Science.gov

Sample records for melanoma cells promotes

  1. Mast cells promote melanoma colonization of lungs.

    PubMed

    Öhrvik, Helena; Grujic, Mirjana; Waern, Ida; Gustafson, Ann-Marie; Ernst, Nancy; Roers, Axel; Hartmann, Karin; Pejler, Gunnar

    2016-10-18

    Mast cells have been implicated in malignant processes, mainly through clinical correlative studies and by experiments performed using animals lacking mast cells due to defective c-kit signaling. However, mast cell-deficient mouse models based on c-kit defects have recently been questioned for their relevance. Here we addressed the effect of mast cells in a tumor setting by using transgenic Mcpt5-Cre+ R-DTA+ mice, in which the deficiency of mast cells is independent of c-kit defects. Melanoma cells (B16.F10) were administered either subcutaneously or intravenously into Mcpt5-Cre+ R-DTA+ mice or Mcpt5-Cre- R-DTA+ littermate controls, followed by the assessment of formed tumors. In the subcutaneous model, mast cells were abundant in the tumor stroma of control mice but were absent in Mcpt5-Cre+ R-DTA+ mice. However, the absence of mast cells did not affect tumor size. In contrast, after intravenous administration of B16.F10 cells, melanoma colonization of the lungs was markedly reduced in Mcpt5-Cre+ R-DTA+ vs. Mcpt5-Cre- R-DTA+ animals. Decreased melanoma colonization of the lungs in Mcpt5-Cre+ R-DTA+ animals was accompanied by increased inflammatory cell recruitment into the bronchoalveolar lavage fluid, suggesting that mast cells suppress inflammation in this setting. Further, qPCR analysis revealed significant alterations in the expression of Twist and E-cadherin in lungs of Mcpt5-Cre+ R-DTA+ vs. control Mcpt5-Cre- R-DTA+ animals, suggesting an impact of mast cells on epithelial-mesenchymal transition. In conclusion, this study reveals that mast cells promote melanoma colonization of the lung.

  2. Muc1 promotes migration and lung metastasis of melanoma cells

    PubMed Central

    Wang, Xiaoli; Lan, Hongwen; Li, Jun; Su, Yushu; Xu, Lijun

    2015-01-01

    Early stages of melanoma can be successfully treated by surgical resection of the tumor, but there is still no effective treatment once it is progressed to metastatic phases. Although growing family of both melanoma metastasis promoting and metastasis suppressor genes have been reported be related to metastasis, the molecular mechanisms governing melanoma metastatic cascade are still not completely understood. Therefore, defining the molecules that govern melanoma metastasis may aid the development of more effective therapeutic strategies for combating melanoma. In the present study, we found that muc1 is involved in the metastasis of melanoma cells and demonstrated that muc1 disruption impairs melanoma cells migration and metastasis. The requirement of muc1 in the migration of melanoma cells was further confirmed by gene silencing in vitro. In corresponding to this result, over-expression of muc1 significantly promoted the migratory of melanoma cells. Moreover, down-regulation of muc1 expression strikingly inhibits melanoma cellular metastasis in vivo. Finally, we found that muc1 promotes melanoma migration through the protein kinase B (Akt) signaling pathway. To conclude, our findings suggest a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma. PMID:26609470

  3. Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression

    PubMed Central

    Peppicelli, Silvia; Bianchini, Francesca; Toti, Alessandra; Laurenzana, Anna; Fibbi, Gabriella; Calorini, Lido

    2015-01-01

    Mesenchymal stem cells (MSC) participate to tumor stroma development and several evidence suggests that they play a role in facilitating cancer progression. Because melanoma often shows extracellular pH low enough to influence host cell as tumor cell behavior, the aim of this study is to elucidate whether acidity affects cross talk between MSC and melanoma cells to disclose new liaisons promoting melanoma progression, and to offer new therapeutic opportunities. We found that MSC grown in a low pH medium (LpH-MSC) stimulate melanoma xenografts more than MSC grown in a standard pH medium. LpH-MSC express a higher level of TGFβ that is instrumental of epithelial-to-mesenchymal transition (EMT)-like phenotype induction in melanoma cells. LpH-MSC profile also shows a switching to an oxidative phosphorylation metabolism that was accompanied by a forced glycolytic pathway of melanoma cells grown in LpH-MSC-conditioned medium. Metformin, an inhibitor of mitochondrial respiratory chain was able to reconvert oxidative metabolism and abrogate TGFβ expression in LpH-MSC. In addition, esomeprazole, a proton pump inhibitor activated in acidosis, blocked TGFβ expression in LpH-MSC through the downregulation of IkB. Both agents, metformin and esomeprazole, inhibited EMT profile in melanoma cells grown in LpH-MSC medium, and reduced glycolytic markers. Thus, acidosis of tumor microenvironment potentiates the pro-tumoral activity of MSC and orchestrates for a new potential symbiosis, which could be target to limit melanoma progression. PMID:26496168

  4. Subcutaneous adipocytes promote melanoma cell growth by activating the Akt signaling pathway: role of palmitic acid.

    PubMed

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-10-31

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt.

  5. Subcutaneous Adipocytes Promote Melanoma Cell Growth by Activating the Akt Signaling Pathway

    PubMed Central

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-01-01

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt. PMID:25228694

  6. MiR-769 promoted cell proliferation in human melanoma by suppressing GSK3B expression.

    PubMed

    Qiu, Hai-Jiang; Lu, Xiao-He; Yang, Sha-Sha; Weng, Chen-Yin; Zhang, E-Keng; Chen, Fang-Chao

    2016-08-01

    MicroRNAs (miRNAs) are short, non-coding RNAs with post-transcriptional regulatory function, playing crucial roles in cancer development and progression of human melanoma. Previous studies have indicated that miR-769 was implicated in diverse biological processes. However, the underlying mechanism of miR-769 in human melanoma has not been intensively investigated. In this present study, we aimed to investigate the role of miR-769 and its target genes in human melanoma. We found that miR-769 expression was strongly increased in human melanoma cells and clinical tissues compared with their corresponding controls. Overexpression of miR-769 promoted cell proliferation in human melanoma cell line A375, whereas miR-769-in reverses the function. Glycogen synthase kinase-3 Beta (GSK3B), a potential target gene of miR-769, and was validated by luciferase assay. Further studies revealed that miR-769 regulated cell proliferation of human melanoma by directly suppressing GSK3B expression and the knockdown of GSK3B expression reversed the effect of miR-769-in on human melanoma cell proliferation. In summary, our data demonstrated that miR-769 might act as a tumor promoter by targeting GSK3B during development of human melanoma.

  7. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

    PubMed

    Carpi, Sara; Fogli, Stefano; Polini, Beatrice; Montagnani, Valentina; Podestà, Adriano; Breschi, Maria Cristina; Romanini, Antonella; Stecca, Barbara; Nieri, Paola

    2017-04-01

    The role of endocannabinoid system in melanoma development and progression is actually not fully understood. This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma. CB1 receptor expression was measured in human melanoma cell lines by real-time PCR. A genetic deletion of CB1 receptors in selected melanoma cells was carried out by using three different short hairpin RNAs (shRNAs). Performance of target gene silencing was verified by real-time PCR and Western blot. The effects of CB1 receptor silencing on cell growth, clonogenicity, migration capability, cell cycle progression, and activation of mitogenic signals was tested. Lentiviral shRNAs vectors targeting different regions of the human CB1 gene led to a significant reduction in CB1 receptor mRNA and a near complete loss of CB1 receptor protein, compared to control vector (LV-c). The number of viable cells, the colony-forming ability and cell migration were significantly reduced in cells transduced with CB1 lentiviral shRNAs compared to LV-c. Cell cycle analyses showed arrest at G1/S phase. p-Akt and p-ERK expression were decreased in transduced versus control cells. Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma.

  8. DC-HIL-expressing myelomonocytic cells are critical promoters of melanoma growth.

    PubMed

    Chung, Jin-Sung; Tamura, Kyoichi; Cruz, Ponciano D; Ariizumi, Kiyoshi

    2014-11-01

    A major barrier to successful cancer immunotherapy is the tumor's ability to induce T-cell tolerance by exploiting host regulatory mechanisms. Having discovered the DC-HIL receptor, which inhibits T-cell responses by binding to syndecan-4 on effector T cells, we posited the DC-HIL/syndecan-4 pathway to have an important role in cancer promotion. Among DC-HIL(+) myelomonocytic cells, during growth of implanted mouse melanoma, CD11b(+)Gr1(+) cells were the most expanded population and the most potent at suppressing T-cell activation. Deletion of the DC-HIL gene or infusion of anti-DC-HIL mAb abrogated these cells' suppressor function and expansion, and markedly diminished melanoma growth and metastasis. IL-1β and IFN-γ were elevated in mice bearing melanoma, and concurrent exposure to both cytokines optimally induced DC-HIL expression by tumor-infiltrating CD11b(+)Gr1(+) cells. Ligation of DC-HIL transduced phosphorylation of its intracellular immunoreceptor tyrosine-based activation motif, which in turn induced intracellular expression of IFN-γ and inducible nitric oxide synthase (iNOS), known to mediate T-cell suppression by CD11b(+)Gr1(+) cells. Thus, DC-HIL is the critical mediator of these cells' suppressor function in melanoma-bearing mice and a potential target for improving melanoma immunotherapy.

  9. c-Abl and Arg are activated in human primary melanomas, promote melanoma cell invasion via distinct pathways, and drive metastatic progression.

    PubMed

    Ganguly, S S; Fiore, L S; Sims, J T; Friend, J W; Srinivasan, D; Thacker, M A; Cibull, M L; Wang, C; Novak, M; Kaetzel, D M; Plattner, R

    2012-04-05

    Despite 35 years of clinical trials, there is little improvement in 1-year survival rates for patients with metastatic melanoma, and the disease is essentially untreatable if not cured surgically. The paucity of chemotherapeutic agents that are effective for treating metastatic melanoma indicates a dire need to develop new therapies. Here, we found a previously unrecognized role for c-Abl and Arg in melanoma progression. We demonstrate that the kinase activities of c-Abl and Arg are elevated in primary melanomas (60%), in a subset of benign nevi (33%) and in some human melanoma cell lines. Using siRNA and pharmacological approaches, we show that c-Abl/Arg activation is functionally relevant because it is requiredfor melanoma cell proliferation, survival and invasion. Significantly, we identify the mechanism by which activated c-Abl promotes melanoma invasion by showing that it transcriptionally upregulates matrix metalloproteinase-1 (MMP-1), and using rescue approaches we demonstrate that c-Abl promotes invasion through a STAT3 → MMP-1 pathway. Additionally, we show that c-Abl and Arg are not merely redundant, as active Arg drives invasion in a STAT3-independent manner, and upregulates MMP-3 and MT1-MMP, in addition to MMP-1. Most importantly, c-Abl and Arg not only promote in vitro processes important for melanoma progression, but also promote metastasis in vivo, as inhibition of c-Abl/Arg kinase activity with the c-Abl/Arg inhibitor, nilotinib, dramatically inhibits metastasis in a mouse model. Taken together, these data identify c-Abl and Arg as critical, novel, drug targets in metastatic melanoma, and indicate that nilotinib may be useful in preventing metastasis in patients with melanomas harboring active c-Abl and Arg.

  10. Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells

    PubMed Central

    1986-01-01

    The active migration of tumor cells through extracellular matrices has been proposed to play a role in certain aspects of metastasis. Metastatic tumor cells migrate in vitro in response to substratum-bound adhesive glycoproteins such as fibronectin. The present studies use affinity-purified proteolytic fragments of fibronectin to determine the nature of adhesion- and/or motility-promoting domains within the protein. Two distinct fragments were identified with cell adhesion- promoting activities. By a number of criteria, the adhesive activity promoted by these two fragments was distinct. One fragment, a 75-kD tryptic fragment purified by monoclonal antibody chromatography, promoted the adhesion, spreading, and haptotactic motility of melanoma cells. Experiments using a synthetic cell attachment peptide in solution indicated that at least part of the attachment activity exhibited by the 75-kD fragment is mediated by the sequence arg-gly-asp- ser. It was not possible to demonstrate migration-stimulating activity using a small (11.5 kD) peptic fragment containing this sequence (Pierschbacher, M.D., E. G. Hayman, and E. Ruoslahti, 1981, Cell, 26:259-267) suggesting that another cell-binding activity within the 75 kD fragment distinct from arg-gly-asp-ser might be required for motility. The second fragment that stimulated melanoma adhesion was a 33-kD tryptic/catheptic carboxyl-terminal heparin-binding fragment, which is localized to the A chain of fibronectin. This fragment promotes adhesion and spreading but not the motility of these cells. Melanoma adhesion to this heparin-binding fragment was sensitive to the effects of cycloheximide, which contrasted adhesion to the haptotaxis- promoting fragment. Importantly, these studies illustrate that haptotaxis in response to fibronectin is not due to simple adhesion gradients of this protein. The results are discussed in light of a model for multiple distinct cell surface constituents mediating cell adhesion and motility on

  11. Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma.

    PubMed

    Lin, Xian; Sun, Baocun; Zhu, Dongwang; Zhao, Xiulan; Sun, Ran; Zhang, Yanhui; Zhang, Danfang; Dong, Xueyi; Gu, Qiang; Li, Yanlei; Liu, Fang

    2016-08-01

    Sphere formation in conditioned serum-free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor (tumorospheres) is considered useful for the enrichment of cancer stem-like cells, also known as tumor-initiating cells. We used a gene expression microarray to investigate the gene expression profile of melanoma cancer stem-like cells (MCSLCs). The results showed that MCSLCs highly expressed the following Notch signaling pathway molecules: Notch3 (NM_008716), Notch4 (NM_010929), Dtx4 (NM_172442), and JAG2 (NM_010588). Immunofluorescence staining showed tumorosphere cells highly expressed Notch4. Notch4(high) B16F10 cells were isolated by FACS, and Western blotting showed that high Notch4 expression is related to the expression of epithelial-mesenchymal transition (EMT)-associated proteins. Reduced invasive and migratory properties concomitant with the downregulation of the EMT markers Twist1, vimentin, and VE-cadherin and the overexpression of E-cadherin was observed in human melanoma A375 and MUM-2B cells. In these cells, Notch4 was also downregulated, both by Notch4 gene knockdown and by application of the γ-secretase inhibitor, DAPT. Mechanistically, the re-overexpression of Twist1 by the transfection of cells with a Twist1 expression plasmid led to an increase in VE-cadherin expression and a decrease in E-cadherin expression. Immunohistochemical analysis of 120 human melanoma tissues revealed a significant correlation between the high expression of Notch4 and the metastasis of melanoma. Taken together, our findings indicate that Notch4+ MCSLCs trigger EMT and promote the metastasis of melanoma cells.

  12. BRG1 promotes survival of UV-irradiated melanoma cells by cooperating with MITF to activate the melanoma inhibitor of apoptosis gene.

    PubMed

    Saladi, Srinivas V; Wong, Philip G; Trivedi, Archit R; Marathe, Himangi G; Keenen, Bridget; Aras, Shweta; Liew, Zi-Qi; Setaluri, Vijayasaradhi; de la Serna, Ivana L

    2013-05-01

    Microphthalmia-associated transcription factor (MITF) is a survival factor in melanocytes and melanoma cells. MITF regulates expression of antiapoptotic genes and promotes lineage-specific survival in response to ultraviolet (UV) radiation and to chemotherapeutics. SWI/SNF chromatin-remodeling enzymes interact with MITF to regulate MITF target gene expression. We determined that the catalytic subunit, BRG1, of the SWI/SNF complex protects melanoma cells against UV-induced death. BRG1 prevents apoptosis in UV-irradiated melanoma cells by activating expression of the melanoma inhibitor of apoptosis (ML-IAP). Down-regulation of ML-IAP compromises BRG1-mediated survival of melanoma cells in response to UV radiation. BRG1 regulates ML-IAP expression by cooperating with MITF to promote transcriptionally permissive chromatin structure on the ML-IAP promoter. The alternative catalytic subunit, BRM, and the BRG1-associated factor, BAF180, were found to be dispensable for elevated expression of ML-IAP in melanoma cells. Thus, we illuminate a lineage-specific mechanism by which a specific SWI/SNF subunit, BRG1, modulates the cellular response to DNA damage by regulating an antiapoptotic gene and implicate this subunit of the SWI/SNF complex in mediating the prosurvival function of MITF.

  13. Primary Tr1 cells from metastatic melanoma eliminate tumor-promoting macrophages through granzyme B- and perforin-dependent mechanisms.

    PubMed

    Yan, Hongxia; Zhang, Ping; Kong, Xue; Hou, Xianglian; Zhao, Li; Li, Tianhang; Yuan, Xiaozhou; Fu, Hongjun

    2017-04-01

    In malignant melanoma, tumor-associated macrophages play multiple roles in promoting tumor growth, such as inducing the transformation of melanocytes under ultraviolet irradiation, increasing angiogenesis in melanomas, and suppressing antitumor immunity. Because granzyme B- and perforin-expressing Tr1 cells could specifically eliminate antigen-presenting cells of myeloid origin, we examined whether Tr1 cells in melanoma could eliminate tumor-promoting macrophages and how the interaction between Tr1 cells and macrophages could affect the growth of melanoma cells. Tr1 cells were characterized by high interleukin 10 secretion and low Foxp3 expression and were enriched in the CD4(+)CD49b(+)LAG-3(+) T-cell fraction. Macrophages derived from peripheral blood monocytes in the presence of modified melanoma-conditioned media demonstrated tumor-promoting capacity, exemplified by improving the proliferation of cocultured A375 malignant melanoma cells. But when primary Tr1 cells were present in the macrophage-A375 coculture, the growth of A375 cells was abrogated. The conventional CD25(+) Treg cells, however, were unable to inhibit macrophage-mediated increase in tumor cell growth. Further analyses showed that Tr1 cells did not directly eliminate A375 cells, but mediated the killing of tumor-promoting macrophages through the secretion of granzyme B and perforin. The tumor-infiltrating interleukin 10(+)Foxp3(-)CD4(+) T cells expressed very low levels of granzyme B and perforin, possibly suggested the downregulation of Tr1 cytotoxic capacity in melanoma tumors. Together, these data demonstrated an antitumor function of Tr1 cells through the elimination of tumor-promoting macrophages, which was not shared by conventional Tregs.

  14. Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human melanoma cells

    PubMed Central

    Wilmott, James S.; Yan, Xu Guang; Liu, Xiao Ying; Luan, Qi; Guo, Su Tang; Jiang, Chen Chen; Tseng, Hsin-Yi; Scolyer, Richard A.; Jin, Lei; Zhang, Xu Dong

    2014-01-01

    Reduction in the expression of the anti-survival BH3-only proteins PUMA and Bim is associated with the pathogenesis of melanoma. However, we have found that the expression of the other BH3-only protein Noxa is commonly upregulated in melanoma cells, and that this is driven by oncogenic activation of MEK/ERK. Immunohistochemistry studies showed that Noxa was expressed at higher levels in melanomas than nevi. Moreover, the expression of Noxa was increased in metastatic compared to primary melanomas, and in thick primaries compared to thin primaries. Inhibition of oncogenic BRAFV600E or MEK downregulated Noxa, whereas activation of MEK/ERK caused its upregulation. In addition, introduction of BRAFV600E increased Noxa expression in melanocytes. Upregulation of Noxa was due to a transcriptional increase mediated by cAMP responsive element binding protein, activation of which was also increased by MEK/ERK signaling in melanoma cells. Significantly, Noxa appeared necessary for constitutive activation of autophagy, albeit at low levels, by MEK/ERK in melanoma cells. Furthermore, it was required for autophagy activation that delayed apoptosis in melanoma cells undergoing nutrient deprivation. These results reveal that oncogenic activation of MEK/ERK drives Noxa expression to promote autophagy, and suggest that Noxa has an indirect anti-apoptosis role in melanoma cells under nutrient starvation conditions. PMID:25365078

  15. Melanoma Cells Block PEDF Production in Fibroblasts to Induce the Tumor-Promoting Phenotype of Cancer-Associated Fibroblasts.

    PubMed

    Nwani, Nkechiyere G; Deguiz, Maria L; Jimenez, Benilde; Vinokour, Elena; Dubrovskyi, Oleksii; Ugolkov, Andrey; Mazar, Andrew P; Volpert, Olga V

    2016-04-15

    Loss of pigment epithelium-derived factor (PEDF, SERPINF1) in cancer cells is associated with poor prognosis and metastasis, but the contribution of stromal PEDF to cancer evolution is poorly understood. Therefore, we investigated the role of fibroblast-derived PEDF in melanoma progression. We demonstrate that normal dermal fibroblasts expressing high PEDF levels attenuated melanoma growth and angiogenesis in vivo, whereas PEDF-depleted fibroblasts exerted tumor-promoting effects. Accordingly, mice with global PEDF knockout were more susceptible to melanoma metastasis. We also demonstrate that normal fibroblasts in close contact with PEDF-null melanoma cells lost PEDF expression and tumor-suppressive properties. Further mechanistic investigations underlying the crosstalk between tumor and stromal cells revealed that melanoma cells produced PDGF-BB and TGFβ, which blocked PEDF production in fibroblasts. Notably, cancer-associated fibroblasts (CAF) isolated from patient-derived tumors expressed markedly low levels of PEDF. Treatment of patient CAF and TGFβ-treated normal fibroblasts with exogenous PEDF decreased the expression of CAF markers and restored PEDF expression. Finally, expression profiling of PEDF-depleted fibroblasts revealed induction of IL8, SERPINB2, hyaluronan synthase-2, and other genes associated with tumor promotion and metastasis. Collectively, our results demonstrate that PEDF maintains tumor-suppressive functions in fibroblasts to prevent CAF conversion and illustrate the mechanisms by which melanoma cells silence stromal PEDF to promote malignancy. Cancer Res; 76(8); 2265-76. ©2016 AACR.

  16. Promotion or suppression of experimental metastasis of B16 melanoma cells after oral administration of lapachol

    SciTech Connect

    Maeda, Masayo; Murakami, Manabu; Takegami, Tsutomu; Ota, Takahide

    2008-06-01

    Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] is a vitamin K antagonist with antitumor activity. The effect of lapachol on the experimental metastasis of murine B16BL6 melanoma cells was examined. A single oral administration of a high toxic dose of lapachol (80-100 mg/kg) 6 h before iv injection of tumor cells drastically promoted metastasis. This promotion of metastasis was also observed in T-cell-deficient mice and NK-suppressed mice. In vitro treatment of B16BL6 cells with lapachol promoted metastasis only slightly, indicating that lapachol promotes metastasis primarily by affecting host factors other than T cells and NK cells. A single oral administration of warfarin, the most commonly used vitamin K antagonist, 6 h before iv injection of tumor cells also drastically promoted the metastasis of B16BL6 cells. The promotion of metastasis by lapachol and warfarin was almost completely suppressed by preadministration of vitamin K3, indicating that the promotion of metastasis by lapachol was derived from vitamin K antagonism. Six hours after oral administration of lapachol or warfarin, the protein C level was reduced maximally, without elongation of prothrombin time. These observations suggest that a high toxic dose of lapachol promotes metastasis by inducing a hypercoagulable state as a result of vitamin K-dependent pathway inhibition. On the other hand, serial oral administration of low non-toxic doses of lapachol (5-20 mg/kg) weakly but significantly suppressed metastasis by an unknown mechanism, suggesting the possible use of lapachol as an anti-metastatic agent.

  17. Tyrosinase overexpression promotes ATM-dependent p53 phosphorylation by quercetin and sensitizes melanoma cells to dacarbazine.

    PubMed

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.

  18. Structure and regulation of the versican promoter: the versican promoter is regulated by AP-1 and TCF transcription factors in invasive human melanoma cells.

    PubMed

    Domenzain-Reyna, Clelia; Hernández, Daniel; Miquel-Serra, Laia; Docampo, María José; Badenas, Celia; Fabra, Angels; Bassols, Anna

    2009-05-01

    Versican is a large chondroitin sulfate proteoglycan of the extracellular matrix that is involved in a variety of cellular processes. We showed previously that versican, which is overexpressed in cutaneous melanomas as well as in premalignant lesions, contributes to melanoma progression, favoring the detachment of cells and the metastatic dissemination. Here, we investigated the transcriptional regulation of the versican promoter in melanoma cell lines with different levels of biological aggressiveness and stages of differentiation. We show that versican promoter up-regulation accounts for the differential expression levels of mRNA and protein detected in the invasive SK-mel-131 human melanoma cells. The activity of the versican promoter increased 5-fold in these cells in comparison with that measured in non-invasive MeWo melanoma cells. Several transcriptional regulatory elements were identified in the proximal promoter, including AP-1, Sp1, AP-2, and two TCF-4 sites. We show that promoter activation is mediated by the ERK/MAPK and JNK signaling pathways acting on the AP-1 site, suggesting that BRAF mutation present in SK-mel-131 cells impinge upon the up-regulation of the versican gene through signaling elicited by the ERK/MAPK pathway. This is the first time the AP-1 transcription factor family has been shown to be related to the regulation of versican expression. Furthermore, deletion of the TCF-4 binding sites caused a 60% decrease in the promoter activity in SK-mel-131 cells. These results showing that AP-1 and TCF-4 binding sites are the main regulatory regions directing versican production provide new insights into versican promoter regulation during melanoma progression.

  19. [Cytotoxicity of cytosine deaminase and herpes simplex virus thymidine kinase genes in melanoma cells is independent on promoter strength].

    PubMed

    Alekseenko, I V; Kuz'min, D V; Pleshkan, V V; Zinov'eva, M V; Sverdlov, E D

    2013-01-01

    In preparation of the therapeutic genetic constructs aimed to the gene-programmed enzymatic transformation of the non-toxic prodrug into toxin within cancer cells the right choice of regulatory elements (promoters and enhancers) is essential. This is widely accepted that the efficiency of the gene therapy constructions is dependent, in particular, on the strength of promoters driving the expression of the therapeutic genes. In this work we demonstrated, using the melanoma-specific promoters and enhancers of human melanoma inhibitory activity and mouse tyrosinase gene, that for the development of cytotoxic effect the promoter strength is not of primary importance. In the case of HSVtk, coding for the herpes simplex virus thymidine kinase, and FCU1, coding for cytosine deaminase/uracil phosphoribosyltransferase hybrid protein genes, their cytotoxic activity was determined by the quantity of the added prodrug.

  20. Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells

    PubMed Central

    Webster, Marie R.; Xu, Mai; Kinzler, Kathryn A.; Kaur, Amanpreet; Appleton, Jessica; O’Connell, Michael P.; Marchbank, Katie; Valiga, Alexander; Dang, Vanessa M.; Perego, Michela; Zhang, Gao; Slipicevic, Ana; Keeney, Frederick; Lehrmann, Elin; Wood, William; Becker, Kevin G.; Kossenkov, Andrew V.; Frederick, Dennie T.; Flaherty, Keith T.; Xu, Xiaowei; Herlyn, Meenhard; Murphy, Maureen E.; Weeraratna, Ashani T.

    2014-01-01

    We have previously shown that Wnt5A drives invasion in melanoma. We have also shown that Wnt5A promotes resistance to therapy designed to target the BRAFV600E mutation in melanoma. Here, we show that melanomas characterized by high levels of Wnt5A respond to therapeutic stress by increasing p21 and expressing classical markers of senescence, including positivity for senescence-associated β-galactosidase (SA-β-gal), senescence associated heterochromatic foci (SAHF), H3K9Me chromatin marks, and PML bodies. We find that despite this, these cells retain their ability to migrate and invade. Further, despite the expression of classic markers of senescence like SA-β-gal and SAHF, these Wnt5A-high cells are able to colonize the lungs in in vivo tail-vein colony forming assays. This clearly underscores the fact that these markers do not indicate true senescence in these cells, but instead an adaptive stress response that allows the cells to evade therapy and invade. Notably, silencing Wnt5A reduces expression of these markers and decreases invasiveness. The combined data point to Wnt5A as a master regulator of an adaptive stress response in melanoma, which may contribute to therapy resistance. PMID:25407936

  1. Transcriptional modulation using HDACi depsipeptide promotes immune cell-mediated tumor destruction of murine B16 melanoma.

    PubMed

    Murakami, Takashi; Sato, Atsuko; Chun, Nicole A L; Hara, Mayumi; Naito, Yuki; Kobayashi, Yukiko; Kano, Yasuhiko; Ohtsuki, Mamitaro; Furukawa, Yusuke; Kobayashi, Eiji

    2008-06-01

    With melanoma, as with many other malignancies, aberrant transcriptional repression is a hallmark of refractory cancer. To restore gene expression, use of a histone deacetylase inhibitor (HDACi) is expected to be effective. Our recent DNA micro-array analysis showed that the HDACi depsipeptide (FK228) significantly enhances gp100 antigen expression. Herein, we demonstrate that depsipeptide promotes tumor-specific T-cell-mediated killing of B16/F10 murine melanoma cells. First, by a quantitative assay of caspase-3/7 activity, a sublethal dose of depsipeptide was determined (ED50: 5 nM), in which p21(Waf1/Cip1) and Fas were sufficiently evoked concomitantly with histone H3 acetylation. Second, the sublethal dose of depsipeptide treatment with either a recombinant Fas ligand or tumor-specific T cells synergistically enhanced apoptotic cell death in B16/F10 cells in vitro. Furthermore, we found that depsipeptide increased levels of perforin in T cells. Finally, in vivo metastatic growth of B16/F10 in the lung was significantly inhibited by a combination of depsipeptide treatment and immune cell adoptive transfer from immunized mice using irradiated B16 cells and gp100-specific (Pmel-1) TCR transgenic mice (P<0.05, vs cell transfer alone). Consequently, employment of a transcriptional modulation strategy using HDACis might prove to be a useful pretreatment for human melanoma immunotherapy.

  2. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment.

    PubMed

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M; Hao, Hongying

    2016-07-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma.

  3. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.

    PubMed

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K; Ballestas, Mary E; Athar, Mohammad; Elmets, Craig A; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60-70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5-20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  4. ONCOGENIC BRAF(V600E) PROMOTES STROMAL CELL-MEDIATED IMMUNOSUPPRESSION VIA INDUCTION OF INTERLEUKIN-1 IN MELANOMA

    PubMed Central

    Khalili, Jahan S.; Liu, Shujuan; Rodríguez-Cruz, Tania G.; Whittington, Mayra; Wardell, Seth; Liu, Chengwen; Zhang, Minying; Cooper, Zachary A.; Frederick, Dennie T.; Li, Yufeng; Zhang, Min; Joseph, Richard W.; Bernatchez, Chantale; Ekmekcioglu, Suhendan; Grimm, Elizabeth; Radvanyi, Laszlo G.; Davis, Richard E.; Davies, Michael A.; Wargo, Jennifer A.; Hwu, Patrick; Lizée, Gregory

    2012-01-01

    Purpose In this study, we assessed the specific role of BRAF(V600E) signaling in modulating the expression of immune regulatory genes in melanoma, in addition to analyzing downstream induction of immune suppression by primary human melanoma tumor-associated fibroblasts (TAFs). Experimental Design Primary human melanocytes and melanoma cell lines were transduced to express WT or V600E forms of BRAF, followed by gene expression analysis. The BRAF(V600E) inhibitor vemurafenib was used to confirm targets in BRAF(V600E)-positive melanoma cell lines and in tumors from melanoma patients undergoing inhibitor treatment. TAF lines generated from melanoma patient biopsies were tested for their ability to inhibit the function of tumor antigen-specific T-cells, prior to and following treatment with BRAF(V600E)-upregulated immune modulators. Transcriptional analysis of treated TAFs was conducted to identify potential mediators of T-cell suppression. Results Expression of BRAF(V600E) induced transcription of IL-1α and IL-1β in melanocytes and melanoma cell lines. Furthermore, vemurafenib reduced the expression of IL-1 protein in melanoma cell lines and most notably in human tumor biopsies from 11 of 12 melanoma patients undergoing inhibitor treatment. Treatment of melanoma-patient-derived TAFs with IL-1α/β significantly enhanced their ability to suppress the proliferation and function of melanoma-specific cytotoxic T cells, and this inhibition was partially attributable to upregulation by IL-1 of COX-2 and the PD-1 ligands PD-L1 and PD-L2 in TAFs. Conclusions This study reveals a novel mechanism of immune suppression sensitive to BRAF(V600E) inhibition, and suggests that clinical blockade of IL-1 may benefit patients with BRAF wild-type tumors and potentially synergize with immunotherapeutic interventions. PMID:22850568

  5. Lymphadenectomy promotes tumor growth and cancer cell dissemination in the spontaneous RET mouse model of human uveal melanoma

    PubMed Central

    Pin, Yeo Kim; Khoo, Karen; Tham, Muly; Karwai, Tan; Hwee, Thiam Chung; Puaux, Anne-Laure; Cindy Phua, Meow Ling; Kato, Masashi

    2015-01-01

    Resection of infiltrated tumor-draining lymph nodes (TDLNs) is a standard practice for the treatment of several cancers including breast cancer and melanoma. However, many randomized prospective trials have failed to show convincing clinical benefits associated with LN removal and the role of TDLNs in cancer dissemination is poorly understood. Here, we found in a well-characterized spontaneous mouse model of uveal melanoma that the growth of the primary tumor was accompanied by increased lymphangiogenesis and cancer cell colonization in the LNs draining the eyes. But, unexpectedly, early resection of the TDLNs increased the growth of the primary tumor and associated blood vessels as well as promoted cancer cell survival and dissemination. These effects were accompanied by increased tumor cell proliferation and expression of phosphorylated AKT. Topical application of a broad anti-inflammatory agent, Tobradex, or an oral treatment with cyclooxygenase-2 specific inhibitor, Celecoxib, reversed tumor progression observed after complete lymphadenectomy. Our study confirms the importance of tumor homeostasis in cancer progression by showing the enhancing effects of TDLN removal on tumor growth and cancer cell dissemination, and suggests that TDLN resection may only be beneficial if used in combination with anti-inflammatory drugs such as Tobradex and Celecoxib. PMID:26575174

  6. B-1 cells promote immunosurveillance against murine melanoma in host absence of CCR5: new perspective in autologous vaccination therapy.

    PubMed

    Vivanco, Bruno C; Viana, Jacqueline D; Perez, Elisabeth C; Konno, Fabiana T C; Guereschi, Marcia G; Xander, Patricia; Keller, Alexandre C; Lopes, José D

    2014-11-01

    Autologous vaccination with tumor-primed dendritic cells increases immune response against tumor, which seems to be improved in host absence of CCR5. Because B-1 lymphocytes modulate the activity of different immune cells, we decided to study their influence in the resistance against murine B16F10 melanoma in a CCR5 deprived environment. Adoptive transfer of peritoneal B-1 CCR5(+/+) lymphocytes to CCR5(-/-) animals inhibited the establishment of lung metastasis and melanoma cell growth, in comparison to saline-treated CCR5(-/-) mice. In loco cell analysis demonstrated that the adoptive transfer of B-1 CCR5(+/+) lymphocytes to CCR5 deficient host was associated with a more intense influx of T CD8(+) to tumor site, indicating that the presence of CCR5(+/+) B-1 cells in the tumor environment induces the migration of T CD8 CCR5(-/-) cells to the implantation site. To corroborate this idea, CCR5(-/-) mice were injected with non B-1 peritoneal cells from wild type (WT) mice before B16F10 inoculation. In this regimen, CCR5(-/-) mice were not protected from tumor growth reinforcing the idea that, in host absence of CCR5, B-1 cells are essential to confer tumor resistance. This work indicates that, in the host absence of CCR5, naive B-1 cells may activate CD8T lymphocytes thereby promoting tumor resistance. Our results strongly suggest that autologous vaccination with B-1 lymphocytes in combination with CCR5 antagonists can be an alternative approach to tumor therapy.

  7. Promotion of melanoma cell invasion and tumor metastasis by microcystin-LR via phosphatidylinositol 3-kinase/AKT pathway.

    PubMed

    Xu, Pengfei; Zhang, Xu-Xiang; Miao, Chen; Fu, Ziyi; Li, Zhengrong; Zhang, Gen; Zheng, Maqing; Liu, Yuefang; Yang, Liuyan; Wang, Ting

    2013-08-06

    Recently, we have indicated that microcystin-LR, a cyanobacterial toxin produced in eutrophic lakes or reservoirs, can increase invasive ability of melanoma MDA-MB-435 cells; however, the stimulatory effect needs identification by in vivo experiment and the related molecular mechanism is poorly understood. In this study, in vitro and in vivo experiments were conducted to investigate the effect of microcystin-LR on invasion and metastasis of human melanoma cells, and the underlying molecular mechanism was also explored. MDA-MB-435 xenograft model assay showed that oral administration of nude mice with microcystin-LR at 0.001-0.1 mg/kg/d posed no significant effect on tumor weight. Histological examination demonstrated that microcystin-LR could promote lung metastasis, which is confirmed by Matrigel chamber assay suggesting that microcystin-LR treatment at 25 nM can increase the invasiveness of MDA-MB-435 cells. In vitro and in vivo experiments consistently showed that microcystin-LR exposure increased mRNA and protein levels of matrix metalloproteinases (MMP-2/-9) by activating phosphatidylinositol 3-kinase (PI3-K)/AKT. Additionally, microcystin-LR treatment at low doses (≤25 nM) decreased lipid phosphatase PTEN expression, and the microcystin-induced invasiveness enhancement and MMP-2/-9 overexpression were reversed by the PI3-K/AKT chemical inhibitor LY294002 and AKT siRNA, indicating that microcystin-LR promotes invasion and metastasis of MDA-MB-435 cells via the PI3-K/AKT pathway.

  8. Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells.

    PubMed

    Poindexter, Kevin M; Matthew, Susanne; Aronchik, Ida; Firestone, Gary L

    2016-04-01

    Antiproliferative signaling of combinations of the nonsteroidal anti-inflammatory drug acetylsalicylic acid (aspirin) and indole-3-carbinol (I3C), a natural indolecarbinol compound derived from cruciferous vegetables, was investigated in human melanoma cells. Melanoma cell lines with distinct mutational profiles were sensitive to different extents to the antiproliferative response of aspirin, with oncogenic BRAF-expressing G361 cells and wild-type BRAF-expressing SK-MEL-30 cells being the most responsive. I3C triggered a strong proliferative arrest of G361 melanoma cells and caused only a modest decrease in the proliferation of SK-MEL-30 cells. In both cell lines, combinations of aspirin and I3C cooperatively arrested cell proliferation and induced a G1 cell cycle arrest, and nearly ablated protein and transcript levels of the melanocyte master regulator microphthalmia-associated transcription factor isoform M (MITF-M). In melanoma cells transfected with a -333/+120-bp MITF-M promoter-luciferase reporter plasmid, treatment with aspirin and I3C cooperatively disrupted MITF-M promoter activity, which accounted for the loss of MITF-M gene products. Mutational analysis revealed that the aspirin required the LEF1 binding site, whereas I3C required the BRN2 binding site to mediate their combined and individual effects on MITF-M promoter activity. Consistent with LEF1 being a downstream effector of Wnt signaling, aspirin, but not I3C, downregulated protein levels of the Wnt co-receptor LDL receptor-related protein-6 and β-catenin and upregulated the β-catenin destruction complex component Axin. Taken together, our results demonstrate that aspirin-regulated Wnt signaling and I3C-targeted signaling pathways converge at distinct DNA elements in the MITF-M promoter to cooperatively disrupt MITF-M expression and melanoma cell proliferation.

  9. TERT promoter mutations in melanoma survival.

    PubMed

    Nagore, Eduardo; Heidenreich, Barbara; Rachakonda, Sívaramakrishna; Garcia-Casado, Zaida; Requena, Celia; Soriano, Virtudes; Frank, Christoph; Traves, Victor; Quecedo, Esther; Sanjuan-Gimenez, Josefa; Hemminki, Kari; Landi, Maria Teresa; Kumar, Rajiv

    2016-07-01

    Despite advances in targeted therapies, the treatment of advanced melanoma remains an exercise in disease management, hence a need for biomarkers for identification of at-risk primary melanoma patients. In this study, we aimed to assess the prognostic value of TERT promoter mutations in primary melanomas. Tumors from 300 patients with stage I/II melanoma were sequenced for TERT promoter and BRAF/NRAS mutations. Cumulative curves were drawn for patients with and without mutations with progression-free and melanoma-specific survival as outcomes. Cox proportional hazard regression models were used to determine the effect of the mutations on survivals. Individually, presence of TERT promoter and BRAF/NRAS mutations associated with poor disease-free and melanoma-specific survival with modification of the effect by the rs2853669 polymorphism within the TERT promoter. Hazard ratio (HR) for simultaneous occurrence of TERT promoter and BRAF/NRAS mutations for disease-free survival was 2.3 (95% CI 1.2-4.4) and for melanoma-specific survival 5.8 (95% CI 1.9-18.3). The effect of the mutations on melanoma-specific survival in noncarriers of variant allele of the polymorphism was significant (HR 4.5, 95% CI 1.4-15.2) but could not be calculated for the carriers due to low number of events. The variant allele per se showed association with increased survival (HR 0.3, 95% CI 0.1-0.9). The data in this study provide preliminary evidence that TERT promoter mutations in combination with BRAF/NRAS mutations can be used to identify patients at risk of aggressive disease and the possibility of refinement of the classification with inclusion of the rs2853669 polymorphism within TERT promoter.

  10. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis

    PubMed Central

    Bracalente, Candelaria; Salguero, Noelia; Notcovich, Cintia; Müller, Carolina B.; da Motta, Leonardo L.; Klamt, Fabio; Ibañez, Irene L.; Durán, Hebe

    2016-01-01

    Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy. PMID:27206672

  11. Increase in melanin formation and promotion of cytotoxicity in cultured melanoma cells caused by phosphorylated isomers of L-dopa.

    PubMed

    Pawelek, J M; Murray, M

    1986-02-01

    A new class of compounds, termed "dopa phosphates," is described. The compounds contain phosphate ester linkages at positions 3 and/or 4 of the phenylalanine ring. Dopa phosphates are highly soluble compounds which are stable over a wide range of pH values and are not hydrolyzed by boiling in concentrated acid. Synthetic yields of greater than 90% can be obtained using dopa as starting material. Exposure to alkaline phosphatase results in hydrolysis of the phosphate moieties and production of dopa. Dopa phosphates do not inhibit dopa oxidase (tyrosinase, EC 1.14.18.1) activity. Dopa oxidase does not catalyze the conversion of dopa phosphates into melanin unless the dopa phosphates are first treated with alkaline phosphatase. Dopa phosphates, when compared to L-dopa, are stable in the presence of O2 and are not oxidized by serum proteins. In the presence of cultured melanoma cells, dopa phosphates are readily converted into melanin, indicating that the cells are able to produce dopa from dopa phosphates. At high concentrations, dopa phosphates are cytotoxic toward melanoma cells in culture. The cytotoxicity is enhanced at least 3-fold by pretreatment of cells with melanotropin and is prevented by phenylthiourea, an inhibitor of dopa oxidase activity. These results, combined with studies on the uptake of radioactive forms of dopa phosphates (32P and 14C), indicate that phosphorylated isomers of dopa are efficiently taken up by Cloudman melanoma cells and are readily converted by the cells into a melanin precursor, presumably L-dopa.

  12. Uveal melanoma cells utilize a novel route for transendothelial migration.

    PubMed

    Onken, Michael D; Li, Jinmei; Cooper, John A

    2014-01-01

    Uveal melanoma arises in the eye, and it spreads to distant organs in almost half of patients, leading to a fatal outcome. To metastasize, uveal melanoma cells must transmigrate into and out of the microvasculature, crossing the monolayer of endothelial cells that separates the vessel lumen from surrounding tissues. We investigated how human uveal melanoma cells cross the endothelial cell monolayer, using a cultured cell system with primary human endothelial cell monolayers on hydrogel substrates. We found that uveal melanoma cells transmigrate by a novel and unexpected mechanism. Uveal melanoma cells intercalate into the endothelial cell monolayer and flatten out, assuming a shape and geometry similar to those of endothelial cells in the monolayer. After an extended period of time in the intercalated state, the uveal melanoma cells round up and migrate underneath the monolayer. VCAM is present on endothelial cells, and anti-VCAM antibodies slowed the process of intercalation. Depletion of BAP1, a known suppressor of metastasis in patients, increased the amount of transmigration of uveal melanoma cells in transwell assays; but BAP1 depletion did not affect the rate of intercalation, based on movies of living cells. Our results reveal a novel route of transendothelial migration for uveal melanoma cells, and they provide insight into the mechanism by which loss of BAP1 promotes metastasis.

  13. Interleukin-10 promotes B16-melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation

    PubMed Central

    García-Hernández, M L; Hernández-Pando, R; Gariglio, P; Berumen, J

    2002-01-01

    The aim of this study was to investigate the mechanisms by which interleukin-10 (IL-10) induces tumour growth in a mouse-melanoma model. A B16-melanoma cell line (B16-0) was transfected with IL-10 cDNA and three clones that secreted high (B16-10), medium and low amounts of IL-10 were selected. Cell proliferation and IL-10 production were compared in vitro, and tumour growth, percentages of necrotic areas, tumour cells positive for proliferating cell nuclear antigen (PCNA), IL-10 receptor (IL-10R) and major histocompatibility complex type I (MHC-I) and II (MHC-II), as well as infiltration of macrophages, CD4+ and CD8+ lymphocytes and blood vessels were compared in vivo among IL-10-transfected and non-transfected tumours. Proliferation and tumour growth were greater for IL-10-transfected than for non-transfected cells (P < 0·001), and correlated with IL-10 concentration (r ≥ 0·79, P < 0·006). Percentages of tumour cells positive for PCNA and IL-10R were 4·4- and 16·7-fold higher, respectively, in B16-10 than in B16-0 tumours (P < 0·001). Macrophage distribution changed from a diffuse pattern in non-transfected (6·4 ± 1·7%) to a peripheral pattern in IL-10-transfected (3·8 ± 1·7%) tumours. The percentage of CD4+ lymphocytes was 7·6 times higher in B16-10 than in B16-0 tumours (P = 0·002). The expression of MHC-I molecules was present in all B16-0 tumour cells and completely negative in B16–10 tumour cells. In B16-0 tumours, 89 ± 4% of the whole tumour area was necrotic, whereas tumours produced by B16-10 cells showed only 4·3 ± 6% of necrotic areas. IL-10-transfected tumours had 17-fold more blood vessels than non-transfected tumours (61·8 ± 8% versus 3·5 ± 1·7% blood vessels/tumour; P < 0·001). All the effects induced by IL-10 were prevented in mice treated with a neutralizing anti-IL-10 monoclonal antibody. These data indicate that IL-10 could induce tumour growth in this B16-melanoma model by stimulation of tumour-cell proliferation

  14. Regulatory properties of statins and rho gtpases prenylation inhibitiors to stimulate melanoma immunogenicity and promote anti-melanoma immune response.

    PubMed

    Sarrabayrouse, Guillaume; Pich, Christine; Teiti, Iotefa; Tilkin-Mariame, Anne Françoise

    2017-02-15

    Melanoma is a highly lethal cutaneous tumor, killing affected patients through development of multiple poorly immunogenic metastases. Suboptimal activation of immune system by melanoma cells is often due to molecular modifications occurring during tumor progression that prevent efficient recognition of melanoma cells by immune effectors. Statins are HMG-CoA reductase inhibitors, which block the mevalonate synthesis pathway, used by millions of people as hypocholesterolemic agents in cardiovascular and cerebrovascular diseases. They are also known to inhibit Rho GTPase activation and Rho dependent signaling pathways. Rho GTPases are regarded as molecular switches that regulate a wide spectrum of cellular functions and their dysfunction has been characterized in various oncogenic process notably in melanoma progression. Moreover, these molecules can modulate the immune response. Since 10 years we have demonstrated that Statins and other Rho GTPases inhibitors are critical regulators of molecules involved in adaptive and innate anti-melanoma immune response. In this review we summarize our major observations demonstrating that these pharmacological agents stimulate melanoma immunogenicity and suggest a potential use of these molecules to promote anti-melanoma immune response.

  15. PTEN functions as a melanoma tumor suppressor by promoting host immune response.

    PubMed

    Dong, Y; Richards, J-Ae; Gupta, R; Aung, P P; Emley, A; Kluger, Y; Dogra, S K; Mahalingam, M; Wajapeyee, N

    2014-09-18

    Cancer cells acquire several traits that allow for their survival and progression, including the ability to evade the host immune response. However, the mechanisms by which cancer cells evade host immune responses remain largely elusive. Here we study the phenomena of immune evasion in malignant melanoma cells. We find that the tumor suppressor phosphatase and tensin homolog (PTEN) is an important regulator of the host immune response against melanoma cells. Mechanistically, PTEN represses the expression of immunosuppressive cytokines by blocking the phosphatidylinositide 3-kinase (PI3K) pathway. In melanoma cells lacking PTEN, signal transducer and activator of transcription 3 activates the transcription of immunosuppressive cytokines in a PI3K-dependent manner. Furthermore, conditioned media from PTEN-deficient, patient-derived short-term melanoma cultures and established melanoma cell lines blocked the production of the interleukin-12 (IL-12) in human monocyte-derived dendritic cells. Inhibition of IL-12 production was rescued by restoring PTEN or using neutralizing antibodies against the immunosuppressive cytokines. Furthermore, we report that PTEN, as an alternative mechanism to promote the host immune response against cancer cells, represses the expression of programmed cell death 1 ligand, a known repressor of the host immune response. Finally, to establish the clinical significance of our results, we analyzed malignant melanoma patient samples with or without brisk host responses. These analyses confirmed that PTEN loss is associated with a higher percentage of malignant melanoma samples with non-brisk host responses compared with samples with brisk host responses. Collectively, these results establish that PTEN functions as a melanoma tumor suppressor in part by regulating the host immune response against melanoma cells and highlight the importance of assessing PTEN status before recruiting melanoma patients for immunotherapies.

  16. Induction of exportin-5 expression during melanoma development supports the cellular behavior of human malignant melanoma cells

    PubMed Central

    Ott, Corinna Anna; Linck, Lisa; Kremmer, Elisabeth; Meister, Gunter; Bosserhoff, Anja Katrin

    2016-01-01

    Regulation of gene expression via microRNAs is known to promote the development of many types of cancer. In melanoma, miRNAs are globally up-regulated, and alterations of miRNA-processing enzymes have already been identified. However, mis-regulation of miRNA transport has not been analyzed in melanoma yet. We hypothesized that alterations in miRNA transport disrupt miRNA processing. Therefore, we investigated whether the pre-miRNA transporter Exportin-5 (XPO5) was involved in altered miRNA maturation and functional consequences in melanoma. We found that XPO5 is significantly over-expressed in melanoma compared with melanocytes. We showed enhanced XPO5 mRNA stability in melanoma cell lines which likely contributes to up-regulated XPO5 protein expression. In addition, we identified MEK signaling as a regulator of XPO5 expression in melanoma. Knockdown of XPO5 expression in melanoma cells led to decreased mature miRNA levels and drastic functional changes. Our data revealed that aberrant XPO5 expression is important for the maturation of miRNAs and the malignant behavior of melanoma cells. We suggest that the high abundance of XPO5 in melanoma leads to enhanced survival, proliferation and metastasis and thereby supports the aggressiveness of melanoma. PMID:27556702

  17. BPTF transduces MITF-driven prosurvival signals in melanoma cells.

    PubMed

    Dar, Altaf A; Majid, Shahana; Bezrookove, Vladimir; Phan, Binh; Ursu, Sarah; Nosrati, Mehdi; De Semir, David; Sagebiel, Richard W; Miller, James R; Debs, Robert; Cleaver, James E; Kashani-Sabet, Mohammed

    2016-05-31

    Microphthalmia-associated transcription factor (MITF) plays a critical and complex role in melanocyte transformation. Although several downstream targets of MITF action have been identified, the precise mechanisms by which MITF promotes melanocytic tumor progression are incompletely understood. Recent studies identified an oncogenic role for the bromodomain plant homeodomain finger transcription factor (BPTF) gene in melanoma progression, in part through activation of BCL2, a canonical target of MITF signaling. Analysis of the BPTF promoter identified a putative MITF-binding site, suggesting that MITF may regulate BPTF expression. Overexpression of MITF resulted in up-regulation of BPTF in a panel of melanoma and melanocyte cell lines. shRNA-mediated down-regulation of MITF in melanoma cells was accompanied by down-regulation of BPTF and BPTF-regulated genes (including BCL2) and resulted in reduced proliferative capacity of melanoma cells. The suppression of cell growth mediated by MITF silencing was rescued by overexpression of BPTF cDNA. Binding of MITF to the BPTF promoter was demonstrated using ChIP analysis. MITF overexpression resulted in direct transcriptional activation of BPTF, as evidenced by increased luciferase activity driven by the BPTF promoter. These results indicate that BPTF transduces key prosurvival signals driven by MITF, further supporting its important role in promoting melanoma cell survival and progression.

  18. BPTF transduces MITF-driven prosurvival signals in melanoma cells

    PubMed Central

    Dar, Altaf A.; Majid, Shahana; Bezrookove, Vladimir; Phan, Binh; Ursu, Sarah; Nosrati, Mehdi; De Semir, David; Sagebiel, Richard W.; Miller, James R.; Debs, Robert; Cleaver, James E.; Kashani-Sabet, Mohammed

    2016-01-01

    Microphthalmia-associated transcription factor (MITF) plays a critical and complex role in melanocyte transformation. Although several downstream targets of MITF action have been identified, the precise mechanisms by which MITF promotes melanocytic tumor progression are incompletely understood. Recent studies identified an oncogenic role for the bromodomain plant homeodomain finger transcription factor (BPTF) gene in melanoma progression, in part through activation of BCL2, a canonical target of MITF signaling. Analysis of the BPTF promoter identified a putative MITF-binding site, suggesting that MITF may regulate BPTF expression. Overexpression of MITF resulted in up-regulation of BPTF in a panel of melanoma and melanocyte cell lines. shRNA-mediated down-regulation of MITF in melanoma cells was accompanied by down-regulation of BPTF and BPTF-regulated genes (including BCL2) and resulted in reduced proliferative capacity of melanoma cells. The suppression of cell growth mediated by MITF silencing was rescued by overexpression of BPTF cDNA. Binding of MITF to the BPTF promoter was demonstrated using ChIP analysis. MITF overexpression resulted in direct transcriptional activation of BPTF, as evidenced by increased luciferase activity driven by the BPTF promoter. These results indicate that BPTF transduces key prosurvival signals driven by MITF, further supporting its important role in promoting melanoma cell survival and progression. PMID:27185926

  19. NLRP1 promotes tumor growth by enhancing inflammasome activation and suppressing apoptosis in metastatic melanoma.

    PubMed

    Zhai, Z; Liu, W; Kaur, M; Luo, Y; Domenico, J; Samson, J M; Shellman, Y G; Norris, D A; Dinarello, C A; Spritz, R A; Fujita, M

    2017-03-06

    Inflammasomes are mediators of inflammation, and constitutively activated NLRP3 inflammasomes have been linked to interleukin-1β (IL-1β)-mediated tumorigenesis in human melanoma. Whereas NLRP3 regulation of caspase-1 activation requires the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD (caspase recruitment domain)), caspase-1 activation by another danger-signaling sensor NLRP1 does not require ASC because NLRP1 contains a C-terminal CARD domain that facilitates direct caspase-1 activation via CARD-CARD interaction. We hypothesized that NLRP1 has additional biological activities besides IL-1β maturation and investigated its role in melanoma tumorigenesis. NLRP1 expression in melanoma was confirmed by analysis of 216 melanoma tumors and 13 human melanoma cell lines. Unlike monocytic THP-1 cells with prominent nuclear localization of NLRP1, melanoma cells expressed NLRP1 mainly in the cytoplasm. Knocking down NLRP1 revealed a tumor-promoting property of NLRP1 both in vitro and in vivo. Mechanistic studies showed that caspase-1 activity, IL-1β production, IL-1β secretion and nuclear factor-kB activity were reduced by knocking down of NLRP1 in human metastatic melanoma cell lines 1205Lu and HS294T, indicating that NLRP1 inflammasomes are active in metastatic melanoma. However, unlike previous reports showing that NLRP1 enhances pyroptosis in macrophages, NLRP1 in melanoma behaved differently in the context of cell death. Knocking down NLRP1 increased caspase-2, -9 and -3/7 activities and promoted apoptosis in human melanoma cells. Immunoprecipitation revealed interaction of NLRP1 with CARD-containing caspase-2 and -9, whereas NLRP3 lacking a CARD motif did not interact with the caspases. Consistent with these findings, NLRP1 activation but not NLRP3 activation reduced caspase-2, -9 and -3/7 activities and provided protection against apoptosis in human melanoma cells, suggesting a suppressive role of NLRP1 in caspase-3/7 activation

  20. Long Noncoding RNA PVT1 Promotes Melanoma Progression Via Endogenous Sponging MiR-26b.

    PubMed

    Wang, Bao-Juan; Ding, Hong-Wei; Ma, Guo-An

    2017-04-12

    Melanoma is an extremely aggressive and high mortality skin malignant tumor, and various long noncoding RNAs (lncRNAs)have been reported to be associated with the oncogenesis of melanoma. The purpose of this study is to investigate the potential roles of lncRNA PVT1 in melanoma progression and to explore the possible mechanisms. A total of 35 patients who were diagnosed as malignant melanoma were enrolled in this study. Expression of PVT1 was significantly up-regulated in melanoma tissue and associated with poor prognosis. Loss-of-function experiments showed that PVT1 knock-down markedly suppressed the proliferation activity, induced cell cycle arrest at G0/G1 phase, and enhanced the apoptosis of melanoma cell lines. Bioinformatics analysis and dual-luciferase reporter assay revealed that PVT1 directly bound to miR-26b, which had been verified as a tumor suppressor in melanoma. Moreover, further functional rescue experiments revealed that PVT1 knock-down could observably reverse the tumor-promoting role of miR-26b inhibitor. Overall, our study demonstrates the oncogenic role of PVT1 as a miR-26b sponge, possibly providing a novel therapeutic target for melanoma.

  1. Rnd3 Regulation of the Actin Cytoskeleton Promotes Melanoma Migration and Invasive Outgrowth in 3-D

    PubMed Central

    Klein, R. Matthew; Aplin, Andrew E.

    2009-01-01

    Depth of cell invasion into the dermis is a clinical determinant for poor prognosis in cutaneous melanoma. The signaling events that promote the switch from a non-invasive to invasive tumor phenotype remain obscure. Activating mutations in the serine/threonine kinase B-RAF are prevalent in melanoma. Mutant B-RAF is required for melanoma cell invasion. The expression of Rnd3, a Rho family GTPase, is regulated by mutant B-RAF, although its role in melanoma progression is unknown. In this study, we determined the functional contribution of Rnd3 to invasive melanoma. Endogenous Rnd3 was targeted for knockdown using a doxycyclineinducible shRNA system in invasive human melanoma cells. Depletion of Rnd3 promoted prominent actin stress fibers and enlarged focal adhesions. Mechanistically, stress fiber formation induced by Rnd3 knockdown required the specific involvement of RhoA and ROCK1/2 activity but not RhoB or RhoC. Rnd3 expression in human melanoma cell lines was strongly associated with elevated ERK phosphorylation and invasive behavior in a 3-D dermal-like environment. A functional role for Rnd3 was demonstrated in the invasive outgrowth of melanoma tumor spheroids. Knockdown of Rnd3 reduced invasive outgrowth of spheroids embedded in collagen gels. Additionally, Rnd3 depletion inhibited collective and border cell movement out from spheroids in a ROCK1/2-dependent manner. Collectively, these findings implicate Rnd3 as a major suppressor of RhoA mediated actin cytoskeletal organization and in the acquisition of an invasive melanoma phenotype. PMID:19244113

  2. [Melanoma immunotherapy: dendritic cell vaccines].

    PubMed

    Lozada-Requena, Ivan; Núñez, César; Aguilar, José Luis

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy. Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion of tumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diverse types of cancer in humans and animal models. However, given the low efficiency they have shown, we must implement strategies to enhance their natural capacity either through the coexpression of key molecules to activate or reactivate the immune system, in combination with biosimilars or chemotherapeutic drugs. The action of natural products as alternative or adjuvant immunostimulant should not be ruled out. All types of immunotherapy should measure the impact of myeloid suppressor cells, which can attack the immune system and help tumor progression, respectively. This can reduce the activity of cellular vaccines and/or their combinations, that could be the difference between success or not of the immunotherapy. Although for melanoma there exist biosimilars approved by the Food and Drug Administration (FDA), not all have the expected success. Therefore it is necessary to evaluate other strategies including cellular vaccines loaded with tumor antigenic peptides expressed exclusively or antigens from tumor extracts and their respective adjuvants.

  3. Differential PAX3 functions in normal skin melanocytes and melanoma cells

    SciTech Connect

    Medic, Sandra; Rizos, Helen; Ziman, Mel

    2011-08-12

    Highlights: {yields} PAX3 retains embryonic roles in adult melanocytes and melanoma cells. {yields} Promotes 'stem' cell-like phenotype via NES and SOX9 in both cells types. {yields} Regulates melanoma and melanocyte migration through MCAM and CSPG4. {yields} PAX3 regulates melanoma but not melanocyte proliferation via TPD52. {yields} Regulates melanoma cell (but not melanocyte) survival via BCL2L1 and PTEN. -- Abstract: The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if its function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as 'stem' cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated 'stem' cell like phenotype, PAX3 may contribute to melanoma development and progression.

  4. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma

    NASA Astrophysics Data System (ADS)

    Bald, Tobias; Quast, Thomas; Landsberg, Jennifer; Rogava, Meri; Glodde, Nicole; Lopez-Ramos, Dorys; Kohlmeyer, Judith; Riesenberg, Stefanie; van den Boorn-Konijnenberg, Debby; Hömig-Hölzel, Cornelia; Reuten, Raphael; Schadow, Benjamin; Weighardt, Heike; Wenzel, Daniela; Helfrich, Iris; Schadendorf, Dirk; Bloch, Wilhelm; Bianchi, Marco E.; Lugassy, Claire; Barnhill, Raymond L.; Koch, Manuel; Fleischmann, Bernd K.; Förster, Irmgard; Kastenmüller, Wolfgang; Kolanus, Waldemar; Hölzel, Michael; Gaffal, Evelyn; Tüting, Thomas

    2014-03-01

    Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere

  5. CD147 promotes melanoma progression through hypoxia-induced MMP2 activation.

    PubMed

    Zeng, W; Su, J; Wu, L; Yang, D; Long, T; Li, D; Kuang, Y; Li, J; Qi, M; Zhang, J; Chen, X

    2014-01-01

    Hypoxia enhances MMP2 expression and the invasion and metastatic potential of melanoma cells. CD147 has been shown to induce MMP2 in multiple cancers. To investigate the role of CD147 in hypoxiainduced MMP2 activation, we performed immunohistochemistry (IHC) staining in 206 normal and melanoma tissue samples, and analyzed the correlation between HIF1α and CD147. ChIP (chromosome Immunoprecipitation) in melanoma cell lines supports that HIF1α directly binds to CD147 promoter. Moreover, we made a series of deletion mutants of CD147 promoter, and identified a conserved HIF1α binding site. Point mutation in this site significantly decreased CD147 response to hypoxia. Importantly, knocking down CD147 attenuates MMP2 response to hypoxia in melanoma cell lines. MMP2 could not be efficiently activated by hypoxia in CD147 depletion cells. ELISA data showed that MMP2 secretion was reduced in CD147 depletion cells than control under hypoxia condition. To verify the data from cell culture model, we performed in vivo mouse xenograft experiment. IHC staining showed reduced MMP2 level in CD147 depleted xenografts compared to the control group, with the HIF1α level being comparable. Our study demonstrates a novel pathway mediated by CD147 to promote the MMP2 activation induced by hypoxia, and helps to understand the interplay between hypoxia and melanoma progression.

  6. Desmoglein 2 promotes vasculogenic mimicry in melanoma and is associated with poor clinical outcome

    PubMed Central

    Tan, Lih Yin; Mintoff, Chris; Johan, M. Zahied; Ebert, Brenton W.; Fedele, Clare; Zhang, You Fang; Szeto, Pacman; Sheppard, Karen E.; McArthur, Grant A.; Foster-Smith, Erwin; Ruszkiewicz, Andrew; Brown, Michael P.; Bonder, Claudine S.; Shackleton, Mark; Ebert, Lisa M.

    2016-01-01

    Tumors can develop a blood supply not only by promoting angiogenesis but also by forming vessel-like structures directly from tumor cells, known as vasculogenic mimicry (VM). Understanding mechanisms that regulate VM is important, as these might be exploitable to inhibit tumor progression. Here, we reveal the adhesion molecule desmoglein 2 (DSG2) as a novel mediator of VM in melanoma. Analysis of patient-derived melanoma cell lines and tumor tissues, and interrogation of The Cancer Genome Atlas (TCGA) data, revealed that DSG2 is frequently overexpressed in primary and metastatic melanomas compared to normal melanocytes. Notably, this overexpression was associated with poor clinical outcome. DSG2+ melanoma cells self-organized into tube-like structures on Matrigel, indicative of VM activity, which was inhibited by DSG2 knockdown or treatment with a DSG2-blocking peptide. Mechanistic studies revealed that DSG2 regulates adhesion and cell-cell interactions during tube formation, but does not control melanoma cell viability, proliferation or motility. Finally, analysis of patient tumors revealed a correlation between DSG2 expression, VM network density and expression of VM-associated genes. These studies identify DSG2 as a key regulator of VM activity in human melanoma and suggest this molecule might be therapeutically targeted to reduce tumor blood supply and metastatic spread. PMID:27340778

  7. Telomerase reverse transcriptase (TERT) promoter mutations in Korean melanoma patients.

    PubMed

    Roh, Mi Ryung; Park, Kyu-Hyun; Chung, Kee Yang; Shin, Sang Joon; Rha, Sun Young; Tsao, Hensin

    2017-01-01

    Telomerase reverse transcriptase (TERT) is the reverse transcriptase component of the telomeric complex, which synthesizes terminal DNA to protect chromosomal ends and to maintain genomic integrity. In melanoma, mutation in TERT promoter region is a common event and theses promoter variants have been shown to be associated with increased gene expression, decreased telomere length and poorer outcome. In this study, we determined the frequency of TERT promoter mutation in 88 Korean primary melanoma patients and aimed to see the association of TERT promoter mutation status to other major molecular features, such as BRAF, NRAS, KIT mutations and correlate with clinicopathological features. In our study, acral melanoma (n=46, 52.3%) was the most common type. Overall, TERT promoter mutation was observed in 15 cases (17%) with ten c. -124C>T altertions and five c. -146C>T alterations. None of our samples showed CC>TT mutation which is considered pathognomonic of UV induction. Among the 46 acral melanoma patients, 5 patients (10.9%) harbored TERT promoter mutation. Tumors with TERT promoter mutation showed significantly greater Breslow thickness compared to WT tumors (P=0.039). A combined analysis for the presence of TERT promoter and BRAF mutations showed that patients with both TERT promoter and BRAF mutation showed decreased survival compared with those with only TERT promoter mutation, only BRAF mutation, or without mutations in either TERT promoter or BRAF (P=0.035). Our data provides additional evidence that UV-induced TERT promoter mutation frequencies vary depending on melanoma subtype, but preserves its prognostic value.

  8. Telomerase reverse transcriptase (TERT) promoter mutations in Korean melanoma patients

    PubMed Central

    Roh, Mi Ryung; Park, Kyu-Hyun; Chung, Kee Yang; Shin, Sang Joon; Rha, Sun Young; Tsao, Hensin

    2017-01-01

    Telomerase reverse transcriptase (TERT) is the reverse transcriptase component of the telomeric complex, which synthesizes terminal DNA to protect chromosomal ends and to maintain genomic integrity. In melanoma, mutation in TERT promoter region is a common event and theses promoter variants have been shown to be associated with increased gene expression, decreased telomere length and poorer outcome. In this study, we determined the frequency of TERT promoter mutation in 88 Korean primary melanoma patients and aimed to see the association of TERT promoter mutation status to other major molecular features, such as BRAF, NRAS, KIT mutations and correlate with clinicopathological features. In our study, acral melanoma (n=46, 52.3%) was the most common type. Overall, TERT promoter mutation was observed in 15 cases (17%) with ten c. -124C>T altertions and five c. -146C>T alterations. None of our samples showed CC>TT mutation which is considered pathognomonic of UV induction. Among the 46 acral melanoma patients, 5 patients (10.9%) harbored TERT promoter mutation. Tumors with TERT promoter mutation showed significantly greater Breslow thickness compared to WT tumors (P=0.039). A combined analysis for the presence of TERT promoter and BRAF mutations showed that patients with both TERT promoter and BRAF mutation showed decreased survival compared with those with only TERT promoter mutation, only BRAF mutation, or without mutations in either TERT promoter or BRAF (P=0.035). Our data provides additional evidence that UV-induced TERT promoter mutation frequencies vary depending on melanoma subtype, but preserves its prognostic value. PMID:28123854

  9. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression.

    PubMed

    Kim, Sun-Hee; Hashimoto, Yuuri; Cho, Sung-Nam; Roszik, Jason; Milton, Denái R; Dal, Fulya; Kim, Sangwon F; Menter, David G; Yang, Peiying; Ekmekcioglu, Suhendan; Grimm, Elizabeth A

    2016-05-01

    COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels, and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1-specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy.

  10. Epigenetic regulation of the transcription factor Foxa2 directs differential elafin expression in melanocytes and melanoma cells

    SciTech Connect

    Yu, Kyung Sook; Jo, Ji Yoon; Kim, Su Jin; Lee, Yangsoon; Bae, Jong Hwan; Chung, Young-Hwa; Koh, Sang Seok

    2011-04-29

    Highlights: {yields} Elafin expression is epigenetically silenced in human melanoma cells. {yields} Foxa2 expression in melanoma cells is silenced by promoter hypermethylation. {yields} Foxa2 directs activation of the elafin promoter in vivo. {yields} Foxa2 expression induces apoptosis of melanoma cells via elafin re-expression. -- Abstract: Elafin, a serine protease inhibitor, induces the intrinsic apoptotic pathway in human melanoma cells, where its expression is transcriptionally silenced. However, it remains unknown how the elafin gene is repressed in melanoma cells. We here demonstrate that elafin expression is modulated via epigenetically regulated expression of the transcription factor Foxa2. Treatment of melanoma cells with a DNA methyltransferase inhibitor induced elafin expression, which was specifically responsible for reduced proliferation and increased apoptosis. Suppression of Foxa2 transcription, mediated by DNA hypermethylation in its promoter region, was released in melanoma cells upon treatment with the demethylating agent. Luciferase reporter assays indicated that the Foxa2 binding site in the elafin promoter was critical for the activation of the promoter. Chromatin immunoprecipitation assays further showed that Foxa2 bound to the elafin promoter in vivo. Analyses of melanoma cells with varied levels of Foxa2 revealed a correlated expression between Foxa2 and elafin and the ability of Foxa2 to induce apoptosis. Our results collectively suggest that, in melanoma cells, Foxa2 expression is silenced and therefore elafin is maintained unexpressed to facilitate cell proliferation in the disease melanoma.

  11. PAX3 and FOXD3 Promote CXCR4 Expression in Melanoma*

    PubMed Central

    Kubic, Jennifer D.; Lui, Jason W.; Little, Elizabeth C.; Ludvik, Anton E.; Konda, Sasank; Salgia, Ravi; Aplin, Andrew E.; Lang, Deborah

    2015-01-01

    Metastatic melanoma is an aggressive and deadly disease. The chemokine receptor CXCR4 is active in melanoma metastasis, although the mechanism for the promotion and maintenance of CXCR4 expression in these cells is mostly unknown. Here, we find melanoma cells express two CXCR4 isoforms, the common version and a variant that is normally restricted to cells during development or to mature blood cells. CXCR4 expression is driven through a highly conserved intronic enhancer element by the transcription factors PAX3 and FOXD3. Inhibition of these transcription factors slows melanoma cell growth, migration, and motility, as well as reduces CXCR4 expression. Overexpression of these transcription factors drives the production of increased CXCR4 levels. Loss of PAX3 and FOXD3 transcription factor activity results in a reduction in cell motility, migration, and chemotaxis, all of which are rescued by CXCR4 overexpression. Here, we discover a molecular pathway wherein PAX3 and FOXD3 promote CXCR4 gene expression in melanoma. PMID:26205821

  12. Melanomas of unknown primary frequently harbor TERT-promoter mutations.

    PubMed

    Egberts, Friederike; Krüger, Sandra; Behrens, Hans M; Bergner, Inka; Papaspyrou, Giorgios; Werner, Jochen A; Alkatout, Ibrahim; Haag, Jochen; Hauschild, Axel; Röcken, Christoph

    2014-04-01

    Commonly, in patients with melanoma metastases of an unknown primary tumor (MUP), an extensive search for the primary tumor is carried out. Recently, highly recurrent telomerase reverse transcriptase (TERT)-promoter mutations were found in malignant melanomas, which may function as driver mutations of skin cancer. The aim of this study was to test the hypothesis that MUP and mucosal melanomas harbor different prevalences of TERT-promoter mutations. Thirty-nine patients with MUP and 53 patients with mucosal melanomas were retrieved. In total, 152 paraffin samples of 92 patients were analyzed, and in 38 patients, multiple samples were tested. Mutational analysis of the TERT-promoter, BRAF, NRAS, and KIT genes was carried out. In total, 92 patients were eligible for mutational analysis. TERT-promoter mutations were found in 33 patients (35.9%): chr5, 1,295,228 C>T (18 patients); chr5, 1,295,250 C>T (11 patients); chr5, 1,295,228-229 CC>TT (three patients); chr5, 1,295,242-243 CC>TT (one patient). The mutations were significantly more prevalent in MUP [26 (66.7%)] than in mucosal melanomas [seven patients (13.2%); P<0.001]. In MUP, BRAF mutations were found in 46.2% of patients (18 patients) and NRAS mutations in 28.2% of patients (11 patients). In mucosal melanoma, NRAS mutations were found in 18.9% of patients (10), and BRAF and KIT mutations in 7.5% of patients (four patients), respectively. The prevalence of TERT-promoter mutations was associated with the patient's sex [23 (51.1%) men, 10 (21.3%) women; P=0.004]. No significant correlation was found between TERT-mutation and patient survival. The TERT-promoter genotype of MUP points toward a cutaneous and not mucosal origin. The significant sex differences merit further attention in having putative therapeutic implications.

  13. Oxidative stress inhibits distant metastasis by human melanoma cells

    PubMed Central

    Piskounova, Elena; Agathocleous, Michalis; Murphy, Malea M.; Hu, Zeping; Huddlestun, Sara E.; Zhao, Zhiyu; Leitch, A. Marilyn; Johnson, Timothy M.; DeBerardinis, Ralph J.; Morrison, Sean J.

    2015-01-01

    Solid cancer cells commonly enter the blood and disseminate systemically but are highly inefficient at forming distant metastases for poorly understood reasons. We studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NSG mice. All melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficient metastasizers. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence upon NADPH-generating enzymes in the folate pathway. Anti-oxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumors in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo. PMID:26466563

  14. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib

    PubMed Central

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy. PMID:27536070

  15. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib.

    PubMed

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy.

  16. Parthenolide enhances dacarbazine activity against melanoma cells.

    PubMed

    Koprowska, Kamila; Hartman, Mariusz L; Sztiller-Sikorska, Malgorzata; Czyz, Malgorzata E

    2013-09-01

    Dacarbazine induces a clinical response only in 15% of melanoma patients. New treatment strategies may involve combinations of drugs with different modes of action to target the tumor heterogeneity. We aimed to determine whether the combined treatment of heterogeneous melanoma cell populations in vitro with the alkylating agent dacarbazine and the nuclear factor-κB inhibitor parthenolide could be more effective than either drug alone. A panel of melanoma cell lines, including highly heterogeneous populations derived from surgical specimens, was treated with dacarbazine and parthenolide. The effect of drugs on the viable cell number was examined using an acid phosphatase activity assay, and the combination effect was determined by median-effect analysis. Cell death and cell-cycle arrest were assessed by flow cytometry. Gene expression was measured by real-time PCR and changes in the protein levels were evaluated by western blotting. Secretion of vascular endothelial growth factor and interleukin-8 was determined using an enzyme-linked immunosorbent assay. The self-renewing capacity was assessed using a clonogenic assay. Dacarbazine was less effective in heterogeneous melanoma populations than in the A375 cell line. Parthenolide and dacarbazine synergistically reduced the viable cell numbers. Both drugs induced cell-cycle arrest and apoptotic cell death. Importantly, parthenolide abrogated the baseline and dacarbazine-induced vascular endothelial growth factor secretion from melanoma cells in heterogeneous populations, whereas interleukin-8 secretion was not significantly affected by either drug. Parthenolide eradicated melanoma cells with self-renewing capacity also in cultures simultaneously treated with dacarbazine. The combination of parthenolide and dacarbazine might be considered as a new therapeutic modality against metastatic melanoma.

  17. MicroRNA 211 Functions as a Metabolic Switch in Human Melanoma Cells

    PubMed Central

    Mazar, Joseph; Qi, Feng; Lee, Bongyong; Marchica, John; Govindarajan, Subramaniam; Shelley, John; Li, Jian-Liang; Ray, Animesh

    2016-01-01

    MicroRNA 211 (miR-211) negatively regulates genes that drive invasion of metastatic melanoma. Compared to normal human melanocytes, miR-211 expression is significantly reduced or absent in nonpigmented melanoma cells and lost during human melanoma progression. To investigate the molecular mechanism of its tumor suppressor function, miR-211 was ectopically expressed in nonpigmented melanoma cells. Ectopic expression of miR-211 reduced hypoxia-inducible factor 1α (HIF-1α) protein levels and decreased cell growth during hypoxia. HIF-1α protein loss was correlated with the downregulation of a miR-211 target gene, pyruvate dehydrogenase kinase 4 (PDK4). We present evidence that resumption of miR-211-mediated downregulation of PDK4 in melanoma cells causes inhibition of invasion by nonpigmented melanomas via HIF-1α protein destabilization. Thus, the tumor suppressor miR-211 acts as a metabolic switch, and its loss is expected to promote cancer hallmarks in human melanomas. Melanoma, one of the deadliest forms of skin cancer, kills nearly 10,000 people in the United States per year. We had previously shown that a small noncoding RNA, termed miR-211, suppresses invasion and the growth of aggressive melanoma cells. The results presented here support the hypothesis that miR-211 loss in melanoma cells causes abnormal regulation of energy metabolism, which in turn allows cancer cells to survive under low oxygen concentrations—a condition that generally kills normal cells. These findings highlight a novel mechanism of melanoma formation: miR-211 is a molecular switch that is turned off in melanoma cells, raising the hope that in the future we might be able to turn the switch back on, thus providing a better treatment option for melanoma. PMID:26787841

  18. FRIZZLED7 Is Required for Tumor Inititation and Metastatic Growth of Melanoma Cells

    PubMed Central

    Tiwary, Shweta; Xu, Lei

    2016-01-01

    Metastases are thought to arise from cancer stem cells and their tumor initiating abilities are required for the establishment of metastases. Nevertheless, in metastatic melanoma, the nature of cancer stem cells is under debate and their contribution to metastasis formation remains unknown. Using an experimental metastasis model, we discovered that high levels of the WNT receptor, FZD7, correlated with enhanced metastatic potentials of melanoma cell lines. Knocking down of FZD7 in a panel of four melanoma cell lines led to a significant reduction in lung metastases in animal models, arguing that FZD7 plays a causal role during metastasis formation. Notably, limiting dilution analyses revealed that FZD7 is essential for the tumor initiation of melanoma cells and FZD7 knockdown impeded the early expansion of metastatic melanoma cells shortly after seeding, in accordance with the view that tumor initiating ability of cancer cells is required for metastasis formation. FZD7 activated JNK in melanoma cell lines in vitro and the expression of a dominant negative JNK suppressed metastasis formation in vivo, suggesting that FZD7 may promote metastatic growth of melanoma cells via activation of JNK. Taken together, our findings uncovered a signaling pathway that regulates the tumor initiation of melanoma cells and contributes to metastasis formation in melanoma. PMID:26808375

  19. Melanoma

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Melanoma KidsHealth > For Teens > Melanoma Print A A A ... to the moles on your skin. What Is Melanoma? Melanoma is a type of cancer that begins ...

  20. Melanoma

    MedlinePlus

    Melanoma is the most serious type of skin cancer. Often the first sign of melanoma is a change in the size, shape, color, or feel of a mole. Most melanomas have a black or black-blue area. Melanoma ...

  1. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  2. Cell Surface CD74-MIF Interactions Drive Melanoma Survival in Response to Interferon-γ.

    PubMed

    Tanese, Keiji; Hashimoto, Yuuri; Berkova, Zuzana; Wang, Yuling; Samaniego, Felipe; Lee, Jeffrey E; Ekmekcioglu, Suhendan; Grimm, Elizabeth A

    2015-11-01

    Melanoma is believed to be a highly immunogenic tumor and recent developments in immunotherapies are promising. IFN-γ produced by immune cells has a crucial role in tumor immune surveillance; however, it has also been reported to be pro-tumorigenic. In the current study, we found that IFN-γ enhances the expression of CD74, which interacts with its ligand, macrophage migration inhibitory factor (MIF), and thereby activates the PI3K/AKT pathway in melanoma, promoting tumor survival. IFN-γ increased phosphorylation of AKT Ser473 and upregulated total cell surface expression of CD74 in human melanoma cell lines tested. CD74 was highly expressed in melanoma tissues. Moreover, the expression of CD74 on tumor cells correlated with plasma IFN-γ levels in melanoma patient samples. In our analysis of melanoma cell lines, all produced MIF constitutively. Blockade of CD74-MIF interaction reduced AKT phosphorylation and expression of pro-tumorigenic molecules, including IL-6, IL-8, and BCL-2. Inhibition of CD74-MIF interaction significantly suppressed tumor growth in the presence of IFN-γ in our xenograft mouse model. Thus, we conclude that IFN-γ promotes melanoma cell survival by regulating CD74-MIF signaling, suggesting that targeting the CD74-MIF interaction under IFN-γ-stimulatory conditions would be an effective therapeutic approach for melanoma.

  3. Coordinate Autophagy and mTOR Pathway Inhibition Enhances Cell Death in Melanoma

    PubMed Central

    Xie, Xiaoqi; White, Eileen P.; Mehnert, Janice M.

    2013-01-01

    The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway promotes melanoma tumor growth and survival while suppressing autophagy, a catabolic process through which cells collect and recycle cellular components to sustain energy homeostasis in starvation. Conversely, inhibitors of the PI3K/AKT/mTOR pathway, in particular the mTOR inhibitor temsirolimus (CCI-779), induce autophagy, which can promote tumor survival and thus, these agents potentially limit their own efficacy. We hypothesized that inhibition of autophagy in combination with mTOR inhibition would block this tumor survival mechanism and hence improve the cytotoxicity of mTOR inhibitors in melanoma. Here we found that melanoma cell lines of multiple genotypes exhibit high basal levels of autophagy. Knockdown of expression of the essential autophagy gene product ATG7 resulted in cell death, indicating that survival of melanoma cells is autophagy-dependent. We also found that the lysosomotropic agent and autophagy inhibitor hydroxychloroquine (HCQ) synergizes with CCI-779 and led to melanoma cell death via apoptosis. Combination treatment with CCI-779 and HCQ suppressed melanoma growth and induced cell death both in 3-dimensional (3D) spheroid cultures and in tumor xenografts. These data suggest that coordinate inhibition of the mTOR and autophagy pathways promotes apoptosis and could be a new therapeutic paradigm for the treatment of melanoma. PMID:23383069

  4. Adaptive response of human melanoma cells to methylglyoxal injury.

    PubMed

    Amicarelli, F; Bucciarelli, T; Poma, A; Aimola, P; Di Ilio, C; Ragnelli, A M; Miranda, M

    1998-03-01

    The effects of methylglyoxal on the growth of a line of human melanoma cells are investigated. Methylglyoxal inhibits cell growth in a dose-dependent manner and causes an increase in glyceraldehyde 3-phosphate dehydrogenase, and glyoxalase 1 and glyoxalase 2 specific activities. The cellular response to increasing concentrations of methylglyoxal in the culture medium is also studied by measuring L-lactate production, reduced-oxidized glutathione levels and apoptotic cell death. Methylglyoxal seems to promote a change of cell population phenotypic repertoire toward a more monomorphic phenotype. In conclusion, methylglyoxal seems to induce an enzymatic cellular response that lowers methylglyoxal levels and selects the most resistant cells.

  5. α-Catulin downregulates E-cadherin and promotes melanoma progression and invasion.

    PubMed

    Kreiseder, Birgit; Orel, Lukas; Bujnow, Constantin; Buschek, Stefan; Pflueger, Maren; Schuett, Wolfgang; Hundsberger, Harald; de Martin, Rainer; Wiesner, Christoph

    2013-02-01

    Metastasis is associated with poor prognosis for melanoma responsible for about 90% of skin cancer-related mortality. To metastasize, melanoma cells must escape keratinocyte control, invade across the basement membrane and survive in the dermis by resisting apoptosis before they can intravasate into the circulation. α-Catulin (CTNNAL1) is a cytoplasmic molecule that integrates the crosstalk between nuclear factor-kappa B and Rho signaling pathways, binds to β-catenin and increases the level of both α-catenin and β-catenin and therefore has potential effects on inflammation, apoptosis and cytoskeletal reorganization. Here, we show that α-catulin is highly expressed in melanoma cells. Expression of α-catulin promoted melanoma progression and occurred concomitantly with the downregulation of E-cadherin and the upregulation of expression of mesenchymal genes such as N-cadherin, Snail/Slug and the matrix metalloproteinases 2 and 9. Knockdown of α-catulin promoted adhesion to and inhibited migration away from keratinocytes in an E-cadherin-dependent manner and decreased the transmigration through a keratinocyte monolayer, as well as in Transwell assays using collagens, laminin and fibronectin coating. Moreover, knockdown promoted homotypic spheroid formation and concomitantly increased E-cadherin expression along with downregulation of transcription factors implicated in its repression (Snail/Slug, Twist and ZEB). Consistent with the molecular changes, α-catulin provoked invasion of melanoma cells in a three-dimensional culture assay by the upregulation of matrix metalloproteinases 2 and 9 and the activation of ROCK/Rho. As such, α-catulin may represent a key driver of the metastatic process, implicating potential for therapeutic interference.

  6. PRL-3 Promotes the Malignant Progression of Melanoma via Triggering Dephosphorylation and Cytoplasmic Localization of NHERF1.

    PubMed

    Fang, Xian-Ying; Song, Ran; Chen, Wei; Yang, Yuan-Yuan; Gu, Yan-Hong; Shu, Yong-Qian; Wu, Xu-Dong; Wu, Xue-Feng; Sun, Yang; Shen, Yan; Xu, Qiang

    2015-09-01

    Phosphatase of regenerating liver-3 (PRL-3) has been reported to have a critical role in metastatic progression of cancers. Here, we investigate how PRL-3 increases the malignant degree of melanoma cells. The expression of PRL-3 increased gradually during the malignant progression of melanoma. The phosphorylation of Akt was elevated in highly malignant melanoma cells, which was accompanied by a decrease in nuclear phosphatase and tensin homolog (PTEN). The phosphorylation of NHERF1 in the serine site was regulated by PRL-3 and showed cytoplasmic translocation upon dephosphorylation, which resulted in a decrease in nuclear PTEN. The co-translocation of NHERF1 and PTEN from the nucleus to the cytoplasm was observed during the malignant progression of melanoma cells. Tumor growth was inhibited significantly, and the survival was prolonged upon knockdown of cytoplasmic NHERF1 in B16BL6 cells prior to the inoculation into mice. Taken together, to our knowledge previously unreported, we have identified NHERF1 as a potential substrate of PRL-3. Its phosphorylation status as well as its change in cellular localization and association with PTEN correlated with the malignant progression of melanoma. Our data provide an explanation for how PRL-3 promotes the malignant progression of melanoma, as well as a diagnostic marker or therapeutic target for malignant melanoma.

  7. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  8. Melanoma cells produce multiple laminin isoforms and strongly migrate on α5 laminin(s) via several integrin receptors.

    PubMed

    Oikawa, Yuko; Hansson, Johan; Sasaki, Takako; Rousselle, Patricia; Domogatskaya, Anna; Rodin, Sergey; Tryggvason, Karl; Patarroyo, Manuel

    2011-05-01

    Melanoma cells express and interact with laminins (LMs) and other basement membrane components during invasion and metastasis. In the present study we have investigated the production and migration-promoting activity of laminin isoforms in melanoma. Immunohistochemistry of melanoma specimens and immunoprecipitation/western blotting of melanoma cell lines indicated expression of laminin-111/121, laminin-211, laminin-411/421, and laminin-511/521. Laminin-332 was not detected. In functional assays, laminin-111, laminin-332, and laminin-511, but not laminin-211 and laminin-411, strongly promoted haptotactic cell migration either constitutively or following stimulation with insulin-like growth factors. Both placenta and recombinant laminin-511 preparations were highly active, and the isolated recombinant IVa domain of LMα5 also promoted cell migration. Function-blocking antibodies in cell migration assays revealed α6β1 integrin as the major receptor for laminin-111, and both α3β1 and α6β1 integrins for laminin-332 and laminin-511. In contrast, isolated LMα5 IVa domain-promoted melanoma cell migration was largely mediated via αVβ3 integrin and inhibited by RGD peptides. Given the ubiquitous expression of α5 laminins in melanoma cells and in melanoma-target tissues/anatomical structures, as well as the strong migration-promoting activity of these laminin isoforms, the α5 laminins emerge as putative primary extracellular matrix mediators of melanoma invasion and metastasis via α3β1 and other integrin receptors.

  9. TERT promoter mutations in sinonasal malignant melanoma: a study of 49 cases.

    PubMed

    Jangard, Mattias; Zebary, Abdlsattar; Ragnarsson-Olding, Boel; Hansson, Johan

    2015-06-01

    Sinonasal malignant melanoma (SNMM) comprises less than 1% of all melanomas and is located in the nasal cavity and the paranasal sinuses. The majority of SNMMs have unknown underlying oncogenic driver mutations. The recent identification of a high frequency of driver mutations in the promoter of the telomerase reverse transcriptase (TERT) gene in cutaneous melanoma led us to investigate whether these mutations also occur in SNMM. Our aim was to determine the TERT promoter mutation frequencies in primary SNMMs. Laser capture microdissection and manual dissection were used to isolate tumour cells from 49 formalin-fixed paraffin-embedded tissues. The tumours were screened for TERT promoter mutations by direct Sanger sequencing. Information on NRAS, BRAF and KIT mutation was available from an earlier study. Overall, 8% (4/49) of SNMMs harboured TERT promoter mutations. One of these mutated tumours had a coexistent NRAS mutation and one had a BRAF mutation. Our findings show that TERT promoter mutations are present in a moderate proportion of SNMM. No conclusion can be drawn on their potential influence on the clinical outcome or tumour progression.

  10. A phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10 -1082 promoter genotype as predictor of disease progression

    PubMed Central

    von Euw, Erika M; Barrio, María M; Furman, David; Levy, Estrella M; Bianchini, Michele; Peguillet, Isabelle; Lantz, Olivier; Vellice, Alejandra; Kohan, Abraham; Chacón, Matías; Yee, Cassian; Wainstok, Rosa; Mordoh, José

    2008-01-01

    Background Sixteen melanoma patients (1 stage IIC, 8 stage III, and 7 stage IV) were treated in a Phase I study with a vaccine (DC/Apo-Nec) composed of autologous dendritic cells (DCs) loaded with a mixture of apoptotic/necrotic allogeneic melanoma cell lines (Apo-Nec), to evaluate toxicity and immune responses. Also, IL-10 1082 genotype was analyzed in an effort to predict disease progression. Methods PBMC were obtained after leukapheresis and DCs were generated from monocytes cultured in the presence of GM-CSF and IL-4 in serum-free medium. Immature DCs were loaded with gamma-irradiated Apo-Nec cells and injected id without adjuvant. Cohorts of four patients were given four vaccines each with 5, 10, 15, or 20 × 106 DC/Apo-Nec cell per vaccine, two weeks apart. Immune responses were measured by ELISpot and tetramer analysis. Il-10 genotype was measured by PCR and corroborated by IL-10 production by stimulated PBMC. Results Immature DCs efficiently phagocytosed melanoma Apo-Nec cells and matured after phagocytosis as evidenced by increased expression of CD83, CD80, CD86, HLA class I and II, and 75.2 ± 16% reduction in Dextran-FITC endocytosis. CCR7 was also up-regulated upon Apo-Nec uptake in DCs from all patients, and accordingly DC/Apo-Nec cells were able to migrate in vitro toward MIP-3 beta. The vaccine was well tolerated in all patients. The DTH score increased significantly in all patients after the first vaccination (Mann-Whitney Test, p < 0.05). The presence of CD8+T lymphocytes specific to gp100 and Melan A/MART-1 Ags was determined by ELISpot and tetramer analysis in five HLA-A*0201 patients before and after vaccination; one patient had stable elevated levels before and after vaccination; two increased their CD8 + levels, one had stable moderate and one had negligible levels. The analysis of IL-10 promoter -1082 polymorphism in the sixteen patients showed a positive correlation between AA genotype, accompanied by lower in vitro IL-10 production by

  11. Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma

    PubMed Central

    Mrad, Marguerite; Imbert, Caroline; Garcia, Virginie; Rambow, Florian; Therville, Nicole; Carpentier, Stéphane; Ségui, Bruno; Levade, Thierry; Azar, Rania; Marine, Jean-Christophe; Diab-Assaf, Mona; Colacios, Céline; Andrieu-Abadie, Nathalie

    2016-01-01

    The infiltration of melanoma tumors by macrophages is often correlated with poor prognosis. However, the molecular signals that regulate the dialogue between malignant cells and the inflammatory microenvironment remain poorly understood. We previously reported an increased expression of sphingosine kinase-1 (SK1), which produces the bioactive lipid sphingosine 1-phosphate (S1P), in melanoma. The present study aimed at defining the role of tumor SK1 in the recruitment and differentiation of macrophages in melanoma. Herein, we show that downregulation of SK1 in melanoma cells causes a reduction in the percentage of CD206highMHCIIlow M2 macrophages in favor of an increased proportion of CD206lowMHCIIhigh M1 macrophages into the tumor. This macrophage differentiation orchestrates T lymphocyte recruitment as well as tumor rejection through the expression of Th1 cytokines and chemokines. In vitro experiments indicated that macrophage migration is triggered by the binding of tumor S1P to S1PR1 receptors present on macrophages whereas macrophage differentiation is stimulated by SK1-induced secretion of TGF-β1. Finally, RNA-seq analysis of human melanoma tumors revealed a positive correlation between SK1 and TGF-β1 expression. Altogether, our findings demonstrate that melanoma SK1 plays a key role in the recruitment and phenotypic shift of the tumor macrophages that promote melanoma growth. PMID:27708249

  12. ERBB3 is required for metastasis formation of melanoma cells

    PubMed Central

    Tiwary, S; Preziosi, M; Rothberg, P G; Zeitouni, N; Corson, N; Xu, L

    2014-01-01

    Melanoma is curable when it is at an early phase but is lethal once it becomes metastatic. The recent development of BRAFV600E inhibitors (BIs) showed great promise in treating metastatic melanoma, but resistance developed quickly in the treated patients, and these inhibitors are not effective on melanomas that express wild-type BRAF. Alternative therapeutic strategies for metastatic melanoma are urgently needed. Here we report that ERBB3, a member of the epidermal growth factor receptor family, is required for the formation of lung metastasis from both the BI-sensitive melanoma cell line, MA-2, and the BI-resistant melanoma cell line, 451Lu-R. Further analyses revealed that ERBB3 does not affect the initial seeding of melanoma cells in lung but is required for their further development into overt metastases, indicating that ERBB3 might be essential for the survival of melanoma cells after they reach the lung. Consistent with this, the ERBB3 ligand, NRG1, is highly expressed in mouse lungs and induces ERBB3-depdnent phosphorylation of AKT in both MA-2 and 451Lu-R cells in vitro. These findings suggest that ERBB3 may serve as a target for treating metastatic melanomas that are resistant to BIs. In support of this, administration of the pan-ERBB inhibitor, canertinib, significantly suppresses the metastasis formation of BI-resistant melanoma cell lines. PMID:25000258

  13. Endogenous Nodal promotes melanoma undergoing epithelial-mesenchymal transition via Snail and Slug in vitro and in vivo

    PubMed Central

    Guo, Qiang; Ning, Fen; Fang, Rui; Wang, Hong-Sheng; Zhang, Ge; Quan, Mei-Yu; Cai, Shao-Hui; Du, Jun

    2015-01-01

    Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. Epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. We have previously reported that recombinant Nodal treatment can promote melanoma undergoing EMT, but the effects of endogenous Nodal on EMT are still unknown. Here we generated both Nodal-overexpression and -knockdown stable cell lines to investigate the in vitro and in vivo characteristics of Nodal-induced EMT in murine melanoma cells. Nodal-overexpression cells displayed increased migration ability, accompanied by typical phenotype changes of EMT. In contrast, Nodal-knockdown stable cells repressed the EMT phenotype as well as reduced cell motility. Results of animal experiments confirmed that overexpression of Nodal can promote the metastasis of melanoma tumor in vivo. Mechanistically, we found that Nodal-induced expression of Snail and Slug involves its activation of ALK/Smads and PI3k/AKT pathways, which is an important process in the Nodal-induced EMT. However, we also found that the EMT phenotype was not completely inhibited by blocking the paracrine activity of Nodal in Nodal overexpression cell line suggesting the presence of additional mechanism(s) in the Nodal-induced EMT. This study provides a better understanding of Nodal function in melanoma, and suggests targeting Nodal as a potential strategy for melanoma therapey. PMID:26269769

  14. Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas.

    PubMed

    Vazquez, Vinicius de Lima; Vicente, Anna L; Carloni, Adriana; Berardinelli, Gustavo; Soares, Paula; Scapulatempo, Cristovam; Martinho, Olga; Reis, Rui M

    2016-04-01

    Acral lentiginous melanoma (ALM) is the less common subtype with singular characterization. TERT (human telomerase reverse transcriptase) promoter mutations have being described as recurrent in melanomas and infrequent in ALM, but their real incidence and clinical relevance is unclear. The objectives of this study were to describe the prevalence of TERT promoter mutations in ALM, and correlate with the molecular profile of other drive genes and clinical features. Sixty-one samples from 48 patients with ALM were analyzed. After DNA isolation, the mutation profiles of the hotspot region of BRAF, NRAS, KIT, PDGFRA, and TERT genes were determined by PCR amplification followed by direct Sanger sequencing. KIT, PDGFRA, and VEGFR2 gene amplification was performed by quantitative PCR. Clinical information such as survival, clinical stage, and Breslow tumor classification were obtained from medical records. TERT promoter mutations were found in 9.3% of the cases, BRAF in 10.3%, NRAS in 7.5%, KIT in 20.7%, and PDGFRA in 14.8% of ALM. None of the cases showed KIT, PDGFRA, or VEGFR2 gene amplification. We found an association between KIT mutations and advanced Clark level (IV and V, P=0.043) and TERT promoter mutations with low mitotic index. No other significant associations were observed between mutation profile and patients' clinical features nor survival rates. Oncogenic TERT promoter mutations are present in a fraction of ALMs. No relevant associations were found between TERT mutation status and clinical/molecular features nor survival. Mutations of KIT and PDGFRA are the most common genetic alterations, and they can be therapeutic targets for these patients.

  15. Isolation and molecular characterization of circulating melanoma cells.

    PubMed

    Luo, Xi; Mitra, Devarati; Sullivan, Ryan J; Wittner, Ben S; Kimura, Anya M; Pan, Shiwei; Hoang, Mai P; Brannigan, Brian W; Lawrence, Donald P; Flaherty, Keith T; Sequist, Lecia V; McMahon, Martin; Bosenberg, Marcus W; Stott, Shannon L; Ting, David T; Ramaswamy, Sridhar; Toner, Mehmet; Fisher, David E; Maheswaran, Shyamala; Haber, Daniel A

    2014-05-08

    Melanoma is an invasive malignancy with a high frequency of blood-borne metastases, but circulating tumor cells (CTCs) have not been readily isolated. We adapted microfluidic CTC capture to a tamoxifen-driven B-RAF/PTEN mouse melanoma model. CTCs were detected in all tumor-bearing mice and rapidly declined after B-RAF inhibitor treatment. CTCs were shed early from localized tumors, and a short course of B-RAF inhibition following surgical resection was sufficient to dramatically suppress distant metastases. The large number of CTCs in melanoma-bearing mice enabled a comparison of RNA-sequencing profiles with matched primary tumors. A mouse melanoma CTC-derived signature correlated with invasiveness and cellular motility in human melanoma. CTCs were detected in smaller numbers in patients with metastatic melanoma and declined with successful B-RAF-targeted therapy. Together, the capture and molecular characterization of CTCs provide insight into the hematogenous spread of melanoma.

  16. Fibroblast-derived Neuregulin 1 Promotes Compensatory ErbB3 Receptor Signaling in Mutant BRAF Melanoma*

    PubMed Central

    Capparelli, Claudia; Rosenbaum, Sheera; Berger, Adam C.; Aplin, Andrew E.

    2015-01-01

    Rapidly accelerated fibrosarcoma (RAF) inhibitors are first-line treatments for patients harboring V600E/K mutant BRAF melanoma. Although RAF inhibitors produce high response rates, the degree of tumor regression is heterogeneous. Compensatory/adaptive responses to targeted inhibitors are frequently initiated by the activation of growth factor receptor tyrosine kinases, including ErbB3, and factors from the tumor microenvironment may play an important role. We have shown previously that mutant v-raf murine sarcoma viral oncogene homolog B1 (BRAF) melanoma cells have enhanced activation of ErbB3 following RAF inhibition. However, the source of neuregulin 1 (NRG1), the ligand for ErbB3, is unknown. In this study, we demonstrate that NRG1 is highly expressed by dermal fibroblasts and cancer-associated fibroblasts (CAFs) isolated from mutant BRAF melanomas. Conditioned medium from fibroblasts and CAFs enhanced ErbB3 pathway activation and limited RAF inhibitor cytotoxicity in V600 mutant BRAF-harboring melanomas. Targeting the ErbB3/ErbB2 pathway partially reversed the protective effects of fibroblast/CAF-derived NRG1 on cell growth properties of RAF inhibitor-treated melanoma cells. These findings support the idea that NRG1, acting in a paracrine manner, promotes resistance to RAF inhibitors and emphasize that targeting the ErbB3/ErbB2 pathway will likely improve the efficacy of RAF inhibitors for mutant BRAF melanoma patients. PMID:26269601

  17. VE-cadherin RGD motifs promote metastasis and constitute a potential therapeutic target in melanoma and breast cancers

    PubMed Central

    Bartolomé, Rubén A.; Torres, Sofía; de Val, Soledad Isern; Escudero-Paniagua, Beatriz; Calviño, Eva; Teixidó, Joaquín; Casal, J. Ignacio

    2017-01-01

    We have investigated the role of vascular-endothelial (VE)-cadherin in melanoma and breast cancer metastasis. We found that VE-cadherin is expressed in highly aggressive melanoma and breast cancer cell lines. Remarkably, inactivation of VE-cadherin triggered a significant loss of malignant traits (proliferation, adhesion, invasion and transendothelial migration) in melanoma and breast cancer cells. These effects, except transendothelial migration, were induced by the VE-cadherin RGD motifs. Co-immunoprecipitation experiments demonstrated an interaction between VE-cadherin and α2β1 integrin, with the RGD motifs found to directly affect β1 integrin activation. VE-cadherin-mediated integrin signaling occurred through specific activation of SRC, ERK and JNK, including AKT in melanoma. Knocking down VE-cadherin suppressed lung colonization capacity of melanoma or breast cancer cells inoculated in mice, while pre-incubation with VE-cadherin RGD peptides promoted lung metastasis for both cancer types. Finally, an in silico study revealed the association of high VE-cadherin expression with poor survival in a subset of melanoma patients and breast cancer patients showing low CD34 expression. These findings support a general role for VE-cadherin and other RGD cadherins as critical regulators of lung and liver metastasis in multiple solid tumours. These results pave the way for cadherin-specific RGD targeted therapies to control disseminated metastasis in multiple cancers. PMID:27966446

  18. MITF is a critical regulator of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in malignant melanoma.

    PubMed

    Ullrich, Nico; Löffek, Stefanie; Horn, Susanne; Ennen, Marie; Sánchez-Del-Campo, Luis; Zhao, Fang; Breitenbuecher, Frank; Davidson, Irwin; Singer, Bernhard B; Schadendorf, Dirk; Goding, Colin R; Helfrich, Iris

    2015-11-01

    The multifunctional Ig-like carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is neo-expressed in the majority of malignant melanoma lesions. CEACAM1 acts as a driver of tumor cell invasion, and its expression correlates with poor patient prognosis. Despite its importance in melanoma progression, how CEACAM1 expression is regulated is largely unknown. Here, we show that CEACAM1 expression in melanoma cell lines and melanoma tissue strongly correlates with that of the microphthalmia-associated transcription factor (MITF), a key regulator of melanoma proliferation and invasiveness. MITF is revealed as a direct and positive regulator for CEACAM1 expression via binding to an M-box motif located in the CEACAM1 promoter. Taken together, our study provides novel insights into the regulation of CEACAM1 expression and suggests an MITF-CEACAM1 axis as a potential determinant of melanoma progression.

  19. Chromomycin A2 induces autophagy in melanoma cells.

    PubMed

    Guimarães, Larissa Alves; Jimenez, Paula Christine; Sousa, Thiciana da Silva; Freitas, Hozana Patrícia S; Rocha, Danilo Damasceno; Wilke, Diego Veras; Martín, Jesús; Reyes, Fernando; Deusdênia Loiola Pessoa, Otília; Costa-Lotufo, Letícia Veras

    2014-12-04

    The present study highlights the biological effects of chromomycin A2 toward metastatic melanoma cells in culture. Besides chromomycin A2, chromomycin A3 and demethylchromomycin A2 were also identified from the extract derived from Streptomyces sp., recovered from Paracuru Beach, located in the northeast region of Brazil. The cytotoxic activity of chromomycin A2 was evaluated across a panel of human tumor cell lines, which found IC50 values in the nM-range for exposures of 48 and 72 h. MALME-3M, a metastatic melanoma cell line, showed the highest sensitivity to chromomycin A2 after 48h incubation, and was chosen as a model to investigate this potent cytotoxic effect. Treatment with chromomycin A2 at 30 nM reduced cell proliferation, but had no significant effect upon cell viability. Additionally, chromomycin A2 induced accumulation of cells in G0/G1 phase of the cell cycle, with consequent reduction of S and G2/M and unbalanced expression of cyclins. Chromomycin A2 treated cells depicted several cellular fragments resembling autophagosomes and increased expression of proteins LC3-A and LC3-B. Moreover, exposure to chromomycin A2 also induced the appearance of acidic vacuolar organelles in treated cells. These features combined are suggestive of the induction of autophagy promoted by chromomycin A2, a feature not previously described for chromomycins.

  20. Chromomycin A2 Induces Autophagy in Melanoma Cells

    PubMed Central

    Guimarães, Larissa Alves; Jimenez, Paula Christine; Sousa, Thiciana da Silva; Freitas, Hozana Patrícia S.; Rocha, Danilo Damasceno; Wilke, Diego Veras; Martín, Jesús; Reyes, Fernando; Pessoa, Otília Deusdênia Loiola; Costa-Lotufo, Letícia Veras

    2014-01-01

    The present study highlights the biological effects of chromomycin A2 toward metastatic melanoma cells in culture. Besides chromomycin A2, chromomycin A3 and demethylchromomycin A2 were also identified from the extract derived from Streptomyces sp., recovered from Paracuru Beach, located in the northeast region of Brazil. The cytotoxic activity of chromomycin A2 was evaluated across a panel of human tumor cell lines, which found IC50 values in the nM-range for exposures of 48 and 72 h. MALME-3M, a metastatic melanoma cell line, showed the highest sensitivity to chromomycin A2 after 48h incubation, and was chosen as a model to investigate this potent cytotoxic effect. Treatment with chromomycin A2 at 30 nM reduced cell proliferation, but had no significant effect upon cell viability. Additionally, chromomycin A2 induced accumulation of cells in G0/G1 phase of the cell cycle, with consequent reduction of S and G2/M and unbalanced expression of cyclins. Chromomycin A2 treated cells depicted several cellular fragments resembling autophagosomes and increased expression of proteins LC3-A and LC3-B. Moreover, exposure to chromomycin A2 also induced the appearance of acidic vacuolar organelles in treated cells. These features combined are suggestive of the induction of autophagy promoted by chromomycin A2, a feature not previously described for chromomycins. PMID:25486109

  1. A novel ATM-dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma.

    PubMed

    Spoerri, Loredana; Brooks, Kelly; Chia, KeeMing; Grossman, Gavriel; Ellis, Jonathan J; Dahmer-Heath, Mareike; Škalamera, Dubravka; Pavey, Sandra; Burmeister, Bryan; Gabrielli, Brian

    2016-05-01

    Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM-dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM-dependent checkpoint arrest, and over-expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM-dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over-express PLK1, and a significant proportion of melanomas have high levels of PLK1 over-expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM-dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected.

  2. Molecular biology of normal melanocytes and melanoma cells.

    PubMed

    Bandarchi, Bizhan; Jabbari, Cyrus Aleksandre; Vedadi, Ali; Navab, Roya

    2013-08-01

    Malignant melanoma is one of the most aggressive malignancies in humans and is responsible for 60-80% of deaths from skin cancers. The 5-year survival of patients with metastatic malignant melanoma is about 14%. Its incidence has been increasing in the white population over the past two decades. The mechanisms leading to malignant transformation of melanocytes and melanocytic lesions are poorly understood. In developing malignant melanoma, there is a complex interaction of environmental and endogenous (genetic) factors, including: dysregulation of cell proliferation, programmed cell death (apoptosis) and cell-to-cell interactions. The understanding of genetic alterations in signalling pathways of primary and metastatic malignant melanoma and their interactions may lead to therapeutics modalities, including targeted therapies, particularly in advanced melanomas that have high mortality rates and are often resistant to chemotherapy and radiotherapy. Our knowledge regarding the molecular biology of malignant melanoma has been expanding. Even though several genes involved in melanocyte development may also be associated with melanoma cell development, it is still unclear how a normal melanocyte becomes a melanoma cell. This article reviews the molecular events and recent findings associated with malignant melanoma.

  3. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    PubMed

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma.

  4. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis.

    PubMed

    Shoshan, Einav; Mobley, Aaron K; Braeuer, Russell R; Kamiya, Takafumi; Huang, Li; Vasquez, Mayra E; Salameh, Ahmad; Lee, Ho Jeong; Kim, Sun Jin; Ivan, Cristina; Velazquez-Torres, Guermarie; Nip, Ka Ming; Zhu, Kelsey; Brooks, Denise; Jones, Steven J M; Birol, Inanc; Mosqueda, Maribel; Wen, Yu-ye; Eterovic, Agda Karina; Sood, Anil K; Hwu, Patrick; Gershenwald, Jeffrey E; Robertson, A Gordon; Calin, George A; Markel, Gal; Fidler, Isaiah J; Bar-Eli, Menashe

    2015-03-01

    Although recent studies have shown that adenosine-to-inosine (A-to-I) RNA editing occurs in microRNAs (miRNAs), its effects on tumour growth and metastasis are not well understood. We present evidence of CREB-mediated low expression of ADAR1 in metastatic melanoma cell lines and tumour specimens. Re-expression of ADAR1 resulted in the suppression of melanoma growth and metastasis in vivo. Consequently, we identified three miRNAs undergoing A-to-I editing in the weakly metastatic melanoma but not in strongly metastatic cell lines. One of these miRNAs, miR-455-5p, has two A-to-I RNA-editing sites. The biological function of edited miR-455-5p is different from that of the unedited form, as it recognizes a different set of genes. Indeed, wild-type miR-455-5p promotes melanoma metastasis through inhibition of the tumour suppressor gene CPEB1. Moreover, wild-type miR-455 enhances melanoma growth and metastasis in vivo, whereas the edited form inhibits these features. These results demonstrate a previously unrecognized role for RNA editing in melanoma progression.

  5. Melanoma Development and Progression Are Associated with Rad6 Upregulation and β-Catenin Relocation to the Cell Membrane

    PubMed Central

    Mehregan, Darius R.; Abrams, Judith; Haynes, Brittany; Shekhar, Malathy P. V.

    2014-01-01

    We have previously demonstrated that Rad6 and β-catenin enhance each other's expression through a positive feedback loop to promote breast cancer development/progression. While β-catenin has been implicated in melanoma pathogenesis, Rad6 function has not been investigated. Here, we examined the relationship between Rad6 and β-catenin in melanoma development and progression. Eighty-eight cutaneous tumors, 30 nevi, 29 primary melanoma, and 29 metastatic melanomas, were immunostained with anti-β-catenin and anti-Rad6 antibodies. Strong expression of Rad6 was observed in only 27% of nevi as compared to 100% of primary and 96% of metastatic melanomas. β-Catenin was strongly expressed in 97% of primary and 93% of metastatic melanomas, and unlike Rad6, in 93% of nevi. None of the tumors expressed nuclear β-catenin. β-Catenin was exclusively localized on the cell membrane of 55% of primary, 62% of metastatic melanomas, and only 10% of nevi. Cytoplasmic β-catenin was detected in 90% of nevi, 17% of primary, and 8% of metastatic melanoma, whereas 28% of primary and 30% of metastatic melanomas exhibited β-catenin at both locations. These data suggest that melanoma development and progression are associated with Rad6 upregulation and membranous redistribution of β-catenin and that β-catenin and Rad6 play independent roles in melanoma development. PMID:24891954

  6. Decline in arylsulfatase B leads to increased invasiveness of melanoma cells.

    PubMed

    Bhattacharyya, Sumit; Feferman, Leo; Terai, Kaoru; Dudek, Arkadiusz Z; Tobacman, Joanne K

    2017-01-17

    Arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase) is reduced in several malignancies, but levels in melanoma have not been investigated previously. Experiments were performed in melanoma cell lines to determine ARSB activity and impact on melanoma invasiveness. ARSB activity was reduced ~50% in melanoma cells compared to normal melanocytes. Silencing ARSB significantly increased the mRNA expression of chondroitin sulfate proteoglycan(CSPG)4 and pro-matrix metalloproteinase(MMP)-2, known mediators of melanoma progression. Also, invasiveness and MMP activity increased when ARSB was reduced, and recombinant ARSB inhibited invasiveness and MMP activity. Since the only known function of ARSB is to remove 4-sulfate groups from the N-acetylgalactosamine 4-sulfate residue at the non-reducing end of chondroitin 4-sulfate (C4S) or dermatan sulfate, experiments were performed to determine the transcriptional mechanisms by which expression of CSPG4 and MMP2 increased. Promoter activation of CSPG4 was mediated by reduced binding of galectin-3 to C4S when ARSB activity declined. In contrast, increased pro-MMP2 expression was mediated by increased binding of the non-receptor tyrosine phosphatase SHP2 to C4S. Increased phospho-ERK1,2 resulted from SHP2 inhibition. Combined effects of increased C4S, CSPG4, and MMP2 increased the invasiveness of the melanoma cells, and therapy with recombinant ARSB may inhibit melanoma progression.

  7. Vascular channels formed by subpopulations of PECAM1+ melanoma cells

    PubMed Central

    Dunleavey, James M.; Xiao, Lin; Thompson, Joshua; Kim, Mi Mi; Shields, Janiel M.; Shelton, Sarah E.; Irvin, David M.; Brings, Victoria E.; Ollila, David; Brekken, Rolf A.; Dayton, Paul A.; Melero-Martin, Juan M.; Dudley, Andrew C.

    2014-01-01

    Targeting the vasculature remains a promising approach for treating solid tumors; however, the mechanisms of tumor neovascularization are diverse and complex. Here we uncover a new subpopulation of melanoma cells that express the vascular cell adhesion molecule PECAM1, but not VEGFR-2, and participate in a PECAM1-dependent form of vasculogenic mimicry (VM). Clonally-derived PECAM1+ tumor cells coalesce to form PECAM1-dependent networks in vitro and they generate well-perfused, VEGF-independent channels in mice. The neural crest specifier AP-2α is diminished in PECAM1+ melanoma cells and is a transcriptional repressor of PECAM1. Reintroduction of AP-2α into PECAM1+ tumor cells represses PECAM1 and abolishes tube-forming ability whereas AP-2α knockdown in PECAM1− tumor cells up-regulates PECAM1 expression and promotes tube formation. Thus, VM-competent subpopulations, rather than all cells within a tumor, may instigate VM, supplant host-derived endothelium, and form PECAM1-dependent conduits that are not diminished by neutralizing VEGF. PMID:25335460

  8. AIRE polymorphism, melanoma antigen-specific T cell immunity, and susceptibility to melanoma

    PubMed Central

    Conteduca, Giuseppina; Fenoglio, Daniela; Parodi, Alessia; Battaglia, Florinda; Kalli, Francesca; Negrini, Simone; Tardito, Samuele; Ferrera, Francesca; Salis, Annalisa; Millo, Enrico; Pasquale, Giuseppe; Barra, Giusi; Damonte, Gianluca; Indiveri, Francesco

    2016-01-01

    AIRE is involved in susceptibility to melanoma perhaps regulating T cell immunity against melanoma antigens (MA). To address this issue, AIRE and MAGEB2 expressions were measured by real time PCR in medullary thymic epithelial cells (mTECs) from two strains of C57BL/6 mice bearing either T or C allelic variant of the rs1800522 AIRE SNP. Moreover, the extent of apoptosis induced by mTECs in MAGEB2-specific T cells and the susceptibility to in vivo melanoma B16F10 cell challenge were compared in the two mouse strains. The C allelic variant, protective in humans against melanoma, induced lower AIRE and MAGEB2 expression in C57BL/6 mouse mTECs than the T allele. Moreover, mTECs expressing the C allelic variant induced lower extent of apoptosis in MAGEB2-specific syngeneic T cells than mTECs bearing the T allelic variant (p < 0.05). Vaccination against MAGEB2 induced higher frequency of MAGEB2-specific CTL and exerted higher protective effect against melanoma development in mice bearing the CC AIRE genotype than in those bearing the TT one (p < 0.05). These findings show that allelic variants of one AIRE SNP may differentially shape the MA-specific T cell repertoire potentially influencing susceptibility to melanoma. PMID:27563821

  9. RacGAP1-driven focal adhesion formation promotes melanoma transendothelial migration through mediating adherens junction disassembly.

    PubMed

    Zhang, Pu; Bai, Huiyuan; Fu, Changliang; Chen, Feng; Zeng, Panying; Wu, Chengxiang; Ye, Qichao; Dong, Cheng; Song, Yang; Song, Erqun

    2015-03-27

    Melanoma cell migration across vascular endothelial cells is an essential step of tumor metastasis. Here, we provide evidence that RacGAP1, a cytokinesis-related Rho GTPase-activating protein, contributed to this process. Depletion of RacGAP1 with RacGAP1-targeting siRNA or overexpression of RacGAP1 mutant (T249A) attenuated melanoma cell transendothelial migration and concomitant changes of adherens junctions. In addition, RacGAP1 promoted the activations of RhoA, FAK, paxillin and triggered focal adhesion formation and cytoskeletal rearrangement. By overexpressing FAK-related non-kinase (FRNK) in endothelium, we showed that RacGAP1 mediated endothelial barrier function loss and melanoma transmigration in a focal adhesion-dependent manner. These results suggest that endothelial RacGAP1 may play critical roles in pathogenic processes of cancer by regulating endothelial permeability.

  10. TLR2/6 agonists and interferon-gamma induce human melanoma cells to produce CXCL10

    PubMed Central

    Mauldin, Ileana S.; Wang, Ena; Deacon, Donna H.; Olson, Walter C.; Bao, Yongde; Slingluff, Craig L.

    2015-01-01

    Clinical approaches to treat advanced melanoma include immune therapies, whose benefits depend on tumor-reactive T-cell infiltration of metastases. However, most tumors lack significant immune infiltration prior to therapy. Selected chemokines promote T-cell migration into tumors; thus, agents that induce these chemokines in the tumor microenvironment (TME) may improve responses to systemic immune therapy. CXCL10 has been implicated as a critical chemokine supporting T-cell infiltration into the TME. Here we show that toll-like receptor (TLR) agonists can induce chemokine production directly from melanoma cells when combined with IFNγ treatment. We find that TLR2 and TLR6 are widely expressed on human melanoma cells, and that TLR2/6 agonists (MALP-2 or FSL-1) synergize with interferon-gamma (IFNγ) to induce production of CXCL10 from melanoma cells. Furthermore, melanoma cells and immune cells from surgical specimens also respond to TLR2/6 agonists and IFNγ by upregulating CXCL10 production, compared to treatment with either agent alone. Collectively, these data identify a novel mechanism for inducing CXCL10 production directly from melanoma cells, with TLR2/6 agonists +IFNγ and raise the possibility that intratumoral administration of these agents may improve immune signatures in melanoma and have value in combination with other immune therapies, by supporting T-cell migration into melanoma metastases. PMID:25765738

  11. Nuclear Nonhistone Proteins in Murine Melanoma Cells

    PubMed Central

    Wikswo, Muriel A.; Mcguire, Joseph S.; Shansky, Janet E.; Boshes, Roger A.

    1976-01-01

    Nuclear nonhistone proteins (NHP's) have been implicated as regulatory agents involved in controlling genetic expression. Utilizing murine melanoma cells, we describe a method for isolating and fractionating NHP's which greatly increases the yield of these proteins as well as the level of resolution required for detecting small differences in particular NHP's. Mouse melanoma cells were grown in medium labeled with [3H]leucine. Following 48 hr of incubation, the cells were harvested and nuclei isolated. The NHP's were extracted from the nuclei in a series of steps which yielded four major fractions: NHP1, NHP2, NHP3, NHP4. This method solubilized 80-90% of the protein from the nuclear homogenate. The NHP fractions were then separated on DEAE-cellulose columns in a series of salt steps increasing in concentration from 0.05 to 0.50 M NaCl, followed by steps of 2 M NaCl and 4 and 7 M guanidine-hydrochloride. The 40 NHP fractions eluted from these columns were further separated on polyacrylamide-SDS gels and ranged in molecular weight from 9000 to 110,000 daltons. Differences were observed in the electrophoretic pattern of each of these 40 fractions. The high resolution of these fractionation procedures greatly enhances the possibility of observing small changes in proteins which may play a role in gene regulation. ImagesFIG. 2FIG. 5 PMID:997593

  12. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

    PubMed Central

    Salvianti, Francesca; Orlando, Claudio; Massi, Daniela; De Giorgi, Vincenzo; Grazzini, Marta; Pazzagli, Mario; Pinzani, Pamela

    2016-01-01

    Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs. RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET) as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC). The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic) than in healthy subjects (Pearson chi-squared test, p < 0.001). The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC) in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive and

  13. PLX4032 Mediated Melanoma Associated Antigen Potentiation in Patient Derived Primary Melanoma Cells

    PubMed Central

    George, Andrea L.; Suriano, Robert; Rajoria, Shilpi; Osso, Maria C.; Tuli, Neha; Hanly, Elyse; Geliebter, Jan; Arnold, Angelo N.; Wallack, Marc; Tiwari, Raj K.

    2015-01-01

    Over expression of various immunogenic melanoma associated antigens (MAAs) has been exploited in the development of immunotherapeutic melanoma vaccines. Expression of MAAs such as MART-1 and gp100 is modulated by the MAPK signaling pathway, which is often deregulated in melanoma. The protein BRAF, a member of the MAPK pathway, is mutated in over 60% of melanomas providing an opportunity for the identification and approval by the FDA of a small molecule MAPK signaling inhibitor PLX4032 that functions to inactivate mutant BRAFV600E. To this end, we characterized five patient derived primary melanoma cell lines with respect to treatment with PLX4032. Cells were treated with 5μM PLX4032 and harvested. Western blotting analysis, RT-PCR and in vitro transwell migration and invasion assays were utilized to determine treatment effects. PLX4032 treatment modulated phosphorylation of signaling proteins belonging to the MAPK pathway including BRAF, MEK, and ERK and abrogated cell phenotypic characteristics such as migration and invasion. Most significantly, PLX4032 led to an up regulation of many MAA proteins in three of the four BRAF mutated cell lines, as determined at the protein and RNA level. Interestingly, MAGE-A1 protein and mRNA levels were reduced upon PLX4032 treatment in two of the primary lines. Taken together, our findings suggest that the BRAFV600E inhibitor PLX4032 has therapeutic potential over and above its known target and in combination with specific melanoma targeting vaccine strategies may have further clinical utility. PMID:26640592

  14. MITF and PAX3 Play Distinct Roles in Melanoma Cell Migration; Outline of a "Genetic Switch" Theory Involving MITF and PAX3 in Proliferative and Invasive Phenotypes of Melanoma.

    PubMed

    Eccles, Michael R; He, Shujie; Ahn, Antonio; Slobbe, Lynn J; Jeffs, Aaron R; Yoon, Han-Seung; Baguley, Bruce C

    2013-09-11

    Melanoma is a very aggressive neoplasm with a propensity to undergo progression and invasion early in its evolution. The molecular pathways underpinning invasion in melanoma are now just beginning to be elucidated, but a clear understanding of the transition from non-invasive to invasive melanoma cells remains elusive. Microphthalmia-associated transcription factor (MITF), is thought to be a central player in melanoma biology, and it controls many aspects of the phenotypic expression of the melanocytic lineage. However, recently the paired box transcription factor PAX3 was shown to transcriptionally activate POU3F2/BRN2, leading to direct repression of MITF expression. Here we present a theory to explain melanoma phenotype switching and discuss the predictions that this theory makes. One prediction is that independent and opposing roles for MITF and PAX3 in melanoma would be expected, and we present empirical evidence supporting this: in melanoma tissues PAX3 expression occurs independently of MITF, and PAX3 does not play a key role in melanoma cell proliferation. Furthermore, we show that knockdown of PAX3 inhibits cell migration in a group of "lower MITF" melanoma cell lines, while knockdown of MITF promotes cell migration in a complementary "higher MITF" group of melanoma cell lines. Moreover, the morphological effects of knocking down PAX3 versus MITF in melanoma cells were found to differ. While these data support the notion of independent roles for MITF and PAX3, additional experiments are required to provide robust examination of the proposed genetic switch theory. Only upon clear delineation of the mechanisms associated with progression and invasion of melanoma cells will successful treatments for invasive melanoma be developed.

  15. A synthetic peptide from the heparin-binding domain III (repeats III4-5) of fibronectin promotes stress-fibre and focal-adhesion formation in melanoma cells.

    PubMed Central

    Moyano, José V; Maqueda, Alfredo; Albar, Juan P; Garcia-Pardo, Angeles

    2003-01-01

    Cell adhesion to fibronectin results in formation of actin stress fibres and focal adhesions. In fibroblasts, this response requires two co-operative signals provided by interactions of the RGD sequence with alpha5beta1 integrin and the heparin-binding domain II (Hep II) domain with syndecan-4. Within Hep II, this activity was mapped to repeat III13 and to the peptide FN-C/H-V(WQPPRARITGY, repeat III14). We previously described that the synthetic heparin-binding peptide/III5 (HBP/III5) (WTPPRAQITGYRLTVGLTRR, repeat III5) binds heparin and mediates cell adhesion via chondroitin sulphate proteoglycans. We have now studied whether HBP/III5 co-operates with alpha5beta1 and drives a full cytoskeletal response in melanoma cells. SKMEL-178 cells attached and spread on the RGD-containing FNIII7-FNIII10 (FNIII7-10) fragment, but did not form stress fibres or focal adhesions. Co-immobilization of HBP/III5 with FNIII7-10 or adding soluble HBP/III5 to cells prespread on FNIII7-10, effectively induced these structures. Cell transfection with dominant-negative N19RhoA, a member of the small GTPase family, abolished the HBP/III5 effect. Both chondroitinase and heparitinase diminished focal adhesions, indicating that both types of proteoglycans bound HBP/III5 in melanoma cells. We have mapped the active sequence of HBP/III5 to YRLTVGLTRR, which is a novel sequence in fibronectin with focal-adhesion-promoting activity. The last two arginine (R) residues of this sequence are required for activity, since their replacement by alanine completely abrogated the HBP/III5 cytoskeletal effect. Moreover, this sequence is also active in the context of large fibronectin fragments. Our results establish that the Hep III region provides co-operative signals to alpha5beta1 for the progression of the cytoskeletal response and that these include activation of RhoA. PMID:12519080

  16. RACK1 cooperates with NRAS(Q61K) to promote melanoma in vivo.

    PubMed

    Campagne, C; Reyes-Gomez, E; Picco, M E; Loiodice, S; Salaun, P; Ezagal, J; Bernex, F; Commère, P H; Pons, S; Esquerre, D; Bourneuf, E; Estellé, J; Maskos, U; Lopez-Bergami, P; Aubin-Houzelstein, G; Panthier, J J; Egidy, G

    2017-03-23

    Melanoma is the deadliest skin cancer. RACK1 (Receptor for activated protein kinase C) protein was proposed as a biological marker of melanoma in human and domestic animal species harboring spontaneous melanomas. As a scaffold protein, RACK1 is able to coordinate the interaction of key signaling molecules implicated in both physiological cellular functions and tumorigenesis. A role for RACK1 in rewiring ERK and JNK signaling pathways in melanoma cell lines had been proposed. Here, we used a genetic approach to test this hypothesis in vivo in the mouse. We show that Rack1 knock-down in the mouse melanoma cell line B16 reduces invasiveness and induces cell differentiation. We have developed the first mouse model for RACK1 gain of function, Tyr::Rack1-HA transgenic mice, targeting RACK1 to melanocytes in vivo. RACK1 overexpression was not sufficient to initiate melanomas despite activated ERK and AKT. However, in a context of melanoma predisposition, RACK1 overexpression reduced latency and increased incidence and metastatic rate. In primary melanoma cells from Tyr::Rack1-HA, Tyr::NRas(Q61K) mice, activated JNK (c-Jun N-terminal kinase) and activated STAT3 (signal transducer and activator of transcription 3) acted as RACK1 oncogenic partners in tumoral progression. A sequential and coordinated activation of ERK, JNK and STAT3 with RACK1 is shown to accelerate aggressive melanoma development in vivo.

  17. miR-204-5p acts as a tumor suppressor by targeting matrix metalloproteinases-9 and B-cell lymphoma-2 in malignant melanoma

    PubMed Central

    Luan, Wenkang; Qian, Yao; Ni, Xin; Bu, Xuefeng; Xia, Yun; Wang, Jinlong; Ruan, Hongru; Ma, Shaojun; Xu, Bin

    2017-01-01

    An increasing number of microRNAs have been found to be involved in tumorigenesis, including melanoma tumorigenesis. miR-204-5p is down-regulated and functions as a tumor suppressor in many human malignant tumors. miR-204-5p expression is also decreased in melanoma tissues, but its biological roles and molecular mechanisms in malignant melanoma remain unclear. In this study, the aberrant down-regulation of miR-204-5p was detected in melanoma, especially in metastatic melanoma. miR-204-5p also served as a protective factor for the prognosis of melanoma patients. We determined that miR-204-5p suppresses cell proliferation, migration and invasion, and promotes cell apoptosis in melanoma. Matrix metalloproteinases-9 and B-cell lymphoma-2 are the functional targets of miR-204-5p, through which it plays an important biological role in malignant melanoma. The effect of miR-204-5p on malignant melanoma is verified using a xenograft model. We also determined that miR-204-5p increases 5-fluorouracil and cisplatin (DDP) chemosensitivity in malignant melanoma cells. This finding elucidates new functions and mechanisms for miR-204-5p in melanoma development, and provides potential therapeutic targets for the treatment of melanoma. PMID:28280358

  18. Enrichment of circulating melanoma cells (CMCs) using negative selection from patients with metastatic melanoma

    PubMed Central

    Joshi, Powrnima; Jacobs, Barbara; Derakhshan, Adeeb; Moore, Lee R.; Elson, Paul; Triozzi, Pierre L.; Borden, Ernest; Zborowski, Maciej

    2014-01-01

    Circulating tumor cells have emerged as prognostic biomarkers in the treatment of metastatic cancers of epithelial origins viz., breast, colorectal and prostate. These tumors express Epithelial Cell Adhesion Molecule (EpCAM) on their cell surface which is used as an antigen for immunoaffinity capture. However, EpCAM capture technologies are of limited utility for non-epithelial cancers such as melanoma. We report a method to enrich Circulating Melanoma Cells (CMCs) that does not presuppose malignant cell characteristics. CMCs were enriched by centrifugation of blood samples from healthy (N = 10) and patient (N = 11) donors, followed by RBC lysis and immunomagnetic depletion of CD45-positive leukocytes in a specialized magnetic separator. CMCs were identified by immunocytochemistry using Melan-A or S100B as melanoma markers and enumerated using automated microscopy image analyses. Separation was optimized for maximum sensitivity and recovery of CMCs. Our results indicate large number of CMCs in Stage IV melanoma patients. Analysis of survival suggested a trend toward decreased survival with increased number of CMCs. Moreover, melanoma-associated miRs were found to be higher in CMC-enriched fractions in two patients when compared with the unseparated samples, validating this method as applicable for molecular analyses. Negative selection is a promising approach for isolation of CMCs and other EpCAM -negative CTCs, and is amenable to molecular analysis of CMCs. Further studies are required to validate its efficacy at capturing specific circulating cells for genomic analysis, and xenograft studies. PMID:24811334

  19. Enrichment of circulating melanoma cells (CMCs) using negative selection from patients with metastatic melanoma.

    PubMed

    Joshi, Powrnima; Jacobs, Barbara; Derakhshan, Adeeb; Moore, Lee R; Elson, Paul; Triozzi, Pierre L; Borden, Ernest; Zborowski, Maciej

    2014-05-15

    Circulating tumor cells have emerged as prognostic biomarkers in the treatment of metastatic cancers of epithelial origins viz., breast, colorectal and prostate. These tumors express Epithelial Cell Adhesion Molecule (EpCAM) on their cell surface which is used as an antigen for immunoaffinity capture. However, EpCAM capture technologies are of limited utility for non-epithelial cancers such as melanoma. We report a method to enrich Circulating Melanoma Cells (CMCs) that does not presuppose malignant cell characteristics. CMCs were enriched by centrifugation of blood samples from healthy (N = 10) and patient (N = 11) donors, followed by RBC lysis and immunomagnetic depletion of CD45-positive leukocytes in a specialized magnetic separator. CMCs were identified by immunocytochemistry using Melan-A or S100B as melanoma markers and enumerated using automated microscopy image analyses. Separation was optimized for maximum sensitivity and recovery of CMCs. Our results indicate large number of CMCs in Stage IV melanoma patients. Analysis of survival suggested a trend toward decreased survival with increased number of CMCs. Moreover, melanoma-associated miRs were found to be higher in CMC-enriched fractions in two patients when compared with the unseparated samples, validating this method as applicable for molecular analyses. Negative selection is a promising approach for isolation of CMCs and other EpCAM -negative CTCs, and is amenable to molecular analysis of CMCs. Further studies are required to validate its efficacy at capturing specific circulating cells for genomic analysis, and xenograft studies.

  20. Combining a BCL2 inhibitor with the retinoid derivative fenretinide targets melanoma cells including melanoma initiating cells.

    PubMed

    Mukherjee, Nabanita; Reuland, Steven N; Lu, Yan; Luo, Yuchun; Lambert, Karoline; Fujita, Mayumi; Robinson, William A; Robinson, Steven E; Norris, David A; Shellman, Yiqun G

    2015-03-01

    Investigations from multiple laboratories support the existence of melanoma initiating cells (MICs) that potentially contribute to melanoma's drug resistance. ABT-737, a small molecule BCL-2/BCL-XL/BCL-W inhibitor, is promising in cancer treatments, but not very effective against melanoma, with the antiapoptotic protein MCL-1 as the main contributor to resistance. The synthetic retinoid fenretinide N-(4-hydroxyphenyl)retinamide (4-HPR) has shown promise for treating breast cancers. Here, we tested whether the combination of ABT-737 with 4-HPR is effective in killing both the bulk of melanoma cells and MICs. The combination synergistically decreased cell viability and caused cell death in multiple melanoma cells lines (carrying either BRAF or NRAS mutations) but not in normal melanocytes. The combination increased the NOXA expression and caspase-dependent MCL-1 degradation. Knocking down NOXA protected cells from combination-induced apoptosis, implicating the role of NOXA in the drug synergy. The combination treatment also disrupted primary spheres (a functional assay for MICs) and decreased the percentage of aldehyde dehydrogenase (high) cells (a marker of MICs) in melanoma cell lines. Moreover, the combination inhibited the self-renewal capacity of MICs, measured by secondary sphere-forming assays. In vivo, the combination inhibited tumor growth. Thus, this combination is a promising treatment strategy for melanoma, regardless of mutation status of BRAF or NRAS.

  1. In vitro melanoma cell growth after preenucleation radiation therapy

    SciTech Connect

    Kenneally, C.Z.; Farber, M.G.; Smith, M.E.; Devineni, R.

    1988-02-01

    The in vitro efficacy of 20 Gy (2000 rad) of external beam irradiation delivered to patients with choroidal melanomas prior to enucleation was investigated in 11 patients whose tumors were grown in cell culture. Phase-contrast microscopy was used to compare growth patterns between irradiated and nonirradiated tumors. Cell types were determined by histologic stains, and electron microscopy identified intracytoplasmic melanin. Irradiated melanomas did not grow and did not attach to culture flasks, thus demonstrating that preenucleation irradiation alters the in vitro growth of melanoma cells.

  2. Melanoma

    MedlinePlus

    ... flat or raised, large or small, light or dark, and can appear anywhere on our bodies. Sometimes, ... can still get melanoma even if they're dark skinned, young, and have no family history. Even ...

  3. MiR-34b-5p Suppresses Melanoma Differentiation-Associated Gene 5 (MDA5) Signaling Pathway to Promote Avian Leukosis Virus Subgroup J (ALV-J)-Infected Cells Proliferaction and ALV-J Replication

    PubMed Central

    Li, Zhenhui; Luo, Qingbin; Xu, Haiping; Zheng, Ming; Abdalla, Bahareldin Ali; Feng, Min; Cai, Bolin; Zhang, Xiaocui; Nie, Qinghua; Zhang, Xiquan

    2017-01-01

    Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus that has a similar replication cycle to multiple viruses and therefore can be used as a model system for viral entry into host cells. However, there are few reports on the genes or microRNAs (miRNAs) that are responsible for the replication of ALV-J. Our previous miRNA and RNA sequencing data showed that the expression of miR-34b-5p was significantly upregulated in ALV-J-infected chicken spleens compared to non-infected chicken spleens, but melanoma differentiation-associated gene 5 (MDA5) had the opposite expression pattern. In this study, a dual-luciferase reporter assay showed that MDA5 is a direct target of miR-34b-5p. In vitro, overexpression of miR-34b-5p accelerated the proliferation of ALV-J-infected cells by inducing the progression from G2 to S phase and it promoted cell migration. Ectopic expression of MDA5 inhibited ALV-J-infected cell proliferation, the cell cycle and cell migration, and knockdown of MDA5 promoted proliferation, the cell cycle and migration. In addition, during ALV-J infections, MDA5 can detect virus invasion and it triggers the MDA5 signaling pathway. MDA5 overexpression can activate the MDA5 signaling pathway, and thus it can inhibit the mRNA and protein expression of the ALV-J env gene and it can suppress virion secretion. In contrast, in response to the knockdown of MDA5 by small interfering RNA (siRNA) or an miR-34b-5p mimic, genes in the MDA5 signaling pathway were significantly downregulated (P < 0.05), but the mRNA and protein expression of ALV-J env and the sample-to-positive ratio of virion in the supernatants were increased. This indicates that miR-34b-5p is able to trigger the MDA5 signaling pathway and affect ALV-J infections. Together, these results suggest that miR-34b-5p targets MDA5 to accelerate the proliferation and migration of ALV-J-infected cells, and it promotes ALV-J replication, via the MDA5 signaling pathway. PMID:28194372

  4. MiR-34b-5p Suppresses Melanoma Differentiation-Associated Gene 5 (MDA5) Signaling Pathway to Promote Avian Leukosis Virus Subgroup J (ALV-J)-Infected Cells Proliferaction and ALV-J Replication.

    PubMed

    Li, Zhenhui; Luo, Qingbin; Xu, Haiping; Zheng, Ming; Abdalla, Bahareldin Ali; Feng, Min; Cai, Bolin; Zhang, Xiaocui; Nie, Qinghua; Zhang, Xiquan

    2017-01-01

    Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus that has a similar replication cycle to multiple viruses and therefore can be used as a model system for viral entry into host cells. However, there are few reports on the genes or microRNAs (miRNAs) that are responsible for the replication of ALV-J. Our previous miRNA and RNA sequencing data showed that the expression of miR-34b-5p was significantly upregulated in ALV-J-infected chicken spleens compared to non-infected chicken spleens, but melanoma differentiation-associated gene 5 (MDA5) had the opposite expression pattern. In this study, a dual-luciferase reporter assay showed that MDA5 is a direct target of miR-34b-5p. In vitro, overexpression of miR-34b-5p accelerated the proliferation of ALV-J-infected cells by inducing the progression from G2 to S phase and it promoted cell migration. Ectopic expression of MDA5 inhibited ALV-J-infected cell proliferation, the cell cycle and cell migration, and knockdown of MDA5 promoted proliferation, the cell cycle and migration. In addition, during ALV-J infections, MDA5 can detect virus invasion and it triggers the MDA5 signaling pathway. MDA5 overexpression can activate the MDA5 signaling pathway, and thus it can inhibit the mRNA and protein expression of the ALV-J env gene and it can suppress virion secretion. In contrast, in response to the knockdown of MDA5 by small interfering RNA (siRNA) or an miR-34b-5p mimic, genes in the MDA5 signaling pathway were significantly downregulated (P < 0.05), but the mRNA and protein expression of ALV-J env and the sample-to-positive ratio of virion in the supernatants were increased. This indicates that miR-34b-5p is able to trigger the MDA5 signaling pathway and affect ALV-J infections. Together, these results suggest that miR-34b-5p targets MDA5 to accelerate the proliferation and migration of ALV-J-infected cells, and it promotes ALV-J replication, via the MDA5 signaling pathway.

  5. Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells

    PubMed Central

    Koch, Andreas; Lang, Sven Arke; Wild, Peter Johannes; Gantner, Susanne; Mahli, Abdo; Spanier, Gerrit; Berneburg, Mark; Müller, Martina; Bosserhoff, Anja Katrin; Hellerbrand, Claus

    2015-01-01

    The glucose transporter isoform 1 (GLUT1; SLC2A1) is a key rate-limiting factor in the transport of glucose into cancer cells. Enhanced GLUT1 expression and accelerated glycolysis have been found to promote aggressive growth in a range of tumor entities. However, it was unknown whether GLUT1 directly impacts metastasis. Here, we aimed at analyzing the expression and function of GLUT1 in malignant melanoma. Immunohistochemical analysis of 78 primary human melanomas on a tissue micro array showed that GLUT1 expression significantly correlated with the mitotic activity and a poor survival. To determine the functional role of GLUT1 in melanoma, we stably suppressed GLUT1 in the murine melanoma cell line B16 with shRNA. GLUT1 suppressed melanoma cells revealed significantly reduced proliferation, apoptosis resistance, migratory activity and matrix metalloproteinase 2 (MMP2) expression. In a syngeneic murine model of hepatic metastasis, GLUT1-suppressed cells formed significantly less metastases and showed increased apoptosis compared to metastases formed by control cells. Treatment of four different human melanoma cell lines with a pharmacological GLUT1 inhibitor caused a dose-dependent reduction of proliferation, apoptosis resistance, migratory activity and MMP2 expression. Analysis of MAPK signal pathways showed that GLUT1 inhibition significantly decreased JNK activation, which regulates a wide range of targets in the metastatic cascade. In summary, our study provides functional evidence that enhanced GLUT1 expression in melanoma cells favors their metastatic behavior. These findings specify GLUT1 as an attractive therapeutic target and prognostic marker for this highly aggressive tumor. PMID:26293674

  6. Para-Phenylenediamine Induces Apoptotic Death of Melanoma Cells and Reduces Melanoma Tumour Growth in Mice

    PubMed Central

    Bhowmick, Debajit; Bhar, Kaushik; Mallick, Sanjaya K.; Das, Subhadip; Chatterjee, Nabanita; Sarkar, Tuhin Subhra; Chakrabarti, Rajarshi; Das Saha, Krishna; Siddhanta, Anirban

    2016-01-01

    Melanoma is one of the most aggressive forms of cancer, usually resistant to standard chemotherapeutics. Despite a huge number of clinical trials, any success to find a chemotherapeutic agent that can effectively destroy melanoma is yet to be achieved. Para-phenylenediamine (p-PD) in the hair dyes is reported to purely serve as an external dyeing agent. Very little is known about whether p-PD has any effect on the melanin producing cells. We have demonstrated p-PD mediated apoptotic death of both human and mouse melanoma cells in vitro. Mouse melanoma tumour growth was also arrested by the apoptotic activity of intraperitoneal administration of p-PD with almost no side effects. This apoptosis is shown to occur primarily via loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS), and caspase 8 activation. p-PD mediated apoptosis was also confirmed by the increase in sub-G0/G1 cell number. Thus, our experimental observation suggests that p-PD can be a potential less expensive candidate to be developed as a chemotherapeutic agent for melanoma. PMID:27293892

  7. Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box-1 and M2-like macrophages

    PubMed Central

    Huber, Roman; Meier, Barbara; Otsuka, Atsushi; Fenini, Gabriele; Satoh, Takashi; Gehrke, Samuel; Widmer, Daniel; Levesque, Mitchell P.; Mangana, Joanna; Kerl, Katrin; Gebhardt, Christoffer; Fujii, Hiroko; Nakashima, Chisa; Nonomura, Yumi; Kabashima, Kenji; Dummer, Reinhard; Contassot, Emmanuel; French, Lars E.

    2016-01-01

    Hypoxia is a hallmark of cancer that is strongly associated with invasion, metastasis, resistance to therapy and poor clinical outcome. Tumour hypoxia affects immune responses and promotes the accumulation of macrophages in the tumour microenvironment. However, the signals linking tumour hypoxia to tumour-associated macrophage recruitment and tumour promotion are incompletely understood. Here we show that the damage-associated molecular pattern High-Mobility Group Box 1 protein (HMGB1) is released by melanoma tumour cells as a consequence of hypoxia and promotes M2-like tumour-associated macrophage accumulation and an IL-10 rich milieu within the tumour. Furthermore, we demonstrate that HMGB1 drives IL-10 production in M2-like macrophages by selectively signalling through the Receptor for Advanced Glycation End products (RAGE). Finally, we show that HMGB1 has an important role in murine B16 melanoma growth and metastasis, whereas in humans its serum concentration is significantly increased in metastatic melanoma. Collectively, our findings identify a mechanism by which hypoxia affects tumour growth and metastasis in melanoma and depict HMGB1 as a potential therapeutic target. PMID:27426915

  8. Vitamin C at high concentrations induces cytotoxicity in malignant melanoma but promotes tumor growth at low concentrations.

    PubMed

    Yang, Guang; Yan, Yao; Ma, Younan; Yang, Yixin

    2017-03-30

    Vitamin C has been used in complementary and alternative medicine for cancers regardless of its ineffectiveness in clinical trials and the paradoxical effects antioxidants have on cancer. Vitamin C was found to induce cytotoxicity against cancers. However, the mechanisms of action have not been fully elucidated, and the effects of vitamin C on human malignant melanoma have not been examined. This study revealed that vitamin C at millimolar concentrations significantly reduced the cell viability as well as invasiveness, and induced apoptosis in human malignant melanoma cells. Vitamin C displayed stronger cytotoxicity against the Vemurafenib-resistance cell line A2058 compared with SK-MEL-28. In contrast, vitamin C at micromolar concentrations promoted cell growth, migration and cell cycle progression, and protected against mitochondrial stress. Vemurafenib paradoxically activated the RAS-RAF-MEK-ERK signaling pathway in the Vemurafenib-resistant A2058, however, vitamin C abolished the activations. Vitamin C displayed synergistic cytotoxicity with Vemurafenib against the Vemurafenib-resistant A2058. In vivo assay suggested that lower dosage (equivalent to 0.5g/70kg) of vitamin C administered orally increased the melanoma growth. Therefore, vitamin C may exert pro- or anti-melanoma effect depending on concentration. The combination of vitamin C at high dosage and Vemurafenib is promising in overcoming the action of drug resistance. This article is protected by copyright. All rights reserved.

  9. Inhibitory effect of melanoma differentiation associated gene-7/interleukin-24 on invasion in vitro of human melanoma cancer cells.

    PubMed

    Lin, Bi-wen; Jiao, Ze-long; Fan, Jian-feng; Peng, Liang; Li, Lei; Zhao, Zi-gang; Ding, Xiang-yu; Li, Heng-jin

    2013-06-01

    The acquisition of metastasis potential is a critical point for malignant tumors. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a potential tumor suppress gene and frequently down-regulated in malignant tumors. It has been implicated that overexpression of MDA-7 led to proliferation inhibition in many types of human tumor. Invasion is an important process which is potential to promote tumor metastasis. However, the role and potential molecular mechanism of mda-7/IL-24 to inhibit the invasion of human melanoma cancer is not fully clear. In this report, we identified a solid role for mda-7/IL-24 in invasion inhibition of human melanoma cancer LiBr cells, including decreasing of adhesion and invasion in vitro, blocking cell cycle, down-regulating the expression of ICAM-1, MMP-2/9, CDK1, the phosphorylation of ERK and Akt, NF-κB and AP-1 transcription activity. Meanwhile, there was an increased expression of PTEN in mda-7/IL-24 over-expression LiBr cells. Our results demonstrated that mda-7/IL-24 is a potential invasion suppress gene, which inhibits the invasion of LiBr cells by the down-regulation of ICAM-1, MMP-2/9, PTEN, and CDK1 expression. The molecular pathways involved were the MAPK/ERK, PI3K-Akt, NF-κB, and AP-1. These findings suggest that mda-7/IL-24 may be used as a possible therapeutic strategy for human melanoma cancer.

  10. Melanoma.

    PubMed

    Gershenwald, J E

    2001-01-01

    The presentations at the American Society of Clinical Oncology 2001 meeting reported or updated the results of phase I, II, and III randomized trials and also reported important meta-analyses and retrospective studies impacting on the management of patients with melanoma. In the treatment of early stage melanoma, the prognostic significance of pathologic status of sentinel lymph nodes was affirmed. With respect to regional nodal involvement (American Joint Committee on Cancer [AJCC] stage III), investigators presented the interim results of the United Kingdom randomized low-dose interferon (IFN) trial, and up-to-date meta-analyses of several IFN trials including a pooled analysis of the Eastern Cooperative Oncology Group trials evaluating interferon in the adjuvant setting. In the advanced disease setting (AJCC stage IV), several studies elucidated the pros and cons of biochemotherapy in patients with metastatic melanoma, with an emphasis on seeking to improve response in the central nervous system and durability of response in general. Thought provoking was new data regarding the potential for lovastatin to act as a chemopreventive agent for melanoma. Translational studies were presented, one supporting the importance of HLA-typing in developing targeted vaccine therapy. Finally, the results of a novel experimental melanoma vaccine were presented using autologous tumor-derived heat-shock protein peptide complex-96 (HSPPC-96).

  11. The E3 ligase APC/C(Cdh1) promotes ubiquitylation-mediated proteolysis of PAX3 to suppress melanocyte proliferation and melanoma growth.

    PubMed

    Cao, Juxiang; Dai, Xiangpeng; Wan, Lixin; Wang, Hongshen; Zhang, Jinfang; Goff, Philip S; Sviderskaya, Elena V; Xuan, Zhenyu; Xu, Zhixiang; Xu, Xiaowei; Hinds, Philip; Flaherty, Keith T; Faller, Douglas V; Goding, Colin R; Wang, Yongjun; Wei, Wenyi; Cui, Rutao

    2015-09-01

    The anaphase-promoting complex or cyclosome with the subunit Cdh1 (APC/C(Cdh1)) is an E3 ubiquitin ligase involved in the control of the cell cycle. Here, we identified sporadic mutations occurring in the genes encoding APC components, including Cdh1, in human melanoma samples and found that loss of APC/C(Cdh1) may promote melanoma development and progression, but not by affecting cell cycle regulatory targets of APC/C. Most of the mutations we found in CDH1 were those associated with ultraviolet light (UV)-induced melanomagenesis. Compared with normal human skin tissue and human or mouse melanocytes, the abundance of Cdh1 was decreased and that of the transcription factor PAX3 was increased in human melanoma tissue and human or mouse melanoma cell lines, respectively; Cdh1 abundance was further decreased with advanced stages of human melanoma. PAX3 was a substrate of APC/C(Cdh1) in melanocytes, and APC/C(Cdh1)-mediated ubiquitylation marked PAX3 for proteolytic degradation in a manner dependent on the D-box motif in PAX3. Either mutating the D-box in PAX3 or knocking down Cdh1 prevented the ubiquitylation and degradation of PAX3 and increased proliferation and melanin production in melanocytes. Knocking down Cdh1 in melanoma cells in culture or before implantation in mice promoted doxorubicin resistance, whereas reexpressing wild-type Cdh1, but not E3 ligase-deficient Cdh1 or a mutant that could not interact with PAX3, restored doxorubicin sensitivity in melanoma cells both in culture and in xenografts. Thus, our findings suggest a tumor suppressor role for APC/C(Cdh1) in melanocytes and that targeting PAX3 may be a strategy for treating melanoma.

  12. Inhibitor of DNA Binding 4 (ID4) Is Highly Expressed in Human Melanoma Tissues and May Function to Restrict Normal Differentiation of Melanoma Cells

    PubMed Central

    Peretz, Yuval; Wu, Hong; Patel, Shayan; Bellacosa, Alfonso; Katz, Richard A.

    2015-01-01

    Melanoma tissues and cell lines are heterogeneous, and include cells with invasive, proliferative, stem cell-like, and differentiated properties. Such heterogeneity likely contributes to the aggressiveness of the disease and resistance to therapy. One model suggests that heterogeneity arises from rare cancer stem cells (CSCs) that produce distinct cancer cell lineages. Another model suggests that heterogeneity arises through reversible cellular plasticity, or phenotype-switching. Recent work indicates that phenotype-switching may include the ability of cancer cells to dedifferentiate to a stem cell-like state. We set out to investigate the phenotype-switching capabilities of melanoma cells, and used unbiased methods to identify genes that may control such switching. We developed a system to reversibly synchronize melanoma cells between 2D-monolayer and 3D-stem cell-like growth states. Melanoma cells maintained in the stem cell-like state showed a striking upregulation of a gene set related to development and neural stem cell biology, which included SRY-box 2 (SOX2) and Inhibitor of DNA Binding 4 (ID4). A gene set related to cancer cell motility and invasiveness was concomitantly downregulated. Intense and pervasive ID4 protein expression was detected in human melanoma tissue samples, suggesting disease relevance for this protein. SiRNA knockdown of ID4 inhibited switching from monolayer to 3D-stem cell-like growth, and instead promoted switching to a highly differentiated, neuronal-like morphology. We suggest that ID4 is upregulated in melanoma as part of a stem cell-like program that facilitates further adaptive plasticity. ID4 may contribute to disease by preventing stem cell-like melanoma cells from progressing to a normal differentiated state. This interpretation is guided by the known role of ID4 as a differentiation inhibitor during normal development. The melanoma stem cell-like state may be protected by factors such as ID4, thereby potentially identifying a

  13. Cancer/testis antigens can be immunological targets in clonogenic CD133+ melanoma cells.

    PubMed

    Gedye, Craig; Quirk, Juliet; Browning, Judy; Svobodová, Suzanne; John, Thomas; Sluka, Pavel; Dunbar, P Rod; Corbeil, Denis; Cebon, Jonathan; Davis, Ian D

    2009-10-01

    "Cancer stem cells" that resist conventional treatments may be a cause of therapeutic failure in melanoma. We report a subpopulation of clonogenic melanoma cells that are characterized by high prominin-1/CD133 expression in melanoma and melanoma cell lines. These cells have enhanced clonogenicity and self-renewal in vitro, and serve as a limited in vitro model for melanoma stem cells. In some cases clonogenic CD133(+) melanoma cells show increased expression of some cancer/testis (CT) antigens. The expression of NY-ESO-1 in an HLA-A2 expressing cell line allowed CD133(+) clonogenic melanoma cells to be targeted for killing in vitro by NY-ESO-1-specific CD8(+) T-lymphocytes. Our in vitro findings raise the hypothesis that if melanoma stem cells express CT antigens in vivo that immune targeting of these antigens may be a viable clinical strategy for the adjuvant treatment of melanoma.

  14. NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma.

    PubMed

    Jarrett, Stuart G; Novak, Marian; Harris, Nathan; Merlino, Glenn; Slominski, Andrezj; Kaetzel, David M

    2013-01-01

    Cutaneous malignant melanoma is the most lethal form of skin cancer, with 5-year survival rates of <5 % for patients presenting with metastatic disease. Mechanisms underlying metastatic spread of UVR-induced melanoma are not well understood, in part due to a paucity of animal models that accurately recapitulate the disease in its advanced forms. We have employed a transgenic mouse strain harboring a tandem deletion of the nm23-m1 and nm23-m2 genes to assess the combined contribution of these genes to suppression of melanoma metastasis. Crossing of the nm23-h1/nm23-h2 knockout in hemizygous-null form ([m1m2](+/-)) to a transgenic mouse strain (hepatocyte growth factor/scatter factor-overexpressing, or HGF(+) strain) vulnerable to poorly-metastatic, UVR-induced melanomas resulted in UVR-induced melanomas with high metastatic potential. Metastasis to draining lymph nodes was seen in almost all cases of back skin melanomas, while aggressive metastasis to lung, thoracic cavity, liver and bone also occurred. Interestingly, no differences were observed in the invasive characteristics of primary melanomas of HGF(+) and HGF(+) × [m1m2](+/-) strains, with both exhibiting invasion into the dermis and subcutis, indicating factors other than simple invasive activity were responsible for metastasis of HGF(+) × [m1m2](+/-) melanomas. Stable cell lines were established from the primary and metastatic melanoma lesions from these mice, with HGF(+) × [m1m2](+/-) lines exhibiting increased single cell migration and genomic instability. These studies demonstrate for the first time in vivo a potent metastasis suppressor activity of NM23 in UVR-induced melanoma, and have provided new tools for identifying molecular mechanisms that underlie melanoma metastasis.

  15. Melanoma stem cells: not rare, but well done.

    PubMed

    Girouard, Sasha D; Murphy, George F

    2011-05-01

    Since the identification of self-renewing cells in the hematopoietic system, stem cells have transformed the study of medicine. Cancer biologists have identified stem-like cells in multiple malignancies, including those of solid organs. This has led to the development of a stem cell theory of cancer, which purports that a subpopulation of self-renewing tumor cells is responsible for tumorigenesis. This contrasts with the stochastic model of tumor development, which advances that all tumor cells are capable of tumor formation. Within the field of melanoma, the identity and existence of cancer stem cells has been the subject of recent debate. Much of the controversy may be traced to differences in interpretations and definitions related to the cancer stem cell theory, and the use of dissimilar methodologies to study melanoma cells. Accumulating evidence suggests that cancer stem cells may exist in melanoma, although their frequency may vary and they may be capable of phenotypic plasticity. Importantly, these primitive melanoma cells are not only capable of self-renewal and differentiation plasticity, but also may confer virulence via immune evasion and multidrug resistance, and potentially via vasculogenic mimicry and transition to migratory and metastasizing derivatives. Therapeutic targeting of melanoma stem cells and the pathways that endow them with virulence hold promise for the design of more effective strategies for amelioration and eradication of this most lethal form of skin cancer.

  16. Dual Processing of FAT1 Cadherin Protein by Human Melanoma Cells Generates Distinct Protein Products*

    PubMed Central

    Sadeqzadeh, Elham; de Bock, Charles E.; Zhang, Xu Dong; Shipman, Kristy L.; Scott, Naomi M.; Song, Chaojun; Yeadon, Trina; Oliveira, Camila S.; Jin, Boquan; Hersey, Peter; Boyd, Andrew W.; Burns, Gordon F.; Thorne, Rick F.

    2011-01-01

    The giant cadherin FAT1 is one of four vertebrate orthologues of the Drosophila tumor suppressor fat. It engages in several functions, including cell polarity and migration, and in Hippo signaling during development. Homozygous deletions in oral cancer suggest that FAT1 may play a tumor suppressor role, although overexpression of FAT1 has been reported in some other cancers. Here we show using Northern blotting that human melanoma cell lines variably but universally express FAT1 and less commonly FAT2, FAT3, and FAT4. Both normal melanocytes and keratinocytes also express comparable FAT1 mRNA relative to melanoma cells. Analysis of the protein processing of FAT1 in keratinocytes revealed that, like Drosophila FAT, human FAT1 is cleaved into a non-covalent heterodimer before achieving cell surface expression. The use of inhibitors also established that such cleavage requires the proprotein convertase furin. However, in melanoma cells, the non-cleaved proform of FAT1 is also expressed at the cell surface together with the furin-cleaved heterodimer. Moreover, furin-independent processing generates a potentially functional proteolytic product in melanoma cells, a persistent 65-kDa membrane-bound cytoplasmic fragment no longer in association with the extracellular fragment. In vitro localization studies of FAT1 showed that melanoma cells display high levels of cytosolic FAT1 protein, whereas keratinocytes, despite comparable FAT1 expression levels, exhibited mainly cell-cell junctional staining. Such differences in protein distribution appear to reconcile with the different protein products generated by dual FAT1 processing. We suggest that the uncleaved FAT1 could promote altered signaling, and the novel products of alternate processing provide a dominant negative function in melanoma. PMID:21680732

  17. Upregulated MicroRNA-25 Mediates the Migration of Melanoma Cells by Targeting DKK3 through the WNT/β-Catenin Pathway

    PubMed Central

    Huo, Jia; Zhang, Yanfei; Li, Ruilian; Wang, Yuan; Wu, Jiawen; Zhang, Dingwei

    2016-01-01

    Previous research indicates that microRNA-25 (miR-25) regulates carcinogenesis and the progression of various cancers, but the role of miR-25 in melanoma remains unclear. We observed that miR-25 was significantly upregulated in melanoma cell lines and tissue samples. Downregulation of miR-25 markedly suppressed invasion and proliferation of melanoma cells in vitro; however, overexpression of miR-25 markedly increased melanoma cell invasion and proliferation. Moreover, we observed Dickkopf-related protein 3 (DKK3) as a direct target of miR-25 in vitro. Upregulation of DKK3 partially attenuated the oncogenic effect of miR-25 on melanoma cells. Ectopic expression of miR-25 in melanoma cells induced β-catenin accumulation in nuclear and inhibited TCF4 (T cell factor 4) activity, as well as the expression of c-Myc and Cyclin D1. In a nude xenograft model, miR-25 upregulation significantly increased A375 melanoma growth. In summary, miR-25 is upregulated in melanoma and promotes melanoma cell proliferation and invasion, partially by targeting DKK3. These results were indicated that miR-25 may serve as a potential target for the treatment of melanoma in the future. PMID:27801786

  18. Upregulated MicroRNA-25 Mediates the Migration of Melanoma Cells by Targeting DKK3 through the WNT/β-Catenin Pathway.

    PubMed

    Huo, Jia; Zhang, Yanfei; Li, Ruilian; Wang, Yuan; Wu, Jiawen; Zhang, Dingwei

    2016-10-27

    Previous research indicates that microRNA-25 (miR-25) regulates carcinogenesis and the progression of various cancers, but the role of miR-25 in melanoma remains unclear. We observed that miR-25 was significantly upregulated in melanoma cell lines and tissue samples. Downregulation of miR-25 markedly suppressed invasion and proliferation of melanoma cells in vitro; however, overexpression of miR-25 markedly increased melanoma cell invasion and proliferation. Moreover, we observed Dickkopf-related protein 3 (DKK3) as a direct target of miR-25 in vitro. Upregulation of DKK3 partially attenuated the oncogenic effect of miR-25 on melanoma cells. Ectopic expression of miR-25 in melanoma cells induced β-catenin accumulation in nuclear and inhibited TCF4 (T cell factor 4) activity, as well as the expression of c-Myc and Cyclin D1. In a nude xenograft model, miR-25 upregulation significantly increased A375 melanoma growth. In summary, miR-25 is upregulated in melanoma and promotes melanoma cell proliferation and invasion, partially by targeting DKK3. These results were indicated that miR-25 may serve as a potential target for the treatment of melanoma in the future.

  19. Targeting glutamine transport to suppress melanoma cell growth.

    PubMed

    Wang, Qian; Beaumont, Kimberley A; Otte, Nicholas J; Font, Josep; Bailey, Charles G; van Geldermalsen, Michelle; Sharp, Danae M; Tiffen, Jessamy C; Ryan, Renae M; Jormakka, Mika; Haass, Nikolas K; Rasko, John E J; Holst, Jeff

    2014-09-01

    Amino acids, especially leucine and glutamine, are important for tumor cell growth, survival and metabolism. A range of different transporters deliver each specific amino acid into cells, some of which are increased in cancer. These amino acids consequently activate the mTORC1 pathway and drive cell cycle progression. The leucine transporter LAT1/4F2hc heterodimer assembles as part of a large complex with the glutamine transporter ASCT2 to transport amino acids. In this study, we show that the expression of LAT1 and ASCT2 is significantly increased in human melanoma samples and is present in both BRAF(WT) (C8161 and WM852) and BRAF(V600E) mutant (1205Lu and 451Lu) melanoma cell lines. While inhibition of LAT1 by BCH did not suppress melanoma cell growth, the ASCT2 inhibitor BenSer significantly reduced both leucine and glutamine transport in melanoma cells, leading to inhibition of mTORC1 signaling. Cell proliferation and cell cycle progression were significantly reduced in the presence of BenSer in melanoma cells in 2D and 3D cell culture. This included reduced expression of the cell cycle regulators CDK1 and UBE2C. The importance of ASCT2 expression in melanoma was confirmed by shRNA knockdown, which inhibited glutamine uptake, mTORC1 signaling and cell proliferation. Taken together, our study demonstrates that ASCT2-mediated glutamine transport is a potential therapeutic target for both BRAF(WT) and BRAF(V600E) melanoma.

  20. DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines.

    PubMed

    Chen, Ya-Ping; Hou, Xiao-Yang; Yang, Chun-Sheng; Jiang, Xiao-Xiao; Yang, Ming; Xu, Xi-Feng; Feng, Shou-Xin; Liu, Yan-Qun; Jiang, Guan

    2016-08-01

    Malignant melanoma is an aggressive, highly lethal dermatological malignancy. Chemoresistance and rapid metastasis limit the curative effect of multimodal therapies like surgery or chemotherapy. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes adducts from the O6-position of guanine to repair DNA damage. High MGMT expression is associated with resistance to therapy in melanoma. However, it is unknown if MGMT is regulated by DNA methylation or histone acetylation in melanoma. We examined the effects of the DNA methylation inhibitor 5-Aza-2'-deoxycytidine and histone deacetylase inhibitor Trichostatin A alone or in combination on MGMT expression and promoter methylation and histone acetylation in A375, MV3, and M14 melanoma cells. This study demonstrates that MGMT expression, CpG island methylation, and histone acetylation vary between melanoma cell lines. Combined treatment with 5-Aza-2'-deoxycytidine and Trichostatin A led to reexpression of MGMT, indicating that DNA methylation and histone deacetylation are associated with silencing of MGMT in melanoma. This study provides information on the role of epigenetic modifications in malignant melanoma that may enable the development of new strategies for treating malignant melanoma.

  1. Stem cell properties in cell cultures from different stage of melanoma progression.

    PubMed

    Magnoni, Cristina; Giudice, Stefania; Pellacani, Giovanni; Bertazzoni, Giorgia; Longo, Caterina; Veratti, Eugenia; Morini, Daria; Benassi, Luisa; Vaschieri, Cristina; Azzoni, Paola; De Pol, Anto; Seidenari, Stefania; Tomasi, Aldo; Pollio, Annamaria; Ponti, Giovanni

    2014-03-01

    Cutaneous melanoma is an extremely heterogenous human cancer. The most aggressive melanoma may contain deregulated cells with undifferentiated/stem cell-like phenotype. A critical mechanism by which melanoma cells enhance their invasive capacity is the dissolution of the intercellular adhesion and the acquisition of mesenchymal features as a part of an epithelial-to-mesenchymal transition. The aim of this study was to clarify the role of a stem cell-like population in human melanomas by means of melanocytic cell culture analysis obtained from distinct histotypes of primary and metastatic malignant melanoma. Patients with advanced melanoma >2 cm in diameter and/or >300 mm surface were enrolled. The melanoma cells were isolated from skin biopsies of lentigo maligna melanoma, superficial spreading melanoma, nodular melanoma, and metastatic melanoma. The colony forming unit assay and alkaline phosphatase stain were evaluated. Cells were subsequently cultured and maintained in different media to evaluate their ability to differentiate into osteogenic and adipogenic lineages. Immunohistochemistry and flow cytometry analysis were performed to evaluate antigenic markers CD90, CD73, CD105, CD146, CD20, CD166, and Nestin. This study confirms that melanoma can include heterogenous cell populations with the ability both to self-renew and to a give rise to differentiated progeny. Melanoma cells displayed intratumoral heterogeneity and dynamic antigen phenotypes. Histologically, transitions from normal skin to melanoma were associated with a gradual increase in the expression of CD146, CD20, CD133, Nestin, and CD73. These molecular profiles could be further analyzed and, in the future, used for the development of novel biomolecular targeted-therapy approaches.

  2. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces matrix metalloproteinase (MMP) expression and invasion in A2058 melanoma cells

    SciTech Connect

    Villano, C.M.; Murphy, K.A.; Akintobi, A.; White, L.A. . E-mail: lawhite@aesop.rutgers.edu

    2006-02-01

    There has been a 34% increase in melanoma related mortality in the United States from 1973 to 1992. Although few successful treatments for malignant melanoma exist, it is known that genetic susceptibility and environmental factors contribute to the initiation and progression of melanoma. Excessive UV exposure is considered the main etiological factor in melanoma initiation, however, epidemiological and experimental evidence suggests that exposure to environmental carcinogens contribute to melanoma. We propose that exposure to environmental chemicals that activate the aryl hydrocarbon receptor pathway contribute to melanoma progression, specifically through stimulation of the expression and activity of the matrix metalloproteinases (MMPs). Therefore, we investigated the effect of AhR activation on normal human melanocytes and several melanoma cell lines. The data presented here demonstrate that normal melanocytes and melanoma cells express the AhR and Arnt and are responsive to activation by TCDD. Furthermore, activation of this pathway in transformed melanoma cells (A2058) results in increased expression and activity of MMP-1, MMP-2 and MMP-9, as well as increased invasion using in vitro invasion assays. Furthermore, TCDD-induced expression of the MMP-1 promoter in melanoma cells appears to require different elements than those required in untransformed cells, indicating that this pathway may have multiple mechanisms for activation of MMP expression.

  3. Differential expression of endoglin in human melanoma cells expressing the V3 isoform of versican by microarray analysis.

    PubMed

    Miquel-Serra, Laia; Hernandez, Daniel; Docampo, María Jose; Bassols, Anna

    2010-01-01

    Versican is a large chondroitin sulfate proteoglycan produced by several tumor types, including malignant melanoma, which exists as four different splice variants. The large isoforms V0 and V1 promote melanoma cell proliferation. We previously described that overexpression of the short V3 isoform in MeWo human melanoma cells markedly reduced tumor cell growth in vitro and in vivo, but favored the appearance of secondary tumors. This study aimed to elucidate the mechanisms of V3 by identifying differentially expressed genes between parental and V3-expressing MeWo melanoma cells using microarray analysis. V3 expression significantly reduced the expression of endoglin, a transforming growth factor-β superfamily co-receptor. Other differentially expressed genes were VEGF and PPP1R14B. Changes in endoglin levels were validated by qRT-PCR and Western blotting.

  4. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  5. Pigmented basal cell carcinoma mimicking a superficial spreading melanoma.

    PubMed

    Hasbún Acuña, Paula; Cullen Aravena, Roberto; Maturana Donaire, César; Ares Mora, Raúl; Porras Kusmanic, Ninoska

    2016-12-20

    Basal cell carcinoma is the most common form of skin cancer, especially in elderly people. Pigmented basal cell carcinoma is a rare subtype and has been described in the literature as a nodular and hyperpigmented lesion; rarely, it can appear as an extensive pigmented plate, which may be clinically indistinguishable from superficial spreading melanoma and Bowen disease. Dermatoscopy has a high sensitivity in the diagnosis of basal cell carcinoma. When Menzies criteria are used; however, the final diagnosis is made by histopathology. The objective of the present report is to analyze the case of a patient with pigmented basal cell carcinoma simulating a superficial spreading melanoma.

  6. Establishment and characterization of an oral mucosal melanoma cell line (MEMO) derived from a longstanding primary oral melanoma.

    PubMed

    Lourenço, Silvia V; Bologna, Sheyla B; Hsieh, Ricardo; Sangueza, Martin; Fernandes, Juliana D; Nico, Marcello M S

    2013-04-01

    Oral mucosal melanoma is rare. Its incidence peaks between 41 and 60 years of age; male/female ratio is 2:1. Preferred oral sites include hard palate and maxillary gingiva. Risk factors have not been clearly identified, but pigmented lesions may be present before the diagnosis of oral melanoma. We report an unusual case of oral mucosal melanoma of long-standing duration on hard palate and maxillary alveolar ridge in a male patient. Histopathologic features confirmed the diagnosis of invasive melanoma with a prominent in situ component. A cell lineage derived from the tumor was established and characterized, with phenotypic markers of melanocytes.

  7. LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro

    PubMed Central

    2012-01-01

    Background Patients with metastatic melanoma have a poor median rate of survival. It is therefore necessary to increase our knowledge about melanoma cell dissemination which includes extravasation, where cancer cells cross the endothelial barrier. Extravasation is well understood during travelling of white blood cells, and involves integrins such as LFA-1 (composed of two chains, CD11a and CD18) expressed by T cells, while ICAM-1 is induced during inflammation by endothelial cells. Although melanoma cell lines cross endothelial cell barriers, they do not express LFA-1. We therefore hypothesized that melanoma-endothelial cell co-culture might induce the LFA-1/ICAM ligand/receptor couple during melanoma transmigration. Methods A transwell approach has been used as well as blocking antibodies against CD11a, CD18 and ICAM-1. Data were analyzed with an epifluorescence microscope. Fluorescence intensity was quantified with the ImageJ software. Results We show here that HUVEC-conditioned medium induce cell-surface expression of LFA-1 on melanoma cell lines. Similarly melanoma-conditioned medium activates ICAM-1 expression in endothelial cells. Accordingly blocking antibodies of ICAM-1, CD11a or CD18 strongly decrease melanoma transmigration. We therefore demonstrate that melanoma cells can cross endothelial monolayers in vitro due to the induction of ICAM-1 and LFA-1 occurring during the co-culture of melanoma and endothelial cells. Our data further suggest a role of LFA-1 and ICAM-1 in the formation of melanoma cell clumps enhancing tumor cell transmigration. Conclusion Melanoma-endothelial cell co-culture induces LFA-1 and ICAM-1 expression, thereby favoring in vitro melanoma trans-migration. PMID:23039186

  8. Honokiol inhibits melanoma stem cells by targeting notch signaling.

    PubMed

    Kaushik, Gaurav; Venugopal, Anand; Ramamoorthy, Prabhu; Standing, David; Subramaniam, Dharmalingam; Umar, Shahid; Jensen, Roy A; Anant, Shrikant; Mammen, Joshua M V

    2015-12-01

    Melanoma is an aggressive disease with limited therapeutic options. Here, we determined the effects of honokiol (HNK), a biphenolic natural compound on melanoma cells and stemness. HNK significantly inhibited melanoma cell proliferation, viability, clonogenicity and induced autophagy. In addition, HNK significantly inhibited melanosphere formation in a dose dependent manner. Western blot analyses also demonstrated reduction in stem cell markers CD271, CD166, Jarid1b, and ABCB5. We next examined the effect of HNK on Notch signaling, a pathway involved in stem cell self-renewal. Four different Notch receptors exist in cells, which when cleaved by a series of enzymatic reactions catalyzed by Tumor Necrosis Factor-α-Converting Enzyme (TACE) and γ-secretase protein complex, results in the release of the Notch intracellular domain (NICD), which then translocates to the nucleus and induces target gene expression. Western blot analyses demonstrated that in HNK treated cells there is a significant reduction in the expression of cleaved Notch-2. In addition, there was a reduction in the expression of downstream target proteins, Hes-1 and cyclin D1. Moreover, HNK treatment suppressed the expression of TACE and γ-secretase complex proteins in melanoma cells. To confirm that suppression of Notch-2 activation is critical for HNK activity, we overexpressed NICD1, NICD2, and performed HNK treatment. NICD2, but not NICD1, partially restored the expression of Hes-1 and cyclin D1, and increased melanosphere formation. Taken together, these data suggest that HNK is a potent inhibitor of melanoma cells, in part, through the targeting of melanoma stem cells by suppressing Notch-2 signaling.

  9. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22

    PubMed Central

    Bu, Xuefeng; Xia, Yun; Wang, Jinlong; Djangmah, Henry Siaw; Liu, Xiaohui; You, Yongping; Xu, Bin

    2016-01-01

    Long non-coding RNAs (lncRNAs) are involved in tumorigenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an lncRNAs, is associated with the growth and metastasis of many human tumors, but its biological roles in malignant melanoma remain unclear. In this study, the aberrant up-regulation of MALAT1 was detected in melanoma. We determined that MALAT1 promotes melanoma cells proliferation, invasion and migration by sponging miR-22. MiR-22 was decreased and acted as a tumor suppressor in melanoma, and MMP14 and Snail were the functional targets of miR-22. Furthermore, MALAT1 could modulate MMP14 and Snail by operating as a competing endogenous RNA (ceRNA) for miR-22. The effects of MALAT1 in malignant melanoma is verified using a xenograft model. This finding elucidates a new mechanism for MALAT1 in melanoma development and provides a potential target for melanoma therapeutic intervention. PMID:27564100

  10. Melanoma Proteoglycan Modifies Gene Expression to Stimulate Tumor Cell Motility, Growth and Epithelial to Mesenchymal Transition

    PubMed Central

    Yang, Jianbo; Price, Matthew A.; Li, GuiYuan; Bar-Eli, Menashe; Salgia, Ravi; Jagedeeswaran, Ramasamy; Carlson, Jennifer H.; Ferrone, Soldano; Turley, Eva A.; McCarthy, James B.

    2009-01-01

    Melanoma chondroitin sulfate proteoglycan (MCSP) is a plasma membrane-associated proteoglycan that facilitates the growth, motility and invasion of tumor cells. MCSP expression in melanoma cells enhances integrin function and constitutive activation of Erk 1,2. The current studies were performed to determine the mechanism by which MCSP expression promotes tumor growth and motility. The results demonstrate that MCSP expression in radial growth phase (RGP), vertical growth phase (VGP) or metastatic cell lines causes sustained activation of Erk 1,2, enhanced growth and motility which all require the cytoplasmic domain of the MCSP core protein. MCSP expression in an RGP cell line also promotes an epithelial to mesenchymal transition (EMT) based on changes in cell morphology and the expression of several EMT markers. Finally MCSP enhances the expression of c-Met and HGF, and inhibiting c-Met expression or activation limits the increased growth and motility of multiple melanoma cell lines. The studies collectively demonstrate an importance for MCSP in promoting progression by an epigenetic mechanism and they indicate that MCSP could be targeted to delay or inhibit tumor progression in patients. PMID:19738072

  11. [Targeted therapies for melanoma].

    PubMed

    Leiter, U; Meier, F; Garbe, C

    2014-07-01

    Since the discovery of activating mutations in the BRAF oncogene and also stimulation of immune mediated antitumor response in melanoma, there has been remarkable progress in the development of targeted therapies for unresectable and metastatic melanoma. This article addresses the latest developments of BRAF/MEK/ERK pathway signaling. In addition, the development of drugs to attack alternative mutations in melanoma, such as NRAS and KIT is described. Strategies for the management of BRAF inhibitor resistance, such as with combination therapy, are outlined. Antitumor immune therapies with monoclonal antibodies such as ipilimumab which acts by promoting T-cell activation or antibody blockade of programmed death-1 (PD-1) led to a long term response in metastatic melanoma. Results of latest clinical studies including the toxicity profile are described. Due to selective kinase inhibitors and immune checkpoint blockade, the therapy of unresectable metastatic melanoma has greatly improved and long-term survival of patients with metastatic melanoma seems a real possibility.

  12. Melanomas and Dysplastic Nevi Differ in Epidermal CD1c+ Dendritic Cell Count

    PubMed Central

    Dyduch, Grzegorz; Tyrak, Katarzyna Ewa; Glajcar, Anna; Szpor, Joanna

    2017-01-01

    Background. Dendritic cells could be involved in immune surveillance of highly immunogenic tumors such as melanoma. Their role in the progression melanocytic nevi to melanoma is however a matter of controversy. Methods. The number of dendritic cells within epidermis, in peritumoral zone, and within the lesion was counted on slides immunohistochemically stained for CD1a, CD1c, DC-LAMP, and DC-SIGN in 21 of dysplastic nevi, 27 in situ melanomas, and 21 invasive melanomas. Results. We found a significant difference in the density of intraepidermal CD1c+ cells between the examined lesions; the mean CD1c cell count was 7.00/mm2 for invasive melanomas, 2.94 for in situ melanomas, and 13.35 for dysplastic nevi. The differences between dysplastic nevi and melanoma in situ as well as between dysplastic nevi and invasive melanoma were significant. There was no correlation in number of positively stained cells between epidermis and dermis. We did not observe any intraepidermal DC-LAMP+ cells neither in melanoma in situ nor in invasive melanoma as well as any intraepidermal DC-SIGN+ cells in dysplastic nevi. Conclusion. It was shown that the number of dendritic cells differs between dysplastic nevi, in situ melanomas, and invasive melanomas. This could eventually suggest their participation in the development of melanoma. PMID:28331853

  13. Cell-type dependent response of melanoma cells to aloe emodin.

    PubMed

    Radovic, J; Maksimovic-Ivanic, D; Timotijevic, G; Popadic, S; Ramic, Z; Trajkovic, V; Miljkovic, D; Stosic-Grujicic, S; Mijatovic, S

    2012-09-01

    Intrinsic characteristics of melanoma cells such as expression of inducible nitric oxide synthase (iNOS), redox status, and activity of signaling pathways involved in proliferation, differentiation and cell death define the response of the cells to the diverse treatments. In this context we compared the effectiveness of herbal antaquinone aloe emodin (AE) against mouse B16 melanoma and human A375, different in initial activity of ERK1/2, constitutive iNOS expression and basal level of reactive oxygen species (ROS). Both cell lines are sensitive to AE treatment. However, while the agent induces differentiation of B16 cells toward melanocytes, in A375 cells promoted massive apoptosis. Differentiation of B16 cells, characterized by enhanced melanin production and tyrosinase activity, was mediated by H(2)O(2) production synchronized with rapid p53 accumulation and enhanced expression of cyclins D1 and D3. Caspase mediated apoptosis triggered in A375 cells was accompanied with Bcl-2 but not iNOS down-regulation. In addition, opposite regulation of Akt-ERK1/2 axis in AE treated B16 and A375 cells correlated with different outcome of the treatment. However, AE in a dose-dependent manner rescued both B16 and A375 cells from doxorubicin- or paclitaxel-induced killing. These data indicate that caution is warranted when AE is administrated to the patients with conventional chemotherapy.

  14. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6

    PubMed Central

    Chen, Guang-Liang; Luo, Yubin; Eriksson, Daniel; Meng, Xianyi; Qian, Cheng; Bäuerle, Tobias; Chen, Xiao-Xiang; Schett, Georg; Bozec, Aline

    2016-01-01

    The impact of metabolic stress induced by obesity on the bone marrow melanoma niche is largely unknown. Here we employed diet induced obese mice model, where mice received high-fat (HFD) or normal diet (ND) for 6 weeks before challenge with B16F10 melanoma cells. Tumor size, bone loss and osteoclasts numbers were assessed histologically in the tibial bones. For defining the molecular pathway, osteopontin knock-out mice, interleukin 6 neutralizing antibody or Janus kinase 2 inhibition were carried out in the same model. Mechanistic studies such as adipocyte-melanoma co-cultures for defining adipocyte induced changes of tumor cell proliferation and expression profiles were also performed. As results, HFD enhanced melanoma burden in bone by increasing tumor area and osteoclast numbers. This process was associated with higher numbers of bone marrow adipocytes expressing IL-6 in direct vicinity to tumor cells. Inhibition of IL-6 or of downstream JAK2 blocked HFD-induced tumor progression. Furthermore, the phenotypic changes of melanoma cells triggered macrophage and osteoclast accumulation accompanied by increased osteopontin expression. Osteopontin triggered osteoclastogenesis and also exerted a positive feedback loop to tumor cells, which was abrogated in its absence. Metabolic stress by HFD promotes melanoma growth in the bone marrow by an increase in bone marrow adipocytes and IL-6-JAK2-osteopontin mediated activation of tumor cells and osteoclast differentiation. PMID:27049717

  15. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma.

    PubMed

    Hendrix, Mary J C; Seftor, Elisabeth A; Seftor, Richard E B; Chao, Jun-Tzu; Chien, Du-Shieng; Chu, Yi-Wen

    2016-03-01

    In 1999, the American Journal of Pathology published an article, entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry" by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a "citation classic" (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways--each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model.

  16. Apoptosis and injuries of heavy ion beam and x-ray radiation on malignant melanoma cell.

    PubMed

    Qin, Jin; Li, Sha; Zhang, Chao; Gao, Dong-Wei; Li, Qiang; Zhang, Hong; Jin, Xiao-Dong; Liu, Yang

    2017-01-01

    This study aims to investigate the influence of high linear energy transfer (LET) heavy ion ((12)C(6+)) and low LET X-ray radiation on apoptosis and related proteins of malignant melanoma on tumor-bearing mice under the same physical dosage. C57BL/6 J mice were burdened by tumors and randomized into three groups. These mice received heavy ion ((12)C(6+)) and X-ray radiation under the same physical dosage, respectively; their weight and tumor volumes were measured every three days post-radiation. After 30 days, these mice were sacrificed. Then, median survival time was calculated and tumors on mice were proliferated. In addition, immunohistochemistry was carried out for apoptosis-related proteins to reflect the expression level. After tumor-bearing mice were radiated to heavy ion, median survival time improved and tumor volume significantly decreased in conjunction with the upregulated expression of pro-apoptosis factors, Bax and cytochrome C, and the downregulated expression of apoptosis-profilin (Bcl-2, Survivin) and proliferation-related proteins (proliferating cell nuclear antigen). The results indicated that radiation can promote the apoptosis of malignant melanoma cells and inhibit their proliferation. This case was more suitable for heavy ion ((12)C(6+)). High LET heavy ion ((12)C(6+)) radiation could significantly improve the killing ability for malignant melanoma cells by inducing apoptosis in tumor cells and inhibiting their proliferation. These results demonstrated that heavy ion ((12)C(6+)) presented special advantages in terms of treating malignant melanoma.

  17. Thrombospondin modulates melanoma--platelet interactions and melanoma tumour cell growth in vivo.

    PubMed Central

    Boukerche, H.; Berthier-Vergnes, O.; Tabone, E.; Bailly, M.; Doré, J. F.; McGregor, J. L.

    1995-01-01

    In this study we have investigated the role of thrombospondin (TSP) as a possible ligand playing a key role in human M3Da. melanoma cell interaction with platelets and in tumour growth. TSP is secreted (80 +/- 6 ng TSP 10(-6) cells) and bound to the surface of M3Da. cells via receptors different from CD36, as shown by biosynthetic labelling and immunofluorescence studies. The levels of TSP binding to M3Da. cells evaluated by binding studies, using an anti-TSP monoclonal antibody (MAb) (LYP8), shows 367,000 +/- 58,000 (mean +/- s.d.) LYP8 binding sites per cell with a dissociation constant (Kd) of 67 nM. TSP binding to M3Da. cells shows 400,000 +/- 50,000 TSP binding sites per cell with a Kd of 10 nM. The capacity of anti-TSP MAb (LYP8) to inhibit M3Da.-platelet interactions was followed on an aggregometer and evaluated by electron microscopy studies. The biological role of TSP binding to M3Da. cells was investigated by implanting subcutaneously the M3Da. cell line in nude mice and following the size and time of in vivo tumour growth. Reducing the availability or the functional level of TSP by using an anti-TSP MAb (LYP8) resulted in a significant decrease in platelet aggregates interacting with M3Da. melanoma cells. Using an enzyme-linked immunosorbent assay, purified alpha nu beta 3 was shown to bind TSP. Moreover, LYP8-coated M3Da. cells showed a reduced capacity to form tumours in vivo. M3Da. cells were observed to attach and spread on human platelet TSP-coated plastic wells. This attachment by M3Da. cells was inhibited in a similar way by LYP8 and an anti-alpha nu beta 3 MAb (LYP18). The results obtained in this study show that TSP secreted and bound to the surface of a human melanoma cell line (M3Da.) acts as a link between aggregated platelets and the M3Da. cell surface. Moreover, these results shows that TSP can modulate tumour growth in vivo. Reagents such as MAbs directed against TSP and peptides derived from TSP could not only be used as a new therapeutic

  18. Involvement of the mRNA binding protein CRD-BP in the regulation of metastatic melanoma cell proliferation and invasion by hypoxia.

    PubMed

    Craig, Evisabel A; Weber, Jonathan D; Spiegelman, Vladimir S

    2012-12-15

    We have previously shown that the mRNA binding protein CRD-BP is overexpressed in human melanomas, where it promotes cell survival and resistance to chemotherapy. The present study investigates the role of hypoxia, a common characteristic of the tumor microenvironment, in the regulation of CRD-BP expression and melanoma cell responses. We found that hypoxia increases CRD-BP levels in metastatic melanoma cell lines but not in melanocytes or primary melanoma cells. Hypoxic stimulation transcriptionally regulates CRD-BP by facilitating the acetylation of histones within the CRD-BP gene and by modulating the extent of HIF1α binding to the CRD-BP promoter. Hypoxia significantly enhances the proliferative and invasive potential of metastatic melanoma cells but not that of normal or primary melanoma cells. Furthermore, inhibition of CRD-BP impairs the ability of metastatic cells to proliferate and invade in response to hypoxia. These findings identify CRD-BP as a novel effector of hypoxic responses that is relevant for the selection of metastatic cells. This work also describes a previously unknown role for CRD-BP in the regulation of melanoma cell invasion and highlights the importance of the hypoxic microenvironment in determining cell fate.

  19. TERT promoter mutations are frequent in cutaneous basal cell carcinoma and squamous cell carcinoma.

    PubMed

    Griewank, Klaus G; Murali, Rajmohan; Schilling, Bastian; Schimming, Tobias; Möller, Inga; Moll, Iris; Schwamborn, Marion; Sucker, Antje; Zimmer, Lisa; Schadendorf, Dirk; Hillen, Uwe

    2013-01-01

    Activating mutations in the TERT promoter were recently identified in up to 71% of cutaneous melanoma. Subsequent studies found TERT promoter mutations in a wide array of other major human cancers. TERT promoter mutations lead to increased expression of telomerase, which maintains telomere length and genomic stability, thereby allowing cancer cells to continuously divide, avoiding senescence or apoptosis. TERT promoter mutations in cutaneous melanoma often show UV-signatures. Non-melanoma skin cancer, including basal cell carcinoma and squamous cell carcinoma, are very frequent malignancies in individuals of European descent. We investigated the presence of TERT promoter mutations in 32 basal cell carcinomas and 34 cutaneous squamous cell carcinomas using conventional Sanger sequencing. TERT promoter mutations were identified in 18 (56%) basal cell carcinomas and in 17 (50%) cutaneous squamous cell carcinomas. The recurrent mutations identified in our cohort were identical to those previously described in cutaneous melanoma, and showed a UV-signature (C>T or CC>TT) in line with a causative role for UV exposure in these common cutaneous malignancies. Our study shows that TERT promoter mutations with UV-signatures are frequent in non-melanoma skin cancer, being present in around 50% of basal and squamous cell carcinomas and suggests that increased expression of telomerase plays an important role in the pathogenesis of these tumors.

  20. Loss Of Klotho During Melanoma Progression Leads To Increased Filamin Cleavage, Increased Wnt5A Expression and Enhanced Melanoma Cell Motility

    PubMed Central

    Camilli, Tura C.; Xu, Mai; O'Connell, Michael P.; Chien, Bonnie; Frank, Brittany P.; Subaran, Sarah; Indig, Fred E.; Morin, Patrice J.; Hewitt, Stephen M.; Weeraratna, Ashani T.

    2010-01-01

    Summary We have previously shown that Wnt5A-mediated signaling can promote melanoma metastasis. It has been shown that Wnt signaling is antagonized by the protein Klotho, which has been implicated in aging. We show here that in melanoma cells, expressions of Wnt5A and Klotho are inversely correlated. In the presence of recombinant Klotho (rKlotho) we show that Wnt5A internalization and signaling is decreased in high Wnt5A expressing cells. Moreover, in the presence of rKlotho, we observe an increase in Wnt5A remaining in the medium, coincident with an increase in sialidase activity and decrease in syndecan expression. These effects can be inhibited using a sialidase inhibitor. In addition to its effects on Wnt5A internalization, we also demonstrate that Klotho decreases melanoma cell invasive potential by a second mechanism, that involves the inhibition of calpain and a resultant decrease in filamin cleavage, which we demonstrate is critical for melanoma cell motility. PMID:20955350

  1. Icariside II overcomes TRAIL resistance of melanoma cells through ROS-mediated downregulation of STAT3/cFLIP signaling

    PubMed Central

    Fu, Xiuqiong; Tse, Anfernee Kai-Wing; Li, Ting; Su, Tao; Yu, Zhi-Ling

    2016-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, many melanoma cells show weak responses to TRAIL. Here, we investigated whether Icariside II (IS), an active component of Herba Epimedii, could potentiate antitumor effects of TRAIL in melanoma cells. Melanoma cells were treated with IS and/or TRAIL and cell death, apoptosis and signal transduction were analyzed. We showed that IS promoted TRAIL-induced cell death and apoptosis in A375 melanoma cells. Mechanistically, IS reduced the expression levels of cFLIP in a phospho-STAT3 (pSTAT3)-dependent manner. Ectopic expression of STAT3 abolished IS-induced cFLIP down-regulation and the associated potentiation of TRAIL-mediated cell death. Moreover, IS-induced reactive oxygen species (ROS) production preceded down-regulation of pSTAT3/cFLIP via activating AKT, and the consequent sensitization of cells to TRAIL. We also found that IS treatment down-regulated cFLIP via ROS-mediated NF-κB pathway. In addition, IS converted TRAIL-resistant melanoma MeWo and SK-MEL-28 cells into TRAIL-sensitive cells. Taken together, our results indicated that IS potentiated TRAIL-induced apoptosis through ROS-mediated down-regulation of STAT3/cFLIP signaling. PMID:27418138

  2. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy

    PubMed Central

    Tarazona, Raquel; Duran, Esther; Solana, Rafael

    2016-01-01

    Natural killer (NK) cells participate in the early immune response against melanoma and also contribute to the development of an adequate adaptive immune response by their crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conventional therapies together with its high immunogenicity justifies the development of novel therapies aimed to stimulate effective immune responses against melanoma. However, melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of major histocompatibility complex (MHC) class I molecules. In this scenario, NK cells emerge as potential candidates for melanoma immunotherapy due to their capacity to recognize and destroy melanoma cells expressing low levels of MHC class I molecules. In addition, the possibility to combine immune checkpoint blockade with other NK cell potentiating strategies (e.g., cytokine induction of activating receptors) has opened new perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma. PMID:26779186

  3. Photoacoustic imaging of single circulating melanoma cells in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Yao, Junjie; Zhang, Ruiying; Xu, Song; Li, Guo; Zou, Jun; Wang, Lihong V.

    2015-03-01

    Melanoma, one of the most common types of skin cancer, has a high mortality rate, mainly due to a high propensity for tumor metastasis. The presence of circulating tumor cells (CTCs) is a potential predictor for metastasis. Label-free imaging of single circulating melanoma cells in vivo provides rich information on tumor progress. Here we present photoacoustic microscopy of single melanoma cells in living animals. We used a fast-scanning optical-resolution photoacoustic microscope to image the microvasculature in mouse ears. The imaging system has sub-cellular spatial resolution and works in reflection mode. A fast-scanning mirror allows the system to acquire fast volumetric images over a large field of view. A 500-kHz pulsed laser was used to image blood and CTCs. Single circulating melanoma cells were imaged in both capillaries and trunk vessels in living animals. These high-resolution images may be used in early detection of CTCs with potentially high sensitivity. In addition, this technique enables in vivo study of tumor cell extravasation from a primary tumor, which addresses an urgent pre-clinical need.

  4. Expression of basement membrane antigens in spindle cell melanoma.

    PubMed

    Prieto, V G; Woodruff, J M

    1998-07-01

    Spindle cell melanoma (SCM) is an uncommon form of melanoma that may be confused histologically with other tumors, including malignant peripheral nerve sheath tumors (MPNST). Tumors with neural differentiation and melanocytic nevi may both show basement membrane immunohistochemically and at the ultrastructural level. However, most ultrastructural studies of melanoma have failed to demonstrate well formed basement membrane around tumor cells. The presence of basement membrane has been used by some authors as evidence favoring MPNST, as opposed to SCM. To evaluate this distinction immunohistochemically, 22 primary and metastatic cutaneous melanomas having a spindle cell component (SCM) were studied using monoclonal antibodies against laminin and Type IV collagen. S100 protein and HMB45 antigen expression were also studied. All but one of the SCM were reactive for S100 protein in at least 25% of the cells. Thirteen of 20 tumors (65%) were focally reactive with HMB45. Laminin was expressed in 42% of the tumors (only membranous pattern in 3; cytoplasmic and membranous in 5). Seventeen tumors (77%) expressed type IV collagen (only membranous pattern in 7; cytoplasmic and membranous pattern in 10). Laminin and type IV collagen, known components of basement membrane, are often found in SCM. Therefore, their detection cannot be used to distinguish SCM from MPNST.

  5. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells

    SciTech Connect

    Vachtenheim, Jiri; Ondrusova, Lubica; Borovansky, Jan

    2010-02-12

    The microphthalmia-associated transcription factor (MITF) is required for melanocyte development, maintenance of the melanocyte-specific transcription, and survival of melanoma cells. MITF positively regulates expression of more than 25 genes in pigment cells. Recently, it has been demonstrated that expression of several MITF downstream targets requires the SWI/SNF chromatin remodeling complex, which contains one of the two catalytic subunits, Brm or Brg1. Here we show that the expression of MITF itself critically requires active SWI/SNF. In several Brm/Brg1-expressing melanoma cell lines, knockdown of Brg1 severely compromised MITF expression with a concomitant dowregulation of MITF targets and decreased cell proliferation. Although Brm was able to substitute for Brg1 in maintaining MITF expression and melanoma cell proliferation, sequential knockdown of both Brm and Brg1 in 501mel cells abolished proliferation. In Brg1-null SK-MEL-5 melanoma cells, depletion of Brm alone was sufficient to abrogate MITF expression and cell proliferation. Chromatin immunoprecipitation confirmed the binding of Brg1 or Brm to the promoter of MITF. Together these results demonstrate the essential role of SWI/SNF for expression of MITF and suggest that SWI/SNF may be a promissing target in melanoma therapy.

  6. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line

    PubMed Central

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Objective Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. Materials and Methods In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133+, CD133- and spheroid cells. Significant differences of the two experimental groups were compared using student’s t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Results Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133+ cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Conclusion Although CD133+ derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells. PMID:27054115

  7. Melanoma-associated chondroitin sulphate proteoglycan as a new target antigen for CD4+ T cells in melanoma patients.

    PubMed

    Erfurt, Cornelia; Müller, Esther; Emmerling, Sonja; Klotz, Claudia; Hertl, Michael; Schuler, Gerold; Schultz, Erwin S

    2009-05-15

    Melanoma-associated chondroitin sulfate proteoglycan (MCSP) (also known as high molecular weight-melanoma-associated antigen) represents an interesting target antigen for cancer immunotherapy which is expressed on human melanomas and other tumors such as breast carcinomas, gliomas, neuroblastomas and acute leukemias. MCSP seems to play an important functional role in melanoma as it is involved in tumor cell migration, invasion and angiogenesis. In this study, we isolated CD4(+) T helper cells from the blood of a healthy donor, recognizing a peptide from the MCSP core protein presented by HLA-DBR1*1101 molecules. T cell reactivity against the identified peptide could be detected in the blood of healthy donors and melanoma patients. MCSP specific T cells from the blood of a patient could be readily expanded by repeated peptide stimulation and recognized MCSP and HLA-DR expressing tumor cells. Our findings suggest that vaccination against MCSP helper T cell epitopes might be a promising approach to fight melanoma.

  8. Interactive Tailored Website to Promote Sun Protection and Skin Self-Check Behaviors in Patients With Stage 0-III Melanoma

    ClinicalTrials.gov

    2017-04-04

    Stage 0 Skin Melanoma; Stage I Skin Melanoma; Stage IA Skin Melanoma; Stage IB Skin Melanoma; Stage II Skin Melanoma; Stage IIA Skin Melanoma; Stage IIB Skin Melanoma; Stage IIC Skin Melanoma; Stage III Skin Melanoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma

  9. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by α-mangostin

    SciTech Connect

    Beninati, Simone; Oliverio, Serafina; Cordella, Martina; Rossi, Stefania; Senatore, Cinzia; Liguori, Immacolata; Lentini, Alessandro; Piredda, Lucia; Tabolacci, Claudio

    2014-08-08

    Highlights: • We studied the anticancer potential of a new emerging molecule, α-mangostin (α-M). • We provide first evidences on the effects of α-M on transglutaminase activity. • We deeply examined the antimetastatic effects of α-M through many in vitro assays. • Proteomic analysis revealed that α-M promotes a reorganization at cellular level. - Abstract: In this study, we have evaluated the potential antineoplastic effects of α-mangostin (α-M), the most representative xanthone in Garcinia mangostana pericarp, on melanoma cell lines. This xanthone markedly inhibits the proliferation of high-metastatic B16-F10 melanoma cells. Furthermore, by deeply analyzing which steps in the metastatic process are influenced by xanthone it was observed that α-M strongly interferes with homotypic aggregation, adhesion, plasticity and invasion ability of B16-F10 cells, probably by the observed reduction of metalloproteinase-9 activity. The antiproliferative and antimetastatic properties of α-M have been established in human SK-MEL-28 and A375 melanoma cells. In order to identify pathways potentially involved in the antineoplastic properties of α-M, a comparative mass spectrometry proteomic approach was employed. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of α-M on melanoma.

  10. Genome-wide methylation sequencing of paired primary and metastatic cell lines identifies common DNA methylation changes and a role for EBF3 as a candidate epigenetic driver of melanoma metastasis

    PubMed Central

    Chatterjee, Aniruddha; Stockwell, Peter A; Ahn, Antonio; Rodger, Euan J; Leichter, Anna L; Eccles, Michael R

    2017-01-01

    Epigenetic alterations are increasingly implicated in metastasis, whereas very few genetic mutations have been identified as authentic drivers of cancer metastasis. Yet, to date, few studies have identified metastasis-related epigenetic drivers, in part because a framework for identifying driver epigenetic changes in metastasis has not been established. Using reduced representation bisulfite sequencing (RRBS), we mapped genome-wide DNA methylation patterns in three cutaneous primary and metastatic melanoma cell line pairs to identify metastasis-related epigenetic drivers. Globally, metastatic melanoma cell lines were hypomethylated compared to the matched primary melanoma cell lines. Using whole genome RRBS we identified 75 shared (10 hyper- and 65 hypomethylated) differentially methylated fragments (DMFs), which were associated with 68 genes showing significant methylation differences. One gene, Early B Cell Factor 3 (EBF3), exhibited promoter hypermethylation in metastatic cell lines, and was validated with bisulfite sequencing and in two publicly available independent melanoma cohorts (n = 40 and 458 melanomas, respectively). We found that hypermethylation of the EBF3 promoter was associated with increased EBF3 mRNA levels in metastatic melanomas and subsequent inhibition of DNA methylation reduced EBF3 expression. RNAi-mediated knockdown of EBF3 mRNA levels decreased proliferation, migration and invasion in primary and metastatic melanoma cell lines. Overall, we have identified numerous epigenetic changes characterising metastatic melanoma cell lines, including EBF3-induced aggressive phenotypic behaviour with elevated EBF3 expression in metastatic melanoma, suggesting that EBF3 promoter hypermethylation may be a candidate epigenetic driver of metastasis. PMID:28030832

  11. Simultaneous knockdown of BRAF and expression of INK4A in melanoma cells leads to potent growth inhibition and apoptosis

    SciTech Connect

    Zhao Yanhua; Zhang Yan; Yang Zhen; Li, Albert; Dong Jianli

    2008-06-06

    Abnormal BRAF and p16INK4A co-exist in 60% of melanomas. BRAF mutation also occurs in 80% of benign nevi where it turns-on p16INK4A resulting in proliferative senescence; loss of p16INK4A removes the inhibitory block leading to melanoma development. Since only melanomas with wild-type BRAF have amplified CDK4 and cyclin D1 genes, p16INK4A-CDK4/6-cyclin D pathway is viewed as linearly downstream of BRAF. Thus, co-occurrence of aberrant BRAF and INK4A may be remnant of changes during melanoma formation without functional significance. To explore this notion, we simultaneously knocked down BRAF (via siRNA) and expressed INK4A cDNA in melanoma cells and observed enhanced growth inhibition. Notably, although each alone had no statistically significant effect on apoptosis, co-expression of BRAF siRNA and INK4A cDNA caused potent apoptosis, which was associated with up-regulation of BIM and down-regulation of BCL2. Our results suggest that aberrant BRAF and INK4A cooperate to promote proliferation and survival of melanoma cells.

  12. The Human Antibody Fragment DIATHIS1 Specific for CEACAM1 Enhances Natural Killer Cell Cytotoxicity Against Melanoma Cell Lines In Vitro

    PubMed Central

    Dupuis, Maria L.; Soriani, Alessandra; Ricci, Biancamaria; Dominici, Sabrina; Moricoli, Diego; Ascione, Alessandro; Santoni, Angela; Magnani, Mauro; Cianfriglia, Maurizio

    2015-01-01

    Several lines of evidence show that de novo expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is strongly associated with reduced disease-free survival of patients affected by metastatic melanoma. Previously published investigations report that homophilic interactions between CEACAM1 expressed on natural killer (NK) cells and tumors inhibit the NK cell-mediated killing independently of major histocompatibility complex class I recognition. This biological property can be physiologically relevant in metastatic melanoma because of the increased CEACAM1 expression observed on NK cells from some patients. Moreover, this inhibitory mechanism in many cases might hinder the efficacy of immunotherapeutic treatments of CEACAM1+ malignancies because of tumor evasion by activated effector cells. In the present study, we designed an in vitro experimental model showing that the human single-chain variable fragment (scFv) DIATHIS1 specific for CEACAM1 is able to enhance the lytic machinery of NK cells against CEACAM1+ melanoma cells. The coincubation of the scFv DIATHIS1 with CEACAM1+ melanoma cells and NK-92 cell line significantly increases the cell-mediated cytotoxicity. Moreover, pretreatment of melanoma cells with scFv DIATHIS1 promotes the activation and the degranulation capacity of in vitro–expanded NK cells from healthy donors. It is interesting to note that the melanoma cell line MelC and the primary melanoma cells STA that respond better to DIATHIS1 treatment, express higher relative levels of CEACAM1-3L and CEACAM1-3S splice variants isoforms compared with Mel501 cells that are less responsive to DIATHIS1-induced NK cell–mediated cytotoxicity. Taken together, our results suggest that the fully human antibody fragment DIATHIS1 originated by biopanning approach from a phage antibody library may represent a relevant biotechnological platform to design and develop completely human antimelanoma therapeutics of biological origin. PMID

  13. Wnt Interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    PubMed Central

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; G, Mary; Johlfs, Ronald R. Fiscus; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-01-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤ 40 nm; intermediates ~40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. PMID:23318676

  14. HTB140 melanoma cells under proton irradiation and/or alkylating agents

    NASA Astrophysics Data System (ADS)

    Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.

    2007-09-01

    Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.

  15. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma

    PubMed Central

    Hendrix, Mary J.C.; Seftor, Elisabeth A.; Seftor, Richard E.B.; Chao, Jun-Tzu; Chien, Du-Shieng; Chu, Yi-Wen

    2016-01-01

    In 1999, the American Journal of Pathology published an article, entitled “Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry” by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a “citation classic” (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways -- each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model. PMID:26808163

  16. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma.

    PubMed

    Khoja, Leila; Lorigan, Paul; Zhou, Cong; Lancashire, Matthew; Booth, Jessica; Cummings, Jeff; Califano, Raffaele; Clack, Glen; Hughes, Andrew; Dive, Caroline

    2013-06-01

    The incidence of melanoma is increasing worldwide. Advances in targeted agents and immunotherapy have improved outcomes in metastatic disease, but biomarkers are required to optimize treatment. We determined the prevalence of circulating tumor cells (CTCs) and explored their utility as prognostic and pharmacodynamic biomarkers. A total of 101 patients with metastatic cutaneous melanoma were recruited prospectively. CTC number was determined using the CellSearch platform and melanoma kits in samples taken at baseline and serially during treatment. CTC numbers ranged between 0 and 36 per 7.5 ml blood; 26% of patients had ≥ 2 CTCs. Baseline CTC number was prognostic for median overall survival (OS) in univariate analysis (2.6 vs. 7.2 months (P<0.011) for patients with ≥ 2 CTCs vs. <2 CTCs, respectively). In multivariate analysis, CTC number was an independent prognostic biomarker of OS (hazard ratio (HR) 2.403, 95% confidence interval (CI) 1.303-4.430, P=0.005). Patients receiving treatment in whom CTC number remained ≥ 2 CTCs during treatment had shorter median OS than those who maintained <2 CTCs (7 vs. 10 months, HR 0.34, 95% CI 0.14-0.81, log-rank test P=0.015). In conclusion, CTC number in metastatic cutaneous melanoma patients is prognostic for OS with a cutoff of 2 CTCs per 7.5 ml blood. CTC number measured before and throughout treatment provided additional prognostic information. Larger studies are warranted to confirm CTC biomarker utility in melanoma patients.

  17. Clustered somatic mutations are frequent in transcription factor binding motifs within proximal promoter regions in melanoma and other cutaneous malignancies

    PubMed Central

    Colebatch, Andrew J.; Di Stefano, Leon; Wong, Stephen Q.; Hannan, Ross D.; Waring, Paul M.; Dobrovic, Alexander

    2016-01-01

    Most cancer DNA sequencing studies have prioritized recurrent non-synonymous coding mutations in order to identify novel cancer-related mutations. Although attention is increasingly being paid to mutations in non-coding regions, standard approaches to identifying significant mutations may not be appropriate and there has been limited analysis of mutational clusters in functionally annotated non-coding regions. We sought to identify clustered somatic mutations (hotspot regions across samples) in functionally annotated regions in melanoma and other cutaneous malignancies (cutaneous squamous cell carcinoma, basal cell carcinoma and Merkel cell carcinoma). Sliding window analyses revealed numerous recurrent clustered hotspot mutations in proximal promoters, with some specific clusters present in up to 25% of cases. Mutations in melanoma were clustered within ETS and Sp1 transcription factor binding motifs, had a UV signature and were identified in other cutaneous malignancies. Clinicopathologic correlation and mutation analysis support a causal role for chronic UV irradiation generating somatic mutations in transcription factor binding motifs of proximal promoters. PMID:27611953

  18. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    SciTech Connect

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  19. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  20. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    SciTech Connect

    Misu, Masayasu; Ouji, Yukiteru; Kawai, Norikazu; Nishimura, Fumihiko; Nakamura-Uchiyama, Fukumi; Yoshikawa, Masahide

    2015-08-07

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.

  1. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated

    PubMed Central

    Berenstein, Ariel; Notcovich, Cintia; Cerda, María B.; Klamt, Fabio; Chernomoretz, Ariel; Durán, Hebe

    2016-01-01

    Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity. These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas. PMID:27206673

  2. Melanoma Cells Homing to the Brain: An In Vitro Model

    PubMed Central

    Rizzo, A.; Vasco, C.; Girgenti, V.; Fugnanesi, V.; Calatozzolo, C.; Canazza, A.; Salmaggi, A.; Rivoltini, L.; Morbin, M.; Ciusani, E.

    2015-01-01

    We developed an in vitro contact through-feet blood brain barrier (BBB) model built using type IV collagen, rat astrocytes, and human umbilical vein endothelial cells (HUVECs) cocultured through Transwell porous polycarbonate membrane. The contact between astrocytes and HUVECs was demonstrated by electron microscopy: astrocytes endfeet pass through the 8.0 μm pores inducing HUVECs to assume a cerebral phenotype. Using this model we evaluated transmigration of melanoma cells from two different patients (M1 and M2) selected among seven melanoma primary cultures. M2 cells showed a statistically significant higher capability to pass across the in vitro BBB model, compared to M1. Expression of adhesion molecules was evaluated by flow cytometry: a statistically significant increased expression of MCAM, αvβ3, and CD49b was detected in M1. PCR array data showed that M2 had a higher expression of several matrix metalloproteinase proteins (MMPs) compared to M1. Specifically, data suggest that MMP2 and MMP9 could be directly involved in BBB permeability and that brain invasion by melanoma cells could be related to the overexpression of many MMPs. Future studies will be necessary to deepen the mechanisms of central nervous system invasion. PMID:25692137

  3. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells

    PubMed Central

    Baenke, Franziska; Chaneton, Barbara; Smith, Matthew; Van Den Broek, Niels; Hogan, Kate; Tang, Haoran; Viros, Amaya; Martin, Matthew; Galbraith, Laura; Girotti, Maria R.; Dhomen, Nathalie; Gottlieb, Eyal; Marais, Richard

    2016-01-01

    BRAF inhibitors can extend progression-free and overall survival in melanoma patients whose tumors harbor mutations in BRAF. However, the majority of patients eventually develop resistance to these drugs. Here we show that BRAF mutant melanoma cells that have developed acquired resistance to BRAF inhibitors display increased oxidative metabolism and increased dependency on mitochondria for survival. Intriguingly, the increased oxidative metabolism is associated with a switch from glucose to glutamine metabolism and an increased dependence on glutamine over glucose for proliferation. We show that the resistant cells are more sensitive to mitochondrial poisons and to inhibitors of glutaminolysis, suggesting that targeting specific metabolic pathways may offer exciting therapeutic opportunities to treat resistant tumors, or to delay emergence of resistance in the first-line setting. PMID:26365896

  4. The relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma: A meta-analysis and bioinformatics

    PubMed Central

    Li, Haili; Tang, Wenru; Jia, Shuting; Wu, Xiaoming; Luo, Ying

    2017-01-01

    Background The function of the tumor suppressor gene RASSF1A in cancer cells has been detailed in many studies. However, due to the methylation of its promoter, the expression of RASSF1A is missing in most cancers. In the literature, we found that the conclusion regarding the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma was not unified. This study adopts the use of a meta-analysis and bioinformatics to explore the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma. Methods Data on melanoma susceptibility were downloaded from the PubMed, Cochrane Library, Web of Science and Google Scholar databases, which were analyzed via a meta-analysis. The effect sizes were estimated by measuring an odds ratio (OR) with a 95% confidence interval (CI). We also used a chi-squared-based Q test to examine the between-study heterogeneity, and used funnel plots to evaluate publication bias. The data on melanoma prognosis, which were analyzed by bioinformatics methods, were downloaded from The Cancer Genome Atlas (TCGA) project. The effect sizes were estimated by measuring the hazard ratios (HRs) with a 95% confidence interval (CI). Results Our meta-analysis included 10 articles. We found that RASSF1A gene promoter methylation was closely related to melanoma susceptibility (OR = 12.67, 95% CI: 6.16 ∼ 26.05, z = 6.90, P<0.0001 according to a fixed effects model and OR = 9.25, 95% CI: 4.37 ∼ 19.54, z = 5.82, P<0.0001 according to a random effects model). The results of the meta-analysis did not reveal any heterogeneity (tau2 = 0.00; H = 1 [1; 1.55]; I2 = 0% [0%; 58.6%], P = 0.5158) or publication bias (t = 0.87, P = 0.4073 by Egger’s test; Z = 0.45, P = 0.6547 by Begg’s test); therefore, we believe that the results of our meta-analysis were more reliable. To explore the relationship between RASSF1A gene methylation, the prognosis of melanoma and the clinical features of

  5. The emerging epidemic of melanoma and squamous cell skin cancer

    SciTech Connect

    Glass, A.G. ); Hoover, R.N. )

    1989-10-20

    Squamous cell skin cancer, though common, remains largely unreported and unstudied, with little known about its incidence and time trends. The authors have used a unique resource--a continuous population-based registry of cases of squamous cell skin cancer within a single prepaid health plant--to describe basic epidemiologic features of this malignancy and compare it with the more widely studied melanoma. Both malignancies are considerably more common in this population than they expected based on previous reports from the general population. From the 1960s to the 1980s, the incidence of squamous cell skin cancer increased 2.6 times in men and 3.1 times in women, while incidence of melanoma rose 3.5-fold and 4.6-fold in men and women, respectively. Skin cancers of both types involving the head and neck or the extremities increased essentially in parallel over these 27 years. Melanomas of the trunk, however, appeared to increase at a faster rate in both sexes. These observations are consistent with the impression that the rising incidence of both malignancies may be attributable to increased voluntary exposure to the sun over an extended period.

  6. Epigenetic impacts of ascorbate on human metastatic melanoma cells.

    PubMed

    Venturelli, Sascha; Sinnberg, Tobias W; Berger, Alexander; Noor, Seema; Levesque, Mitchell Paul; Böcker, Alexander; Niessner, Heike; Lauer, Ulrich M; Bitzer, Michael; Garbe, Claus; Busch, Christian

    2014-01-01

    In recent years, increasing evidence has emerged demonstrating that high-dose ascorbate bears cytotoxic effects on cancer cells in vitro and in vivo, making ascorbate a pro-oxidative drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. This anticancer effect of ascorbate is hypoxia-inducible factor-1α- and O2-dependent. However, whether the intracellular mechanisms governing this effect are modulated by epigenetic phenomena remains unknown. We treated human melanoma cells with physiological (200 μM) or pharmacological (8 mM) ascorbate for 1 h to record the impact on DNA methyltransferase (DNMT)-activity, histone deacetylases (HDACs), and microRNA (miRNA) expression after 12 h. The results were analyzed with the MIRUMIR online tool that estimates the power of miRNA to serve as potential biomarkers to predict survival of cancer patients. FACS cell-cycle analyses showed that 8 mM ascorbate shifted BLM melanoma cells toward the sub-G1 fraction starting at 12 h after an initial primary G2/M arrest, indicative for secondary apoptosis induction. In pharmacological doses, ascorbate inhibited the DNMT activity in nuclear extracts of MeWo and BLM melanoma cells, but did not inhibit human HDAC enzymes of classes I, II, and IV. The expression of 151 miRNAs was altered 12 h after ascorbate treatment of BLM cells in physiological or pharmacological doses. Pharmacological doses up-regulated 32 miRNAs (≥4-fold) mainly involved in tumor suppression and drug resistance in our preliminary miRNA screening array. The most prominently up-regulated miRNAs correlated with a significantly increased overall survival of breast cancer or nasopharyngeal carcinoma patients of the MIRUMIR database with high expression of the respective miRNA. Our results suggest a possible epigenetic signature of pharmacological doses of ascorbate in human melanoma cells and support further pre-clinical and possibly even clinical evaluation of

  7. Stem cell media culture of melanoma results in the induction of a nonrepresentative neural expression profile.

    PubMed

    Anaka, Matthew; Freyer, Claudia; Gedye, Craig; Caballero, Otavia; Davis, Ian D; Behren, Andreas; Cebon, Jonathan

    2012-02-01

    The ability of cell lines to accurately represent cancer is a major concern in preclinical research. Culture of glioma cells as neurospheres in stem cell media (SCM) has been shown to better represent the genotype and phenotype of primary glioblastoma in comparison to serum cell lines. Despite the use of neurosphere-like models of many malignancies, there has been no robust analysis of whether other cancers benefit from a more representative phenotype and genotype when cultured in SCM. We analyzed the growth properties, transcriptional profile, and genotype of melanoma cells grown de novo in SCM, as while melanocytes share a common precursor with neural cells, melanoma frequently demonstrates divergent behavior in cancer stem cell assays. SCM culture of melanoma cells induced a neural lineage gene expression profile that was not representative of matched patient tissue samples and which could be induced in serum cell lines by switching them into SCM. There was no enrichment for expression of putative melanoma stem cell markers, but the SCM expression profile did overlap significantly with that of SCM cultures of glioma, suggesting that the observed phenotype is media-specific rather than melanoma-specific. Xenografts derived from either culture condition provided the best representation of melanoma in situ. Finally, SCM culture of melanoma did not prevent ongoing acquisition of DNA copy number abnormalities. In conclusion, SCM culture of melanoma does not provide a better representation of the phenotype or genotype of metastatic melanoma, and the resulting neural bias could potentially confound therapeutic target identification.

  8. IGFBP‐3 inhibits Wnt signaling in metastatic melanoma cells

    PubMed Central

    Zingariello, Maria; Sancillo, Laura; Panasiti, Vincenzo; Polinari, Dorina; Martella, Marianna; Rosa Alba, Rana; Londei, Paola

    2016-01-01

    In previous works, we have shown that insulin‐like growth factor‐binding protein‐3 (IGFBP‐3), a tissue and circulating protein able to bind to IGFs, decreases drastically in the blood serum of patients with diffuse metastatic melanoma. In agreement with the clinical data, recombinant IGFBP‐3 was found to inhibit the motility and invasiveness of cultured metastatic melanoma cells and to prevent growth of grafted melanomas in mice. The present work was aimed at identifying the signal transduction pathways underlying the anti‐tumoral effects of IGFBP‐3. We show that the anti‐tumoral effect of IGFBP‐3 is due to inhibition of the Wnt pathway and depends upon the presence of CD44, a receptor protein known to modulate Wnt signaling. Once it has entered the cell, IGFBP‐3 binds the Wnt signalosome interacting specifically with its component GSK‐3β. As a consequence, the β‐catenin destruction complex dissociates from the LRP6 Wnt receptor and GSK‐3β is activated through dephosphorylation, becoming free to target cytoplasmic β‐catenin which is degraded by the proteasomal pathway. Altogether, the results suggest that IGFBP‐3 is a novel and effective inhibitor of Wnt signaling. As IGFBP‐3 is a physiological protein which has no detectable toxic effects either on cultured cells or live mice, it might qualify as an interesting new therapeutic agent in melanoma, and potentially many other cancers with a hyperactive Wnt signaling. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. PMID:27377812

  9. Interferon-β gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    PubMed

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported.

  10. Notch1—WISP-1 axis determines the regulatory role of mesenchymal stem cell-derived stromal fibroblasts in melanoma metastasis

    PubMed Central

    Moller, Mecker; Issac, Biju; Zhang, Leiming; Owyong, Mark; Moscowitz, Anna Elizabeth; Vazquez-Padron, Roberto; Radtke, Freddy; Liu, Zhao-Jun

    2016-01-01

    Mesenchymal stem cells-derived fibroblasts (MSC-DF) constitute a significant portion of stromal fibroblasts in the tumor microenvironment (TME) and are key modulators of tumor progression. However, the molecular mechanisms that determine their tumor-regulatory function are poorly understood. Here, we uncover the Notch1 pathway as a molecular determinant that selectively controls the regulatory role of MSC-DF in melanoma metastasis. We demonstrate that the Notch1 pathway's activity is inversely correlated with the metastasis-regulating function of fibroblasts and can determine the metastasis-promoting or -suppressing phenotype of MSC-DF. When co-grafted with melanoma cells, MSC-DFNotch1−/− selectively promote, while MSC-DFN1IC+/+ preferentially suppress melanoma metastasis, but not growth, in mouse models. Consistently, conditioned media (CM) from MSC-DFNotch1−/− and MSC-DFN1IC+/+ oppositely, yet selectively regulates migration, but not growth of melanoma cells in vitro. Additionally, when co-cultured with metastatic melanoma cells in vitro, MSC-DFNotch1−/− support, while MSC-DFN1IC+/+ inhibit melanoma cells in the formation of spheroids. These findings expand the repertoire of Notch1 signaling as a molecular switch in determining the tumor metastasis-regulating function of MSC-DF. We also identified Wnt-induced secreted protein-1 (WISP-1) as a key downstream secretory mediator of Notch1 signaling to execute the influential role of MSC-DF on melanoma metastasis. These findings reveal the Notch1—WISP-1 axis as a crucial molecular determinant in governing stromal regulation of melanoma metastasis; thus, establishing this axis as a potential therapeutic target for melanoma metastasis. PMID:27813493

  11. Context-dependent roles of mutant B-Raf signaling in melanoma and colorectal carcinoma cell growth.

    PubMed

    Hao, Honglin; Muniz-Medina, Vanessa M; Mehta, Heena; Thomas, Nancy E; Khazak, Vladimir; Der, Channing J; Shields, Janiel M

    2007-08-01

    Mutational activation of Ras and a key downstream effector of Ras, the B-Raf serine/threonine kinase, has been observed in melanomas and colorectal carcinomas. These observations suggest that inhibition of B-Raf activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase (MEK) and the extracellular signal-regulated kinase MAPK cascade may be an effective approach for the treatment of RAS and B-RAF mutation-positive melanomas and colon carcinomas. Although recent studies with interfering RNA (RNAi) and pharmacologic inhibitors support a critical role for B-Raf signaling in melanoma growth, whether mutant B-Raf has an equivalent role in promoting colorectal carcinoma growth has not been determined. In the present study, we used both RNAi and pharmacologic approaches to further assess the role of B-Raf activation in the growth of human melanomas and additionally determined if a similar role for mutant B-Raf is seen for colorectal carcinoma cell lines. We observed that RNAi suppression of mutant B-Raf(V600E) expression strongly suppressed the anchorage-dependent growth of B-RAF mutation-positive melanoma, but not colorectal carcinoma, cells. However, the anchorage-independent and tumorigenic growth of B-RAF mutation-positive colorectal carcinomas was dependent on mutant B-Raf function. Finally, pharmacologic inhibition of MEK and Raf was highly effective at inhibiting the growth of B-RAF mutation-positive melanomas and colorectal carcinoma cells, whereas inhibitors of other protein kinases activated by Ras (AKT, c-Jun NH(2)-terminal kinase, and p38 MAPK) were less effective. Our observations suggest that Raf and MEK inhibitors may be effective for the treatment of B-RAF mutation-positive colorectal carcinomas as well as melanomas.

  12. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    SciTech Connect

    Ribeiro, Mariana P.C.; Nunes-Correia, Isabel; Santos, Armanda E.; Custódio, José B.A.

    2014-02-15

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma.

  13. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    SciTech Connect

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; Johlfs, Mary G.; Fiscus, Ronald R.; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  14. UNR/CSDE1 Drives a Post-transcriptional Program to Promote Melanoma Invasion and Metastasis.

    PubMed

    Wurth, Laurence; Papasaikas, Panagiotis; Olmeda, David; Bley, Nadine; Calvo, Guadalupe T; Guerrero, Santiago; Cerezo-Wallis, Daniela; Martinez-Useros, Javier; García-Fernández, María; Hüttelmaier, Stefan; Soengas, Maria S; Gebauer, Fátima

    2016-11-14

    RNA binding proteins (RBPs) modulate cancer progression through poorly understood mechanisms. Here we show that the RBP UNR/CSDE1 is overexpressed in melanoma tumors and promotes invasion and metastasis. iCLIP sequencing, RNA sequencing, and ribosome profiling combined with in silico studies unveiled sets of pro-metastatic factors coordinately regulated by UNR as part of RNA regulons. In addition to RNA steady-state levels, UNR was found to control many of its targets at the level of translation elongation/termination. Key pro-oncogenic targets of UNR included VIM and RAC1, as validated by loss- and gain-of-function studies. Our results identify UNR as an oncogenic modulator of melanoma progression, unravel the underlying molecular mechanisms, and identify potential targets for this therapeutically challenging malignancy.

  15. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.

    PubMed

    Lobos-González, Lorena; Aguilar, Lorena; Diaz, Jorge; Diaz, Natalia; Urra, Hery; Torres, Vicente A; Silva, Veronica; Fitzpatrick, Christopher; Lladser, Alvaro; Hoek, Keith S; Leyton, Lisette; Quest, Andrew F G

    2013-07-01

    The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells.

  16. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  17. Peripheral blood Th9 cells are a possible pharmacodynamic biomarker of nivolumab treatment efficacy in metastatic melanoma patients.

    PubMed

    Nonomura, Yumi; Otsuka, Atsushi; Nakashima, Chisa; Seidel, Judith A; Kitoh, Akihiko; Dainichi, Teruki; Nakajima, Saeko; Sawada, Yu; Matsushita, Shigeto; Aoki, Megumi; Takenouchi, Tatsuya; Fujimura, Taku; Hatta, Naohito; Koreeda, Satoshi; Fukushima, Satoshi; Honda, Tetsuya; Kabashima, Kenji

    2016-01-01

    Although nivolumab is associated with a significant improvement in overall survival and progression-free survival, only 20 to 40% of patients experience long-term benefit. It is therefore of great interest to identify a predictive marker of clinical benefit for nivolumab. To address this issue, the frequencies of CD4(+) T cell subsets (Treg, Th1, Th2, Th9, Th17 and Th22), CD8(+) T cells, and serum cytokine levels (IFNγ, IL-4, IL-9, IL-10, TGF-β) were assessed in 46 patients with melanoma. Eighteen patients responded to nivolumab, and the other 28 patients did not. An early increase in Th9 cell counts during the treatment with nivolumab was associated with an improved clinical response. Before the first nivolumab infusion, the responders displayed elevated serum concentrations of TGF-β compared to non-responders. Th9 induction by IL-4 and TGF-β was enhanced by PD-1/PD-L1 blockade in vitro. The role of IL-9 in disease progression was further assessed using a murine melanoma model. In vivo IL-9 blockade promoted melanoma progression in mice using an autochthonous mouse melanoma model, and the cytotoxic ability of murine melanoma-specific CD8(+) T cells was enhanced in the presence of IL-9 in vitro. These findings suggest that Th9 cells, which produce IL-9, play an important role in the successful treatment of melanoma patients with nivolumab. Th9 cells therefore represent a valid biomarker to be further developed in the setting of anti-PD-1 therapy.

  18. Combination with γ-secretase inhibitor prolongs treatment efficacy of BRAF inhibitor in BRAF-mutated melanoma cells.

    PubMed

    Zhu, Guannan; Yi, Xiuli; Haferkamp, Sebastian; Hesbacher, Sonja; Li, Chunying; Goebeler, Matthias; Gao, Tianwen; Houben, Roland; Schrama, David

    2016-06-28

    Oncogenic triggering of the MAPK pathway in melanocytes results in senescence, and senescence escape is considered as one critical step for melanocytic transformation. In melanoma, induction of a senescent-like state by BRAF-inhibitors (BRAFi) in a fraction of treated cells - instead of killing - contributes to the repression of tumor growth, but may also provide a source for relapse. Here, we demonstrate that NOTCH activation in melanocytes is not only growth-promoting but it also protects these cells against oncogene-induced senescence. In turn, treatment of melanoma cells with an inhibitor of the NOTCH-activating enzyme γ-secretase led to induction of a senescent-like status in a fraction of the cells but overall achieved only a moderate inhibition of melanoma cell growth. However, combination of γ-secretase inhibitor (GSI) with BRAFi markedly increased the treatment efficacy particularly in long-term culture. Moreover, even melanoma cells starting to regrow after continuous BRAFi treatment - the major problem of BRAFi therapy in patients - can still be affected by the combination treatment. Thus, combining GSI with BRAFi increases the therapeutic efficacy by, at least partially, prolonging the senescent-like state of treated cells.

  19. Directed Dedifferentiation Using Partial Reprogramming Induces Invasive Phenotype in Melanoma Cells.

    PubMed

    Knappe, Nathalie; Novak, Daniel; Weina, Kasia; Bernhardt, Mathias; Reith, Maike; Larribere, Lionel; Hölzel, Michael; Tüting, Thomas; Gebhardt, Christoffer; Umansky, Viktor; Utikal, Jochen

    2016-04-01

    The combination of cancer-focused studies and research related to nuclear reprogramming has gained increasing importance since both processes-reprogramming towards pluripotency and malignant transformation-share essential features. Studies have revealed that incomplete reprogramming of somatic cells leads to malignant transformation indicating that epigenetic regulation associated with iPSC generation can drive cancer development [J Mol Cell Biol 2011;341-350; Cell 2012;151:1617-1632; Cell 2014;156:663-677]. However, so far it is unclear whether incomplete reprogramming also affects cancer cells and their function. In the context of melanoma, dedifferentiation correlates to therapy resistance in mouse studies and has been documented in melanoma patients [Nature 2012;490:412-416; Clin Cancer Res 2014;20:2498-2499]. Therefore, we sought to investigate directed dedifferentiation using incomplete reprogramming of melanoma cells. Using a murine model we investigated the effects of partial reprogramming on the cellular plasticity of melanoma cells. We demonstrate for the first time that induced partial reprogramming results in a reversible phenotype switch in melanoma cells. Partially reprogrammed cells at day 12 after transgene induction display elevated invasive potential in vitro and increased lung colonization in vivo. Additionally, using global gene expression analysis of partially reprogrammed cells, we identified SNAI3 as a novel invasion-related marker in human melanoma. SNAI3 expression correlates with tumor thickness in primary melanomas and thus, may be of prognostic value. In summary, we show that investigating intermediate states during the process of reprogramming melanoma cells can reveal novel insights into the pathogenesis of melanoma progression. We propose that deeper analysis of partially reprogrammed melanoma cells may contribute to identification of yet unknown signaling pathways that can drive melanoma progression.

  20. Notch3 signaling-mediated melanoma-endothelial crosstalk regulates melanoma stem-like cell homeostasis and niche morphogenesis.

    PubMed

    Hsu, Mei-Yu; Yang, Moon Hee; Schnegg, Caroline I; Hwang, Soonyean; Ryu, Byungwoo; Alani, Rhoda M

    2017-02-06

    Melanoma is among the most virulent cancers, owing to its propensity to metastasize and its resistance to current therapies. The treatment failure is largely attributed to tumor heterogeneity, particularly subpopulations possessing stem cell-like properties, ie, melanoma stem-like cells (MSLCs). Evidence indicates that the MSLC phenotype is malleable and may be acquired by non-MSLCs through phenotypic switching upon appropriate stimuli, the so-called 'dynamic stemness'. Since the phenotypic characteristics and functional integrity of MSLCs depend on their vascular niche, using a two-dimensional (2D) melanoma-endothelium co-culture model, where the MSLC niche is recapitulated in vitro, we identified Notch3 signaling pathway as a micro-environmental cue governing MSLC phenotypic plasticity via pathway-specific gene expression arrays. Accordingly, lentiviral shRNA-mediated Notch3 knockdown (KD) in melanoma cell lines exhibiting high levels of endogenous Notch3 led to retarded/abolished tumorigenicity in vivo through both depleting MSLC fractions, evinced by MSLC marker downregulation (eg, CD133 and CD271); and impeding the MSLC niche, corroborated by the attenuated tumor angiogenesis as well as vasculogenic mimicry. In contrast, Notch3 KD affected neither tumor growth nor MSLC subsets in a melanoma cell line with relatively low endogenous Notch3 expression. Thus, Notch3 signaling may facilitate MSLC plasticity and niche morphogenesis in a cell context-dependent manner. Our findings illustrate Notch3 as a molecular switch driving melanoma heterogeneity, and provide the biological rationale for Notch inhibition as a promising therapeutic option.Laboratory Investigation advance online publication, 6 February 2017; doi:10.1038/labinvest.2017.1.

  1. A Novel Therapy for Melanoma Developed in Mice: Transformation of Melanoma into Dendritic Cells with Listeria monocytogenes

    PubMed Central

    Bronchalo-Vicente, Lucia; Rodriguez-Del Rio, Estela; Freire, Javier; Calderon-Gonzalez, Ricardo; Frande-Cabanes, Elisabet; Gomez-Roman, Jose Javier; Fernández-Llaca, Hector; Yañez-Diaz, Sonsoles; Alvarez-Dominguez, Carmen

    2015-01-01

    Listeria monocytogenes is a gram-positive bacteria and human pathogen widely used in cancer immunotherapy because of its capacity to induce a specific cytotoxic T cell response in tumours. This bacterial pathogen strongly induces innate and specific immunity with the potential to overcome tumour induced tolerance and weak immunogenicity. Here, we propose a Listeria based vaccination for melanoma based in its tropism for these tumour cells and its ability to transform in vitro and in vivo melanoma cells into matured and activated dendritic cells with competent microbicidal and antigen processing abilities. This Listeria based vaccination using low doses of the pathogen caused melanoma regression by apoptosis as well as bacterial clearance. Vaccination efficacy is LLO dependent and implies the reduction of LLO-specific CD4+ T cell responses, strong stimulation of innate pro-inflammatory immune cells and a prevalence of LLO-specific CD8+ T cells involved in tumour regression and Listeria elimination. These results support the use of low doses of pathogenic Listeria as safe melanoma therapeutic vaccines that do not require antibiotics for bacterial removal. PMID:25760947

  2. Genetics of melanoma progression: the rise and fall of cell senescence.

    PubMed

    Bennett, Dorothy C

    2016-03-01

    There are many links between cell senescence and the genetics of melanoma, meaning both familial susceptibility and somatic-genetic changes in sporadic melanoma. For example, CDKN2A, the best-known melanoma susceptibility gene, encodes two effectors of cell senescence, while other familial melanoma genes are related to telomeres and their maintenance. This article aimed to analyze our current knowledge of the genetic or epigenetic driver changes necessary to generate a cutaneous metastatic melanoma, the commonest order in which these occur, and the relation of these changes to the biology and pathology of melanoma progression. Emphasis is laid on the role of cell senescence and the escape from senescence leading to cellular immortality, the ability to divide indefinitely.

  3. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  4. Antimicrobial peptide LL-37 participates in the transcriptional regulation of melanoma cells

    PubMed Central

    Muñoz, Mindy; Craske, Madeleine; Severino, Patricia; de Lima, Thais Martins; Labhart, Paul; Chammas, Roger; Velasco, Irineu Tadeu; Machado, Marcel Cerqueira César; Egan, Brian; Nakaya, Helder I; Pinheiro da Silva, Fabiano

    2016-01-01

    Antimicrobial peptides are an ancient family of molecules that emerged millions of years ago and have been strongly conserved during the evolutionary process of living organisms. Recently, our group described that the human antimicrobial peptide LL-37 migrates to the nucleus, raising the possibility that LL-37 could directly modulate transcription under certain conditions. Here, we showed evidence that LL-37 binds to gene promoter regions, and LL-37 gene silencing changed the transcriptional program of melanoma A375 cells genes associated with histone, metabolism, cellular stress, ubiquitination and mitochondria. PMID:27994673

  5. Endogenously produced nitric oxide mitigates sensitivity of melanoma cells to cisplatin.

    PubMed

    Godoy, Luiz C; Anderson, Chase T M; Chowdhury, Rajdeep; Trudel, Laura J; Wogan, Gerald N

    2012-12-11

    Melanoma patients experience inferior survival after biochemotherapy when their tumors contain numerous cells expressing the inducible isoform of NO synthase (iNOS) and elevated levels of nitrotyrosine, a product derived from NO. Although several lines of evidence suggest that NO promotes tumor growth and increases resistance to chemotherapy, it is unclear how it shapes these outcomes. Here we demonstrate that modulation of NO-mediated S-nitrosation of cellular proteins is strongly associated with the pattern of response to the anticancer agent cisplatin in human melanoma cells in vitro. Cells were shown to express iNOS constitutively, and to generate sustained nanomolar levels of NO intracellularly. Inhibition of NO synthesis or scavenging of NO enhanced cisplatin-induced apoptotic cell death. Additionally, pharmacologic agents disrupting S-nitrosation markedly increased cisplatin toxicity, whereas treatments favoring stabilization of S-nitrosothiols (SNOs) decreased its cytotoxic potency. Activity of the proapoptotic enzyme caspase-3 was higher in cells treated with a combination of cisplatin and chemicals that decreased NO/SNOs, whereas lower activity resulted from cisplatin combined with stabilization of SNOs. Constitutive protein S-nitrosation in cells was detected by analysis with biotin switch and reduction/chemiluminescence techniques. Moreover, intracellular NO concentration increased significantly in cells that survived cisplatin treatment, resulting in augmented S-nitrosation of caspase-3 and prolyl-hydroxylase-2, the enzyme responsible for targeting the prosurvival transcription factor hypoxia-inducible factor-1α for proteasomal degradation. Because activities of these enzymes are inhibited by S-nitrosation, our data thus indicate that modulation of intrinsic intracellular NO levels substantially affects cisplatin toxicity in melanoma cells. The underlying mechanisms may thus represent potential targets for adjuvant strategies to improve the efficacy

  6. Characteristics of malignant melanoma cells in the treatment with fast neutrons

    SciTech Connect

    Tsunemoto, H.; Morita, S.; Mori, S. )

    1989-07-01

    The radioresistance of malignant melanoma cells has been explained by the wide shoulder of the dose-cell-survival curve of the cells exposed to photon beams. Fast neutrons, 30 MeV d-Be, were used to treat patients who had malignant melanoma in order to confirm the biological effects of high linear energy transfer (LET) radiation for tumor control. Seventy-two patients suffering from malignant melanoma participated in the clinical trials with fast neutrons between November 1975 and December 1986. Of 72 patients, 45 had melanoma of the skin, 20 had melanoma of the head and neck, and seven had choroidal melanoma. Five-year survival rate of the patients who had previously untreated melanoma of the skin was 61% and for patients who received postoperative irradiation, it was 35.7% whereas no patients who had recurrent tumor survived over 4 years. Of 22 patients who had melanoma of the skin, stage I, local control in four cases was achieved by irradiation alone, whereas local control was achieved in 17 of 18 patients who required salvage surgery after fast-neutron therapy. The results of pathological studies performed with specimens obtained from salvage surgery have shown that melanoma cells growing in intradermal tissue are radioresistant, compared with cells growing in intraepidermal tissue. This might suggest that melanoma cells acquire radioresistance when the connective tissue is involved. Five-year survival rate of the patients who had locally advanced melanoma of the head and neck, previously untreated, was 15.4%. Radiation therapy with accelerated protons was suitable for patients suffering from choroidal melanoma.

  7. Detection and isolation of circulating melanoma cells using photoacoustic flowmetry.

    PubMed

    O'Brien, Christine M; Rood, Kyle; Sengupta, Shramik; Gupta, Sagar K; DeSouza, Thiago; Cook, Aaron; Viator, John A

    2011-11-25

    Circulating tumor cells (CTCs) are those cells that have separated from a macroscopic tumor and spread through the blood and lymph systems to seed secondary tumors(1,2,3). CTCs are indicators of metastatic disease and their detection in blood samples may be used to diagnose cancer and monitor a patient's response to therapy. Since CTCs are rare, comprising about one tumor cell among billions of normal blood cells in advanced cancer patients, their detection and enumeration is a difficult task. We exploit the presence of pigment in most melanoma cells to generate photoacoustic, or laser induced ultrasonic waves in a custom flow cytometer for detection of circulating melanoma cells (CMCs)(4,5). This process entails separating a whole blood sample using centrifugation and obtaining the white blood cell layer. If present in whole blood, CMCs will separate with the white blood cells due to similar density. These cells are resuspended in phosphate buffered saline (PBS) and introduced into the flowmeter. Rather than a continuous flow of the blood cell suspension, we induced two phase flow in order to capture these cells for further study. In two phase flow, two immiscible liquids in a microfluidic system meet at a junction and form alternating slugs of liquid(6,7). PBS suspended white blood cells and air form microliter slugs that are sequentially irradiated with laser light. The addition of a surfactant to the liquid phase allows uniform slug formation and the user can create different sized slugs by altering the flow rates of the two phases. Slugs of air and slugs of PBS with white blood cells contain no light absorbers and hence, do not produce photoacoustic waves. However, slugs of white blood cells that contain even single CMCs absorb laser light and produce high frequency acoustic waves. These slugs that generate photoacoustic waves are sequestered and collected for cytochemical staining for verification of CMCs.

  8. Pentoxifylline Inhibits WNT Signalling in β-Cateninhigh Patient-Derived Melanoma Cell Populations

    PubMed Central

    Talar, Beata; Gajos-Michniewicz, Anna; Talar, Marcin; Chouaib, Salem; Czyz, Malgorzata

    2016-01-01

    Background The heterogeneity of melanoma needs to be addressed and combination therapies seem to be necessary to overcome intrinsic and acquired resistance to newly developed immunotherapies and targeted therapies. Although the role of WNT/β-catenin pathway in melanoma was early demonstrated, its contribution to the lack of the melanoma patient response to treatment was only recently recognized. Using patient-derived melanoma cell populations, we investigated the influence of pentoxifylline on melanoma cells with either high or low expression of β-catenin. Findings Our results indicate that pentoxifylline inhibits the activity of the canonical WNT pathway in melanoma cell populations with high basal activity of this signalling. This is supported by lowered overall activity of transcription factors TCF/LEF and reduced nuclear localisation of active β-catenin. Moreover, treatment of β-cateninhigh melanoma cell populations with pentoxifylline induces downregulation of genes that are targets of the WNT/β-catenin pathway including connective tissue growth factor (CTGF) and microphthalmia-associated transcription factor (MITF-M), a melanocyte- and melanoma cell-specific regulator. Conclusions These results suggest that pentoxifylline, a drug approved by the FDA in the treatment of peripheral arterial disease, might be tested in a subset of melanoma patients with elevated activity of β-catenin. This pharmaceutical might be tested as an adjuvant drug in combination therapies when the response to immunotherapy is prevented by high activity of the WNT/β-catenin pathway. PMID:27351373

  9. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma

    PubMed Central

    Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-01

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma. PMID:28036292

  10. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    SciTech Connect

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.; Chang, Michelle E.; Ata, Muhammad O.; Yusuf, Nabiha

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.

  11. Mitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor

    PubMed Central

    André, Fanny; Jonneaux, Aurélie; Scalbert, Camille; Garçon, Guillaume; Malet-Martino, Myriam; Balayssac, Stéphane; Rocchi, Stephane; Savina, Ariel; Formstecher, Pierre; Mortier, Laurent; Kluza, Jérome; Marchetti, Philippe

    2013-01-01

    Vemurafenib/PLX4032, a selective inhibitor of mutant BRAFV600E, constitutes a paradigm shift in melanoma therapy. Unfortunately, acquired resistance, which unavoidably occurs, represents one major limitation to clinical responses. Recent studies have highlighted that vemurafenib activated oxidative metabolism in BRAFV600E melanomas expressing PGC1α. However, the oxidative state of melanoma resistant to BRAF inhibitors is unknown. We established representative in vitro and in vivo models of human melanoma resistant to vemurafenib including primary specimens derived from melanoma patients. Firstly, our study reveals that vemurafenib increased mitochondrial respiration and ROS production in BRAFV600E melanoma cell lines regardless the expression of PGC1α. Secondly, melanoma cells that have acquired resistance to vemurafenib displayed intrinsically high rates of mitochondrial respiration associated with elevated mitochondrial oxidative stress irrespective of the presence of vemurafenib. Thirdly, the elevated ROS level rendered vemurafenib-resistant melanoma cells prone to cell death induced by pro-oxidants including the clinical trial drug, elesclomol. Based on these observations, we propose that the mitochondrial oxidative signature of resistant melanoma constitutes a novel opportunity to overcome resistance to BRAF inhibition. PMID:24161908

  12. Inhibition of L-tyrosine-induced micronuclei production by phenylthiourea in human melanoma cells.

    PubMed

    Poma, A; Bianchini, S; Miranda, M

    1999-12-13

    It was previously found that L-tyrosine oxidation product(s) are cytotoxic, genotoxic and increase the sister chromatid exchange (SCE) levels in human melanoma cells. In this work, the micronucleus assay has been performed on human melanotic and amelanotic melanoma cell lines (Carl-1 MEL and AMEL) in the presence of 1.0, 0.5 and 0.1 mM L-tyrosine concentrations to investigate if melanin synthesis intermediate(s) increase micronuclei production. L-Tyrosine oxidation product(s) increased the frequency of micronuclei in melanoma cells; 0.1 mM phenylthiourea (PTU), an inhibitor of L-tyrosine oxidation by tyrosinase, lowered the micronucleus production to the control levels. The culture of melanoma cells with high L-tyrosine in the culture medium resulted in a positive response to an ELISA-based apoptotic test. For comparison the effect of L-tyrosine on micronuclei production in human amelanotic melanoma cells was also investigated; the micronucleus production in the presence of 1 mM L-tyrosine in the culture medium was lower than that found with melanotic melanoma cells of the same cell line. The data suggest that melanin synthesis intermediates arising from L-tyrosine oxidation may cause micronuclei production in Carl-1 human melanoma cells; the addition of PTU in the presence of L-tyrosine decreased the frequency of micronuclei to about the control values thus the inhibition of melanogenesis may have some clinical implication in melanotic melanoma.

  13. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    PubMed

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  14. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    SciTech Connect

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  15. von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans

    PubMed Central

    Bauer, Alexander T.; Suckau, Jan; Frank, Kathrin; Desch, Anna; Goertz, Lukas; Wagner, Andreas H.; Hecker, Markus; Goerge, Tobias; Umansky, Ludmila; Beckhove, Philipp; Utikal, Jochen; Gorzelanny, Christian; Diaz-Valdes, Nancy; Umansky, Viktor

    2015-01-01

    Tumor-mediated procoagulatory activity leads to venous thromboembolism and supports metastasis in cancer patients. A prerequisite for metastasis formation is the interaction of cancer cells with endothelial cells (ECs) followed by their extravasation. Although it is known that activation of ECs and the release of the procoagulatory protein von Willebrand factor (VWF) is essential for malignancy, the underlying mechanisms remain poorly understood. We hypothesized that VWF fibers in tumor vessels promote tumor-associated thromboembolism and metastasis. Using in vitro settings, mouse models, and human tumor samples, we showed that melanoma cells activate ECs followed by the luminal release of VWF fibers and platelet aggregation in tumor microvessels. Analysis of human blood samples and tumor tissue revealed that a promoted VWF release combined with a local inhibition of proteolytic activity and protein expression of ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type I repeats 13) accounts for this procoagulatory milieu. Blocking endothelial cell activation by the low-molecular-weight heparin tinzaparin was accompanied by a lack of VWF networks and inhibited tumor progression in a transgenic mouse model. Our findings implicate a mechanism wherein tumor-derived vascular endothelial growth factor-A (VEGF-A) promotes tumor progression and angiogenesis. Thus, targeting EC activation envisions new therapeutic strategies attenuating tumor-related angiogenesis and coagulation. PMID:25977583

  16. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  17. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2016-05-05

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma

  18. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    SciTech Connect

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  19. Rap1-GTP-interacting Adaptor Molecule (RIAM) Protein Controls Invasion and Growth of Melanoma Cells*

    PubMed Central

    Hernández-Varas, Pablo; Coló, Georgina P.; Bartolomé, Ruben A.; Paterson, Andrew; Medraño-Fernández, Iria; Arellano-Sánchez, Nohemí; Cabañas, Carlos; Sánchez-Mateos, Paloma; Lafuente, Esther M.; Boussiotis, Vassiliki A.; Strömblad, Staffan; Teixidó, Joaquin

    2011-01-01

    The Mig-10/RIAM/lamellipodin (MRL) family member Rap1-GTP-interacting adaptor molecule (RIAM) interacts with active Rap1, a small GTPase that is frequently activated in tumors such as melanoma and prostate cancer. We show here that RIAM is expressed in metastatic human melanoma cells and that both RIAM and Rap1 are required for BLM melanoma cell invasion. RIAM silencing in melanoma cells led to inhibition of tumor growth and to delayed metastasis in a severe combined immunodeficiency xenograft model. Defective invasion of RIAM-silenced melanoma cells arose from impairment in persistent cell migration directionality, which was associated with deficient activation of a Vav2-RhoA-ROCK-myosin light chain pathway. Expression of constitutively active Vav2 and RhoA in cells depleted for RIAM partially rescued their invasion, indicating that Vav2 and RhoA mediate RIAM function. These results suggest that inhibition of cell invasion in RIAM-silenced melanoma cells is likely based on altered cell contractility and cell polarization. Furthermore, we show that RIAM depletion reduces β1 integrin-dependent melanoma cell adhesion, which correlates with decreased activation of both Erk1/2 MAPK and phosphatidylinositol 3-kinase, two central molecules controlling cell growth and cell survival. In addition to causing inhibition of cell proliferation, RIAM silencing led to higher susceptibility to cell apoptosis. Together, these data suggest that defective activation of these kinases in RIAM-silenced cells could account for inhibition of melanoma cell growth and that RIAM might contribute to the dissemination of melanoma cells. PMID:21454517

  20. Basal cell carcinoma, squamous cell carcinoma and melanoma of the head and face.

    PubMed

    Feller, L; Khammissa, R A G; Kramer, B; Altini, M; Lemmer, J

    2016-02-05

    Ultraviolet light (UV) is an important risk factor for cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin. These cancers most commonly affect persons with fair skin and blue eyes who sunburn rather than suntan. However, each of these cancers appears to be associated with a different pattern of UV exposure and to be mediated by different intracellular molecular pathways.Some melanocortin 1 receptor (MC1R) gene variants play a direct role in the pathogenesis of cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma apart from their role in determining a cancer-prone pigmentory phenotype (fair skin, red hair, blue eyes) through their interactions with other genes regulating immuno-inflammatory responses, DNA repair or apoptosis.In this short review we focus on the aetiological role of UV in cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin, and on some associated biopathological events.

  1. The beating heart of melanomas: a minor subset of cancer cells sustains tumor growth.

    PubMed

    Schmidt, Patrick; Abken, Hinrich

    2011-04-01

    The recent observation that targeted elimination of a minor subpopulation of melanoma cells can lastingly eradicate the tumor lesion provides strong evidence that an established melanoma lesion is hierarchically organized and maintained by definite subset of cells but not by every random cancer cell. This review discusses the concepts of discrete cancer stem cells and of a cellular hierarchy in melanomas, the rationale for shifting therapies from broad tumor cell cytotoxicity into selective cancer cell elimination strategies and the challenges for future therapeutic concepts.

  2. Therapeutic intervention of proanthocyanidins on the migration capacity of melanoma cells is mediated through PGE2 receptors and β-catenin signaling molecules

    PubMed Central

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Kappes, John C; Katiyar, Santosh K

    2015-01-01

    Melanoma is a highly aggressive form of skin cancer and a leading cause of death from skin diseases mainly due to its propensity to metastasis. Due to metastatic tendency, melanoma is often associated with activation of Wnt/β-catenin signaling mechanism. Blocking β-catenin activation may be a good strategy to block melanoma-associated mortality. We have shown earlier that grape seed proanthocyanidins (GSPs) inhibit melanoma cell migration via targeting cyclooxygenase-2 (COX-2) overexpression. Here we explored further whether inhibition of inflammatory mediators-mediated activation of β-catenin by GSPs is associated with the inhibition of melanoma cell migration. Our study revealed that PGE2 receptors (EP2 and EP4) agonists promote melanoma cell migration while PGE2 receptor antagonist suppressed the migration capacity of melanoma cells. GSPs treatment inhibit butaprost (EP2 agonist) or Cay10580 (EP4 agonist) induced migration of melanoma cells. Western blot analysis revealed that GSPs reduced cellular accumulation of β-catenin, and decreased the expressions of matrix metalloproteinase (MMP)-2, MMP-9 and MITF, downstream targets of β-catenin in melanoma cells. GSPs also reduced the protein expressions of PI3K and p-Akt in the same set of experiment. To verify that β-catenin is a specific molecular target of GSPs, we compared the effect of GSPs on cell migration of β-catenin-activated (Mel1241) and β-catenin-inactivated (Mel1011) melanoma cells. GSPs inhibit cell migration of Mel1241 cells but not of Mel1011 cells. Additionally, in vivo bioluminescence imaging data indicate that dietary administration of GSPs (0.5%, w/w) in supplementation with AIN76A control diet inhibited the migration/extravasation of intravenously injected melanoma cells in lungs of immune-compromised nude mice, and that this effect of GSPs was associated with an inhibitory effect on the activation of β-catenin and its downstream targets, such as MMPs, in lungs as a target organ. PMID

  3. MSH regulation of tyrosinase in Cloudman S-91 mouse melanoma cell cultures

    SciTech Connect

    Fuller, B.B.

    1986-05-01

    Melanocyte Stimulating Hormone (MSH) causes an increase in tyrosinase activity (O-diphenol: O/sub 2/ oxidoreductase) in Cloudman S-91 mouse melanoma cell cultures following a lag period of approximately 9 hours. Treatment of cells with 2 x 10/sup -7/M ..cap alpha..- MSH for 6 days results in a 90 fold increase in the specific activity of the enzyme. The hormone mediated increase in tyrosinase activity is dependent upon continued transcription since the enzyme induction is suppressed by either cordycepin (1..mu..g/ml) or ..cap alpha..-amanitin (10..mu..g/ml). To determine if MSH is increasing the synthesis rate of tyrosinase, cell cultures, either exposed to MSH for various times or left untreated, were pulsed with (/sup 3/H)-leucine for 4 hours and tyrosinase immunoprecipitated with an anti-tyrosinase polyclonal antiserum raised in rabbits. The immunoprecipitates were solubilized and electrophoresed on SDS polyacrylamide gels. The proteins were electroblotted to nitrocellulose and the radioactivity in the tyrosinase bands determined. These studies have shown that while tyrosinase activity in hormone-treated cells may increase 90 fold, the rate of synthesis of the enzyme increases only 3 fold at most. Immunoprecipitation analysis of equivalence points of tyrosinase from control and MSH-treated cultures suggests the presence of inactive forms of the enzyme in melanoma cell cultures. These results suggest that, in addition to stimulating tyrosinase synthesis, MSH may also promote the activation of pre-existing enzyme molecules.

  4. Tetraspanin 8 is a novel regulator of ILK-driven β1 integrin adhesion and signaling in invasive melanoma cells.

    PubMed

    El Kharbili, Manale; Robert, Clément; Witkowski, Tiffany; Danty-Berger, Emmanuelle; Barbollat-Boutrand, Laetitia; Masse, Ingrid; Gadot, Nicolas; de la Fouchardière, Arnaud; McDonald, Paul C; Dedhar, Shoukat; Le Naour, François; Degoul, Françoise; Berthier-Vergnes, Odile

    2017-02-04

    Melanoma is well known for its propensity for lethal metastasis and resistance to most current therapies. Tumor progression and drug resistance depend to a large extent on the interplay between tumor cells and the surrounding matrix. We previously identified Tetraspanin 8 (Tspan8) as a critical mediator of melanoma invasion, whose expression is absent in healthy skin. The present study investigated whether Tspan8 may influence cell-matrix anchorage and regulate downstream molecular pathways leading to an aggressive behavior. Using silencing and ectopic expression strategies, we showed that Tspan8-mediated invasion of melanoma cells resulted from defects in cell-matrix anchorage by interacting with β1 integrins and by interfering with their clustering, without affecting their surface or global expression levels. These effects were associated with impaired phosphorylation of integrin-linked kinase (ILK) and its downstream target Akt-S473, but not FAK. Specific blockade of Akt or ILK activity strongly affected cell-matrix adhesion. Moreover, expression of a dominant-negative form of ILK reduced β1 integrin clustering and cell-matrix adhesion. Finally, we observed a tumor-promoting effect of Tspan8 in vivo and a mutually exclusive expression pattern between Tspan8 and phosphorylated ILK in melanoma xenografts and human melanocytic lesions. Altogether, the in vitro, in vivo and in situ data highlight a novel regulatory role for Tspan8 in melanoma progression by modulating cell-matrix interactions through β1 integrin-ILK axis and establish Tspan8 as a negative regulator of ILK activity. These findings emphasize the importance of targeting Tspan8 as a means of switching from low- to firm-adhesive states, mandatory to prevent tumor dissemination.

  5. Detection and capture of single circulating melanoma cells using photoacoustic flowmetry

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine; Mosley, Jeffrey; Goldschmidt, Benjamin S.; Viator, John A.

    2010-02-01

    Photoacoustic flowmetry has been used to detect single circulating melanoma cells in vitro. Circulating melanoma cells are those cells that travel in the blood and lymph systems to create secondary tumors and are the hallmark of metastasis. This technique involves taking blood samples from patients, separating the white blood and melanoma cells from whole blood and irradiating them with a pulsed laser in a flowmetry set up. Rapid, visible wavelength laser pulses on the order of 5 ns can induce photoacoustic waves in melanoma cells due to their melanin content, while surrounding white blood cells remain acoustically passive. We have developed a system that identifies rare melanoma cells and captures them in 50 microliter volumes using suction applied near the photoacoustic detection chamber. The 50 microliter sample is then diluted and the experiment is repeated using the new sample until only a melanoma cell remains. We have tested this system on dyed microspheres ranging in size from 300 to 500 microns. Capture of circulating melanoma cells may provide the opportunity to study metastatic cells for basic understanding of the spread of cancer and to optimize patient specific therapies.

  6. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome.

    PubMed

    Ahmad, Israr; Muneer, Kashiff M; Tamimi, Iman A; Chang, Michelle E; Ata, Muhammad O; Yusuf, Nabiha

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma.

  7. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    PubMed

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  8. Eradication of melanomas by targeted elimination of a minor subset of tumor cells.

    PubMed

    Schmidt, Patrick; Kopecky, Caroline; Hombach, Andreas; Zigrino, Paola; Mauch, Cornelia; Abken, Hinrich

    2011-02-08

    Proceeding on the assumption that all cancer cells have equal malignant capacities, current regimens in cancer therapy attempt to eradicate all malignant cells of a tumor lesion. Using in vivo targeting of tumor cell subsets, we demonstrate that selective elimination of a definite, minor tumor cell subpopulation is particularly effective in eradicating established melanoma lesions irrespective of the bulk of cancer cells. Tumor cell subsets were specifically eliminated in a tumor lesion by adoptive transfer of engineered cytotoxic T cells redirected in an antigen-restricted manner via a chimeric antigen receptor. Targeted elimination of less than 2% of the tumor cells that coexpress high molecular weight melanoma-associated antigen (HMW-MAA) (melanoma-associated chondroitin sulfate proteoglycan, MCSP) and CD20 lastingly eradicated melanoma lesions, whereas targeting of any random 10% tumor cell subset was not effective. Our data challenge the biological therapy and current drug development paradigms in the treatment of cancer.

  9. Plasmonic enhanced fs-laser optoporation of human melanoma cells

    NASA Astrophysics Data System (ADS)

    Baumgart, J.; Humbert, L.; St.-Louis Lalonde, B.; Lebrun, J.-J.; Meunier, M.

    2011-03-01

    In this paper, we present the results of in vitro gene transfer by plasmonic enhanced optoporation of human melanoma cells. The fs-laser based optoporation is a gentle and efficient method for transfection. An optimum perforation rate with efficient dye or DNA uptake and high viability of the cells (~90%) was found for different types of nanostructures, spherical and rod shaped. The technique offers a very high selectivity and the low damage induced to the cell leads to a high transfection efficiency. The cell selectivity of this technique on the one hand is realized by using bioconjugated nanostructures, that couple selectively to a special cell type, and on the other hand, the spatial selectivity is due to the fact that only irradiated cells are perforated. In many biological applications a virus free and efficient transfection method is needed, especially in terms of its use in vivo. In cancer cells, the aggressiveness of the cells is shown in the migration and invasion velocity. The laser based and nanostructure enhanced transfection of cells offers the possibility to directly compare the treated and untreated cells. The treatment for migration and invasion assays can be performed by laser-scraping and laser transfection, resulting in a fully non-contact and therefore sterile method where the shape and the size of the scrape is well defined and reproducible. The laser based scrape test therefore offers less uncertainty due to scrape variations, high transfection efficiency, as well as direct comparison of treated and control cells in the same dish.

  10. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells

    PubMed Central

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-01-01

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na+/H+ exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade. PMID:28205573

  11. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells.

    PubMed

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-02-13

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na(+)/H(+) exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade.

  12. PERK Is a Haploinsufficient Tumor Suppressor: Gene Dose Determines Tumor-Suppressive Versus Tumor Promoting Properties of PERK in Melanoma

    PubMed Central

    Mackiewicz, Katarzyna; Katlinskaya, Yuliya V.; Staschke, Kirk A.; Paredes, Maria C. G.; Yoshida, Akihiro; Qie, Shuo; Zhang, Gao; Chajewski, Olga S.; Majsterek, Ireneusz; Herlyn, Meenhard; Fuchs, Serge Y.; Diehl, J. Alan

    2016-01-01

    The unfolded protein response (UPR) regulates cell fate following exposure of cells to endoplasmic reticulum stresses. PERK, a UPR protein kinase, regulates protein synthesis and while linked with cell survival, exhibits activities associated with both tumor progression and tumor suppression. For example, while cells lacking PERK are sensitive to UPR-dependent cell death, acute activation of PERK triggers both apoptosis and cell cycle arrest, which would be expected to contribute tumor suppressive activity. We have evaluated these activities in the BRAF-dependent melanoma and provide evidence revealing a complex role for PERK in melanoma where a 50% reduction is permissive for BrafV600E-dependent transformation, while complete inhibition is tumor suppressive. Consistently, PERK mutants identified in human melanoma are hypomorphic with dominant inhibitory function. Strikingly, we demonstrate that small molecule PERK inhibitors exhibit single agent efficacy against BrafV600E-dependent tumors highlighting the clinical value of targeting PERK. PMID:27977682

  13. PERK Is a Haploinsufficient Tumor Suppressor: Gene Dose Determines Tumor-Suppressive Versus Tumor Promoting Properties of PERK in Melanoma.

    PubMed

    Pytel, Dariusz; Gao, Yan; Mackiewicz, Katarzyna; Katlinskaya, Yuliya V; Staschke, Kirk A; Paredes, Maria C G; Yoshida, Akihiro; Qie, Shuo; Zhang, Gao; Chajewski, Olga S; Wu, Lawrence; Majsterek, Ireneusz; Herlyn, Meenhard; Fuchs, Serge Y; Diehl, J Alan

    2016-12-01

    The unfolded protein response (UPR) regulates cell fate following exposure of cells to endoplasmic reticulum stresses. PERK, a UPR protein kinase, regulates protein synthesis and while linked with cell survival, exhibits activities associated with both tumor progression and tumor suppression. For example, while cells lacking PERK are sensitive to UPR-dependent cell death, acute activation of PERK triggers both apoptosis and cell cycle arrest, which would be expected to contribute tumor suppressive activity. We have evaluated these activities in the BRAF-dependent melanoma and provide evidence revealing a complex role for PERK in melanoma where a 50% reduction is permissive for BrafV600E-dependent transformation, while complete inhibition is tumor suppressive. Consistently, PERK mutants identified in human melanoma are hypomorphic with dominant inhibitory function. Strikingly, we demonstrate that small molecule PERK inhibitors exhibit single agent efficacy against BrafV600E-dependent tumors highlighting the clinical value of targeting PERK.

  14. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    PubMed

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma.

  15. Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition.

    PubMed

    Hasnat, Md Abul; Pervin, Mehnaz; Lim, Ji Hong; Lim, Beong Ou

    2015-11-27

    Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.

  16. A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme.

    PubMed

    Galore-Haskel, Gilli; Nemlich, Yael; Greenberg, Eyal; Ashkenazi, Shira; Hakim, Motti; Itzhaki, Orit; Shoshani, Noa; Shapira-Fromer, Ronnie; Ben-Ami, Eytan; Ofek, Efrat; Anafi, Liat; Besser, Michal J; Schachter, Jacob; Markel, Gal

    2015-10-06

    The blossom of immunotherapy in melanoma highlights the need to delineate mechanisms of immune resistance. Recently, we have demonstrated that the RNA editing protein, adenosine deaminase acting on RNA-1 (ADAR1) is down-regulated during metastatic transition of melanoma, which enhances melanoma cell proliferation and tumorigenicity. Here we investigate the role of ADAR1 in melanoma immune resistance.Importantly, knockdown of ADAR1 in human melanoma cells induces resistance to tumor infiltrating lymphocytes in a cell contact-dependent mechanism. We show that ADAR1, in an editing-independent manner, regulates the biogenesis of miR-222 at the transcription level and thereby Intercellular Adhesion Molecule 1 (ICAM1) expression, which consequently affects melanoma immune resistance. ADAR1 thus has a novel, pivotal, role in cancer immune resistance. Corroborating with these results, the expression of miR-222 in melanoma tissue specimens was significantly higher in patients who had no clinical benefit from treatment with ipilimumab as compared to patients that responded clinically, suggesting that miR-222 could function as a biomarker for the prediction of response to ipilimumab.These results provide not only novel insights on melanoma immune resistance, but also pave the way to the development of innovative personalized tools to enable optimal drug selection and treatment.

  17. Calpain-3 Impairs Cell Proliferation and Stimulates Oxidative Stress-Mediated Cell Death in Melanoma Cells

    PubMed Central

    Moretti, Daniele; Del Bello, Barbara; Allavena, Giulia; Corti, Alessandro; Signorini, Cinzia; Maellaro, Emilia

    2015-01-01

    Calpain-3 is an intracellular cysteine protease, belonging to Calpain superfamily and predominantly expressed in skeletal muscle. In human melanoma cell lines and biopsies, we previously identified two novel splicing variants (hMp78 and hMp84) of Calpain-3 gene (CAPN3), which have a significant lower expression in vertical growth phase melanomas and, even lower, in metastases, compared to benign nevi. In the present study, in order to investigate the pathophysiological role played by the longer Calpain-3 variant, hMp84, in melanoma cells, we over-expressed it in A375 and HT-144 cells. In A375 cells, the enforced expression of hMp84 induces p53 stabilization, and modulates the expression of a few p53- and oxidative stress-related genes. Consistently, hMp84 increases the intracellular production of ROS (Reactive Oxygen Species), which lead to oxidative modification of phospholipids (formation of F2-isoprostanes) and DNA damage. Such events culminate in an adverse cell fate, as indicated by the decrease of cell proliferation and by cell death. To a different extent, either the antioxidant N-acetyl-cysteine or the p53 inhibitor, Pifithrin-α, recover cell viability and decrease ROS formation. Similarly to A375 cells, hMp84 over-expression causes inhibition of cell proliferation, cell death, and increase of both ROS levels and F2-isoprostanes also in HT-144 cells. However, in these cells no p53 accumulation occurs. In both cell lines, no significant change of cell proliferation and cell damage is observed in cells over-expressing the mutant hMp84C42S devoid of its enzymatic activity, suggesting that the catalytic activity of hMp84 is required for its detrimental effects. Since a more aggressive phenotype is expected to benefit from down-regulation of mechanisms impairing cell growth and survival, we envisage that Calpain-3 down-regulation can be regarded as a novel mechanism contributing to melanoma progression. PMID:25658320

  18. MILI, a PIWI family protein, inhibits melanoma cell migration through methylation of LINE1.

    PubMed

    Wang, Xiuxing; Jiang, Chen; Fu, Bingyuan; Zhu, Ruilou; Diao, Fan; Xu, Na; Chen, Zhong; Tao, Weiwei; Li, Chao-Jun

    2015-02-20

    MILI, a member of the PIWI/AGO gene family, has been well documented to maintain genome integrity by transposon silencing in animal germ cells. It has been reported to be selectively expressed in precancerous stem cells (pCSCs), tumor cell lines and various malignancies. However, the underlying mechanism remains largely unclear. Here, we found that MILI is expressed in the melanoma cell line B16 but not in the highly metastatic mouse melanoma model B16BL6. Interestingly, the knockdown of MILI in B16 could activate MAGEA expression and increase the cell migration ability, whereas the overexpression of MILI in B16BL6 could inhibit MAGEA expression and decrease the cell migration ability. Further investigations showed that MILI can methylate LINE1, which is crucial for MAGEA expression and melanoma cell migration. Our results provide a novel function of MILI in melanoma metastasis and tumor progression.

  19. ALDH1A Isozymes Are Markers of Human Melanoma Stem Cells and Potential Therapeutic Targets

    PubMed Central

    Luo, Yuchun; Dallaglio, Katiuscia; Chen, Ying; Robinson, William A; Robinson, Steven E; McCarter, Martin D; Wang, Jianbin; Gonzalez, Rene; Thompson, David C; Norris, David A; Roop, Dennis R; Vasiliou, Vasilis; Fujita, Mayumi

    2012-01-01

    Although the concept of cancer stem cells (CSCs) is well accepted for many tumors, the existence of such cells in human melanoma has been the subject of debate. In the present study, we demonstrate the existence of human melanoma cells that fulfill the criteria for CSCs (self-renewal and differentiation) by serially xenotransplanting cells into NOD/SCID mice. These cells possess high aldehyde dehydrogenase (ALDH) activity with ALDH1A1 and ALDH1A3 being the predominant ALDH isozymes. ALDH-positive melanoma cells are more tumorigenic than ALDH-negative cells in both NOD/SCID mice and NSG mice. Biological analyses of the ALDH-positive melanoma cells reveal the ALDH isozymes to be key molecules regulating the function of these cells. Silencing ALDH1A by siRNA or shRNA leads to cell cycle arrest, apoptosis and decreased cell viability in vitro and reduced tumorigenesis in vivo. ALDH-positive melanoma cells are more resistant to chemotherapeutic agents and silencing ALDH1A by siRNA sensitizes melanoma cells to drug-induced cell death. Furthermore, we, for the first time, examined the molecular signatures of ALDH-positive CSCs from patient-derived tumor specimens. The signatures of melanoma CSCs include retinoic acid (RA)-driven target genes with RA response elements and genes associated with stem cell function. These findings implicate that ALDH isozymes are not only biomarkers of CSCs but also attractive therapeutic targets for human melanoma. Further investigation of these isozymes and genes will enhance our understanding of the molecular mechanisms governing CSCs and reveal new molecular targets for therapeutic intervention of cancer. PMID:22887839

  20. Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells.

    PubMed

    Davids, Lester M; Kleemann, Britta; Kacerovská, Denisa; Pizinger, Karl; Kidson, Susan H

    2008-05-29

    Hypericin, the major component of St. John's Wort, absorbs light in the UV and visible ranges whereupon it becomes phototoxic through the production of reactive oxygen species. Although photodynamic mechanisms (i.e. through endogenous photosensitizers) play a role in UVA phototherapy for the treatment of skin disorders such as eczema and psoriasis, photodynamic therapy employing exogenous photosensitizers are currently being used only for the treatment of certain forms of non-melanoma skin cancers and actinic keratoses. There are few reports however on its use in treating melanomas. This in vitro study analyses the phototoxic effect of UVA (400-315 nm) - activated hypericin in human pigmented and unpigmented melanomas and immortalised keratinocytes and melanocytes. We show that neither hypericin exposure nor UV irradiation alone reduces cell viability. We show that an exposure to 1 microM UVA-activated hypericin does not bring about cell death, while 3 microM activated hypericin induces a necrotic mode of cell death in pigmented melanoma cells and melanocytes and an apoptotic mode of cell death in non-pigmented melanoma cells and keratinocytes. We hypothesis that the necrotic mode of cell death in the pigmented cells is possibly related to the presence of melanin-containing melanosomes in these cells and that the hypericin-induced increase in reactive oxygen species leads to an increase in permeability of melanosomes. This would result in toxic melanin precursors (of an indolic and phenolic nature) leaking into the cytoplasm which in turn leads to cell death. Hypericin localisation in the endoplasmic reticulum in these cells shown by fluorescent microscopy, further support a disruption in cellular processing and induction of cell death. In contrast, this study shows that cells that do not contain melanosomes (non-pigmented melanoma cells and keratinocytes) die by apoptosis. Further, using a mitochondrial-specific fluorescent dye, we show that intracellular

  1. Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces

    NASA Astrophysics Data System (ADS)

    Tsao, Simon Chang-Hao; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Christophi, Christopher; Cebon, Jonathan; Shiddiky, Muhammad J. A.; Behren, Andreas; Trau, Matt

    2016-01-01

    With new systemic therapies becoming available for metastatic melanoma such as BRAF and PD-1 inhibitors, there is an increasing demand for methods to assist with treatment selection and response monitoring. Quantification and characterisation of circulating melanoma cells (CMCs) has been regarded as an excellent non-invasive candidate but a sensitive and efficient tool to do these is lacking. Herein we demonstrate a microfluidic approach for melanoma cell capture and subsequent on-chip evaluation of BRAF mutation status. Our approach utilizes a recently discovered alternating current electrohydrodynamic (AC-EHD)-induced surface shear forces, referred to as nanoshearing. A key feature of nanoshearing is the ability to agitate fluid to encourage contact with surface-bound antibody for the cell capture whilst removing nonspecific cells from the surface. By adjusting the AC-EHD force to match the binding affinity of antibodies against the melanoma-associated chondroitin sulphate proteoglycan (MCSP), a commonly expressed melanoma antigen, this platform achieved an average recovery of 84.7% from biological samples. Subsequent staining with anti-BRAFV600E specific antibody enabled on-chip evaluation of BRAFV600E mutation status in melanoma cells. We believe that the ability of nanoshearing-based capture to enumerate melanoma cells and subsequent on-chip characterisation has the potential as a rapid screening tool while making treatment decisions.

  2. Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces

    PubMed Central

    Tsao, Simon Chang-Hao; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Christophi, Christopher; Cebon, Jonathan; Shiddiky, Muhammad J. A.; Behren, Andreas; Trau, Matt

    2016-01-01

    With new systemic therapies becoming available for metastatic melanoma such as BRAF and PD-1 inhibitors, there is an increasing demand for methods to assist with treatment selection and response monitoring. Quantification and characterisation of circulating melanoma cells (CMCs) has been regarded as an excellent non-invasive candidate but a sensitive and efficient tool to do these is lacking. Herein we demonstrate a microfluidic approach for melanoma cell capture and subsequent on-chip evaluation of BRAF mutation status. Our approach utilizes a recently discovered alternating current electrohydrodynamic (AC-EHD)-induced surface shear forces, referred to as nanoshearing. A key feature of nanoshearing is the ability to agitate fluid to encourage contact with surface-bound antibody for the cell capture whilst removing nonspecific cells from the surface. By adjusting the AC-EHD force to match the binding affinity of antibodies against the melanoma-associated chondroitin sulphate proteoglycan (MCSP), a commonly expressed melanoma antigen, this platform achieved an average recovery of 84.7% from biological samples. Subsequent staining with anti-BRAFV600E specific antibody enabled on-chip evaluation of BRAFV600E mutation status in melanoma cells. We believe that the ability of nanoshearing-based capture to enumerate melanoma cells and subsequent on-chip characterisation has the potential as a rapid screening tool while making treatment decisions. PMID:26815318

  3. Differential PAX3 functions in normal skin melanocytes and melanoma cells.

    PubMed

    Medic, Sandra; Rizos, Helen; Ziman, Mel

    2011-08-12

    The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if its function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as "stem" cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated "stem" cell like phenotype, PAX3 may contribute to melanoma development and progression.

  4. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity

    PubMed Central

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M. Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  5. Dacarbazine promotes stromal remodeling and lymphocyte infiltration in cutaneous melanoma lesions.

    PubMed

    Nardin, Alessandra; Wong, Wing-Cheong; Tow, Charlene; Molina, Thierry Jo; Tissier, Frédérique; Audebourg, Anne; Garcette, Marylene; Caignard, Anne; Avril, Marie-Francoise; Abastado, Jean-Pierre; Prévost-Blondel, Armelle

    2011-09-01

    Dacarbazine (DTIC) is the standard first-line drug for advanced stage melanoma, but it induces objective clinical responses in only 15% of patients. This study was designed to identify molecular changes specifically induced by treatment in chemo-sensitive lesions. Using global transcriptome analysis and immunohistochemistry, we analyzed cutaneous metastases resected from patients with melanoma before and after DTIC treatment. The treatment induced similar functional changes in different lesions from the same patient. Stromal and immune response-related genes were the most frequently upregulated, particularly in lesions that responded to treatment by stabilizing or regressing. T-cell infiltration and enhanced major histocompatibility complex class II expression were observed in a subset of patients. Stable, chemo-sensitive lesions exhibited activation of genetic programs related to extracellular matrix remodeling, including increased expression of secreted protein acidic and rich in cysteine (SPARC) by tumor cells. These events were associated with local response to treatment and with superior survival in our group of patients. In contrast, SPARC expression was downregulated in lesions resistant to DTIC. Thus, chemotherapy drugs originally selected for their direct cytotoxicity to tumor cells may also influence disease progression by inducing changes in the tumor microenvironment.

  6. In vivo UVA irradiation of mouse is more efficient in promoting pulmonary melanoma metastasis than in vitro

    PubMed Central

    2011-01-01

    Background We have previously shown in vitro that UVA increases the adhesiveness of mouse B16-F1 melanoma cells to endothelium. We have also shown in vivo that UVA exposure of C57BL/6 mice, i.v. injected with B16-F1 cells, increases formation of pulmonary colonies of melanoma. The aim of the present animal study was to confirm the previously observed in vivo UVA effect and to determine whether in vitro UVA-exposure of melanoma cells, prior the i.v. injection, will have an enhancing effect on the pulmonary colonization capacity of melanoma cells. As a second aim, UVA-derived immunosuppression was determined. Methods Mice were i.v. injected with B16-F1 cells into the tail vein and then immediately exposed to UVA. Alternatively, to study the effect of UVA-induced adhesiveness on the colonization capacity of B16-F1 melanoma, cells were in vitro exposed prior to i.v. injection. Fourteen days after injection, lungs were collected and the number of pulmonary nodules was determined under dissecting microscope. The UVA-derived immunosuppression was measured by standard contact hypersensitivity assay. Results and Discussion Obtained results have confirmed that mice, i.v. injected with B16-F1 cells and thereafter exposed to UVA, developed 4-times more of melanoma colonies in lungs as compared with the UVA non-exposed group (p < 0.01). The in vitro exposure of melanoma cells prior to their injection into mice, led only to induction of 1.5-times more of pulmonary tumor nodules, being however a statistically non-significant change. The obtained results postulate that the UVA-induced changes in the adhesive properties of melanoma cells do not alone account for the 4-fold increase in the pulmonary tumor formation. Instead, it suggests that some systemic effect in a mouse might be responsible for the increased metastasis formation. Indeed, UVA was found to induce moderate systemic immunosuppression, which effect might contribute to the UVA-induced melanoma metastasis in mice lungs

  7. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells

    PubMed Central

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M.; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L.; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  8. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.

    PubMed

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L; Festuccia, Claudio; Limonta, Patrizia

    2016-07-27

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma.

  9. Testing the cancer stem cell hypothesis in melanoma: the clinics will tell.

    PubMed

    Shakhova, Olga; Sommer, Lukas

    2013-09-10

    Whether tumorigenic cancer stem cells (CSCs) exist in melanoma has been the focus of much controversy in recent years. A number of studies have pointed to the existence of melanoma cell sub-populations that act as CSCs and can be distinguished from other tumor cells based on specific surface marker expression or specific properties such as the capacity for extensive self-renewal. Other studies failed to identify melanoma stem cells and proposed that the potential to initiate tumors is a wide spread feature in melanoma inherent to most if not all cells of the tumor mass. As with normal stem cells, the term CSC is based on an operational definition, indicating not just a tumor-initiating cell, but also a cell with the capacity to sustain long-term tumor propagation. Therefore, the experimental set-up chosen to identify putative CSCs in melanoma is crucial: Both the method of tumor cell preparation and the procedure used to assess CSC properties in vivo influence the experimental outcome and hence its interpretation. In this review, we summarize our current knowledge on CSCs and the role of stem cell properties in melanoma and discuss recent findings with respect to their clinical relevance.

  10. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion.

    PubMed

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells.

  11. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions.

    PubMed

    Skinner, Cassandra C; McMichael, Elizabeth L; Jaime-Ramirez, Alena C; Abrams, Zachary B; Lee, Robert J; Carson, William E

    2016-08-01

    The folate receptor (FR) is overexpressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is overexpressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis using KB (human oral epithelial) and F01 (human melanoma) as a positive and a negative control, respectively. FR-positive and FR-negative cell lines were treated with F-IgG or control immunoglobulin G in the presence or absence of cytokines to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells increased following treatment with F-IgG compared with control immunoglobulin G at all effector : target (E : T) ratios (P<0.01). This trend further increased by NK cell stimulation with the activating cytokine interleukin-12. NK cell production of cytokines such as interferon-gamma, macrophage inflammatory protein 1α, and regulated on activation normal T-cell expressed and secreted (RANTES) was also significantly increased in response to costimulation with interleukin-12 stimulation and F-IgG-coated Mel 39 target cells compared with controls (P<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells, which can be further increased by the addition of cytokines.

  12. Adjuvant Treatment of Melanoma

    PubMed Central

    Moreno Nogueira, J. A.; Valero Arbizu, M.; Pérez Temprano, R.

    2013-01-01

    Melanomas represent 4% of all malignant tumors of the skin, yet account for 80% of deaths from skin cancer.While in the early stages patients can be successfully treated with surgical resection, metastatic melanoma prognosis is dismal. Several oncogenes have been identified in melanoma as BRAF, NRAS, c-Kit, and GNA11 GNAQ, each capable of activating MAPK pathway that increases cell proliferation and promotes angiogenesis, although NRAS and c-Kit also activate PI3 kinase pathway, including being more commonly BRAF activated oncogene. The treatment of choice for localised primary cutaneous melanoma is surgery plus lymphadenectomy if regional lymph nodes are involved. The justification for treatment in addition to surgery is based on the poor prognosis for high risk melanomas with a relapse index of 50–80%. Patients included in the high risk group should be assessed for adjuvant treatment with high doses of Interferon-α2b, as it is the only treatment shown to significantly improve disease free and possibly global survival. In the future we will have to analyze all these therapeutic possibilities on specific targets, probably associated with chemotherapy and/or interferon in the adjuvant treatment, if we want to change the natural history of melanomas. PMID:23476798

  13. Growth Hormone Receptor Knockdown Sensitizes Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps.

    PubMed

    Basu, Reetobrata; Baumgaertel, Nicholas; Wu, Shiyong; Kopchick, John J

    2017-03-14

    Melanoma remains one of the most therapy-resistant forms of human cancer despite recent introductions of highly efficacious targeted therapies. The intrinsic therapy resistance of human melanoma is largely due to abundant expression of a repertoire of xenobiotic efflux pumps of the ATP-binding cassette (ABC) transporter family. Here, we report that GH action is a key mediator of chemotherapeutic resistance in human melanoma cells. We investigated multiple ABC efflux pumps (ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2) reportedly associated with melanoma drug resistance in different human melanoma cells and tested the efficacy of five different anti-cancer compounds (cisplatin, doxorubicin, oridonin, paclitaxel, vemurafenib) with decreased GH action. We found that GH treatment of human melanoma cells upregulates expression of multiple ABC transporters and increases the EC50 of melanoma drug vemurafenib. Also, vemurafenib-resistant melanoma cells had upregulated levels of GH receptor (GHR) expression as well as ABC efflux pumps. GHR knockdown (KD) using siRNA in human melanoma cells treated with sub-EC50 doses of anti-tumor compounds resulted in significantly increased drug retention, decreased cell proliferation and increased drug efficacy, compared to mock-transfected controls. Our set of findings identify an unknown mechanism of GH regulation in mediating melanoma drug resistance and validates GHR as a unique therapeutic target for sensitizing highly therapy-resistant human melanoma cells to lower doses of anti-cancer drugs.

  14. Overexpression of Annexin II Receptor-Induced Autophagy Protects Against Apoptosis in Uveal Melanoma Cells.

    PubMed

    Zhang, Yuelu; Song, Hongyuan; Guo, Ting; Zhu, Yongzhe; Tang, Hailin; Qi, Zhongtian; Zhao, Ping; Zhao, Shihong

    2016-05-01

    Uveal melanoma is the most common primary malignant intraocular tumor in adults and still lacks effective systemic therapies. Annexin A2 receptor (AXIIR), a receptor for Annexin II, was demonstrated to play an important role in multiple cells, but its role in uveal melanoma cells remains exclusive. Herein, the authors reported that overexpression of AXIIR was able to reduce cell viability and activate apoptosis apparently in the Mum2C uveal melanoma cell line. Meanwhile, overexpression of AXIIR could induce autophagy and increase autophagy flux. After autophagy was inhibited by chloroquine, enhanced apoptosis and cytotoxicity could be detected. In summary, these data highlighted the crucial role of AXIIR in reducing Mum2C cell viability through inducing apoptosis, while autophagy played a protective role in this process. Interference of this gene may be a promising method for uveal melanoma therapy and combination with specific inhibitor of autophagy may serve as a supplementary.

  15. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  16. MicroRNA-155 targets the SKI gene in human melanoma cell lines.

    PubMed

    Levati, Lauretta; Pagani, Elena; Romani, Sveva; Castiglia, Daniele; Piccinni, Eugenia; Covaciu, Claudia; Caporaso, Patrizia; Bondanza, Sergio; Antonetti, Francesca R; Bonmassar, Enzo; Martelli, Fabio; Alvino, Ester; D'Atri, Stefania

    2011-06-01

    The SKI protein is a transcriptional coregulator over-expressed in melanoma. Experimentally induced down-regulation of SKI inhibits melanoma cell growth in vitro and in vivo. MicroRNAs (miRNAs) negatively modulate gene expression and have been implicated in oncogenesis. We previously showed that microRNA-155 (miR-155) is down-regulated in melanoma cells as compared with normal melanocytes and that its ectopic expression impairs proliferation and induces apoptosis. Here, we investigated whether miR-155 could mediate melanoma growth inhibition via SKI gene silencing. Luciferase reporter assays demonstrated that miR-155 interacted with SKI 3'UTR and impaired gene expression. Transfection of melanoma cells with miR-155 reduced SKI levels, while inhibition of endogenous miR-155 up-regulated SKI expression. Specifically designed small interfering RNAs reduced SKI expression and inhibited proliferation. However, melanoma cells over-expressing a 3'UTR-deleted SKI were still susceptible to the antiproliferative effect of miR-155. Our data demonstrate for the first time that SKI is a target of miR-155 in melanoma. However, impairment of SKI expression is not the leading mechanism involved in the growth-suppressive effect of miR-155 found in this malignancy.

  17. Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis

    PubMed Central

    Echtler, Katrin; Konrad, Ildiko; Lorenz, Michael; Schneider, Simon; Hofmaier, Sebastian; Plenagl, Florian; Stark, Konstantin; Czermak, Thomas; Tirniceriu, Anca; Eichhorn, Martin; Walch, Axel; Enders, Georg; Massberg, Steffen; Schulz, Christian

    2017-01-01

    Platelets modulate the process of cancer metastasis. However, current knowledge on the direct interaction of platelets and tumor cells is mostly based on findings obtained in vitro. We addressed the role of the platelet fibrinogen receptor glycoprotein IIb (integrin αIIb) for experimental melanoma metastasis in vivo. Highly metastatic B16-D5 melanoma cells were injected intravenously into GPIIb-deficient (GPIIb-/-) or wildtype (WT) mice. Acute accumulation of tumor cells in the pulmonary vasculature was assessed in real-time by confocal videofluorescence microscopy. Arrest of tumor cells was dramatically reduced in GPIIb-/- mice as compared to WT. Importantly, we found that mainly multicellular aggregates accumulated in the pulmonary circulation of WT, instead B16-D5 aggregates were significantly smaller in GPIIb-/- mice. While pulmonary arrest of melanoma was clearly dependent on GPIIb in this early phase of metastasis, we also addressed tumor progression 10 days after injection. Inversely, and unexpectedly, we found that melanoma metastasis was now increased in GPIIb-/- mice. In contrast, GPIIb did not regulate local melanoma proliferation in a subcutaneous tumor model. Our data suggest that the platelet fibrinogen receptor has a differential role in the modulation of hematogenic melanoma metastasis. While platelets clearly support early steps in pulmonary metastasis via GPIIb-dependent formation of platelet-tumor-aggregates, at a later stage its absence is associated with an accelerated development of melanoma metastases. PMID:28253287

  18. Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma.

    PubMed

    Zhao, Yuan; Zhang, Bo; Lei, Yu; Sun, Jingying; Zhang, Yaohua; Yang, Sen; Zhang, Xuejun

    2016-10-01

    The spliceosome machinery composed of multimeric protein complexes guides precursor messenger RNAs (mRNAs) (pre-mRNAs) splicing in eukaryotic cells. Spliceosome components have been shown to be downregulated in cancer and could be a promising molecular target for anticancer therapy. The ubiquitin-specific protease 39 (USP39) is essential for pre-mRNA splicing, and upregulated USP39 expression is noted in a variety of cancers. However, the role of USP39 in the development and progression of melanoma remains unclear. In the present study, USP39 expression was found to be increased in melanoma tissues compared with that in nevus tissues. USP39 silencing via lentivirus-mediated short hairpin RNA (shRNA) significantly suppressed melanoma cell proliferation, induced G0/G1 cell cycle phase arrest, and increased apoptosis in vitro. Moreover, USP39 knockdown suppressed melanoma tumor growth in a xenograft model. In addition, USP39 silencing was associated with the increased expressions of p21, p27, and Bax. Furthermore, the inhibition of USP39 expression decreased the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, indicating that ERK signaling pathways might be involved in the regulation of melanoma cell proliferation by USP39. Our findings suggest that USP39 may play crucial roles in the development and pathogenesis of melanoma, and it may serve as a potential therapeutic target for melanoma.

  19. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity.

    PubMed

    Vandamme, Niels; Berx, Geert

    2014-01-01

    Compared to the overwhelming amount of literature describing how epithelial-to-mesenchymal transition (EMT)-inducing transcription factors orchestrate cellular plasticity in embryogenesis and epithelial cells, the functions of these factors in non-epithelial contexts, such as melanoma, are less clear. Melanoma is an aggressive tumor arising from melanocytes, endowed with unique features of cellular plasticity. The reversible phenotype-switching between differentiated and invasive phenotypes is increasingly appreciated as a mechanism accounting for heterogeneity in melanoma and is driven by oncogenic signaling and environmental cues. This phenotypic switch is coupled with an intriguing and somewhat counterintuitive signaling switch of EMT-inducing transcription factors. In contrast to carcinomas, different EMT-inducing transcription factors have antagonizing effects in melanoma. Balancing between these different EMT transcription factors is likely the key to successful metastatic spread of melanoma.

  20. Internal binding sites for MSH: Analyses in wild-type and variant Cloudman melanoma cells

    SciTech Connect

    Orlow, S.J.; Hotchkiss, S.; Pawelek, J.M. )

    1990-01-01

    Cloudman S91 mouse melanoma cells express both external (plasma membrane) and internal binding sites for MSH. Using 125I-beta melanotropin (beta-MSH) as a probe, we report here an extensive series of studies on the biological relevance of these internal sites. Cells were swollen in a hypotonic buffer and lysed, and a particulate fraction was prepared by high-speed centrifugation. This fraction was incubated with 125I-beta-MSH with or without excess nonradioactive beta-MSH in the cold for 2 hours. The material was then layered onto a step-wise sucrose gradient and centrifuged; fractions were collected and counted in a gamma counter or assayed for various enzymatic activities. The following points were established: (1) Specific binding sites for MSH were observed sedimenting at an average density of 50% sucrose in amelanotic cells and at higher densities in melanotic cells. (2) These sites were similar in density to those observed when intact cells were labeled externally with 125I-beta-MSH and then warmed to promote internalization of the hormone. (3) Most of the internal binding sites were not as dense as fully melanized melanosomes. (4) In control experiments, the MSH binding sites were not found in cultured hepatoma cells. (5) Variant melanoma cells, which differed from the wild-type in their responses to MSH, had reduced expression of internal binding sites even though their ability to bind MSH to the outer cell surface appeared normal. (MSH-induced responses included changes in tyrosinase, dopa oxidase, and dopachrome conversion factor activities, melanization, proliferation, and morphology.) (6) Isobutylmethylxanthine, which enhanced cellular responsiveness to MSH, also enhanced expression of internal binding sites. The results indicate that expression of internal binding sites for MSH is an important criterion for cellular responsiveness to the hormone.

  1. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions.

    PubMed

    Pucci, Ferdinando; Garris, Christopher; Lai, Charles P; Newton, Andita; Pfirschke, Christina; Engblom, Camilla; Alvarez, David; Sprachman, Melissa; Evavold, Charles; Magnuson, Angela; von Andrian, Ulrich H; Glatz, Katharina; Breakefield, Xandra O; Mempel, Thorsten R; Weissleder, Ralph; Pittet, Mikael J

    2016-04-08

    Tumor-derived extracellular vesicles (tEVs) are important signals in tumor-host cell communication, yet it remains unclear how endogenously produced tEVs affect the host in different areas of the body. We combined imaging and genetic analysis to track melanoma-derived vesicles at organismal, cellular, and molecular scales to show that endogenous tEVs efficiently disseminate via lymphatics and preferentially bind subcapsular sinus (SCS) CD169(+) macrophages in tumor-draining lymph nodes (tdLNs) in mice and humans. The CD169(+) macrophage layer physically blocks tEV dissemination but is undermined during tumor progression and by therapeutic agents. A disrupted SCS macrophage barrier enables tEVs to enter the lymph node cortex, interact with B cells, and foster tumor-promoting humoral immunity. Thus, CD169(+) macrophages may act as tumor suppressors by containing tEV spread and ensuing cancer-enhancing immunity.

  2. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    PubMed Central

    Turk, Seyhan; Malkan, Umit Yavuz; Ghasemi, Mehdi; Hocaoglu, Helin; Mutlu, Duygu; Gunes, Gursel; Aksu, Salih; Haznedaroglu, Ibrahim Celalettin

    2017-01-01

    Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells. PMID:28293423

  3. Interleukin-32α induces migration of human melanoma cells through downregulation of E-cadherin

    PubMed Central

    Song, Ju Han; Houh, Younkyung; Kim, Tae Sung; Gil, Minchan; Lee, Kyung Jin; Kim, Seonghan; Kim, Daejin; Hur, Dae Young; Yang, Yoolhee; Bang, Sa Ik; Park, Hyun Jeong; Cho, Daeho

    2016-01-01

    Interleukin (IL)-32α, the shortest isoform of proinflammatory cytokine IL-32, is associated with various inflammatory diseases and cancers. However, its involvement in human melanoma is not understood. To determine the effect of IL-32α in melanoma, IL-32α levels were examined in human melanoma cell lines that exhibit different migratory abilities. IL-32α levels were higher in human melanoma cell lines with more migratory ability. An IL-32α-overexpressing G361 human melanoma cell line was generated to investigate the effect of IL-32α on melanoma migration. IL-32α-overexpressing G361 cells (G361-IL-32α) exhibit an increased migratory ability compared to vector control cells (G361-vector). To identify factors involved in IL-32α-induced migration, we compared expression of E-cadherin in G361-vector and G361-IL-32α cells. We observed decreased levels of E-cadherin in G361-IL-32α cells, resulting in F-actin polymerization. To further investigate signaling pathways related to IL-32α-induced migration, we treated G361-vector and G361-IL-32α cells with PD98059, a selective MEK inhibitor. Inhibition of Erk1/2 by PD98059 restored E-cadherin expression and decreased IL-32α-induced migration. In addition, cell invasiveness of G361-IL-32α cells was tested using an in vivo lung metastasis model. As results, lung metastasis was significantly increased by IL-32α overexpression. Taken together, these data indicate that IL-32α induced human melanoma migration via Erk1/2 activation, which repressed E-cadherin expression. Our findings suggest that IL-32α is a novel regulator of migration in melanoma. PMID:27589563

  4. Interleukin-32α induces migration of human melanoma cells through downregulation of E-cadherin.

    PubMed

    Lee, Joohyun; Kim, Kyung Eun; Cheon, Soyoung; Song, Ju Han; Houh, Younkyung; Kim, Tae Sung; Gil, Minchan; Lee, Kyung Jin; Kim, Seonghan; Kim, Daejin; Hur, Dae Young; Yang, Yoolhee; Bang, Sa Ik; Park, Hyun Jeong; Cho, Daeho

    2016-10-04

    Interleukin (IL)-32α, the shortest isoform of proinflammatory cytokine IL-32, is associated with various inflammatory diseases and cancers. However, its involvement in human melanoma is not understood. To determine the effect of IL-32α in melanoma, IL-32α levels were examined in human melanoma cell lines that exhibit different migratory abilities. IL-32α levels were higher in human melanoma cell lines with more migratory ability. An IL-32α-overexpressing G361 human melanoma cell line was generated to investigate the effect of IL-32α on melanoma migration. IL-32α-overexpressing G361 cells (G361-IL-32α) exhibit an increased migratory ability compared to vector control cells (G361-vector). To identify factors involved in IL-32α-induced migration, we compared expression of E-cadherin in G361-vector and G361-IL-32α cells. We observed decreased levels of E-cadherin in G361-IL-32α cells, resulting in F-actin polymerization. To further investigate signaling pathways related to IL-32α-induced migration, we treated G361-vector and G361-IL-32α cells with PD98059, a selective MEK inhibitor. Inhibition of Erk1/2 by PD98059 restored E-cadherin expression and decreased IL-32α-induced migration. In addition, cell invasiveness of G361-IL-32α cells was tested using an in vivo lung metastasis model. As results, lung metastasis was significantly increased by IL-32α overexpression. Taken together, these data indicate that IL-32α induced human melanoma migration via Erk1/2 activation, which repressed E-cadherin expression. Our findings suggest that IL-32α is a novel regulator of migration in melanoma.

  5. Notch4 Signaling Induces a Mesenchymal–Epithelial–like Transition in Melanoma Cells to Suppress Malignant Behaviors

    PubMed Central

    Rad, Ehsan Bonyadi; Hammerlindl, Heinz; Wels, Christian; Popper, Ulrich; Menon, Dinoop Ravindran; Breiteneder, Heimo; Kitzwoegerer, Melitta; Hafner, Christine; Herlyn, Meenhard; Bergler, Helmut; Schaider, Helmut

    2016-01-01

    The effects of Notch signaling are context-dependent and both oncogenic and tumor-suppressive functions have been described. Notch signaling in melanoma is considered oncogenic, but clinical trials testing Notch inhibition in this malignancy have not proved successful. Here, we report that expression of the constitutively active intracellular domain of Notch4 (N4ICD) in melanoma cells triggered a switch from a mesenchymal-like parental phenotype to an epithelial-like phenotype. The epithelial-like morphology was accompanied by strongly reduced invasive, migratory, and proliferative properties concomitant with the downregulation of epithelial–mesenchymal transition markers Snail2 (SNAI2), Twist1, vimentin (VIM), and MMP2 and the reexpression of E-cadherin (CDH1). The N4ICD-induced phenotypic switch also resulted in significantly reduced tumor growth in vivo. Immunohistochemical analysis of primary human melanomas and cutaneous metastases revealed a significant correlation between Notch4 and E-cadherin expression. Mechanistically, we demonstrate that N4ICD induced the expression of the transcription factors Hey1 and Hey2, which bound directly to the promoter regions of Snail2 and Twist1 and repressed gene transcription, as determined by EMSA and luciferase assays. Taken together, our findings indicate a role for Notch4 as a tumor suppressor in melanoma, uncovering a potential explanation for the poor clinical efficacy of Notch inhibitors observed in this setting. PMID:26801977

  6. Fenofibrate Induces Ketone Body Production in Melanoma and Glioblastoma Cells

    PubMed Central

    Grabacka, Maja M.; Wilk, Anna; Antonczyk, Anna; Banks, Paula; Walczyk-Tytko, Emilia; Dean, Matthew; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2016-01-01

    Ketone bodies [beta-hydroxybutyrate (bHB) and acetoacetate] are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly, its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa) agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of non-transformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and downregulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic) therapeutic approaches against glioblastoma. PMID:26869992

  7. Antiproliferative and Pro-Apoptotic Effects of MiR-4286 Inhibition in Melanoma Cells

    PubMed Central

    Komina, Anna; Palkina, Nadezhda; Aksenenko, Mariya; Tsyrenzhapova, Seseg; Ruksha, Tatiana

    2016-01-01

    Introduction MicroRNAs are essential regulators of gene expression at the post-transcriptional level. Their expression is altered in cancer tissues, and evaluation of these alterations is considered a promising tool used to diagnose and identify prognostic markers. Materials and methods The microRNA expression profiles of formalin-fixed, paraffin-embedded melanoma and melanocytic nevi samples were estimated with a microarray and subsequently validated by real-time PCR. Melanoma cells were transfected with miR-4286 inhibitor to evaluate the influence of this microRNA on the viability, proliferation, apoptosis, migration, and invasion of melanoma cells. Results The microarray revealed that the expression of 1,171 microRNAs was altered in melanoma samples compared to melanocytic nevi. Real-time PCR validation experiments found the microRNA expression levels to correspond to the melanoma/melanocytic nevi microarray results. The pathway analysis identified 52 modulated pathways in melanoma. Moreover, the application of miR-4286 inhibitor to BRO melanoma cells resulted in a 2.6-fold increase in the apoptosis rate and a 1.7-fold decrease in the cell proliferation/viability but did not affect the invasiveness and migration of these cells. Furthermore, the use of miR-4286 inhibitor altered the mRNA expression of several miR-4286 gene targets: folylpolyglutamate synthase, RNA polymerase I-specific transcription initiation factor, apelin, G-protein-coupled receptor 55, and high-mobility group A1 protein, which have been implicated in cell proliferation/apoptosis regulation. Lastly, the transiently transfected SK-MEL-1 cells with miR-4286 inhibitor decreased proliferation rate and modulated folylpolyglutamate synthase rates of these cells. Conclusion Our results demonstrate that miR-4286 mediates proliferation and apoptosis in melanoma cells, these findings may represent a novel mechanism underlying these processes. PMID:28005927

  8. Ocular albinism type 1-induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway.

    PubMed

    Bai, Jun; Xie, Xin; Lei, Yun; An, Gaili; He, Li; Lv, Xiaopeng

    2014-07-01

    Malignant melanoma has the highest risk of mortality among all types of skin cancer due to its highly metastatic potential. The ocular albinism type 1 (OA1) protein is a pigment cell‑specific glycoprotein, which shares significant structural and functional features with G protein‑coupled receptors. However, the role of OA1 in melanoma has yet to be elucidated. The present study aimed to investigate whether OA1 is involved in melanoma cell migration. OA1 was found to stimulate cell migration in a dose‑dependent manner in cultured human melanoma cells. Furthermore, knockdown of OA1 using small interfering RNA was observed to significantly inhibit melanoma cell migration. In addition, the mechanism underlying OA1‑induced melanoma cell migration was investigated. Stimulation of the RAS/RAF/mitogen activated protein kinase kinase (MEK)/extracellular signal‑regulated kinase (ERK) pathway using growth factors enhanced OA1 expression and melanoma cell migration, whereas inhibition of this pathway using U0126 was observed to markedly decrease OA1 expression and the number of migrated cells. These findings indicate that OA1 is involved in melanoma cell migration and that OA1‑induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway. Therefore, OA1 may serve as a novel therapeutic target for melanoma.

  9. Monitoring the Systemic Human Memory B Cell Compartment of Melanoma Patients for Anti-Tumor IgG Antibodies

    PubMed Central

    Gilbert, Amy E.; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H.; Takhar, Pooja; Geh, Jenny L. C.; Healy, Ciaran; Harries, Mark; Acland, Katharine M.; Rudman, Sarah M.; Beavil, Rebecca L.; Blower, Philip J.; Beavil, Andrew J.; Gould, Hannah J.; Spicer, James; Nestle, Frank O.; Karagiannis, Sophia N.

    2011-01-01

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer. PMID:21559411

  10. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies.

    PubMed

    Gilbert, Amy E; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H; Takhar, Pooja; Geh, Jenny L C; Healy, Ciaran; Harries, Mark; Acland, Katharine M; Rudman, Sarah M; Beavil, Rebecca L; Blower, Philip J; Beavil, Andrew J; Gould, Hannah J; Spicer, James; Nestle, Frank O; Karagiannis, Sophia N

    2011-04-29

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer.

  11. The efficacy of dandelion root extract in inducing apoptosis in drug-resistant human melanoma cells.

    PubMed

    Chatterjee, S J; Ovadje, P; Mousa, M; Hamm, C; Pandey, S

    2011-01-01

    Notoriously chemoresistant melanoma has become the most prevalent form of cancer for the 25-29 North American age demographic. Standard treatment after early detection involves surgical excision (recurrence is possible), and metastatic melanoma is refractory to immuno-, radio-, and most harmful chemotherapies. Various natural compounds have shown efficacy in killing different cancers, albeit not always specifically. In this study, we show that dandelion root extract (DRE) specifically and effectively induces apoptosis in human melanoma cells without inducing toxicity in noncancerous cells. Characteristic apoptotic morphology of nuclear condensation and phosphatidylserine flipping to the outer leaflet of the plasma membrane of A375 human melanoma cells was observed within 48 hours. DRE-induced apoptosis activates caspase-8 in A375 cells early on, demonstrating employment of an extrinsic apoptotic pathway to kill A375 cells. Reactive Oxygen Species (ROS) generated from DRE-treated isolated mitochondria indicates that natural compounds in DRE can also directly target mitochondria. Interestingly, the relatively resistant G361 human melanoma cell line responded to DRE when combined with the metabolism interfering antitype II diabetic drug metformin. Therefore, treatment with this common, yet potent extract of natural compounds has proven novel in specifically inducing apoptosis in chemoresistant melanoma, without toxicity to healthy cells.

  12. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells.

    PubMed

    Slominski, Andrzej; Semak, Igor; Pisarchik, Alexander; Sweatman, Trevor; Szczesniewski, Andre; Wortsman, Jacobo

    2002-01-30

    We showed in human melanoma cells tryptophan hydroxylase (TPH) and hydroxyindole methyltransferase genes expression with the sequential enzymatic activities of TPH, serotonin (Ser) N-acetyltransferase and hydroxyindole methyltransferase. The presence of the products Ser, 5OH-tryptophan, N-acetylserotonin, melatonin (Mel), 5-methoxytryptamine and 5-methoxytryptophol was documented by liquid chromatography-mass spectrometry. Thus, human melanoma cells can synthesize and metabolize Ser and Mel.

  13. Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis.

    PubMed

    Legg, James; Jensen, Uffe B; Broad, Simon; Leigh, Irene; Watt, Fiona M

    2003-12-01

    Human interfollicular epidermis is renewed by stem cells that are clustered in the basal layer in a patterned, non-random distribution. Stem cells can be distinguished from other keratinocytes by high expression of beta1 integrins and lack of expression of terminal differentiation markers; they divide infrequently in vivo but form actively growing colonies in culture. In a search for additional stem cell markers, we observed heterogeneous epidermal expression of melanoma chondroitin sulphate proteoglycan (MCSP). MCSP was expressed by those keratinocytes with the highest beta1 integrin levels. In interfollicular epidermis, expression was confined to non-cycling cells and, in culture, to self-renewing clones. However, fluorescence-activated cell sorting on the basis of MCSP and beta1 integrin expression gave no more enrichment for clonogenic keratinocytes than sorting for beta1 integrins alone. To interfere with endogenous MCSP, we retrovirally infected keratinocytes with a chimera of the CD8 extracellular domain and the MCSP cytoplasmic domain. CD8/MCSP did not affect keratinocyte proliferation or differentiation but the cohesiveness of keratinocytes in isolated clones or reconstituted epidermal sheets was greatly reduced. CD8/MCSP caused stem cell progeny to scatter without differentiating. CD8/MCSP did not alter keratinocyte motility but disturbed cadherin-mediated cell-cell adhesion and the cortical actin cytoskeleton, effects that could be mimicked by inhibiting Rho. We conclude that MCSP is a novel marker for epidermal stem cells that contributes to their patterned distribution by promoting stem cell clustering.

  14. Pigment-cell-specific genes from fibroblasts are transactivated after chromosomal transfer into melanoma cells

    SciTech Connect

    Powers, T.P.; Davidson, R.L.; Shows, T.B.

    1994-02-01

    Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells. 46 refs., 5 figs., 2 tabs.

  15. Low numbers of tryptase+ and chymase+ mast cells associated with reduced survival and advanced tumor stage in melanoma.

    PubMed

    Siiskonen, Hanna; Poukka, Mari; Bykachev, Andrey; Tyynelä-Korhonen, Kristiina; Sironen, Reijo; Pasonen-Seppänen, Sanna; Harvima, Ilkka T

    2015-12-01

    The role of mast cells in cutaneous melanoma remains unclear. Tryptase and chymase are serine proteinases and major proteins in mast cell secretory granules. Therefore, this study aimed to investigate the presence of tryptase and chymase mast cells in benign and malignant cutaneous melanocytic lesions and in lymph node metastases of melanomas. The presence of positively stained mast cells was correlated with clinicopathological characteristics in invasive melanomas. Paraffin-embedded sections of 28 benign (13 intradermal, 10 compound, and five junctional nevi) and 26 dysplastic nevi, 15 in-situ melanomas, 36 superficially (pT1, Breslow's thickness<1 mm), and 49 deeply (pT4, Breslow's thickness>4 mm) invasive melanomas and 30 lymph node metastases were immunohistochemically stained for mast cell tryptase and chymase, and immunopositive cells were counted using the hotspot counting method. The mean count of tryptase and chymase mast cells was lower in invasive melanomas compared with in-situ melanomas and dysplastic and benign nevi. In deeply invasive melanomas, the difference was statistically significant compared with dysplastic nevi (P=0.003 for tryptase and P=0.009 for chymase) and in-situ melanomas (0.043 for tryptase). Low numbers of tryptase mast cells were associated with poor overall survival (P=0.031) in deeply invasive melanomas and with a more advanced stage (T1b, P=0.008) in superficially invasive melanomas. Low numbers of chymase mast cells were associated with microsatellites (P=0.017) in deeply invasive melanomas. The results suggest that these serine proteinases of mast cells may be protective in the pathogenesis of melanoma.

  16. Glycoprotein nonmetastatic melanoma protein B (GPNMB) promotes the progression of brain glioblastoma via Na(+)/K(+)-ATPase.

    PubMed

    Ono, Yoko; Chiba, Shinsuke; Yano, Hirohito; Nakayama, Noriyuki; Saio, Masanao; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Iwama, Toru; Hara, Hideaki

    2016-12-02

    Glycoprotein nonmetastatic melanoma protein B (GPNMB), which is involved in invasion and metastasis, was found to be overexpressed in various cancers. High levels of GPNMB and Na(+)/K(+)-ATPase α subunits are associated with a poor prognosis in glioblastoma patients. We showed that GPNMB interacts with Na(+)/K(+)-ATPase α subunits to activate PI3K/Akt and MEK/ERK pathways. However, it remains unclear whether the interaction of GPNMB and Na(+)/K(+)-ATPase α subunits is involves in progression of glioma. The tumor size induced by the injection of glioma GL261 cells was larger in transgenic mice overexpressing GPNMB when compared with wild-type mice. Additionally, the interaction of GPNMB and Na(+)/K(+)-ATPase α subunits was identified in the murine glioma model and in the tumors of glioblastoma patients. Ouabain, a Na(+)/K(+)-ATPase inhibitor, suppressed the glioma growth induced by the injection of glioma cells in the transgenic mice overexpressing GPNMB and blocked the GPNMB-induced migration of glioma cells. These findings indicate that GPNMB promotes glioma growth via Na(+)/K(+)-ATPase α subunits. Thus, the interaction between GPNMB and Na(+), K(+)-ATPase α subunits represents a novel therapeutic target for the treatment of brain glioblastomas.

  17. Functional Proteomics to Identify Moderators of CD8+ T-Cell Function in Melanoma

    DTIC Science & Technology

    2014-10-01

    Moderators of CD8+ T-Cell Function in Melanoma 5b. GRANT NUMBER W81XWH-12-1-0357 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...these inhibitors with monoclonal antibodies, a process known as checkpoint blockade, can lead to the control of tumor. In melanoma patients...months 16- 24) using 3 C57BL/6 mice, plus 3 controls, per phage. Task 3. To identify the ligands of inhibitory molecules expressed by melanomas

  18. HSPB1 deficiency sensitizes melanoma cells to hyperthermia induced cell death

    PubMed Central

    Wang, He-Xiao; Yang, Yang; Guo, Hao; Hou, Dian-Dong; Zheng, Song; Hong, Yu-Xiao; Cai, Yun-Fei; Huo, Wei; Qi, Rui-Qun; Zhang, Li; Chen, Hong-Duo; Gao, Xing-Hua

    2016-01-01

    Hyperthermia has shown clinical potency as a single agent or as adjuvant to other therapies in cancer treatment. However, thermotolerance induced by thermosensitive genes such as the heat shock proteins can limit the efficacy of hyperthermic treatment. In the present study, we identified HSPB1 (HSP27) is hyperthermically inducible or endogenously highly expressed in both murine and human melanoma cell lines. We used a siRNA strategy to reduce HSPB1 levels and showed increased intolerance to hyperthermia via reduced cell viability and/or proliferation of cells. In the investigation of underlying mechanisms, we found knock down of HSPB1 further increased the proportion of apoptotic cells in hyperthermic treated melanoma cells when compared with either single agent alone, and both agents leaded to cell cycle arrest at G0/G1 or G2/M phases. We concluded that hyperthermia combined with silencing of HSPB1 enhanced cell death and resulted in failure to thrive in melanoma cell lines, implying the potential clinical utility of hyperthermia in combination with HSPB1 inhibition in cancer treatment. PMID:27626679

  19. The Junctional Adhesion Molecule-B regulates JAM-C-dependent melanoma cell metastasis.

    PubMed

    Arcangeli, Marie-Laure; Frontera, Vincent; Bardin, Florence; Thomassin, Jeanne; Chetaille, Bruno; Adams, Susanne; Adams, Ralf H; Aurrand-Lions, Michel

    2012-11-16

    Metastasis is a major clinical issue and results in poor prognosis for most cancers. The Junctional Adhesion Molecule-C (JAM-C) expressed by B16 melanoma and endothelial cells has been involved in metastasis of tumor cells through homophilic JAM-C/JAM-C trans-interactions. Here, we show that JAM-B expressed by endothelial cells contributes to murine B16 melanoma cells metastasis through its interaction with JAM-C on tumor cells. We further show that this adhesion molecular pair mediates melanoma cell adhesion to primary Lung Microvascular Endothelial Cells and that it is functional in vivo as demonstrated by the reduced metastasis of B16 cells in Jam-b deficient mice.

  20. Inhibition of Oncogenic BRAF Activity by Indole-3-Carbinol Disrupts Microphthalmia-Associated Transcription Factor Expression and Arrests Melanoma Cell Proliferation

    PubMed Central

    Kundu, Aishwarya; Quirit, Jeanne G.; Khouri, Michelle G.; Firestone, Gary L.

    2016-01-01

    Indole-3-carbinol (I3C), an anti-cancer phytochemical derived from cruciferous vegetables, strongly inhibited proliferation and down-regulated protein levels of the melanocyte master regulator micropthalmia-associated transcription factor (MITF-M) in oncogenic BRAF-V600E expressing melanoma cells in culture as well as in vivo in tumor xenografted athymic nude mice. In contrast, wild type BRAF-expressing melanoma cells remained relatively insensitive to I3C anti-proliferative signaling. In BRAF-V600E-expressing melanoma cells, I3C treatment inhibited phosphorylation of MEK and ERK/MAPK, the down stream effectors of BRAF. The I3C anti-proliferative arrest was concomitant with the down-regulation of MITF-M transcripts and promoter activity, loss of endogenous BRN-2 binding to the MITF-M promoter, and was strongly attenuated by expression of exogenous MITF-M. Importantly, in vitro kinase assays using immunoprecipitated BRAF-V600E and wild type BRAF demonstrated that I3C selectively inhibited the enzymatic activity of the oncogenic BRAF-V600E but not of the wild type protein. In silico modeling predicted an I3C interaction site in the BRAF-V600E protomer distinct from where the clinically used BRAF-V600E inhibitor Vemurafenib binds to BRAF-V600E. Consistent with this prediction, combinations of I3C and Vemurafenib more potently inhibited melanoma cell proliferation and reduced MITF-M levels in BRAF-V600E expressing melanoma cells compared to the effects of each compound alone. Thus, our results demonstrate that oncogenic BRAF-V600E is a new cellular target of I3C that implicate this indolecarbinol compound as a potential candidate for novel single or combination therapies for melanoma. PMID:26878440

  1. Antiproliferative and proapoptotic actions of okra pectin on B16F10 melanoma cells.

    PubMed

    Vayssade, Muriel; Sengkhamparn, Nipaporn; Verhoef, René; Delaigue, Claire; Goundiam, Oumou; Vigneron, Pascale; Voragen, Alphons G J; Schols, Henk A; Nagel, Marie-Danielle

    2010-07-01

    The proliferation and apoptosis of metastatic melanoma cells are often abnormal. We have evaluated the action of a pectic rhamnogalacturonan obtained by hot buffer extraction of okra pods (okra RG-I) on melanoma cell growth and survival in vitro. We added okra RG-I containing an almost pure RG-I carrying very short galactan side chains to 2D (on tissue culture polystyrene, tPS) and 3D (on poly(2-hydroxyethylmethacrylate), polyHEMA) cultures of highly metastatic B16F10 mouse melanoma cells. We then analyzed cell morphology, proliferation index, apoptosis, cell cycle progression and the expression of adhesion molecules. Immunostaining and western blotting were used to assay galectin-3 (Gal-3) protein.Incubation with okra RG-I altered the morphology of B16F10 cells and significantly reduced their proliferation on both tPS and polyHEMA. The cell cycle was arrested in G2/M, and apoptosis was induced, particularly in cells on polyHEMA. The expression of N-cadherin and alpha5 integrin subunit was reduced and that of the multifunctional carbohydrate-binding protein, Gal-3, at the cell membrane increased.These findings suggest that okra RG-I induces apoptosis in melanoma cells by interacting with Gal-3. As these interactions might open the way to new melanoma therapies, the next step will be to determine just how they occur.

  2. Radiation survival of murine and human melanoma cells utilizing two assay systems: monolayer and soft agar.

    PubMed Central

    Yohem, K. H.; Slymen, D. J.; Bregman, M. D.; Meyskens, F. L.

    1988-01-01

    The radiation response of murine and human melanoma cells assayed in bilayer soft agar and monolayer was examined. Cells from the murine melanoma Cloudman S91 CCL 53.1 cell line and three human melanoma cell strains (C8146C, C8161, and R83-4) developed in our laboratory were irradiated by single dose X-rays and plated either in agar or on plastic. D0 values were the same within 95% confidence intervals for cells from the human melanoma cell strains C8146C, C8161, and R83-4 but were dissimilar for the murine cell line CCL 53.1 Dq values were different for all cells studied. The shape of the survival curve for all four melanomas was not identical for cells assayed in soft agar versus cells grown on plastic. This would indicate that apparent radiosensitivity was influenced by the method of assay although there were no apparent consistent differences between the curves generated by monolayer or bilayer soft agar assays. PMID:3348949

  3. Metapristone (RU486 derivative) inhibits cell proliferation and migration as melanoma metastatic chemopreventive agent.

    PubMed

    Zheng, Ning; Chen, Jiahang; Liu, Weiqun; Wang, Jichuang; Liu, Jian; Jia, Lee

    2017-04-01

    Uncontrolled cell proliferation and metastasis are the two well-known manifestations of melanoma. We hypothesized that metapristone, a potential cancer metastatic chemopreventive agent derived from mifepristone (RU486), had a dual function to fight cancer. In the present study, our findings clearly demonstrated that metapristone had modest cytostatic effect in melanoma cells. Metapristone inhibited cell viability and induced both early and late apoptosis in B16F10 and A375 cells in a time- and concentrate-dependent manner. Metapristone-treatment caused the cell arrest at the G0/G1 stage, and the inhibition of colony formation in B16F10 cells. Western blot analysis further revealed that metapristone treatment elicited a decline of Akt and ERK phosphorylation and Bcl-2, and facilitated expression of total P53 and Bax in A375 cells. In addition, cell migration and invasion were significantly suppressed by metapristone through down-regulating the expression of MMP-2, MMP-9, N-cadherin and vimentin, whereas up-regulating E-cadherin expression. Notably, metapristone exhibited anti-metastatic activity in melanoma B16F10 cells in vivo. Our results reveal metapristone, having the dual function of anti-proliferation and anti-migration for melanoma cell lines, may be a useful chemopreventive agent to reduce the risk of melanoma cancer metastasis.

  4. MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma

    PubMed Central

    Chen, Jiamin; Feilotter, Harriet E.; Paré, Geneviève C.; Zhang, Xiao; Pemberton, Joshua G.W.; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A.

    2010-01-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by ≥50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3′untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development. PMID:20304954

  5. Modulation of the Metastatic Activity of Melanoma Cells by Laminin and Fibronectin

    NASA Astrophysics Data System (ADS)

    Terranova, Victor P.; Williams, Jeannette E.; Liotta, Lance A.; Martin, George R.

    1984-11-01

    Metastatic mouse melanoma cells have a high affinity for the basement membrane and the ability to degrade it; these properties may allow tumor cells to invade the membrane and disseminate. In this study it was found that the metastatic potential of mouse melanoma cells varied when the cells were exposed in culture to fibronectin or laminin. After removal of fibronectin or exposure to laminin, the cells had an increased affinity for basement membrane collagen, were more invasive of basement membranes in vitro, and produced more lung colonies in vivo. These changes are correlated with and may be due to an increase in the laminin-binding capacity of the tumor cell surface.

  6. Circulating tumour cells as tumour biomarkers in melanoma: detection methods and clinical relevance.

    PubMed

    Khoja, L; Lorigan, P; Dive, C; Keilholz, U; Fusi, A

    2015-01-01

    Circulating tumour cells (CTCs) are cells of solid tumour origin detectable in the peripheral blood. Their occurrence is considered a prerequisite step for establishing distant metastases. Metastatic melanoma was the first malignancy in which CTCs were detected and numerous studies have been published on CTC detection in melanoma at various stages of disease. In spite of this, there is no general consensus as to the clinical utility of CTCs in melanoma, largely due to conflicting results from heterogeneous studies and discrepancies in methods of detection between studies. In this review, we examine the possible clinical significance of CTCs in cutaneous, mucosal and ocular melanoma, focusing on detection methods and prognostic value of CTC detection.

  7. Circulating Melanoma Cell Subpopulations: Their Heterogeneity and Differential Responses to Treatment.

    PubMed

    Gray, Elin S; Reid, Anna L; Bowyer, Samantha; Calapre, Leslie; Siew, Kelvin; Pearce, Robert; Cowell, Lester; Frank, Markus H; Millward, Michael; Ziman, Mel

    2015-08-01

    Metastatic melanoma is a highly heterogeneous tumor; thus, methods to analyze tumor-derived cells circulating in blood should address this diversity. Taking this into account, we analyzed, using multiparametric flow cytometry, the co-expression of the melanoma markers melanoma cell adhesion molecule and melanoma-associated chondroitin sulphate proteoglycan and the tumor-initiating markers ATP-binding cassette sub-family B member 5 (ABCB5), CD271, and receptor activator of NF-κβ (RANK) in individual circulating tumor cells (CTCs) from 40 late-stage (III-IV) and 16 early-stage (I-II) melanoma patients. CTCs were heterogeneous within and between patients, with limited co-expression between the five markers analyzed. Analysis of patient matched blood and metastatic tumors revealed that ABCB5 and RANK subpopulations are more common among CTCs than in the solid tumors, suggesting a preferential selection for these cells in circulation. Pairwise comparison of CTC subpopulations longitudinally before and 6-13 weeks after treatment initiation showed that the percentage of RANK(+) CTCs significantly increased in the patients undergoing targeted therapy (N=16, P<0.01). Moreover, the presence of ⩾5 RANK(+) CTCs in the blood of patients undergoing targeted therapies was prognostic of shorter progression-free survival (hazards ratio 8.73, 95% confidence interval 1.82-41.75, P<0.01). Taken together, our results provide evidence of the heterogeneity among CTC subpopulations in melanoma and the differential response of these subpopulations to targeted therapy.

  8. Chrysin-induced apoptosis is mediated through p38 and Bax activation in B16-F1 and A375 melanoma cells.

    PubMed

    Pichichero, Elena; Cicconi, Rosella; Mattei, Maurizio; Canini, Antonella

    2011-02-01

    Chrysin (5,7-dihydroxyflavone) is a natural and biologically active compound extracted from honey, plants and propolis. It possesses anti-inflammatory activity, anti-oxidant properties and promotes cell death by perturbing cell cycle progression. In this study, our attention focused on the possible role that chrysin may have as a potential anti-cancer agent, and we tested its biological activity in murine and human melanoma cell lines (B16-F1 and A375). This study demonstrated that chrysin reduced melanoma cell proliferation and induced cell differentiation in both human and murine melanoma cells through synthesis increase and intracellular accumulation of protoporphirin IX (PpIX). Furthermore, following treatments with chrysin an increase in the expression of porphobilinogen deaminase (PBG-D) was noted. This study demontrated also that chrysin induces cell death in human and murine melanoma cells through caspase-dependent mechanisms, involving down-regulation of ERK 1/2, and activation of p38 MAP kinases. Induction of cell death may be a promising therapeutic approach in cancer therapy. Our results suggest that chrysin may be considered a potential candidate for both cancer prevention and treatment.

  9. The neural guidance receptor Plexin C1 delays melanoma progression

    PubMed Central

    Chen, Y; Soong, J; Mohanty, S; Xu, L; Scott, G

    2013-01-01

    Plexin C1 is a type I transmembrane receptor with intrinsic R-Ras GTPase activity, which regulates cytoskeletal remodeling and adhesion in normal human melanocytes. Melanocytes are pigment-producing cells of the epidermis, precursors for melanoma, and express high levels of Plexin C1, which is lost in melanoma in vitro and in vivo. To determine if Plexin C1 is a tumor suppressor for melanoma, we introduced Plexin C1 into a primary human melanoma cell line, and phenotypes including migration, apoptosis, proliferation and tumor growth in mice were analyzed. Complimentary studies in which Plexin C1 was silenced in human melanocytes were performed. Plexin C1 significantly inhibited migration and proliferation in melanoma, whereas in melanocytes, loss of Plexin C1 increased migration and proliferation. In mouse xenografts, Plexin C1 delayed tumor growth of melanoma at early time points, but tumors eventually escaped the suppressive effects of Plexin C1, due to Plexin C1-dependent activation of the pro-survival protein Akt. R-Ras activation stimulates melanoma migration. Plexin C1 lowered R-Ras activity in melanoma and melanocytes, consistent with inhibitory effects of Plexin C1 on migration of melanocytes and melanoma. To determine if R-Ras is expressed in melanocytic lesions in vivo, staining of tissue microarrays of nevi and melanoma were performed. R-Ras expression was highly limited in melanocytic lesions, being essentially confined to primary melanoma, and almost completely absent in nevi and metastatic melanoma. These data suggest that loss of Plexin C1 in melanoma may promote early steps in melanoma progression through suppression of migration and proliferation, but pro-survival effects of Plexin C1 ultimately abrogate the tumor suppressive effects of Plexin C1. In primary melanoma, loss of Plexin C1 may function in early steps of melanoma progression by releasing inhibition of R-Ras activation, and stimulating migration. PMID:23160370

  10. The neural guidance receptor Plexin C1 delays melanoma progression.

    PubMed

    Chen, Y; Soong, J; Mohanty, S; Xu, L; Scott, G

    2013-10-10

    Plexin C1 is a type I transmembrane receptor with intrinsic R-Ras GTPase activity, which regulates cytoskeletal remodeling and adhesion in normal human melanocytes. Melanocytes are pigment-producing cells of the epidermis, precursors for melanoma, and express high levels of Plexin C1, which is lost in melanoma in vitro and in vivo. To determine if Plexin C1 is a tumor suppressor for melanoma, we introduced Plexin C1 into a primary human melanoma cell line, and phenotypes including migration, apoptosis, proliferation and tumor growth in mice were analyzed. Complimentary studies in which Plexin C1 was silenced in human melanocytes were performed. Plexin C1 significantly inhibited migration and proliferation in melanoma, whereas in melanocytes, loss of Plexin C1 increased migration and proliferation. In mouse xenografts, Plexin C1 delayed tumor growth of melanoma at early time points, but tumors eventually escaped the suppressive effects of Plexin C1, due to Plexin C1-dependent activation of the pro-survival protein Akt. R-Ras activation stimulates melanoma migration. Plexin C1 lowered R-Ras activity in melanoma and melanocytes, consistent with inhibitory effects of Plexin C1 on migration of melanocytes and melanoma. To determine if R-Ras is expressed in melanocytic lesions in vivo, staining of tissue microarrays of nevi and melanoma were performed. R-Ras expression was highly limited in melanocytic lesions, being essentially confined to primary melanoma, and almost completely absent in nevi and metastatic melanoma. These data suggest that loss of Plexin C1 in melanoma may promote early steps in melanoma progression through suppression of migration and proliferation, but pro-survival effects of Plexin C1 ultimately abrogate the tumor suppressive effects of Plexin C1. In primary melanoma, loss of Plexin C1 may function in early steps of melanoma progression by releasing inhibition of R-Ras activation, and stimulating migration.

  11. The Long Non-Coding RNA RHPN1-AS1 Promotes Uveal Melanoma Progression

    PubMed Central

    Lu, Linna; Yu, Xiaoyu; Zhang, Leilei; Ding, Xia; Pan, Hui; Wen, Xuyang; Xu, Shiqiong; Xing, Yue; Fan, Jiayan; Ge, Shengfang; Zhang, He; Jia, Renbing; Fan, Xianqun

    2017-01-01

    Increasing evidence suggests that aberrant long non-coding RNAs (lncRNAs) are significantly correlated with the pathogenesis, development and metastasis of cancers. RHPN1 antisense RNA 1 (RHPN1-AS1) is a 2030-bp transcript originating from human chromosome 8q24. However, the role of RHPN1-AS1 in uveal melanoma (UM) remains to be clarified. In this study, we aimed to elucidate the molecular function of RHPN1-AS1 in UM. The RNA levels of RHPN1-AS1 in UM cell lines were examined using the quantitative real-time polymerase chain reaction (qRT-PCR). Short interfering RNAs (siRNAs) were designed to quench RHPN1-AS1 expression, and UM cells stably expressing short hairpin (sh) RHPN1-AS1 were established. Next, the cell proliferation and migration abilities were determined using a colony formation assay and a transwell migration/invasion assay. A tumor xenograft model in nude mice was established to confirm the function of RHPN1-AS1 in vivo. RHPN1-AS1 was significantly upregulated in a number of UM cell lines compared with the normal human retinal pigment epithelium (RPE) cell line. RHPN1-AS1 knockdown significantly inhibited UM cell proliferation and migration in vitro and in vivo. Our data suggest that RHPN1-AS1 could be an oncoRNA in UM, which may serve as a candidate prognostic biomarker and target for new therapies in malignant UM. PMID:28124977

  12. Lymphocyte imprinting with melanoma antigens acquired by trogocytosis facilitates identification of tumor-reactive T cells

    PubMed Central

    Eisenberg, Galit; Uzana, Ronny; Pato, Aviad; Frankenburg, Shoshana; Merims, Sharon; Yefenof, Eitan; Ferrone, Soldano; Peretz, Tamar; Machlenkin, Arthur; Lotem, Michal

    2013-01-01

    Trogocytosis is a contact-dependent inter-cellular transfer of membrane fragments and associated molecules from antigen presenting cells to effector lymphocytes. We previously demonstrated that trogocytosis also occurs between tumor target and cognate melanoma antigen-specific cytotoxic T cells (CTL). Here we show that, following trogocytosis, immune effector cells acquire molecular components of the tumor, including surface antigens, which are detectable by specific monoclonal antibodies. We demonstrate that CD8+ and CD4+ T cells from melanoma patients’ PBMC and tumor infiltrating lymphocytes (TIL) capture melanoma antigens, enabling identification of trogocytosing lymphocytes by staining with antigen-specific antibodies. This finding circumvents the necessity of tumor pre-labeling, which in the past was mandatory to detect membrane-capturing T cells. Through the detection of melanoma antigens on TIL, we sorted trogocytosing T cells and verified their preferential reactivity and cytotoxicity. Furthermore, tumor-antigen imprinted T cells were detected at low frequency in fresh TIL cultures shortly after extraction from the tumor. Thus, T cell imprinting by tumor antigens may allow the enrichment of melanoma antigen-specific T cells for research and potentially even for the adoptive immunotherapy of patients with cancer. PMID:23626012

  13. Targeting melanoma cells with human high molecular weight-melanoma associated antigen-specific antibodies elicited by a peptide mimotope: functional effects.

    PubMed

    Luo, Wei; Ko, Eric; Hsu, Jeff Chi-feng; Wang, Xinhui; Ferrone, Soldano

    2006-05-15

    Human high molecular weight-melanoma associated Ag (HMW-MAA) mimics have been shown to elicit HMW-MAA-specific humoral immune responses that appear to be clinically beneficial. This finding has stimulated interest in characterizing the mechanism(s) underlying the ability of the elicited Abs to exert an anti-tumor effect. To address this question, in the present study, we have generated HMW-MAA-specific Abs by sequentially immunizing rabbits with the peptide P763.74, which mimics the HMW-MAA determinant recognized by mAb 763.74, and with HMW-MAA(+) melanoma cells. HMW-MAA-specific Abs isolated from immunized rabbits mediated cell-dependent cytotoxicity but did not mediate complement-dependent cytotoxicity of HMW-MAA(+) melanoma cells. These Abs also effectively inhibited spreading, migration and Matrigel invasion of HMW-MAA(+) melanoma cells. Besides contributing to our understanding of the role of HMW-MAA in the biology of melanoma cells, these results suggest that both immunological and nonimmunological mechanisms underlie the beneficial clinical effects associated with the induction of HMW-MAA-specific Abs in melanoma patients immunized with a HMW-MAA mimic.

  14. Ophiobolin A Induces Autophagy and Activates the Mitochondrial Pathway of Apoptosis in Human Melanoma Cells

    PubMed Central

    Rodolfo, Carlo; Rocco, Mariapina; Cattaneo, Lucia; Tartaglia, Maria; Sassi, Mauro; Aducci, Patrizia; Scaloni, Andrea; Marra, Mauro

    2016-01-01

    Ophiobolin A, a fungal toxin from Bipolaris species known to affect different cellular processes in plants, has recently been shown to have anti-cancer activity in mammalian cells. In the present study, we investigated the anti-proliferative effect of Ophiobolin A on human melanoma A375 and CHL-1 cell lines. This cellular model was chosen because of the incidence of melanoma malignant tumor on human population and its resistance to chemical treatments. Ophyobolin A strongly reduced cell viability of melanoma cells by affecting mitochondrial functionality. The toxin induced depolarization of mitochondrial membrane potential, reactive oxygen species production and mitochondrial network fragmentation, leading to autophagy induction and ultimately resulting in cell death by activation of the mitochondrial pathway of apoptosis. Finally, a comparative proteomic investigation on A375 cells allowed to identify several Ophiobolin A down-regulated proteins, which are involved in fundamental processes for cell homeostasis and viability. PMID:27936075

  15. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction.

    PubMed

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G; Kuo, Macus Tien

    2013-11-01

    Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20-resistant (ADI(R)) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADI(R) variants showed the following characteristics: (i) all ADI(R) cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADI(R) cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes.

  16. Study of the immunophenotype of the inflammatory cells in melanomas with regression and halo nevi.

    PubMed

    Botella-Estrada, Rafael; Kutzner, Heinz

    2015-05-01

    The pathogenesis and prognostic implications of regression in melanoma are not well understood. It has traditionally been considered an immunologically mediated phenomenon. Improvement in the knowledge of the mechanisms that lead to regression may prove to be of great value in an era in which treatments oriented to the augmentation of the host's immunity against melanoma have demonstrated excellent clinical results. This study was designed to improve the understanding of the mechanisms underlying melanoma regression and the differences between similar situations in benign melanocytic nevus. The study sample consisted of 77 lesions: 62 melanomas and 15 halo nevi. The following markers were included in the study: CD4, CD8, FoxP3, PD1, CD123, granzyme, and TIA-1. Staining was evaluated in 5 categories, according to the percentage of labeled cells. Granzyme, PD1, and TIA-1 stained significantly more cells in halo nevi than in melanomas with regression (P < 0.01). The ratio CD123/TIA-1 was higher in melanomas than in halo nevi (1 vs. 0.67, P < 0.05). Regression in the 62 melanomas was categorized as early in 14 cases and late in 48 cases. Early regression was associated with a higher percentage of CD123, CD4, and TIA-1 staining than late regression. The inflammatory infiltrate found in halo nevi is characterized by a higher number of active cytotoxic T cells and regulatory PD1-positive T cells than the infiltrate found in melanoma with regression. CD123 staining was higher in early regression than in late regression, suggesting the presence of a tolerogenic mechanism in this phenomenon's initiation phase.

  17. UVB-irradiation regulates VLA-4-mediated melanoma cell adhesion to endothelial VCAM-1 under flow conditions.

    PubMed

    Wang, Lei; Shirure, Venktesh S; Burdick, Monica M; Wu, Shiyong

    2011-01-01

    The major aspect contributing to the mortality of melanoma is its ability to spread, or metastasize. Ultraviolet B light (UVB) is considered an indirect cause of melanoma formation. However, little is known about the potential effects of UVB to melanoma metastasis. Integrins, a large family of cell adhesion molecules (CAMs) expressed on the melanoma cell surface, are important for cell signaling, growth, and migration during metastasis. Most critically, tumor cell tissue invasion is dependent on the initial interaction of tumor cells with vascular endothelium at the target organ, and there is increasing evidence for a prominent role of melanoma very late antigen-4 (VLA-4) integrin binding to its endothelial ligand vascular cell adhesion molecule-1 (VCAM-1) in this process. This research focuses on the quantitative modulation of VLA-4 integrin expression and function on melanoma cells after UVB irradiation. The present data show that at 3, 12, and 18 h post-UVB irradiation, VLA-4 expression was unchanged relative to untreated cells, but adhesion to VCAM-1 decreased significantly. Immunofluorescence studies implied that the spatial organization of VLA-4 on the melanoma cell surface contributed to the changes in avidity for VCAM-1 upon UVB irradiation. With increased understanding of the molecular mechanisms underlying melanoma-endothelial interactions upon UVB irradiation, clinical advances for melanoma may be developed.

  18. Balloon cell melanoma: a case report with polarized and non-polarized dermatoscopy and dermatopathology

    PubMed Central

    Maher, James; Cameron, Alan; Wallace, Sharon; Acosta-Rojas, Rafael; Weedon, David; Rosendahl, Cliff

    2014-01-01

    Balloon cell melanoma is a rare melanoma subtype, with only one previous case with dermatoscopy published. It is often non-pigmented, leading to diagnostic difficulty, and there is a tendency for lesions to be thick at diagnosis. We report a case of balloon cell melanoma on the forearm of a 61-year-old man with both polarized and non-polarized dermatoscopy and dermatopathology. It presented as a firm pale nodule with focal eccentric pigmentation. The clinical images evoke a differential diagnosis of dermatofibroma, dermal nevus, Spitz nevus and basal cell carcinoma as well as melanoma. This melanoma was partially pigmented due to a small, pigmented superficial spreading component on the edge of the non-pigmented balloon cell nodule, prompting further evaluation. In retrospect there was the clue to malignancy of polarizing-specific white lines (chrysalis structures) and polymorphous vessels, including a pattern of dot vessels. The reticular lines exclude basal cell carcinoma, polarizing-specific white lines are inconsistent with the diagnosis of dermal nevus and their eccentric location is inconsistent with both Spitz nevus and dermatofibroma. Excision biopsy was performed, revealing a superficial spreading melanoma with two distinct invasive components, one of atypical non-mature epithelioid cells and the other an amelanotic nodular component, comprising more than 50% of the lesion, characterized by markedly distended epithelioid melanocytes showing pseudo-xanthomatous cytoplasmic balloon cell morphology. A diagnosis of balloon cell melanoma, Breslow thickness 1.9 mm, mitotic rate 3 per square millimeter was rendered. Wide local excision was performed, as was sentinel lymph node biopsy, which was negative. PMID:24520518

  19. Tumor-reactive CD4+ T cell responses to the melanoma-associated chondroitin sulphate proteoglycan in melanoma patients and healthy individuals in the absence of autoimmunity.

    PubMed

    Erfurt, Cornelia; Sun, Zhaojun; Haendle, Ina; Schuler-Thurner, Beatrice; Heirman, Carlo; Thielemans, Kris; van der Bruggen, Pierre; Schuler, Gerold; Schultz, Erwin S

    2007-06-15

    To avoid immune escape by down-regulation or loss of Ag by the tumor cells, target Ags are needed, which are important for the malignant phenotype and survival of the tumor. We could identify a CD4(+) T cell epitope derived from the human melanoma-associated chondroitin sulfate proteoglycan (MCSP) (also known as high m.w.-melanoma-associated Ag), which is strongly expressed on >90% of human melanoma lesions and is important for the motility and invasion of melanoma cells. However, MCSP is not strictly tumor specific, because it is also expressed in a variety of normal tissues. Therefore, self tolerance should prevent the induction of strong T cell responses against these Ags by vaccination strategies. In contrast, breaking self tolerance to this Ag by effectively manipulating the immune system might mediate antitumor responses, although it would bear the risk of autoimmunity. Surprisingly, we could readily isolate CD4(+) Th cells from the blood of a healthy donor-recognizing peptide MCSP(693-709) on HLA-DR11-expressing melanoma cells. Broad T cell reactivity against this Ag could be detected in the peripheral blood of both healthy donors and melanoma patients, without any apparent signs of autoimmune disease. In some patients, a decline of T cell reactivity was observed upon tumor progression. Our data indicate that CD4(+) T cells are capable of recognizing a membrane glycoprotein that is important in melanoma cell function, and it may be possible that the sizable reactivity to this Ag in most normal individuals contributes to immune surveillance against cancer.

  20. MGMT promoter methylation is associated with temozolomide response and prolonged progression-free survival in disseminated cutaneous melanoma.

    PubMed

    Tuominen, Rainer; Jewell, Rosalyn; van den Oord, Joost J; Wolter, Pascal; Stierner, Ulrika; Lindholm, Christer; Hertzman Johansson, Carolina; Lindén, Diana; Johansson, Hemming; Frostvik Stolt, Marianne; Walker, Christy; Snowden, Helen; Newton-Bishop, Julia; Hansson, Johan; Egyházi Brage, Suzanne

    2015-06-15

    To investigate the predictive and prognostic value of O(6) -methylguanine DNA methyltransferase (MGMT) inactivation by analyses of promoter methylation in pretreatment tumor biopsies from patients with cutaneous melanoma treated with dacarbazine (DTIC) or temozolomide (TMZ) were performed. The patient cohorts consisted of Belgian and Swedish disseminated melanoma patients. Patients were subdivided into those receiving single-agent treatment with DTIC/TMZ (cohort S, n = 74) and those treated with combination chemotherapy including DTIC/TMZ (cohort C, n = 79). Median follow-up was 248 and 336 days for cohort S and cohort C, respectively. MGMT promoter methylation was assessed by three methods. The methylation-related transcriptional silencing of MGMT mRNA expression was assessed by real-time RT-PCR. Response to chemotherapy and progression-free survival (PFS) and overall survival were correlated to MGMT promoter methylation status. MGMT promoter methylation was detected in tumor biopsies from 21.5 % of the patients. MGMT mRNA was found to be significantly lower in tumors positive for MGMT promoter methylation compared to tumors without methylation in both treatment cohorts (p < 0.005). DTIC/TMZ therapy response rate was found to be significantly associated with MGMT promoter methylation in cohort S (p = 0.0005), but did not reach significance in cohort C (p = 0.16). Significantly longer PFS was observed among patients with MGMT promoter-methylated tumors (p = 0.002). Multivariate Cox regression analysis identified presence of MGMT promoter methylation as an independent variable associated with longer PFS. Together, this implies that MGMT promoter methylation is associated with response to single-agent DTIC/TMZ and longer PFS in disseminated cutaneous melanoma.

  1. Adenovirus-Mediated FKHRL1/TM Sensitizes Melanoma Cells to Apoptosis Induced by Temozolomide

    PubMed Central

    Egger, Michael E.; McNally, Lacey R.; Nitz, Jonathan; McMasters, Kelly M.

    2014-01-01

    Abstract Melanoma exhibits variable resistance to the alkylating agent temozolomide (TMZ). We evaluated the potential of adenovirus expressing forkhead human transcription factor like 1 triple mutant (Ad-FKHRL1/TM) to sensitize melanoma cells to TMZ. Four melanoma cell lines were treated with Ad-FKHRL1/TM and TMZ, alone or in combination. Apoptosis was assessed by activation and inhibition of caspase pathway, nuclei fragmentation, and annexin V staining. The potential therapeutic efficacy of Ad-FKHRL1/TM with TMZ was also assessed in a mouse melanoma xenograft model. Combination therapy of Ad-FKHRL1/TM and TMZ resulted in greater cell killing (<20% cell viability) compared with single therapy and controls (p<0.05). Combination indices of Ad-FKHRL1/TM and TMZ therapy indicated significant (p<0.05) synergistic killing effect. Greater apoptosis induction was found in cells treated with Ad-FKHRL1/TM and TMZ than with Ad-FKHRL1/TM or TMZ-treated cells alone. Treatment with TMZ enhanced adenovirus transgene expression in a cell type-dependent manner. In an in vivo model, combination therapy of Ad-FKHRL1/TM with TMZ results in greater tumor growth reduction in comparison with single treatments. We suggest that Ad-FKHRL1/TM is a promising vector to sensitize melanoma cells to TMZ, and that a combination of both approaches would be effective in the clinical setting. PMID:25238278

  2. Tumor Cell Adhesion As a Risk Factor for Sentinel Lymph Node Metastasis in Primary Cutaneous Melanoma

    PubMed Central

    Meves, Alexander; Nikolova, Ekaterina; Heim, Joel B.; Squirewell, Edwin J.; Cappel, Mark A.; Pittelkow, Mark R.; Otley, Clark C.; Behrendt, Nille; Saunte, Ditte M.; Lock-Andersen, Jorgen; Schenck, Louis A.; Weaver, Amy L.; Suman, Vera J.

    2015-01-01

    Purpose Less than 20% of patients with melanoma who undergo sentinel lymph node (SLN) biopsy based on American Society of Clinical Oncology/Society of Surgical Oncology recommendations are SLN positive. We present a multi-institutional study to discover new molecular risk factors associated with SLN positivity in thin and intermediate-thickness melanoma. Patients and Methods Gene clusters with functional roles in melanoma metastasis were discovered by next-generation sequencing and validated by quantitative polymerase chain reaction using a discovery set of 73 benign nevi, 76 primary cutaneous melanoma, and 11 in-transit melanoma metastases. We then used polymerase chain reaction to quantify gene expression in a model development cohort of 360 consecutive thin and intermediate-thickness melanomas and a validation cohort of 146 melanomas. Outcome of interest was SLN biopsy metastasis within 90 days of melanoma diagnosis. Logic and logistic regression analyses were used to develop a model for the likelihood of SLN metastasis from molecular, clinical, and histologic variables. Results ITGB3, LAMB1, PLAT, and TP53 expression were associated with SLN metastasis. The predictive ability of a model that included these molecular variables in combination with clinicopathologic variables (patient age, Breslow depth, and tumor ulceration) was significantly greater than a model that only considered clinicopathologic variables and also performed well in the validation cohort (area under the curve, 0.93; 95% CI, 0.87 to 0.97; false-positive and false-negative rates of 22% and 0%, respectively, using a 10% cutoff for predicted SLN metastasis risk). Conclusion The addition of cell adhesion–linked gene expression variables to clinicopathologic variables improves the identification of patients with SLN metastases within 90 days of melanoma diagnosis. PMID:26150443

  3. Long noncoding RNA MHENCR promotes melanoma progression via regulating miR-425/489-mediated PI3K-Akt pathway

    PubMed Central

    Chen, Xiangjun; Dong, Hao; Liu, Sha; Yu, Li; Yan, Dexiong; Yao, Xingwei; Sun, Weijing; Han, Dezhi; Gao, Guozhen

    2017-01-01

    Increasing evidences demonstrated that long noncoding RNAs (lncRNAs) are frequently dysregulated and have critical roles in many tumors. However, the roles and functional mechanisms of lncRNAs in melanoma remain largely unknown. In this study, we identified a novel lncRNA MHENCR which was upregulated in melanoma tissues and further upregulated in metastatic melanoma. Increased expression of MHENCR indicted poor survival of melanoma patients. Functional experiments revealed that MHENCR knockdown significantly inhibited melanoma cells proliferation, induced cell cycle arrest and apoptosis, and also attenuated melanoma cells migration in vitro. Furthermore, we identified MHENCR as a competitively endogenous RNA, which specifically bound to miR-425 and miR-489, upregulated their target genes IGF1 and SPIN1 expression, and further activated PI3K-Akt pathway. Statistically significant correlations were observed between MHENCR expression and IGF1 and SPIN1 in melanoma tissues. In vivo functional experiments further confirmed the pro-growth and pro-metastasis roles of MHENCR. Collectively, our findings revealed that MHENCR functions as an oncogene in melanoma via activating miR-425/489-mediated PI3K-Akt pathway, and may be a therapeutic target for melanoma. PMID:28123636

  4. Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse

    PubMed Central

    Khazen, Roxana; Müller, Sabina; Gaudenzio, Nicolas; Espinosa, Eric; Puissegur, Marie-Pierre; Valitutti, Salvatore

    2016-01-01

    Human melanoma cells express various tumour antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTLs) and elicit tumour-specific responses in vivo. However, natural and therapeutically enhanced CTL responses in melanoma patients are of limited efficacy. The mechanisms underlying CTL effector phase failure when facing melanomas are still largely elusive. Here we show that, on conjugation with CTL, human melanoma cells undergo an active late endosome/lysosome trafficking, which is intensified at the lytic synapse and is paralleled by cathepsin-mediated perforin degradation and deficient granzyme B penetration. Abortion of SNAP-23-dependent lysosomal trafficking, pH perturbation or impairment of lysosomal proteolytic activity restores susceptibility to CTL attack. Inside the arsenal of melanoma cell strategies to escape immune surveillance, we identify a self-defence mechanism based on exacerbated lysosome secretion and perforin degradation at the lytic synapse. Interfering with this synaptic self-defence mechanism might be useful in potentiating CTL-mediated therapies in melanoma patients. PMID:26940455

  5. Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells.

    PubMed

    Park, Eun-Ji; Lee, Yoon-Mi; Oh, Taek-In; Kim, Byeong Mo; Lim, Beong-Ou; Lim, Ji-Hong

    2017-03-01

    Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α) in A2058 and A375 human malignant melanoma cells. Immunoblotting and quantitative real time (RT)-PCR analysis revealed that vanillin down-regulates HIF-1α protein accumulation and the transcripts of HIF-1α target genes related to cancer metastasis including fibronectin 1 (FN1), lysyl oxidase-like 2 (LOXL2), and urokinase plasminogen activator receptor (uPAR). It was also found that vanillin significantly suppresses HIF-1α mRNA expression and de novo HIF-1α protein synthesis. To understand the suppressive mechanism of vanillin on HIF-1α expression, chromatin immunoprecipitation was performed. Consequently, it was found that vanillin causes inhibition of promoter occupancy by signal transducer and activator of transcription 3 (STAT3), but not nuclear factor-κB (NF-κB), on HIF1A. Furthermore, an in vitro migration assay revealed that the motility of melanoma cells stimulated by hypoxia was attenuated by vanillin treatment. In conclusion, we demonstrate that vanillin might be a potential anti-metastatic agent that suppresses metastatic gene expression and migration activity under hypoxia via the STAT3-HIF-1α signaling pathway.

  6. Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells

    PubMed Central

    Park, Eun-Ji; Lee, Yoon-Mi; Oh, Taek-In; Kim, Byeong Mo; Lim, Beong-Ou; Lim, Ji-Hong

    2017-01-01

    Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α) in A2058 and A375 human malignant melanoma cells. Immunoblotting and quantitative real time (RT)-PCR analysis revealed that vanillin down-regulates HIF-1α protein accumulation and the transcripts of HIF-1α target genes related to cancer metastasis including fibronectin 1 (FN1), lysyl oxidase-like 2 (LOXL2), and urokinase plasminogen activator receptor (uPAR). It was also found that vanillin significantly suppresses HIF-1α mRNA expression and de novo HIF-1α protein synthesis. To understand the suppressive mechanism of vanillin on HIF-1α expression, chromatin immunoprecipitation was performed. Consequently, it was found that vanillin causes inhibition of promoter occupancy by signal transducer and activator of transcription 3 (STAT3), but not nuclear factor-κB (NF-κB), on HIF1A. Furthermore, an in vitro migration assay revealed that the motility of melanoma cells stimulated by hypoxia was attenuated by vanillin treatment. In conclusion, we demonstrate that vanillin might be a potential anti-metastatic agent that suppresses metastatic gene expression and migration activity under hypoxia via the STAT3-HIF-1α signaling pathway. PMID:28257048

  7. Hypoxia negatively regulates antimetastatic PEDF in melanoma cells by a hypoxia inducible factor-independent, autophagy dependent mechanism.

    PubMed

    Fernández-Barral, Asunción; Orgaz, José Luis; Gomez, Valentí; del Peso, Luis; Calzada, María José; Jiménez, Benilde

    2012-01-01

    Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (SERPIN) superfamily, displays a potent antiangiogenic and antimetastatic activity in a broad range of tumor types. Melanocytes and low aggressive melanoma cells secrete high levels of PEDF, while its expression is lost in highly aggressive melanomas. PEDF efficiently abrogates a number of functional properties critical for the acquisition of metastatic ability by melanoma cells, such as neovascularization, proliferation, migration, invasiveness and extravasation. In this study, we identify hypoxia as a relevant negative regulator of PEDF in melanocytes and low aggressive melanoma cells. PEDF was regulated at the protein level. Importantly, although downregulation of PEDF was induced by inhibition of 2-oxoglutarate-dependent dioxygenases, it was independent of the hypoxia inducible factor (HIF), a key mediator of the adaptation to hypoxia. Decreased PEDF protein was not mediated by inhibition of translation through untranslated regions (UTRs) in melanoma cells. Degradation by metalloproteinases, implicated on PEDF degradation in retinal pigment epithelial cells, or by the proteasome, was also excluded as regulatory mechanism in melanoma cells. Instead, we found that degradation by autophagy was critical for PEDF downregulation under hypoxia in human melanoma cells. Our findings show that hypoxic conditions encountered during primary melanoma growth downregulate antiangiogenic and antimetastasic PEDF by a posttranslational mechanism involving degradation by autophagy and could therefore contribute to the acquisition of highly metastatic potential characteristic of aggressive melanoma cells.

  8. Ursolic acid and resveratrol synergize with chloroquine to reduce melanoma cell viability.

    PubMed

    Junco, Jacob J; Mancha-Ramirez, Anna; Malik, Gunjan; Wei, Sung-Jen; Kim, Dae Joon; Liang, Huiyun; Slaga, Thomas J

    2015-04-01

    Malignant melanoma is associated with a 5-year survival rate of less than 20% once metastasized. Malignant melanoma cells exhibit increased levels of autophagy, a process of intracellular digestion that allows cells to survive various stresses including chemotherapies, resulting in reduced patient survival. Autophagy can be inhibited by chemicals like chloroquine (CQ), which prevents fusion of autophagosomes to lysosomes, resulting in autophagosome accumulation in most systems. Here, we describe how tested CQ to see whether it could sensitize B16F10 metastatic mouse melanoma cells to the anticancer activities of the natural compounds ursolic acid (UA) and resveratrol (RES). CQ with UA or RES strongly and synergistically reduced the viability of B16F10 mouse melanoma and A375 human melanoma cells. Surprisingly, flow cytometry of acridine orange-stained cells showed that UA or RES in combination with CQ significantly reduced autophagosome levels. Western blotting analysis revealed that CQ plus UA or RES paradoxically increased LC3II, indicative of autophagosome accumulation. In addition, CQ plus RES synergistically decreased the levels of both autophagy initiator beclin-1 and autophagy supporter p62. These results indicate that CQ with UA or RES strongly and synergistically reduces the viability of B16F10 and A375 melanoma cells. However, studies on B16F10 cells have shown that the synergistic effect was not mediated by inhibition of autophagy induced by UA or RES. These compounds are well-tolerated in humans, and CQ has shown promise as an adjuvant therapy. These combinations may be valuable treatment strategies for melanoma.

  9. Anti-melanoma activity of the 9.2.27PE immunotoxin in dacarbazine resistant cells.

    PubMed

    Risberg, Karianne; Fodstad, Oystein; Andersson, Yvonne

    2010-04-01

    We have earlier shown that the 9.2.27 Pseudomonas Exotoxin A (PE) immunotoxin (IT) efficiently kills melanoma cells through inhibition of protein synthesis followed by some morphologic and biochemical features of apoptosis, a different cell killing mechanism than the one caused by Dacarbazine (DTIC), a chemotherapeutic drug used to treat malignant melanoma. To examine whether induced DTIC resistance also is a determining factor for the effectiveness of 9.2.27PE IT, we developed a DTIC resistant subline, FEMX-200DR, from the DTIC sensitive cell line FEMX. The cell variants were treated with 9.2.27PE, an IT binding to the high molecular weight-melanoma associated antigen (HMW-MAA) expressed on most malignant melanoma cells. The IT was equally effective in killing the FEMX-200DR and the FEMX cells, and the cell death was primarily caused by inhibition of protein synthesis. The DNA repair enzyme and apoptotic marker PARP, a substrate of caspase-3, was inactivated, although we observed only a minor activation of caspase-3 and caspase-8, intracellular proteases involved in apoptosis. In addition to being DTIC resistant, the FEMX-200DR cells were also more resistant to apoptosis than the parent cells as a 3 times higher concentration of the apoptotic inducer Staurosporine was needed to obtain IC50. Furthermore, in early passage malignant melanoma cell lines established from lymph node metastases, the 9.2.27PE caused a time-dependent and dose-dependent decrease in cell viability independent of their DTIC sensitivity. These findings show that the 9.2.27PE IT efficiently can cause cell death in malignant melanoma cells independent of their level of resistance to apoptosis and DTIC.

  10. Downregulation of discoidin domain receptor 2 in A375 human melanoma cells reduces its experimental liver metastasis ability.

    PubMed

    Badiola, Iker; Villacé, Patricia; Basaldua, Iratxe; Olaso, Elvira

    2011-10-01

    Discoidin domain receptors (DDR1 and DDR2) are tyrosine kinase receptors for fibrillar collagen implicated in postnatal development, tissue repair, and primary and metastatic cancer progression. While DDR1 has been described in tumor cells, DDR2 has been localized in the tumor stroma, but its presence in the tumor cells remains unknown. The aim of this study was to elucidate the role of DDR2 signaling in tumor cells during hepatic metastasis progression. DDR2 expression and phosphorylation in cultured human A375 melanoma cells was documented by Western blot analysis. A375 cells were stably transfected with a small interfering RNA (siRNA) against DDR2 and two clones were selected: A375R2-70 and A375R2-40, with 70 and 40% of the DDR2 protein expression respectively, compared to mock-transfected cells (A375R2-100). Development of experimental liver metastasis by intrasplenic inoculation of A375R2-70 and A37R2-40 clones was reduced by 60 and 75%, respectively, measured as tumor volume, compared to livers injected with A375R2-100 cells. Accordingly, A375R2-70 and A37R2-40 clones showed reduced in vitro gelatinase activity and JNK phosphorylation, compared to mock transfected cells, with maximal inhibition in A375R2-40. Additionally, A375 melanoma, SK-HEP hepatoma and HT-29 colon carcinoma human cell lines transiently transfected with siRNA against DDR2 also showed reduced proliferation and migration rates compared to mock-transfected ones. In conclusion, DDR2 promotes A375 melanoma metastasis to the liver and the underlying mechanism implicates regulation of metalloproteinase release, cell growth and chemotactic invasion of the host tissue.

  11. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi.

    PubMed

    Margaryan, Naira V; Gilgur, Alina; Seftor, Elisabeth A; Purnell, Chad; Arva, Nicoleta C; Gosain, Arun K; Hendrix, Mary J C; Strizzi, Luigi

    2016-03-22

    Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro-melanoma

  12. Melanotransferrin induces human melanoma SK-Mel-28 cell invasion in vivo

    SciTech Connect

    Bertrand, Yanick . E-mail: oncomol@nobel.si.uqam.ca

    2007-02-09

    The expression of melanotransferrin (MTf), a membrane-bound glycoprotein highly expressed in melanomas, is correlated with tumor vascularization and progression, suggesting a proinvasive function associated with MTf in malignant tumors. To test this hypothesis, we silenced MTf in human melanoma SK-MEL-28 cells using small interfering RNA (siRNA) and examined the plasmin activity and invasiveness of MTf-silenced melanoma. In vitro, the siRNA-mediated MTf knockdown inhibited by 58% the cell surface activation of plasminogen into plasmin. In addition, decreased expression of MTf in melanoma cells reduced cell migration. In vivo, we used a nude mice invasion model in which tissue factor (TF) induces vascular [{sup 125}I]-fibrin deposition following injection. Using this metastasis model, the invasive potential of MTf-silenced cells into the lungs was reduced by fivefold. Altogether, these findings strongly suggest that MTf overexpression in melanoma cells contributes to tumor progession by stimulating plasmin generation as well as cell migration and invasion.

  13. Boron uptake in normal melanocytes and melanoma cells and boron biodistribution study in mice bearing B16F10 melanoma for boron neutron capture therapy.

    PubMed

    Faião-Flores, Fernanda; Coelho, Paulo Rogério Pinto; Arruda-Neto, João Dias Toledo; Camillo, Maria Aparecida Pires; Maria-Engler, Silvya Stuchi; Rici, Rose Eli Grassi; Sarkis, Jorge Eduardo Souza; Maria, Durvanei Augusto

    2012-08-01

    Information on (10)B distribution in normal tissues is crucial to any further development of boron neutron capture therapy (BNCT). The goal of this study was to investigate the in vitro and in vivo boron biodistribution in B16F10 murine melanoma and normal tissues as a model for human melanoma treatment by a simple and rapid colorimetric method, which was validated by HR-ICP-MS. The B16F10 melanoma cell line showed higher melanin content than human melanocytes, demonstrating a greater potential for boronophenylalanine uptake. The melanocytes showed a moderate viability decrease in the first few minutes after BNCT application, stabilizing after 75 min, whereas the B16F10 melanoma showed the greatest intracellular boron concentration at 150 min after application, indicating a different boron uptake of melanoma cells compared to normal melanocytes. Moreover, at this time, the increase in boron uptake in melanoma cells was approximately 1.6 times higher than that in normal melanocytes. The (10)B concentration in the blood of mice bearing B16F10 melanoma increased until 90 min after BNCT application and then decreased after 120 min, and remained low until the 240th minute. On the other hand, the (10)B concentration in tumors was increased from 90 min and maximal at 150 min after application, thus confirming the in vitro results. Therefore, the present in vitro and in vivo study of (10)B uptake in normal and tumor cells revealed important data that could enable BNCT to be possibly used as a treatment for melanoma, a chemoresistant cancer associated with high mortality.

  14. miR-17 regulates melanoma cell motility by inhibiting the translation of ETV1.

    PubMed

    Cohen, Ronit; Greenberg, Eyal; Nemlich, Yael; Schachter, Jacob; Markel, Gal

    2015-08-07

    Melanoma is an aggressive malignancy with a high metastatic potential. microRNA-17 (miR-17) is a member of the oncogenic miR-17/92 cluster. Here we study the effect of miR-17 on melanoma cell motility. Over expression of the mature or pri-microRNA form of miR-17 in WM-266-4 and 624mel melanoma lines enhances cell motility, evident in both wound healing and transwell migration assays. TargetScan algorithm predicts the PEA3-subfamily member ETV1 as a direct target of miR-17. Indeed, a 3-4-fold decrease of ETV1 protein levels are observed following miR-17 transfection into the various melanoma lines, with no significant change in ETV1 mRNA expression. Dual luciferase experiments demonstrate direct binding of miR-17 to the 3'-untranslated region of ETV1, confirmed by abolishing point mutations in the putative binding site. These combined results suggest regulation of ETV1 by miR-17 by a direct translational repression. Further, in both melanoma cell lines ETV1 knockdown by selective siRNA successfully pheno-copies the facilitated cell migration, while overexpression of ETV1 inhibits cell motility and migration. Altered ETV1 expression does not affect melanoma net-proliferation. In conclusion, we show a new role for miR-17 in melanoma, facilitating cell motility, by targeting the translation of ETV1 protein, which may support the development of metastasis.

  15. Silencing of CerS6 increases the invasion and glycolysis of melanoma WM35, WM451 and SK28 cell lines via increased GLUT1-induced downregulation of WNT5A.

    PubMed

    Tang, Yuanyuan; Cao, Ke; Wang, Qi; Chen, Jia; Liu, Rui; Wang, Shaohua; Zhou, Jianda; Xie, Huiqing

    2016-05-01

    Ceramide synthases (CerSs) have been shown to regulate numerous aspects of cancer development. CerS6 has been suggested to be involved in cancer etiology. However, little is known concerning the exact effect of CerS6 on the malignant behavior of melanoma, including glycolysis, proliferation and invasion. In the present study, we found that the expression of CerS6 was low in the melanoma cell lines, including WM35, WM451 and SK-28, and the expression level was related to the malignanct behavior of the melanoma cell lines. We constructed overexpression and silencing models of CerS6 in three melanoma cell lines and found that silencing of CerS6 promoted the ability of proliferation and invasion in the melanoma cell lines. Additionally, downregulation of CerS6 upregulated the activity of glycolysis-related enzyme, and enhanced the expression of glycolysis-related genes, including GLUT1 and MCT1. Furthermore, we identified the genes whose expression levels were changed after silencing of CerS6 by gene microarray. The expression of glycolysis-related gene SLC2A1 (also known as GLUT1) was found to be upregulated, while notably WNT5A was downregulated. The altered expression of GLUT1 and WNT5A was verified by qPCR and western blotting. Furthermore, silencing of GLUT1 in the melanoma cells resulted in the increased expression of WNT5A and the decreased ability of invasion and proliferation in the melanoma cells. Collectively, silencing of CerS6 induced the increased expression of GLUT1, which downregulated the expression of WNT5A and enhanced the invasion and proliferation of melanoma cells. Thus, CerS6 may provide a novel therapeutic target for melanoma treatment.

  16. Increased NY-ESO-1 expression and reduced infiltrating CD3+ T cells in cutaneous melanoma.

    PubMed

    Giavina-Bianchi, Mara; Giavina-Bianchi, Pedro; Sotto, Mirian Nacagami; Muzikansky, Alona; Kalil, Jorge; Festa-Neto, Cyro; Duncan, Lyn M

    2015-01-01

    NY-ESO-1 is a cancer-testis antigen aberrantly expressed in melanomas, which may serve as a robust and specific target in immunotherapy. NY-ESO-1 antigen expression, tumor features, and the immune profile of tumor infiltrating lymphocytes were assessed in primary cutaneous melanoma. NY-ESO-1 protein was detected in 20% of invasive melanomas (16/79), rarely in in situ melanoma (1/10) and not in benign nevi (0/20). Marked intratumoral heterogeneity of NY-ESO-1 protein expression was observed. NY-ESO-1 expression was associated with increased primary tumor thickness (P = 0.007) and inversely correlated with superficial spreading melanoma (P < 0.02). NY-ESO-1 expression was also associated with reduced numbers and density of CD3+ tumor infiltrating lymphocytes (P = 0.017). When NY-ESO-1 protein was expressed, CD3+ T cells were less diffusely infiltrating the tumor and were more often arranged in small clusters (P = 0.010) or as isolated cells (P = 0.002) than in large clusters of more than five lymphocytes. No correlation of NY-ESO-1 expression with gender, age, tumor site, ulceration, lymph node sentinel status, or survival was observed. NY-ESO-1 expression in melanoma was associated with tumor progression, including increased tumor thickness, and with reduced tumor infiltrating lymphocytes.

  17. Epidermal and hair follicle progenitor cells express melanoma-associated chondroitin sulfate proteoglycan core protein.

    PubMed

    Ghali, Lucy; Wong, Soon-Tee; Tidman, Nick; Quinn, Anthony; Philpott, Michael P; Leigh, Irene M

    2004-02-01

    Basal keratinocytes in the epidermis and hair follicle are biologically heterogeneous but must include a stable subpopulation of epidermal stem cells. In animal models these can be identified by their retention of radioactive label due to their slow cycle (label-retaining cells) but human studies largely depend on in vitro characterization of colony forming efficiency and clonogenicity. Differential integrin expression has been used to detect cells of increased proliferative potential but further stem cell markers are urgently required for in vivo and in vitro characterization. Using LHM2, a monoclonal antibody reacting with a high molecular weight melanoma-associated proteoglycan core protein, a subset of basal keratinocytes in both the interfollicular epidermis and the hair follicle has been identified. Coexpression of melanoma-associated chondroitin sulfate proteoglycan with keratins 15 and 19 as well as beta 1 and alpha 6 integrins has been examined in adult and fetal human skin from hair bearing, nonhair bearing, and palmoplantar regions. Although melanoma-associated chondroitin sulfate proteoglycan coexpression with a subset of beta 1 integrin bright basal keratinocytes within the epidermis suggests that melanoma-associated chondroitin sulfate proteoglycan colocalizes with epidermal stem cells, melanoma-associated chondroitin sulfate proteoglycan expression within the hair follicle was more complex and multiple subpopulations of basal outer root sheath keratinocytes are described. These data suggest that epithelial compartmentalization of the outer root sheath is more complex than interfollicular epidermis and further supports the hypothesis that more than one hair follicle stem cell compartment may exist.

  18. Myeloid cells that impair immunotherapy are restored in melanomas which acquire resistance to BRAF inhibitors.

    PubMed

    Steinberg, Shannon M; Shabaneh, Tamer; Zhang, Peisheng; Martyanov, Viktor; Li, Zhenghui; Malik, Brian; Wood, Tammara; Boni, Andrea; Molodtsov, Aleksey; Angeles, Christina V; Curiel, Tyler J; Whitfield, Michael; Turk, Mary Jo

    2017-02-15

    Acquired resistance to BRAFV600E inhibitors (BRAFi) in melanoma remains a common clinical obstacle, as is the case for any targeted drug therapy that can be developed given the plastic nature of cancers. While there has been significant focus on the cancer cell-intrinsic properties of BRAFi resistance, the impact of BRAFi resistance on host immunity has not been explored. Here we provide preclinical evidence that resistance to BRAFi in an autochthonous mouse model of melanoma is associated with restoration of myeloid-derived suppressor cells (MDSC) in the tumor microenvironment initially reduced by BRAFi treatment. In contrast to restoration of MDSC, levels of T regulatory cells remained reduced in BRAFi-resistant tumors. Accordingly, tumor gene expression signatures specific for myeloid cell chemotaxis and homeostasis reappeared in BRAFi-resistant tumors. Notably, MDSC restoration relied upon MAPK pathway reactivation and downstream production of the myeloid attractant CCL2 in BRAFi-resistant melanoma cells. Strikingly, while combination checkpoint blockade (anti-CTLA-4 + anti-PD-1) was ineffective against BRAFi-resistant melanomas, the addition of MDSC depletion/blockade (anti-Gr-1 + CCR2 antagonist) prevented outgrowth of BRAFi-resistant tumors. Our results illustrate how extrinsic pathways of immunosuppression elaborated by melanoma cells dominate the tumor microenvironment and highlight the need to target extrinsic as well as intrinsic mechanisms of drug resistance.

  19. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy.

    PubMed

    Luan, Qi; Jin, Lei; Jiang, Chen Chen; Tay, Kwang Hong; Lai, Fritz; Liu, Xiao Ying; Liu, Yi Lun; Guo, Su Tang; Li, Chun Ying; Yan, Xu Guang; Tseng, Hsin-Yi; Zhang, Xu Dong

    2015-01-01

    Although RIPK1 (receptor [TNFRSF]-interacting protein kinase 1) is emerging as a critical determinant of cell fate in response to cellular stress resulting from activation of death receptors and DNA damage, its potential role in cell response to endoplasmic reticulum (ER) stress remains undefined. Here we report that RIPK1 functions as an important prosurvival mechanism in melanoma cells undergoing pharmacological ER stress induced by tunicamycin (TM) or thapsigargin (TG) through activation of autophagy. While treatment with TM or TG upregulated RIPK1 and triggered autophagy in melanoma cells, knockdown of RIPK1 inhibited autophagy and rendered the cells sensitive to killing by TM or TG, recapitulating the effect of inhibition of autophagy. Consistently, overexpression of RIPK1 enhanced induction of autophagy and conferred resistance of melanoma cells to TM- or TG-induced cell death. Activation of MAPK8/JNK1 or MAPK9/JNK2, which phosphorylated BCL2L11/BIM leading to its dissociation from BECN1/Beclin 1, was involved in TM- or TG-induced, RIPK1-mediated activation of autophagy; whereas, activation of the transcription factor HSF1 (heat shock factor protein 1) downstream of the ERN1/IRE1-XBP1 axis of the unfolded protein response was responsible for the increase in RIPK1 in melanoma cells undergoing pharmacological ER stress. Collectively, these results identify upregulation of RIPK1 as an important resistance mechanism of melanoma cells to TM- or TG-induced ER stress by protecting against cell death through activation of autophagy, and suggest that targeting the autophagy-activating mechanism of RIPK1 may be a useful strategy to enhance sensitivity of melanoma cells to therapeutic agents that induce ER stress.

  20. A Novel Immunomodulatory Hemocyanin from the Limpet Fissurella latimarginata Promotes Potent Anti-Tumor Activity in Melanoma

    PubMed Central

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C.; Manubens, Augusto; De Ioannes, Alfredo E.; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy. PMID

  1. Anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells

    PubMed Central

    Czajkowski, Rafal; Zegarska, Barbara; Kowaliszyn, Bogna; Pokrywczynska, Marta; Drewa, Tomasz

    2016-01-01

    Introduction Statins are considered potential candidate agents for melanoma chemoprevention. Statin-induced mevalonate pathway inhibition leads to reduction of cholesterol synthesis and also to decreased cellular levels of non-steroidal isoprenoids, geranylgeranyl pyrophosphate and farnesyl pyrophosphate. This results in the impairment of protein prenylation which affects carcinogenesis. Aim To analyze anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells. Material and methods Melanoma cell lines (A375 and WM1552C) and normal fibroblasts (BJ) were used as the primary research material. Cells were treated with rosuvastatin at concentrations ranging from 0.01 µM to 10 µM. Cell viability was analyzed with the use of an MTT assay. Expression of proliferation marker Ki67 was assessed on the basis of immunofluorescence staining. Results Rosuvastatin reduced A375 and BJ cell viability in a time- and dose-dependent manner. After 72 h incubation, the IC50, half maximal inhibitory concentration, was 2.3 µM for melanoma cells and 7.4 µM for normal fibroblasts. In turn, rosuvastatin exhibited relatively lower activity against WM1552C cells. A significant reduction of Ki67 expression was also noted for BJ fibroblasts after prolonged incubation with the tested drug. Conclusions The results indicate that the anti-melanoma properties of rosuvastatin are highly dependent on the tumor cell line assessed. However, the concentrations required to decrease melanoma cell viability in vitro exceed the plasma concentrations reached in patients treated with rosuvastatin at well-tolerated doses. What is more disturbing, reduction of proliferation and viability observed in BJ fibroblasts indicated that rosuvastatin at high doses may be toxic for normal cells. PMID:27605895

  2. Dioscin augments HSV-tk-mediated suicide gene therapy for melanoma by promoting connexin-based intercellular communication

    PubMed Central

    Li, Bin; Wu, Yingya; Liu, Xijuan; Tan, Yuhui; Du, Biaoyan

    2017-01-01

    Suicide gene therapy is a promising strategy against melanoma. However, the low efficiency of the gene transfer technique can limit its application. Our preliminary data showed that dioscin, a glucoside saponin, could upregulate the expression of connexins Cx26 and Cx43, major components of gap junctions, in melanoma cells. We hypothesized that dioscin may increase the bystander effect of herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) through increasing the formation of gap junctions. Further analysis showed that dioscin indeed could increase the gap junctional intercellular communication in B16 melanoma cells, resulting in more efficient GCV-induced bystander killing in B16tk cells. By contrast, overexpression of dominant negative Cx43 impaired the cell-cell communication of B16 cells and subsequently weakened the bystander effect of HSV-tk/GCV gene therapy. In vivo, combination treatment with dioscin and GCV of tumor-bearing mice with 30% positive B16tk cells and 70% wild-type B16 cells caused a significant reduction in tumor volume and weight compared to treatment with GCV or dioscin alone. Taken together, these results demonstrated that dioscin could augment the bystander effect of the HSV-tk/GCV system through increasing connexin-mediated gap junction coupling. PMID:27903977

  3. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro.

    PubMed

    Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-02

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.

  4. FTY720 induces apoptosis in B16F10-NEX2 murine melanoma cells, limits metastatic development in vivo, and modulates the immune system

    PubMed Central

    Pereira, Felipe V.; Arruda, Denise C.; Figueiredo, Carlos R.; Massaoka, Mariana H.; Matsuo, Alisson L.; Bueno, Valquiria; Rodrigues, Elaine G.

    2013-01-01

    OBJECTIVE: Available chemotherapy presents poor control over the development of metastatic melanoma. FTY720 is a compound already approved by the Food and Drug Administration for the treatment of patients with multiple sclerosis. It has also been observed that FTY720 inhibits tumor growth in vivo (experimental models) and in vitro (animal and human tumor cells). The aim of this study was to evaluate the effects of FTY720 on a metastatic melanoma model and in tumor cell lines. METHODS: We analyzed FTY720 efficacy in vivo in a syngeneic murine metastatic melanoma model, in which we injected tumor cells intravenously into C57BL/6 mice and then treated the mice orally with the compound for 7 days. We also treated mice and human tumor cell lines with FTY720 in vitro, and cell viability and death pathways were analyzed. RESULTS: FTY720 treatment limited metastatic melanoma growth in vivo and promoted a dose-dependent decrease in the viability of murine and human tumor cells in vitro. Melanoma cells treated with FTY720 exhibited characteristics of programmed cell death, reactive oxygen species generation, and increased β-catenin expression. In addition, FTY720 treatment resulted in an immunomodulatory effect in vivo by decreasing the percentage of Foxp3+ cells, without interfering with CD8+ T cells or lymphocyte-producing interferon-gamma. CONCLUSION: Further studies are needed using FTY720 as a monotherapy or in combined therapy, as different types of cancer cells would require a variety of signaling pathways to be extinguished. PMID:23917669

  5. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes

    PubMed Central

    Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A

    2007-01-01

    Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA−) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-γ) production by HLA-A*0201-restricted Melan-A/MART-127–35 or gp100280–288-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-γ production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL. PMID:17342088

  6. Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K

    PubMed Central

    Molnár, Judit; Fazakas, Csilla; Haskó, János; Sipos, Orsolya; Nagy, Krisztina; Nyúl-Tóth, Ádám; Farkas, Attila E.; Végh, Attila G.; Váró, György; Galajda, Péter; Krizbai, István A.; Wilhelm, Imola

    2016-01-01

    ABSTRACT Brain metastases are common and devastating complications of both breast cancer and melanoma. Although mammary carcinoma brain metastases are more frequent than those originating from melanoma, this latter has the highest tropism to the brain. Using static and dynamic in vitro approaches, here we show that melanoma cells have increased adhesion to the brain endothelium in comparison to breast cancer cells. Moreover, melanoma cells can transmigrate more rapidly and in a higher number through brain endothelial monolayers than breast cancer cells. In addition, melanoma cells have increased ability to impair tight junctions of cerebral endothelial cells. We also show that inhibition of Rac or PI3K impedes adhesion of breast cancer cells and melanoma cells to the brain endothelium. In addition, inhibition of Rac or PI3K inhibits the late phase of transmigration of breast cancer cells and the early phase of transmigration of melanoma cells. On the other hand, the Rac inhibitor EHT1864 impairs the junctional integrity of the brain endothelium, while the PI3K inhibitor LY294002 has no damaging effect on interendothelial junctions. We suggest that targeting the PI3K/Akt pathway may represent a novel opportunity in preventing the formation of brain metastases of melanoma and breast cancer. PMID:26645485

  7. Induced melanin reduces mutations and cell killing in mouse melanoma.

    PubMed

    Li, W; Hill, H Z

    1997-03-01

    When melanin absorbs light energy, it can produce potentially damaging active oxygen species. There is little doubt that constitutive pigment in dark-skinned individuals is photoprotective against skin cancer, but induced pigment-as in tanning-may not be. The first step in cancer induction is mutation in DNA. The most suitable systems for evaluating the role of melanin are those in which pigment can be varied and mutations can be measured. Several cell lines from Cloudman S91 mouse melanoma can be induced to form large quantities of melanin pigment after treatment with a number of different agents enabling comparison of mutant yields in the same cells differing principally in pigment concentration. In these studies, melanin was induced with synthetic alpha-melanocyte-stimulating hormone and with isobutyl methyl xanthine in the cell line S91/mel. The former inducer produced about 50% more pigment than the latter. Survival and mutation induction at the Na+/K(+)-ATPase locus were studied using ethyl methane sulfonate (EMS), a standard mutagen and five UV lamps emitting near monochromatic and polychromatic UV light in the three wave-length ranges of UV. There was greater protection against killing and mutation induction in the more heavily pigmented cells after exposure to EMS and after irradiation with monochromatic UVC and UVB. There was significant protection against killing by polychromatic UVB + UVA (FS20), but the small degree of protection against mutation was not significant. No significant change in killing and mutation using the same protocol was seen in S91/amel, a related cell line that does not respond to these inducers. No mutants were produced by either monochromatic or polychromatic UVA at doses that killed 50% of the cells. Our results show that induced pigment-shown earlier to be eumelanin (K. A. Cieszka et al., Exp. Dermatol. 4, 192-198, 1995)-is photo- and chemoprotective, but it is less effective in protection against mutagenesis by polychromatic

  8. Internalization and intracellular trafficking of poly(propylene imine) glycodendrimers with maltose shell in melanoma cells.

    PubMed

    Filimon, A; Sima, L E; Appelhans, D; Voit, B; Negroiu, G

    2012-01-01

    The diagnosis and treatment of malignant melanoma by means of the formulation of active principles with dendrimeric nanoparticles is an area of great current interest. The identification and understanding of molecular mechanisms which ensure the integration of particular dendrimeric nanostructures in tumor cellular environment can provide valuable guidance in their coupling strategies with antitumor or diagnostic agents. Two structurally distinct maltose-shell modified 5th generation (G5) poly(propylene imine) (PPI) glycodendrimers fluorescently labeled, (a) with open maltose shell, cationic charged G5-PPI-OS and (b) with dense maltose shell and nearly neutral G5-PPI-DS, were tested in relation with several melanoma cell lines. We found that three melanoma cell lines internalize G5-PPI-DS structure more efficiently than non tumoral HEK297T cells. Furthermore, the internalization pathways of G5-PPI-OS and G5-PPI-DS are characteristic for each tumor cell phenotype and include more than one mechanism. As a general trend, large amounts of both G5-PPI-OS and G5-PPI-DS are internalized on cholesterol-dependent pathway in MJS primary melanoma cells and on non conventional pathways in SK28 metastatic melanoma cells. G5-PPI-OS, temporarily retained at plasma membrane in both cell lines, is internalized slower in metastatic than in primary phenotype. Unlike G5-PPI-OS, G5-PPI-DS is immediately endocytosed in both cell lines. The unconventional internalization pathway and trafficking, exclusively used by G5-PPI-DS in metastatic cells, is described at molecular level. The decay kinetics of fluorescent labeled G5-PPI-OS and G5-PPI-DS is distinct in the two cellular phenotypes. Both cationic and neutral maltose G5-PPI glycodendrimeric structures represent molecules based on which designing of new formulations for therapy or/and diagnosis of melanoma can be further developed.

  9. Etoposide-Bevacizumab a new strategy against human melanoma cells expressing stem-like traits

    PubMed Central

    Calvani, Maura; Bianchini, Francesca; Taddei, Maria Letizia; Becatti, Matteo; Giannoni, Elisa; Chiarugi, Paola; Calorini, Lido

    2016-01-01

    Tumors contain a sub-population of self-renewing and expanding cells known as cancer stem cells (CSCs). Putative CSCs were isolated from human melanoma cells of a different aggressiveness, Hs294T and A375 cell lines, grown under hypoxia using “sphere-forming assay”, CD133 surface expression and migration ability. We found that a cell sub-population enriched for P1 sphere-initiating ability and CD133 expression also express larger amount of VEGF-R2. Etoposide does not influence phenotype of this sub-population of melanoma cells, while a combined treatment with Etoposide and Bevacizumab significantly abolished P1 sphere-forming ability, an effect associated with apoptosis of this subset of cells. Hypoxic melanoma cells sorted for VEGF-R2/CD133 positivity also undergo apoptosis when exposed to Etoposide and Bevacizumab. When Etoposide and Bevacizumab-treated hypoxic cells were injected intravenously into immunodeficient mice revealed a reduced capacity to induce lung colonies, which also appear with a longer latency period. Hence, our study indicates that a combined exposure to Etoposide and Bevacizumab targets melanoma cells endowed with stem-like properties and might be considered a novel approach to treat cancer-initiating cells. PMID:27303923

  10. Melanocyte expression of Survivin promotes development and metastasis of UV-induced melanoma in HGF-transgenic mice

    PubMed Central

    Thomas, Joshua; Liu, Tong; Cotter, Murray A.; Florell, Scott R.; Robinette, Kyle; Hanks, Adrianne N.; Grossman, Douglas

    2008-01-01

    We previously found the apoptosis inhibitor Survivin to be expressed in melanocytic nevi and melanoma, but not in normal melanocytes. To investigate the role of Survivin in melanoma development and progression, we examined the consequences of forced Survivin expression in melanocytes in vivo. Transgenic (Tg) mouse lines (Dct-Survivin) were generated with melanocyte-specific expression of Survivin, and melanocytes grown from Dct-Survivin mice expressed Survivin. Dct-Survivin melanocytes exhibited decreased susceptibility to UV-induced apoptosis but no difference in proliferative capacity compared to melanocytes derived from non-Tg littermates. Induction of nevi in Dct-Survivin and non-Tg mice by topical application of DMBA did not reveal significant differences in lesion onset (median 10 wks) or density (4 lesions/mouse after 15 wks). Dct-Survivin mice were bred with melanoma-prone MH19/HGF-B6 Tg mice and all progeny expressing either individual, neither, or both (Survivin/HGF) transgenes were UV-treated as neonates and then monitored for 43 wks. Melanocytes in neonatal Survivin+/HGF+ mouse skin were less susceptible to UV-induced apoptosis than those from Survivin−/HGF+ mice. Onset of melanocytic tumors was earlier (median 18 vs. 24 wks, p = .01, log-rank test) and overall tumor density was greater (7.7 vs. 5.2 tumors/mouse, p = .04) in Survivin+/HGF+ compared to Survivin−/HGF+ mice. Strikingly, melanomas arising in Survivin+/HGF+ mice demonstrated a greater tendency for lymph node (35% vs. 0%, p = .04) and lung (53% vs. 22%) metastasis, and lower rates of spontaneous apoptosis, than those in Survivin−/HGF+ mice. These studies demonstrate a role for Survivin in promoting both early and late events of UV-induced melanoma development in vivo. PMID:17545596

  11. Knockdown of lecithin retinol acyltransferase increases all-trans retinoic acid levels and restores retinoid sensitivity in malignant melanoma cells.

    PubMed

    Amann, Philipp M; Czaja, Katharina; Bazhin, Alexandr V; Rühl, Ralph; Skazik, Claudia; Heise, Ruth; Marquardt, Yvonne; Eichmüller, Stefan B; Merk, Hans F; Baron, Jens M

    2014-11-01

    Retinoids such as all-trans retinoic acid (ATRA) influence cell growth, differentiation and apoptosis and may play decisive roles in tumor development and progression. An essential retinoid-metabolizing enzyme known as lecithin retinol acyltransferase (LRAT) is expressed in melanoma cells but not in melanocytes catalysing the esterification of all-trans retinol (ATRol). In this study, we show that a stable LRAT knockdown (KD) in the human melanoma cell line SkMel23 leads to significantly increased levels of the substrate ATRol and biologically active ATRA. LRAT KD restored cellular sensitivity to retinoids analysed in cell culture assays and melanoma 3D skin models. Furthermore, ATRA-induced gene regulatory mechanisms drive depletion of added ATRol in LRAT KD cells. PCR analysis revealed a significant upregulation of retinoid-regulated genes such as CYP26A1 and STRA6 in LRAT KD cells, suggesting their possible involvement in mediating retinoid resistance in melanoma cells. In conclusion, LRAT seems to be important for melanoma progression. We propose that reduction in ATRol levels in melanoma cells by LRAT leads to a disturbance in cellular retinoid level. Balanced LRAT expression and activity may provide protection against melanoma development and progression. Pharmacological inhibition of LRAT activity could be a promising strategy for overcoming retinoid insensitivity in human melanoma cells.

  12. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    SciTech Connect

    Yu, Teng; Ji, Jiang; Guo, Yong-li

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.

  13. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity.

    PubMed

    Pietra, Gabriella; Manzini, Claudia; Rivara, Silvia; Vitale, Massimo; Cantoni, Claudia; Petretto, Andrea; Balsamo, Mirna; Conte, Romana; Benelli, Roberto; Minghelli, Simona; Solari, Nicola; Gualco, Marina; Queirolo, Paola; Moretta, Lorenzo; Mingari, Maria Cristina

    2012-03-15

    Natural killer (NK) cells play a key role in tumor immune surveillance. However, adoptive immunotherapy protocols using NK cells have shown limited clinical efficacy to date, possibly due to tumor escape mechanisms that inhibit NK cell function. In this study, we analyzed the effect of coculturing melanoma cells and NK cells on their phenotype and function. We found that melanoma cells inhibited the expression of major NK receptors that trigger their immune function, including NKp30, NKp44, and NKG2D, with consequent impairment of NK cell-mediated cytolytic activity against various melanoma cell lines. This inhibitory effect was primarily mediated by indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2). Together, our findings suggest that immunosuppressive barriers erected by tumors greatly hamper the antitumor activity of human NK cells, thereby favoring tumor outgrowth and progression.

  14. Lebein, a Snake Venom Disintegrin, Induces Apoptosis in Human Melanoma Cells

    PubMed Central

    Hammouda, Manel B.; Montenegro, María F.; Sánchez-del-Campo, Luis; Zakraoui, Ons; Aloui, Zohra; Riahi-Chebbi, Ichrak; Karoui, Habib; Rodríguez-López, José Neptuno; Essafi-Benkhadir, Khadija

    2016-01-01

    Melanoma, the most threatening form of skin cancer, has a very poor prognosis and is characterized by its very invasive and chemoresistant properties. Despite the recent promising news from the field of immunotherapy, there is an urgent need for new therapeutic approaches that are free of resistance mechanisms and side effects. Anti-neoplasic properties have been highlighted for different disintegrins from snake venom including Lebein; however, the exact effect of Lebein on melanoma has not yet been defined. In this study, we showed that Lebein blocks melanoma cell proliferation and induces a more differentiated phenotype with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and microphthalmia-associated transcription factor (MITF) overexpression. Melanoma cells became detached but were less invasive with upregulation of E-cadherin after Lebein exposure. Lebein induced a caspase-independent apoptotic program with apoptosis inducing factor (AIF), BCL-2-associated X protein (BAX) and Bim overexpression together with downregulation of B-cell lymphoma-2 (BCL-2). It generated a distinct response in reactive oxygen species (ROS) generation and p53 levels depending on the p53 cell line status (wild type or mutant). Therefore, we propose Lebein as a new candidate for development of potential therapies for melanoma. PMID:27399772

  15. Vinculin activators target integrins from within the cell to increase melanoma sensitivity to chemotherapy

    PubMed Central

    Nelson, Elke S.; Folkmann, Andrew W.; Henry, Michael D.; DeMali, Kris A.

    2011-01-01

    Metastatic melanoma is an aggressive skin disease for which there are no effective therapies. Emerging evidence indicates that melanomas can be sensitized to chemotherapy by increasing integrin function. Current integrin therapies work by targeting the extracellular domain, resulting in complete gains or losses of integrin function that lead to mechanism-based toxicities. An attractive alternative approach is to target proteins, such as vinculin, that associate with the integrin cytoplasmic domains and regulate its ligand binding properties. Here we report that a novel reagent, denoted vinculin activating peptide or VAP, increases integrin activity from within the cell, as measured by elevated: (1) numbers of active integrins, (2) adhesion of cells to extracellular matrix ligands, (3) numbers of cell-matrix adhesions, and (4) downstream signaling. These effects are dependent on both integrins and a key regulatory residue A50 in the vinculin head domain. We further show that VAP dramatically increases the sensitivity of melanomas to chemotherapy in clonal growth assays and in vivo mouse models of melanoma. Finally, we demonstrate that the increase in chemosensitivity results from increases in DNA damage-induced apoptosis in a p53-dependent manner. Collectively these findings demonstrate for the first time that integrin function can be manipulated from within the cell and validate integrins as a new therapeutic target for the treatment of chemoresistant melanomas. PMID:21460181

  16. Slit3 inhibits activator protein 1-mediated migration of malignant melanoma cells.

    PubMed

    Denk, Alexandra E; Braig, Simone; Schubert, Thomas; Bosserhoff, Anja K

    2011-11-01

    The repellent factor family of Slit molecules has been described to have repulsive function in the developing nervous system on growing axons expressing the Robo receptors. Alterations of the Slit/Robo system have been observed in various pathological conditions and in cancer. However, until today no detailed studies on Slit function on melanoma migration are available. Therefore, we analysed the mRNA expression in melanoma cells and found induction of Robo3 expression compared to normal melanocytes. Functional assays performed with melanoma cells revealed that treatment with Slit3 led to strong inhibition of migration. Interestingly, we observed down-regulation of AP-1 activity and target gene expression after Slit3 treatment contributing to the negative regulation of migration. Taken together, our data showed that Slit3 reduces the migratory activity of melanoma cells, potentially by repulsion of the cells in analogy to the neuronal system. Further studies will be necessary to prove Slit activity in vivo, but due to its function, Slit3 activity may be helpful in the treatment of melanoma.

  17. Adoptive transfer of Tc1 or Tc17 cells elicits antitumor immunity against established melanoma through distinct mechanisms.

    PubMed

    Yu, Yu; Cho, Hyun-Ii; Wang, Dapeng; Kaosaard, Kane; Anasetti, Claudio; Celis, Esteban; Yu, Xue-Zhong

    2013-02-15

    Adoptive cell transfer (ACT) of ex vivo-activated autologous tumor-reactive T cells is currently one of the most promising approaches for cancer immunotherapy. Recent studies provided some evidence that IL-17-producing CD8(+) (Tc17) cells may exhibit potent antitumor activity, but the specific mechanisms have not been completely defined. In this study, we used a murine melanoma lung-metastasis model and tested the therapeutic effects of gp100-specific polarized type I CD8(+) cytotoxic T (Tc1) or Tc17 cells combined with autologous bone marrow transplantation after total body irradiation. Bone marrow transplantation combined with ACT of antitumor (gp100-specific) Tc17 cells significantly suppressed the growth of established melanoma, whereas Tc1 cells induced long-term tumor regression. After ACT, Tc1 cells maintained their phenotype to produce IFN-γ, but not IL-17. However, although Tc17 cells largely preserved their ability to produce IL-17, a subset secreted IFN-γ or both IFN-γ and IL-17, indicating the plasticity of Tc17 cells in vivo. Furthermore, after ACT, the Tc17 cells had a long-lived effector T cell phenotype (CD127(hi)/KLRG-1(low)) as compared with Tc1 cells. Mechanistically, Tc1 cells mediated antitumor immunity primarily through the direct effect of IFN-γ on tumor cells. In contrast, despite the fact that some Tc17 cells also secreted IFN-γ, Tc17-mediated antitumor immunity was independent of the direct effects of IFN-γ on the tumor. Nevertheless, IFN-γ played a critical role by creating a microenvironment that promoted Tc17-mediated antitumor activity. Taken together, these studies demonstrate that both Tc1 and Tc17 cells can mediate effective antitumor immunity through distinct effector mechanisms, but Tc1 cells are superior to Tc17 cells in mediating tumor regression.

  18. Identification of a Cell Surface Protein, p97, in Human Melanomas and Certain Other Neoplasms

    NASA Astrophysics Data System (ADS)

    Woodbury, Richard G.; Brown, Joseph P.; Yeh, Ming-Yang; Hellstrom, Ingegerd; Hellstrom, Karl Erik

    1980-04-01

    BALB/c mice were immunized with a human melanoma cell line, SK-MEL 28, and their spleen cells were fused with mouse NS-1 myeloma cells. Hybrid cells were tested in an indirect 125I-labeled protein A assay for production of antibodies that bound to surface antigens of SK-MEL 28 melanoma cells but not to autologous skin fibroblasts. One hybridoma, designated 4.1, had the required specificity. It was cloned and grown in mice as an ascites tumor. The monoclonal IgG1 antibody produced by the hybridoma was purified from the ascites fluid and labeled with 125I. The labeled antibody bound, at significant levels, to approximately 90% of the melanomas tested and to approximately 55% of other tumor cells, but not to three B-lymphoblastoid cell lines or to cultivated fibroblasts from 15 donors. Immunoprecipitation and sodium dodecyl sulfate gel electrophoresis were used to detect the target antigen in 125I-labeled cell membranes of both cultivated cells and tumor biopsy samples. A protein with a molecular weight of 97,000 was identified. This protein, designated p97, was present in both cultured cells and biopsy material from melanomas and certain other tumors, but it was not detected in eight different samples of normal adult epithelial or mesenchymal tissues obtained from five donors.

  19. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients.

    PubMed

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M; Urbanus, Jos H M; Beltman, Joost B; Thor Straten, Per; Li, Yong F; Robbins, Paul F; Besser, Michal J; Schachter, Jacob; Kenter, Gemma G; Dudley, Mark E; Rosenberg, Steven A; Haanen, John B A G; Hadrup, Sine Reker; Schumacher, Ton N M

    2012-07-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8(+) T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products.

  20. TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients

    PubMed Central

    Kvistborg, Pia; Shu, Chengyi Jenny; Heemskerk, Bianca; Fankhauser, Manuel; Thrue, Charlotte Albæk; Toebes, Mireille; van Rooij, Nienke; Linnemann, Carsten; van Buuren, Marit M.; Urbanus, Jos H.M.; Beltman, Joost B.; thor Straten, Per; Li, Yong F.; Robbins, Paul F.; Besser, Michal J.; Schachter, Jacob; Kenter, Gemma G.; Dudley, Mark E.; Rosenberg, Steven A.; Haanen, John B.A.G.; Hadrup, Sine Reker; Schumacher, Ton N.M.

    2012-01-01

    There is strong evidence that both adoptive T cell transfer and T cell checkpoint blockade can lead to regression of human melanoma. However, little data are available on the effect of these cancer therapies on the tumor-reactive T cell compartment. To address this issue we have profiled therapy-induced T cell reactivity against a panel of 145 melanoma-associated CD8+ T cell epitopes. Using this approach, we demonstrate that individual tumor-infiltrating lymphocyte cell products from melanoma patients contain unique patterns of reactivity against shared melanoma-associated antigens, and that the combined magnitude of these responses is surprisingly low. Importantly, TIL therapy increases the breadth of the tumor-reactive T cell compartment in vivo, and T cell reactivity observed post-therapy can almost in full be explained by the reactivity observed within the matched cell product. These results establish the value of high-throughput monitoring for the analysis of immuno-active therapeutics and suggest that the clinical efficacy of TIL therapy can be enhanced by the preparation of more defined tumor-reactive T cell products. PMID:22754759

  1. Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells.

    PubMed

    Burgeiro, Ana; Gajate, Consuelo; Dakir, El Habib; Villa-Pulgarín, Janny A; Oliveira, Paulo J; Mollinedo, Faustino

    2011-07-01

    The natural isoquinoline alkaloid berberine exhibits a wide spectrum of biological activities including antitumor activity, but its mechanism of action remains to be fully elucidated. Here, we report that berberine induced apoptosis in human melanoma cells, through a process that involved mitochondria and caspase activation. Berberine-induced activation of a number of caspases, including caspases 3, 4, 7, 8, and 9. Pan-caspase inhibitor, z-VAD-fmk, and caspase-8 and caspase-9 inhibitors prevented apoptosis. Berberine also led to the generation of the p20 cleavage fragment of BAP31, involved in directing proapoptotic signals between the endoplasmic reticulum and the mitochondria. Treatment of SK-MEL-2 melanoma cells with berberine induced disruption of the mitochondrial transmembrane potential, release of cytochrome c and apoptosis-inducing factor from the mitochondria to the cytosol, generation of reactive oxygen species (ROS), and a decreased ATP/ADP ratio. Overexpression of bcl-xL by gene transfer prevented berberine-induced cell death, mitochondrial transmembrane potential loss, and cytochrome c and apoptosis-inducing factor release, but not ROS generation. N-acetyl-L-cysteine inhibited the production of ROS, but did not abrogate the berberine-induced apoptosis. Inhibition of extracellular signal-regulated kinase (ERK) phosphorylation, by using the mitogen-activated protein kinase/ERK kinase inhibitor PD98059, and reduction of B-RAF levels by silencing RNA induced cell death of SK-MEL-2 cells, and diminished the berberine concentration required to promote apoptosis. These data show that berberine-induced apoptosis in melanoma cells involves mitochondria and caspase activation, but ROS generation was not essential. Our results indicate that inhibition of B-RAF/ERK survival signaling facilitates the cell death response triggered by berberine.

  2. Utilizing of Adsorptive Transfer Stripping Technique Brdicka Reaction for Determination of Metallothioneins Level in Melanoma Cells, Blood Serum and Tissues.

    PubMed

    Krizkova, Sona; Fabrik, Ivo; Adam, Vojtech; Kukacka, Jiri; Prusa, Richard; Chavis, Grace J; Trnkova, Libuse; Strnadel, Jan; Horak, Vratislav; Kizek, Rene

    2008-05-10

    In the paper we utilized the adsorptive transfer stripping differential pulse voltammetry Brdicka reaction for the determination of metallothioneins (MT) in melanoma cells, animal melanoma tissues (MeLiM miniature pig) and blood serum of patients with malignant melanoma. Primarily we attempted to investigate the influence of dilution of real sample on MT electrochemical response. Dilution of samples of 1 000 times was chosen the most suitable for determination of MT level in biological samples. Then we quantified the MT level in the melanoma cells, the animal melanoma tissues and the blood serum samples. The MT content in the cells varied within the range from 4.2 to 11.2 μM. At animal melanoma tissues (melanomas localized on abdomen, back limb and dorsum) the highest content of MT was determined in the tumour sampled on the back of the animal and was nearly 500 μg of MTs per gram of a tissue. We also quantified content of MT in metastases, which was found in liver, spleen and lymph nodes. Moreover the average MT level in the blood serum samples from patients with melanoma was 3.0 ± 0.8 μM. MT levels determined at melanoma samples were significantly (p < 0.05) higher compared to control ones at cells, tissues and blood serum.

  3. Utilizing of Adsorptive Transfer Stripping Technique Brdicka Reaction for Determination of Metallothioneins Level in Melanoma Cells, Blood Serum and Tissues

    PubMed Central

    Krizkova, Sona; Fabrik, Ivo; Adam, Vojtech; Kukacka, Jiri; Prusa, Richard; Chavis, Grace J.; Trnkova, Libuse; Strnadel, Jan; Horak, Vratislav; Kizek, Rene

    2008-01-01

    In the paper we utilized the adsorptive transfer stripping differential pulse voltammetry Brdicka reaction for the determination of metallothioneins (MT) in melanoma cells, animal melanoma tissues (MeLiM miniature pig) and blood serum of patients with malignant melanoma. Primarily we attempted to investigate the influence of dilution of real sample on MT electrochemical response. Dilution of samples of 1 000 times was chosen the most suitable for determination of MT level in biological samples. Then we quantified the MT level in the melanoma cells, the animal melanoma tissues and the blood serum samples. The MT content in the cells varied within the range from 4.2 to 11.2 μM. At animal melanoma tissues (melanomas localized on abdomen, back limb and dorsum) the highest content of MT was determined in the tumour sampled on the back of the animal and was nearly 500 μg of MTs per gram of a tissue. We also quantified content of MT in metastases, which was found in liver, spleen and lymph nodes. Moreover the average MT level in the blood serum samples from patients with melanoma was 3.0 ± 0.8 μM. MT levels determined at melanoma samples were significantly (p < 0.05) higher compared to control ones at cells, tissues and blood serum. PMID:27879868

  4. CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma.

    PubMed

    Umansky, Viktor; Blattner, Carolin; Gebhardt, Christoffer; Utikal, Jochen

    2017-04-05

    Malignant melanoma is characterized by the development of chronic inflammation in the tumor microenvironment, leading to the accumulation of myeloid-derived suppressor cells (MDSCs). Using ret transgenic mouse melanoma model, we found a significant migration of MDSCs expressing C-C chemokine receptor (CCR)5 into primary tumors and metastatic lymph nodes, which was correlated with tumor progression. An increased CCR5 expression on MDSCs was associated with elevated concentrations of CCR5 ligands in melanoma microenvironment. In vitro experiments showed that the upregulation of CCR5 expression on CD11b(+)Gr1(+) immature myeloid cells was induced by CCR5 ligands, IL-6, GM-CSF, and other inflammatory factors. Furthermore, CCR5(+) MDSCs infiltrating melanoma lesions displayed a stronger immunosuppressive pattern than their CCR5(-) counterparts. Targeting CCR5/CCR5 ligand signaling via a fusion protein mCCR5-Ig, which selectively binds and neutralizes all three CCR5 ligands, increased the survival of tumor-bearing mice. This was associated with a reduced migration and immunosuppressive potential of tumor MDSCs. In melanoma patients, circulating CCR5(+) MDSCs were increased as compared to healthy donors. Like in melanoma-bearing mice, we observed an enrichment of these cells and CCR5 ligands in tumors as compared to the peripheral blood. Our findings define a critical role for CCR5 not only in the recruitment but also in the activation of MDSCs in tumor lesions, suggesting that novel strategies of melanoma treatment could be based on blocking CCR5/CCR5 ligand interactions.

  5. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth.

    PubMed

    Bergman, Joel A; Woan, Karrune; Perez-Villarroel, Patricio; Villagra, Alejandro; Sotomayor, Eduardo M; Kozikowski, Alan P

    2012-11-26

    The incidence of malignant melanoma has dramatically increased in recent years thus requiring the need for improved therapeutic strategies. In our efforts to design selective histone deactylase inhibitors (HDACI), we discovered that the aryl urea 1 is a modestly potent yet nonselective inhibitor. Structure-activity relationship studies revealed that adding substituents to the nitrogen atom of the urea so as to generate compounds bearing a branched linker group results in increased potency and selectivity for HDAC6. Compound 5 g shows low nanomolar inhibitory potency against HDAC6 and a selectivity of ∼600-fold relative to the inhibition of HDAC1. These HDACIs were evaluated for their ability to inhibit the growth of B16 melanoma cells with the most potent and selective HDAC6I being found to decrease tumor cell growth. To the best of our knowledge, this work constitutes the first report of HDAC6-selective inhibitors that possess antiproliferative effects against melanoma cells.

  6. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth

    PubMed Central

    Bergman, Joel A.; Woan, Karrune; Perez-Villarroel, Patricio; Villagra, Alejandro; Sotomayor, Eduardo M.; Kozikowski, Alan P.

    2012-01-01

    The incidence of malignant melanoma has dramatically increased in recent years thus requiring the need for improved therapeutic strategies. In our efforts to design selective histone deactylase inhibitors (HDACI), we discovered that the aryl urea 1 is a modestly potent yet non-selective inhibitor. Structure activity relationship studies revealed that adding substituents to the nitrogen atom of the urea so as to generate compounds bearing a branched linker group results in increased potency and selectivity for HDAC6. Compound 5g shows low nanomolar inhibitory potency against HDAC6 and a selectivity of ~600-fold relative to the inhibition of HDAC1. These HDACIs were evaluated for their ability to inhibit the growth of B16 melanoma cells with the most potent and selective HDAC6I being found to decrease tumor cell growth. To the best of our knowledge, this work constitutes the first report of HDAC6 selective inhibitors that possess antiproliferative effects against melanoma cells. PMID:23009203

  7. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays

    NASA Astrophysics Data System (ADS)

    Huber, F.; Lang, H. P.; Backmann, N.; Rimoldi, D.; Gerber, Ch.

    2013-02-01

    Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the BRAF gene. Drugs that target tumours carrying this mutation have recently entered the clinic. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a BRAF-specific oligonucleotide probe. We detected mutant BRAF at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl-1 of RNA material, without prior PCR amplification and use of labels.

  8. Loss of nuclear receptor RXRα in epidermal keratinocytes promotes the formation of Cdk4-activated invasive melanomas.

    PubMed

    Hyter, Stephen; Bajaj, Gaurav; Liang, Xiaobo; Barbacid, Mariano; Ganguli-Indra, Gitali; Indra, Arup Kumar

    2010-10-01

    Keratinocytes contribute to melanocyte transformation by affecting their microenvironment, in part through the secretion of paracrine factors. Here we report a loss of expression of nuclear receptor RXRα in epidermal keratinocytes during human melanoma progression. In the absence of keratinocytic RXRα, in combination with mutant Cdk4, cutaneous melanoma was generated that metastasized to lymph nodes in a bigenic mouse model. Expression of several keratinocyte-derived mitogenic growth factors (Et-1, Hgf, Scf, α-MSH and Fgf 2 ) was elevated in skin of bigenic mice, whereas Fas, E-cadherin and Pten, implicated in apoptosis, cellular invasion and melanomagenesis, respectively, were downregulated within the microdissected melanocytic tumors. We demonstrated that RXRα is recruited on the proximal promoter of both Et-1 and Hgf, possibly directly regulating their transcription in keratinocytes. These studies demonstrate the contribution of keratinocytic paracrine signaling during the cellular transformation and malignant conversion of melanocytes.

  9. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  10. Involvement of PI3K and MAPK Signaling in bcl-2-induced Vascular Endothelial Growth Factor Expression in Melanoma Cells

    PubMed Central

    Trisciuoglio, Daniela; Iervolino, Angela; Zupi, Gabriella; Del Bufalo, Donatella

    2005-01-01

    We have previously demonstrated that bcl-2 overexpression in tumor cells exposed to hypoxia increases the expression of vascular endothelial growth factor (VEGF) gene through the hypoxia-inducible factor-1 (HIF-1). In this article, we demonstrate that exposure of bcl-2 overexpressing melanoma cells to hypoxia induced phosphorylation of AKT and extracellular signal-regulated kinase (ERK)1/2 proteins. On the contrary, no modulation of these pathways by bcl-2 was observed under normoxic conditions. When HIF-1α expression was reduced by RNA interference, AKT and ERK1/2 phosphorylation were still induced by bcl-2. Pharmacological inhibition of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways reduced the induction of VEGF and HIF-1 in response to bcl-2 overexpression in hypoxia. No differences were observed between control and bcl-2-overexpressing cells in normoxia, in terms of VEGF protein secretion and in response to PI3K and MAPK inhibitors. We also demonstrated that RNA interference-mediated down-regulation of bcl-2 expression resulted in a decrease in the ERK1/2 phosphorylation and VEGF secretion only in bcl-2-overexpressing cell exposed to hypoxia but not in control cells. In conclusion, our results indicate, for the first time, that bcl-2 synergizes with hypoxia to promote expression of angiogenesis factors in melanoma cells through both PI3K- and MAPK-dependent pathways. PMID:15987743

  11. Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth

    PubMed Central

    Song, Minjung; Park, Dong Ki; Park, Hye-Jin

    2013-01-01

    Antrodia camphorata grown on germinated brown rice (CBR) was prepared to suppress melanoma development. CBR extracts were divided into hexane, EtOAc, BuOH, and water fractions. Among all the fractions, EtOAc fraction showed the best suppressive effect on B16F10 melanoma cell proliferation by CCK-8 assay. It also showed the increased cell death and the changed cellular morphology after CBR treatment. Annexin V-FITC/PI, flow cytometry, and western blotting were performed to elucidate anticancer activity of CBR. The results showed that CBR induced p53-mediated apoptotic cell death of B16F10. CBR EtOAc treatment increased melanin content and melanogenesis-related proteins of MITF and TRP-1 expressions, which supports its anticancer activity. Its potential as an anticancer agent was further investigated in tumor-xenografted mouse model. In melanoma-xenografted mouse model, melanoma tumor growth was significantly suppressed under CBR EtOAc fraction treatment. HPLC analysis of CBR extract showed peak of adenosine. In conclusion, CBR extracts notably inhibited B16F10 melanoma cell proliferation through the p53-mediated apoptosis induction and increased melanogenesis. These findings suggest that CBR EtOAc fraction can act as an effective anticancer agent to treat melanoma. PMID:23533475

  12. A novel compound which sensitizes BRAF wild-type melanoma cells to vemurafenib in a TRIM16-dependent manner

    PubMed Central

    Sutton, Selina K.; Carter, Daniel R.; Kim, Patrick; Tan, Owen; Arndt, Greg M.; Zhang, Xu Dong; Baell, Jonathan; Noll, Benjamin D.; Wang, Shudong; Kumar, Naresh; McArthur, Grant A.; Cheung, Belamy B.; Marshall, Glenn M.

    2016-01-01

    There is an urgent need for better therapeutic options for advanced melanoma patients, particularly those without the BRAFV600E/K mutation. In melanoma cells, loss of TRIM16 expression is a marker of cell migration and metastasis, while the BRAF inhibitor, vemurafenib, induces melanoma cell growth arrest in a TRIM16-dependent manner. Here we identify a novel small molecule compound which sensitized BRAF wild-type melanoma cells to vemurafenib. High throughput, cell-based, chemical library screening identified a compound (C012) which significantly reduced melanoma cell viability, with limited toxicity for normal human fibroblasts. When combined with the BRAFV600E/K inhibitor, vemurafenib, C012 synergistically increased vemurafenib potency in 5 BRAFWT and 4 out of 5 BRAFV600E human melanoma cell lines (Combination Index: CI < 1), and, dramatically reduced colony forming ability. In addition, this drug combination was significantly anti-tumorigenic in vivo in a melanoma xenograft mouse model. The combination of vemurafenib and C012 markedly increased expression of TRIM16 protein, and knockdown of TRIM16 significantly reduced the growth inhibitory effects of the vemurafenib and C012 combination. These findings suggest that the combination of C012 and vemurafenib may have therapeutic potential for the treatment of melanoma, and, that reactivation of TRIM16 may be an effective strategy for patients with this disease. PMID:27447557

  13. Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms.

    PubMed

    Mao, Yumeng; Poschke, Isabel; Wennerberg, Erik; Pico de Coaña, Yago; Egyhazi Brage, Suzanne; Schultz, Inkeri; Hansson, Johan; Masucci, Giuseppe; Lundqvist, Andreas; Kiessling, Rolf

    2013-07-01

    Tumors can suppress the host immune system by employing a variety of cellular immune modulators, such as regulatory T cells, tumor-associated macrophages, and myeloid-derived suppressor cells (MDSC). In the peripheral blood of patients with advanced stage melanoma, there is an accumulation of CD14(+)HLA-DR(lo/-) MDSC that suppress autologous T cells ex vivo in a STAT-3-dependent manner. However, a precise mechanistic basis underlying this effect is unclear, particularly with regard to whether the MDSC induction mechanism relies on cell-cell contact of melanoma cells with CD14(+) cells. Here, we show that early-passage human melanoma cells induce phenotypic changes in CD14(+) monocytes, leading them to resemble MDSCs characterized in patients with advanced stage melanoma. These MDSC-like cells potently suppress autologous T-cell proliferation and IFN-γ production. Notably, induction of myeloid-suppressive functions requires contact or close proximity between monocytes and tumor cells. Further, this induction is largely dependent on production of cyclooxygenase-2 (COX-2) because its inhibition in these MDSC-like cells limits their ability to suppress T-cell function. We confirmed our findings with CD14(+) cells isolated from patients with advanced stage melanoma, which inhibited autologous T cells in a manner relying up prostaglandin E2 (PGE2), STAT-3, and superoxide. Indeed, PGE2 was sufficient to confer to monocytes the ability to suppress proliferation and IFN-γ production by autologous T cells ex vivo. In summary, our results reveal how immune suppression by MDSC can be initiated in the tumor microenvironment of human melanoma.

  14. Mechanisms contributing to differential regulation of PAX3 downstream target genes in normal human epidermal melanocytes versus melanoma cells.

    PubMed

    Bartlett, Danielle; Boyle, Glen M; Ziman, Mel; Medic, Sandra

    2015-01-01

    Melanoma is a highly aggressive and drug resistant form of skin cancer. It arises from melanocytes, the pigment producing cells of the skin. The formation of these melanocytes is driven by the transcription factor PAX3 early during embryonic development. As a result of alternative splicing, the PAX3 gene gives rise to eight different transcripts which encode isoforms that have different structures and activate different downstream target genes involved in pathways of cell proliferation, migration, differentiation and survival. Furthermore, post-translational modifications have also been shown to alter the functions of PAX3. We previously identified PAX3 downstream target genes in melanocytes and melanoma cells. Here we assessed the effects of PAX3 down-regulation on this panel of target genes in primary melanocytes versus melanoma cells. We show that PAX3 differentially regulates various downstream target genes involved in cell proliferation in melanoma cells compared to melanocytes. To determine mechanisms behind this differential downstream target gene regulation, we performed immunoprecipitation to assess post-translational modifications of the PAX3 protein as well as RNAseq to determine PAX3 transcript expression profiles in melanocytes compared to melanoma cells. Although PAX3 was found to be post-translationally modified, there was no qualitative difference in phosphorylation and ubiquitination between melanocytes and melanoma cells, while acetylation of PAX3 was reduced in melanoma cells. Additionally, there were differences in PAX3 transcript expression profiles between melanocytes and melanoma cells. In particular the PAX3E transcript, responsible for reducing melanocyte proliferation and increasing apoptosis, was found to be down-regulated in melanoma cells compared to melanocytes. These results suggest that alternate transcript expression profiles activate different downstream target genes leading to the melanoma phenotype.

  15. Melanoma Cell Adhesion and Migration Is Modulated by the Uronyl 2-O Sulfotransferase

    PubMed Central

    Nikolovska, Katerina; Spillmann, Dorothe; Haier, Jörg; Ladányi, Andrea; Stock, Christian; Seidler, Daniela G.

    2017-01-01

    Although the vast majority of melanomas are characterized by a high metastatic potential, if detected early, melanoma can have a good prognostic outcome. However, once metastasised, the prognosis is bleak. We showed previously that uronyl-2-O sulfotransferase (Ust) and 2-O sulfation of chondroitin/dermatan sulfate (CS/DS) are involved in cell migration. To demonstrate an impact of 2-O sulfation in metastasis we knocked-down Ust in mouse melanoma cells. This significantly reduced the amount of Ust protein and enzyme activity. Furthermore, in vitro cell motility and adhesion were significantly reduced correlating with the decrease of cellular Ust protein. Single cell migration of B16VshUst(16) cells showed a decreased cell movement phenotype. The adhesion of B16V cells to fibronectin depended on α5β1 but not αvβ3 integrin. Inhibition of glycosaminoglycan sulfation or blocking fibroblast growth factor receptor (FgfR) reduced α5 integrin in B16V cell lines. Interestingly, FgfR1 expression and activation was reduced in Ust knock-down cells. In vivo, pulmonary metastasis of B16VshUst cells was prevented due to a reduction of α5 integrin. As a proof of concept UST knock-down in human melanoma cells also showed a reduction in ITGa5 and adhesion. This is the first study showing that Ust, and consequently 2-O sulfation of the low affinity receptor for FgfR CS/DS, reduces Itga5 and leads to an impaired adhesion and migration of melanoma cells. PMID:28107390

  16. Coordinate role for cell surface chondroitin sulfate proteoglycan and alpha 4 beta 1 integrin in mediating melanoma cell adhesion to fibronectin

    PubMed Central

    1992-01-01

    Cellular recognition and adhesion to the extracellular matrix (ECM) has a complex molecular basis, involving both integrins and cell surface proteoglycans (PG). The current studies have used specific inhibitors of chondroitin sulfate proteoglycan (CSPG) synthesis along with anti- alpha 4 integrin subunit monoclonal antibodies to demonstrate that human melanoma cell adhesion to an A-chain derived, 33-kD carboxyl- terminal heparin binding fragment of human plasma fibronectin (FN) involves both cell surface CSPG and alpha 4 beta 1 integrin. A direct role for cell surface CSPG in mediating melanoma cell adhesion to this FN fragment was demonstrated by the identification of a cationic synthetic peptide, termed FN-C/H-III, within the fragment. FN-C/H-III is located close to the amino terminal end of the fragment, representing residues #1721-1736 of intact FN. FN-C/H-III binds CSPG directly, can inhibit CSPG binding to the fragment, and promotes melanoma cell adhesion by a CSPG-dependent, alpha 4 beta 1 integrin- independent mechanism. A scrambled version of FN-C/H-III does not inhibit CSPG binding or cell adhesion to the fragment or to FN-C/H-III, indicating that the primary sequence of FN-C/H-III is important for its biological properties. Previous studies have identified three other synthetic peptides from within this 33-kD FN fragment that promote cell adhesion by an arginyl-glycyl-aspartic acid (RGD) independent mechanism. Two of these synthetic peptides (FN-C/H-I and FN-C/H-II) bind heparin and promote cell adhesion, implicating cell surface PG in mediating cellular recognition of these two peptides. Additionally, a third synthetic peptide, CS1, is located in close proximity to FN-C/H-I and FN-C/H-II and it promotes cell adhesion by an alpha 4 beta 1 integrin-dependent mechanism. In contrast to FN-C/H-III, cellular recognition of these three peptides involved contributions from both CSPG and alpha 4 integrin subunits. Of particular importance are observations

  17. Melanoma-Derived BRAF(V600E) Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion.

    PubMed

    Kurgyis, Zsuzsanna; Kemény, Lajos V; Buknicz, Tünde; Groma, Gergely; Oláh, Judit; Jakab, Ádám; Polyánka, Hilda; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-21

    Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell's phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAF(V600E) melanoma, melanoma antigen recognized by T-cells (MART1)-negative peritumoral stromal cells express BRAF(V600E) protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAF(V600E) with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAF(V600E) mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAF(V600E) mutation or protein in the peritumoral stroma of BRAF(WT) melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome.

  18. Activation of the A2B adenosine receptor in B16 melanomas induces CXCL12 expression in FAP-positive tumor stromal cells, enhancing tumor progression

    PubMed Central

    Sorrentino, Claudia; Miele, Lucio; Porta, Amalia; Pinto, Aldo; Morello, Silvana

    2016-01-01

    The A2B receptor (A2BR) can mediate adenosine-induced tumor proliferation, immunosuppression and angiogenesis. Targeting the A2BR has proved to be therapeutically effective in some murine tumor models, but the mechanisms of these effects are still incompletely understood. Here, we report that pharmacologic inhibition of A2BR with PSB1115, which inhibits tumor growth, decreased the number of fibroblast activation protein (FAP)-expressing cells in tumors in a mouse model of melanoma. This effect was associated with reduced expression of fibroblast growth factor (FGF)-2. Treatment of melanoma-associated fibroblasts with the A2BR agonist Bay60-6583 enhanced CXCL12 and FGF2 expression. This effect was abrogated by PSB1115. The A2AR agonist CGS21680 did not induce CXCL12 or FGF2 expression in tumor associated fibroblasts. Similar results were obtained under hypoxic conditions in skin-derived fibroblasts, which responded to Bay60-6583 in an A2BR-dependent manner, by stimulating pERK1/2. FGF2 produced by Bay60-6583-treated fibroblasts directly enhanced the proliferation of melanoma cells. This effect could be reversed by PSB1115 or an anti-FGF2 antibody. Interestingly, melanoma growth in mice receiving Bay60-6583 was attenuated by inhibition of the CXCL12/CXCR4 pathway with AMD3100. CXCL12 and its receptor CXCR4 are involved in angiogenesis and immune-suppression. Treatment of mice with AMD3100 reduced the number of CD31+ cells induced by Bay60-6583. Conversely, CXCR4 blockade did not affect the accumulation of tumor-infiltrating MDSCs or Tregs. Together, our data reveal an important role for A2BR in stimulating FGF2 and CXCL12 expression in melanoma-associated fibroblasts. These factors contribute to create a tumor-promoting microenvironment. Our findings support the therapeutic potential of PSB1115 for melanoma. PMID:27590504

  19. A2B and A3 Adenosine Receptors Modulate Vascular Endothelial Growth Factor and Interleukin-8 Expression in Human Melanoma Cells Treated with Etoposide and Doxorubicin

    PubMed Central

    Merighi, Stefania; Simioni, Carolina; Gessi, Stefania; Varani, Katia; Mirandola, Prisco; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni; Borea, Pier Andrea

    2009-01-01

    Cancer patients undergoing treatment with systemic cancer chemotherapy drugs often have abnormal growth factor and cytokine profiles. Thus, serum levels of interleukin-8 (IL-8) are elevated in patients with malignant melanoma. In addition to IL-8, aggressive melanoma cells secrete, through its transcriptional regulator hypoxia-inducible factor 1 (HIF-1), vascular endothelial growth factor (VEGF), which promotes angiogenesis and metastasis of human cancerous cells. Whether these responses are related to adenosine, a ubiquitous mediator expressed at high concentrations in cancer and implicated in numerous inflammatory processes, is not known and is the focus of this study. We have examined whether the DNA-damaging agents etoposide (VP-16) and doxorubicin can affect IL-8, VEGF, and HIF-1 expressions in human melanoma cancer cells. In particular, we have investigated whether these responses are related to the modulation of the adenosine receptor subtypes, namely, A1, A2A, A2B, and A3. We have demonstrated that A2B receptor blockade can impair IL-8 production, whereas blocking A3 receptors, it is possible to further decrease VEGF secretion in melanoma cells treated with VP-16 and doxorubicin. This understanding may present the possibility of using adenosine antagonists to reduce chemotherapy-induced inflammatory cytokine production and to improve the ability of chemotherapeutic drugs to block angiogenesis. Consequently, we conclude that adenosine receptor modulation may be useful for refining the use of chemotherapeutic drugs to treat human cancer more effectively. PMID:19794965

  20. Components in aqueous Hibiscus rosa-sinensis flower extract inhibit in vitro melanoma cell growth.

    PubMed

    Goldberg, Karina H; Yin, Ariel C; Mupparapu, Archana; Retzbach, Edward P; Goldberg, Gary S; Yang, Catherine F

    2017-01-01

    Skin cancer is extremely common, and melanoma causes about 80% of skin cancer deaths. In fact, melanoma kills over 50 thousand people around the world each year, and these numbers are rising. Clearly, standard treatments are not effectively treating melanoma, and alternative therapies are needed to address this problem. Hibiscus tea has been noted to have medicinal properties, including anticancer effects. Extracts from Hibiscus have been shown to inhibit the growth of a variety of cancer cells. In particular, recent studies found that polyphenols extracted from Hibiscus sabdariffa by organic solvents can inhibit melanoma cell growth. However, effects of aqueous extracts from Hibiscus rosa-sinesis flowers, which are commonly used to make traditional medicinal beverages, have not been examined on melanoma cells. Here, we report that aqueous H. rosa-sinesis flower extract contains compounds that inhibit melanoma cell growth in a dose dependent manner at concentrations that did not affect the growth of nontransformed cells. In addition, these extracts contain low molecular weight growth inhibitory compounds below 3 kD in size that combine with larger compounds to more effectively inhibit melanoma cell growth. Future work should identify these compounds, and evaluate their potential to prevent and treat melanoma and other cancers.

  1. Melanoma-Derived BRAFV600E Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion

    PubMed Central

    Kurgyis, Zsuzsanna; Kemény, Lajos V.; Buknicz, Tünde; Groma, Gergely; Oláh, Judit; Jakab, Ádám; Polyánka, Hilda; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell’s phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAFV600E melanoma, melanoma antigen recognized by T-cells (MART1)-negative peritumoral stromal cells express BRAFV600E protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAFV600E with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAFV600E mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAFV600E mutation or protein in the peritumoral stroma of BRAFWT melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome. PMID:27338362

  2. Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death.

    PubMed

    Antunes, Fernanda; Corazzari, Marco; Pereira, Gustavo; Fimia, Gian Maria; Piacentini, Mauro; Smaili, Soraya

    2017-03-25

    Melanoma is one of leading cause of tumor death worldwide. Anti-cancer strategy includes combination of different chemo-therapeutic agents as well as radiation; however these treatments have limited efficacy and induce significant toxic effects on healthy cells. One of most promising novel therapeutic approach to cancer therapy is the combination of anti-cancer drugs with calorie restriction. Here we investigated the effect Cisplatin (CDDP), one of the most potent chemotherapeutic agent used to treat tumors, in association with fasting in wild type and mutated BRAF(V600E) melanoma cell lines. Here we show that nutrient deprivation can consistently enhance the sensitivity of tumor cells to cell death induction by CDDP, also of those malignancies particularly resistant to any treatment, such as oncogenic BRAF melanomas. Mechanistic studies revealed that the combined therapy induced cell death is characterized by ROS accumulation and ATF4 in the absence of ER-stress. In addition, we show that autophagy is not involved in the enhanced sensitivity of melanoma cells to combined CDDP/EBSS-induced apoptosis. While, the exposure to 2-DG further enhanced the apoptotic rate observed in SK Mel 28 cells upon treatment with both CDDP and EBSS.

  3. Tocilizumab unmasks a stage-dependent interleukin-6 component in statin-induced apoptosis of metastatic melanoma cells

    PubMed Central

    Minichsdorfer, Christoph; Wasinger, Christine; Sieczkowski, Evelyn; Atil, Bihter

    2015-01-01

    The interleukin (IL)-6 inhibits the growth of early-stage melanoma cells, but not metastatic cells. Metastatic melanoma cells are susceptible to statin-induced apoptosis, but this is not clear for early-stage melanoma cells. This study aimed to investigate the IL-6 susceptibility of melanoma cells from different stages in the presence of simvastatin to overcome loss of growth arrest. ELISA was used to detect secreted IL-6 in human melanoma cells. The effects of IL-6 were measured by western blots for STAT3 and Bcl-2 family proteins. Apoptosis and proliferation were measured by caspase 3 activity, Annexin V staining, cell cycle analysis, and a wound-healing assay. Human metastatic melanoma cells A375 and 518A2 secrete high amounts of IL-6, in contrast to early-stage WM35 cells. Canonical IL-6 signaling is intact in these cells, documented by transient phosphorylation of STAT3. Although WM35 cells are highly resistant to simvastatin-induced apoptosis, coadministration with IL-6 enhanced the susceptibility to undergo apoptosis. This proapoptotic effect of IL-6 might be explained by a downregulation of Bcl-XL, observed only in WM35 cells. Furthermore, the IL-6 receptor blocking antibody tocilizumab was coadministered and unmasked an IL-6-sensitive proportion in the simvastatin-induced caspase 3 activity of metastatic melanoma cells. These results confirm that simvastatin facilitates apoptosis in combination with IL-6. Although endogenous IL-6 secretion is sufficient in metastatic melanoma cells, exogenously added IL-6 is needed for WM35 cells. This effect may explain the failure of simvastatin to reduce melanoma incidence in clinical trials and meta-analyses. PMID:26020489

  4. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells

    PubMed Central

    Tormo, Damià; Chęcińska, Agnieszka; Alonso-Curbelo, Direna; Pérez-Guijarro, Eva; Cañón, Estela; Riveiro-Falkenbach, Erica; Calvo, Tonantzin G.; Larribere, Lionel; Megías, Diego; Mulero, Francisca; Piris, Miguel A.; Dash, Rupesh; Barral, Paola M.; Rodríguez-Peralto, José L; Ortiz-Romero, Pablo; Tüting, Thomas; Fisher, Paul B.; Soengas, María S.

    2009-01-01

    Summary Inappropriate drug delivery, secondary toxicities and persistent chemo- and immuno-resistance have traditionally compromised treatment response in melanoma. Using cellular systems and genetically engineered mouse models, we show that melanoma cells retain an innate ability to recognize cytosolic dsRNA and mount persistent stress response programs able to block tumor growth, even in highly immunosuppressed backgrounds. The dsRNA mimic polyinosine-polycytidylic acid (pIC), coadministered with polyethyleneimine (PEI) as a carrier, was identified as an unanticipated inducer of autophagy downstream of an exacerbated endosomal maturation program. A concurrent activity of the dsRNA helicase MDA-5 driving the proapoptotic protein NOXA resulted in an efficient autodigestion of melanoma cells. These results reveal tractable links for therapeutic intervention among dsRNA helicases, endo/lysosomes and apoptotic factors. PMID:19647221

  5. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells.

    PubMed

    Tormo, Damià; Checińska, Agnieszka; Alonso-Curbelo, Direna; Pérez-Guijarro, Eva; Cañón, Estela; Riveiro-Falkenbach, Erica; Calvo, Tonantzin G; Larribere, Lionel; Megías, Diego; Mulero, Francisca; Piris, Miguel A; Dash, Rupesh; Barral, Paola M; Rodríguez-Peralto, José L; Ortiz-Romero, Pablo; Tüting, Thomas; Fisher, Paul B; Soengas, María S

    2009-08-04

    Inappropriate drug delivery, secondary toxicities, and persistent chemo- and immunoresistance have traditionally compromised treatment response in melanoma. Using cellular systems and genetically engineered mouse models, we show that melanoma cells retain an innate ability to recognize cytosolic double-stranded RNA (dsRNA) and mount persistent stress response programs able to block tumor growth, even in highly immunosuppressed backgrounds. The dsRNA mimic polyinosine-polycytidylic acid, coadministered with polyethyleneimine as carrier, was identified as an unanticipated inducer of autophagy downstream of an exacerbated endosomal maturation program. A concurrent activity of the dsRNA helicase MDA-5 driving the proapoptotic protein NOXA resulted in an efficient autodigestion of melanoma cells. These results reveal tractable links for therapeutic intervention among dsRNA helicases, endo/lysosomes, and apoptotic factors.

  6. Biochemical mechanism of Caffeic Acid Phenylethyl Ester (CAPE) selective toxicity towards melanoma cell lines

    PubMed Central

    Kudugunti, Shashi K.; Vad, Nikhil M.; Whiteside, Amanda J.; Naik, Bhakti U.; Yusuf, Mohd. A.; Srivenugopal, Kalkunte S.; Moridani, Majid Y.

    2010-01-01

    In the current work, we investigated the in-vitro biochemical mechanism of caffeic acid phenylethyl ester (CAPE) toxicity and eight hydroxycinnamic/caffeic acid derivatives in-vitro, using tyrosinase enzyme as a molecular target in human SK-MEL-28 melanoma cells. Enzymatic reaction models using tyrosinase/O2 and HRP/H2O2 were used to delineate the role of one- and two-electron oxidation. Ascorbic acid (AA), NADH and GSH depletion were used as markers of quinone formation and oxidative stress in CAPE induced toxicity in melanoma cells. Ethylenediamine, an o-quinone trap, prevented the formation of o-quinone and oxidations of AA and NADH mediated by tyrosinase bioactivation of CAPE. The IC50 of CAPE towards SK-MEL-28 melanoma cells was 15μM. Dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased CAPE’s toxicity towards SK-MEL-28 cells indicating quinone formation played an important role in CAPE induced cell toxicity. Cyclosporin-A and trifluoperazine, inhibitors of the mitochondrial membrane permeability transition pore (PTP), prevented CAPE toxicity towards melanoma cells. We further investigated the role of tyrosinase in CAPE toxicity in the presence of a shRNA plasmid, targeting tyrosinase mRNA. Results from tyrosinase shRNA experiments showed that CAPE led to negligible anti-proliferative effect, apoptotic cell death and ROS formation in shRNA plasmid treated cells. Furthermore, it was also found that CAPE selectively caused escalation in the ROS formation and intracellular GSH (ICG) depletion in melanocytic human SK-MEL-28 cells which express functional tyrosinase. In contrast, CAPE did not lead to ROS formation and ICG depletion in amelanotic C32 melanoma cells, which do not express functional tyrosinase. These findings suggest that tyrosinase plays a major role in CAPE’s selective toxicity towards melanocytic melanoma cell lines. Our findings suggest that the mechanisms of CAPE toxicity in SK-MEL-28 melanoma cells

  7. MicroRNA-125b suppresses the epithelial-mesenchymal transition and cell invasion by targeting ITGA9 in melanoma.

    PubMed

    Zhang, Jie; Na, Sijia; Liu, Caiyue; Pan, Shuting; Cai, Junying; Qiu, Jiaxuan

    2016-05-01

    Increasing evidence has shown that aberrant miRNAs contribute to the development and progression of human melanoma. Previous studies have shown that miR-125b functions as a suppressor in malignant melanoma. However, the molecular function and mechanism by which miR-125b influences melanoma growth and invasion are still unclear. In this study, we aimed to investigate the role of miR-125b in melanoma progression and metastasis. We found that miR-125b expression is significantly downregulated in primary melanoma, and an even greater downregulation was observed in metastatic invasion. Restored expression of miR-125b in melanoma suppressed cell proliferation and invasion both in vitro and in vivo. Furthermore, our findings demonstrate that upregulating miR-125b significantly inhibits malignant phenotypes by repressing the expression of integrin alpha9 (ITGA9). Finally, our data reveal that upregulated expression of ITGA9 in melanoma tissues is inversely associated with miR-125b levels. Together, our results demonstrate that upregulation of ITGA9 in response to the decrease in miR-125b in metastatic melanoma is responsible for melanoma tumor cell migration and invasion.

  8. Cryptotanshinone induces melanoma cancer cells apoptosis via ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion.

    PubMed

    Ye, Tinghong; Zhu, Shirui; Zhu, Yongxia; Feng, Qiang; He, Bing; Xiong, Yiong; Zhao, Lifeng; Zhang, Yiwen; Yu, Luoting; Yang, Li

    2016-08-01

    Melanoma is the most serious type of skin cancer because it is highly frequency of drug resistance and can spread earlier and more quickly than other skin cancers. The objective of this research was to investigate the anticancer effects of cryptotanshinone on human melanoma cells in vitro, and explored its mechanisms of action. Our results have shown that cryptotanshinone could inhibit cell proliferation in human melanoma cell lines A2058, A375, and A875 in a dose- and time-dependent manner. In addition, flow cytometry assay showed that cryptotanshinone inhibited the proliferation of human melanoma cell line A375 by blocking cell cycle progression in G2/M phase and inducing apoptosis in a concentration-dependent manner. Moreover, western blot analysis indicated that the occurrence of its apoptosis was associated with upregulation of cleaved caspases-3 and pro-apoptotic protein Bax while downregulation of anti-apoptotic protein Bcl-2. Meanwhile, cryptotanshinone could decrease the levels of reactive oxygen species (ROS). Furthermore, cryptotanshinone also blocked A375 cell migration and invasion in vitro which was associated with the downregulation with MMP-9. Taken together, these results suggested that cryptotanshinone might be a potential drug in human melanoma treatment by inhibiting proliferation, inducing apoptosis via ROS-mitochondrial apoptotic pathway and blocking cell migration and invasion.

  9. Antiangiogenic and antiproliferative effects of black pomegranate peel extract on melanoma cell line

    PubMed Central

    Dana, N.; Javanmard, Sh. Haghjooy; Rafiee, L.

    2015-01-01

    In the present study possible effects of black pomegranate peel extract (PPE) on the B16F10 melanoma cells proliferation and Human Umbilical Vein Endothelial Cells (HUVECs) angiogenesis were investigated. PPE was added into the cell lines (B16F10 and HUVECs) media with different concentrations (10–450 μg/ml). After 48 h, the cell survival was measured by 3-(Dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay. Angiogenesis was investigated by matrigel assay (PPE (200, 300, 400 μg/ml)); HUVECs, vascular endothelial growth factor (VEGF) mRNA expression was detected by quantitative reverse transcriptase–polymerase chain reaction (QRT-PCR) assay. VEGF concentration in culture medium of HUVECs was determined by enzyme-linked immunosorbent assay (ELISA). PPE had positive anti proliferative effect on melanoma cells in a dose-dependent manner, but not on HUVECs. The matrigel assay results indicated that PPE significantly inhibited length, size and junction of the tube like structures (P<0.05). VEGF mRNA expression and concentration levels in culture medium of PPE treated HUVECs reduced significantly in a concentration-dependent manner (P<0.05). Simultaneous inhibition of melanoma cell proliferation and angiogenesis proposed that, PPE can be a good candidate against melanoma development. Based on the results, PPE could effectively suppress angiogenesis potentially through a VEGF dependent mechanism. Further studies are needed to confirm these results. PMID:26487888

  10. Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    PubMed Central

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.

    2010-01-01

    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533

  11. Identification of MET and SRC Activation in Melanoma Cell Lines Showing Primary Resistance to PLX403212

    PubMed Central

    Vergani, Elisabetta; Vallacchi, Viviana; Frigerio, Simona; Deho, Paola; Mondellini, Piera; Perego, Paola; Cassinelli, Giuliana; Lanzi, Cinzia; Testi, Maria Adele; Rivoltini, Licia; Bongarzone, Italia; Rodolfo, Monica

    2011-01-01

    PLX4032/vemurafenib is a first-in-class small-molecule BRAFV600E inhibitor with clinical activity in patients with BRAF mutant melanoma. Nevertheless, drug resistance develops in treated patients, and strategies to overcome primary and acquired resistance are required. To explore the molecular mechanisms involved in primary resistance to PLX4032, we investigated its effects on cell proliferation and signaling in a panel of 27 genetically characterized patient-derived melanoma cell lines. Cell sensitivity to PLX4032 was dependent on BRAFV600E and independent from other gene alterations that commonly occur in melanoma such as PTEN loss, BRAF, and MITF gene amplification. Two cell lines lacking sensitivity to PLX4032 and harboring a different set of genetic alterations were studied as models of primary resistance. Treatment with the MEK inhibitor UO126 but not with PLX4032 inhibited cell growth and ERK activation. Resistance to PLX4032 was maintained after CRAF down-regulation by siRNA indicating alternative activation of MEK-ERK signaling. Genetic characterization by multiplex ligation-dependent probe amplification and analysis of phosphotyrosine signaling by MALDI-TOF mass spectrometry analysis revealed the activation of MET and SRC signaling, associated with the amplification of MET and of CTNNB1 and CCND1 genes, respectively. The combination of PLX4032 with drugs or siRNA targeting MET was effective in inhibiting cell growth and reducing cell invasion and migration in melanoma cells with MET amplification; similar effects were observed after targeting SRC in the other cell line, indicating a role for MET and SRC signaling in primary resistance to PLX4032. Our results support the development of classification of melanoma in molecular subtypes for more effective therapies. PMID:22241959

  12. Cutaneous amelanotic signet-ring cell malignant melanoma with interspersed myofibroblastic differentiation in a young cat.

    PubMed

    Hirz, Manuela; Herden, Christiane

    2016-07-01

    The diagnosis of malignant melanoma can be difficult because these tumors can be amelanotic and may contain diverse variants and divergent differentiations, of which the signet-ring cell subtype is very rare and has only been described in humans, dogs, cats, and a hamster. We describe herein histopathologic and immunohistochemical approaches taken to diagnose a case of signet-ring cell malignant melanoma with myofibroblastic differentiation in a cat. A tumor within the abdominal skin of a 2-year-old cat was composed of signet-ring cells and irregularly interwoven streams of spindle cells. Both neoplastic cell types were periodic-acid-Schiff, Fontana, and Sudan black B negative. Signet-ring cells strongly expressed vimentin and S100 protein. Spindle cells strongly expressed vimentin and smooth muscle actin; some cells expressed S100, moderately neuron-specific enolase, and others variably actin and desmin. A few round cells expressed melan A, and a few plump spindle cells expressed melan A and PNL2, confirming the diagnosis of amelanotic signet-ring cell malignant melanoma with myofibroblastic differentiation in a cat. Differential diagnoses were excluded, including signet-ring cell forms of adenocarcinomas, lymphomas, liposarcomas, leiomyosarcomas, squamous cell carcinomas, basal cell carcinomas, and adnexal tumors.

  13. Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1alpha/Sp4.

    PubMed

    Tsai, Wen-Bin; Aiba, Isamu; Lee, Soo-yong; Feun, Lynn; Savaraj, Niramol; Kuo, Macus Tien

    2009-12-01

    Arginine deiminase (ADI)-based arginine depletion is a novel strategy under clinical trials for the treatment of malignant melanoma with promising results. The sensitivity of melanoma to ADI treatment is based on its auxotrophy for arginine due to a lack of argininosuccinate synthetase (AS) expression, the rate-limiting enzyme for the de novo biosynthesis of arginine. We show here that AS expression can be transcriptionally induced by ADI in melanoma cell lines A2058 and SK-MEL-2 but not in A375 cells, and this inducibility was correlated with resistance to ADI treatment. The proximal region of the AS promoter contains an E-box that is recognized by c-Myc and HIF-1alpha and a GC-box by Sp4. Through ChIP assays, we showed that under noninduced conditions, the E-box was bound by HIF-1alpha in all the three melanoma cell lines. Under arginine depletion conditions, HIF-1alpha was replaced by c-Myc in A2058 and SK-MEL-2 cells but not in A375 cells. Sp4 was constitutively bound to the GC-box regardless of arginine availability in all three cell lines. Overexpressing c-Myc by transfection upregulated AS expression in A2058 and SK-MEL-2 cells, whereas cotransfection with HIF-1alpha suppressed c-Myc-induced AS expression. These results suggest that regulation of AS expression involves interplay among positive transcriptional regulators c-Myc and Sp4, and negative regulator HIF-1alpha that confers resistance to ADI treatment in A2058 and SK-MEL-2 cells. Inability of AS induction in A375 cells under arginine depletion conditions was correlated by the failure of c-Myc to interact with the AS promoter.

  14. MGSA/GRO transcription is differentially regulated in normal retinal pigment epithelial and melanoma cells.

    PubMed Central

    Shattuck, R L; Wood, L D; Jaffe, G J; Richmond, A

    1994-01-01

    We have characterized constitutive and cytokine-regulated MGSA/GRO alpha, -beta, and -gamma gene expression in normal retinal pigment epithelial (RPE) cells and a malignant melanoma cell line (Hs294T) to discern the mechanism for MGSA/GRO constitutive expression in melanoma. In RPE cells, constitutive MGSA/GRO alpha, -beta, and -gamma mRNAs are not detected by Northern (RNA) blot analysis although nuclear runoff experiments show that all three genes are transcribed. In Hs294T cells, constitutive MGSA/GRO alpha expression is detectable by Northern blot analysis, and the level of basal MGSA/GRO alpha transcription is 8- to 30-fold higher than in RPE cells. In contrast, in Hs294T cells, basal MGSA/GRO beta and -gamma transcription is only twofold higher than in RPE cells and no beta or gamma mRNA is detected by Northern blot. These data suggest that the constitutive MGSA/GRO alpha mRNA in Hs294T cells is due to increased basal MGSA/GRO alpha gene transcription. The cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) significantly increase the mRNA levels for all three MGSA/GRO isoforms in Hs294T and RPE cells, and both transcriptional and posttranscriptional mechanisms are operational. Nuclear runoff assays indicate that in RPE cells, a 1-h IL-1 treatment induces a 10- to 20-fold increase in transcription of MGSA/GRO alpha, -beta and -gamma but only a 2-fold increase in Hs294T cells. Similarly, chloramphenicol acetyltransferase (CAT) reporter gene analysis using the MGSA/GRO alpha, -beta, and -gamma promoter regions demonstrates that IL-1 treatment induces an 8- to 14-fold increase in CAT activity in RPE cells but only a 2-fold increase in Hs294T cells. The effect of deletion or mutation of the MGSA/GRO alpha NF-kappa B element, combined with data from gel mobility shift analyses, indicates that the NF-kappa B p50/p65 heterodimer in RPE cells plays an important role in IL-1- and TNF alpha-enhanced gene transcription. In Hs294T cells, gel shift

  15. Synergistic effects of ion transporter and MAP kinase pathway inhibitors in melanoma

    PubMed Central

    Eskiocak, Ugur; Ramesh, Vijayashree; Gill, Jennifer G.; Zhao, Zhiyu; Yuan, Stacy W.; Wang, Meng; Vandergriff, Travis; Shackleton, Mark; Quintana, Elsa; Johnson, Timothy M.; DeBerardinis, Ralph J.; Morrison, Sean J.

    2016-01-01

    New therapies are required for melanoma. Here, we report that multiple cardiac glycosides, including digitoxin and digoxin, are significantly more toxic to human melanoma cells than normal human cells. This reflects on-target inhibition of the ATP1A1 Na+/K+ pump, which is highly expressed by melanoma. MEK inhibitor and/or BRAF inhibitor additively or synergistically combined with digitoxin to induce cell death, inhibiting growth of patient-derived melanomas in NSG mice and synergistically extending survival. MEK inhibitor and digitoxin do not induce cell death in human melanocytes or haematopoietic cells in NSG mice. In melanoma, MEK inhibitor reduces ERK phosphorylation, while digitoxin disrupts ion gradients, altering plasma membrane and mitochondrial membrane potentials. MEK inhibitor and digitoxin together cause intracellular acidification, mitochondrial calcium dysregulation and ATP depletion in melanoma cells but not in normal cells. The disruption of ion homoeostasis in cancer cells can thus synergize with targeted agents to promote tumour regression in vivo. PMID:27545456

  16. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells

    PubMed Central

    Saito, Hidehito; Okita, Keisuke; Fusaki, Noemi; Sabel, Michael S.; Chang, Alfred E.; Ito, Fumito

    2016-01-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs) that express programmed cell death protein-1 (PD-1) are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy. PMID:27057178

  17. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion

    PubMed Central

    Giordano, Marilyn; Henin, Coralie; Maurizio, Julien; Imbratta, Claire; Bourdely, Pierre; Buferne, Michel; Baitsch, Lukas; Vanhille, Laurent; Sieweke, Michael H; Speiser, Daniel E; Auphan-Anezin, Nathalie; Schmitt-Verhulst, Anne-Marie; Verdeil, Grégory

    2015-01-01

    T cells infiltrating neoplasms express surface molecules typical of chronically virus-stimulated T cells, often termed “exhausted” T cells. We compared the transcriptome of “exhausted” CD8 T cells infiltrating autochthonous melanomas to those of naïve and acutely stimulated CD8 T cells. Despite strong similarities between transcriptional signatures of tumor- and virus-induced exhausted CD8 T cells, notable differences appeared. Among transcriptional regulators, Nr4a2 and Maf were highly overexpressed in tumor-exhausted T cells and significantly upregulated in CD8 T cells from human melanoma metastases. Transduction of murine tumor-specific CD8 T cells to express Maf partially reproduced the transcriptional program associated with tumor-induced exhaustion. Upon adoptive transfer, the transduced cells showed normal homeostasis but failed to accumulate in tumor-bearing hosts and developed defective anti-tumor effector responses. We further identified TGFβ and IL-6 as main inducers of Maf expression in CD8 T cells and showed that Maf-deleted tumor-specific CD8 T cells were much more potent to restrain tumor growth in vivo. Therefore, the melanoma microenvironment contributes to skewing of CD8 T cell differentiation programs, in part by TGFβ/IL-6-mediated induction of Maf. PMID:26139534

  18. Targeting inhibitor of apoptosis proteins in combination with dacarbazine or TRAIL in melanoma cells.

    PubMed

    Engesæter, Birgit O; Sathermugathevan, Menaka; Hellenes, Tina; Engebråten, Olav; Holm, Ruth; Flørenes, Vivi Ann; Mælandsmo, Gunhild M

    2011-07-01

    Melanoma is a highly aggressive malignant tumor with an exceptional ability to develop resistance and no curative therapy is available for patients with distant metastatic disease. The inhibitor of apoptosis protein (IAP) family has been related to therapy resistance in cancer. We examined the importance of the IAPs in the resistance to the commonly used chemotherapeutic agent dacarbazine (DTIC) and the apoptosis inducer TRAIL (TNF-related apoptosis inducing ligand) in malignant melanoma. The data presented show that the expression of IAPs is universal, concomitant and generally high in melanoma cell lines and in patient samples. Depleting IAP expression by siRNA tended to reduce cell viability, with XIAP reduction being the most efficient in all four cell lines examined (FEMX-1, LOX, SKMEL-28 and WM115). The combined treatment of XIAP siRNA and DTIC showed a weak improvement in two of four cell lines, while all four cell lines showed enhanced sensitivity towards TRAIL (AdhCMV-TRAIL) after XIAP depletion. In addition, cIAP-1, cIAP-2 and survivin down-regulation sensitized to TRAIL treatment in several of the cell lines. Cells exposed to TRAIL and XIAP siRNA showed increased DNA-fragmentation and cleavage of Bid, procaspase-8, -9, -7 and -3 and PARP, and change in the balance between pro- and anti-apoptotic proteins, indicating an enhanced level of apoptosis. Furthermore, the combined treatment reduced the ability of melanoma cells to engraft and form tumors in mice, actualizing the combination for future therapy of malignant melanoma.

  19. Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma.

    PubMed

    Butterfield, Lisa H; Comin-Anduix, Begonya; Vujanovic, Lazar; Lee, Yohan; Dissette, Vivian B; Yang, Jin-Quan; Vu, Hong T; Seja, Elizabeth; Oseguera, Denise K; Potter, Douglas M; Glaspy, John A; Economou, James S; Ribas, Antoni

    2008-04-01

    We performed a phase 1/2 trial testing the safety, toxicity, and immune response of a vaccine consisting of autologous dendritic cells (DCs) transduced with a replication-defective adenovirus (AdV) encoding the full-length melanoma antigen MART-1/Melan-A (MART-1). This vaccine was designed to activate MART-1-specific CD+8 and CD4+ T cells. Metastatic melanoma patients received 3 injections of 10(6) or 10(7) DCs, delivered intradermally. Cell surface phenotype and cytokine production of the DCs used for the vaccines were tested, and indicated intermediate maturity. CD8+ T-cell responses to MART-1 27-35 were assessed by both major histocompatibility complex class I tetramer and interferon (IFN)-gamma enzyme-linked immunosorbent spot (ELISPOT) before, during, and after each vaccine and CD4+ T-cell responses to MART-1 51-73 were followed by IFN-gamma ELISPOT. We also measured antigen response breadth. Determinant spreading from the immunizing antigen MART-1 to other melanoma antigens [gp100, tyrosinase, human melanoma antigen-A3 (MAGE-A3)] was assessed by IFN-gamma ELISPOT. Twenty-three patients were enrolled and 14 patients received all 3 scheduled DC vaccines. Significant CD8+ and/or CD4+ MART-1-specific T-cell responses were observed in 6/11 and 2/4 patients evaluated, respectively, indicating that the E1-deleted adenovirus encoding the cDNA for MART-1/Melan-A (AdVMART1)/DC vaccine activated both helper and killer T cells in vivo. Responses in CD8+ and CD4+ T cells to additional antigens were noted in 2 patients. The AdVMART1-transduced DC vaccine was safe and immunogenic in patients with metastatic melanoma.

  20. Adenovirus MART-1–engineered Autologous Dendritic Cell Vaccine for Metastatic Melanoma

    PubMed Central

    Butterfield, Lisa H.; Comin-Anduix, Begonya; Vujanovic, Lazar; Lee, Yohan; Dissette, Vivian B.; Yang, Jin-Quan; Vu, Hong T.; Seja, Elizabeth; Oseguera, Denise K.; Potter, Douglas M.; Glaspy, John A.; Economou, James S.; Ribas, Antoni

    2013-01-01

    Summary We performed a phase 1/2 trial testing the safety, toxicity, and immune response of a vaccine consisting of autologous dendritic cells (DCs) transduced with a replication-defective adenovirus (AdV) encoding the full-length melanoma antigen MART-1/Melan-A (MART-1). This vaccine was designed to activate MART-1–specific CD8+ and CD4+ T cells. Metastatic melanoma patients received 3 injections of 106 or 107 DCs, delivered intradermally. Cell surface phenotype and cytokine production of the DCs used for the vaccines were tested, and indicated intermediate maturity. CD8+ T-cell responses to MART-127-35 were assessed by both major histocompatibility complex class I tetramer and interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISPOT) before, during, and after each vaccine and CD4+ T-cell responses to MART-151-73 were followed by IFN-γ ELISPOT. We also measured antigen response breadth. Determinant spreading from the immunizing antigen MART-1 to other melanoma antigens [gp100, tyrosinase, human melanoma antigen-A3 (MAGE-A3)] was assessed by IFN-γ ELISPOT. Twenty-three patients were enrolled and 14 patients received all 3 scheduled DC vaccines. Significant CD8+ and/or CD4+ MART-1–specific T-cell responses were observed in 6/11 and 2/4 patients evaluated, respectively, indicating that the E1-deleted adeno-virus encoding the cDNA for MART-1/Melan-A (AdV-MART1)/DC vaccine activated both helper and killer T cells in vivo. Responses in CD8+ and CD4+ T cells to additional antigens were noted in 2 patients. The AdVMART1-transduced DC vaccine was safe and immunogenic in patients with metastatic melanoma. PMID:18317358

  1. HLA-G expression in melanoma: A way for tumor cells to escape from immunosurveillance

    PubMed Central

    Paul, Pascale; Rouas-Freiss, Nathalie; Khalil-Daher, Iman; Moreau, Philippe; Riteau, Beatrice; Le Gal, Frederique Anne; Avril, Marie Francoise; Dausset, Jean; Guillet, Jean Gerard; Carosella, Edgardo D.

    1998-01-01

    Considering the well established role of nonclassical HLA-G class I molecules in inhibiting natural killer (NK) cell function, the consequence of abnormal HLA-G expression in malignant cells should be the escape of tumors from immunosurveillance. To examine this hypothesis, we analyzed HLA-G expression and NK sensitivity in human malignant melanoma cells. Our analysis of three melanoma cell lines and ex vivo biopsy demonstrated that (i) IGR and M74 human melanoma cell lines exhibit a high level of HLA-G transcription with differential HLA-G isoform transcription and protein expression patterns, (ii) a higher level of HLA-G transcription ex vivo is detected in a skin melanoma metastasis biopsy compared with a healthy skin fragment from the same individual, and (iii) HLA-G protein isoforms other than membrane-bound HLA-G1 protect IGR from NK lysis. It thus appears of critical importance to consider the specific role of HLA-G expression in tumors in the design of future cancer immunotherapies. PMID:9539768

  2. St John's Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death.

    PubMed

    Kleemann, Britta; Loos, Benjamin; Scriba, Thomas J; Lang, Dirk; Davids, Lester M

    2014-01-01

    Hypericin, an extract from St John's Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT

  3. St John's Wort (Hypericum perforatum L.) Photomedicine: Hypericin-Photodynamic Therapy Induces Metastatic Melanoma Cell Death

    PubMed Central

    Kleemann, Britta; Loos, Benjamin; Scriba, Thomas J.; Lang, Dirk; Davids, Lester M.

    2014-01-01

    Hypericin, an extract from St John's Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT

  4. Transforming growth factor beta-induced (TGFBI) is an anti-adhesive protein regulating the invasive growth of melanoma cells.

    PubMed

    Nummela, Pirjo; Lammi, Johanna; Soikkeli, Johanna; Saksela, Olli; Laakkonen, Pirjo; Hölttä, Erkki

    2012-04-01

    Melanoma is a malignancy characterized by high invasive/metastatic potential, with no efficient therapy after metastasis. Understanding the molecular mechanisms underlying the invasive/metastatic tendency is therefore important. Our genome-wide gene expression analyses revealed that human melanoma cell lines WM793 and especially WM239 (vertical growth phase and metastatic cells, respectively) overexpress the extracellular matrix (ECM) protein transforming growth factor β induced (TGFBI). In adhesion assays, recombinant TGFBI was strongly anti-adhesive for both melanoma cells and skin fibroblasts. TGFBI further impaired the adhesion of melanoma cells to the adhesive ECM proteins fibronectin, collagen-I, and laminin, known to interact with it. Unexpectedly, WM239 cells migrated/invaded more effectively in three-dimensional collagen-I and Matrigel cultures after knockdown of TGFBI by shRNA expression. However, in the physiological subcutaneous microenvironment in nude mice, after TGFBI knockdown, these cells showed markedly impaired tumor growth and invasive capability; the initially formed small tumors later underwent myxoid degeneration and completely regressed. By contrast, the expanding control tumors showed intense TGFBI staining at the tumor edges, co-localizing with the fibrillar fibronectin/tenascin-C/periostin structures that characteristically surround melanoma cells at invasion fronts. Furthermore, TGFBI was found in similar fibrillar structures in clinical human melanoma metastases as well, co-localizing with fibronectin. These data imply an important role for TGFBI in the ECM deposition and invasive growth of melanoma cells, rendering TGFBI a potential target for therapeutic interventions.

  5. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression.

    PubMed Central

    Cornil, I; Theodorescu, D; Man, S; Herlyn, M; Jambrosic, J; Kerbel, R S

    1991-01-01

    It is known from a variety of experimental systems that the ability of tumor cells to grow locally and metastasize can be affected by the presence of adjacent normal tissues and cells, particularly mesenchymally derived stromal cells such as fibroblasts. However, the comparative influence of such normal cell-tumor cell interactions on tumor behavior has not been thoroughly investigated from the perspective of different stages of tumor progression. To address this question we assessed the influence of normal dermal fibroblasts on the growth of human melanoma cells obtained from different stages of tumor progression. We found that the in vitro growth of most (4 out of 5) melanoma cell lines derived from early-stage radial growth phase or vertical growth phase metastatically incompetent primary lesions is repressed by coculture with normal dermal fibroblasts, suggesting that negative homeostatic growth controls are still operative on melanoma cells from early stages of disease. On the other hand, 9 out of 11 melanoma cell lines derived from advanced metastatically competent vertical growth phase primary lesions, or from distant metastases, were found to be consistently stimulated to grow in the presence of dermal fibroblasts. Evidence was obtained to show that this discriminatory fibroblastic influence is mediated by soluble inhibitory and stimulatory growth factor(s). Taken together, these results indicate that fibroblast-derived signals can have antithetical growth effects on metastatic versus metastatically incompetent tumor subpopulations. This resultant conversion in responsiveness to host tissue environmental factors may confer upon small numbers of metastatically competent cells a growth advantage, allowing them to escape local growth constraints both in the primary tumor site and at distant ectopic tissue sites. PMID:2068080

  6. Collision of desmoplastic-neurotropic melanoma and squamous cell carcinoma on the lip.

    PubMed

    Falanga, Vincent; Chartier, Molly; Butmarc, Janet; Tibbetts, Lance

    2008-05-01

    We report on a case of the collision of a desmoplastic-neurotropic melanoma and a squamous cell carcinoma on the lip. A 46-year-old male developed a multifocal infiltrative squamous cell carcinoma of the lower lip, which also showed sparse melanocyte atypia within the epidermis and an extensive spindle cell proliferation within the dermis, subcutaneous tissues and nerves. An immunohistochemical panel showed that the spindle cells were melanocytes, not derived from the squamous cell carcinoma. Double labeling with AE1/AE3 and S100 showed striking localized proximity of the spindle-cell melanocytic and keratinocyte components in some areas of this tumor. To our knowledge, this is the first report of the collision of a squamous cell carcinoma and desmoplastic-neurotropic melanoma.

  7. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro

    PubMed Central

    Kemény, Lajos V.; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells’ nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma–stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments. PMID:27271591

  8. Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq.

    PubMed

    Gerber, Tobias; Willscher, Edith; Loeffler-Wirth, Henry; Hopp, Lydia; Schadendorf, Dirk; Schartl, Manfred; Anderegg, Ulf; Camp, Gray; Treutlein, Barbara; Binder, Hans; Kunz, Manfred

    2017-01-03

    Recent technological advances in single-cell genomics make it possible to analyze cellular heterogeneity of tumor samples. Here, we applied single-cell RNA-seq to measure the transcriptomes of 307 single cells cultured from three biopsies of three different patients with a BRAF/NRAS wild type, BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant melanoma metastasis, respectively. Analysis based on self-organizing maps identified sub-populations defined by multiple gene expression modules involved in proliferation, oxidative phosphorylation, pigmentation and cellular stroma. Gene expression modules had prognostic relevance when compared with gene expression data from published melanoma samples and patient survival data. We surveyed kinome expression patterns across sub-populations of the BRAF/NRAS wild type sample and found that CDK4 and CDK2 were consistently highly expressed in the majority of cells, suggesting that these kinases might be involved in melanoma progression. Treatment of cells with the CDK4 inhibitor palbociclib restricted cell proliferation to a similar, and in some cases greater, extent than MAPK inhibitors. Finally, we identified a low abundant sub-population in this sample that highly expressed a module containing ABC transporter ABCB5, surface markers CD271 and CD133, and multiple aldehyde dehydrogenases (ALDHs). Patient-derived cultures of the BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant metastases showed more homogeneous single-cell gene expression patterns with gene expression modules for proliferation and ABC transporters. Taken together, our results describe an intertumor and intratumor heterogeneity in melanoma short-term cultures which might be relevant for patient survival, and suggest promising targets for new treatment approaches in melanoma therapy.

  9. Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq

    PubMed Central

    Loeffler-Wirth, Henry; Hopp, Lydia; Schadendorf, Dirk; Schartl, Manfred; Anderegg, Ulf; Camp, Gray; Treutlein, Barbara; Binder, Hans; Kunz, Manfred

    2017-01-01

    Recent technological advances in single-cell genomics make it possible to analyze cellular heterogeneity of tumor samples. Here, we applied single-cell RNA-seq to measure the transcriptomes of 307 single cells cultured from three biopsies of three different patients with a BRAF/NRAS wild type, BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant melanoma metastasis, respectively. Analysis based on self-organizing maps identified sub-populations defined by multiple gene expression modules involved in proliferation, oxidative phosphorylation, pigmentation and cellular stroma. Gene expression modules had prognostic relevance when compared with gene expression data from published melanoma samples and patient survival data. We surveyed kinome expression patterns across sub-populations of the BRAF/NRAS wild type sample and found that CDK4 and CDK2 were consistently highly expressed in the majority of cells, suggesting that these kinases might be involved in melanoma progression. Treatment of cells with the CDK4 inhibitor palbociclib restricted cell proliferation to a similar, and in some cases greater, extent than MAPK inhibitors. Finally, we identified a low abundant sub-population in this sample that highly expressed a module containing ABC transporter ABCB5, surface markers CD271 and CD133, and multiple aldehyde dehydrogenases (ALDHs). Patient-derived cultures of the BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant metastases showed more homogeneous single-cell gene expression patterns with gene expression modules for proliferation and ABC transporters. Taken together, our results describe an intertumor and intratumor heterogeneity in melanoma short-term cultures which might be relevant for patient survival, and suggest promising targets for new treatment approaches in melanoma therapy. PMID:27903987

  10. Involvement of p16 and PTCH in pathogenesis of melanoma and basal cell carcinoma.

    PubMed

    Cretnik, Maja; Poje, Gorazd; Musani, Vesna; Kruslin, Bozo; Ozretic, Petar; Tomas, Davor; Situm, Mirna; Levanat, Sonja

    2009-04-01

    The involvement of two tumor suppressors p16 and Ptch in pathogenesis of cutaneous melanomas and basal cell carcinomas (BCCs) was studied through expression of Ptch and p16 and genetic alterations in 9p21 region (p16) and in 9q22.3 region (PTCH) of chromosome 9. Immunohistochemical analyses of paraffin-embedded tissues with Ptch and p16 antibodies, typing for 9q22-q31 and 9p21 region with polymorphic markers and p16 and Ptch mutation detection was done. Higher expression of p16 and Ptch in melanoma and BCC of the skin was frequently detected in studied cases. However, allelic loss of PTCH region occurs more frequently in BCCs than loss of heterozygosity of p16 region. Both types of tumors, BCCs and melanomas, suggest involvement of Hh-Gli signaling pathway, but using different mechanisms.

  11. Redirected lysis of human melanoma cells by a MCSP/CD3-bispecific BiTE antibody that engages patient-derived T cells.

    PubMed

    Torisu-Itakura, Hitoe; Schoellhammer, Hans F; Sim, Myung-Shin; Irie, Reiko F; Hausmann, Susanne; Raum, Tobias; Baeuerle, Patrick A; Morton, Donald L

    2011-10-01

    Melanoma-associated chondroitin sulfate proteoglycan (MCSP; also called HMW-MAA, CSPG4, NG2, MSK16, MCSPG, MEL-CSPG, or gp240) is a well characterized melanoma cell-surface antigen. In this study, a new bispecific T-cell engaging (BiTE) antibody that binds to MCSP and human CD3 (MCSP-BiTE) was tested for its cytotoxic activity against human melanoma cell lines. When unstimulated peripheral mononuclear blood cells (PBMCs) derived from healthy donors were cocultured with melanoma cells at effector:target ratios of 1:1, 1:5, or 1:10, and treated with MCSP-BiTE antibody at doses of 10, 100, or 1000 ng/mL, all MCSP-expressing melanoma cell lines (n=23) were lysed in a dose-dependent and effector:target ratio-dependent manner, whereas there was no cytotoxic activity against MCSP-negative melanoma cell lines (n=2). To investigate whether T cells from melanoma patients could act as effector cells, we cocultured unstimulated PBMCs with allogeneic melanoma cells from 13 patients (4 stage I/II, 3 stage III, and 6 stage IV) or with autologous melanoma cells from 2 patients (stage IV). Although cytotoxic activity varied, all 15 PBMC samples mediated significant redirected lysis by the BiTE antibody. When PBMC or CD8 T cells were prestimulated by anti-CD3 antibody OKT-3 and interleukin-2, the MCSP-BiTE concentrations needed for melanoma cell lysis decreased up to 1000-fold. As MCSP is expressed on most human melanomas, immunotherapy with MCSP/CD3-bispecific antibodies merits clinical investigation.

  12. Phenotype and function of T cells infiltrating visceral metastases from gastrointestinal cancers and melanoma: implications for adoptive cell transfer therapy.

    PubMed

    Turcotte, Simon; Gros, Alena; Hogan, Katherine; Tran, Eric; Hinrichs, Christian S; Wunderlich, John R; Dudley, Mark E; Rosenberg, Steven A

    2013-09-01

    Adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) can mediate cancer regression in patients with metastatic melanoma, but whether this approach can be applied to common epithelial malignancies remains unclear. In this study, we compared the phenotype and function of TILs derived from liver and lung metastases from patients with gastrointestinal (GI) cancers (n = 14) or melanoma (n = 42). Fewer CD3(+) T cells were found to infiltrate GI compared with melanoma metastases, but the proportions of CD8(+) cells, T cell differentiation stage, and expression of costimulatory molecules were similar for both tumor types. Clinical-scale expansion up to ~50 × 10(9) T cells on average was obtained for all patients with GI cancer and melanoma. From GI tumors, however, TIL outgrowth in high-dose IL-2 yielded 22 ± 1.4% CD3(+)CD8(+) cells compared with 63 ± 2.4% from melanoma (p < 0.001). IFN-γ ELISA demonstrated MHC class I-mediated reactivity of TIL against autologous tumor in 5 of 7 GI cancer patients tested (9% of 188 distinct TIL cultures) and in 9 of 10 melanoma patients (43% of 246 distinct TIL cultures). In these assays, MHC class I-mediated up-regulation of CD137 (4-1BB) expression on CD8(+) cells suggested that 0-3% of TILs expanded from GI cancer metastases were tumor-reactive. This study implies that the main challenge to the development of TIL adoptive cell transfer for metastatic GI cancers may not be the in vitro expansion of bulk TILs, but the ability to select and enrich for tumor-reactive T cells.

  13. Melanoma targeting with the loco-regional chemotherapeutic, Melphalan: From cell death to immunotherapeutic efficacy.

    PubMed

    Dudek-Perić, Aleksandra Maria; Gołąb, Jakub; Garg, Abhishek D; Agostinis, Patrizia

    2015-12-01

    All immunoregulatory chemotherapeutics are chiefly applied in a systemic setting for anticancer therapy. However, immune responses following loco-regional application of chemotherapy may differ from those after systemic application. We recently found that Melphalan, a prototypical loco-regionally applied chemotherapeutic agent, exhibits the ability to increase the immunogenicity of dying melanoma cells.

  14. Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells.

    PubMed

    Buettner, Ralf; Mesa, Tania; Vultur, Adina; Lee, Frank; Jove, Richard

    2008-11-01

    Src family kinases (SFK) are involved in regulating a multitude of biological processes, including cell adhesion, migration, proliferation, and survival, depending on the cellular context. Therefore, although SFKs are currently being investigated as potential targets for treatment strategies in various cancers, the biological responses to inhibition of SFK signaling in any given tumor type are not predictable. Dasatinib (BMS-354825) is a dual Src/Abl kinase inhibitor with potent antiproliferative activity against hematologic malignancies harboring activated BCR-ABL. In this study, we show that dasatinib blocks migration and invasion of human melanoma cells without affecting proliferation and survival. Moreover, dasatinib completely inhibits SFK kinase activity at low nanomolar concentrations in all eight human melanoma cell lines investigated. In addition, two known downstream targets of SFKs, focal adhesion kinase and Crk-associated substrate (p130(CAS)), are inhibited with similar concentrations and kinetics. Consistent with inhibition of these signaling pathways and invasion, dasatinib down-regulates expression of matrix metalloproteinase-9. We also provide evidence that dasatinib directly inhibits kinase activity of the EphA2 receptor tyrosine kinase, which is overexpressed and/or overactive in many solid tumors, including melanoma. Thus, SFKs and downstream signaling are implicated as having key roles in migration and invasion of melanoma cells.

  15. Inhibitory effects of whisky congeners on melanogenesis in mouse B16 melanoma cells.

    PubMed

    Ohguchi, Kenji; Koike, Minako; Suwa, Yoshihide; Koshimizu, Seiichi; Mizutani, Yuki; Nozawa, Yoshinori; Akao, Yukihiro

    2008-04-01

    We examined the effect of whisky congeners, substances other than ethanol in whisky, on melanogenesis in mouse B16 melanoma cells. Treatment with whisky congeners significantly blocked melanogenesis. Our results indicate that the inhibitory effects of whisky congeners on melanogenesis is due to direct inhibition of tyrosinase activity and to suppression of tyrosinase protein levels.

  16. Therapeutic implications of cellular and molecular biology of cancer stem cells in melanoma.

    PubMed

    Kumar, Dhiraj; Gorain, Mahadeo; Kundu, Gautam; Kundu, Gopal C

    2017-01-30

    Melanoma is a form of cancer that initiates in melanocytes. Melanoma has multiple phenotypically distinct subpopulation of cells, some of them have embryonic like plasticity which are involved in self-renewal, tumor initiation, metastasis and progression and provide reservoir of therapeutically resistant cells. Cancer stem cells (CSCs) can be identified and characterized based on various unique cell surface and intracellular markers. CSCs exhibit different molecular pattern with respect to non-CSCs. They maintain their stemness and chemoresistant features through specific signaling cascades. CSCs are weak in immunogenicity and act as immunosupressor in the host system. Melanoma treatment becomes difficult and survival is greatly reduced when the patient develop metastasis. Standard conventional oncology treatments such as chemotherapy, radiotherapy and surgical resection are only responsible for shrinking the bulk of the tumor mass and tumor tends to relapse. Thus, targeting CSCs and their microenvironment niche addresses the alternative of traditional cancer therapy. Combined use of CSCs targeted and traditional therapies may kill the bulk tumor and CSCs and offer a promising therapeutic strategy for the management of melanoma.

  17. 6-Bromoindirubin-3′oxime (BIO) decreases proliferation and migration of canine melanoma cell lines

    PubMed Central

    Chon, Esther; Flanagan, Brandi; de Sá Rodrigues, Lucas Campos; Piskun, Caroline; Stein, Timothy J.

    2014-01-01

    Despite recent therapeutic advances, malignant melanoma is an aggressive tumor in dogs and is associated with a poor outcome. Novel, targeted agents are necessary to improve survival. In this study, 6-bromoindirubin-3′-oxime (BIO), a serine/threonine kinase inhibitor with reported specificity for glycogen synthase kinase-3 beta (GSK-3β) inhibition, was evaluated in vitro in three canine melanoma cell lines (CML-10C2, UCDK9M2, and UCDK9M3) for β-catenin-mediated transcriptional activity, Axin2 gene and protein expression levels, cell proliferation, chemotoxicity, migration and invasion assays. BIO treatment of canine malignant melanoma cell lines at 5 µM for 72 h enhanced β-catenin-mediated transcriptional activity, suggesting GSK-3β inhibition, and reduced cell proliferation and migration. There were no significant effects on invasion, chemotoxicity, or apoptosis. The results suggest that serine/ threonine kinases may be viable therapeutic targets for the treatment of canine malignant melanoma. PMID:25130776

  18. Tetrahydroanthraquinone Derivative (±)-4-Deoxyaustrocortilutein Induces Cell Cycle Arrest and Apoptosis in Melanoma Cells via Upregulation of p21 and p53 and Downregulation of NF-kappaB

    PubMed Central

    Genov, Miroslav; Kreiseder, Birgit; Nagl, Michael; Drucker, Elisabeth; Wiederstein, Martina; Muellauer, Barbara; Krebs, Julia; Grohmann, Teresa; Pretsch, Dagmar; Baumann, Karl; Bacher, Markus; Pretsch, Alexander; Wiesner, Christoph

    2016-01-01

    Background: Malignant melanoma is an aggressive type of skin cancer with high risk for metastasis and chemoresistance. Disruption of tightly regulated processes such as cell cycle, cell adhesion, cell differentiation and cell death are predominant in melanoma development. So far, conventional treatment options have been insufficient to treat metastatic melanoma and survival rates are poor. Anthraquinone compounds have been reported to have anti-tumorigenic potential by DNA-interaction, promotion of apoptosis and suppression of proliferation in various cancer cells. Methods: In the current study, the racemic tetrahydroanthraquinone derivative (±)-4-deoxyaustrocortilutein (4-DACL) was synthesized and the cytotoxic activity against melanoma cells and melanoma spheroids determined by CellTiter-Blue viability Assay and phase contrast microscopy. Generation of reactive oxygen species (ROS) was determined with CellROX Green and Deep Red Reagent kit and microplate-based fluorometry. Luciferase reporter gene assays for nuclear factor kappa B (NF-κB) and p53 activities and western blotting analysis were carried out to detect the expression of anti-proliferative or pro-apoptotic (p53, p21, p27, MDM2, and GADD45M) and anti-apoptotic (p65, IκB-α, IKK) proteins. Cell cycle distribution and apoptosis rate were detected by flow cytometry, the morphological changes visualized by fluorescence microscopy and the activation of different caspase cascades distinguished by Caspase Glo 3/7, 8 and 9 Assays. Results: We demonstrated that 4-DACL displayed high activity against different malignant melanoma cells and melanoma spheroids and only low toxicity to melanocytes and other primary cells. In particular, 4-DACL treatment induced mitochondrial ROS, reduced NF-κB signaling activity and increased up-regulation of the cell cycle inhibitors cyclin-dependent kinase inhibitor p21 (p21WAF1/Cip1) and the tumor suppressor protein p53 in a dose-dependent manner, which was accompanied by

  19. A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells

    PubMed Central

    Sompallae, Ramakrishna; Hofmann, Oliver; Maher, Christopher A.; Gedye, Craig; Behren, Andreas; Vitezic, Morana; Daub, Carsten O.; Devalle, Sylvie; Caballero, Otavia L.; Carninci, Piero; Hayashizaki, Yoshihide; Lawlor, Elizabeth R.; Cebon, Jonathan; Hide, Winston

    2013-01-01

    PROM1 is the gene encoding prominin-1 or CD133, an important cell surface marker for the isolation of both normal and cancer stem cells. PROM1 transcripts initiate at a range of transcription start sites (TSS) associated with distinct tissue and cancer expression profiles. Using high resolution Cap Analysis of Gene Expression (CAGE) sequencing we characterize TSS utilization across a broad range of normal and developmental tissues. We identify a novel proximal promoter (P6) within CD133+ melanoma cell lines and stem cells. Additional exon array sampling finds P6 to be active in populations enriched for mesenchyme, neural stem cells and within CD133+ enriched Ewing sarcomas. The P6 promoter is enriched with respect to previously characterized PROM1 promoters for a HMGI/Y (HMGA1) family transcription factor binding site motif and exhibits different epigenetic modifications relative to the canonical promoter region of PROM1. PMID:24194746

  20. Acute and Long-Term Effects of Hyperthermia in B16-F10 Melanoma Cells

    PubMed Central

    Garcia, Mónica Pereira; Cavalheiro, José Roberto Tinoco; Fernandes, Maria Helena

    2012-01-01

    Objective Hyperthermia uses exogenous heat induction as a cancer therapy. This work addresses the acute and long-term effects of hyperthermia in the highly metastatic melanoma cell line B16-F10. Materials and Methods Melanoma cells were submitted to one heat treatment, 45°C for 30 min, and thereafter were kept at 37°C for an additional period of 14 days. Cultures maintained at 37°C were used as control. Cultures were assessed for the heat shock reaction. Results Immediately after the heat shock, cells began a process of fast degradation, and, in the first 24 h, cultures showed decreased viability, alterations in cell morphology and F-actin cytoskeleton organization, significant reduction in the number of adherent cells, most of them in a process of late apoptosis, and an altered gene expression profile. A follow-up of two weeks after heat exposure showed that viability and number of adherent cells remained very low, with a high percentage of early apoptotic cells. Still, heat-treated cultures maintained a low but relatively constant population of cells in S and G2/M phases for a long period after heat exposure, evidencing the presence of metabolically active cells. Conclusion The melanoma cell line B16-F10 is susceptible to one hyperthermia treatment at 45°C, with significant induced acute and long-term effects. However, a low but apparently stable percentage of metabolically active cells survived long after heat exposure. PMID:22532856

  1. Activation of NK cell cytotoxicity by aerosolized CpG-ODN/poly(I:C) against lung melanoma metastases is mediated by alveolar macrophages.

    PubMed

    Sommariva, Michele; Le Noci, Valentino; Storti, Chiara; Bianchi, Francesca; Tagliabue, Elda; Balsari, Andrea; Sfondrini, Lucia

    2017-03-01

    Controversies remain about NK cells direct responsiveness to Toll-like receptor (TLR) agonists or dependence on macrophages. In a melanoma lung metastasis model, aerosolized TLR9 and TLR3 agonists have been reported to induce antitumor immunity through NK cells activation. In the current study, we demonstrated that in vitro TLR9/TLR3 stimulation induced IFN-γ secretion by NK cells, but an increase in their cytotoxicity was detected only after NK cells co-culture with in vitro TLR9/TLR3 agonists pretreated alveolar macrophages. Alveolar macrophages from melanoma lung metastases-bearing mice, treated with aerosolized TLR agonists, also promoted NK cell cytotoxicity. Activated NK cells from lungs of melanoma metastases-bearing mice that were given aerosolized TLR9/TLR3 agonists were able to polarize naive alveolar macrophages toward a M1-like phenotype. Our results demonstrate that activation of NK cells in the lung after TLR engagement is mediated by alveolar macrophages and that activated NK cells shape macrophage behavior.

  2. A Subset of Nuclear Receptors are Uniquely Expressed in Uveal Melanoma Cells

    PubMed Central

    Huffman, Kenneth Edward; Carstens, Ryan; Martinez, Elisabeth D.

    2015-01-01

    Uveal melanoma (UM) is recognized as the most common intraocular malignancy and the second most common form of melanoma. Nearly 50% of UM patients develop untreatable and fatal metastases. The 48-member nuclear receptor (NR) superfamily represents a therapeutically targetable group of transcription factors known for their regulation of key cancer pathways in numerous tumor types. Here, we profiled the expression of the 48 human NRs by qRT-PCR across a melanoma cell line panel including 5 UM lines, 9 cutaneous melanoma (CM) lines, and normal primary melanocytes. NR expression patterns identified a few key features. First, in agreement with our past studies identifying RXRg as a CM-specific marker, we found that UM cells also exhibit high levels of RXRg expression, making it a universal biomarker for melanoma tumors. Second, we found that LXRb is highly expressed in both UM and CM lines, suggesting that it may be a therapeutic target in a UM metastatic setting as it has been in CM models. Third, we found that RARg, PPARd, EAR2, RXRa, and TRa expressions could subdivide UM from CM. Previous studies of UM cancers identified key mutations in three genes: GNAQ, GNA11, and BRAF. We found unique NR expression profiles associated with each of these UM mutations. We then performed NR-to-NR and NR-to-genome expression correlation analyses to find potential NR-driven transcriptional programs activated in UM and CM. Specifically, RXRg controlled gene networks were identified that may drive melanoma-specific signaling and metabolism. ERRa was identified as a UM-defining NR and genes correlated with its expression confirm the role of ERRa in metabolic control. Given the plethora of available NR agonists, antagonists, and selective receptor modulators, pharmacologic manipulation of these NRs and their transcriptional outputs may lead to a more comprehensive understanding of key UM pathways and how we can leverage them for better therapeutic alternatives. PMID:26217306

  3. Long Noncoding RNA PVT1 as a Novel Diagnostic Biomarker and Therapeutic Target for Melanoma

    PubMed Central

    Liu, Sha; Yu, Li; Yan, Dexiong; Yao, Xingwei; Sun, Weijing; Han, Dezhi; Dong, Hao

    2017-01-01

    Accumulating evidences indicated that plasmacytoma variant translocation 1 (PVT1) plays vital roles in several cancers. However, the expression, functions, and clinical values of PVT1 in melanoma are still unknown. In this study we measured the expression of PVT1 in clinical tissues and serum samples and explored the diagnostic value of PVT1 for melanoma and the effects of PVT1 on melanoma cell proliferation, cell cycle, and migration. Our results, combined with publicly available PVT1 expression data, revealed that PVT1 is upregulated in melanoma tissues compared with nonneoplastic nevi tissues. Serum PVT1 level is significantly increased in melanoma patients compared with age and gender-matched nonmelanoma controls with melanocytic nevus. Receiver operating characteristic curve analyses revealed that serum PVT1 level could sensitively discriminate melanoma patients from controls. Furthermore, serum PVT1 level indicted melanoma dynamics. Functional experiments showed that overexpression of PVT1 promotes melanoma cells proliferation, cell cycle progression, and migration, while depletion of PVT1 significantly inhibits melanoma cells proliferation, cell cycle progression, and migration. Collectively, our results indicate that PVT1 functions as an oncogene in melanoma and could be a potential diagnostic biomarker and therapeutic target for melanoma. PMID:28265576

  4. Identifying and targeting determinants of melanoma cellular invasion

    PubMed Central

    Jayachandran, Aparna; Prithviraj, Prashanth; Lo, Pu-Han; Walkiewicz, Marzena; Anaka, Matthew; Woods, Briannyn L.; Tan, BeeShin

    2016-01-01

    Epithelial-to-mesenchymal transition is a critical process that increases the malignant potential of melanoma by facilitating invasion and dissemination of tumor cells. This study identified genes involved in the regulation of cellular invasion and evaluated whether they can be targeted to inhibit melanoma invasion. We identified Peroxidasin (PXDN), Netrin 4 (NTN4) and GLIS Family Zinc Finger 3 (GLIS3) genes consistently elevated in invasive mesenchymal-like melanoma cells. These genes and proteins were highly expressed in metastatic melanoma tumors, and gene silencing led to reduced melanoma invasion in vitro. Furthermore, migration of PXDN, NTN4 or GLIS3 siRNA transfected melanoma cells was inhibited following transplantation into the embryonic chicken neural tube compared to control siRNA transfected melanoma cells. Our study suggests that PXDN, NTN4 and GLIS3 play a functional role in promoting melanoma cellular invasion, and therapeutic approaches directed toward inhibiting the action of these proteins may reduce the incidence or progression of metastasis in melanoma patients. PMID:27172792

  5. TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients

    PubMed Central

    Chauvin, Joe-Marc; Pagliano, Ornella; Fourcade, Julien; Sun, Zhaojun; Wang, Hong; Sander, Cindy; Kirkwood, John M.; Chen, Tseng-hui Timothy; Maurer, Mark; Korman, Alan J.; Zarour, Hassane M.

    2015-01-01

    T cell Ig and ITIM domain (TIGIT) is an inhibitory receptor expressed by activated T cells, Tregs, and NK cells. Here, we determined that TIGIT is upregulated on tumor antigen–specific (TA-specific) CD8+ T cells and CD8+ tumor-infiltrating lymphocytes (TILs) from patients with melanoma, and these TIGIT-expressing CD8+ T cells often coexpress the inhibitory receptor PD-1. Moreover, CD8+ TILs from patients exhibited downregulation of the costimulatory molecule CD226, which competes with TIGIT for the same ligand, supporting a TIGIT/CD226 imbalance in metastatic melanoma. TIGIT marked early T cell activation and was further upregulated by T cells upon PD-1 blockade and in dysfunctional PD-1+TIM-3+ TA-specific CD8+ T cells. PD-1+TIGIT+, PD-1–TIGIT+, and PD-1+TIGIT– CD8+ TILs had similar functional capacities ex vivo, suggesting that TIGIT alone, or together with PD-1, is not indicative of T cell dysfunction. However, in the presence of TIGIT ligand–expressing cells, TIGIT and PD-1 blockade additively increased proliferation, cytokine production, and degranulation of both TA-specific CD8+ T cells and CD8+ TILs. Collectively, our results show that TIGIT and PD-1 regulate the expansion and function of TA-specific CD8+ T cells and CD8+ TILs in melanoma patients and suggest that dual TIGIT and PD-1 blockade should be further explored to elicit potent antitumor CD8+ T cell responses in patients with advanced melanoma. PMID:25866972

  6. Depletion of a discrete nuclear glutathione pool by oxidative stress, but not by buthionine sulfoximine. Correlation with enhanced alkylating agent cytotoxicity to human melanoma cells in vitro.

    PubMed

    Jevtović-Todorović, V; Guenthner, T M

    1992-10-06

    The existence of a distinct pool of glutathione in the nucleus of cultured human melanoma cells was demonstrated. Melanoma cell nuclei contained 13-35 pmol of glutathione/10(6) nuclei, or approximately 0.4-1.3% of the total cellular glutathione. This nuclear glutathione pool resisted depletion by buthionine sulfoximine, an agent that inhibits glutathione synthesis, but was rapidly and reversibly depleted by subtoxic concentrations of Adriamycin plus carmustine, two agents that promote oxidation of glutathione without permitting its regeneration through enzymatic reduction of glutathione disulfide. The ability of Adriamycin plus carmustine to deplete this small but significant pool of glutathione in the cell nucleus may explain why these agents potentiate the cytotoxic effects of the DNA-alkylating agent melphalan to a much higher degree than does buthionine sulfoximine at concentrations that are equipotent in depleting cytosolic glutathione.

  7. Immune cell promotion of metastasis

    PubMed Central

    Kitamura, Takanori; Qian, Bin-Zhi; Pollard, Jeffrey W.

    2015-01-01

    Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Data from mouse models suggest that the recruitment of immunosuppressive cells to tumours protects metastatic cancer cells from surveillance by killer cells, which nullifies the effects of immunotherapy and thus establishes metastasis. Furthermore, in most cases, tumour-infiltrating immune cells differentiate into cells that promote each step of the metastatic cascade and thus are novel targets for therapy. In this Review, we describe how tumour-infiltrating immune cells contribute to the metastatic cascade and we discuss potential therapeutic strategies to target these cells. PMID:25614318

  8. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma.

  9. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis)

    PubMed Central

    Jager, Martine J.; Magner, J. Antonio Bermudez; Ksander, Bruce R.; Dubovy, Sander R.

    2016-01-01

    Purpose To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Methods Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Results Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. Conclusions All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines. PMID:28018010

  10. Physalin B from Physalis angulata triggers the NOXA-related apoptosis pathway of human melanoma A375 cells.

    PubMed

    Hsu, Chia-Chun; Wu, Yang-Chang; Farh, Lynn; Du, Ying-Chi; Tseng, Wei-Kung; Wu, Chau-Chung; Chang, Fang-Rong

    2012-03-01

    Melanoma is a lethal form of skin cancer that can metastasize rapidly. While surgery and radiation therapy provide palliative therapy for local tumor growth, systemic therapy is the mainstay of treatment for metastatic melanoma. However, limited chemotherapeutic agents are available for melanoma treatment. In this study, we investigated the anti-melanoma effect of physalin B, the major active compound from a widely used herb medicine, Physalis angulata L. This study demonstrated that physalin B exhibits cytotoxicity towards v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutated melanoma A375 and A2058 cells (the IC50 values are lower than 4.6 μg/ml). Cytotoxicity is likely resulted from apoptosis since the apoptotic marker phosphatidylserine are detected immediately under physalin B treatment and apoptotic cells formation. Further examination revealed that physalin B induces expression of the proapoptotic protein NOXA within 2 h and later triggers the expression of Bax and caspase-3 in A375 cells. These results indicate that physalin B can induce apoptosis of melanoma cancer cells via the NOXA, caspase-3, and mitochondria-mediated pathways, but not of human skin fibroblast cells and myoblastic cells. Thus, physalin B has the potential to be developed as an effective chemotherapeutic lead compound for the treatment of malignant melanoma.

  11. Cancer Stem Cells (CSCs) in melanoma: There's smoke, but is there fire?

    PubMed

    Brinckerhoff, Constance E

    2017-01-11

    Cancer stem cells (CSCs), also called Tumor Initiating Cells (TICs), can be defined as cancer cells that are present within solid tumors or hematological cancers, which have characteristics associated with normal stem cells, but which can give rise to all cell types found in a particular cancer sample. CSCs, therefore, are transformed stem cells, which can self-renew, differentiate into diverse progenies, and drive continuous tumor growth (Kreso & Dick, , Cell Stem Cell, 14:275-291; Schatton et al., , Nature, 451:345-349; Villani, Sabbatino, Ferrone, & Ferrone, , Melanoma Management, 2:109-114; Zhou et al., , Drug Discovery, 8:806-823) (Fig. ). [Figure: see text].

  12. Prevalence and heterogeneity of circulating tumour cells in metastatic cutaneous melanoma.

    PubMed

    Khoja, Leila; Shenjere, Patrick; Hodgson, Clare; Hodgetts, Jackie; Clack, Glen; Hughes, Andrew; Lorigan, Paul; Dive, Caroline

    2014-02-01

    We previously demonstrated that circulating tumour cells (CTCs) are detectable by the MelCAM and high molecular weight melanoma-associated antigen (HMW-MAA)-dependent CellSearch platform. However, CTCs which do not express these capture and detection markers are not detectable by CellSearch. Consequently, we explored the use of isolation by size of epithelial tumour cells (ISET), a marker independent, filtration-based device to determine the prevalence and heterogeneity of CTCs in metastatic cutaneous melanoma patients. Ninety patients were prospectively recruited and blood samples taken before treatment. Patients' blood was filtered using the ISET platform. CTCs were enumerated using dual immunohistochemistry with positive selection by S100 expression and exclusion of leucocytes and endothelial cells expressing CD45 or CD144, respectively. A panel of markers (Melan-A, MITF, MelCAM, high molecular melanoma-associated antigen, CD271 and MAGEC) was also examined. Fifty-one patients (57%) had CTCs (range 1-44 CTCs/4 ml blood) and 12 patients also had circulating tumour microemboli. Seven patients had S100- CTCs, 11 patients' CTCs were S100+ and 33 patients had S100+ and S100- CTCs. Substantial intrapatient and interpatient heterogeneity was observed for all other melanoma-associated markers. CTCs in metastatic cutaneous melanoma are detectable using the flexible marker-independent ISET platform. CTCs display significant marker expression heterogeneity implying that marker-dependent platforms would not detect all CTCs and multimarker assays are now required to reveal the biological significance of this CTC heterogeneity.

  13. Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression.

    PubMed

    Pichichero, Elena; Cicconi, Rosella; Mattei, Maurizio; Muzi, Marco Gallinella; Canini, Antonella

    2010-10-01

    Honey has long been used in medicine for different purposes. Only recently, however, its antioxidant property and preventive effects against different diseases, such as cancer, have been highlighted. Chrysin (5,7-dihydroxyflavone) is a natural flavone commonly found in acacia honey. It has previously been shown to be an anti-tumor agent. In this study, we investigated the antiproliferative role of honey or chrysin on human (A375) and murine (B16-F1) melanoma cell lines. The results of the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and the trypan blue exclusion test showed that both the tested compounds were able to induce an antiproliferative effect on melanoma cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that cytotoxicity induced by honey or chrysin was mediated by G(0)/G(1) cell cycle arrest and induction of hyperploid progression. Our results suggest that the anti-proliferative effects of honey are due mainly to the presence of chrysin. Chrysin may therefore be considered a potential candidate for both cancer prevention and treatment. Further investigation is needed to validate the contribution of chrysin in tumor therapy in vivo.

  14. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro.

    PubMed

    Ale, Marcel Tutor; Maruyama, Hiroko; Tamauchi, Hidekazu; Mikkelsen, Jørn D; Meyer, Anne S

    2011-12-01

    Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassumhenslowianum C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and translocation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in S.henslowianum) and sulfated fucans (notably in F. vesiculosus). This study thus indicates that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of apoptosis through cascades of reactions that involve activation of caspase-3.

  15. Minimal residual disease in melanoma: circulating melanoma cells and predictive role of MCAM/MUC18/MelCAM/CD146

    PubMed Central

    Rapanotti, Maria Cristina; Campione, Elena; Spallone, Giulia; Orlandi, Augusto; Bernardini, Sergio; Bianchi, Luca

    2017-01-01

    Circulating tumour cells (CTCs), identified in numerous cancers including melanoma, are unquestionably considered valuable and useful as diagnostic and prognostic markers. They can be detected at all melanoma stages and may persist long after treatment. A crucial step in metastatic processes is the intravascular invasion of neoplastic cells as circulating melanoma cells (CMCs). Only a small percentage of these released cells are efficient and capable of colonizing with a strong metastatic potential. CMCs' ability to survive in circulation express a variety of genes with continuous changes of signal pathways and proteins to escape immune surveillance. This makes it difficult to detect them; therefore, specific isolation, enrichment and characterization of CMC population could be useful to monitor disease status and patient clinical outcome. Overall and disease-free survival have been correlated with the presence of CMCs. Specific melanoma antigens, in particular MCAM (MUC18/MelCAM/CD146), could be a potentially useful tool to isolate CMCs as well as be a prognostic, predictive biomarker. These are the areas reviewed in the article. PMID:28280601

  16. Silencing the KCNK9 potassium channel (TASK-3) gene disturbs mitochondrial function, causes mitochondrial depolarization, and induces apoptosis of human melanoma cells.

    PubMed

    Nagy, Dénes; Gönczi, Mónika; Dienes, Beatrix; Szöőr, Árpád; Fodor, János; Nagy, Zsuzsanna; Tóth, Adrienn; Fodor, Tamás; Bai, Péter; Szücs, Géza; Rusznák, Zoltán; Csernoch, László

    2014-12-01

    TASK-3 (KCNK9 or K2P9.1) channels are thought to promote proliferation and/or survival of malignantly transformed cells, most likely by increasing their hypoxia tolerance. Based on our previous results that suggested mitochondrial expression of TASK-3 channels, we hypothesized that TASK-3 channels have roles in maintaining mitochondrial activity. In the present work we studied the effect of reduced TASK-3 expression on the mitochondrial function and survival of WM35 and A2058 melanoma cells. TASK-3 knockdown cells had depolarized mitochondrial membrane potential and contained a reduced amount of mitochondrial DNA. Compared to their scrambled shRNA-transfected counterparts, they demonstrated diminished responsiveness to the application of the mitochondrial uncoupler [(3-chlorophenyl)hydrazono]malononitrile (CCCP). These observations indicate impaired mitochondrial function. Further, TASK-3 knockdown cells presented reduced viability, decreased total DNA content, altered cell morphology, and reduced surface area. In contrast to non- and scrambled shRNA-transfected melanoma cell lines, which did not present noteworthy apoptotic activity, almost 50 % of the TASK-3 knockdown cells exhibited strong Annexin-V-specific immunofluorescence signal. Sequestration of cytochrome c from the mitochondria to the cytosol, increased caspase 3 activity, and translocation of the apoptosis-inducing factor from mitochondria to cell nuclei were also demonstrated in TASK-3 knockdown cells. Interference with TASK-3 channel expression, therefore, induces caspase-dependent and -independent apoptosis of melanoma cells, most likely via causing mitochondrial depolarization. Consequently, TASK-3 channels may be legitimate targets of future melanoma therapies.

  17. Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells.

    PubMed

    Arung, Enos Tangke; Matsubara, Eri; Kusuma, Irawan Wijaya; Sukaton, Edi; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2011-03-01

    In the course to find a new whitening agent, we evaluated the methanol extract from bud of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Eugenol and eugenol acetate were isolated as the active compounds and showed melanin inhibition of 60% and 40% in B16 melanoma cell with less cytotoxicity at the concentration of 100 and 200 μg/mL, respectively. Furthermore, an essential oil prepared from the bud of clove, which contain eugenol and eugenol acetate as dominant components, showed melanin inhibition of 50% and 80% in B16 melanoma cells at the concentration of 100 and 200 μg/mL, respectively.

  18. The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer.

    PubMed

    Fonteneau, Jean Francois; Brilot, Fabienne; Münz, Christian; Gannagé, Monique

    2016-01-01

    NY-ESO-1-specific CD4(+) T cells are of interest for immune therapy against tumors, because it has been shown that their transfer into a patient with melanoma resulted in tumor regression. Therefore, we investigated how NY-ESO-1 is processed onto MHC class II molecules for direct CD4(+) T cell recognition of melanoma cells. We could rule out proteasome and autophagy-dependent endogenous Ag processing for MHC class II presentation. In contrast, intercellular Ag transfer, followed by classical MHC class II Ag processing via endocytosis, sensitized neighboring melanoma cells for CD4(+) T cell recognition. However, macroautophagy targeting of NY-ESO-1 enhanced MHC class II presentation. Therefore, both elevated NY-ESO-1 release and macroautophagy targeting could improve melanoma cell recognition by CD4(+) T cells and should be explored during immunotherapy of melanoma.

  19. Cell yield and cell survival following chemotherapy of the B16 melanoma.

    PubMed Central

    Stephens, T. C.; Peacock, J. H.

    1978-01-01

    We describe in this paper cell survival studies, using in vitro clonogenic assays, performed on the B16 melanoma treated in situ with various cytotoxic agents. In addition we have determined the effects of these agents on the yield of cells obtained by trypsinization. In untreated tumours the mean cell yield was approximately 10(8)/g, which is 20--30% of the cells actually present in the tissue. The plating efficiency was approximately 40%. Most agents rapidly affected both cell yield and cell survival. For example, within 20--30 h, gamma-radiation and several alkylating agents reduced cell yield by about 40%. The cell yield change was associated with an increase in mean cell size. Cell yield was reduced even more (approximately 70%) by Vinca alkaloids. This large reduction was associated with extensive cell lysis, observed as an increase in the necrotic fraction of tumours from approximately 35% to approximately 70%. Adriamycin, bleomycin and Ara-C also produced a moderate reduction in cell yield (approximately 40%), but actinomycin D did not reduce cell yield and FU increased it by about 30%. Only gamma-radiation, cyclophosphamide, CCNU, BCNU and melphalan produced more than a 90% reduction in cell survival, although there was a small but measurable reduction with all other agents except vinblastine, HN2 and actinomycin D. PMID:728348

  20. Specific killing of human melanoma cells with an efficient 10B-compound on monoclonal antibodies

    SciTech Connect

    Komura, A.; Tokuhisa, T.; Nakagawa, T.; Sasase, A.; Ichihashi, M.; Ferrone, S.; Mishima, Y. )

    1989-07-01

    We previously established methods which have enabled us to target a sufficient number of 10B atoms on human melanoma cells to destroy them by thermal neutron irradiation. Monoclonal antibodies were here used as vector of 10B atoms on the target cell. Thermal neutrons require at least 10(9) 10B atoms to destroy the cell. In order to accumulate an adequate number of 10B atoms on target cells, our first approach was to make an effective compound that contains 12 atoms of 10B in a molecule. The second step was to conjugate the compound with an avidin molecule (10B12-avidin). One molecule of the 10B12-avidin carries about 30 atoms of 10B. This 10B12-avidin can be specifically targeted on human melanoma cells by biotinated monoclonal antibodies specific for the cells. Furthermore, the number of 10B atoms on target cells can be augmented by a hapten-antihapten monoclonal antibody system. The cultured human melanoma cells treated with these methods were damaged by thermal neutron irradiation. This is the first study that indicates thermal neutrons do injure target cells boronated by monoclonal antibodies.

  1. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells

    PubMed Central

    Cooper, Sam; Sadok, Amine; Bousgouni, Vicky; Bakal, Chris

    2015-01-01

    Melanoma cells can adopt two functionally distinct forms, amoeboid and mesenchymal, which facilitates their ability to invade and colonize diverse environments during the metastatic process. Using quantitative imaging of single living tumor cells invading three-dimensional collagen matrices, in tandem with unsupervised computational analysis, we found that melanoma cells can switch between amoeboid and mesenchymal forms via two different routes in shape space—an apolar and polar route. We show that whereas particular Rho-family GTPases are required for the morphogenesis of amoeboid and mesenchymal forms, others are required for transitions via the apolar or polar route and not amoeboid or mesenchymal morphogenesis per se. Altering the transition rates between particular routes by depleting Rho-family GTPases can change the morphological heterogeneity of cell populations. The apolar and polar routes may have evolved in order to facilitate conversion between amoeboid and mesenchymal forms, as cells are either searching for, or attracted to, particular migratory cues, respectively. PMID:26310441

  2. Ipilimumab administered to metastatic melanoma patients who progressed after dendritic cell vaccination

    PubMed Central

    Boudewijns, Steve; Koornstra, Rutger H. T.; Westdorp, Harm; Schreibelt, Gerty; van den Eertwegh, Alfons J. M.; Geukes Foppen, Marnix H.; Haanen, John B.; de Vries, I. Jolanda M.; Figdor, Carl G.; Bol, Kalijn F.; Gerritsen, Winald R.

    2016-01-01

    ABSTRACT Background: Ipilimumab has proven to be effective in metastatic melanoma patients. The purpose of this study was to determine the efficacy of ipilimumab in advanced melanoma patients who showed progressive disease upon experimental dendritic cell (DC) vaccination. Methods: Retrospective analysis of 48 stage IV melanoma patients treated with ipilimumab after progression upon DC vaccination earlier in their treatment. DC vaccination was given either as adjuvant treatment for stage III disease (n = 18) or for stage IV disease (n = 30). Ipilimumab (3 mg/kg) was administered every 3 weeks for up to 4 cycles. Results: Median time between progression upon DC vaccination and first gift of ipilimumab was 5.4 mo. Progression-free survival (PFS) rates for patients that received ipilimumab after adjuvant DC vaccination, and patients that received DC vaccination for stage IV melanoma, were 35% and 7% at 1 y and 35% and 3% at 2 y, while the median PFS was 2.9 mo and 3.1 mo, respectively. Median overall survival of patients pre-treated with adjuvant DC vaccination for stage III melanoma was not reached versus 8.0 mo (95% CI, 5.2–10.9) in the group pre-treated with DC vaccination for stage IV disease (HR of death, 0.36; p = 0.017). Grade 3 immune-related adverse events occurred in 19% of patients and one death (2%) was related to ipilimumab. Conclusions: Clinical responses to ipilimumab were found in a considerable number of advanced melanoma patients with progression after adjuvant DC vaccination for stage III disease, while the effect was very limited in patients who showed progression after DC vaccination for stage IV disease. PMID:27622070

  3. Metabolic bioactivation and toxicity of ethyl 4-hydroxybenzoate in human SK-MEL-28 melanoma cells.

    PubMed

    Vad, Nikhil M; Shaik, Imam H; Mehvar, Reza; Moridani, Majid Y

    2008-05-01

    The metabolism and toxicity of ethyl 4-hydroxybenzoate (4-HEB) were investigated in vitro using tyrosinase enzyme, a melanoma molecular target, and CYP2E1 induced rat liver microsomes, and in human SK-MEL-28 melanoma cells. The results were compared to 4-hydroxyanisole (4-HA). At 90 min, 4-HEB was metabolized 48% by tyrosinase and 26% by liver microsomes while the extent of 4-HA metabolism was 196% and 88%, respectively. The IC50 (day 2) of 4-HEB and 4-HA towards SK-MEL-28 cells were 75 and 50 microM, respectively. Dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased 4-HEB toxicity towards SK-MEL-28 cells indicating o-quinone formation played an important role in 4-HEB induced cell toxicity. Addition of ascorbic acid and GSH to the media was effective in preventing 4-HEB cell toxicity. Cyclosporin A and trifluoperazine, inhibitors of permeability transition pore in mitochondria, were significantly potent in inhibiting 4-HEB cell toxicity. 4-HEB caused time-dependent decline in intracellular GSH concentration which preceded cell death. 4-HEB also led to reactive oxygen species (ROS) formation in melanoma cells which exacerbated by dicoumarol and 1-bromoheptane whereas cyclosporin A and trifluoperazine prevented it. Our findings suggest that the mechanisms of 4-HEB toxicity in SK-MEL-28 were o-quinone formation, intracellular GSH depletion, ROS formation and mitochondrial toxicity.

  4. Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity

    PubMed Central

    Balsamo, Mirna; Scordamaglia, Francesca; Pietra, Gabriella; Manzini, Claudia; Cantoni, Claudia; Boitano, Monica; Queirolo, Paola; Vermi, William; Facchetti, Fabio; Moretta, Alessandro; Moretta, Lorenzo; Mingari, Maria Cristina; Vitale, Massimo

    2009-01-01

    Although the role of the tumor microenvironment in the process of cancer progression has been extensively investigated, the contribution of different stromal components to tumor growth and/or evasion from immune surveillance is still only partially defined. In this study we analyzed fibroblasts derived from metastatic melanomas and provide evidence for their strong immunosuppressive activity. In coculture experiments, melanoma-derived fibroblasts sharply interfered with NK cell functions including cytotoxicity and cytokine production. Thus, both the IL-2-induced up-regulation of the surface expression of NKp44, NKp30, and DNAM-1 triggering receptors and the acquisition of cytolytic granules were inhibited in NK cells. This resulted in an impairment of the NK cell-mediated killing of melanoma target cells. Transwell cocultures and the use of specific inhibitors suggested that cell-to-cell contact was required for inducing DNAM-1 modulation. In contrast, modulation of NKp44 and NKp30 was due to PGE2 released by fibroblasts during coculture. Normal skin fibroblasts could also partially affect NK cell phenotype and function. However, the inhibitory effect of tumor-derived fibroblasts was far stronger and directly correlated with their ability to produce PGE2 either constitutively or upon induction by NK cells. PMID:19934056

  5. Photoacoustic detection of metastatic melanoma cells in the human circulatory system.

    PubMed

    Weight, Ryan M; Viator, John A; Dale, Paul S; Caldwell, Charles W; Lisle, Allison E

    2006-10-15

    Detection of disseminating tumor cells among patients suffering from various types and stages of cancer can function as an early warning system, alerting the physician of the metastatic spread or recurrence of the disease. Early detection of such cells can result in preventative treatment of the disease, while late stage detection can serve as an indicator of the effectiveness of chemotherapeutics. The prognostic value of exposing disseminating tumor cells poses an urgent need for an efficient, accurate screening method for metastatic cells. We propose a system for the detection of metastatic circulating tumor cells based on the thermoelastic properties of melanoma. The method employs photoacoustic excitation coupled with a detection system capable of determining the presence of disseminating cells within the circulatory system in vitro. Detection trials consisting of tissue phantoms and a human melanoma cell line resulted in a detection threshold of the order of ten individual cells, thus validating the effectiveness of the proposed mechanism. Results imply the potential to assay simple blood draws, from healthy and metastatic patients, for the presence of cancerous melanoma providing an unprecedented method for routine cancer screening.

  6. Photoacoustic detection of metastatic melanoma cells in the human circulatory system

    NASA Astrophysics Data System (ADS)

    Weight, Ryan M.; Viator, John A.; Dale, Paul S.; Caldwell, Charles W.; Lisle, Allison E.

    2006-10-01

    Detection of disseminating tumor cells among patients suffering from various types and stages of cancer can function as an early warning system, alerting the physician of the metastatic spread or recurrence of the disease. Early detection of such cells can result in preventative treatment of the disease, while late stage detection can serve as an indicator of the effectiveness of chemotherapeutics. The prognostic value of exposing disseminating tumor cells poses an urgent need for an efficient, accurate screening method for metastatic cells. We propose a system for the detection of metastatic circulating tumor cells based on the thermoelastic properties of melanoma. The method employs photoacoustic excitation coupled with a detection system capable of determining the presence of disseminating cells within the circulatory system in vitro. Detection trials consisting of tissue phantoms and a human melanoma cell line resulted in a detection threshold of the order of ten individual cells, thus validating the effectiveness of the proposed mechanism. Results imply the potential to assay simple blood draws, from healthy and metastatic patients, for the presence of cancerous melanoma providing an unprecedented method for routine cancer screening.

  7. Heterogeneous expression and functional relevance of the ubiquitin carboxyl-terminal hydrolase L1 in melanoma.

    PubMed

    Wulfänger, Jens; Biehl, Katharina; Tetzner, Anja; Wild, Peter; Ikenberg, Kristian; Meyer, Stefanie; Seliger, Barbara

    2013-12-01

    The expression of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is deregulated in human cancer cells with tumor inhibiting or promoting functions. Due to less knowledge on the role of UCHL1 in melanoma progression, the expression pattern and function of UCHL1 as well as the deregulated signaling pathways were characterized. A large number of melanoma cell lines, tissue microarrays of melanoma lesions and control tissues were analyzed for UCHL1 expression using PCR, Western blot and/or immunohistochemistry. The analysis revealed that melanocyte cultures, 24 of 331 melanoma lesions, two of 18 short-term cultures and two of 19 melanoma cell lines tested, respectively, heterogeneously expressed UCHL1. The low frequency of UCHL1 expression in melanoma cells was due to gene silencing by promoter DNA hypermethylation. Using different transfection models an enzyme activity-dependent growth promoting function of UCHL1 via the activation of the mitogen-activated protein kinase signaling pathway was found in melanoma cells. Under oxygen stress a dose-dependent effect of UCHL1 was detected, which was mediated by a dynamic modification of the PI3K-Akt signaling. Thus, the aberrant UCHL1 expression in melanoma cells is linked to dynamic changes in growth properties and signal transduction cascades suggesting that UCHL1 provides a novel marker and/or therapeutic target at least for a subset of melanoma patients.