D volumetric acquisition and visualization. Transverse and sagittal B-mode scans of the four chambered D. melanogaster heart have been obtained with the OCT microscope and are consistent with detailed anatomical studies from the literature. Further analysis by M-mode scanning is currently under way to assess cardiac function as a function of age and sex by determination of shortening fraction and ejection fraction. These studies create control cardiac data on the wild type D. melanogaster, allowing subsequent evaluation of phenotypic cardiac changes in this model after regulated genetic mutation.

  5. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster

    PubMed Central

    MACHADO, HEATHER E.; BERGLAND, ALAN O.; O’BRIEN, KATHERINE R.; BEHRMAN, EMILY L.; SCHMIDT, PAUL S.; PETROV, DMITRI A.

    2016-01-01

    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. PMID:26523848

  6. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster.

    PubMed

    Machado, Heather E; Bergland, Alan O; O'Brien, Katherine R; Behrman, Emily L; Schmidt, Paul S; Petrov, Dmitri A

    2016-02-01

    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. © 2015 John Wiley & Sons Ltd.

  7. Identification and characterization of novel natural pathogen of Drosophila melanogaster isolated from wild captured Drosophila spp.

    PubMed

    Singh, Karan; Zulkifli, Mohammad; Prasad, N G

    2016-12-01

    Drosophila melanogaster is an emerging model system for the study of evolutionary ecology of immunity. However, a large number of studies have used non natural pathogens as very few natural pathogens have been isolated and identified. Our aim was to isolate and characterize natural pathogen/s of D. melanogaster. A bacterial pathogen was isolated from wild caught Drosophila spp., identified as a new strain of Staphylococcus succinus subsp. succinus and named PK-1. This strain induced substantial mortality (36-62%) in adults of several laboratory populations of D. melanogaster. PK-1 grew rapidly within the body of the flies post infection and both males and females had roughly same number of colony forming units. Mortality was affected by mode of infection and dosage of the pathogen. However mating status of the host had no effect on mortality post infection. Given that there are very few known natural bacterial pathogens of D. melanogaster and that PK-1 can establish a sustained infection across various outbred and inbred populations of D. melanogaster this new isolate is a potential resource for future studies on immunity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster

    PubMed Central

    Schrider, Daniel R.; Hahn, Matthew W.; Begun, David J.

    2016-01-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster. In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. PMID:26809315

  9. Comparative Analysis of Satellite DNA in the Drosophila melanogaster Species Complex

    PubMed Central

    Jagannathan, Madhav; Warsinger-Pepe, Natalie; Watase, George J.; Yamashita, Yukiko M.

    2016-01-01

    Satellite DNAs are highly repetitive sequences that account for the majority of constitutive heterochromatin in many eukaryotic genomes. It is widely recognized that sequences and locations of satellite DNAs are highly divergent even in closely related species, contributing to the hypothesis that satellite DNA differences may underlie speciation. However, due to its repetitive nature, the mapping of satellite DNAs has been mostly left out of recent genomics analyses, hampering the use of molecular genetics techniques to better understand their role in speciation and evolution. Satellite DNAs are most extensively and comprehensively mapped in Drosophila melanogaster, a species that is also an excellent model system with which to study speciation. Yet the lack of comprehensive knowledge regarding satellite DNA identity and location in its sibling species (D. simulans, D. mauritiana, and D. sechellia) has prevented the full utilization of D. melanogaster in studying speciation. To overcome this problem, we initiated the mapping of satellite DNAs on the genomes of the D. melanogaster species complex (D. melanogaster, D. simulans, D. mauritiana, and D. sechellia) using multi-color fluorescent in situ hybridization (FISH) probes. Our study confirms a striking divergence of satellite DNAs in the D. melanogaster species complex, even among the closely related species of the D. simulans clade (D. simulans, D. mauritiana, and D. sechellia), and suggests the presence of unidentified satellite sequences in these species. PMID:28007840

  10. Evolution of mir-92a Underlies Natural Morphological Variation in Drosophila melanogaster

    PubMed Central

    Arif, Saad; Murat, Sophie; Almudi, Isabel; Nunes, Maria D.S.; Bortolamiol-Becet, Diane; McGregor, Naomi S.; Currie, James M.S.; Hughes, Harri; Ronshaugen, Matthew; Sucena, Élio; Lai, Eric C.; Schlötterer, Christian; McGregor, Alistair P.

    2013-01-01

    Summary Identifying the genetic mechanisms underlying phenotypic change is essential to understanding how gene regulatory networks and ultimately the genotype-to-phenotype map evolve. It is recognized that microRNAs (miRNAs) have the potential to facilitate evolutionary change [1–3]; however, there are no known examples of natural morphological variation caused by evolutionary changes in miRNA expression. Therefore, the contribution of miRNAs to evolutionary change remains unknown [1, 4]. Drosophila melanogaster subgroup species display a portion of trichome-free cuticle on the femur of the second leg called the “naked valley.” It was previously shown that Ultrabithorax (Ubx) is involved in naked valley variation between D. melanogaster and D. simulans [5, 6]. However, naked valley size also varies among populations of D. melanogaster, ranging from 1,000 up to 30,000 μm2. We investigated the genetic basis of intraspecific differences in the naked valley in D. melanogaster and found that neither Ubx nor shavenbaby (svb) [7, 8] contributes to this morphological difference. Instead, we show that changes in mir-92a expression underlie the evolution of naked valley size in D. melanogaster through repression of shavenoid (sha) [9]. Therefore, our results reveal a novel mechanism for morphological evolution and suggest that modulation of the expression of miRNAs potentially plays a prominent role in generating organismal diversity. PMID:23453955

  11. The Drosophila melanogaster hybrid male rescue gene causes inviability in male and female species hybrids.

    PubMed Central

    Barbash, D A; Roote, J; Ashburner, M

    2000-01-01

    The Drosophila melanogaster mutation Hmr rescues inviable hybrid sons from the cross of D. melanogaster females to males of its sibling species D. mauritiana, D. simulans, and D. sechellia. We have extended previous observations that hybrid daughters from this cross are poorly viable at high temperatures and have shown that this female lethality is suppressed by Hmr and the rescue mutations In(1)AB and D. simulans Lhr. Deficiencies defined here as Hmr(-) also suppressed lethality, demonstrating that reducing Hmr(+) activity can rescue otherwise inviable hybrids. An Hmr(+) duplication had the opposite effect of reducing the viability of female and sibling X-male hybrid progeny. Similar dose-dependent viability effects of Hmr were observed in the reciprocal cross of D. simulans females to D. melanogaster males. Finally, Lhr and Hmr(+) were shown to have mutually antagonistic effects on hybrid viability. These data suggest a model where the interaction of sibling species Lhr(+) and D. melanogaster Hmr(+) causes lethality in both sexes of species hybrids and in both directions of crossing. Our results further suggest that a twofold difference in Hmr(+) dosage accounts in part for the differential viability of male and female hybrid progeny, but also that additional, unidentified genes must be invoked to account for the invariant lethality of hybrid sons of D. melanogaster mothers. Implications of our findings for understanding Haldane's rule-the observation that hybrid breakdown is often specific to the heterogametic sex-are also discussed. PMID:10747067

  12. Assessing sexual conflict in the Drosophila melanogaster laboratory model system.

    PubMed

    Rice, William R; Stewart, Andrew D; Morrow, Edward H; Linder, Jodell E; Orteiza, Nicole; Byrne, Phillip G

    2006-02-28

    We describe a graphical model of interlocus coevolution used to distinguish between the interlocus sexual conflict that leads to sexually antagonistic coevolution, and the intrinsic conflict over mating rate that is an integral part of traditional models of sexual selection. We next distinguish the 'laboratory island' approach from the study of both inbred lines and laboratory populations that are newly derived from nature, discuss why we consider it to be one of the most fitting forms of laboratory analysis to study interlocus sexual conflict, and then describe four experiments using this approach with Drosophila melanogaster. The first experiment evaluates the efficacy of the laboratory model system to study interlocus sexual conflict by comparing remating rates of females when they are, or are not, provided with a spatial refuge from persistent male courtship. The second experiment tests for a lag-load in males that is due to adaptations that have accumulated in females, which diminish male-induced harm while simultaneously interfering with a male's ability to compete in the context of sexual selection. The third and fourth experiments test for a lag-load in females owing to direct costs from their interactions with males, and for the capacity for indirect benefits to compensate for these direct costs.

  13. Virulent bacterial infection improves aversive learning performance in Drosophila melanogaster.

    PubMed

    Babin, Aurélie; Kolly, Sylvain; Kawecki, Tadeusz J

    2014-10-01

    Virulent infections are expected to impair learning ability, either as a direct consequence of stressed physiological state or as an adaptive response that minimizes diversion of energy from immune defense. This prediction has been well supported for mammals and bees. Here, we report an opposite result in Drosophila melanogaster. Using an odor-mechanical shock conditioning paradigm, we found that intestinal infection with bacterial pathogens Pseudomonas entomophila or Erwinia c. carotovora improved flies' learning performance after a 1h retention interval. Infection with P. entomophila (but not E. c. carotovora) also improved learning performance after 5 min retention. No effect on learning performance was detected for intestinal infections with an avirulent GacA mutant of P. entomophila or for virulent systemic (hemocoel) infection with E. c. carotovora. Assays of unconditioned responses to odorants and shock do not support a major role for changes in general responsiveness to stimuli in explaining the changes in learning performance, although differences in their specific salience for learning cannot be excluded. Our results demonstrate that the effects of pathogens on learning performance in insects are less predictable than suggested by previous studies, and support the notion that immune stress can sometimes boost cognitive abilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Chromosome Studies in Wild Populations of D. MELANOGASTER

    PubMed Central

    Stalker, Harrison D.

    1976-01-01

    Chromosome studies of wild D. melanogaster populations from Missouri, Mississippi, Louisiana and Texas uncovered 58 inversions. Six were common and cosmopolitan; 52 were new, rare and generally endemic. In one of two Missouri populations tested, structurally heterozygous females carried significantly more sperm at capture than did the homozygotes. In both populations comparisons of wild sperms with the females carrying them indicated significant positive assortative mating and an excess production of homozygotes among the F1 progeny. Wild females structurally heterozygous in up to three major autosomal arms showed no associated nondisjunctional egg lethality; those heterozygous in all four arms produced from 0% to 24% dead eggs, suggesting the presence of intrapopulational gene modifiers of meiosis. Texas populations supported on windfall citrus fruit showed a slight but significant difference in inversion frequencies between flies breeding on oranges and those breeding on grapefruit. Within these populations inversions were not distributed at random among individuals; rather there was an observed excess of individuals carrying intermediate numbers, and a deficiency of those carrying very few or very many inversions. While there was no significant linkage disequilibrium associated with this central tendency, there was a significant interchromosomal interaction: flies carrying inversions in chromosome 2 tended not to carry them in chromosome 3, and vice versa. PMID:816707

  15. Genome-wide analysis of promoter architecture in Drosophila melanogaster

    SciTech Connect

    Hoskins, Roger A.; Landolin, Jane M.; Brown, James B.; Sandler, Jeremy E.; Takahashi, Hazuki; Lassmann, Timo; Yu, Charles; Booth, Benjamin W.; Zhang, Dayu; Wan, Kenneth H.; Yang, Li; Boley, Nathan; Andrews, Justen; Kaufman, Thomas C.; Graveley, Brenton R.; Bickel, Peter J.; Carninci, Piero; Carlson, Joseph W.; Celniker, Susan E.

    2010-10-20

    Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.

  16. Modeling the Drosophila melanogaster circadian oscillator via phase optimization.

    PubMed

    Bagheri, Neda; Lawson, Michael J; Stelling, Jörg; Doyle, Francis J

    2008-12-01

    The circadian clock, which coordinates daily physiological behaviors of most organisms, maintains endogenous (approximately 24 h) cycles and simultaneously synchronizes to the 24-h environment due to its inherent robustness to environmental perturbations coupled with a sensitivity to specific environmental stimuli. In this study, the authors develop a detailed mathematical model that characterizes the Drosophila melanogaster circadian network. This model incorporates the transcriptional regulation of period, timeless, vrille , PAR-domain protein 1, and clock gene and protein counterparts. The interlocked positive and negative feedback loops that arise from these clock components are described primarily through mass-action kinetics (with the exception of regulated gene expression) and without the use of explicit time delays. System parameters are estimated via a genetic algorithm-based optimization of a cost function that relies specifically on circadian phase behavior since amplitude measurements are often noisy and do not account for the unique entrainment features that define circadian oscillations. Resulting simulations of this 29-state ordinary differential equation model comply with fitted wild-type experimental data, demonstrating accurate free-running (23.24-h periodic) and entrained (24-h periodic) circadian dynamics. This model also predicts unfitted mutant phenotype behavior by illustrating short and long periodicity, robust oscillations, and arrhythmicity. This mechanistic model also predicts light-induced circadian phase resetting (as described by the phase-response curve) that are in line with experimental observations.

  17. Modeling the Drosophila melanogaster Circadian Oscillator via Phase Optimization

    PubMed Central

    Bagheri, Neda; Lawson, Michael J.; Stelling, Jörg; Doyle, Francis J.

    2009-01-01

    The circadian clock, which coordinates daily physiological behaviors of most organisms, maintains endogenous (approximately 24 h) cycles and simultaneously synchronizes to the 24-h environment due to its inherent robustness to environmental perturbations coupled with a sensitivity to specific environmental stimuli. In this study, the authors develop a detailed mathematical model that characterizes the Drosophila melanogaster circadian network. This model incorporates the transcriptional regulation of period, time-less, vrille, PAR-domain protein 1, and clock gene and protein counterparts. The interlocked positive and negative feedback loops that arise from these clock components are described primarily through mass-action kinetics (with the exception of regulated gene expression) and without the use of explicit time delays. System parameters are estimated via a genetic algorithm-based optimization of a cost function that relies specifically on circadian phase behavior since amplitude measurements are often noisy and do not account for the unique entrainment features that define circadian oscillations. Resulting simulations of this 29-state ordinary differential equation model comply with fitted wild-type experimental data, demonstrating accurate free-running (23.24-h periodic) and entrained (24-h periodic) circadian dynamics. This model also predicts unfitted mutant phenotype behavior by illustrating short and long periodicity, robust oscillations, and arrhythmicity. This mechanistic model also predicts light-induced circadian phase resetting (as described by the phase-response curve) that are in line with experimental observations. PMID:19060261

  18. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    PubMed Central

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that span the genome. Most of these markers are single nucleotide polymorphisms and sequences for these variants are provided in an accessible format. The average density of the new markers is one per 225 kb on the autosomes and one per megabase on the X chromosome. We include in this survey a set of P-element strains that provide additional use for high-resolution mapping. We show one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community. PMID:11381036

  19. Key Odorants Regulate Food Attraction in Drosophila melanogaster.

    PubMed

    Giang, Thomas; He, Jianzheng; Belaidi, Safaa; Scholz, Henrike

    2017-01-01

    In insects, the search for food is highly dependent on olfactory sensory input. Here, we investigated whether a single key odorant within an odor blend or the complexity of the odor blend influences the attraction of Drosophila melanogaster to a food source. A key odorant is defined as an odorant that elicits a difference in the behavioral response when two similar complex odor blends are offered. To validate that the observed behavioral responses were elicited by olfactory stimuli, we used olfactory co-receptor Orco mutants. We show that within a food odor blend, ethanol functions as a key odorant. In addition to ethanol other odorants might serve as key odorants at specific concentrations. However, not all odorants are key odorants. The intensity of the odor background influences the attractiveness of the key odorants. Increased complexity is only more attractive in a concentration-dependent range for single compounds in a blend. Orco is necessary to discriminate between two similarly attractive odorants when offered as single odorants and in food odor blends, supporting the importance of single odorant recognition in odor blends. These data strongly indicate that flies use more than one strategy to navigate to a food odor source, depending on the availability of key odorants in the odor blend and the alternative odor offered.

  20. Key Odorants Regulate Food Attraction in Drosophila melanogaster

    PubMed Central

    Giang, Thomas; He, Jianzheng; Belaidi, Safaa; Scholz, Henrike

    2017-01-01

    In insects, the search for food is highly dependent on olfactory sensory input. Here, we investigated whether a single key odorant within an odor blend or the complexity of the odor blend influences the attraction of Drosophila melanogaster to a food source. A key odorant is defined as an odorant that elicits a difference in the behavioral response when two similar complex odor blends are offered. To validate that the observed behavioral responses were elicited by olfactory stimuli, we used olfactory co-receptor Orco mutants. We show that within a food odor blend, ethanol functions as a key odorant. In addition to ethanol other odorants might serve as key odorants at specific concentrations. However, not all odorants are key odorants. The intensity of the odor background influences the attractiveness of the key odorants. Increased complexity is only more attractive in a concentration-dependent range for single compounds in a blend. Orco is necessary to discriminate between two similarly attractive odorants when offered as single odorants and in food odor blends, supporting the importance of single odorant recognition in odor blends. These data strongly indicate that flies use more than one strategy to navigate to a food odor source, depending on the availability of key odorants in the odor blend and the alternative odor offered. PMID:28928642

  1. Experimental evolution of olfactory memory in Drosophila melanogaster.

    PubMed

    Mery, Frederic; Pont, Juliette; Preat, Thomas; Kawecki, Tadeusz J

    2007-01-01

    In order to address the nature of genetic variation in learning performance, we investigated the response to classical olfactory conditioning in "high-learning" Drosophila melanogaster lines previously subject to selection for the ability to learn an association between the flavor of an oviposition medium and bitter taste. In a T-maze choice test, the seven high-learning lines were better at avoiding an odor previously associated with aversive mechanical shock than were five unselected "low-learning" lines originating from the same natural population. Thus, the evolved improvement in learning ability of high-learning lines generalized to another aversion learning task involving a different aversive stimulus (shock instead of bitter taste) and a different behavioral context than that used to impose selection. In this olfactory shock task, the high-learning lines showed improvements in the learning rate as well as in two forms of consolidated memory: anesthesia-resistant memory and long-term memory. Thus, genetic variation underlying the experimental evolution of learning performance in the high-learning lines affected several phases of memory formation in the course of olfactory aversive learning. However, the two forms of consolidated memory were negatively correlated among replicate high-learning lines, which is consistent with a recent hypothesis that these two forms of consolidated memory are antagonistic.

  2. The Regulatory Complex of Drosophila melanogaster 26s Proteasomes

    PubMed Central

    Hölzl, Harald; Kapelari, Barbara; Kellermann, Josef; Seemüller, Erika; Sümegi, Máté; Udvardy, Andor; Medalia, Ohad; Sperling, Joseph; Müller, Shirley A.; Engel, Andreas; Baumeister, Wolfgang

    2000-01-01

    Drosophila melanogaster embryos are a source for homogeneous and stable 26S proteasomes suitable for structural studies. For biochemical characterization, purified 26S proteasomes were resolved by two-dimensional (2D) gel electrophoresis and subunits composing the regulatory complex (RC) were identified by amino acid sequencing and immunoblotting, before corresponding cDNAs were sequenced. 17 subunits from Drosophila RCs were found to have homologues in the yeast and human RCs. An additional subunit, p37A, not yet described in RCs of other organisms, is a member of the ubiquitin COOH-terminal hydrolase family (UCH). Analysis of EM images of 26S proteasomes-UCH-inhibitor complexes allowed for the first time to localize one of the RC's specific functions, deubiquitylating activity. The masses of 26S proteasomes with either one or two attached RCs were determined by scanning transmission EM (STEM), yielding a mass of 894 kD for a single RC. This value is in good agreement with the summed masses of the 18 identified RC subunits (932 kD), indicating that the number of subunits is complete. PMID:10893261

  3. Genome-wide profiling of forum domains in Drosophila melanogaster.

    PubMed

    Tchurikov, Nickolai A; Kretova, Olga V; Sosin, Dmitri V; Zykov, Ivan A; Zhimulev, Igor F; Kravatsky, Yuri V

    2011-05-01

    Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50-200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin.

  4. Annotation of the Drosophila melanogaster euchromatic genome: a systematic review

    PubMed Central

    Misra, Sima; Crosby, Madeline A; Mungall, Christopher J; Matthews, Beverley B; Campbell, Kathryn S; Hradecky, Pavel; Huang, Yanmei; Kaminker, Joshua S; Millburn, Gillian H; Prochnik, Simon E; Smith, Christopher D; Tupy, Jonathan L; Whitfield, Eleanor J; Bayraktaroglu, Leyla; Berman, Benjamin P; Bettencourt, Brian R; Celniker, Susan E; de Grey, Aubrey DNJ; Drysdale, Rachel A; Harris, Nomi L; Richter, John; Russo, Susan; Schroeder, Andrew J; Shu, ShengQiang; Stapleton, Mark; Yamada, Chihiro; Ashburner, Michael; Gelbart, William M; Rubin, Gerald M; Lewis, Suzanna E

    2002-01-01

    Background The recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences. Results Although the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes. Conclusions Identification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations. PMID:12537572

  5. Rhythmic Changes in Synapse Numbers in Drosophila melanogaster Motor Terminals

    PubMed Central

    Ruiz, Santiago; Ferreiro, Maria Jose; Menhert, Kerstin I.; Casanova, Gabriela; Olivera, Alvaro; Cantera, Rafael

    2013-01-01

    Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD) cycles and constant darkness (DD). We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses) in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons. PMID:23840613

  6. Rhythmic changes in synapse numbers in Drosophila melanogaster motor terminals.

    PubMed

    Ruiz, Santiago; Ferreiro, Maria Jose; Menhert, Kerstin I; Casanova, Gabriela; Olivera, Alvaro; Cantera, Rafael

    2013-01-01

    Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD) cycles and constant darkness (DD). We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses) in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons.

  7. Resources for Functional Genomics Studies in Drosophila melanogaster

    PubMed Central

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  8. Genome-wide profiling of forum domains in Drosophila melanogaster

    PubMed Central

    Tchurikov, Nickolai A.; Kretova, Olga V.; Sosin, Dmitri V.; Zykov, Ivan A.; Zhimulev, Igor F.; Kravatsky, Yuri V.

    2011-01-01

    Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50–200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin. PMID:21247882

  9. Optical calcium imaging in the nervous system of Drosophila melanogaster.

    PubMed

    Riemensperger, Thomas; Pech, Ulrike; Dipt, Shubham; Fiala, André

    2012-08-01

    Drosophila melanogaster is one of the best-studied model organisms in biology, mainly because of the versatility of methods by which heredity and specific expression of genes can be traced and manipulated. Sophisticated genetic tools have been developed to express transgenes in selected cell types, and these techniques can be utilized to target DNA-encoded fluorescence probes to genetically defined subsets of neurons. Neuroscientists make use of this approach to monitor the activity of restricted types or subsets of neurons in the brain and the peripheral nervous system. Since membrane depolarization is typically accompanied by an increase in intracellular calcium ions, calcium-sensitive fluorescence proteins provide favorable tools to monitor the spatio-temporal activity across groups of neurons. Here we describe approaches to perform optical calcium imaging in Drosophila in consideration of various calcium sensors and expression systems. In addition, we outline by way of examples for which particular neuronal systems in Drosophila optical calcium imaging have been used. Finally, we exemplify briefly how optical calcium imaging in the brain of Drosophila can be carried out in practice. Drosophila provides an excellent model organism to combine genetic expression systems with optical calcium imaging in order to investigate principles of sensory coding, neuronal plasticity, and processing of neuronal information underlying behavior. This article is part of a Special Issue entitled Biochemical, Biophysical and Genetic Approaches to Intracellular Calcium Signaling. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster

    SciTech Connect

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-04-16

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that have recently revolutionized human, mouse and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila using an STS-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that the genome. The majority of these markers are single nucleotide polymorphisms (SNPs) and sequences for these variants are provided in an accessible format. The average density of the new markers is 1 marker per 225 kb on the autosomes and 1 marker per 1 Mb on the X chromosome. We include in this survey a set of P-element strains that provide additional utility for high-resolution mapping. We demonstrate one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community.

  11. Drosophila melanogaster (fruit fly) locomotion during a sounding rocket flight

    NASA Astrophysics Data System (ADS)

    Miller, Mark S.; Keller, Tony S.

    2008-05-01

    The locomotor activity of young Drosophila melanogaster (fruit fly) was studied during a Nike-Orion sounding rocket flight, which included a short-duration microgravity exposure. An infrared monitoring system was used to determine the activity level, instantaneous velocity, and continuous velocity of 240 (120 male, 120 female) fruit flies. Individual flies were placed in chambers that limit their motion to walking. Chambers were oriented both vertically and horizontally with respect to the rocket's longitudinal axis. Significant changes in Drosophila locomotion patterns were observed throughout the sounding rocket flight, including launch, microgravity exposure, payload re-entry, and after ocean impact. During the microgravity portion of the flight (3.8 min), large increases in all locomotion measurements for both sexes were observed, with some measurements doubling compared to pad (1 G) data. Initial effects of microgravity were probably delayed due to large accelerations from the payload despining immediately before entering microgravity. The results indicate that short-duration microgravity exposure has a large effect on locomotor activity for both males and females, at least for a short period of time. The locomotion increases may explain the increased male aging observed during long-duration exposure to microgravity. Studies focusing on long-duration microgravity exposure are needed to confirm these findings, and the relationship of increased aging and locomotion.

  12. Sound production during agonistic behavior of male Drosophila melanogaster.

    PubMed

    Jonsson, Thorin; Kravitz, Edward A; Heinrich, Ralf

    2011-01-01

    Male Drosophila fruit flies acquire and defend territories in order to attract females for reproduction. Both, male-directed agonistic behavior and female-directed courtship consist of series of recurrent stereotypical components. Various studies demonstrated the importance of species-specific sound patterns generated by wing vibration as being critical for male courtship success. In this study we analyzed the patterns and importance of sound signals generated during agonistic interactions of male Drosophila melanogaster. In contrast to acoustic courtship signals that consist of sine and pulse patterns and are generated by one extended wing, agonistic signals lack sine-like components and are generally produced by simultaneous movements of both wings. Though intra-pulse oscillation frequencies (carrier frequency) are identical, inter-pulse intervals are twice as long and more variable in aggression signals than in courtship songs, where their precise temporal pattern serves species recognition. Acoustic signals accompany male agonistic interactions over their entire course but occur particularly often after tapping behavior which is a major way to identify the gender of the interaction partner. Since similar wing movements may either be silent or generate sound and wing movements with sound have a greater impact on the subsequent behavior of a receiver, sound producing wing movements seem to be generated intentionally to serve as a specific signal during fruit fly agonistic encounters.

  13. Developmental profiles of PERIOD and DOUBLETIME in Drosophila melanogaster ovary.

    PubMed

    Kotwica, Joanna; Larson, Maureen K; Bebas, Piotr; Giebultowicz, Jadwiga M

    2009-05-01

    The clock protein PERIOD (PER) displays circadian cycles of accumulation, phosphorylation, nuclear translocation and degradation in Drosophila melanogaster clock cells. One exception to this pattern is in follicular cells enclosing previtellogenic ovarian egg chambers. In these cells, PER remains high and cytoplasmic at all times of day. Genetic evidence suggest that PER and its clock partner TIMELESS (TIM) interact in these cells, yet, they do not translocate to the nucleus. Here, we investigated the levels and subcellular localization of PER in older vitellogenic follicles. Cytoplasmic PER levels decreased in the follicular cells at the onset of vitellogenesis (stage 9). Interestingly, PER was observed in the nuclei of some follicular cells at this stage. PER signal disappeared in more advanced (stage 10) vitellogenic follicles. Since the phosphorylation state of PER is critical for the progression of circadian cycle, we investigated the status of PER phosphorylation in the ovary and the expression patterns of DOUBLETIME (DBT), a kinase known to affect PER in the clock cells. DBT was absent in previtellogenic follicular cells, but present in the cytoplasm of some stage 9 follicular cells. DBT was not distributed uniformly but was present in patches of adjacent cells, in a pattern resembling PER distribution at the same stage. Our data suggest that the absence of dbt expression in the follicular cells of previtellogenic egg chambers may be related to stable and cytoplasmic expression of PER in these cells. Onset of dbt expression in vitellogenic follicles coincides with nuclear localization of PER protein.

  14. Functional dissection of Odorant binding protein genes in Drosophila melanogaster

    PubMed Central

    Swarup, S; Williams, T I; Anholt, R R H

    2011-01-01

    Most organisms rely on olfaction for survival and reproduction. The olfactory system of Drosophila melanogaster is one of the best characterized chemosensory systems and serves as a prototype for understanding insect olfaction. Olfaction in Drosophila is mediated by multigene families of odorant receptors and odorant binding proteins (OBPs). Although molecular response profiles of odorant receptors have been well documented, the contributions of OBPs to olfactory behavior remain largely unknown. Here, we used RNAi-mediated suppression of Obp gene expression and measurements of behavioral responses to 16 ecologically relevant odorants to systematically dissect the functions of 17 OBPs. We quantified the effectiveness of RNAi-mediated suppression by quantitative real-time polymerase chain reaction and used a proteomic liquid chromatography and tandem mass spectrometry procedure to show target-specific suppression of OBPs expressed in the antennae. Flies in which expression of a specific OBP is suppressed often show altered behavioral responses to more than one, but not all, odorants, in a sex-dependent manner. Similarly, responses to a specific odorant are frequently affected by suppression of expression of multiple, but not all, OBPs. These results show that OBPs are essential for mediating olfactory behavioral responses and suggest that OBP-dependent odorant recognition is combinatorial. PMID:21605338

  15. Plasticity of the Chemoreceptor Repertoire in Drosophila melanogaster

    PubMed Central

    Zhou, Shanshan; Stone, Eric A.; Mackay, Trudy F. C.; Anholt, Robert R. H.

    2009-01-01

    For most organisms, chemosensation is critical for survival and is mediated by large families of chemoreceptor proteins, whose expression must be tuned appropriately to changes in the chemical environment. We asked whether expression of chemoreceptor genes that are clustered in the genome would be regulated independently; whether expression of certain chemoreceptor genes would be especially sensitive to environmental changes; whether groups of chemoreceptor genes undergo coordinated rexpression; and how plastic the expression of chemoreceptor genes is with regard to sex, development, reproductive state, and social context. To answer these questions we used Drosophila melanogaster, because its chemosensory systems are well characterized and both the genotype and environment can be controlled precisely. Using customized cDNA microarrays, we showed that chemoreceptor genes that are clustered in the genome undergo independent transcriptional regulation at different developmental stages and between sexes. Expression of distinct subgroups of chemoreceptor genes is sensitive to reproductive state and social interactions. Furthermore, exposure of flies only to odor of the opposite sex results in altered transcript abundance of chemoreceptor genes. These genes are distinct from those that show transcriptional plasticity when flies are allowed physical contact with same or opposite sex members. We analyzed covariance in transcript abundance of chemosensory genes across all environmental conditions and found that they segregated into 20 relatively small, biologically relevant modules of highly correlated transcripts. This finely pixilated modular organization of the chemosensory subgenome enables fine tuning of the expression of the chemoreceptor repertoire in response to ecologically relevant environmental and physiological conditions. PMID:19816562

  16. Genetic analysis of the claret locus of Drosophila melanogaster

    SciTech Connect

    Sequeira, W.; Nelson, C.R.; Szauter, P. )

    1989-11-01

    The claret (ca) locus of Drosophila melanogaster comprises two separately mutable domains, one responsible for eye color and one responsible for proper disjunction of chromosomes in meiosis and early cleavage divisions. Previously isolated alleles are of three types: (1) alleles of the claret (ca) type that affect eye color only, (2) alleles of the claret-nondisjunctional (ca{sup nd}) type that affect eye color and chromosome behavior, and (3) a meiotic mutation, non-claret disjunctional (ncd), that affects chromosome behavior only. In order to investigate the genetic structure of the claret locus, the authors have isolated 19 radiation-induced alleles of claret on the basis of the eye color phenotype. Two of these 19 new alleles are of the ca{sup nd} type, while 17 are of the ca type, demonstrating that the two domains do not often act as a single target for mutagenesis. This suggests that the two separately mutable functions are likely to be encoded by separate or overlapping genes rather than by a single gene. One of the new alleles of the ca{sup nd} type is a chromosome rearrangement with a breakpoint at the position of the claret locus. If this breakpoint is the cause of the mutant phenotype and there are no other mutations associated with the rearrangement, the two functions must be encoded by overlapping genes.

  17. Taste and pheromone perception in the fruit fly Drosophila melanogaster.

    PubMed

    Ebbs, Michelle L; Amrein, Hubert

    2007-08-01

    Taste is an essential sense for detection of nutrient-rich food and avoidance of toxic substances. The Drosophila melanogaster gustatory system provides an excellent model to study taste perception and taste-elicited behaviors. "The fly" is unique in the animal kingdom with regard to available experimental tools, which include a wide repertoire of molecular-genetic analyses (i.e., efficient production of transgenics and gene knockouts), elegant behavioral assays, and the possibility to conduct electrophysiological investigations. In addition, fruit flies, like humans, recognize sugars as a food source, but avoid bitter tasting substances that are often toxic to insects and mammals alike. This paper will present recent research progress in the field of taste and contact pheromone perception in the fruit fly. First, we shall describe the anatomical properties of the Drosophila gustatory system and survey the family of taste receptors to provide an appropriate background. We shall then review taste and pheromone perception mainly from a molecular genetic perspective that includes behavioral, electrophysiological and imaging analyses of wild type flies and flies with genetically manipulated taste cells. Finally, we shall provide an outlook of taste research in this elegant model system for the next few years.

  18. Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development

    PubMed Central

    Blowes, Liisa M.; Missirlis, Fanis; Riesgo-Escovar, Juan R.

    2015-01-01

    In Drosophila melanogaster, iron is stored in the cellular endomembrane system inside a protein cage formed by 24 ferritin subunits of two types (Fer1HCH and Fer2LCH) in a 1:1 stoichiometry. In larvae, ferritin accumulates in the midgut, hemolymph, garland, pericardial cells and in the nervous system. Here we present analyses of embryonic phenotypes for mutations in Fer1HCH, Fer2LCH and in both genes simultaneously. Mutations in either gene or deletion of both genes results in a similar set of cuticular embryonic phenotypes, ranging from non-deposition of cuticle to defects associated with germ band retraction, dorsal closure and head involution. A fraction of ferritin mutants have embryonic nervous systems with ventral nerve cord disruptions, misguided axonal projections and brain malformations. Ferritin mutants die with ectopic apoptotic events. Furthermore, we show that ferritin maternal contribution, which varies reflecting the mother’s iron stores, is used in early development. We also evaluated phenotypes arising from the blockage of COPII transport from the endoplasmic reticulum to the Golgi apparatus, feeding the secretory pathway, plus analysis of ectopically expressed and fluorescently marked Fer1HCH and Fer2LCH. Overall, our results are consistent with insect ferritin combining three functions: iron storage, intercellular iron transport, and protection from iron-induced oxidative stress. These functions are required in multiple tissues during Drosophila embryonic development. PMID:26192321

  19. Organically Grown Food Provides Health Benefits to Drosophila melanogaster

    PubMed Central

    Chhabra, Ria; Kolli, Santharam; Bauer, Johannes H.

    2013-01-01

    The “organic food” market is the fastest growing food sector, yet it is unclear whether organically raised food is nutritionally superior to conventionally grown food and whether consuming organic food bestows health benefits. In order to evaluate potential health benefits of organic foods, we used the well-characterized fruit fly Drosophila melanogaster as a model system. Fruit flies were raised on a diets consisting of extracts of either conventionally or organically raised produce (bananas, potatoes, raisins, soy beans). Flies were then subjected to a variety of tests designed to assess overall fly health. Flies raised on diets made from organically grown produce had greater fertility and longevity. On certain food sources, greater activity and greater stress resistance was additionally observed, suggesting that organic food bestows positive effects on fly health. Our data show that Drosophila can be used as a convenient model system to experimentally test potential health effects of dietary components. Using this system, we provide evidence that organically raised food may provide animals with tangible benefits to overall health. PMID:23326371

  20. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  1. Experimental evolution of slowed cognitive aging in Drosophila melanogaster.

    PubMed

    Zwoinska, Martyna K; Maklakov, Alexei A; Kawecki, Tadeusz J; Hollis, Brian

    2017-03-01

    Reproductive output and cognitive performance decline in parallel during aging, but it is unknown whether this reflects a shared genetic architecture or merely the declining force of natural selection acting independently on both traits. We used experimental evolution in Drosophila melanogaster to test for the presence of genetic variation for slowed cognitive aging, and assess its independence from that responsible for other traits' decline with age. Replicate experimental populations experienced either joint selection on learning and reproduction at old age (Old + Learning), selection on late-life reproduction alone (Old), or a standard two-week culture regime (Young). Within 20 generations, the Old + Learning populations evolved a slower decline in learning with age than both the Old and Young populations, revealing genetic variation for cognitive aging. We found little evidence for a genetic correlation between cognitive and demographic aging: although the Old + Learning populations tended to show higher late-life fecundity than Old populations, they did not live longer. Likewise, selection for late reproduction alone did not result in improved late-life learning. Our results demonstrate that Drosophila harbor genetic variation for cognitive aging that is largely independent from genetic variation for demographic aging and suggest that these two aspects of aging may not necessarily follow the same trajectories. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  2. No evidence that polyandry benefits females in Drosophila melanogaster.

    PubMed

    Brown, William D; Bjork, Adam; Schneider, Karin; Pitnick, Scott

    2004-06-01

    Understanding the evolution of polyandry (mating with multiple males) is a major issue in the study of animal breeding systems. We examined the adaptive significance of polyandry in Drosophila melanogaster, a species with well-documented costs of mating in which males generally cannot force copulations. We found no direct fitness advantages of polyandry. Females that mated with multiple males had no greater mean fitness and no different variance in fitness than females that mated repeatedly with the same male. Subcomponents of reproductive success, including fecundity, egg hatch rate, larval viability, and larval development time, also did not differ between polyandrous and monogamous females. Polyandry had no affect on progeny sex ratios, suggesting that polyandry does not function against costly sex-ratio distorters. We also found no evidence that polyandry functions to favor the paternity of males successful in precopulatory sexual selection. Experimentally controlled opportunities for precopulatory sexual selection had no effect on postcopulatory sperm precedence. Although these results were generally negative, they are supported with substantial statistical power and they help narrow the list of evolutionary explanations for polyandry in an important model species.

  3. Foraging Path-length Protocol for Drosophila melanogaster Larvae.

    PubMed

    Anreiter, Ina; Vasquez, Oscar E; Allen, Aaron M; Sokolowski, Marla B

    2016-04-23

    The Drosophila melanogaster larval path-length phenotype is an established measure used to study the genetic and environmental contributions to behavioral variation. The larval path-length assay was developed to measure individual differences in foraging behavior that were later linked to the foraging gene. Larval path-length is an easily scored trait that facilitates the collection of large sample sizes, at minimal cost, for genetic screens. Here we provide a detailed description of the current protocol for the larval path-length assay first used by Sokolowski. The protocol details how to reproducibly handle test animals, perform the behavioral assay and analyze the data. An example of how the assay can be used to measure behavioral plasticity in response to environmental change, by manipulating feeding environment prior to performing the assay, is also provided. Finally, appropriate test design as well as environmental factors that can modify larval path-length such as food quality, developmental age and day effects are discussed.

  4. Molecular cloning of an olfactory gene from Drosophila melanogaster.

    PubMed Central

    Hasan, G

    1990-01-01

    An olfactory gene olfE, which affects response to benzaldehyde in larvae and adults of Drosophila melanogaster, has been mapped between two breakpoints on the X chromosome. The breakpoints have been shown to lie at a distance no greater than 25 kilobases (kb). A 14-kb genomic fragment from this region has been used for germ-line transformation of olfE mutant flies, and in one of three transformant lines obtained, rescue of the olfE phenotype is observed by two separate behavioral assays. Transcript analysis of the region that rescues the olfE phenotype has shown one major transcript at 5.4 kb and a minor one at 1.7 kb. Both of these transcripts are probably alternatively spliced products of the olfE gene. A developmental and tissue-specific profile of the 5.4-kb olfE message has shown that it is present at all developmental stages, suggesting that the gene may be multifunctional. Images PMID:2123349

  5. Mutations Affecting Expression of the rosy Locus in Drosophila melanogaster

    PubMed Central

    Lee, Chong Sung; Curtis, Daniel; McCarron, Margaret; Love, Carol; Gray, Mark; Bender, Welcome; Chovnick, Arthur

    1987-01-01

    The rosy locus in Drosophila melanogaster codes for the enzyme xanthine dehydrogenase (XDH). Previous studies defined a "control element" near the 5' end of the gene, where variant sites affected the amount of rosy mRNA and protein produced. We have determined the DNA sequence of this region from both genomic and cDNA clones, and from the ry+10 underproducer strain. This variant strain had many sequence differences, so that the site of the regulatory change could not be fixed. A mutagenesis was also undertaken to isolate new regulatory mutations. We induced 376 new mutations with 1-ethyl-1-nitrosourea (ENU) and screened them to isolate those that reduced the amount of XDH protein produced, but did not change the properties of the enzyme. Genetic mapping was used to find mutations located near the 5' end of the gene. DNA from each of seven mutants was cloned and sequenced through the 5' region. Mutant base changes were identified in all seven; they appear to affect splicing and translation of the rosy mRNA. In a related study (T. P. Keith et al. 1987), the genomic and cDNA sequences are extended through the 3' end of the gene; the combined sequences define the processing pattern of the rosy transcript and predict the amino acid sequence of XDH. PMID:3036645

  6. Cytogenetic analysis of the third chromosome heterochromatin of Drosophila melanogaster.

    PubMed Central

    Koryakov, Dmitry E; Zhimulev, Igor F; Dimitri, Patrizio

    2002-01-01

    Previous cytological analysis of heterochromatic rearrangements has yielded significant insight into the location and genetic organization of genes mapping to the heterochromatin of chromosomes X, Y, and 2 of Drosophila melanogaster. These studies have greatly facilitated our understanding of the genetic organization of heterochromatic genes. In contrast, the 12 essential genes known to exist within the mitotic heterochromatin of chromosome 3 have remained only imprecisely mapped. As a further step toward establishing a complete map of the heterochomatic genetic functions in Drosophila, we have characterized several rearrangements of chromosome 3 by using banding techniques at the level of mitotic chromosome. Most of the rearrangement breakpoints were located in the dull fluorescent regions h49, h51, and h58, suggesting that these regions correspond to heterochromatic hotspots for rearrangements. We were able to construct a detailed cytogenetic map of chromosome 3 heterochromatin that includes all of the known vital genes. At least 7 genes of the left arm (from l(3)80Fd to l(3)80Fj) map to segment h49-h51, while the most distal genes (from l(3)80Fa to l(3)80Fc) lie within the h47-h49 portion. The two right arm essential genes, l(3)81Fa and l(3)81Fb, are both located within the distal h58 segment. Intriguingly, a major part of chromosome 3 heterochromatin was found to be "empty," in that it did not contain either known genes or known satellite DNAs. PMID:11861557

  7. Physiological effects of L-theanine on Drosophila melanogaster.

    PubMed

    Yang, Hui; Li, Wenzhe; Yu, Huiyi; Yuan, Ruiqi; Yang, Yang; Pung, Kingston; Li, Ping; Xue, Lei

    2013-10-24

    Green tea has been consumed as the most popular drink in East Asia for centuries, and is believed to have a wide range of health benefits. L-Theanine, the major component of the free amino acids in green tea, has been reported to display neuronal protection and tumor inhibition in vitro, but its physiological effects on animal development and behavior remain elusive. In this report, we used Drosophila melanogaster, the fruit fly, as a model organism to investigate the physiological effects of L-theanine. Flies were fed with three different concentrations of theanine as a dietary supplement after eclosion, and were examined for a variety of physiological parameters at different time points. We found theanine treatment results in significantly increased locomotion and courtship ability, and decreased resistance against wet and dry starvation in males, but not in females. Furthermore, theanine application diminished UV tolerance in females, but not in males. However, we did not perceive distinguishable effect of theanine on animal development, life span, weight, and tolerance of heat and anoxia. This work represents the first comprehensive physiological investigation of L-theanine at the whole animal level, and shall shed light on the mechanistic study of theanine in the future.

  8. Genomic imprinting and position-effect variegation in Drosophila melanogaster.

    PubMed Central

    Lloyd, V K; Sinclair, D A; Grigliatti, T A

    1999-01-01

    Genomic imprinting is a phenomenon in which the expression of a gene or chromosomal region depends on the sex of the individual transmitting it. The term imprinting was first coined to describe parent-specific chromosome behavior in the dipteran insect Sciara and has since been described in many organisms, including other insects, plants, fish, and mammals. In this article we describe a mini-X chromosome in Drosophila melanogaster that shows genomic imprinting of at least three closely linked genes. The imprinting of these genes is observed as mosaic silencing when the genes are transmitted by the male parent, in contrast to essentially wild-type expression when the same genes are maternally transmitted. We show that the imprint is due to the sex of the parent rather than to a conventional maternal effect, differential mitotic instability of the mini-X chromosome, or an allele-specific effect. Finally, we have examined the effects of classical modifiers of position-effect variegation on the maintenance and the establishment of the imprint. Factors that modify position-effect variegation alter the somatic expression but not the establishment of the imprint. This suggests that chromatin structure is important in maintenance of the imprint, but a separate mechanism may be responsible for its initiation. PMID:10101173

  9. Fatty-Acid Preference Changes during Development in Drosophila melanogaster

    PubMed Central

    Fougeron, Anne-Sophie; Farine, Jean-Pierre; Flaven-Pouchon, Justin; Everaerts, Claude; Ferveur, Jean-François

    2011-01-01

    Fatty-acids (FAs) are required in the diet of many animals throughout their life. However, the mechanisms involved in the perception of and preferences for dietary saturated and unsaturated FAs (SFAs and UFAs, respectively) remain poorly explored, especially in insects. Using the model species Drosophila melanogaster, we measured the responses of wild-type larvae and adults to pure SFAs (14, 16, and 18 carbons) and UFAs (C18 with 1, 2, or 3 double-bonds). Individual and group behavioral tests revealed different preferences in larvae and adults. Larvae preferred UFAs whereas SFAs tended to induce both a strong aversion and a persistent aggregation behavior. Adults generally preferred SFAs, and laid more eggs and had a longer life span when ingesting these substances as compared to UFAs. Our data suggest that insects can discriminate long-chain dietary FAs. The developmental change in preference shown by this species might reflect functional variation in use of FAs or stage-specific nutritional requirements, and may be fundamental for insect use of these major dietary components. PMID:22046401

  10. Organically grown food provides health benefits to Drosophila melanogaster.

    PubMed

    Chhabra, Ria; Kolli, Santharam; Bauer, Johannes H

    2013-01-01

    The "organic food" market is the fastest growing food sector, yet it is unclear whether organically raised food is nutritionally superior to conventionally grown food and whether consuming organic food bestows health benefits. In order to evaluate potential health benefits of organic foods, we used the well-characterized fruit fly Drosophila melanogaster as a model system. Fruit flies were raised on a diets consisting of extracts of either conventionally or organically raised produce (bananas, potatoes, raisins, soy beans). Flies were then subjected to a variety of tests designed to assess overall fly health. Flies raised on diets made from organically grown produce had greater fertility and longevity. On certain food sources, greater activity and greater stress resistance was additionally observed, suggesting that organic food bestows positive effects on fly health. Our data show that Drosophila can be used as a convenient model system to experimentally test potential health effects of dietary components. Using this system, we provide evidence that organically raised food may provide animals with tangible benefits to overall health.

  11. Seminal fluid regulation of female sexual attractiveness in Drosophila melanogaster

    PubMed Central

    Tram, Uyen; Wolfner, Mariana F.

    1998-01-01

    Finding a willing and suitable mate is critical for sexual reproduction. Visual, auditory, and chemical cues aid in locating and/or attracting partners. After mating, females from many insect species become less attractive. This is caused by changes in the quantity and/or quality of pheromones synthesized by the female and to changes in the female’s behavior. For example, female insects may stop releasing pheromones, assume a mate refusal posture, or move less in response to males. Many postmating changes in female insects are triggered by seminal fluid proteins from the male’s accessory gland proteins (Acps) and by sperm. To determine the role of seminal fluid components in mediating changes in attractiveness, we measured the attractiveness of Drosophila melanogaster females that had been mated to genetically altered males that lack sperm and/or Acps. We found that the drop in female attractiveness occurs in two phases. A short-term drop in attractiveness is triggered independent of the receipt of sperm and Acps. Maintenance of lowered attractiveness is dependent upon sperm. PMID:9520491

  12. The epicurean fly: using Drosophila melanogaster to study metabolism.

    PubMed

    Bharucha, Kamal N

    2009-02-01

    In this review, the utility of Drosophila melanogaster as a model organism for research in metabolism will be demonstrated. Importantly, many metabolic pathways are conserved in both man and the fly. Recent work has highlighted that these conserved molecular pathways have the potential to give rise to similar phenotypes. For example, it has proven possible to generate obese and diabetic Drosophila; conversely, genetic manipulation can also generate lean and hypoglycemic phenotypes. From conserved circulating hormones to key enzymes, the fly is host to a variety of homologous, metabolically active signaling mechanisms. The world of Drosophila research has not only a rich history of developing techniques for exquisite genetic manipulation, but also continues to develop genetic methodologies at an exciting rate. Many of these techniques add to the cadre of experimental tools available for the use of the fly as a model organism for studying carbohydrate and lipid homeostasis. This review is written for the pediatric-scientist with little background in Drosophila, with the goal of relaying the potential of this model organism for contributing to a better understanding of diseases affecting today's children.

  13. Does cold activate the Drosophila melanogaster immune system?

    PubMed

    Salehipour-Shirazi, Golnaz; Ferguson, Laura V; Sinclair, Brent J

    2017-01-01

    Cold exposure appears to activate aspects of the insect immune system; however, the functional significance of the relationship between cold and immunity is unclear. Insect success at low temperatures is shaped in part by interactions with biotic stressors, such as pathogens, thus it is important to understand how and why immunity might be activated by cold. Here we explore which components of the immune system are activated, and whether those components differ among different kinds of cold exposure. We exposed Drosophila melanogaster to both acute (2h, -2°C) and sustained (10h, -0.5°C) cold, and measured potential (antimicrobial peptide expression, phenoloxidase activity, haemocyte counts) and realised (survival of fungal infection, wound-induced melanisation, bacterial clearance) immunity following recovery. Acute cold increased circulating haemocyte concentration and the expression of Turandot-A and diptericin, but elicited a short-term decrease in the clearance of gram-positive bacteria. Sustained cold increased the expression of Turandot-A, with no effect on other measures of potential or realised immunity. We show that measures of potential immunity were up-regulated by cold, whereas realised immunity was either unaffected or down-regulated. Thus, we hypothesize that cold-activation of potential immunity in Drosophila may be a compensatory mechanism to maintain stable immune function during or after low temperature exposure.

  14. Microenvironmental Gene Expression Plasticity Among Individual Drosophila melanogaster

    PubMed Central

    Lin, Yanzhu; Chen, Zhen-Xia; Oliver, Brian; Harbison, Susan T.

    2016-01-01

    Differences in phenotype among genetically identical individuals exposed to the same environmental condition are often noted in genetic studies. Despite this commonplace observation, little is known about the causes of this variability, which has been termed microenvironmental plasticity. One possibility is that stochastic or technical sources of variance produce these differences. A second possibility is that this variation has a genetic component. We have explored gene expression robustness in the transcriptomes of 730 individual Drosophila melanogaster of 16 fixed genotypes, nine of which are infected with Wolbachia. Three replicates of flies were grown, controlling for food, day/night cycles, humidity, temperature, sex, mating status, social exposure, and circadian timing of RNA extraction. Despite the use of inbred genotypes, and carefully controlled experimental conditions, thousands of genes were differentially expressed, revealing a unique and dynamic transcriptional signature for each individual fly. We found that 23% of the transcriptome was differentially expressed among individuals, and that the variability in gene expression among individuals is influenced by genotype. This transcriptional variation originated from specific gene pathways, suggesting a plastic response to the microenvironment; but there was also evidence of gene expression differences due to stochastic fluctuations. These observations reveal previously unappreciated genetic sources of variability in gene expression among individuals, which has implications for complex trait genetics and precision medicine. PMID:27770026

  15. Heritable variation in courtship patterns in Drosophila melanogaster.

    PubMed

    Gaertner, Bryn E; Ruedi, Elizabeth A; McCoy, Lenovia J; Moore, Jamie M; Wolfner, Mariana F; Mackay, Trudy F C

    2015-02-03

    Little is known about the genetic basis of naturally occurring variation for sexually selected behavioral traits. Drosophila melanogaster, with its rich repertoire of courtship behavior and genomic and genetic resources, is an excellent model organism for addressing this question. We assayed a genetically diverse panel of lines with full genome sequences, the Drosophila Genetic Reference Panel, to assess the heritability of variation in courtship behavior and mating progression. We subsequently used these data to quantify natural variation in transition probabilities between courtship behaviors. We found heritable variation along the expected trajectory for courtship behaviors, including the tendency to initiate courtship and rate of progression through courtship, suggesting a genetic basis to male modulation of courtship behavior based on feedback from unrelated, outbred, and genetically identical females. We assessed the genetic basis of variation of the transition with the greatest heritability--from copulation to no engagement with the female--and identified variants in Serrate and Furin 1 as well as many other polymorphisms on the chromosome 3R associated with this transition. Our findings suggest that courtship is a highly dynamic behavior with both social and genetic inputs, and that males may play an important role in courtship initiation and duration.

  16. Flamenco, a gene controlling the gypsy retrovirus of drosophila melanogaster

    SciTech Connect

    Prud`homme, N.; Gans, M.; Masson, M.; Terzian, C.; Bucheton, A.

    1995-02-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is table and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovo{sup D1} female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovo{sup D1} reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy. 40 refs., 10 figs., 6 tabs.

  17. The cuticular nature of corneal lenses in Drosophila melanogaster.

    PubMed

    Stahl, Aaron L; Charlton-Perkins, Mark; Buschbeck, Elke K; Cook, Tiffany A

    2017-07-01

    The dioptric visual system relies on precisely focusing lenses that project light onto a neural retina. While the proteins that constitute the lenses of many vertebrates are relatively well characterized, less is known about the proteins that constitute invertebrate lenses, especially the lens facets in insect compound eyes. To address this question, we used mass spectrophotometry to define the major proteins that comprise the corneal lenses from the adult Drosophila melanogaster compound eye. This led to the identification of four cuticular proteins: two previously identified lens proteins, drosocrystallin and retinin, and two newly identified proteins, Cpr66D and Cpr72Ec. To determine which ommatidial cells contribute each of these proteins to the lens, we conducted in situ hybridization at 50% pupal development, a key age for lens secretion. Our results confirm previous reports that drosocrystallin and retinin are expressed in the two primary corneagenous cells-cone cells and primary pigment cells. Cpr72Ec and Cpr66D, on the other hand, are more highly expressed in higher order interommatidial pigment cells. These data suggest that the complementary expression of cuticular proteins give rise to the center vs periphery of the corneal lens facet, possibly facilitating a refractive gradient that is known to reduce spherical aberration. Moreover, these studies provide a framework for future studies aimed at understanding the cuticular basis of corneal lens function in holometabolous insect eyes.

  18. Locus Adh of Drosophila melanogaster under selection for delayed senescence

    SciTech Connect

    Khaustova, N.D.

    1995-05-01

    Dynamics of the Adh activity and frequencies of alleles Adh{sup F} and Adh{sup S} were analyzed under selection for delayed senescence. The experiments were performed on Drosophila melanogaster. Lines Adh{sup S}cn and Adh{sup F}vg and experimental populations cn` and vg`, selected for an increased duration of reproductive period (late oviposition) were used. Analysis of fertility, longevity, viability and resistance to starvation showed that selection for late oviposition resulted in delayed senescence of flies of the experimental populations. Genetic structure of population vg` changed considerably with regard to the Adh locus. This was confirmed by parameters of activity, thermostability, and electrophoretic mobility of the enzyme isolated from flies after 30 generations of selection. Analysis of frequencies of the Adh alleles showed that in both selected populations, which initially had different genetic composition, accumulated allele Adh{sup S}, which encodes the isozyme that is less active but more resistant to inactivation. Genetic mechanism of delayed senescence in Drosophila is assumed to involve selection at vitally important enzyme loci, including Adh. 18 refs., 2 tabs., 4 figs.

  19. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster

    PubMed Central

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A.; Maltecca, Christian; Mackay, Trudy F. C.

    2015-01-01

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon. PMID:25943032

  20. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster

    PubMed Central

    Schnorrenberg, Sebastian; Grotjohann, Tim; Vorbrüggen, Gerd; Herzig, Alf; Hell, Stefan W; Jakobs, Stefan

    2016-01-01

    Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grotjohann et al., 2012). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of <60 nm. RESOLFT nanoscopy enabled time-lapse recordings comprising 40 images and facilitated recordings 40 µm deep within fly tissues. DOI: http://dx.doi.org/10.7554/eLife.15567.001 PMID:27355614

  1. Genetic basis of transcriptome diversity in Drosophila melanogaster

    PubMed Central

    Huang, Wen; Carbone, Mary Anna; Magwire, Michael M.; Peiffer, Jason A.; Lyman, Richard F.; Stone, Eric A.; Anholt, Robert R. H.; Mackay, Trudy F. C.

    2015-01-01

    Understanding how DNA sequence variation is translated into variation for complex phenotypes has remained elusive but is essential for predicting adaptive evolution, for selecting agriculturally important animals and crops, and for personalized medicine. Gene expression may provide a link between variation in DNA sequence and organismal phenotypes, and its abundance can be measured efficiently and accurately. Here we quantified genome-wide variation in gene expression in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP), increasing the annotated Drosophila transcriptome by 11%, including thousands of novel transcribed regions (NTRs). We found that 42% of the Drosophila transcriptome is genetically variable in males and females, including the NTRs, and is organized into modules of genetically correlated transcripts. We found that NTRs often were negatively correlated with the expression of protein-coding genes, which we exploited to annotate NTRs functionally. We identified regulatory variants for the mean and variance of gene expression, which have largely independent genetic control. Expression quantitative trait loci (eQTLs) for the mean, but not for the variance, of gene expression were concentrated near genes. Notably, the variance eQTLs often interacted epistatically with local variants in these genes to regulate gene expression. This comprehensive characterization of population-scale diversity of transcriptomes and its genetic basis in the DGRP is critically important for a systems understanding of quantitative trait variation. PMID:26483487

  2. Inbreeding affects locomotor activity in Drosophila melanogaster at different ages.

    PubMed

    Manenti, Tommaso; Pertoldi, Cino; Moghadam, Neda Nasiri; Nasiri, Neda; Schou, Mads Fristrup; Kjærsgaard, Anders; Cavicchi, Sandro; Loeschcke, Volker

    2015-01-01

    The ability to move is essential for many behavioural traits closely related to fitness. Here we studied the effect of inbreeding on locomotor activity (LA) of Drosophila melanogaster at different ages under both dark and light regimes. We expected to find a decreased LA in inbred lines compared to control lines. We also predicted an increased differentiation between lines due to inbreeding. LA was higher in the dark compared to the light regime for both inbred and outbred control lines. As expected, inbreeding increased phenotypic variance in LA, with some inbred lines showing higher and some lower LA than control lines. Moreover, age per se did not affect LA neither in control nor in inbred lines, while we found a strong line by age interaction between inbred lines. Interestingly, inbreeding changed the daily activity pattern of the flies: these patterns were consistent across all control lines but were lost in some inbred lines. The departure in the daily pattern of LA in inbred lines may contribute to the inbreeding depression observed in inbred natural populations.

  3. Seminal Fluid Regulation of Female Sexual Attractiveness in Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Tram, Uyen; Wolfner, Mariana F.

    1998-03-01

    Finding a willing and suitable mate is critical for sexual reproduction. Visual, auditory, and chemical cues aid in locating and/or attracting partners. After mating, females from many insect species become less attractive. This is caused by changes in the quantity and/or quality of pheromones synthesized by the female and to changes in the female's behavior. For example, female insects may stop releasing pheromones, assume a mate refusal posture, or move less in response to males. Many postmating changes in female insects are triggered by seminal fluid proteins from the male's accessory gland proteins (Acps) and by sperm. To determine the role of seminal fluid components in mediating changes in attractiveness, we measured the attractiveness of Drosophila melanogaster females that had been mated to genetically altered males that lack sperm and/or Acps. We found that the drop in female attractiveness occurs in two phases. A short-term drop in attractiveness is triggered independent of the receipt of sperm and Acps. Maintenance of lowered attractiveness is dependent upon sperm.

  4. Molecular organization of the vestigial region in Drosophila melanogaster.

    PubMed

    Williams, J A; Bell, J B

    1988-05-01

    The vestigial (vg) locus of Drosophila melanogaster is involved in wing margin development. In the absence of a vg+ gene, extensive cell death occurs in third instar imaginal discs which results in a complete loss of adult wing margin structures. P-element tagging was used to obtain a molecular clone of the vg locus, which led to the molecular characterization of approximately 46 kb of DNA from the region. Deficiency analysis and molecular mapping identified sequences, spanning approximately 20 kb of DNA within the larger region, which are necessary for vg function. The molecular map was oriented with respect to a pre-existing genetic fine structure map of the locus. The centromere distal limits of the locus were defined by deficiency analyses while the proximal end has not yet been conclusively established. However, three transcripts, that are apparently unrelated to vg, provide circumstantial evidence for the proximal limits of the vg locus. The nature of the molecular lesions for several extant recessive or lethal vg alleles was determined, and these were placed on the vg molecular map. The characterization of the lesions associated with two dominant vg alleles and one complex vg allele imply interesting regulatory mechanisms for this locus. As well, a revertant of a 412 insertion mutant allele was shown to have resulted from a further insertion of a roo element into the 412 element.

  5. Sex-biased mortality associated with inbreeding in Drosophila melanogaster

    PubMed Central

    2014-01-01

    Background One proposed consequence of inbreeding is a skewed sex ratio arising from sex specific mortality in the homogametic sex caused by inbreeding on the sex chromosome. However, recent work suggests that random distortions in sex ratio due to autosomal inbreeding may be of greater importance. In this study, we investigate the effect of biologically realistic levels of inbreeding on sex ratio and sex specific mortality in Drosophila melanogaster. We use two pedigree crossing designs to either maximise or minimise inbreeding on the X-chromosome whilst producing identical autosomal inbreeding. Results We found increased female mortality and male biased sex ratios associated with inbreeding in our high, but not low, X-inbreeding pedigree. While our results are more consistent with being driven by inbreeding on the X-chromosome than on the autosomes, the marked difference between treatments does not fit closely the expectations of either model. Conclusions Our results are only partly consistent with the hypothesis that inbreeding on the X-chromosome can cause greater fitness reductions in the homogametic sex. Whilst the results of our study are not conclusive, they suggest that directional distortions in sex ratio due to inbreeding can occur, and highlight the need for further investigation on this topic. PMID:24636623

  6. The developmental expression dynamics of Drosophila melanogaster transcription factors.

    PubMed

    Adryan, Boris; Teichmann, Sarah A

    2010-01-01

    Site-specific transcription factors (TFs) are coordinators of developmental and physiological gene expression programs. Their binding to cis-regulatory modules of target genes mediates the precise cell- and context-specific activation and repression of genes. The expression of TFs should therefore reflect the core expression program of each cell. We studied the expression dynamics of about 750 TFs using the available genomics resources in Drosophila melanogaster. We find that 95% of these TFs are expressed at some point during embryonic development, with a peak roughly between 10 and 12 hours after egg laying, the core stages of organogenesis. We address the differential utilization of DNA-binding domains in different developmental programs systematically in a spatio-temporal context, and show that the zinc finger class of TFs is predominantly early expressed, while Homeobox TFs exhibit later expression in embryogenesis. Previous work, dissecting cis-regulatory modules during Drosophila development, suggests that TFs are deployed in groups acting in a cooperative manner. In contrast, we find that there is rapid exchange of co-expressed partners amongst the fly TFs, at rates similar to the genome-wide dynamics of co-expression clusters. This suggests there may also be a high level of combinatorial complexity of TFs at cis-regulatory modules.

  7. The developmental expression dynamics of Drosophila melanogaster transcription factors

    PubMed Central

    2010-01-01

    Background Site-specific transcription factors (TFs) are coordinators of developmental and physiological gene expression programs. Their binding to cis-regulatory modules of target genes mediates the precise cell- and context-specific activation and repression of genes. The expression of TFs should therefore reflect the core expression program of each cell. Results We studied the expression dynamics of about 750 TFs using the available genomics resources in Drosophila melanogaster. We find that 95% of these TFs are expressed at some point during embryonic development, with a peak roughly between 10 and 12 hours after egg laying, the core stages of organogenesis. We address the differential utilization of DNA-binding domains in different developmental programs systematically in a spatio-temporal context, and show that the zinc finger class of TFs is predominantly early expressed, while Homeobox TFs exhibit later expression in embryogenesis. Conclusions Previous work, dissecting cis-regulatory modules during Drosophila development, suggests that TFs are deployed in groups acting in a cooperative manner. In contrast, we find that there is rapid exchange of co-expressed partners amongst the fly TFs, at rates similar to the genome-wide dynamics of co-expression clusters. This suggests there may also be a high level of combinatorial complexity of TFs at cis-regulatory modules. PMID:20384991

  8. Cindr interacts with anillin to control cytokinesis in Drosophila melanogaster.

    PubMed

    Haglund, Kaisa; Nezis, Ioannis P; Lemus, Dafne; Grabbe, Caroline; Wesche, Jørgen; Liestøl, Knut; Dikic, Ivan; Palmer, Ruth; Stenmark, Harald

    2010-05-25

    Cytokinesis, the final step of cell division, conventionally proceeds to cell separation by abscission, or complete cytokinesis, but may in certain tissues be incomplete, yielding daughter cells that are interconnected in syncytia by stable intercellular bridges. The mechanisms that determine complete versus incomplete cytokinesis are not known. Here we report a novel in vivo role of the Drosophila CD2AP/CIN85 ortholog Cindr in both complete and incomplete cytokinesis. We also show evidence for the presence of persistent intercellular bridges in the major larval imaginal disc epithelia. During conventional division of both cultured and embryonic cells, Cindr localizes to cleavage furrows, intercellular bridges, and midbodies. Moreover, in cells undergoing incomplete cytokinesis in the female germline and the somatic ovarian follicle cell and larval imaginal disc epithelia, Cindr localizes to arrested cleavage furrows and stable intercellular bridges, respectively. In these structures, Cindr colocalizes with the essential cytokinesis regulator Anillin. We show that Cindr interacts with Anillin and that depletion of either Cindr or Anillin gives rise to binucleate cells and fewer intercellular bridges in vivo. We propose that Cindr and Anillin cooperate to promote intercellular bridge stability during incomplete cytokinesis in Drosophila melanogaster. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Quantitative Genomics of Aggressive Behavior in Drosophila melanogaster

    PubMed Central

    Edwards, Alexis C; Rollmann, Stephanie M; Morgan, Theodore J; Mackay, Trudy F. C

    2006-01-01

    Aggressive behavior is important for animal survival and reproduction, and excessive aggression is an enormous social and economic burden for human society. Although the role of biogenic amines in modulating aggressive behavior is well characterized, other genetic mechanisms affecting this complex behavior remain elusive. Here, we developed an assay to rapidly quantify aggressive behavior in Drosophila melanogaster, and generated replicate selection lines with divergent levels of aggression. The realized heritability of aggressive behavior was approximately 0.10, and the phenotypic response to selection specifically affected aggression. We used whole-genome expression analysis to identify 1,539 probe sets with different expression levels between the selection lines when pooled across replicates, at a false discovery rate of 0.001. We quantified the aggressive behavior of 19 mutations in candidate genes that were generated in a common co-isogenic background, and identified 15 novel genes affecting aggressive behavior. Expression profiling of genetically divergent lines is an effective strategy for identifying genes affecting complex traits. PMID:17044737

  10. Dopamine Modulates Metabolic Rate and Temperature Sensitivity in Drosophila melanogaster

    PubMed Central

    Ueno, Taro; Tomita, Jun; Kume, Shoen; Kume, Kazuhiko

    2012-01-01

    Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shits induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine), which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation. PMID:22347491

  11. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    PubMed

    Ueno, Taro; Tomita, Jun; Kume, Shoen; Kume, Kazuhiko

    2012-01-01

    Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts) induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine), which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  12. Image Enhancement for Tracking the Translucent Larvae of Drosophila melanogaster

    PubMed Central

    Atkinson, Nigel S.

    2010-01-01

    Drosophila melanogaster larvae are model systems for studies of development, synaptic transmission, sensory physiology, locomotion, drug discovery, and learning and memory. A detailed behavioral understanding of larvae can advance all these fields of neuroscience. Automated tracking can expand fine-grained behavioral analysis, yet its full potential remains to be implemented for the larvae. All published methods are unable to track the larvae near high contrast objects, including the petri-dish edges encountered in many behavioral paradigms. To alleviate these issues, we enhanced the larval contrast to obtain complete tracks. Our method employed a dual approach of optical-contrast boosting and post-hoc image processing for contrast enhancement. We reared larvae on black food media to enhance their optical contrast through darkening of their digestive tracts. For image processing we performed Frame Averaging followed by Subtraction then Thresholding (FAST). This algorithm can remove all static objects from the movie, including petri-dish edges prior to processing by the image-tracking module. This dual approach for contrast enhancement also succeeded in overcoming fluctuations in illumination caused by the alternating current power source. Our tracking method yields complete tracks, including at the edges of the behavioral arena and is computationally fast, hence suitable for high-throughput fine-grained behavioral measurements. PMID:21209929

  13. Strong Purifying Selection at Synonymous Sites in D. melanogaster

    PubMed Central

    Lawrie, David S.; Messer, Philipp W.; Hershberg, Ruth; Petrov, Dmitri A.

    2013-01-01

    Synonymous sites are generally assumed to be subject to weak selective constraint. For this reason, they are often neglected as a possible source of important functional variation. We use site frequency spectra from deep population sequencing data to show that, contrary to this expectation, 22% of four-fold synonymous (4D) sites in Drosophila melanogaster evolve under very strong selective constraint while few, if any, appear to be under weak constraint. Linking polymorphism with divergence data, we further find that the fraction of synonymous sites exposed to strong purifying selection is higher for those positions that show slower evolution on the Drosophila phylogeny. The function underlying the inferred strong constraint appears to be separate from splicing enhancers, nucleosome positioning, and the translational optimization generating canonical codon bias. The fraction of synonymous sites under strong constraint within a gene correlates well with gene expression, particularly in the mid-late embryo, pupae, and adult developmental stages. Genes enriched in strongly constrained synonymous sites tend to be particularly functionally important and are often involved in key developmental pathways. Given that the observed widespread constraint acting on synonymous sites is likely not limited to Drosophila, the role of synonymous sites in genetic disease and adaptation should be reevaluated. PMID:23737754

  14. Genetic variation of copia suppression in Drosophila melanogaster

    PubMed Central

    Vu, W; Nuzhdin, S

    2011-01-01

    Transposable elements (TEs) are genomic parasites that propagate by exploiting its host reproductive machinery. However, some hosts have evolved the ability to silence TE activity, whereas others have not. We are investigating the population dynamics of TE host-silencing pathways, particularly copia long terminal repeat retrotransposon in Drosophila melanogaster. Here, we identify large effect genes involved in copia suppression by using a semi-quantitative analysis to assay levels of copia plasmids (believed to be an intermediate of transposition) in 98 recombinant inbred lines constructed from a line exhibiting high copia transpositions and a line exhibiting no transpositions. The results revealed that the influence of copia copy number and transcription level on copia plasmid concentrations are weak and that genomic factors, presumably encoded by the host, have stronger effects on transposition rates. We mapped a QTL affecting copia plasmid concentration within the 33A–43E cytological region of the second chromosome and applied a quantitative deficiency complementation analysis on this chromosomal region. One out of the two large effect deficiencies on copia plasmid concentrations corresponded to the vasa gene, an important component of the nuage-piwi RNA TE-silencing machinery. We hypothesize that copia suppression occurs by the joint action of several post-transcriptional mechanisms with at least one of the blocks taking place in the nuage. PMID:20606692

  15. Gender-selective patterns of aggressive behavior in Drosophila melanogaster

    PubMed Central

    Nilsen, Steven P.; Chan, Yick-Bun; Huber, Robert; Kravitz, Edward A.

    2004-01-01

    Complex behaviors, such as aggression, are comprised of distinct stereospecific behavioral patterns (modules). How such patterns get wired into nervous systems remains unknown. Recently, we reported on a quantitative analysis of fighting behavior in male flies of the common Canton-S strain of Drosophila melanogaster. Here, we report a similar analysis of fighting behavior in females of the same species. Fights were carried out between pairs of virgin and pairs of mated females in competition for a yeast resource. Each fight was videotaped and analyzed by using transition matrices and Markov chain analyses. We observe only small difference in fighting intensity between virgin and mated females. In contrast to what is seen in male fights, however, no clear hierarchical relationship is formed in the female fights. A further comparison of the behavioral patterns making up male and female fights reveals that some modules are shared by both sexes, whereas others are highly selective. Within the shared components, transitions between the modules also show gender-selective differences. By using the powerful genetic methods available for examining behavior in fruit flies, it should be possible to use the gender-selective differences in fighting behavior to address the question of how these behavioral patterns get established in the brains of fruit flies. PMID:15302936

  16. D. melanogaster, mitochondria and neurodegeneration: small model organism, big discoveries.

    PubMed

    Debattisti, Valentina; Scorrano, Luca

    2013-07-01

    In developed countries, increased life expectancy is accompanied by an increased prevalence of age-related disorders like cancer and neurodegenerative diseases. Albeit the molecular mechanisms behind the clinically, pathologically and etiologically heterogeneous forms of neurodegeneration are often unclear, impairment of mitochondrial fusion-fission and dynamics emerged in recent years as a feature of neuronal dysfunction and death, pinpointing the need for animal models to investigate the relationship between mitochondrial shape and neurodegeneration. While research on mammalian models is slowed down by the complexity of the organisms and their genomes, the long latency of the symptoms and by the difficulty to generate and analyze large cohorts, the lower metazoan Drosophila melanogaster overcomes these problems, proving to be a suitable model to study neurodegenerative diseases and mitochondria-shaping proteins. Here we will summarize our current knowledge on the link between mitochondrial shape and models of neurodegeneration in the fruitfly. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.

  17. Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster.

    PubMed

    Wicker-Thomas, Claude; Garrido, Damien; Bontonou, Gwénaëlle; Napal, Laura; Mazuras, Nicolas; Denis, Béatrice; Rubin, Thomas; Parvy, Jean-Philippe; Montagne, Jacques

    2015-11-01

    In terrestrial insects, cuticular hydrocarbons (CHCs) provide protection from desiccation. Specific CHCs can also act as pheromones, which are important for successful mating. Oenocytes are abdominal cells thought to act as specialized units for CHC biogenesis that consists of long-chain fatty acid (LCFA) synthesis, optional desaturation(s), elongation to very long-chain fatty acids (VLCFAs), and removal of the carboxyl group. By investigating CHC biogenesis in Drosophila melanogaster, we showed that VLCFA synthesis takes place only within the oenocytes. Conversely, several pathways, which may compensate for one another, can feed the oenocyte pool of LCFAs, suggesting that this step is a critical node for regulating CHC synthesis. Importantly, flies deficient in LCFA synthesis sacrificed their triacylglycerol stores while maintaining some CHC production. Moreover, pheromone production was lower in adult flies that emerged from larvae that were fed excess dietary lipids, and their mating success was lower. Further, we showed that pheromone production in the oenocytes depends on lipid metabolism in the fat tissue and that fatty acid transport protein, a bipartite acyl-CoA synthase (ACS)/FA transporter, likely acts through its ACS domain in the oenocyte pathway of CHC biogenesis. Our study highlights the importance of environmental and physiological inputs in regulating LCFA synthesis to eventually control sexual communication in a polyphagous animal.

  18. Somatic mutation and recombination test in Drosophila melanogaster

    SciTech Connect

    Graf, U.; Wuergler, F.E.; Katz, A.J.; Frei, H.; Juon, H.; Hall, C.B.; Kale, P.G.

    1984-01-01

    A novel test system for the detection of mutagenic and recombinogenic activity of chemicals is described in detail. Drosophila melanogaster larvae trans-heterozygous for the mutations multiple wing hairs (mwh) and flare (flr) are exposed to the test compounds for various periods of time ranging from 96 hr to 1 hr. Induced mutations are detected as single mosaic spots on the wing blade of surviving adults that show either the multiple wing hairs or flare phenotype. Induced recombination leads to mwh and flr twin spots and also to a certain extent, to mwh single spots. Recording of the frequency and the size of the different spots allows for a quantitative determination of the mutagenic and recombinogenic effects. This and earlier studies with a small set of well-known mutagens indicate that the test detects monofunctional and polyfunctional alkylating agents (ethyl methanesulfonate, diepoxybutane, mitomycin C, Trenimon), mutagens forming large adducts (aflatoxin B/sub 1/), DNA breaking agents (bleomycin), intercalating agents (5-aminoacridine, ICR-170), spindle poisons (vinblastine), and antimetabolites (methotrexate). In addition, the test detects mutagens unstable in aqueous solution (..beta..-propiolactone), gaseous mutagens (1,2-dibromoethane), as well as promutagens needing various pathways of metabolic activation (aflatoxin B/sub 1/, diethylnitrosamine, dimethylnitrosamine, mitomycin C, and procarbazine). The rapidity and ease of performance as well as the low costs of the test necessitate a high priority for validation of this promising Drosophila short-term test.

  19. Intestinal inflammation and stem cell homeostasis in aging Drosophila melanogaster

    PubMed Central

    Ayyaz, Arshad; Jasper, Heinrich

    2013-01-01

    As a barrier epithelium, the intestinal epithelium has to coordinate physiological functions like digestion and nutrient resorption with the control of commensal bacteria and the prevention of pathogenic infections. It can therefore mount powerful innate immune and inflammatory responses, while, at the same time, maintaining tissue homeostasis through regenerative processes. How these different functions are coordinated remains unclear, and further insight is required to understand the age-related loss of homeostasis in this system, as well as the etiology of inflammatory and proliferative diseases of the gut. Recent work in Drosophila melanogaster has provided important new insight into the regulation of regenerative activity, innate immune homeostasis, commensal control, as well as age-related dysfunction in the intestine. Interestingly, many of the identified processes and mechanisms mirror similar homeostatic processes in the vertebrate intestine. This review summarized the current understanding of how innate immune responses, changes in commensal bacteria, and other challenges influence regenerative activity in the aging intestinal epithelium of flies and draws parallels to similar processes in mammals. PMID:24380076

  20. Automated identification of social interaction criteria in Drosophila melanogaster.

    PubMed

    Schneider, J; Levine, J D

    2014-10-01

    The study of social behaviour within groups has relied on fixed definitions of an 'interaction'. Criteria used in these definitions often involve a subjectively defined cut-off value for proximity, orientation and time (e.g. courtship, aggression and social interaction networks) and the same numerical values for these criteria are applied to all of the treatment groups within an experiment. One universal definition of an interaction could misidentify interactions within groups that differ in life histories, study treatments and/or genetic mutations. Here, we present an automated method for determining the values of interaction criteria using a pre-defined rule set rather than pre-defined values. We use this approach and show changing social behaviours in different manipulations of Drosophila melanogaster. We also show that chemosensory cues are an important modality of social spacing and interaction. This method will allow a more robust analysis of the properties of interacting groups, while helping us understand how specific groups regulate their social interaction space.

  1. Alkylresorcinols activate SIRT1 and delay ageing in Drosophila melanogaster

    PubMed Central

    Kayashima, Yasunari; Katayanagi, Yuki; Tanaka, Keiko; Fukutomi, Ryuta; Hiramoto, Shigeru; Imai, Shinjiro

    2017-01-01

    Sirtuins are enzymes that catalyze NAD+ dependent protein deacetylation. The natural polyphenolic compound resveratrol received renewed interest when recent findings implicated resveratrol as a potent SIRT1 activator capable of mimicking the effects of calorie restriction. However, resveratrol directly interacts with fluorophore-containing peptide substrates. It was demonstrated that the SIRT1 activation of resveratrol is affected by the amino acid composition of the substrate. Resveratrol did increase the enzyme activity in cases in which hydrophobic amino acids are at the +1 position to the acetylated lysine in the substrate. Alkylresorcinols (ARs) are compounds that belong to the family of phenolic lipids, and they are found in numerous biological species. Here we show that the natural activators ARs increased the Vmax of recombinant SIRT1 for NAD+ and peptide substrate, and that ARs decreased acetylated histone in human monocyte cells by stimulating SIRT1-dependent deacetylation of substrates. ARs also extended the lifespan of Drosophila melanogaster, which was shown to be dependent on functional Sir2. Our results demonstrated that ARs are natural catalytic activators for sirtuin. PMID:28252007

  2. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster.

    PubMed

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A; Maltecca, Christian; Mackay, Trudy F C

    2015-05-06

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon.

  3. Exposure to endosulfan influences sperm competition in Drosophila melanogaster

    PubMed Central

    Misra, Snigdha; Kumar, Ajay; Ratnasekhar, Ch.; Sharma, Vandana; Mudiam, Mohana Krishna Reddy; Ram, Kristipati Ravi

    2014-01-01

    Dwindling male fertility due to xenobiotics is of global concern. Accordingly, male reproductive toxicity assessment of xenobiotics through semen quality analysis in exposed males, and examining progeny production of their mates is critical. These assays, in part, are biased towards monogamy. Females soliciting multiple male partners (polyandry) is the norm in many species. Polyandry incites sperm competition and allows females to bias sperm use. However, consequences of xenobiotic exposure to the sperm in the light of sperm competition remain to be understood. Therefore, we exposed Drosophila melanogaster males to endosulfan, and evaluated their progeny production as well as the ability of their sperm to counter rival control sperm in the storage organs of females sequentially mated to control/exposed males. Endosulfan (2 μg/ml) had no significant effect on progeny production and on the expression of certain genes associated with reproduction. However, exposed males performed worse in sperm competition, both as 1st and 2nd male competitors. These findings indicate that simple non-competitive measures of reproductive ability may fail to demonstrate the harmful effects of low-level exposure to xenobiotics on reproduction and advocate consideration of sperm competition, as a parameter, in the reproductive toxicity assessment of xenobiotics to mimic situations prevailing in the nature. PMID:25503806

  4. Life span extension in Drosophila melanogaster induced by morphine.

    PubMed

    Dubiley, Tatyana A; Rushkevich, Yury E; Koshel, Natalya M; Voitenko, Vladimir P; Vaiserman, Alexander M

    2011-06-01

    The influence of morphine on the life span of Drosophila melanogaster fruit flies has been investigated. Morphine hydrochloride (MH) at concentrations of 0.01, 0.05 and 0.25 mg/ml was added to a medium starting from day 5 or 54 of imaginal life. Supplementation with MH starting from day 5 of imaginal life has resulted in significant increases in the mean life span of males at all concentrations studied. In females, a significant increase in life span compared with control was obtained only for those treated with 0.25 mg/ml MH. In flies with MH feeding from day 54, residual life span was significantly increased in both males and females after treatment with 0.05 mg/ml MH. The present data, together with those of our earlier study in mice (Dubiley et al. Probl Aging Longvity 9:331–332, 2000) suggest that morphine supplementation can result in life extension in both vertebrate and invertebrate animal species.

  5. A Variable Genetic Architecture of Melanic Evolution in Drosophila melanogaster

    PubMed Central

    Bastide, Héloïse; Lange, Jeremy D.; Lack, Justin B.; Yassin, Amir; Pool, John E.

    2016-01-01

    Unraveling the genetic architecture of adaptive phenotypic divergence is a fundamental quest in evolutionary biology. In Drosophila melanogaster, high-altitude melanism has evolved in separate mountain ranges in sub-Saharan Africa, potentially as an adaptation to UV intensity. We investigated the genetic basis of this melanism in three populations using a new bulk segregant analysis mapping method. We identified 19 distinct QTL regions from nine mapping crosses, with several QTL peaks overlapping between two or all populations, and yet different crosses involving the same melanic population commonly yielded distinct QTL. The strongest QTL often overlapped well-known pigmentation genes, but we typically did not find wide signals of genetic differentiation (FST) between lightly and darkly pigmented populations at these genes. Instead, we found small numbers of highly differentiated SNPs at the probable causative genes. A simulation analysis showed that these patterns of polymorphism were consistent with selection on standing genetic variation. Overall, our results suggest that, even for potentially simpler traits like pigmentation, the complexity of adaptive trait evolution poses important challenges for QTL mapping and population genetic analysis. PMID:27638419

  6. Structure and expression of ubiquitin genes of Drosophila melanogaster.

    PubMed Central

    Lee, H S; Simon, J A; Lis, J T

    1988-01-01

    We isolated and characterized two related ubiquitin genes from Drosophila melanogaster, polyubiquitin and UB3-D. The polyubiquitin gene contained 18 repeats of the 228-base-pair monomeric ubiquitin-encoding unit arranged in tandem. This gene was localized to a minor heat shock puff site, 63F, and it encoded a constitutively expressed 4.4-kilobase polyubiquitin-encoding mRNA, whose level was induced threefold by heat shock. To investigate the pattern of expression of the polyubiquitin gene in developing animals, a polyubiquitin-lacZ fusion gene was introduced into the Drosophila genome by germ line transformation. The fusion gene was expressed at high levels in a tissue-general manner at all life stages assayed. The ubiquitin-encoding gene, UB3-D, consisted of one ubiquitin-encoding unit directly fused, in frame, to a nonhomologous tail sequence. The amino acid sequence of the tail portion of the protein had 65% positional identity with that of yeast UBI3 protein, including a region that contained a potential nucleic acid-binding motif. The Drosophila UB3-D gene hybridized to a 0.9-kilobase mRNA that was constitutively expressed, and in contrast to the polyubiquitin gene, it was not inducible by heat shock. Images PMID:2463465

  7. Hydrogen sulfide exposure increases desiccation tolerance in Drosophila melanogaster.

    PubMed

    Zhong, Jian-Feng; Wang, Shu-Ping; Shi, Xiao-Qin; Mu, Li-li; Li, Guo-Qing

    2010-12-01

    Hydrogen sulfide (H(2)S) has been shown to effect physiological alterations in several animals, frequently leading to an improvement in survival in otherwise lethal conditions. In the present paper, a volatility bioassay system was developed to evaluate the survivorship of Drosophila melanogaster adults exposed to H(2)S gas that emanated from a K(2)S donor. Using this bioassay system, we found that H(2)S exposure significantly increased the survival of flies under arid and food-free conditions, but not under humid and food-free conditions. This suggests that H(2)S plays a role in desiccation tolerance but not in nutritional stress alleviation. To further confirm the suggestion, the mRNA levels of two desiccation tolerance-related genes Frost and Desat2, and a starvation-related gene Smp-30, from the control and treated flies were measured by quantitative real-time PCR. These genes were up-regulated within 2h when the flies transferred to the arid and food-free bioassay system. Addition of H(2)S further increased Frost and Desat2 mRNA levels, in contrast to Smp-30. Thus, our molecular results were consistent with our bioassay findings. Because of the molecular and genetic tools available for Drosophila, the fly will be a useful system for determining how H(2)S regulates various physiological alterations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome

    PubMed Central

    MacMillan, Heath A.; Knee, Jose M.; Dennis, Alice B.; Udaka, Hiroko; Marshall, Katie E.; Merritt, Thomas J. S.; Sinclair, Brent J.

    2016-01-01

    Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography – mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na+-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca2+ signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance. PMID:27357258

  9. A new trap and lure for Drosophila melanogaster (Diptera: Drosophilidae).

    PubMed

    Birmingham, Anna L; Kovacs, Ervin; Lafontaine, Jean Pierre; Avelino, Norman; Borden, John H; Andreller, Isak S; Gries, Gerhard

    2011-06-01

    We conducted a series of nine laboratory experiments testing the response of "vinegar flies," Drosophila melanogaster Meigen (Diptera: Drosophilidae), released in bioassay chambers to experimental traps and lures. These experiments showed that an effective trap could be constructed from a clear 225-ml screw-cap jar fitted with a hollow 8-mm-diameter cylindrical cross bridge. Flies could enter the trap from either end of the cylindrical "gate" and in turn could enter the interior chamber of the trap through a cut out portion at mid-span of the cylinder. The experiments also showed that a natural-component lure could be made using a teabag containing freeze-dried banana powder, yeast, and carrageenan gum powder as a humectant. When dipped in water for 10-15 s and then placed in the bottom of a trap, the teabag provided effective attraction for at least 7 d. Captured flies were immobilized on a sticky card placed in the trap, allowing them to be easily seen. Unlike other traps that cannot be opened and have liquid lures, the cylindrical-gate trap can be reused repeatedly if the teabag and sticky card are replaced. A final two experiments showed that the prototype operational cylindrical-gate trap with a teabag lure captured 3.3 and 2.3 times more released flies, respectively, than the next best of three commercially available traps.

  10. Cytogenetic Analysis of Chromosome Region 73ad of Drosophila Melanogaster

    PubMed Central

    Belote, J. M.; Hoffmann, F. M.; McKeown, M.; Chorsky, R. L.; Baker, B. S.

    1990-01-01

    The 73AD salivary chromosome region of Drosophila melanogaster was subjected to mutational analysis in order to (1) generate a collection of chromosome breakpoints that would allow a correlation between the genetic, cytological and molecular maps of the region and (2) define the number and gross organization of complementation groups within this interval. Eighteen complementation groups were defined and mapped to the 73A2-73B7 region, which is comprised of 17 polytene bands. These complementation groups include the previously known scarlet (st), transformer (tra) and Dominant temperature-sensitive lethal-5 (DTS-5) genes, as well as 13 new recessive lethal complementation groups and one male and female sterile locus. One of the newly identified lethal complementation groups corresponds to the molecularly identified abl locus, and another gene is defined by mutant alleles that exhibit an interaction with with the abl mutants. We also recovered several mutations in the 73C1-D1.2 interval, representing two lethal complementation groups, one new visible mutant, plucked (plk), and a previously known visible, dark body (db). There is no evidence of a complex of sex determination genes in the region near tra. PMID:2118870

  11. Aging perturbs 26S proteasome assembly in Drosophila melanogaster

    PubMed Central

    Vernace, Vita A.; Arnaud, Lisette; Schmidt-Glenewinkel, Thomas; Figueiredo-Pereira, Maria E.

    2012-01-01

    Aging is associated with loss of quality control in protein turnover. The ubiquitin-proteasome pathway is critical to this quality control process as it degrades mutated and damaged proteins. We identified a unique aging-dependent mechanism that contributes to proteasome dysfunction in Drosophila melanogaster. Our studies are the first to show that the major proteasome form in old (43–47 days old) female and male flies is the weakly active 20S core particle, while in younger (1–32 days old) flies highly active 26S proteasomes are preponderant. Old (43–47 days) flies of both genders also exhibit a decline (~50%) in ATP levels, which is relevant to 26S proteasomes, as their assembly is ATP-dependent. The steep declines in 26S proteasome and ATP levels were observed at an age (43–47 days) when the flies exhibited a marked drop in locomotor performance, attesting that these are “old age” events. Remarkably, treatment with a proteasome inhibitor increases ubiquitinated protein levels and shortens the life span of old but not young flies. In conclusion, our data reveal a previously unknown mechanism that perturbs proteasome activity in “old-age” female and male Drosophila most likely depriving them of the ability to effectively cope with proteotoxic damages caused by environmental and/or genetic factors. PMID:17413001

  12. Flamenco, a Gene Controlling the Gypsy Retrovirus of Drosophila Melanogaster

    PubMed Central

    Prud'homme, N.; Gans, M.; Masson, M.; Terzian, C.; Bucheton, A.

    1995-01-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is stable and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovo(D1) female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovo(D1) reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy. PMID:7713426

  13. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster.

    PubMed

    Prud'homme, N; Gans, M; Masson, M; Terzian, C; Bucheton, A

    1995-02-01

    Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is stable and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovoD1 female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovoD1 reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy.

  14. Sex-Specific Routes To Immune Senescence In Drosophila melanogaster.

    PubMed

    Kubiak, Marco; Tinsley, Matthew C

    2017-09-05

    Animal immune systems change dramatically during the ageing process, often accompanied by major increases in pathogen susceptibility. However, the extent to which senescent elevations in infection mortality are causally driven by deteriorations in canonical systemic immune processes is unclear. We studied Drosophila melanogaster and compared the relative contributions of impaired systemic immune defences and deteriorating barrier defences to increased pathogen susceptibility in aged flies. To assess senescent changes in systemic immune response efficacy we injected one and four-week old flies with the entomopathogenic fungus Beauveria bassiana and studied subsequent mortality; whereas to include the role of barrier defences we infected flies by dusting the cuticle with fungal spores. We show that the processes underlying pathogen defence senescence differ between males and females. Both sexes became more susceptible to infection as they aged. However, we conclude that for males, this was principally due to deterioration in barrier defences, whereas for females systemic immune defence senescence was mainly responsible. We discuss the potential roles of sex-specific selection on the immune system and behavioural variation between males and females in driving these different senescent trends.

  15. Does Stellate cause meiotic drive in Drosophila melanogaster?

    PubMed Central

    Belloni, Massimo; Tritto, Patrizia; Bozzetti, Maria Pia; Palumbo, Gioacchino; Robbins, Leonard G

    2002-01-01

    Drosophila melanogaster males deficient for the crystal (cry) locus of the Y chromosome that carry between 15 and 60 copies of the X-linked Stellate (Ste) gene are semisterile, have elevated levels of nondisjunction, produce distorted sperm genotype ratios (meiotic drive), and evince hyperactive transcription of Ste in the testes. Ste seems to be the active element in this system, and it has been proposed that the ancestral Ste gene was "selfish" and increased in frequency because it caused meiotic drive. This hypothetical evolutionary history is based on the idea that Ste overexpression, and not the lack of cry, causes the meiotic drive of cry(-) males. To test whether this is true, we have constructed a Ste-deleted X chromosome and examined the phenotype of Ste(-)/cry(-) males. If hyperactivity of Ste were necessary for the transmission defects seen in cry(-) males, cry(-) males completely deficient for Ste would be normal. Although it is impossible to construct a completely Ste(-) genotype, we find that Ste(-)/cry(-) males have exactly the same phenotype as Ste(+)/cry(-) males. The deletion of all X chromosome Ste copies not only does not eliminate meiotic drive and nondisjunction, but it also does not even reduce them below the levels produced when the X carries 15 copies of Ste. PMID:12196400

  16. Morphogenesis of the somatic musculature in Drosophila melanogaster

    PubMed Central

    Schulman, Victoria K.; Dobi, Krista C.; Baylies, Mary K.

    2015-01-01

    In Drosophila melanogaster, the somatic muscle system is first formed during embryogenesis, giving rise to the larval musculature. Later during metamorphosis, this system is destroyed and replaced by an entirely new set of muscles in the adult fly. Proper formation of the larval and adult muscles is critical for basic survival functions such as hatching and crawling (in the larva), walking and flying (in the adult), and feeding (at both larval and adult stages). Myogenesis, from mononucleated muscle precursor cells to multinucleated functional muscles, is driven by a number of cellular processes that have begun to be mechanistically defined. Once themesodermal cells destined for themyogenic lineage have been specified, individual myoblasts fuse together iteratively to form syncytial myofibers. Combining cytoplasmic contents demands a level of intracellular reorganization that, most notably, leads to redistribution of the myonuclei to maximize internuclear distance. Signaling from extending myofibers induces terminal tendon cell differentiation in the ectoderm, which results in secure muscle-tendon attachments that are critical formuscle contraction. Simultaneously, muscles become innervated and undergo sarcomerogenesis to establish the contractile apparatus that will facilitate movement. The cellular mechanisms governing these morphogenetic events share numerous parallels to mammalian development, and the basic unit of all muscle, the myofiber, is conserved from flies to mammals. Thus, studies of Drosophila myogenesis and comparisons to muscle development in other systems highlight conserved regulatory programs of biomedical relevance to general muscle biology and studies of muscle disease. PMID:25758712

  17. Obp56h Modulates Mating Behavior in Drosophila melanogaster

    PubMed Central

    Shorter, John R.; Dembeck, Lauren M.; Everett, Logan J.; Morozova, Tatiana V.; Arya, Gunjan H.; Turlapati, Lavanya; St. Armour, Genevieve E.; Schal, Coby; Mackay, Trudy F. C.; Anholt, Robert R. H.

    2016-01-01

    Social interactions in insects are driven by conspecific chemical signals that are detected via olfactory and gustatory neurons. Odorant binding proteins (Obps) transport volatile odorants to chemosensory receptors, but their effects on behaviors remain poorly characterized. Here, we report that RNAi knockdown of Obp56h gene expression in Drosophila melanogaster enhances mating behavior by reducing courtship latency. The change in mating behavior that results from inhibition of Obp56h expression is accompanied by significant alterations in cuticular hydrocarbon (CHC) composition, including reduction in 5-tricosene (5-T), an inhibitory sex pheromone produced by males that increases copulation latency during courtship. Whole genome RNA sequencing confirms that expression of Obp56h is virtually abolished in Drosophila heads. Inhibition of Obp56h expression also affects expression of other chemoreception genes, including upregulation of lush in both sexes and Obp83ef in females, and reduction in expression of Obp19b and Or19b in males. In addition, several genes associated with lipid metabolism, which underlies the production of cuticular hydrocarbons, show altered transcript abundances. Our data show that modulation of mating behavior through reduction of Obp56h is accompanied by altered cuticular hydrocarbon profiles and implicate 5-T as a possible ligand for Obp56h. PMID:27558663

  18. Heterodimerization of endothelin-converting enzyme-1 isoforms regulates the subcellular distribution of this metalloprotease.

    PubMed

    Muller, Laurent; Barret, Alain; Etienne, Eric; Meidan, Rina; Valdenaire, Olivier; Corvol, Pierre; Tougard, Claude

    2003-01-03

    Endothelin-converting enzyme (ECE) is a membrane metalloprotease that generates endothelin from its direct precursor big endothelin. Four isoforms of ECE-1 are produced from a single gene through the use of alternate promoters. These isoforms share the same extracellular catalytic domain and contain unique cytosolic tails, which results in their specific subcellular targeting. We investigated the distribution of ECE-1 isoforms in transfected AtT-20 neuroendocrine cells. Whereas ECE-1a and 1c were present at the plasma membrane, ECE-1b and ECE-1d were retained inside the cells. We found that both intracellular isoforms were concentrated in the endosomal system: ECE-1d in recycling endosomes, and ECE-1b in late endosomes/multivesicular bodies. Leucine-based motifs were involved in the intracellular retention of these isoforms, and the targeting of ECE-1b to the degradation pathway required an additional signal in the N terminus. The concentration of ECE-1 isoforms in the endosomal system suggested new functions for these enzymes. Potential novel functions include redistribution of other isoforms through direct interaction. We have showed that ECE-1 isoforms could heterodimerize, and that in such heterodimers the ECE-1b targeting signal was dominant. Interaction of a plasma membrane isoform with ECE-1b resulted in its intracellular localization and decreased its extracellular activity. These data demonstrated that the targeting signals specific for ECE-1b constitute a regulatory domain per se that could modulate the localization and the activity of other isoforms.

  19. Structure of the kinase domain of Gilgamesh from Drosophila melanogaster.

    PubMed

    Han, Ni; Chen, CuiCui; Shi, Zhubing; Cheng, Dianlin

    2014-04-01

    The CK1 family kinases regulate multiple cellular aspects and play important roles in Wnt/Wingless and Hedgehog signalling. The kinase domain of Drosophila Gilgamesh isoform I (Gilgamesh-I), a homologue of human CK1-γ, was purified and crystallized. Crystals of methylated Gilgamesh-I kinase domain with a D210A mutation diffracted to 2.85 Å resolution and belonged to space group P43212, with unit-cell parameters a = b = 52.025, c = 291.727 Å. The structure of Gilgamesh-I kinase domain, which was determined by molecular replacement, has conserved catalytic elements and an active conformation. Structural comparison indicates that an extended loop between the α1 helix and the β4 strand exists in the Gilgamesh-I kinase domain. This extended loop may regulate the activity and function of Gilgamesh-I.

  20. Structure of the kinase domain of Gilgamesh from Drosophila melanogaster

    PubMed Central

    Han, Ni; Chen, CuiCui; Shi, Zhubing; Cheng, Dianlin

    2014-01-01

    The CK1 family kinases regulate multiple cellular aspects and play important roles in Wnt/Wingless and Hedgehog signalling. The kinase domain of Drosophila Gilgamesh isoform I (Gilgamesh-I), a homologue of human CK1-γ, was purified and crystallized. Crystals of methylated Gilgamesh-I kinase domain with a D210A mutation diffracted to 2.85 Å resolution and belonged to space group P43212, with unit-cell parameters a = b = 52.025, c = 291.727 Å. The structure of Gilgamesh-I kinase domain, which was determined by molecular replacement, has conserved catalytic elements and an active conformation. Structural comparison indicates that an extended loop between the α1 helix and the β4 strand exists in the Gilgamesh-I kinase domain. This extended loop may regulate the activity and function of Gilgamesh-I. PMID:24699734

  1. Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster

    PubMed Central

    Neelakanta, Girish; Hudson, Andrew M.; Sultana, Hameeda; Cooley, Lynn; Fikrig, Erol

    2012-01-01

    Drosophila melanogaster experience cold shock injury and die when exposed to low non-freezing temperatures. In this study, we generated transgenic D. melanogaster that express putative Ixodes scapularis antifreeze glycoprotein (IAFGP) and show that the presence of IAFGP increases the ability of flies to survive in the cold. Male and female adult iafgp-expressing D. melanogaster exhibited higher survival rates compared with controls when placed at non-freezing temperatures. Increased hatching rates were evident in embryos expressing IAFGP when exposed to the cold. The TUNEL assay showed that flight muscles from iafgp-expressing female adult flies exhibited less apoptotic damage upon exposure to non-freezing temperatures in comparison to control flies. Collectively, these data suggest that expression of iafgp increases cold tolerance in flies by preventing apoptosis. This study defines a molecular basis for the role of an antifreeze protein in cryoprotection of flies. PMID:22428051

  2. Carbon nano-onions for imaging the life cycle of Drosophila melanogaster.

    PubMed

    Ghosh, Mitrajit; Sonkar, Sumit Kumar; Saxena, Manav; Sarkar, Sabyasachi

    2011-11-18

    Real-time X-ray or magnetic resonance imaging are known methods used for biomedical diagnosis. By the oral administration of barium meal, X-ray imaging can be extended for use in soft tissue imaging. The oral ingestion of a fluorescent probe is a new approach to imaging a living species. Here, water-soluble carbon nano-onions are introduced as a nontoxic, fluorescent reagent enabling Drosophila melanogaster (fruit flies) to be imaged alive. It is demonstrated that these water-soluble carbon nano-onions, synthesized from wood waste, colorfully image all the development phases of Drosophila melanogaster from its egg to adulthood. Oral ingestion of up to 4 ppm of soluble carbon nano-onions allows the optical fluorescence microscopy imaging of all the stages of the fruit fly life cycle without showing any toxic effects. The fluorescent Drosophila melanogaster excretes this fluorescing material upon the withdrawal of carbon nano-onions from its food.

  3. Genetic architecture of olfactory behavior in Drosophila melanogaster: differences and similarities across development

    PubMed Central

    Lavagnino, N.J.; Arya, G.H.; Korovaichuk, A.; Fanara, J.J.

    2013-01-01

    In the holometabolous insect Drosophila melanogaster, genetic, physiological and anatomical aspects of olfaction are well known in the adult stage, while larval stages olfactory behavior has received some attention it has been less studied than its adult counterpart. Most of these studies focus on olfactory receptors (Or) genes that produce peripheral odor recognition. In this paper, through a loss-of-function screen using P-element inserted lines and also by means of expression analyses of larval olfaction candidate genes, we extended the uncovering of the genetic underpinnings of D. melanogaster larval olfactory behavior by demonstrating that larval olfactory behavior is, in addition to Or genes, orchestrated by numerous genes with diverse functions. Also, our results points out that the genetic architecture of olfactory behavior in D. melanogaster presents a dynamic and changing organization across environments and ontogeny. PMID:23563598

  4. Is Esterase-P Encoded by a Cryptic Pseudogene in Drosophila Melanogaster?

    PubMed Central

    Balakirev, E. S.; Ayala, F. J.

    1996-01-01

    We have amplified and sequenced the gene encoding Esterase-P (Est-P) in 10 strains of Drosophila melanogaster. Three premature termination codons occur in the coding region of the gene in two strains. This observation, together with other indirect evidence, leads us to propose that Est-P may be a pseudogene in D. melanogaster. Est-P would be a ``cryptic'' pseudogene, in the sense that it retains intact the coding sequence (without stop codons and other alterations usually observed in pseudogenes) in most D. melanogaster strains. We conjecture that the β-esterase cluster may consist in other Drosophila species of functional and nonfunctional genes. We also conjecture that the rarity of detected pseudogenes in Drosophila may be due to the difficulty of discovering them, because most of them are cryptic. PMID:8978040

  5. Cuticular Hydrocarbon Content that Affects Male Mate Preference of Drosophila melanogaster from West Africa

    PubMed Central

    Takahashi, Aya; Fujiwara-Tsujii, Nao; Yamaoka, Ryohei; Itoh, Masanobu; Ozaki, Mamiko; Takano-Shimizu, Toshiyuki

    2012-01-01

    Intraspecific variation in mating signals and preferences can be a potential source of incipient speciation. Variable crossability between Drosophila melanogaster and D. simulans among different strains suggested the abundance of such variations. A particular focus on one combination of D. melanogaster strains, TW1(G23) and Mel6(G59), that showed different crossabilities to D. simulans, revealed that the mating between females from the former and males from the latter occurs at low frequency. The cuticular hydrocarbon transfer experiment indicated that cuticular hydrocarbons of TW1 females have an inhibitory effect on courtship by Mel6 males. A candidate component, a C25 diene, was inferred from the gas chromatography analyses. The intensity of male refusal of TW1 females was variable among different strains of D. melanogaster, which suggested the presence of variation in sensitivity to different chemicals on the cuticle. Such variation could be a potential factor for the establishment of premating isolation under some conditions. PMID:22536539

  6. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster.

    PubMed

    Dembeck, Lauren M; Böröczky, Katalin; Huang, Wen; Schal, Coby; Anholt, Robert R H; Mackay, Trudy F C

    2015-11-14

    Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

  7. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    SciTech Connect

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced /sup 155/Eu:/sup 3 +/ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor.

  8. Bowman-Birk inhibitor affects pathways associated with energy metabolism in Drosophila melanogaster.

    PubMed

    Li, H-M; Sun, L; Mittapalli, O; Muir, W M; Xie, J; Wu, J; Schemerhorn, B J; Jannasch, A; Chen, J Y; Zhang, F; Adamec, J; Murdock, L L; Pittendrigh, B R

    2010-06-01

    Bowman-Birk inhibitor (BBI) is toxic when fed to certain insects, including the fruit fly, Drosophila melanogaster. Dietary BBI has been demonstrated to slow growth and increase insect mortality by inhibiting the digestive enzymes trypsin and chymotrypsin, resulting in a reduced supply of amino acids. In mammals, BBI influences cellular energy metabolism. Therefore, we tested the hypothesis that dietary BBI affects energy-associated pathways in the D. melanogaster midgut. Through microarray and metabolomic analyses, we show that dietary BBI affects energy utilization pathways in the midgut cells of D. melanogaster. In addition, ultrastructure studies indicate that microvilli are significantly shortened in BBI-fed larvae. These data provide further insights into the complex cellular response of insects to dietary protease inhibitors.

  9. Gene expression profiles of Drosophila melanogaster exposed to an insecticidal extract of Piper nigrum.

    PubMed

    Jensen, Helen R; Scott, Ian M; Sims, Steve; Trudeau, Vance L; Arnason, John Thor

    2006-02-22

    Black pepper, Piper nigrum L. (Piperaceae), has insecticidal properties and could potentially be utilized as an alternative to synthetic insecticides. Piperine extracted from P. nigrum has a biphasic effect upon cytochrome P450 monooxygenase activity with an initial suppression followed by induction. In this study, an ethyl acetate extract of P. nigrum seeds was tested for insecticidal activity toward adult Musca domestica and Drosophila melanogaster. The effect of this same P. nigrum extract upon differential gene expression in D. melanogaster was investigated using cDNA microarray analysis of 7380 genes. Treatment of D. melanogaster with P. nigrum extract led to a greater than 2-fold upregulation of transcription of the cytochrome P450 phase I metabolism genes Cyp 6a8, Cyp 9b2, and Cyp 12d1 as well as the glutathione-S-transferase phase II metabolism gene Gst-S1. These data suggests a complex effect of P. nigrum upon toxin metabolism.

  10. The impact of green tea polyphenols on development and reproduction in Drosophila melanogaster

    PubMed Central

    Lopez, Terry E.; Pham, Hoang M.; Barbour, Julia; Tran, Phillip; Van Nguyen, Benjamin; Hogan, Sean P.; Homo, Richelle L.; Coskun, Volkan; Schriner, Samuel E.; Jafari, Mahtab

    2015-01-01

    Although, green tea has numerous health benefits, adverse effects with excessive consumption have been reported. Using Drosophila melanogaster, a decrease in male fertility with green tea was evidenced. Here, the extent of green tea toxicity on development and reproduction was investigated. Drosophila melanogaster embryos and larvae were exposed to various doses of green tea polyphenols (GTP). Larvae exposed to 10 mg/mL GTP were slower to develop, emerged smaller, and exhibited a dramatic decline in the number of emerged offspring. GTP protected flies against desiccation but sensitized them to starvation and heat stress. Female offspring exhibited a decline in reproductive output and decreased survival while males were unaffected. GTP had a negative impact on reproductive organs in both males and females (e.g., atrophic testes in males, absence of mature eggs in females). Collectively, the data show that high doses of GTP adversely affect development and reproduction of Drosophila melanogaster. PMID:26693252

  11. PSA Isoforms' Velocities for Early Diagnosis of Prostate Cancer.

    PubMed

    Heidegger, Isabel; Klocker, Helmut; Pichler, Renate; Horninger, Wolfgang; Bektic, Jasmin

    2015-06-01

    Free prostate-specific antigen (fPSA) and its molecular isoforms are suggested for enhancement of PSA testing in prostate cancer (PCa). In the present study we evaluated whether PSA isoforms' velocities might serve as a tool to improve early PCa diagnosis. Our study population included 381 men who had undergone at least one ultrasound-guided prostate biopsy whose pathologic examination yielded PCa or showed no evidence of prostatic malignancy. Serial PSA, fPSA, and proPSA measurements were performed on serum samples covering 7 years prior to biopsy using Beckmann Coulter Access immunoassays. Afterwards, velocities of PSA (PSAV), fPSA% (fPSA%V), proPSA% (proPSA%V) and the ratio proPSA/PSA/V were calculated and their ability to discriminate cancer from benign disease was evaluated. Among 381 men included in the study, 202 (53%) were diagnosed with PCa and underwent radical prostatectomy at our Department. PSAV, fPSA%V, proPSA%V as well as proPSA/PSA/V were able to differentiate significantly between PCa and non-cancerous prostate. The highest discriminatory power between cancer and benign disease has been observed two and one year prior to diagnosis with all measured parameters. Among all measured parameters, fPSA%V showed the best cancer specificity of 45.3% with 90% of sensitivity. In summary, our results highlight the value of PSA isoforms' velocity for early detection of PCa. Especially fPSA%V should be used in the clinical setting to increase cancer detection specificity.

  12. Myosin motor isoforms direct specification of actomyosin function by tropomyosins

    PubMed Central

    Clayton, Joseph E.; Pollard, Luther W.; Murray, George G.; Lord, Matthew

    2015-01-01

    Myosins and tropomyosins represent two cytoskeletal proteins that often work together with actin filaments in contractile and motile cellular processes. While the specialized role of tropomyosin in striated muscle myosin-II regulation is well characterized, its role in non-muscle myosin regulation is poorly understood. We previously showed that fission yeast tropomyosin (Cdc8p) positively regulates myosin-II (Myo2p) and myosin-V (Myo52p) motors. To understand the broader implications of this regulation we examined the role of two mammalian tropomyosins (Tpm3.1cy/Tm5NM1 and Tpm4.2cy/Tm4) recently implicated in cancer cell proliferation and metastasis. Like Cdc8p, the Tpm3.1cy and Tpm4.2cy isoforms significantly enhance Myo2p and Myo52p motor activity, converting non-processive Myo52p molecules into processive motors that can walk along actin tracks as single molecules. In contrast to the positive regulation of Myo2p and Myo52p, Cdc8p and the mammalian tropomyosins potently inhibited skeletal muscle myosin-II, while having negligible effects on the highly processive mammalian myosin-Va. In support of a conserved role for certain tropomyosins in regulating non-muscle actomyosin structures, Tpm3.1cy supported normal contractile ring function in fission yeast. Our work reveals that actomyosin regulation by tropomyosin is dependent on the myosin isoform, highlighting a general role for specific isoforms of tropomyosin in sorting myosin motor outputs. PMID:25712463

  13. Cyclooxygenase Isoform Exchange Blocks Brain-Mediated Inflammatory Symptoms

    PubMed Central

    Mirrasekhian, Elahe; Zajdel, Joanna; Kumar Singh, Anand; Engblom, David

    2016-01-01

    Cyclooxygenase-2 (COX-2) is the main source of inducible prostaglandin E2 production and mediates inflammatory symptoms including fever, loss of appetite and hyperalgesia. COX-1 is dispensable for fever, anorexia and hyperalgesia but is important for several other functions both under basal conditions and during inflammation. The differential functionality of the COX isoforms could be due to differences in the regulatory regions of the genes, leading to different expression patterns, or to differences in the coding sequence, resulting in distinct functional properties of the proteins. To study the molecular underpinnings of the functional differences between the two isoforms in the context of inflammatory symptoms, we used mice in which the coding sequence of COX-2 was replaced by the corresponding sequence of COX-1. In these mice, COX-1 mRNA was induced by inflammation but COX-1 protein expression did not fully mimic inflammation-induced COX-2 expression. Just like mice globally lacking COX-2, these mice showed a complete lack of fever and inflammation-induced anorexia as well as an impaired response to inflammatory pain. However, as previously reported, they displayed close to normal survival rates, which contrasts to the high fetal mortality in COX-2 knockout mice. This shows that the COX activity generated from the hybrid gene was strong enough to allow survival but not strong enough to mediate the inflammatory symptoms studied, making the line an interesting alternative to COX-2 knockouts for the study of inflammation. Our results also show that the functional differences between COX-1 and COX-2 in the context of inflammatory symptoms are not only dependent on the features of the promoter regions. Instead they indicate that there are fundamental differences between the isoforms at translational or posttranslational levels. PMID:27861574

  14. Identification of an alternative splicing isoform of chicken Lmbr1.

    PubMed

    Huang, Yanqun; Chen, Wen; Li, Ning; Deng, Xuemei; Kang, Xiangtao; Liu, Xiaojun

    2011-10-01

    Lmbr1 is the key candidate gene for limb development. Until now, at least five and four alternative splicing isoforms of Lmbr1 gene have been found in human and mouse, respectively. However, only two alternative splicing isoforms of this homologous gene have been reported in chicken. In the present study, one novel chicken Lmbr1 transcript variant (designated Lmbr1-1) was identified by 5' RACE and RT-PCR. Chicken Lmbr1-1 possesses one novel transcription start site different from Lmbr1-N, and was predicted to encode one 192 amino acid protein with length variation in comparison with chicken LMBR1-N protein, which was produced by 5' spliced site variation of chicken Lmbr1-N exon 10. Comparing with Lmbr1-N transcript, chicken Lmbr1-1 exhibited restricted tissue distribution of the expression. Comparative sequence analysis revealed a highly conservative intron element between chicken and mammalians from the intron 9 of chicken Lmbr1-N, indicating their possible importance as intronic elements in the regulation of alternative splicing of Lmbr1 in vertebrates. By direct PCR sequencing the exon 10 and its flanking sequences in chicken Lmbr1-N, four variation sites/haplotypes were identified from six chicken breeds. One 797A/G nonsynonymous mutation (266Arg/Gln) locating in exon 10 of chicken Lmbr1-N was predicted to affect the exon splice enhancer motif for serine/arginine-rich protein recognition. These data demonstrated that chicken Lmbr1 was alternatively spliced to generate multiple splice forms, as was the case in mammals and each of the alternative splicing isoforms might function differentially.

  15. Modulation of Progesterone Receptor Isoform Expression in Pregnant Human Myometrium

    PubMed Central

    2017-01-01

    Background. Regulation of myometrial progesterone receptor (PR) expression is an unresolved issue central to understanding the mechanism of functional progesterone withdrawal and initiation of labor in women. Objectives. To determine whether pregnant human myometrium undergoes culture-induced changes in PR isoform expression ex situ and, further, to determine if conditions approaching the in vivo environment stabilise PR isoform expression in culture. Methods. Term nonlaboring human myometrial tissues were cultured under specific conditions: serum supplementation, steroids, stretch, cAMP, PMA, PGF2α, NF-κB inhibitors, or TSA. Following 48 h culture, PR-T, PR-A, and PR-B mRNA levels were determined using qRT-PCR. PR-A/PR-B ratios were calculated. Results. PR-T and PR-A expression and the PR-A/PR-B ratio significantly increased in culture. Steroids prevented the culture-induced increase in PR-T and PR-A expression. Stretch blocked the effects of steroids on PR-T and PR-A expression. PMA further increased the PR-A/PR-B ratio, while TSA blocked culture-induced increases of PR-A expression and the PR-A/PR-B ratio. Conclusion. Human myometrial tissue in culture undergoes changes in PR gene expression consistent with transition toward a laboring phenotype. TSA maintained the nonlaboring PR isoform expression pattern. This suggests that preserving histone and/or nonhistone protein acetylation is critical for maintaining the progesterone dependent quiescent phenotype of human myometrium in culture. PMID:28540297

  16. The genetic basis for mating-induced sex differences in starvation resistance in Drosophila melanogaster.

    PubMed

    Jang, Taehwan; Lee, Kwang Pum

    2015-11-01

    Multiple genetic and environmental factors interact to influence starvation resistance, which is an important determinant of fitness in many organisms, including Drosophila melanogaster. Recent studies have revealed that mating can alter starvation resistance in female D. melanogaster, but little is known about the behavioral and physiological mechanisms underlying such mating-mediated changes in starvation resistance. In the present study, we first investigated whether the effect of mating on starvation resistance is sex-specific in D. melanogaster. As indicated by a significant sex×mating status interaction, mating increased starvation resistance in females but not in males. In female D. melanogaster, post-mating increase in starvation resistance was mainly attributed to increases in food intake and in the level of lipid storage relative to lean body weight. We then performed quantitative genetic analysis to estimate the proportion of the total phenotypic variance attributable to genetic differences (i.e., heritability) for starvation resistance in mated male and female D. melanogaster. The narrow-sense heritability (h(2)) of starvation resistance was 0.235 and 0.155 for males and females, respectively. Mated females were more resistant to starvation than males in all genotypes, but the degree of such sexual dimorphism varied substantially among genotypes, as indicated by a significant sex×genotype interaction for starvation resistance. Cross-sex genetic correlation was greater than 0 but less than l for starvation resistance, implying that the genetic architecture of this trait was partially shared between the two sexes. For both sexes, starvation resistance was positively correlated with longevity and lipid storage at genetic level. The present study suggests that sex differences in starvation resistance depend on mating status and have a genetic basis in D. melanogaster. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Isoform-specific regulation of adenylyl cyclase: a potential target in future pharmacotherapy.

    PubMed

    Iwatsubo, Kousaku; Tsunematsu, Takashi; Ishikawa, Yoshihiro

    2003-06-01

    Adenylyl cyclase (AC) is a target enzyme of multiple G-protein-coupled receptors (GPCRs). In the past decade, the cloning, structure and biochemical properties of nine AC isoforms were reported, and each isoform of AC shows distinct patterns of tissue distribution and biochemical/pharmacological properties. In addition to the conventional regulators of this enzyme, such as calmodulin (CaM) or PKC, novel regulators, for example, caveolin, have been identified. Most importantly, these regulators work on AC in an isoform dependent manner. Recent studies have demonstrated that certain classic AC inhibitors, i.e., P-site inhibitors, show an isoform-dependent inhibition of AC. The side chain modifications of forskolin, a diterpene extract from Coleus forskolii, markedly enhance its isoform selectivity. When taken together, these findings suggest that it is feasible to develop new pharmacotherapeutic agents that target AC isoforms to regulate various neurohormonal signals in a highly tissue-/organ-specific manner.

  18. Separation of arginase isoforms by capillary zone electrophoresis and isoelectric focusing in density gradient column.

    PubMed

    Pedrosa, M M; Legaz, M E

    1995-04-01

    Four major arginase isoforms, I, II, III and IV, have been detected in Evernia prunastri thallus. They differ in terms of both physical and biochemical properties. The isoelectric point (pI) of these proteins has been determined by both isoelectric focusing in density gradient column and high-performance capillary electrophoresis (HPCE). Isoelectric focusing revealed charge microheterogeneity for isoforms II and IV whereas arginases I and II had the same pI value of 5.8. HPCE separation confirmed this charge microheterogeneity for isoform IV but not for isoform III, and provided evidence of microheterogeneity for isoforms I and II. The effect of various electrolyte buffers and running conditions on the HPCE separation of arginase isoform were investigated. Addition of 0.5 mM spermidine (SPD) to the running buffer reduced the electroosmotic flow (EOF) and permitted discriminating between the native proteins and protein fragments.

  19. A novel isoform of the human mitochondrial complex I subunit NDUFV3.

    PubMed

    Dibley, Marris G; Ryan, Michael T; Stroud, David A

    2017-01-01

    Human mitochondrial complex I is the first enzyme of the mitochondrial respiratory chain. Complex I is composed of 45 subunits, seven encoded by mitochondrial DNA, while the remainder are encoded by nuclear DNA. All nuclear-encoded subunits are thought to be expressed as a single isoform. Here we reveal subunit NDUFV3 to be present in both the canonical 10 kDa and a novel 50 kDa isoform, generated through alternative splicing. Both isoforms assemble into complex I and their levels vary in different tissues. While the 50 kDa isoform appears to be dominant in HEK293T cells, we find either isoform alone is sufficient for assembly of mature complex I. NDUFV3 represents the first known complex I subunit present in two functional isoforms. © 2016 Federation of European Biochemical Societies.

  20. Evolutionary, environmental and tissue controls on the occurrence of multiple isoforms of acyl carrier protein

    SciTech Connect

    Battey, J.F.; Ohlrogge, J.B. )

    1989-04-01

    Previous research has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP). We have examined the development of this trait in evolutionarily diverse species. Isoforms were resolved by Western blotting and native PAGE of {sup 3}H-palmitate labelled ACP's. Multiple isoforms of ACP were observed in primitive vascular plants including gymnosperms, ferns and Psilotum and the nonvascular liverworts and mosses. Therefore, the development of ACP isoforms occurred early in evolution. However, unicellular algae and bacteria such as Chlamydomonas, Dunaliella, Synechocystis and Agmnellum have only a single electrophoretic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants. We have also examined light and tissue control over the expression of ACP isoforms. The expression of multiple forms of ACP in leaf of Spinacia and Avena is altered very little by light. Rather, the different patterns of ACP isoforms are primarily dependant on tissue source.

  1. Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster.

    PubMed

    Meyer, S; Schulz, J; Jeibmann, A; Taleshi, M S; Ebert, F; Francesconi, K A; Schwerdtle, T

    2014-11-01

    Arsenic-containing hydrocarbons (AsHC) constitute one group of arsenolipids that have been identified in seafood. In this first in vivo toxicity study for AsHCs, we show that AsHCs exert toxic effects in Drosophila melanogaster in a concentration range similar to that of arsenite. In contrast to arsenite, however, AsHCs cause developmental toxicity in the late developmental stages of Drosophila melanogaster. This work illustrates the need for a full characterisation of the toxicity of AsHCs in experimental animals to finally assess the risk to human health related to the presence of arsenolipids in seafood.

  2. Solvent dimethylsulfoxide (DMSO) does not induce aneuploidy in oocytes of Drosophila melanogaster

    SciTech Connect

    Traut, H.

    1983-01-01

    Both with a conventional method and with the ''aneuploidy pattern method'' the authors tested whether the solvent dimethylsulfoxide (DMSO) is able to induce aneuploidy (numerical chromosome aberrations) in oocytes of Drosophila melanogaster. DMSO was fed as a 2% solution to Drosophila females. No evidence for a mutagenic activity was obtained. This finding and the negative results reported by other authors for other types of mutation in Drosophila show that DMSO can be used as a solvent for chemical agents in mutagencity screening in Drosophila melanogaster.

  3. Expression of CD44 isoforms in renal cell tumors. Positive correlation to tumor differentiation.

    PubMed Central

    Terpe, H. J.; Störkel, S.; Zimmer, U.; Anquez, V.; Fischer, C.; Pantel, K.; Günthert, U.

    1996-01-01

    CD44 isoforms have been implicated in tumor progression and embryogenesis. Primary renal cell tumors (n = 100) of various histopathological differentiation and grading stages were analyzed for expression of CD44 isoforms in comparison with nonmalignant adult and fetal renal tissues. Evaluations were performed by immunohistochemistry using CD44 isoform-specific monoclonal antibodies and by reverse transcriptase polymerase chain reactions (RT-PCR). In the nonmalignant kidney no CD44 variant isoforms were detected. There was a significant increase in expression of CD44 standard (CD44s) and several variant isoforms (CD44v) in the course of tumor differentiation in clear cell carcinomas (n = 68) from stages G1 to G3 (P < 0.0001 for CD44s and isoforms containing CD44-6v, and P < 0.007 for those containing CD44-9v). Also, in chromophilic cell carcinomas (n = 13), CD44 isoform expression correlated with grading; ie, no CD44 expression was detected in G1 tumors, whereas in approximately 50% of the G2 tumors, CD44s, CD44-6v, and CD44-9v isoforms were present. Oncocytomas (n = 8), which are benign renal cell tumors, did not express CD44 isoforms, whereas invasive chromophobe cell carcinomas (n = 11) were positive for CD44s and CD44v isoforms. Transcript analyses by RT-PCR revealed that the upregulated isoforms in the carcinoma cells contained exons 8 to 10 and 3, 8 to 10 in combination from the variant region. In conclusion, expression of variant CD44 isoforms was strongly correlated with grading and appears to mediate a more aggressive phenotype to renal cell tumors. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8579108

  4. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC

    SciTech Connect

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera; Hofmann, Wilma A.

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.

  5. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton.

    PubMed

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness.

  6. Biogenic amine systems in the fruit fly Drosophila melanogaster.

    PubMed

    Monastirioti, M

    1999-04-15

    Biogenic amines are important neuroactive molecules of the central nervous system (CNS) of several insect species. Serotonin (5HT), dopamine (DA), histamine (HA), and octopamine (OA) are the amines which have been extensively studied in Drosophila melanogaster. Each one of the four aminergic neuronal systems exhibits a stereotypic pattern of a small number of neurons that are widely distributed in the fly CNS. In this review, histochemical and immunocytochemical data on the distribution of the amine neurons in the larval and adult nervous system, are summarized. The majority of DA and 5HT neurons are interneurons, most of which are found in bilateral clusters. 5HT innervation is found in the feeding apparatus as well as in the endocrine organ of the larva, the ring gland. The octopaminergic neuronal population consists of both interneurons and efferent neurons. In the larval CNS all OA immunoreactive somata are localized in the midline of the ventral ganglion while in the adult CNS both unpaired neurons and bilateral clusters of immunoreactive cells are observed. One target of OA innervation is the abdominal muscles of the larval body wall where OA immunoreactivity is associated with the type II boutons in the axonal terminals. Histamine is mainly found in all photoreceptor cells where it is considered to be the major neurotransmitter molecule, and in specific mechanosensory neurons of the peripheral nervous system. Similarities between specific aminergic neurons and innervation sites in Drosophila and in other insect species are discussed. In addition, studies on the development and differentiation of 5HT and DA neurons are reviewed and data on the localization of 5HT, DA, and OA receptors are included as well. Finally, an overview on the isolation of the genes and the mutations in the amine biosynthetic pathways is presented and the implications of the molecular genetic approach in Drosophila are discussed.

  7. Copper homoeostasis in Drosophila melanogaster S2 cells

    PubMed Central

    2004-01-01

    Copper homoeostasis was investigated in the Drosophila melanogaster S2 cell line to develop an insect model for the study of copper regulation. Real-time PCR studies have demonstrated expression in S2 cells of putative orthologues of human Cu regulatory genes involved in the uptake, transport, sequestration and efflux of Cu. Drosophila orthologues of the mammalian Cu chaperones, ATOX1 (a human orthologue of yeast ATX1), CCS (copper chaperone for superoxide dismutase), COX17 (a human orthologue of yeast COX17), and SCO1 and SCO2, did not significantly respond transcriptionally to increased Cu levels, whereas MtnA, MtnB and MtnD (Drosophila orthologues of human metallothioneins) were up-regulated by Cu in a time- and dose-dependent manner. To examine the effect on Cu homoeostasis, expression of several key copper homoeostasis genes was suppressed using double-stranded RNA interference. Suppression of the MTF-1 (metal-regulatory transcription factor 1), reduced both basal and Cu-induced gene expressions of MtnA, MtnB and MtnD, significantly reducing the tolerance of these cells to increased Cu. Suppression of either Ctr1A (a Drosophila orthologue of yeast CTR1) or Ctr1B significantly reduced Cu uptake from media, demonstrating that both these proteins function to transport Cu into S2 cells. Significantly, Cu induced Ctr1B gene expression, and this could be prevented by suppressing MTF-1, suggesting that Ctr1B might be involved in Cu detoxification. Suppression of DmATP7, the putative homologue of human Cu transporter genes ATP7A and ATP7B, significantly increased Cu accumulation, demonstrating that DmATP7 is essential for efflux of excess Cu. This work is consistent with previous studies in mammalian cells, validating S2 cells as a model system for studying Cu transport and identifying novel Cu regulatory mechanisms. PMID:15239669

  8. The Release 6 reference sequence of the Drosophila melanogaster genome.

    PubMed

    Hoskins, Roger A; Carlson, Joseph W; Wan, Kenneth H; Park, Soo; Mendez, Ivonne; Galle, Samuel E; Booth, Benjamin W; Pfeiffer, Barret D; George, Reed A; Svirskas, Robert; Krzywinski, Martin; Schein, Jacqueline; Accardo, Maria Carmela; Damia, Elisabetta; Messina, Giovanni; Méndez-Lago, María; de Pablos, Beatriz; Demakova, Olga V; Andreyeva, Evgeniya N; Boldyreva, Lidiya V; Marra, Marco; Carvalho, A Bernardo; Dimitri, Patrizio; Villasante, Alfredo; Zhimulev, Igor F; Rubin, Gerald M; Karpen, Gary H; Celniker, Susan E

    2015-03-01

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.

  9. The Release 6 reference sequence of the Drosophila melanogaster genome

    DOE PAGES

    Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.; ...

    2015-01-14

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less

  10. Calmodulin Affects Sensitization of Drosophila melanogaster Odorant Receptors.

    PubMed

    Mukunda, Latha; Miazzi, Fabio; Sargsyan, Vardanush; Hansson, Bill S; Wicher, Dieter

    2016-01-01

    Flying insects have developed a remarkably sensitive olfactory system to detect faint and turbulent odor traces. This ability is linked to the olfactory receptors class of odorant receptors (ORs), occurring exclusively in winged insects. ORs form heteromeric complexes of an odorant specific receptor protein (OrX) and a highly conserved co-receptor protein (Orco). The ORs form ligand gated ion channels that are tuned by intracellular signaling systems. Repetitive subthreshold odor stimulation of olfactory sensory neurons sensitizes insect ORs. This OR sensitization process requires Orco activity. In the present study we first asked whether OR sensitization can be monitored with heterologously expressed OR proteins. Using electrophysiological and calcium imaging methods we demonstrate that D. melanogaster OR proteins expressed in CHO cells show sensitization upon repeated weak stimulation. This was found for OR channels formed by Orco as well as by Or22a or Or56a and Orco. Moreover, we show that inhibition of calmodulin (CaM) action on OR proteins, expressed in CHO cells, abolishes any sensitization. Finally, we investigated the sensitization phenomenon using an ex vivo preparation of olfactory sensory neurons (OSNs) expressing Or22a inside the fly's antenna. Using calcium imaging, we observed sensitization in the dendrites as well as in the soma. Inhibition of calmodulin with W7 disrupted the sensitization within the outer dendritic shaft, whereas the sensitization remained in the other OSN compartments. Taken together, our results suggest that CaM action is involved in sensitizing the OR complex and that this mechanisms accounts for the sensitization in the outer dendrites, whereas further mechanisms contribute to the sensitization observed in the other OSN compartments. The use of heterologously expressed OR proteins appears to be suitable for further investigations on the mechanistic basis of OR sensitization, while investigations on native neurons are required

  11. Genome-wide association study of sleep in Drosophila melanogaster

    PubMed Central

    2013-01-01

    Background Sleep is a highly conserved behavior, yet its duration and pattern vary extensively among species and between individuals within species. The genetic basis of natural variation in sleep remains unknown. Results We used the Drosophila Genetic Reference Panel (DGRP) to perform a genome-wide association (GWA) study of sleep in D. melanogaster. We identified candidate single nucleotide polymorphisms (SNPs) associated with differences in the mean as well as the environmental sensitivity of sleep traits; these SNPs typically had sex-specific or sex-biased effects, and were generally located in non-coding regions. The majority of SNPs (80.3%) affecting sleep were at low frequency and had moderately large effects. Additive models incorporating multiple SNPs explained as much as 55% of the genetic variance for sleep in males and females. Many of these loci are known to interact physically and/or genetically, enabling us to place them in candidate genetic networks. We confirmed the role of seven novel loci on sleep using insertional mutagenesis and RNA interference. Conclusions We identified many SNPs in novel loci that are potentially associated with natural variation in sleep, as well as SNPs within genes previously known to affect Drosophila sleep. Several of the candidate genes have human homologues that were identified in studies of human sleep, suggesting that genes affecting variation in sleep are conserved across species. Our discovery of genetic variants that influence environmental sensitivity to sleep may have a wider application to all GWA studies, because individuals with highly plastic genotypes will not have consistent phenotypes. PMID:23617951

  12. Population and sex differences in Drosophila melanogaster brain gene expression.

    PubMed

    Catalán, Ana; Hutter, Stephan; Parsch, John

    2012-11-21

    Changes in gene regulation are thought to be crucial for the adaptation of organisms to their environment. Transcriptome analyses can be used to identify candidate genes for ecological adaptation, but can be complicated by variation in gene expression between tissues, sexes, or individuals. Here we use high-throughput RNA sequencing of a single Drosophila melanogaster tissue to detect brain-specific differences in gene expression between the sexes and between two populations, one from the ancestral species range in sub-Saharan Africa and one from the recently colonized species range in Europe. Relatively few genes (<100) displayed sexually dimorphic expression in the brain, but there was an enrichment of sex-biased genes, especially male-biased genes, on the X chromosome. Over 340 genes differed in brain expression between flies from the African and European populations, with the inter-population divergence being highly correlated between males and females. The differentially expressed genes included those involved in stress response, olfaction, and detoxification. Expression differences were associated with transposable element insertions at two genes implicated in insecticide resistance (Cyp6g1 and CHKov1). Analysis of the brain transcriptome revealed many genes differing in expression between populations that were not detected in previous studies using whole flies. There was little evidence for sex-specific regulatory adaptation in the brain, as most expression differences between populations were observed in both males and females. The enrichment of genes with sexually dimorphic expression on the X chromosome is consistent with dosage compensation mechanisms affecting sex-biased expression in somatic tissues.

  13. Quantification of Histamine and Carcinine in Drosophila melanogaster Tissues.

    PubMed

    Denno, Madelaine E; Privman, Eve; Borman, Ryan P; Wolin, Danielle C; Venton, B Jill

    2016-03-16

    Histamine is a neurotransmitter crucial to the visual processing of Drosophila melanogaster. It is inactivated by metabolism to carcinine, a β-alanyl derivative, and the same enzyme that controls that process also converts dopamine to N-β-alanyl-dopamine. Direct detection of histamine and carcinine has not been reported in single Drosophila brains. Here, we quantify histamine, carcinine, dopamine, and N-β-alanyl-dopamine in Drosophila tissues by capillary electrophoresis coupled to fast-scan cyclic voltammetry (CE-FSCV). Limits of detection were low, 4 ± 1 pg for histamine, 10 ± 4 pg for carcinine, 2.8 ± 0.3 pg for dopamine, and 9 ± 3 pg for N-β-alanyl-dopamine. Tissue content was compared in the brain, eyes, and cuticle from wild-type (Canton S) and mutant (tan(3) and ebony(1)) strains. In tan(3) mutants, the enzyme that produces histamine from carcinine is nonfunctional, whereas in ebony(1) mutants, the enzyme that produces carcinine from histamine is nonfunctional. In all fly strains, the neurotransmitter content was highest in the eyes and there were no strain differences for tissue content in the cuticle. The main finding was that carcinine levels changed significantly in the mutant flies, whereas histamine levels did not. In particular, tan(3) flies had significantly higher carcinine levels in the eyes and brain than Canton S or ebony(1) flies. N-β-Alanyl-dopamine was detected in tan(3) mutants but not in other strains. These results show the utility of CE-FSCV for sensitive detection of histamine and carcinine, which allows a better understanding of their content and metabolism in different types of tissues to be obtained.

  14. Sexually antagonistic cytonuclear fitness interactions in Drosophila melanogaster.

    PubMed Central

    Rand, D M; Clark, A G; Kann, L M

    2001-01-01

    Theoretical and empirical studies have shown that selection cannot maintain a joint nuclear-cytoplasmic polymorphism within a population except under restrictive conditions of frequency-dependent or sex-specific selection. These conclusions are based on fitness interactions between a diploid autosomal locus and a haploid cytoplasmic locus. We develop a model of joint transmission of X chromosomes and cytoplasms and through simulation show that nuclear-cytoplasmic polymorphisms can be maintained by selection on X-cytoplasm interactions. We test aspects of the model with a "diallel" experiment analyzing fitness interactions between pairwise combinations of X chromosomes and cytoplasms from wild strains of Drosophila melanogaster. Contrary to earlier autosomal studies, significant fitness interactions between X chromosomes and cytoplasms are detected among strains from within populations. The experiment further demonstrates significant sex-by-genotype interactions for mtDNA haplotype, cytoplasms, and X chromosomes. These interactions are sexually antagonistic--i.e., the "good" cytoplasms in females are "bad" in males--analogous to crossing reaction norms. The presence or absence of Wolbachia did not alter the significance of the fitness effects involving X chromosomes and cytoplasms but tended to reduce the significance of mtDNA fitness effects. The negative fitness correlations between the sexes demonstrated in our empirical study are consistent with the conditions that maintain cytoplasmic polymorphism in simulations. Our results suggest that fitness interactions with the sex chromosomes may account for some proportion of cytoplasmic variation in natural populations. Sexually antagonistic selection or reciprocally matched fitness effects of nuclear-cytoplasmic genotypes may be important components of cytonuclear fitness variation and have implications for mitochondrial disease phenotypes that differ between the sexes. PMID:11560895

  15. Female mediation of competitive fertilization success in Drosophila melanogaster

    PubMed Central

    Lüpold, Stefan; Pitnick, Scott; Berben, Kirstin S.; Blengini, Cecilia S.; Belote, John M.; Manier, Mollie K.

    2013-01-01

    How females store and use sperm after remating can generate postcopulatory sexual selection on male ejaculate traits. Variation in ejaculate performance traits generally is thought to be intrinsic to males but is likely to interact with the environment in which sperm compete (e.g., the female reproductive tract). Our understanding of female contributions to competitive fertilization success is limited, however, in part because of the challenges involved in observing events within the reproductive tract of internally fertilizing species while discriminating among sperm from competing males. Here, we used females from crosses among isogenic lines of Drosophila melanogaster, each mated to two genetically standardized males (the first with green- and the second with red-tagged sperm heads) to demonstrate heritable variation in female remating interval, progeny production rate, sperm-storage organ morphology, and a number of sperm performance, storage, and handling traits. We then used multivariate analyses to examine relationships between this female-mediated variation and competitive paternity. In particular, the timing of female ejection of excess second-male and displaced first-male sperm was genetically variable and, by terminating the process of sperm displacement, significantly influenced the relative numbers of sperm from each male competing for fertilization, and consequently biased paternity. Our results demonstrate that females do not simply provide a static arena for sperm competition but rather play an active and pivotal role in postcopulatory processes. Resolving the adaptive significance of genetic variation in female-mediated mechanisms of sperm handling is critical for understanding sexual selection, sexual conflict, and the coevolution of male and female reproductive traits. PMID:23757499

  16. The Many Landscapes of Recombination in Drosophila melanogaster

    PubMed Central

    Comeron, Josep M.; Ratnappan, Ramesh; Bailin, Samuel

    2012-01-01

    Recombination is a fundamental biological process with profound evolutionary implications. Theory predicts that recombination increases the effectiveness of selection in natural populations. Yet, direct tests of this prediction have been restricted to qualitative trends due to the lack of detailed characterization of recombination rate variation across genomes and within species. The use of imprecise recombination rates can also skew population genetic analyses designed to assess the presence and mode of selection across genomes. Here we report the first integrated high-resolution description of genomic and population variation in recombination, which also distinguishes between the two outcomes of meiotic recombination: crossing over (CO) and gene conversion (GC). We characterized the products of 5,860 female meioses in Drosophila melanogaster by genotyping a total of 139 million informative SNPs and mapped 106,964 recombination events at a resolution down to 2 kilobases. This approach allowed us to generate whole-genome CO and GC maps as well as a detailed description of variation in recombination among individuals of this species. We describe many levels of variation in recombination rates. At a large-scale (100 kb), CO rates exhibit extreme and highly punctuated variation along chromosomes, with hot and coldspots. We also show extensive intra-specific variation in CO landscapes that is associated with hotspots at low frequency in our sample. GC rates are more uniformly distributed across the genome than CO rates and detectable in regions with reduced or absent CO. At a local scale, recombination events are associated with numerous sequence motifs and tend to occur within transcript regions, thus suggesting that chromatin accessibility favors double-strand breaks. All these non-independent layers of variation in recombination across genomes and among individuals need to be taken into account in order to obtain relevant estimates of recombination rates, and should

  17. Transcriptional networks for alcohol sensitivity in Drosophila melanogaster.

    PubMed

    Morozova, Tatiana V; Mackay, Trudy F C; Anholt, Robert R H

    2011-04-01

    Understanding the genetic architecture of polygenic traits requires investigating how complex networks of interacting molecules mediate the effect of genetic variation on organismal phenotypes. We used a combination of P-element mutagenesis and analysis of natural variation in gene expression to predict transcriptional networks that underlie alcohol sensitivity in Drosophila melanogaster. We identified 139 unique P-element mutations (124 in genes) that affect sensitivity or resistance to alcohol exposure. Further analyses of nine of the lines showed that the P-elements affected expression levels of the tagged genes, and P-element excision resulted in phenotypic reversion. The majority of the mutations were in computationally predicted genes or genes with unexpected effects on alcohol phenotypes. Therefore we sought to understand the biological relationships among 21 of these genes by leveraging genetic correlations among genetically variable transcripts in wild-derived inbred lines to predict coregulated transcriptional networks. A total of 32 "hub" genes were common to two or more networks associated with the focal genes. We used RNAi-mediated inhibition of expression of focal genes and of hub genes connected to them in the network to confirm their effects on alcohol-related phenotypes. We then expanded the computational networks using the hub genes as foci and again validated network predictions. Iteration of this approach allows a stepwise expansion of the network with simultaneous functional validation. Although coregulated transcriptional networks do not provide information about causal relationships among their constituent transcripts, they provide a framework for subsequent functional studies on the genetic basis of alcohol sensitivity.

  18. Population and sex differences in Drosophila melanogaster brain gene expression

    PubMed Central

    2012-01-01

    Background Changes in gene regulation are thought to be crucial for the adaptation of organisms to their environment. Transcriptome analyses can be used to identify candidate genes for ecological adaptation, but can be complicated by variation in gene expression between tissues, sexes, or individuals. Here we use high-throughput RNA sequencing of a single Drosophila melanogaster tissue to detect brain-specific differences in gene expression between the sexes and between two populations, one from the ancestral species range in sub-Saharan Africa and one from the recently colonized species range in Europe. Results Relatively few genes (<100) displayed sexually dimorphic expression in the brain, but there was an enrichment of sex-biased genes, especially male-biased genes, on the X chromosome. Over 340 genes differed in brain expression between flies from the African and European populations, with the inter-population divergence being highly correlated between males and females. The differentially expressed genes included those involved in stress response, olfaction, and detoxification. Expression differences were associated with transposable element insertions at two genes implicated in insecticide resistance (Cyp6g1 and CHKov1). Conclusions Analysis of the brain transcriptome revealed many genes differing in expression between populations that were not detected in previous studies using whole flies. There was little evidence for sex-specific regulatory adaptation in the brain, as most expression differences between populations were observed in both males and females. The enrichment of genes with sexually dimorphic expression on the X chromosome is consistent with dosage compensation mechanisms affecting sex-biased expression in somatic tissues. PMID:23170910

  19. Genomic Variation in Natural Populations of Drosophila melanogaster

    PubMed Central

    Langley, Charles H.; Stevens, Kristian; Cardeno, Charis; Lee, Yuh Chwen G.; Schrider, Daniel R.; Pool, John E.; Langley, Sasha A.; Suarez, Charlyn; Corbett-Detig, Russell B.; Kolaczkowski, Bryan; Fang, Shu; Nista, Phillip M.; Holloway, Alisha K.; Kern, Andrew D.; Dewey, Colin N.; Song, Yun S.; Hahn, Matthew W.; Begun, David J.

    2012-01-01

    This report of independent genome sequences of two natural populations of Drosophila melanogaster (37 from North America and 6 from Africa) provides unique insight into forces shaping genomic polymorphism and divergence. Evidence of interactions between natural selection and genetic linkage is abundant not only in centromere- and telomere-proximal regions, but also throughout the euchromatic arms. Linkage disequilibrium, which decays within 1 kbp, exhibits a strong bias toward coupling of the more frequent alleles and provides a high-resolution map of recombination rate. The juxtaposition of population genetics statistics in small genomic windows with gene structures and chromatin states yields a rich, high-resolution annotation, including the following: (1) 5′- and 3′-UTRs are enriched for regions of reduced polymorphism relative to lineage-specific divergence; (2) exons overlap with windows of excess relative polymorphism; (3) epigenetic marks associated with active transcription initiation sites overlap with regions of reduced relative polymorphism and relatively reduced estimates of the rate of recombination; (4) the rate of adaptive nonsynonymous fixation increases with the rate of crossing over per base pair; and (5) both duplications and deletions are enriched near origins of replication and their density correlates negatively with the rate of crossing over. Available demographic models of X and autosome descent cannot account for the increased divergence on the X and loss of diversity associated with the out-of-Africa migration. Comparison of the variation among these genomes to variation among genomes from D. simulans suggests that many targets of directional selection are shared between these species. PMID:22673804

  20. Dominance of mutations affecting viability in Drosophila melanogaster.

    PubMed Centra