Science.gov

Sample records for melanoma tumor cell

  1. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma.

    PubMed

    Hendrix, Mary J C; Seftor, Elisabeth A; Seftor, Richard E B; Chao, Jun-Tzu; Chien, Du-Shieng; Chu, Yi-Wen

    2016-03-01

    In 1999, the American Journal of Pathology published an article, entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry" by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a "citation classic" (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways--each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model.

  2. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

    PubMed Central

    Salvianti, Francesca; Orlando, Claudio; Massi, Daniela; De Giorgi, Vincenzo; Grazzini, Marta; Pazzagli, Mario; Pinzani, Pamela

    2016-01-01

    Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs. RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET) as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC). The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic) than in healthy subjects (Pearson chi-squared test, p < 0.001). The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC) in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive and

  3. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma.

    PubMed

    Khoja, Leila; Lorigan, Paul; Zhou, Cong; Lancashire, Matthew; Booth, Jessica; Cummings, Jeff; Califano, Raffaele; Clack, Glen; Hughes, Andrew; Dive, Caroline

    2013-06-01

    The incidence of melanoma is increasing worldwide. Advances in targeted agents and immunotherapy have improved outcomes in metastatic disease, but biomarkers are required to optimize treatment. We determined the prevalence of circulating tumor cells (CTCs) and explored their utility as prognostic and pharmacodynamic biomarkers. A total of 101 patients with metastatic cutaneous melanoma were recruited prospectively. CTC number was determined using the CellSearch platform and melanoma kits in samples taken at baseline and serially during treatment. CTC numbers ranged between 0 and 36 per 7.5 ml blood; 26% of patients had ≥ 2 CTCs. Baseline CTC number was prognostic for median overall survival (OS) in univariate analysis (2.6 vs. 7.2 months (P<0.011) for patients with ≥ 2 CTCs vs. <2 CTCs, respectively). In multivariate analysis, CTC number was an independent prognostic biomarker of OS (hazard ratio (HR) 2.403, 95% confidence interval (CI) 1.303-4.430, P=0.005). Patients receiving treatment in whom CTC number remained ≥ 2 CTCs during treatment had shorter median OS than those who maintained <2 CTCs (7 vs. 10 months, HR 0.34, 95% CI 0.14-0.81, log-rank test P=0.015). In conclusion, CTC number in metastatic cutaneous melanoma patients is prognostic for OS with a cutoff of 2 CTCs per 7.5 ml blood. CTC number measured before and throughout treatment provided additional prognostic information. Larger studies are warranted to confirm CTC biomarker utility in melanoma patients. PMID:23223143

  4. Cancer procoagulant in human tumor cells: evidence from melanoma patients.

    PubMed

    Donati, M B; Gambacorti-Passerini, C; Casali, B; Falanga, A; Vannotti, P; Fossati, G; Semeraro, N; Gordon, S G

    1986-12-01

    It has repeatedly been proposed that fibrin plays a role in tumor growth and metastasis. Among tumor cell products or activities which may promote clot formation, cancer procoagulant (CP), a direct activator of coagulation factor X, has been suggested to be selectively associated with the malignant phenotype. We report here the enzymatic and immunological identification of this cysteine proteinase procoagulant in extracts and cells from human melanoma. CP activity was independent of both the intrinsic and extrinsic pathways of blood coagulation, using factor IX and factor VII deficient plasmas, and was inhibited by the cysteine proteinase inhibitors iodoacetamide and HgCl2. CP activity was detectable in extracts and cell suspensions from all 32 patients studied and was higher in extracts from metastases (14.8 +/- 3.9 units/mg protein) than from the primary tumors (3.7 +/- 1.0 units/mg protein). CP activity was not affected by an anti-apoprotein III antibody or by concanavalin A, a known inhibitor of thromboplastin. In contrast, no CP activity or antigen was detected in extracts from six benign melanocytic lesions. The procoagulant activity was dependent on factor VII and was inhibited by anti-apoprotein III antibody and by concanavalin A, properties that suggest that the procoagulant was tissue thromboplastin. These data indicate that CP can be expressed by human tumor cells and that, among melanotic lesions, its presence is associated with the malignant phenotype and its activity is particularly high in metastatic cells.

  5. FRIZZLED7 Is Required for Tumor Inititation and Metastatic Growth of Melanoma Cells

    PubMed Central

    Tiwary, Shweta; Xu, Lei

    2016-01-01

    Metastases are thought to arise from cancer stem cells and their tumor initiating abilities are required for the establishment of metastases. Nevertheless, in metastatic melanoma, the nature of cancer stem cells is under debate and their contribution to metastasis formation remains unknown. Using an experimental metastasis model, we discovered that high levels of the WNT receptor, FZD7, correlated with enhanced metastatic potentials of melanoma cell lines. Knocking down of FZD7 in a panel of four melanoma cell lines led to a significant reduction in lung metastases in animal models, arguing that FZD7 plays a causal role during metastasis formation. Notably, limiting dilution analyses revealed that FZD7 is essential for the tumor initiation of melanoma cells and FZD7 knockdown impeded the early expansion of metastatic melanoma cells shortly after seeding, in accordance with the view that tumor initiating ability of cancer cells is required for metastasis formation. FZD7 activated JNK in melanoma cell lines in vitro and the expression of a dominant negative JNK suppressed metastasis formation in vivo, suggesting that FZD7 may promote metastatic growth of melanoma cells via activation of JNK. Taken together, our findings uncovered a signaling pathway that regulates the tumor initiation of melanoma cells and contributes to metastasis formation in melanoma. PMID:26808375

  6. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions

    PubMed Central

    Skinner, Cassandra C.; McMichael, Elizabeth L.; Jaime-Ramirez, Alena C.; Abrams, Zachary B.; Lee, Robert J.; Carson, William E.

    2016-01-01

    The folate receptor (FR) is over-expressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is over-expressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis, using KB (human oral epithelial) and F01 (human melanoma) as a positive and negative control, respectively. FR-positive and negative cell lines were treated with F-IgG or control immunoglobulin G (C-IgG) in the presence or absence of cytokines in order to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells enhanced following treatment with F-IgG, as compared to C-IgG at all effector:target (E:T) ratios (p<0.01). This trend was further enhanced by NK cell stimulation with the activating cytokine interleukin-12 (IL-12). NK cell production of cytokines such as interferon-gamma (IFN-γ), macrophage inflammatory protein 1 alpha (MIP-1α), and regulated on activation normal T-cell expressed and secreted (RANTES) were also significantly increased in response to co-stimulation with IL-12 stimulation and F-IgG-coated Mel 39 target cells, as compared to controls (p<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells which can be further enhanced by the addition of cytokines. PMID:27035691

  7. Tumor stroma and chemokines control T-cell migration into melanoma following Temozolomide treatment

    PubMed Central

    Tan, Kar Wai; Evrard, Maximilien; Tham, Muly; Hong, Michelle; Huang, Caleb; Kato, Masashi; Prevost-Blondel, Armelle; Donnadieu, Emmanuel; Ng, Lai Guan; Abastado, Jean-Pierre

    2015-01-01

    The infiltration of T lymphocytes within tumors is associated with better outcomes in cancer patients, yet current understanding of factors that influence T-lymphocyte infiltration into tumors remains incomplete. In our study, Temozolomide (TMZ), a chemotherapeutic drug used to treat metastatic melanoma, induced T-cell infiltration into transplanted melanoma and into genitourinary (GU) tumors in mice developing spontaneous melanoma. In contrast, TMZ treatment did not increase T-cell infiltration into cutaneous tumors, despite similar increases in the expression of the (C-X-C) chemokines CXCL9 and CXCL10 in all sites after TMZ exposure. Our findings reveal that the matrix architecture of the GU tumor stroma, and its ability to present CXCL9 and CXCL10 after TMZ treatment played a key role in favouring T-cell infiltration. We subsequently demonstrate that modifications of these key elements by combined collagenase and TMZ treatment induced T-cell infiltration into skin tumors. T cells accumulating within GU tumors after TMZ treatment exhibited T helper type-1 effector and cytolytic functional phenotypes, which are important for control of tumor growth. Our findings highlight the importance of the interaction between tumor stroma and chemokines in influencing T-cell migration into tumors, thereby impacting immune control of tumor growth. This knowledge will aid the development of strategies to promote T-cell infiltration into cancerous lesions and has the potential to markedly improve treatment outcomes. PMID:25949877

  8. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  9. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth

    PubMed Central

    Roesch, Alexander; Fukunaga-Kalabis, Mizuho; Schmidt, Elizabeth C.; Zabierowski, Susan E.; Brafford, Patricia A.; Vultur, Adina; Basu, Devraj; Gimotty, Phyllis; Vogt, Thomas; Herlyn, Meenhard

    2010-01-01

    Summary Melanomas are highly heterogeneous tumors, but the biological significance of their different subpopulations is not clear. Using the H3K4 demethylase JARID1B (KDM5B/PLU-1/RBP2-H1) as a biomarker, we have characterized a small subpopulation of slow-cycling melanoma cells that cycle with doubling times of >4 weeks within the rapidly proliferating main population. Isolated JARID1B-positive melanoma cells give rise to a highly proliferative progeny. Knock-down of JARID1B leads to an initial acceleration of tumor growth followed by exhaustion which suggests that the JARID1B-positive subpopulation is essential for continuous tumor growth. Expression of JARID1B is dynamically regulated and does not follow a hierarchical cancer stem cell model because JARID1B-negative cells can become positive and even single melanoma cells irrespective of selection are tumorigenic. These results suggest a new understanding of melanoma heterogeneity with tumor maintenance as a dynamic process mediated by a temporarily distinct subpopulation. PMID:20478252

  10. Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate.

    PubMed

    Salcedo, Margarita; Bercovici, Nadège; Taylor, Rachel; Vereecken, Pierre; Massicard, Séverine; Duriau, Dominique; Vernel-Pauillac, Frédérique; Boyer, Aurélie; Baron-Bodo, Véronique; Mallard, Eric; Bartholeyns, Jacques; Goxe, Béatrice; Latour, Nathalie; Leroy, Sophie; Prigent, Didier; Martiat, Philippe; Sales, François; Laporte, Marianne; Bruyns, Catherine; Romet-Lemonne, Jean-Loup; Abastado, Jean-Pierre; Lehmann, Frédéric; Velu, Thierry

    2006-07-01

    The aim of the present phase I/II study was to evaluate the safety, immune responses and clinical activity of a vaccine based on autologous dendritic cells (DC) loaded with an allogeneic tumor cell lysate in advanced melanoma patients. DC derived from monocytes were generated in serum-free medium containing GM-CSF and IL-13 according to Good Manufacturing Practices. Fifteen patients with metastatic melanoma (stage III or IV) received four subcutaneous, intradermal, and intranodal vaccinations of both DC loaded with tumor cell lysate and DC loaded with hepatitis B surface protein (HBs) and/or tetanus toxoid (TT). No grade 3 or 4 adverse events related to the vaccination were observed. Enhanced immunity to the allogeneic tumor cell lysate and to TAA-derived peptides were documented, as well as immune responses to HBs/TT antigens. Four out of nine patients who received the full treatment survived for more than 20 months. Two patients showed signs of clinical response and received 3 additional doses of vaccine: one patient showed regression of in-transit metastases leading to complete remission. Eighteen months later, the patient was still free of disease. The second patient experienced stabilization of lung metastases for approximately 10 months. Overall, our results show that vaccination with DC loaded with an allogeneic melanoma cell lysate was feasible in large-scale and well-tolerated in this group of advanced melanoma patients. Immune responses to tumor-related antigens documented in some treated patients support further investigations to optimize the vaccine formulation.

  11. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  12. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells.

    PubMed

    Saito, Hidehito; Okita, Keisuke; Fusaki, Noemi; Sabel, Michael S; Chang, Alfred E; Ito, Fumito

    2016-01-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs) that express programmed cell death protein-1 (PD-1) are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy. PMID:27057178

  13. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells

    PubMed Central

    Saito, Hidehito; Okita, Keisuke; Fusaki, Noemi; Sabel, Michael S.; Chang, Alfred E.; Ito, Fumito

    2016-01-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs) that express programmed cell death protein-1 (PD-1) are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy. PMID:27057178

  14. IRF-8 Controls Melanoma Progression by Regulating the Cross Talk between Cancer and Immune Cells within the Tumor Microenvironment12

    PubMed Central

    Mattei, Fabrizio; Schiavoni, Giovanna; Sestili, Paola; Spadaro, Francesca; Fragale, Alessandra; Sistigu, Antonella; Lucarini, Valeria; Spada, Massimo; Sanchez, Massimo; Scala, Stefania; Battistini, Angela; Belardelli, Filippo; Gabriele, Lucia

    2012-01-01

    The transcription factor interferon regulatory factor-8 (IRF-8) is crucial for myeloid cell development and immune response and also acts as a tumor suppressor gene. Here, we analyzed the role of IRF-8 in the cross talk between melanoma cells and tumor-infiltrating leukocytes. B16-F10 melanoma cells transplanted into IRF-8-deficient (IRF-8-/-) mice grow more rapidly, leading to higher numbers of lung metastasis, with respect to control animals. These events correlated with reduced dendritic cell and T cell infiltration, accumulation of myeloid-derived suppressor cells and a chemokine/chemokine receptor expression profile within the tumor microenvironment supporting tumor growth, angiogenesis, and metastasis. Noticeably, primary tumors developing in IRF-8-/- mice displayed a clear-cut inhibition of IRF-8 expression in melanoma cells. Injection of the demethylating agent 5-aza-2′-deoxycytidine into melanoma-bearing IRF-8-/- animals induced intratumoral IRF-8 expression and resulted in the re-establishment of a chemokine/ chemokine receptor pattern favoring leukocyte infiltration and melanoma growth arrest. Importantly, intrinsic IRF-8 expression was progressively down-modulated during melanoma growth in mice and in human metastatic melanoma cells with respect to primary tumors. Lastly, IRF-8 expression in melanoma cells was directly modulated by soluble factors, among which interleukin-27 (IL-27), released by immune cells from tumor-bearing mice. Collectively, these results underscore a key role of IRF-8 in the cross talk between melanoma and immune cells, thus revealing its critical function within the tumor microenvironment in regulating melanoma progression and invasiveness. PMID:23308054

  15. IRF-8 controls melanoma progression by regulating the cross talk between cancer and immune cells within the tumor microenvironment.

    PubMed

    Mattei, Fabrizio; Schiavoni, Giovanna; Sestili, Paola; Spadaro, Francesca; Fragale, Alessandra; Sistigu, Antonella; Lucarini, Valeria; Spada, Massimo; Sanchez, Massimo; Scala, Stefania; Battistini, Angela; Belardelli, Filippo; Gabriele, Lucia

    2012-12-01

    The transcription factor interferon regulatory factor-8 (IRF-8) is crucial for myeloid cell development and immune response and also acts as a tumor suppressor gene. Here, we analyzed the role of IRF-8 in the cross talk between melanoma cells and tumor-infiltrating leukocytes. B16-F10 melanoma cells transplanted into IRF-8-deficient (IRF-8(-/-)) mice grow more rapidly, leading to higher numbers of lung metastasis, with respect to control animals. These events correlated with reduced dendritic cell and T cell infiltration, accumulation of myeloid-derived suppressor cells and a chemokine/chemokine receptor expression profile within the tumor microenvironment supporting tumor growth, angiogenesis, and metastasis. Noticeably, primary tumors developing in IRF-8(-/-) mice displayed a clear-cut inhibition of IRF-8 expression in melanoma cells. Injection of the demethylating agent 5-aza-2'-deoxycytidine into melanoma-bearing IRF-8(-/-) animals induced intratumoral IRF-8 expression and resulted in the re-establishment of a chemokine/ chemokine receptor pattern favoring leukocyte infiltration and melanoma growth arrest. Importantly, intrinsic IRF-8 expression was progressively down-modulated during melanoma growth in mice and in human metastatic melanoma cells with respect to primary tumors. Lastly, IRF-8 expression in melanoma cells was directly modulated by soluble factors, among which interleukin-27 (IL-27), released by immune cells from tumor-bearing mice. Collectively, these results underscore a key role of IRF-8 in the cross talk between melanoma and immune cells, thus revealing its critical function within the tumor microenvironment in regulating melanoma progression and invasiveness. PMID:23308054

  16. Tumor Cell Adhesion As a Risk Factor for Sentinel Lymph Node Metastasis in Primary Cutaneous Melanoma

    PubMed Central

    Meves, Alexander; Nikolova, Ekaterina; Heim, Joel B.; Squirewell, Edwin J.; Cappel, Mark A.; Pittelkow, Mark R.; Otley, Clark C.; Behrendt, Nille; Saunte, Ditte M.; Lock-Andersen, Jorgen; Schenck, Louis A.; Weaver, Amy L.; Suman, Vera J.

    2015-01-01

    Purpose Less than 20% of patients with melanoma who undergo sentinel lymph node (SLN) biopsy based on American Society of Clinical Oncology/Society of Surgical Oncology recommendations are SLN positive. We present a multi-institutional study to discover new molecular risk factors associated with SLN positivity in thin and intermediate-thickness melanoma. Patients and Methods Gene clusters with functional roles in melanoma metastasis were discovered by next-generation sequencing and validated by quantitative polymerase chain reaction using a discovery set of 73 benign nevi, 76 primary cutaneous melanoma, and 11 in-transit melanoma metastases. We then used polymerase chain reaction to quantify gene expression in a model development cohort of 360 consecutive thin and intermediate-thickness melanomas and a validation cohort of 146 melanomas. Outcome of interest was SLN biopsy metastasis within 90 days of melanoma diagnosis. Logic and logistic regression analyses were used to develop a model for the likelihood of SLN metastasis from molecular, clinical, and histologic variables. Results ITGB3, LAMB1, PLAT, and TP53 expression were associated with SLN metastasis. The predictive ability of a model that included these molecular variables in combination with clinicopathologic variables (patient age, Breslow depth, and tumor ulceration) was significantly greater than a model that only considered clinicopathologic variables and also performed well in the validation cohort (area under the curve, 0.93; 95% CI, 0.87 to 0.97; false-positive and false-negative rates of 22% and 0%, respectively, using a 10% cutoff for predicted SLN metastasis risk). Conclusion The addition of cell adhesion–linked gene expression variables to clinicopathologic variables improves the identification of patients with SLN metastases within 90 days of melanoma diagnosis. PMID:26150443

  17. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.

    PubMed

    Lobos-González, Lorena; Aguilar, Lorena; Diaz, Jorge; Diaz, Natalia; Urra, Hery; Torres, Vicente A; Silva, Veronica; Fitzpatrick, Christopher; Lladser, Alvaro; Hoek, Keith S; Leyton, Lisette; Quest, Andrew F G

    2013-07-01

    The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells.

  18. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  19. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.

    PubMed

    Lobos-González, Lorena; Aguilar, Lorena; Diaz, Jorge; Diaz, Natalia; Urra, Hery; Torres, Vicente A; Silva, Veronica; Fitzpatrick, Christopher; Lladser, Alvaro; Hoek, Keith S; Leyton, Lisette; Quest, Andrew F G

    2013-07-01

    The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  20. T Cells Contribute to Tumor Progression by Favoring Pro-Tumoral Properties of Intra-Tumoral Myeloid Cells in a Mouse Model for Spontaneous Melanoma

    PubMed Central

    Caron, Jonathan; Douguet, Laetitia; Garcette, Marylène; Kato, Masashi; Avril, Marie-Françoise; Abastado, Jean-Pierre; Bercovici, Nadège; Lucas, Bruno; Prévost-Blondel, Armelle

    2011-01-01

    Tumors affect myelopoeisis and induce the expansion of myeloid cells with immunosuppressive activity. In the MT/ret model of spontaneous metastatic melanoma, myeloid cells are the most abundant tumor infiltrating hematopoietic population and their proportion is highest in the most aggressive cutaneous metastasis. Our data suggest that the tumor microenvironment favors polarization of myeloid cells into type 2 cells characterized by F4/80 expression, a weak capacity to secrete IL-12 and a high production of arginase. Myeloid cells from tumor and spleen of MT/ret mice inhibit T cell proliferation and IFNγ secretion. Interestingly, T cells play a role in type 2 polarization of myeloid cells. Indeed, intra-tumoral myeloid cells from MT/ret mice lacking T cells are not only less suppressive towards T cells than corresponding cells from wild-type MT/ret mice, but they also inhibit more efficiently melanoma cell proliferation. Thus, our data support the existence of a vicious circle, in which T cells may favor cancer development by establishing an environment that is likely to skew myeloid cell immunity toward a tumor promoting response that, in turn, suppresses immune effector cell functions. PMID:21633700

  1. In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells.

    PubMed

    Odot, Johann; Albert, Philippe; Carlier, Annie; Tarpin, Michel; Devy, Jérôme; Madoulet, Claudie

    2004-09-01

    Curcumin, the active ingredient from the spice turmeric (Curcuma longa Linn), is known to be an anti-oxidant and an anti-inflammatory agent. It has been demonstrated recently to possess anti-angiogenic effects and pro-apoptotic activities against Ehrlich ascites tumor cells. In the current study, curcumin was found to be cytotoxic in vitro for B16-R melanoma cells resistant to doxorubicin either cultivated as monolayers or grown in three-dimensional (3-D) cultures (spheroids). We have demonstrated that the cytotoxic effect observed in the 2 culture types can be related to the induction of programmed cell death. In our in vivo studies, we examined the effectiveness of a prophylactic immune preparation of soluble proteins from B16-R cells, or a treatment with curcumin as soon as tumoral appearance, alone or in combination, on the murine melanoma B16-R. The combination treatment resulted in substantial inhibition of growth of B16-R melanoma, whereas each treatment by itself showed little effect. Moreover, animals receiving the combination therapy exhibited an enhancement of their humoral anti-soluble B16-R protein immune response and a significant increase in their median survival time (> 82.8% vs. 48.6% and 45.7% respectively for the immunized group and the curcumin-treated group). Our study shows that curcumin may provide a valuable tool for the development of a therapeutic combination against the melanoma. PMID:15221965

  2. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma

    PubMed Central

    Eyles, Jo; Puaux, Anne-Laure; Wang, Xiaojie; Toh, Benjamin; Prakash, Celine; Hong, Michelle; Tan, Tze Guan; Zheng, Lin; Ong, Lai Chun; Jin, Yi; Kato, Masashi; Prévost-Blondel, Armelle; Chow, Pierce; Yang, Henry; Abastado, Jean-Pierre

    2010-01-01

    Although metastasis is the leading cause of cancer-related death, it is not clear why some patients with localized cancer develop metastatic disease after complete resection of their primary tumor. Such relapses have been attributed to tumor cells that disseminate early and remain dormant for prolonged periods of time; however, little is known about the control of these disseminated tumor cells. Here, we have used a spontaneous mouse model of melanoma to investigate tumor cell dissemination and immune control of metastatic outgrowth. Tumor cells were found to disseminate throughout the body early in development of the primary tumor, even before it became clinically detectable. The disseminated tumor cells remained dormant for varying periods of time depending on the tissue, resulting in staggered metastatic outgrowth. Dormancy in the lung was associated with reduced proliferation of the disseminated tumor cells relative to the primary tumor. This was mediated, at least in part, by cytostatic CD8+ T cells, since depletion of these cells resulted in faster outgrowth of visceral metastases. Our findings predict that immune responses favoring dormancy of disseminated tumor cells, which we propose to be the seed of subsequent macroscopic metastases, are essential for prolonging the survival of early stage cancer patients and suggest that therapeutic strategies designed to reinforce such immune responses may produce marked benefits in these patients. PMID:20501944

  3. TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients

    PubMed Central

    Chauvin, Joe-Marc; Pagliano, Ornella; Fourcade, Julien; Sun, Zhaojun; Wang, Hong; Sander, Cindy; Kirkwood, John M.; Chen, Tseng-hui Timothy; Maurer, Mark; Korman, Alan J.; Zarour, Hassane M.

    2015-01-01

    T cell Ig and ITIM domain (TIGIT) is an inhibitory receptor expressed by activated T cells, Tregs, and NK cells. Here, we determined that TIGIT is upregulated on tumor antigen–specific (TA-specific) CD8+ T cells and CD8+ tumor-infiltrating lymphocytes (TILs) from patients with melanoma, and these TIGIT-expressing CD8+ T cells often coexpress the inhibitory receptor PD-1. Moreover, CD8+ TILs from patients exhibited downregulation of the costimulatory molecule CD226, which competes with TIGIT for the same ligand, supporting a TIGIT/CD226 imbalance in metastatic melanoma. TIGIT marked early T cell activation and was further upregulated by T cells upon PD-1 blockade and in dysfunctional PD-1+TIM-3+ TA-specific CD8+ T cells. PD-1+TIGIT+, PD-1–TIGIT+, and PD-1+TIGIT– CD8+ TILs had similar functional capacities ex vivo, suggesting that TIGIT alone, or together with PD-1, is not indicative of T cell dysfunction. However, in the presence of TIGIT ligand–expressing cells, TIGIT and PD-1 blockade additively increased proliferation, cytokine production, and degranulation of both TA-specific CD8+ T cells and CD8+ TILs. Collectively, our results show that TIGIT and PD-1 regulate the expansion and function of TA-specific CD8+ T cells and CD8+ TILs in melanoma patients and suggest that dual TIGIT and PD-1 blockade should be further explored to elicit potent antitumor CD8+ T cell responses in patients with advanced melanoma. PMID:25866972

  4. MT1-MMP dependent repression of the tumor suppressor SPRY4 contributes to MT1-MMP driven melanoma cell motility

    PubMed Central

    Shaverdashvili, Khvaramze; Zhang, Keman; Osman, Iman; Honda, Kord; Jobava, Rauli; Bedogni, Barbara

    2015-01-01

    Metastatic melanoma is the deadliest of all skin cancers. Despite progress in diagnostics and treatment of melanoma, the prognosis for metastatic patients remains poor. We previously showed that Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) is one of the drivers of melanoma metastasis. Classically, MT1-MMP regulates a verity of cellular functions including cell-to-cell interaction and cell-to-matrix communication. Recently, MT1-MMP has been found to also modulate gene expression. To specifically assess MT1-MMP dependent gene regulation in melanoma, microarray gene expression analysis was performed in a melanoma cell line whose metastatic properties depend on the activity of MT1-MMP. We identified the tumor suppressor gene SPRY4 as a new transcriptional target of MT1-MMP that is negatively regulated by the protease. Knockdown of MT1-MMP enhances SPRY4 expression at the mRNA and protein level. SPRY4 expression inversely correlates with that of MT1-MMP in melanoma samples and importantly, correlates with melanoma patient survival. SPRY4 modulates MT1-MMP dependent cell migration such that inhibition of SPRY4 rescues cell migration that has been impaired by MT1-MMP knock down. MT1-MMP decreases SPRY4 in part through an MMP2/RAC1 axis we previously show promotes cell motility downstream of MT1-MMP. These results identify the tumor suppressor SPRY4 as a novel molecular effector of MT1-MMP affecting melanoma cell motility. PMID:26392417

  5. Macrophage-Tumor Cell Fusions from Peripheral Blood of Melanoma Patients

    PubMed Central

    Clawson, Gary A.; Matters, Gail L.; Xin, Ping; Imamura-Kawasawa, Yuka; Du, Zhen; Thiboutot, Diane M.; Helm, Klaus F.; Neves, Rogerio I.; Abraham, Thomas

    2015-01-01

    Background While the morbidity and mortality from cancer are largely attributable to its metastatic dissemination, the integral features of the cascade are not well understood. The widely accepted hypothesis is that the primary tumor microenvironment induces the epithelial-to-mesenchymal transition in cancer cells, facilitating their escape into the bloodstream, possibly accompanied by cancer stem cells. An alternative theory for metastasis involves fusion of macrophages with tumor cells (MTFs). Here we culture and characterize apparent MTFs from blood of melanoma patients. Methods We isolated enriched CTC populations from peripheral blood samples from melanoma patients, and cultured them. We interrogated these cultured cells for characteristic BRAF mutations, and used confocal microscopy for immunophenotyping, motility, DNA content and chromatin texture analyses, and then conducted xenograft studies using nude mice. Findings Morphologically, the cultured MTFs were generally large with many pseudopod extensions and lamellipodia. Ultrastructurally, the cultured MTFs appeared to be macrophages. They were rich in mitochondria and lysosomes, as well as apparent melanosomes. The cultured MTF populations were all heterogeneous with regard to DNA content, containing aneuploid and/or high-ploidy cells, and they typically showed large sheets (and/or clumps) of cytoplasmic chromatin. This cytoplasmic DNA was found within heterogeneously-sized autophagic vacuoles, which prominently contained chromatin and micronuclei. Cultured MTFs uniformly expressed pan-macrophage markers (CD14, CD68) and macrophage markers indicative of M2 polarization (CD163, CD204, CD206). They also expressed melanocyte-specific markers (ALCAM, MLANA), epithelial biomarkers (KRT, EpCAM), as well as the pro-carcinogenic cytokine MIF along with functionally related stem cell markers (CXCR4, CD44). MTF cultures from individual patients (5 of 8) contained melanoma-specific BRAF activating mutations

  6. The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer

    PubMed Central

    Fonteneau, Jean Francois; Brilot, Fabienne; Münz, Christian

    2016-01-01

    NY-ESO-1–specific CD4+ T cells are of interest for immune therapy against tumors, because it has been shown that their transfer into a patient with melanoma resulted in tumor regression. Therefore, we investigated how NY-ESO-1 is processed onto MHC class II molecules for direct CD4+ T cell recognition of melanoma cells. We could rule out proteasome and autophagy-dependent endogenous Ag processing for MHC class II presentation. In contrast, intercellular Ag transfer, followed by classical MHC class II Ag processing via endocytosis, sensitized neighboring melanoma cells for CD4+ T cell recognition. However, macroautophagy targeting of NY-ESO-1 enhanced MHC class II presentation. Therefore, both elevated NY-ESO-1 release and macroautophagy targeting could improve melanoma cell recognition by CD4+ T cells and should be explored during immunotherapy of melanoma. PMID:26608910

  7. The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer.

    PubMed

    Fonteneau, Jean Francois; Brilot, Fabienne; Münz, Christian; Gannagé, Monique

    2016-01-01

    NY-ESO-1-specific CD4(+) T cells are of interest for immune therapy against tumors, because it has been shown that their transfer into a patient with melanoma resulted in tumor regression. Therefore, we investigated how NY-ESO-1 is processed onto MHC class II molecules for direct CD4(+) T cell recognition of melanoma cells. We could rule out proteasome and autophagy-dependent endogenous Ag processing for MHC class II presentation. In contrast, intercellular Ag transfer, followed by classical MHC class II Ag processing via endocytosis, sensitized neighboring melanoma cells for CD4(+) T cell recognition. However, macroautophagy targeting of NY-ESO-1 enhanced MHC class II presentation. Therefore, both elevated NY-ESO-1 release and macroautophagy targeting could improve melanoma cell recognition by CD4(+) T cells and should be explored during immunotherapy of melanoma.

  8. Modeling the Spatiotemporal Evolution of the Melanoma Tumor Microenvironment

    NASA Astrophysics Data System (ADS)

    Signoriello, Alexandra; Bosenberg, Marcus; Shattuck, Mark; O'Hern, Corey

    The tumor microenvironment, which includes tumor cells, tumor-associated macrophages (TAM), cancer-associated fibroblasts, and endothelial cells, drives the formation and progression of melanoma tumors. Using quantitative analysis of in vivo confocal images of melanoma tumors in three spatial dimensions, we examine the physical properties of the melanoma tumor microenvironment, including the numbers of different cells types, cell size, and morphology. We also compute the nearest neighbor statistics and measure intermediate range spatial correlations between different cell types. We also calculate the step size distribution, mean-square displacement, and non-Gaussian parameter from the spatial trajectories of different cell types in the tumor microenvironment.

  9. Monoclonal Antibody and an Antibody-Toxin Conjugate to a Cell Surface Proteoglycan of Melanoma Cells Suppress in vivo Tumor Growth

    NASA Astrophysics Data System (ADS)

    Bumol, T. F.; Wang, Q. C.; Reisfeld, R. A.; Kaplan, N. O.

    1983-01-01

    A monoclonal antibody directed against a cell surface chondroitin sulfate proteoglycan of human melanoma cells, 9.2.27, and its diphtheria toxin A chain (DTA) conjugate were investigated for their effects on in vitro protein synthesis and in vivo tumor growth of human melanoma cells. The 9.2.27 IgG and its DTA conjugate display similar serological activities against melanoma target cells but only the conjugate can induce consistent in vitro inhibition of protein synthesis and toxicity in M21 melanoma cells. However, both 9.2.27 IgG and its DTA conjugate effect significant suppression of M21 tumor growth in vivo in an immunotherapy model of a rapidly growing tumor in athymic nu/nu mice, suggesting that other host mechanisms may mediate monoclonal antibody-induced tumor suppression.

  10. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor.

    PubMed Central

    Kawakami, Y; Eliyahu, S; Delgado, C H; Robbins, P F; Rivoltini, L; Topalian, S L; Miki, T; Rosenberg, S A

    1994-01-01

    By cDNA expression cloning we have isolated a gene encoding a shared human melanoma antigen recognized by HLA-A2 restricted autologous and allogenic tumor-infiltrating lymphocytes (TILs) from patients with metastatic melanoma. By using both transient and stable expression systems, transfection of this gene into non-antigen-expressing HLA-A2+ cell lines resulted in recognition by the antigen-specific TILs. The sequence of this cDNA revealed a previously undescribed putative transmembrane protein whose expression was restricted to melanoma and melanocyte cell lines and human retina but no other fresh or cultured normal tissues tested or other tumor histologies. Thus, we have identified a gene encoding a melanocyte lineage-specific protein (MART-1; melanoma antigen recognized by T cells 1) that is a widely shared melanoma antigen recognized by the T lymphocytes of patients with established malignancy. Identification of this gene opens possibilities for the development of immunotherapies for patients with melanoma. PMID:8170938

  11. Heat Shock Protein-90 Inhibitors Enhance Antigen Expression on Melanomas and Increase T Cell Recognition of Tumor Cells

    PubMed Central

    Haggerty, Timothy J.; Dunn, Ian S.; Rose, Lenora B.; Newton, Estelle E.; Pandolfi, Franco; Kurnick, James T.

    2014-01-01

    In an effort to enhance antigen-specific T cell recognition of cancer cells, we have examined numerous modulators of antigen-expression. In this report we demonstrate that twelve different Hsp90 inhibitors (iHsp90) share the ability to increase the expression of differentiation antigens and MHC Class I antigens. These iHsp90 are active in several molecular and cellular assays on a series of tumor cell lines, including eleven human melanomas, a murine B16 melanoma, and two human glioma-derived cell lines. Intra-cytoplasmic antibody staining showed that all of the tested iHsp90 increased expression of the melanocyte differentiation antigens Melan-A/MART-1, gp100, and TRP-2, as well as MHC Class I. The gliomas showed enhanced gp100 and MHC staining. Quantitative analysis of mRNA levels showed a parallel increase in message transcription, and a reporter assay shows induction of promoter activity for Melan-A/MART-1 gene. In addition, iHsp90 increased recognition of tumor cells by T cells specific for Melan-A/MART-1. In contrast to direct Hsp90 client proteins, the increased levels of full-length differentiation antigens that result from iHsp90 treatment are most likely the result of transcriptional activation of their encoding genes. In combination, these results suggest that iHsp90 improve recognition of tumor cells by T cells specific for a melanoma-associated antigen as a result of increasing the expressed intracellular antigen pool available for processing and presentation by MHC Class I, along with increased levels of MHC Class I itself. As these Hsp90 inhibitors do not interfere with T cell function, they could have potential for use in immunotherapy of cancer. PMID:25503774

  12. Dehydroleucodine inhibits tumor growth in a preclinical melanoma model by inducing cell cycle arrest, senescence and apoptosis.

    PubMed

    Costantino, Valeria V; Lobos-Gonzalez, Lorena; Ibañez, Jorge; Fernandez, Dario; Cuello-Carrión, F Darío; Valenzuela, Manuel A; Barbieri, Manuel A; Semino, Silvana N; Jahn, Graciela A; Quest, Andrew F G; Lopez, Luis A

    2016-03-01

    Malignant melanoma represents the fastest growing public health risk of all cancer types worldwide. Several strategies and anti-cancer drugs have been used in an effort to improve treatments, but the development of resistance to anti-neoplastic drugs remains the major cause of chemotherapy failure in melanomas. Previously, we showed that the sesquiterpene lactone, dehydroleucodine (DhL), promotes the accumulation of DNA damage markers, such as H2AX and 53BP1, in human tumor cells. Also DhL was shown to trigger either cell senescence or apoptosis in a concentration-dependent manner in HeLa and MCF7 cells. Here, we evaluated the effects of DhL on B16F0 mouse melanoma cells in vitro and in a pre-clinical melanoma model. DhL inhibited the proliferation of B16F0 cells by inducing senescence or apoptosis in a concentration-dependent manner. Also, DhL reduced the expression of the cell cycle proteins cyclin D1 and B1 and the inhibitor of apoptosis protein, survivin. In melanomas generated by subcutaneous injection of B16F0 cells into C57/BL6 mice, the treatment with 20 mg DhL /Kg/day in preventive, simultaneous and therapeutic protocols reduced tumor volumes by 70%, 60% and 50%, respectively. DhL treatments reduced the number of proliferating, while increasing the number of senescent and apoptotic tumor cells. To estimate the long-term effects of DhL, a mathematical model was applied to fit experimental data. Extrapolation beyond experimental time points revealed that DhL administration following preventive and therapeutic protocols is predicted to be more effective than simultaneous treatments with DhL in restricting tumor growth.

  13. Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells

    PubMed Central

    2010-01-01

    Background Sharing the common neuroectodermal origin, melanoma and neuroblastoma are tumors widely diffused among adult and children, respectively. Clinical prognosis of aggressive neuroectodermal cancers remains dismal, therefore the search for novel therapies against such tumors is warranted. Curcumin is a phytochemical compound widely studied for its antioxidant, anti-inflammatory and anti-cancer properties. Recently, we have synthesized and tested in vitro various curcumin-related compounds in order to select new anti-tumor agents displaying stronger and selective growth inhibition activity on neuroectodermal tumors. Results In this work, we have demonstrated that the new α,β-unsaturated ketone D6 was more effective in inhibiting tumor cells growth when compared to curcumin. Normal fibroblasts proliferation was not affected by this treatment. Clonogenic assay showed a significant dose-dependent reduction in both melanoma and neuroblastoma colony formation only after D6 treatment. TUNEL assay, Annexin-V staining, caspases activation and PARP cleavage unveiled the ability of D6 to cause tumor cell death by triggering apoptosis, similarly to curcumin, but with a stronger and quicker extent. These apoptotic features appear to be associated with loss of mitochondrial membrane potential and cytochrome c release. In vivo anti-tumor activity of curcumin and D6 was surveyed using sub-cutaneous melanoma and orthotopic neuroblastoma xenograft models. D6 treated mice exhibited significantly reduced tumor growth compared to both control and curcumin treated ones (Melanoma: D6 vs control: P < 0.001 and D6 vs curcumin P < 0.01; Neuroblastoma: D6 vs both control and curcumin: P < 0.001). Conclusions Our data indicate D6 as a good candidate to develop new therapies against neural crest-derived tumors. PMID:20525240

  14. Acidic tumor microenvironment in human melanoma.

    PubMed

    Böhme, Ines; Bosserhoff, Anja Katrin

    2016-09-01

    One characteristic of solid tumors such as malignant melanoma is the acidification of the tumor microenvironment. The deregulation of cancer cell metabolism is considered a main cause of extracellular acidosis. Here, cancer cells utilize aerobic glycolysis instead of oxidative phosphorylation even under normoxic conditions, as originally described by Otto Warburg. These metabolic alterations cause enhanced acid production, especially of lactate and carbon dioxide (CO2 ). The extensive production of acidic metabolites and the enhanced acid export to the extracellular space cause a consistent acidification of the tumor microenvironment, thus promoting the formation of an acid-resistant tumor cell population with increased invasive and metastatic potential. As melanoma is one of the deadliest and most metastatic forms of cancer, understanding the effects of this extracellular acidosis on human melanoma cells with distinct metastatic properties is important. The aim of this review was to summarize recent studies of the acidification of the tumor microenvironment, focusing on the specific effects of the acidic milieu on melanoma cells and to give a short overview of therapeutic approaches. PMID:27233233

  15. Tumor-associated antigen/IL-21-transduced dendritic cell vaccines enhance immunity and inhibit immunosuppressive cells in metastatic melanoma.

    PubMed

    Aravindaram, K; Wang, P-H; Yin, S-Y; Yang, N-S

    2014-05-01

    Dendritic cell (DC)-based vaccine approaches are being actively evaluated for developing immunotherapeutic agents against cancers. In this study, we investigated the use of engineered DCs expressing transgenic tumor-associated antigen hgp100 and the regulatory cytokine interleukin-21, namely DC-hgp100/mIL-21, as a therapeutic vaccine against melanoma. Tumor-bearing mice were injected intratumorally with transgenic DCs followed by three booster injections. Transgenic DC-hgp100/mIL-21 showed significant reduction in primary tumor growth and metastasis compared with DC-hgp100 alone and DC-mIL-21 alone. In vivo depletion of specific immune cell types (CD8(+) T, CD4(+) T and Natural killer (NK)-1.1(+) cells) effectively blocked the protective effect of this combinational vaccine. In adoptive transfer experiments, a survival rate of nearly 90% was observed at 60 days post-tumor inoculation for the combinational vaccine group. In contrast, all mice in the DC-hgp100 and DC-mIL-21-only groups died within 43-46 days after tumor challenge. Considerably increased levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, granulocyte macrophage colony-stimulating factor (GM-CSF) and cytotoxic T lymphocytes (CTLs) were detected with the combination vaccine group compared with other individual treatment groups. In comparison with the DC-hgp100 or mIL-21 groups, the combinational DC-hgp100/mIL-21 vaccine also drastically suppressed the myeloid-derived suppressor cells (MDSCs) and T-regulatory (Treg) cell populations. Our findings suggest that a combinational DC- and gene-based hgp100 and mIL-21 vaccine therapy strategy warrants further evaluation as a clinically relevant cancer vaccine approach for human melanoma patients.

  16. Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid.

    PubMed

    Ahrens, T; Sleeman, J P; Schempp, C M; Howells, N; Hofmann, M; Ponta, H; Herrlich, P; Simon, J C

    2001-06-01

    Proteolytic cleavage of the extracellular domain of CD44 from the surface of cells has been observed recently in different cell types. In cell culture supernatants of human melanoma cell lines a 70 kDa soluble CD44 protein (solCD44) was detected at concentrations of 250-300 ng/ml. Protease inhibitor studies revealed that serine proteases and metalloproteases are involved in the cleavage of CD44 from the surface of melanoma cells. To analyse a possible function of soluble CD44 a human malignant melanoma cell line was stably transfected with cDNAs encoding either wild type soluble CD44s or mutated forms with defective HA binding properties (CD44sR41A and CD44sR150A/R154A). Soluble CD44s almost completely inhibited hyaluronic acid binding by melanoma cells, whereas soluble CD44 mutated in the HA binding domain had no effect. When cultivated on hyaluronic acid, melanoma cell proliferation was induced by 30% for both the parental and the control transfected cells. This increase in proliferation was blocked completely in solCD44s-secreting transfectants, whereas solCD44sR41A and solCD44sR150A/R154A-secreting cells again showed hyaluronic acid-induced cell proliferation. These cell lines were subcutaneously injected into MF1 nu/nu mice to compare their growth as tumors in vivo. Compared to tumors derived from parental and control transfected cells, we observed a dramatic reduction of primary tumor growth with solCD44s expressing MM cells. Transfectants expressing solCD44s mutated in the HA binding domain in contrast developed fast-growing primary tumors. These results provide strong evidence that direct solCD44 interactions with hyaluronic acid interfere competitively with processes induced by hyaluronic acid binding to surface CD44. Autocrine, or drug-induced secretion of solCD44 by human melanoma cells may thus exert potent antitumoral effects in vivo. PMID:11423990

  17. Endothelin-1 in the tumor microenvironment correlates with melanoma invasion.

    PubMed

    Chiriboga, Luis; Meehan, Shane; Osman, Iman; Glick, Michael; de la Cruz, Gelo; Howell, Brittny S; Friedman-Jiménez, George; Schneider, Robert J; Jamal, Sumayah

    2016-06-01

    Endothelin-1 (ET-1) is a vasoactive peptide that also plays a role in the tanning response of the skin. Animal and cell culture studies have also implicated ET-1 in melanoma progression, but no association studies have been performed to link ET-1 expression and melanoma in humans. Here, we present the first in-vivo study of ET-1 expression in pigmented lesions in humans: an ET-1 immunohistochemical screen of melanocytic nevi, melanoma in situ lesions, invasive melanomas, metastatic melanomas, and blue nevi was performed. Twenty-six percent of melanocytic nevi and 44% of melanoma in situ lesions demonstrate ET-1 expression in the perilesional microenvironment, whereas expression in nevus or melanoma cells was rare to absent. In striking contrast, 100% of moderately to highly pigmented invasive melanomas contained numerous ET-1-positive cells in the tumor microenvironment, with 79% containing ET-1-positive melanoma cells, confirmed by co-staining with melanoma tumor marker HMB45. Hypopigmented invasive melanomas had reduced ET-1 expression, suggesting a correlation between ET-1 expression and pigmented melanomas. ET-1-positive perilesional cells were CD68-positive, indicating macrophage origin. Sixty-two percent of highly pigmented metastatic melanomas demonstrated ET-1 expression in melanoma cells, in contrast to 28.2% of hypopigmented specimens. Eighty-nine percent of benign nevi, known as blue nevi, which have a dermal localization, were associated with numerous ET-1-positive macrophages in the perilesional microenvironment, but no ET-1 expression was detected in the melanocytes. We conclude that ET-1 expression in the microenvironment increases with advancing stages of melanocyte transformation, implicating a critical role for ET-1 in melanoma progression, and the importance of the tumor microenvironment in the melanoma phenotype.

  18. LncRNA GAS5 is a critical regulator of metastasis phenotype of melanoma cells and inhibits tumor growth in vivo

    PubMed Central

    Chen, Long; Yang, Huixin; Xiao, Yanbin; Tang, Xiaoxia; Li, Yuqian; Han, Qiaoqiao; Fu, Junping; Yang, Yuye; Zhu, Yuechun

    2016-01-01

    The present study intended to demonstrate the effects of long noncoding RNA growth arrest-specific transcript 5 (GAS5) on the migration and invasion of melanoma cells. We first detected the expression of GAS5 among four kinds of melanoma cell lines, followed by constructing GAS5-knocked down and overexpressed stable cells. Next, we evaluated the effects of GAS5 on cell migration and invasion using wound healing and gelatin zymography assays. Finally, melanoma cells with different GAS5 expression were injected into nude mice, and the tumor volumes were recorded and tumor tissues were analyzed after sacrificing the mice. This study systematically examined the function of GAS5 in mediating melanoma metastasis and revealed that GAS5 plays an anticancer role in melanoma via regulating gelatinase A and B, both in vitro and in vivo. PMID:27445498

  19. αvβ3-dependent cross-presentation of matrix metalloproteinase–2 by melanoma cells gives rise to a new tumor antigen

    PubMed Central

    Godefroy, Emmanuelle; Moreau-Aubry, Agnes; Diez, Elisabeth; Dreno, Brigitte; Jotereau, Francine; Guilloux, Yannick

    2005-01-01

    A large array of antigens that are recognized by tumor-specific T cells has been identified and shown to be generated through various processes. We describe a new mechanism underlying T cell recognition of melanoma cells, which involves the generation of a major histocompatibility complex class I–restricted epitope after tumor-mediated uptake and processing of an extracellular protein—a process referred to as cross-presentation—which is believed to be restricted to immune cells. We show that melanoma cells cross-present, in an αvβ3-dependent manner, an antigen derived from secreted matrix metalloproteinase–2 (MMP-2) to human leukocyte antigen A*0201-restricted T cells. Because MMP-2 activity is critical for melanoma progression, the MMP-2 peptide should be cross-presented by most progressing melanomas and represents a unique antigen for vaccine therapy of these tumors. PMID:15998788

  20. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients

    PubMed Central

    Boudewijns, Steve; Bol, Kalijn F.; Schreibelt, Gerty; Westdorp, Harm; Textor, Johannes C.; van Rossum, Michelle M.; Scharenborg, Nicole M.; de Boer, Annemiek J.; van de Rakt, Mandy W. M. M.; Pots, Jeanne M.; van Oorschot, Tom G. M.; Duiveman-de Boer, Tjitske; Olde Nordkamp, Michel A.; van Meeteren, Wilmy S. E. C.; van der Graaf, Winette T. A.; Bonenkamp, Johannes J.; de Wilt, Johannes H. W.; Aarntzen, Erik H. J. G.; Punt, Cornelis J. A.; Gerritsen, Winald R.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2016-01-01

    ABSTRACT Purpose: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients. Experimental design: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with tumor-associated antigens (TAA) gp100 and tyrosinase after radical lymph node dissection. Skin-test infiltrating lymphocytes (SKILs) obtained from delayed-type hypersensitivity skin-test biopsies were analyzed for the presence of TAA-specific CD8+ T cells by tetrameric MHC-peptide complexes and by functional TAA-specific T cell assays, defined by peptide-recognition (T2 cells) and/or tumor-recognition (BLM and/or MEL624) with specific production of Th1 cytokines and no Th2 cytokines. Results: Ninety-seven patients were analyzed: 21 with stage IIIA, 34 with stage IIIB, and 42 had stage IIIC disease. Tetramer-positive CD8+ T cells were present in 68 patients (70%), and 24 of them showed a response against all 3 epitopes tested (gp100:154–162, gp100:280–288, and tyrosinase:369–377) at any point during vaccinations. A functional T cell response was found in 62 patients (64%). Rates of peptide-recognition of gp100:154–162, gp100:280–288, and tyrosinase:369–377 were 40%, 29%, and 45%, respectively. Median recurrence-free survival and distant metastasis-free survival of the whole study population were 23.0 mo and 36.8 mo, respectively. Conclusions: DC vaccination induces a functional TAA-specific T cell response in the majority of stage III melanoma patients, indicating it is more effective in stage III than in stage IV melanoma patients. Furthermore, performing multiple cycles of vaccinations enhances the chance of a broader immune response. PMID:27622047

  1. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients

    PubMed Central

    Boudewijns, Steve; Bol, Kalijn F.; Schreibelt, Gerty; Westdorp, Harm; Textor, Johannes C.; van Rossum, Michelle M.; Scharenborg, Nicole M.; de Boer, Annemiek J.; van de Rakt, Mandy W. M. M.; Pots, Jeanne M.; van Oorschot, Tom G. M.; Duiveman-de Boer, Tjitske; Olde Nordkamp, Michel A.; van Meeteren, Wilmy S. E. C.; van der Graaf, Winette T. A.; Bonenkamp, Johannes J.; de Wilt, Johannes H. W.; Aarntzen, Erik H. J. G.; Punt, Cornelis J. A.; Gerritsen, Winald R.; Figdor, Carl G.; de Vries, I. Jolanda M.

    2016-01-01

    ABSTRACT Purpose: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients. Experimental design: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with tumor-associated antigens (TAA) gp100 and tyrosinase after radical lymph node dissection. Skin-test infiltrating lymphocytes (SKILs) obtained from delayed-type hypersensitivity skin-test biopsies were analyzed for the presence of TAA-specific CD8+ T cells by tetrameric MHC-peptide complexes and by functional TAA-specific T cell assays, defined by peptide-recognition (T2 cells) and/or tumor-recognition (BLM and/or MEL624) with specific production of Th1 cytokines and no Th2 cytokines. Results: Ninety-seven patients were analyzed: 21 with stage IIIA, 34 with stage IIIB, and 42 had stage IIIC disease. Tetramer-positive CD8+ T cells were present in 68 patients (70%), and 24 of them showed a response against all 3 epitopes tested (gp100:154–162, gp100:280–288, and tyrosinase:369–377) at any point during vaccinations. A functional T cell response was found in 62 patients (64%). Rates of peptide-recognition of gp100:154–162, gp100:280–288, and tyrosinase:369–377 were 40%, 29%, and 45%, respectively. Median recurrence-free survival and distant metastasis-free survival of the whole study population were 23.0 mo and 36.8 mo, respectively. Conclusions: DC vaccination induces a functional TAA-specific T cell response in the majority of stage III melanoma patients, indicating it is more effective in stage III than in stage IV melanoma patients. Furthermore, performing multiple cycles of vaccinations enhances the chance of a broader immune response.

  2. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis

    PubMed Central

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-01-01

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells. PMID:27796318

  3. Durable Complete Response from Metastatic Melanoma after Transfer of Autologous T Cells Recognizing 10 Mutated Tumor Antigens.

    PubMed

    Prickett, Todd D; Crystal, Jessica S; Cohen, Cyrille J; Pasetto, Anna; Parkhurst, Maria R; Gartner, Jared J; Yao, Xin; Wang, Rong; Gros, Alena; Li, Yong F; El-Gamil, Mona; Trebska-McGowan, Kasia; Rosenberg, Steven A; Robbins, Paul F

    2016-08-01

    Immunotherapy treatment of patients with metastatic cancer has assumed a prominent role in the clinic. Durable complete response rates of 20% to 25% are achieved in patients with metastatic melanoma following adoptive cell transfer of T cells derived from metastatic lesions, responses that appear in some patients to be mediated by T cells that predominantly recognize mutated antigens. Here, we provide a detailed analysis of the reactivity of T cells administered to a patient with metastatic melanoma who exhibited a complete response for over 3 years after treatment. Over 4,000 nonsynonymous somatic mutations were identified by whole-exome sequence analysis of the patient's autologous normal and tumor cell DNA. Autologous B cells transfected with 720 mutated minigenes corresponding to the most highly expressed tumor cell transcripts were then analyzed for their ability to stimulate the administered T cells. Autologous tumor-infiltrating lymphocytes recognized 10 distinct mutated gene products, but not the corresponding wild-type products, each of which was recognized in the context of one of three different MHC class I restriction elements expressed by the patient. Detailed clonal analysis revealed that 9 of the top 20 most prevalent clones present in the infused T cells, comprising approximately 24% of the total cells, recognized mutated antigens. Thus, we have identified and enriched mutation-reactive T cells and suggest that such analyses may lead to the development of more effective therapies for the treatment of patients with metastatic cancer. Cancer Immunol Res; 4(8); 669-78. ©2016 AACR.

  4. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma.

    PubMed

    Bidard, François-Clément; Madic, Jordan; Mariani, Pascale; Piperno-Neumann, Sophie; Rampanou, Aurore; Servois, Vincent; Cassoux, Nathalie; Desjardins, Laurence; Milder, Maud; Vaucher, Isabelle; Pierga, Jean-Yves; Lebofsky, Ronald; Stern, Marc-Henri; Lantz, Olivier

    2014-03-01

    Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have been recently investigated in several cancer types, but their respective clinical significance remains to be determined. In our prospective study, we compared the detection rate and the prognostic value of these two circulating biomarkers in patients with metastatic uveal melanoma. GNAQ/GNA11 mutations were characterized in archived tumor tissue. Using a highly sensitive and mutation-specific bidirectional pyrophosphorolysis-activated polymerization (bi-PAP) technique, GNAQ c.626A>T, GNAQ c.626A>C and GNA11 c.626A>T copy numbers were quantified in plasma from 12 mL of blood. CTCs were detected at the same time in 7.5 mL of blood by the CellSearch technique. Patient characteristics and outcome were prospectively collected. CTCs (≥1) were detected in 12 of the 40 included patients (30%, range 1-20). Among the 26 patients with known detectable mutations, ctDNA was detected and quantified in 22 (84%, range 4-11,421 copies/mL). CTC count and ctDNA levels were associated with the presence of miliary hepatic metastasis (p = 0.004 and 0.03, respectively), with metastasis volume (p = 0.005 and 0.004) and with each other (p < 0.0001). CTC count and ctDNA levels were both strongly associated with progression-free survival (p = 0.003 and 0.001) and overall survival (p = 0.0009 and <0.0001). In multivariate analyses, ctDNA appeared to be a better prognostic marker than CTC. In conclusion, ctDNA and CTC are correlated and both have poor prognostic significance. CTC detection can be performed in every patient but, in patients with detectable mutations, ctDNA was more frequently detected than CTC and has possibly more prognostic value.

  5. Chronic alcohol consumption inhibits melanoma growth but decreases the survival of mice immunized with tumor cell lysate and boosted with α-galactosylceramide

    PubMed Central

    Zhang, Faya; Zhu, Zhaohui; Meadows, Gary G.; Zhang, Hui

    2015-01-01

    Alcohol consumption increases the incidence of multiple types of cancer. However, how chronic alcohol consumption affects tumor progression and host survival remains largely unexplored. Using a mouse B16BL6 melanoma model, we studied the effects of chronic alcohol consumption on s.c. tumor growth, iNKT cell antitumor immune response, and host survival. The results indicate that although chronic alcohol consumption inhibits melanoma growth, this does not translate into increased host survival. Immunizing mice with a melanoma cell lysate does not significantly increase the median survival of water-drinking, melanoma-bearing mice, but significantly increases the median survival of alcohol-consuming, melanoma-bearing mice. Even though survival is extended in the alcohol-consuming mice after immunization, the mean survival is not different from the immunized mice in the water-drinking group. Immunization with tumor cell lysate combined with α-galatosylceramide activation of iNKT cells significantly increases host survival of both groups of melanoma-bearing mice compared to their respective non-immunized counterparts; however, the median survival of the alcohol-consuming group is significantly lower than that of the water-drinking group. Alcohol consumption increases NKT cells in the thymus and blood and skews NKT cell cytokine profile from Th1 dominant to Th2 dominant in the tumor-bearing mice. In summary, these results indicate that chronic alcohol consumption activates the immune system, which leads to the inhibition of s.c. melanoma growth and enhances the immune response to immunization with melanoma lysate. With tumor progression, alcohol consumption accelerates iNKT cell dysfunction and compromises antitumor immunity, which leads to decreased survival of melanoma-bearing mice. PMID:26118634

  6. Adenoviral Delivery of Tumor Necrosis Factor-α and Interleukin-2 Enables Successful Adoptive Cell Therapy of Immunosuppressive Melanoma.

    PubMed

    Siurala, Mikko; Havunen, Riikka; Saha, Dipongkor; Lumen, Dave; Airaksinen, Anu J; Tähtinen, Siri; Cervera-Carrascon, Víctor; Bramante, Simona; Parviainen, Suvi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2016-08-01

    Adoptive T-cell transfer is a promising treatment approach for metastatic cancer, but efficacy in solid tumors has only been achieved with toxic pre- and postconditioning regimens. Thus, adoptive T-cell therapies would benefit from complementary modalities that enable their full potential without excessive toxicity. We aimed to improve the efficacy and safety of adoptive T-cell transfer by using adenoviral vectors for direct delivery of immunomodulatory murine cytokines into B16.OVA melanoma tumors with concomitant T-cell receptor transgenic OT-I T-cell transfer. Armed adenoviruses expressed high local and low systemic levels of cytokine when injected into B16.OVA tumors, suggesting safety of virus-mediated cytokine delivery. Antitumor efficacy was significantly enhanced with adenoviruses coding for murine interleukin-2 (mIL-2) and tumor necrosis factor-α (mTNFα) when compared with T-cell transfer alone or viruses alone. Further improvement in efficacy was achieved with a triple combination of mIL-2, mTNFα, and OT-I T-cells. Mechanistic studies suggest that mIL-2 has an important role in activating T-cells at the tumor, while mTNFα induces chemokine expression. Furthermore, adenovirus treatments enhanced tumor-infiltration of OT-I T-cells as demonstrated by SPECT/CT imaging of (111)In-labeled cells. Our results suggest the utility of cytokine-coding adenoviruses for improving the efficacy of adoptive T-cell therapies.

  7. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients

    PubMed Central

    Stadler, Julia; Eder, Johanna; Pratscher, Barbara; Brandt, Sabine; Schneller, Doris; Müllegger, Robert; Vogl, Claus; Trautinger, Franz; Brem, Gottfried; Burgstaller, Joerg P.

    2015-01-01

    Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent “gold standard”. Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution), at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients. PMID:26562020

  8. Timosaponin AIII inhibits melanoma cell migration by suppressing COX-2 and in vivo tumor metastasis.

    PubMed

    Kim, Ki Mo; Im, A-Rang; Kim, Seung Hyung; Hyun, Jin Won; Chae, Sungwook

    2016-02-01

    Melanoma is the leading cause of death from skin disease, due in large part to its propensity to metastasize. We examined the effects of timosaponin AIII, a compound isolated from Anemarrhena asphodeloides Bunge, on melanoma cancer cell migration and the molecular mechanisms underlying these effects using B16-F10 and WM-115 melanoma cells lines. Overexpression of COX-2, its metabolite prostaglandin E2 (PGE2), and PGE2 receptors (EP2 and EP4) promoted cell migration in vitro. Exposure to timosaponin AIII resulted in concentration-dependent inhibition of cell migration, which was associated with reduced levels of COX-2, PGE2, and PGE2 receptors. Transient transfection of COX-2 siRNA also inhibited cell migration. Exposure to 12-O-tetradecanoylphorbal-13-acetate enhanced cell migration, whereas timosaponin AIII inhibited 12-O-tetradecanoylphorbal-13-acetate-induced cell migration and reduced basal levels of EP2 and EP4. Moreover, timosaponin AIII inhibited activation of nuclear factor-kappa B (NF-κB), an upstream regulator of COX-2 in B16-F10 cells. Consistent with our in vitro findings, in vivo studies showed that timosaponin AIII treatment significantly reduced the total number of metastatic nodules in the mouse lung and improved histological alterations in B16-F10-injected C57BL/6 mice. In addition, C57BL/6 mice treated with timosaponin AIII showed reduced expression of COX-2 and NF-κB in the lung. Together, these results indicate that timosaponin AIII has the capacity to inhibit melanoma cell migration, an essential step in the process of metastasis, by inhibiting expression of COX-2, NF-κB, PGE2, and PGE2 receptors.

  9. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients

    PubMed Central

    Radvanyi, Laszlo G.; Bernatchez, Chantale; Zhang, Minying; Fox, Patricia S.; Miller, Priscilla; Chacon, Jessica; Wu, Richard; Lizee, Gregory; Mahoney, Sandy; Alvarado, Gladys; Glass, Michelle; Johnson, Valen E.; McMannis, John D.; Shpall, Elizabeth; Prieto, Victor; Papadopoulos, Nicholas; Kim, Kevin; Homsi, Jade; Bedikian, Agop; Hwu, Wen-Jen; Patel, Sapna; Ross, Merrick I.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Lucci, Anthony; Royal, Richard; Cormier, Janice N.; Davies, Michael A.; Mansaray, Rahmatu; Fulbright, Orenthial J.; Toth, Christopher; Ramachandran, Renjith; Wardell, Seth; Gonzalez, Audrey; Hwu, Patrick

    2012-01-01

    Purpose Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) is a promising treatment for metastatic melanoma unresponsive to conventional therapies. We report here on the results of an ongoing Phase II clinical trial testing the efficacy of ACT using TIL in metastatic melanoma patients and the association of specific patient clinical characteristics and the phenotypic attributes of the infused TIL with clinical response. Experimental Design Altogether, 31 transiently lymphodepleted patients were treated with their expanded TIL followed by two cycles of high-dose (HD) IL-2 therapy. The effects of patient clinical features and the phenotypes of the T-cells infused on clinical response were determined. Results Overall, 15/31 (48.4%) patients had an objective clinical response using immune-related response criteria (irRC), with two patients (6.5%) having a complete response. Progression-free survival of >12 months was observed for 9/15 (60%) of the responding patients. Factors significantly associated with objective tumor regression included a higher number of TIL infused, a higher proportion of CD8+ T-cells in the infusion product, a more differentiated effector phenotype of the CD8+ population and a higher frequency of CD8+ T-cells co-expressing the negative costimulation molecule “B- and T-lymphocyte attenuator” (BTLA). No significant difference in telomere lengths of TIL between responders and non-responders was identified. Conclusion These results indicate that immunotherapy with expanded autologous TIL is capable of achieving durable clinical responses in metastatic melanoma patients and that CD8+ T-cells in the infused TIL, particularly differentiated effectors cells and cells expressing BTLA, are associated with tumor regression. PMID:23032743

  10. Anti-tumor Properties of cis-Resveratrol Methylated Analogues in Metastatic Mouse Melanoma Cells

    PubMed Central

    Morris, Valery L.; Toseef, Tayyaba; Nazumudeen, Fathima B.; Rivoira, Christian; Spatafora, Carmela; Tringali, Corrado; Rotenberg, Susan A.

    2015-01-01

    Resveratrol (E-3,5,4’-trihydroxystilbene) is a polyphenol found in red wine that has been shown to have multiple anti-cancer properties. Although cis (Z) and trans (E) isomers of resveratrol occur in nature, the cis form is not biologically active. However, methylation at key positions of the cis form results in more potent anti-cancer properties. This study determined that synthetic cis-polymethoxystilbenes (methylated analogues of cis-resveratrol) inhibited cancer-related phenotypes of metastatic B16 F10 and non-metastatic B16 F1 mouse melanoma cells. In contrast with cis or trans-resveratrol and trans-polymethoxystilbene which were ineffective at 10 μM, cis-polymethoxystilbenes inhibited motility and proliferation of melanoma cells with low micromolar specificity (IC50 <10 μM). Inhibitory effects by cis-polymethoxystilbenes were significantly stronger with B16 F10 cells and were accompanied by decreased expression of β-tubulin and pleckstrin homology domain-interacting protein, a marker of metastatic B16 cells. Thus, cis-polymethoxystilbenes have potential as chemotherapeutic agents for metastatic melanoma. PMID:25567208

  11. Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis.

    PubMed

    Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato

    2015-12-11

    The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1(-/-)) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4(-/-) mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors.

  12. Adoptive T-cell Therapy Using Autologous Tumor-infiltrating Lymphocytes for Metastatic Melanoma: Current Status and Future Outlook

    PubMed Central

    Wu, Richard; Forget, Marie-Andree; Chacon, Jessica; Bernatchez, Chantale; Haymaker, Cara; Chen, Jie Qing; Hwu, Patrick; Radvanyi, Laszlo

    2012-01-01

    Immunotherapy using autologous T-cells has emerged to be a powerful treatment option for patients with metastatic melanoma. These include the adoptive transfer of autologous tumor-infiltrating lymphocytes (TIL), T-cells transduced with high-affinity T-cell receptors (TCR) against major melanosomal tumor antigens, and T cells transduced with chimeric antigen receptors (CAR) composed of hybrid immunoglobulin light chains with endo-domains of T-cell signaling molecules. Among these and other options for T-cell therapy, TIL together with high-dose IL-2 has had the longest clinical history with multiple clinical trials in centers across the world consistently demonstrating durable clinical response rates near 50% or more. A distinct advantage of TIL therapy making it still the T-cell therapy of choice is the broad nature of the T-cell recognition against both defined as well as un-defined tumors antigens against all possible MHC, rather than the single specificity and limited MHC coverage of the newer TCR and CAR transduction technologies. In the past decade, significant inroads have been made in defining the phenotypes of T cells in TIL mediating tumor regression. CD8+ T cells are emerging to be critical, although the exact subset of CD8+ T cells exhibiting the highest clinical activity in terms of memory and effector markers is still controversial. We present a model in which both effector-memory and more differentiated effector T cells ultimately may need to cooperate to mediate long-term tumor control in responding patients. Although TIL therapy has shown great potential to treat metastatic melanoma, a number of issues have emerged that need to be addressed to bring it more into the mainstream of melanoma care. First, we have a reached the point where a pivotal phase II or phase III trials are needed in an attempt to gain regulatory approval of TIL as standard-of-care. Second, improvements in how we expand TIL for therapy are needed, that minimize the time the T-cells

  13. Myoepithelial cells from pleomorphic adenoma are not influenced by tumor conditioned media from breast ductal adenocarcinoma and melanoma cells: An in vitro study.

    PubMed

    Martinez, Elizabeth Ferreira; Demasi, Ana Paula Dias; Napimoga, Marcelo Henrique; Silva, Carolina Amália Barcellos; Navarini, Natalia Festugatto; Araújo, Ney Soares; DE Araújo, Vera Cavalcanti

    2015-01-01

    Myoepithelial cells have been implicated in the regulation of the transition from in situ to invasive neoplasia in salivary gland tumors. Considering the importance of the microenvironment of the tumor, the present in vitro study therefore analyzed the morphological and phenotypic changes undergone by benign myoepithelial cells from pleomorphic adenoma (PA) stimulated by tumor-conditioned medium. The benign myoepithelial cells were obtained from PA and were cultured with fibronectin extracellular matrix protein, supplemented with tumor-conditioned medium, which was harvested from breast ductal adenocarcinoma AU-565 and melanoma Hs 852.T cells. The morphological alterations were assessed by immunofluorescence analysis using vimentin antibody. The α-smooth muscle actin (α-SMA) and fibroblast growth factor (FGF)-2 proteins were analyzed by indirect immunofluorescence and quantitative polymerase chain reaction (qPCR). No morphological changes were observed in the myoepithelial cells cultured in fibronectin protein under stimulation from either tumor-conditioned medium. The immunofluorescence results, which were supported by qPCR analysis, revealed that only α-SMA was upregulated in the fibronectin substratum, with or without tumor-conditioned medium obtained from breast ductal adenocarcinoma and melanoma cells. No significant difference in FGF-2 mRNA expression was detected when the cells were cultured either in the tumor-conditioned medium or in the fibronectin substratum. The tumor-conditioned medium harvested from breast ductal adenocarcinoma and melanoma did not affect myoepithelial cell differentiation and function, which was reflected by the fact that there was no observed increase in α-SMA and FGF-2 expression, respectively.

  14. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells.

    PubMed

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  15. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells

    PubMed Central

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  16. Comparative analysis of BRAF, NRAS and c-KIT mutation status between tumor tissues and autologous tumor cell-lines of stage III/IV melanoma.

    PubMed

    Knol, Anne-Chantal; Pandolfino, Marie-Christine; Vallée, Audrey; Nguyen, Frédérique; Lella, Virginie; Khammari, Amir; Denis, Marc; Puaux, Anne-Laure; Dréno, Brigitte

    2015-01-01

    In the last decade, advances in molecular biology have provided evidence of the genotypic heterogeneity of melanoma. We analysed BRAF, NRAS and c-KIT alterations in tissue samples from 63 stage III/IV melanoma patients and autologous cell-lines, using either allele-specific or quantitative PCR. The expression of BRAF V600E protein was also investigated using an anti-BRAF antibody in the same tissue samples. 81% of FFPE samples and tumor cell-lines harboured a genetic alteration in either BRAF (54%) or NRAS (27%) oncogenes. There was a strong concordance (100%) between tissue samples and tumor cell-lines. The BRAF V600E mutant-specific antibody showed high sensitivity (96%) and specificity (100%) for detecting the presence of a BRAF V600E mutation. The correlation was of 98% between PCR and immunohistochemistry results for BRAF mutation. These results suggest that BRAF and NRAS mutation status of tumor cells is not affected by culture conditions.

  17. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells.

    PubMed

    Pal, Harish Chandra; Baxter, Ronald D; Hunt, Katherine M; Agarwal, Jyoti; Elmets, Craig A; Athar, Mohammad; Afaq, Farrukh

    2015-09-29

    Melanoma is the most deadly form of cutaneous malignancy, and its incidence rates are rising worldwide. In melanoma, constitutive activation of the BRAF/MEK/ERK (MAPK) and PI3K/AKT/mTOR (PI3K) signaling pathways plays a pivotal role in cell proliferation, survival and tumorigenesis. A combination of compounds that lead to an optimal blockade of these critical signaling pathways may provide an effective strategy for prevention and treatment of melanoma. The phytochemical fisetin is known to possess anti-proliferative and pro-apoptotic activities. We found that fisetin treatment inhibited PI3K signaling pathway in melanoma cells. Therefore, we investigated the effect of fisetin and sorafenib (an RAF inhibitor) alone and in combination on cell proliferation, apoptosis and tumor growth. Combination treatment (fisetin + sorafenib) more effectively reduced the growth of BRAF-mutated human melanoma cells at lower doses when compared to individual agents. In addition, combination treatment resulted in enhanced (i) apoptosis, (ii) cleavage of caspase-3 and PARP, (iii) expression of Bax and Bak, (iv) inhibition of Bcl2 and Mcl-1, and (v) inhibition of expression of PI3K, phosphorylation of MEK1/2, ERK1/2, AKT and mTOR. In athymic nude mice subcutaneously implanted with melanoma cells (A375 and SK-MEL-28), we found that combination therapy resulted in greater reduction of tumor growth when compared to individual agents. Furthermore, combination therapy was more effective than monotherapy in: (i) inhibition of proliferation and angiogenesis, (ii) induction of apoptosis, and (iii) inhibition of the MAPK and PI3K pathways in xenograft tumors. These data suggest that simultaneous inhibition of both these signaling pathways using combination of fisetin and sorafenib may serve as a therapeutic option for the management of melanoma.

  18. Simultaneous Inhibition of Key Growth Pathways in Melanoma Cells and Tumor Regression by a Designed Bidentate Constrained Helical Peptide

    PubMed Central

    Dhar, Amlanjyoti; Mallick, Shampa; Ghosh, Piya; Maiti, Atanu; Ahmed, Israr; Bhattacharyya, Seemana; Mandal, Tapashi; Manna, Asit; Roy, Koushik; Singh, Sandeep; Nayak, Dipak Kumar; Wilder, Paul T.; Markowitz, Joseph; Weber, David J.; Ghosh, Mrinal K.; Chattopadhyay, Samit; Guha, Rajdeep; Konar, Aditya; Bandyopadhyay, Santu; Roy, Siddhartha

    2014-01-01

    Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight binding peptide, TRTK-12. The helical conformation of the peptide was constrained by substitution of α-amino isobutyric acid----an amino acid having high helical propensity----in positions which do not interact with S100B. A branched bidentate version of the peptide, bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts anti-proliferative action through simultaneous inhibition of key growth pathways including reactivation of wild-type p53 and inhibition of Akt and STAT-3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development. PMID:24839139

  19. Culturing Uveal Melanoma Cells.

    PubMed

    Angi, Martina; Versluis, Mieke; Kalirai, Helen

    2015-04-01

    A major challenge in cancer research is the use of appropriate models with which to study a specific biological question. Cell lines have long been used to study cellular processes and the effects of individual molecules because they are easy to use, grow rapidly, produce reproducible results and have a strong track record in research. In uveal melanoma in particular, the absence of animal models that faithfully replicate the behavior of the human disease has propagated the generation and use of numerous cell lines by individual research groups. This in itself, however, can be viewed as a problem due to the lack of standardization when characterizing these entities to determine how closely they reflect the genetic and phenotypic characteristics of this disease. The alternative is to use in vitro primary cultures of cells obtained directly from uveal melanoma patient samples, but this too has its difficulties. Primary cell cultures are difficult to use, hard to obtain and can show considerable heterogeneity. In this article, we review the following: (1) the uveal melanoma cell lines that are currently available, discussing the importance of establishing a bank of those that represent the molecular heterogeneity of uveal melanoma; (2) the methods used to isolate and perform short-term cultures of primary uveal melanoma cells, and (3) the establishment of 3D tissue culture models that bridge the gap between 2D in vitro systems and in vivo models with which to dissect cancer biology and perform therapeutic screens. PMID:27171555

  20. Inhibition of cytokine-induced microvascular arrest of tumor cells by recombinant endostatin prevents experimental hepatic melanoma metastasis.

    PubMed

    Mendoza, Lorea; Valcárcel, María; Carrascal, Teresa; Egilegor, Eider; Salado, Clarisa; Sim, B Kim Lee; Vidal-Vanaclocha, Fernando

    2004-01-01

    We investigated effects of endostatin (ES) in the prometastatic microenvironment of inflammation occurring during the microvascular phase of cancer cell infiltration in the liver. We used a model of intrasplenic injection of B16 melanoma (B16M) cells leading to hepatic metastasis through vascular cell adhesion molecule-(VCAM-1)-mediated capillary arrest of cancer cells via interleukin-18 (IL-18)-dependent mechanism. We show that administration of 50 mg/kg recombinant human (rh) ES 30 min before B16M, plus repetition of same dose for 3 additional days decreased metastasis number by 60%. A single dose of rhES before B16M injection reduced hepatic microvascular retention of luciferase-transfected B16M by 40% and inhibited hepatic production of tumor necrosis factor alpha (TNF-alpha) and IL-18 and VCAM-1 expression by hepatic sinusoidal endothelia (HSE). Consistent with these data, rhES inhibited VCAM-1-dependent B16M cell adhesion to primary cultured HSE receiving B16M conditioned medium, and it abolished the HSE cell production of TNF-alpha and IL-18 induced by tumor-derived vascular endothelial cell growth factor (VEGF). rhES abrogated recombinant murine VEGF-induced tyrosine phosphorylation of KDR/flk-1 receptor in HSE cells, preventing the proinflammatory action of tumor-derived VEGF on HSE. rhES also abolished hepatic production of TNF-alpha, microvascular retention of luciferase-transfected B16M, and adhesion of B16M cells to isolated HSE cells, all of them induced in mice given 5 micro g/kg recombinant murine VEGF for 18 h. This capillary inflammation-deactivating capability constitutes a nonantiangiogenic antitumoral action of endostatin that decreases cancer cell arrest within liver microvasculature and prevents metastases promoted by proinflammatory cytokines induced by VEGF. PMID:14729638

  1. Myeloid Cells' Evasion of Melanoma Immunity

    PubMed Central

    Wang, Jun; Chen, Lieping

    2015-01-01

    An immune-suppressive role of myeloid-derived suppressor cells (MDSCs) in melanoma has long been speculated, whereas molecular mechanisms underlying this role are not well understood. Here, Chung and colleagues show that dendritic cell-associated, heparan sulfate proteoglycans-dependent integrin ligand (DC-HIL), a cell surface immune-modulatory molecule, is highly expressed on tumor-associated MDSCs. Genetic ablation or antibody blockade of DC-HIL delays the growth of transplantable B16 melanoma in syngeneic mice, which is accompanied by enhanced antitumor T-cell activities. These findings support a role for DC-HIL in immune evasion within the melanoma microenvironment. PMID:25318429

  2. Melanoma cell galectin-1 ligands functionally correlate with malignant potential*

    PubMed Central

    Yazawa, Erika M.; Geddes-Sweeney, Jenna E.; Cedeno-Laurent, Filiberto; Walley, Kempland C.; Barthel, Steven R.; Opperman, Matthew J.; Liang, Jennifer; Lin, Jennifer Y.; Schatton, Tobias; Laga, Alvaro C.; Mihm, Martin C.; Qureshi, Abrar A.; Widlund, Hans R.; Murphy, George F.; Dimitroff, Charles J.

    2015-01-01

    Galectin-1 (Gal-1)-binding to Gal-1 ligands on immune and endothelial cells can influence melanoma development through dampening anti-tumor immune responses and promoting angiogenesis. However, whether Gal-1 ligands are functionally expressed on melanoma cells to help control intrinsic malignant features remains poorly understood. Here, we analyzed expression, identity and function of Gal-1 ligands in melanoma progression. Immunofluorescent analysis of benign and malignant human melanocytic neoplasms revealed that Gal-1 ligands were abundant in severely-dysplastic nevi as well as in primary and metastatic melanomas. Biochemical assessments indicated that melanoma cell adhesion molecule (MCAM) was a major Gal-1 ligand on melanoma cells that was largely dependent on its N-glycans. Other melanoma cell Gal-1 ligand activity conferred by O-glycans was negatively regulated by α2,6 sialyltransferase ST6GalNAc2. In Gal-1-deficient mice, MCAM-silenced (MCAMKD) or ST6GalNAc2-overexpressing (ST6O/E) melanoma cells exhibited slower growth rates, underscoring a key role for melanoma cell Gal-1 ligands and host Gal-1 in melanoma growth. Further analysis of MCAMKD or ST6O/E melanoma cells in cell migration assays indicated that Gal-1 ligand-dependent melanoma cell migration was severely inhibited. These findings provide a refined perspective on Gal-1 – melanoma cell Gal-1 ligand interactions as contributors to melanoma malignancy. PMID:25756799

  3. In vitro and in vivo studies on the cytotoxicity of irradiated silk fibroin against mouse melanoma tumor cell

    NASA Astrophysics Data System (ADS)

    Byun, Eui-Baek; Sung, Nak-Yun; Kwon, Sun-Kyu; Song, Beom-Seok; Kim, Jae-Hun; Choi, Jong-il; Hwang, Han-Joon; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    The physicochemical properties of proteins can be altered by irradiation. But, it is rarely that the researches on the functional properties of irradiated proteins have been reported. Fibroin is a fibrous protein derived from silkworm Bombyx mori and has been suggested as a biomaterial for biomedical application. Therefore, fibroin was selected as a model protein and was examined with the irradiation effects on the cytotoxicity of fibroin on tumor cell. The cytotoxicity of fibroin against mouse melanoma cell (B16BL6) showed a significant increase dependent upon the increase of irradiation dose. And also, the splenocyte proliferation activities of fibroin were increased by gamma irradiation. In addition, the oral administration of irradiated fibroin significantly increased the inhibition rate of tumor growth in tumor-bearing mouse model. The reason might be due to the change of protein structure by gamma irradiation and is being studied. From these result, it could be concluded that the irradiated fibroin might be a potential candidate as a valuable product in food and medical industry.

  4. Dendritic cells loaded with mRNA encoding full-length tumor antigens prime CD4+ and CD8+ T cells in melanoma patients.

    PubMed

    Van Nuffel, An M T; Benteyn, Daphné; Wilgenhof, Sofie; Pierret, Lauranne; Corthals, Jurgen; Heirman, Carlo; van der Bruggen, Pierre; Coulie, Pierre G; Neyns, Bart; Thielemans, Kris; Bonehill, Aude

    2012-05-01

    It is generally thought that dendritic cells (DCs) loaded with full-length tumor antigen could improve immunotherapy by stimulating broad T-cell responses and by allowing treatment irrespective of the patient's human leukocyte antigen (HLA) type. To investigate this, we determined the specificity of T cells from melanoma patients treated with DCs loaded with mRNA encoding a full-length tumor antigen fused to a signal peptide and an HLA class II sorting signal, allowing presentation in HLA class I and II. In delayed-type hypersensitive (DTH)-biopsies and blood, we found functional CD8(+) and CD4(+) T cells recognizing novel treatment-antigen-derived epitopes, presented by several HLA types. Additionally, we identified a CD8(+) response specific for the signal peptide incorporated to elicit presentation by HLA class II and a CD4(+) response specific for the fusion region of the signal peptide and one of the antigens. This demonstrates that the fusion proteins contain newly created immunogenic sequences and provides evidence that ex vivo-generated mRNA-modified DCs can induce effector CD8(+) and CD4(+) T cells from the naive T-cell repertoire of melanoma patients. Thus, this work provides definitive proof that DCs presenting the full antigenic spectrum of tumor antigens can induce T cells specific for novel epitopes and can be administered to patients irrespective of their HLA type.

  5. Dendritic Cells Loaded With mRNA Encoding Full-length Tumor Antigens Prime CD4+ and CD8+ T Cells in Melanoma Patients

    PubMed Central

    Van Nuffel, An MT; Benteyn, Daphné; Wilgenhof, Sofie; Pierret, Lauranne; Corthals, Jurgen; Heirman, Carlo; van der Bruggen, Pierre; Coulie, Pierre G; Neyns, Bart; Thielemans, Kris; Bonehill, Aude

    2012-01-01

    It is generally thought that dendritic cells (DCs) loaded with full-length tumor antigen could improve immunotherapy by stimulating broad T-cell responses and by allowing treatment irrespective of the patient's human leukocyte antigen (HLA) type. To investigate this, we determined the specificity of T cells from melanoma patients treated with DCs loaded with mRNA encoding a full-length tumor antigen fused to a signal peptide and an HLA class II sorting signal, allowing presentation in HLA class I and II. In delayed-type hypersensitive (DTH)-biopsies and blood, we found functional CD8+ and CD4+ T cells recognizing novel treatment-antigen-derived epitopes, presented by several HLA types. Additionally, we identified a CD8+ response specific for the signal peptide incorporated to elicit presentation by HLA class II and a CD4+ response specific for the fusion region of the signal peptide and one of the antigens. This demonstrates that the fusion proteins contain newly created immunogenic sequences and provides evidence that ex vivo-generated mRNA-modified DCs can induce effector CD8+ and CD4+ T cells from the naive T-cell repertoire of melanoma patients. Thus, this work provides definitive proof that DCs presenting the full antigenic spectrum of tumor antigens can induce T cells specific for novel epitopes and can be administered to patients irrespective of their HLA type. PMID:22371843

  6. Tumor vascularity and hematogenous metastasis in experimental murine intraocular melanoma.

    PubMed Central

    Grossniklaus, H E

    1998-01-01

    PURPOSE: The purpose of this study is to test the hypothesis that primary tumor vascularity in a murine model of intraocular melanoma positively correlates with the development and hematogenous spread of metastasis. METHODS: Forty 12-week-old C57BL6 mice were inoculated in either the anterior chamber (AC) or posterior compartment (PC) of 1 eye with 5 x 10(5) cells/microL of Queens tissue culture melanoma cells. The inoculated eye was enucleated at 2 weeks; the mice were sacrificed at 4 weeks postinoculation, and necropsies were performed. The enucleated eyes were examined for histologic and ultrastructural features, including relationship of tumor cells to tumor vascular channels, vascular pattern, and mean vascular density. RESULTS: Melanoma grew and was confined to the eye in 12 of 20 AC eyes and 10 of 20 PC eyes. Histologic and electron microscopic examination showed tumor invasion into vascular channels. Five of 12 AC tumors (42%) and 8 of 10 PC tumors (80%) metastasized. All of the AC tumors, but none of the PC tumors, that distantly metastasized also metastasized to ipsilateral cervical lymph nodes (P = .00535). There was no statistically significant difference of vascular pattern between the melanomas that did and did not metastasize to lungs in the PC group (P = .24), although there was a significant difference in the AC group (P = .02). Tumors with high-grade vascular patterns were more likely to metastasize than tumors with low-grade vascular patterns in the AC group. The mean vascular density positively correlated with the presence and number of metastases in both groups (P = .0000 and P < .001, respectively). There was no statistically significant difference of vascular pattern and mean vascular density for AC versus PC melanoma (P = .97). CONCLUSIONS: The rate of metastasis in this murine intraocular melanoma model positively correlates with primary tumor vascularity. The melanoma metastasizes via invasion of tumor vascular channels. AC melanoma also

  7. Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice: quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases.

    PubMed

    Takahashi, Yuki; Nishikawa, Makiya; Kobayashi, Naoki; Takakura, Yoshinobu

    2005-07-20

    Silencing of oncogenes or other genes contributing to tumor malignancy or progression by RNA interference (RNAi) offers a promising approach to treating tumor patients. To achieve RNAi-based tumor therapy, a small interfering RNA (siRNA) or siRNA-expressing vector needs to be delivered to tumor cells, but little information about its in vivo delivery has been reported. In this study, we examined whether the expression of the target gene in tumor cells can be suppressed by the delivery of RNAi effectors to primary and metastatic tumor cells. To quantitatively evaluate the RNAi effects in tumor cells, mouse melanoma B16-BL6 cells were stably transfected with both firefly (a model target gene) and sea pansy (an internal standard gene) luciferase genes to obtain B16-BL6/dual Luc cells. The target gene expression in subcutaneous primary tumors of B16-BL6/dual Luc cells was significantly suppressed by direct injection of the RNAi effectors followed by electroporation. The expression in metastatic hepatic tumors was also significantly reduced by an intravenous injection of either RNAi effector by the hydrodynamics-based procedure. These results indicate that the both RNAi effectors have a potential to silence target gene in tumor cells in vivo when successfully delivered to tumor cells. PMID:15936841

  8. Ajoene inhibits both primary tumor growth and metastasis of B16/BL6 melanoma cells in C57BL/6 mice.

    PubMed

    Taylor, Peter; Noriega, Raquel; Farah, Carla; Abad, María-Jesús; Arsenak, Miriam; Apitz, Rafael

    2006-08-01

    Ajoene is an organosulphur compound derived from garlic with important effects on several membrane-associated processes such as platelet aggregation, as well as being cytotoxic for tumor cell lines in vitro. In the present study, we investigated the effect of ajoene on different cell types in vitro, as well as its inhibitory effects on both primary tumors and metastasis in a mouse model. We found ajoene to inhibit tumor cell growth in vitro, but also to inhibit strongly metastasis to lung in the B16/BL6 melanoma tumor model in C57BL/6 mice. As far as we are aware, this is the first report of the anti-metastatic effect of ajoene. Ajoene also inhibited tumor-endothelial cell adhesion, as well as the in vivo TNF-alpha response to lipopolysaccharide. Possible mechanisms of its antitumoral activity are discussed in the light of these results.

  9. Norepinephrine promotes tumor microenvironment reactivity through β3-adrenoreceptors during melanoma progression

    PubMed Central

    Calvani, Maura; Pelon, Floriane; Comito, Giuseppina; Taddei, Maria Letizia; Moretti, Silvia; Innocenti, Stefania; Nassini, Romina; Gerlini, Gianni; Borgognoni, Lorenzo; Bambi, Franco; Giannoni, Elisa; Filippi, Luca; Chiarugi, Paola

    2015-01-01

    Stress has an emerging role in cancer and targeting stress-related β-adrenergic receptors (AR) has been proposed as a potential therapeutic approach in melanoma. Here we report that β3-AR expression correlates with melanoma aggressiveness. In addition, we highlight that β3-AR expression is not only restricted to cancer cells, but it is also expressed in vivo in stromal, inflammatory and vascular cells of the melanoma microenvironment. Particularly, we demonstrated that β3-AR can (i) instruct melanoma cells to respond to environmental stimuli, (ii) enhance melanoma cells response to stromal fibroblasts and macrophages, (iii) increase melanoma cell motility and (iv) induce stem-like traits. Noteworthy, β3-AR activation in melanoma accessory cells drives stromal reactivity by inducing pro-inflammatory cytokines secretion and de novo angiogenesis, sustaining tumor growth and melanoma aggressiveness. β3-ARs also play a mandatory role in the recruitment to tumor sites of circulating stromal cells precursors, in the differentiation of these cells towards different lineages, further favoring tumor inflammation, angiogenesis and ultimately melanoma malignancy. Our findings validate selective β3-AR antagonists as potential promising anti-metastatic agents. These could be used to complement current therapeutic approaches for melanoma patients (e.g. propranolol) by targeting non-neoplastic stromal cells, hence reducing therapy resistance of melanoma. PMID:25474135

  10. Establishment and characterization of a transplantable tumor line (RMM) and cell line (RMM-C) from a malignant amelanotic melanoma in the F344 rat, with particular reference to galectin-3 expression in vivo and in vitro.

    PubMed

    Bondoc, Alexandra; Katou-Ichikawa, Chisa; Golbar, Hossain M; Tanaka, Miyuu; Izawa, Takeshi; Kuwamura, Mitsuru; Yamate, Jyoji

    2016-11-01

    To investigate characteristics of malignant melanomas with various pathobiological features, a homotransplantable tumor line (RMM) was established from a spontaneous amelanotic melanoma found in the pinna of an aged F344 rat. RMM tumors were transplanted in syngeneic rats by serial subcutaneous implantation with 100% intake. The original and RMM tumors consisted of spindle-shaped cells arranged mainly in interlacing bundles. Immunohistochemically, the neoplastic cells were positive to PNL-2 (melanocytes), nestin (neuroectodermal stem cells), S-100 (neurogenic cells) and vimentin (mesenchymal cells). Electron microscopically, tumor cells possessed single membrane-bound pre-melanosomes. Further, a cell line (RMM-C) was induced from an RMM tumor. RMM-C cells and the induced tumors in syngeneic rats showed immunohistochemical reactions similar to the original and RMM tumors. Interestingly, serum level of galectin-3 expression was increased with growing RMM tumors, and the expression was influenced by TNF-α (increase) or TGF-β1 (decrease), indicating a possible biomarker of amelanotic melanomas. The RMM tumors and RMM-C cell line could become useful tools for studies on the pathobiology, including tumor immunity, and development of therapeutic strategies against this malignancy. These tools are the first tumor lines of amelanotic melanomas in the rat. PMID:26949998

  11. Cross-talk between Dopachrome Tautomerase and Caveolin-1 Is Melanoma Cell Phenotype-specific and Potentially Involved in Tumor Progression.

    PubMed

    Popa, Ioana L; Milac, Adina L; Sima, Livia E; Alexandru, Petruta R; Pastrama, Florin; Munteanu, Cristian V A; Negroiu, Gabriela

    2016-06-10

    l-Dopachrome tautomerase (l-DCT), also called tyrosinase-related protein-2 (TRP-2), is a melanoma antigen overexpressed in most chemo-/radiotherapeutic stress-resistant tumor clones, and caveolin-1 (CAV1) is a main regulator of numerous signaling processes. A structural and functional relationship between DCT and CAV1 is first presented here in two human amelanotic melanoma cell lines, derived from vertical growth phase (MelJuSo) and metastatic (SKMel28) melanomas. DCT co-localizes at the plasma membrane with CAV1 and Cavin-1, another molecular marker for caveolae in both cell phenotypes. Our novel structural model proposed for the DCT-CAV1 complex, in addition to co-immunoprecipitation and mass spectrometry data, indicates a possible direct interaction between DCT and CAV1. The CAV1 control on DCT gene expression, DCT post-translational processing, and subcellular distribution is cell phenotype-dependent. DCT is a modulator of CAV1 stability and supramolecular assembly in both cell phenotypes. During autocrine stimulation, the expressions of DCT and CAV1 are oppositely regulated; DCT increases while CAV1 decreases. Sub-confluent MelJuSo clones DCT(high)/CAV1(low) are proliferating and acquire fibroblast-like morphology, forming massive, confluent clusters as demonstrated by immunofluorescent staining and TissueFAXS quantitative image cytometry analysis. CAV1 down-regulation directly contributes to the expansion of MelJuSo DCT(high) subtype. CAV1 involved in the perpetuation of cell phenotype-overexpressing anti-stress DCT molecule supports the concept that CAV1 functions as a tumor suppressor in early stages of melanoma. DCT is a regulator of the CAV1-associated structures and is possibly a new molecular player in CAV1-mediated processes in melanoma.

  12. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways

    SciTech Connect

    Matsuoka, Hiroshi; Tsubaki, Masanobu; Yamazoe, Yuzuru; Ogaki, Mitsuhiko; Satou, Takao; Itoh, Tatsuki; Kusunoki, Takashi; Nishida, Shozo

    2009-07-15

    In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKC{alpha} and PKC{delta} phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.

  13. The novel tumor suppressor p33ING2 enhances UVB-induced apoptosis in human melanoma cells

    SciTech Connect

    Chin, M.Y.; Ng, Kin Cheung P.; Li Gang . E-mail: gangli@interchange.ubc.ca

    2005-04-01

    The roles of p33ING2 as a tumor suppressor candidate have been shown through regulation of gene transcription, induction of cell cycle arrest, and apoptosis. As p33ING2 shares 58.9% homology with p33ING1b, we hypothesized that p33ING2 shares functional similarities with p33ING1b. We previously found that p33ING1b cooperates with p53 to enhance UVB-induced apoptosis. Here, we report that overexpression of p33ING2 enhanced apoptosis in UVB-irradiated and non-irradiated melanoma MMRU cells. We demonstrate that enhancement of apoptosis by p33ING2 requires the presence of functional p53. Furthermore, we found that overexpression of p33ING2 significantly downregulated the expression of Bcl-2 after UVB irradiation, resulting in an increased Bax/Bcl-2 ratio. Moreover, we found that p33ING2 promoted Bax translocation to mitochondria, altered the mitochondrial membrane potential, and induced cytochrome c release and thus the activation of caspases 9 and 3. In addition, we showed that under non-stress conditions p33ING2 upregulates Fas expression and activates caspase 8. Taken together, we demonstrate that p33ING2 cooperates with p53 to regulate apoptosis via activation of both the mitochondrial/intrinsic and death-receptor/extrinsic apoptotic pathways.

  14. MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma.

    PubMed

    Satzger, Imke; Mattern, Anika; Kuettler, Uta; Weinspach, Dirk; Voelker, Bernward; Kapp, Alexander; Gutzmer, Ralf

    2010-06-01

    MicroRNAs (miRNAs) are small noncoding RNAs ( approximately 22 bp) that posttranscriptionally regulate gene expression. MiRNAs possess oncogenic or tumor suppressor activity in various tumors but little is known about miRNA expression pattern in malignant melanoma. We determined the expression level of 16 potentially relevant miRNAs (miR-15a, miR-15b, miR-16, miR-34a, miR-210, let-7I, miR-23a, miR-23b, miR-24, miR-27a, miR-27b, miR-100, miR-137, miR-222, miR-373-1, miR-373*) by real-time PCR in 6 preparations of normal melanocytes vs. 10 melanoma cell lines and in formalin fixed paraffin embedded tissue of 11 melanocytic nevi versus 16 melanomas. MiR-15b and miR-210 were significantly upregulated, miR-34a was significantly downregulated in melanomas compared with melanocytic nevi. These 3 miRNAs were analyzed in a total of 128 primary melanomas from patients with detailed clinical follow-up information. High expression of miR-15b (but not miR-210 upregulation and miR-34a downregulation) was significantly associated with poor recurrence free survival and overall survival by univariate Kaplan-Meier and multivariate Cox analyses. Downregulation of miR-15b in two melanoma cell lines with high miR-15b expression by transfection with anti-miR-15b siRNA was associated with reduced tumor cell proliferation, whereas apoptosis was increased. In summary, miRNA expression levels show distinct differences comparing benign and malignant melanocytic cell proliferations and can provide independent prognostic informations. MiR-15b appears to represent a particular important miRNA in melanoma that is associated with poor prognosis and tumorigenesis.

  15. PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8⁺ T cells induced by melanoma vaccines.

    PubMed

    Fourcade, Julien; Sun, Zhaojun; Pagliano, Ornella; Chauvin, Joe-Marc; Sander, Cindy; Janjic, Bratislav; Tarhini, Ahmad A; Tawbi, Hussein A; Kirkwood, John M; Moschos, Stergios; Wang, Hong; Guillaume, Philippe; Luescher, Immanuel F; Krieg, Arthur; Anderson, Ana C; Kuchroo, Vijay K; Zarour, Hassane M

    2014-02-15

    Although melanoma vaccines stimulate tumor antigen-specific CD8(+) T cells, objective clinical responses are rarely observed. To investigate this discrepancy, we evaluated the character of vaccine-induced CD8(+) T cells with regard to the inhibitory T-cell coreceptors PD-1 and Tim-3 in patients with metastatic melanoma who were administered tumor vaccines. The vaccines included incomplete Freund's adjuvant, CpG oligodeoxynucleotide (CpG), and the HLA-A2-restricted analog peptide NY-ESO-1 157-165V, either by itself or in combination with the pan-DR epitope NY-ESO-1 119-143. Both vaccines stimulated rapid tumor antigen-specific CD8(+) T-cell responses detected ex vivo, however, tumor antigen-specific CD8(+) T cells produced more IFN-γ and exhibited higher lytic function upon immunization with MHC class I and class II epitopes. Notably, the vast majority of vaccine-induced CD8(+) T cells upregulated PD-1 and a minority also upregulated Tim-3. Levels of PD-1 and Tim-3 expression by vaccine-induced CD8(+) T cells at the time of vaccine administration correlated inversely with their expansion in vivo. Dual blockade of PD-1 and Tim-3 enhanced the expansion and cytokine production of vaccine-induced CD8(+) T cells in vitro. Collectively, our findings support the use of PD-1 and Tim-3 blockades with cancer vaccines to stimulate potent antitumor T-cell responses and increase the likelihood of clinical responses in patients with advanced melanoma. PMID:24343228

  16. Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C NMR Spectroscopy of Perfused Tumor Cells.

    PubMed

    Shestov, Alexander A; Mancuso, Anthony; Lee, Seung-Cheol; Guo, Lili; Nelson, David S; Roman, Jeffrey C; Henry, Pierre-Gilles; Leeper, Dennis B; Blair, Ian A; Glickson, Jerry D

    2016-03-01

    A network model for the determination of tumor metabolic fluxes from (13)C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-(13)C2]glucose under normoxic conditions at 37 °C and monitored by (13)C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼ 50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼ 6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism. PMID:26703469

  17. T-cell-receptor engagement and tumor ICAM-1 up-regulation are required to by-pass low susceptibility of melanoma cells to autologous CTL-mediated lysis.

    PubMed

    Anichini, A; Mortarini, R; Alberti, S; Mantovani, A; Parmiani, G

    1993-04-01

    Tumor-specific and non-specific CD3+, TcR alpha beta+, CD8+ cytotoxic T-cell (CTL) clones, isolated from tumor-infiltrating lymphocytes (TIL) or peripheral blood lymphocytes (PBL) of a melanoma patient and allogeneic LAK cells, were used to investigate the requirements for bypassing the low lysability of some melanoma clones derived from an s.c. metastasis from which highly lysable clones were also obtained. Cytofluorimetric analysis showed that all melanoma clones expressed ICAM-1, although to different extents, reaching a 10-fold difference in fluorescence units, while HLA class-I antigens were similarly expressed. The differences in expression of ICAM-1 among tumor clones correlated with differences in lysability, by both specific and non-specific CTL, but were not large enough to affect lymphocyte-tumor conjugate formation. Cytokine- or gene-transfer-mediated up-regulation of ICAM-1 did not induce de novo lysis of ICAM-1low tumor cells; however, it markedly enhanced a low level of killing of the same cells by tumor-specific, TcR-dependent and HLA-restricted CTL clones but not by non-specific, TcR-independent effectors. In addition, lysis of melanoma clones by any effector was similarly inhibited by anti-ICAM-1 and anti-LFA-1 antibodies. This indicates that by-pass of low lysability of ICAM-1low melanoma clones by CTL clones, after ICAM-1 up-regulation, is possible only if simultaneous LFA-1 and TcR engagement takes place. In addition, these results suggest that the constitutive high level of expression of ICAM-1 on the subset of ICAM-1high melanoma cells must be only one of the factors contributing to the high lysability of these cells by any effector.

  18. Melanin-producing dendritic cells and histogenesis of malignant melanoma.

    PubMed

    Paul, E; Illig, L

    1976-12-15

    In a total of 70 malignant melanomas we searched for dendritic-branched fluorescent pigment cells. Hereby we found that dendritic-branched tumor cells are especially characteristic in cases of lentigo maligna. In the flat parts of these lesions, these cells are the predominant cell type. Dendrites in the pseudonests or nodular parts of lentigo maligna can only seldom be detected. The prevailing cell type in superficial spreading melanoma and in primary nodular melanoma is the round or oval unbranched tumor cell. In some cases of nodular melanoma, cells with short dendrites could be seen. In superficial spreading melanoma, dendritic tumor cells could be observed particularly in such tumor parts, in which the malignant cells were scattered between the keratinocytes. Melanocytes can evidently produce dendrites between cells of the sebaceous gland. In the marginal parts or in parts of regression of some superficial spreading melanomas, a great area of dendritic tumor cells could also be detected in the basal parts of the epidermis. Altogether, however, in superficial spreading melanoma and in nodular melanoma they occur only rarely. Dendritic-branched cells are also visible in lymph-node metastases of SSM and NM. The fact that the dendritic tumor cells can be observed in all 3 types of tumors (according to Clark and coworkers) gives a rise to a new discussion of the dualistic theory of melanoma-histogenesis of Mishima. Although this theory could not be disproved, up to now on the basis of the present results, an unitarian development of all types of mnelanoma from melanocytes seems to be possible.

  19. Circulating melanoma cells as a predictive biomarker.

    PubMed

    Karakousis, Giorgos; Yang, Ruifeng; Xu, Xiaowei

    2013-06-01

    The prognosis of patients with metastatic melanoma has improved significantly with targeted therapeutic agents and immunotherapies. Detection of early melanoma recurrence after treatment will be beneficial to switch patients who fail on one therapy to different modalities. Circulating tumor cells (CTCs) are cancer cells released by a tumor into the peripheral blood. These cells hold potential as prognostic, predictive, and pharmacodynamic biomarkers for treatment. In this issue, Khoja et al. report that melanoma CTCs can be detected using Melcam and high molecular weight melanoma-associated antibody. They found that in 101 stage IV melanoma patients, CTC numbers ranged between 0 and 36/7.5 ml blood; 26% of the patients had ≥ 2 CTCs at baseline. The CTC number (≥ 2 CTCs) at baseline was significantly prognostic for median overall survival (OS) in univariate and multivariate analysis. Patients receiving treatment where CTC numbers remained ≥ 2 CTCs during their treatment had shorter median OS than those who maintained <2 CTCs (7 vs. 10 months, hazard ratio 0.34, 95% confidence interval 0.14-0.81, log-rank test P=0.015). The implications of this work are substantial in counseling patients about their prognosis and in helping to assess responses to systemic therapies. PMID:23673501

  20. (-)-Epigallocatechin gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumors in mice.

    PubMed

    Liao, Bingwu; Ying, Hao; Yu, Chenhuan; Fan, Zhaoyang; Zhang, Weihua; Shi, John; Ying, Huazhong; Ravichandran, Nagaiya; Xu, Yongquan; Yin, Junfeng; Jiang, Yongwen; Du, Qizhen

    2016-10-15

    (-)-Epigallocatechin-3-O-gallate (EGCG), a versatile natural product in fresh tea leaves and green tea, has been investigated as a preventative treatment for cancers and cardiovascular disease. The objective of this study was to develop EGCG-nanoethosomes for transdermal delivery and to evaluate them for treating subcutaneously implanted human melanoma cell tumors. EGCG-nanoethosomes, composed of 0.2% EGCG, 2% soybean phosphatidylcholine, 30% ethanol, 1% Tween-80 and 0.1% sugar esters, were prepared and characterized using laser transmission electron microscopy. These nanoethosomes were smoother and more compact than basic-nanoethosomes with the same components except for EGCG. The effectiveness of transdermal delivery by EGCG-nanoethosomes was demonstrated in an in vitro permeability assay system using mouse skin. The inhibitory effect of docetaxel (DT) loaded in EGCG-nanoethosomes (DT-EGCG-nanoethosomes) was analyzed by monitoring growth of a subcutaneously implanted tumor from A-375 human melanoma cells in mice. Mice treated with DT-EGCG-nanoethosomes exhibited a significant therapeutic effect, with tumors shrinking, on average, by 31.5% of initial volumes after 14 d treatment. This indicated a potential for treating skin cancer. In a pharmacokinetic study, transdermal delivery by DT-EGCG-nanoethosomes enabled sufficient DT exposure to the tumor. Together, these findings indicated that EGCG-nanoethosomes have great potential as drug carriers for transdermal delivery. PMID:27544847

  1. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity.

    PubMed

    Bol, Kalijn F; Aarntzen, Erik H J G; Pots, Jeanette M; Olde Nordkamp, Michel A M; van de Rakt, Mandy W M M; Scharenborg, Nicole M; de Boer, Annemiek J; van Oorschot, Tom G M; Croockewit, Sandra A J; Blokx, Willeke A M; Oyen, Wim J G; Boerman, Otto C; Mus, Roel D M; van Rossum, Michelle M; van der Graaf, Chantal A A; Punt, Cornelis J A; Adema, Gosse J; Figdor, Carl G; de Vries, I Jolanda M; Schreibelt, Gerty

    2016-03-01

    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combined intradermal/intravenous injection (16 patients) with VAC-DC loaded with keyhole limpet hemocyanin (KLH) and mRNA encoding tumor antigens gp100 and tyrosinase. Tumor antigen-specific T cell responses were monitored in blood and skin-test infiltrating-lymphocyte cultures. Almost all patients mounted prophylactic vaccine- or KLH-specific immune responses. Both after intranodal injection and after intradermal/intravenous injection, tumor antigen-specific immune responses were detected, which coincide with longer overall survival in stage IV melanoma patients. VAC-DC induce local and systemic CTC grade 2 and 3 toxicity, which is most likely caused by BCG in the maturation cocktail. The side effects were self-limiting or resolved upon a short period of systemic steroid therapy. We conclude that VAC-DC can induce functional tumor-specific responses. Unfortunately, toxicity observed after vaccination precludes the general application of VAC-DC, since in DC maturated with prophylactic vaccines BCG appears to be essential in the maturation cocktail.

  2. PCTAIRE1 regulates p27 stability, apoptosis and tumor growth in malignant melanoma

    PubMed Central

    Yanagi, Teruki; Reed, John C.; Matsuzawa, Shu-ichi

    2014-01-01

    PCTAIRE1 is a cyclin-dependent kinase family protein that has been implicated in spermatogenesis. Although we recently revealed the function of PCTAIRE1 in tumorigenesis of epithelial carcinoma cells, its tumorigenic function in melanoma remains unclear. Interrogation of the Oncomine database revealed that malignant melanoma showed up-regulation of PCTAIRE1 mRNA compared to normal skin and benign melanocytic nevus tissues. In the melanoma cell lines A2058 and SK-MEL-28, PCTAIRE1 gene knockdown using siRNA or shRNA diminished melanoma cell proliferation as assessed by cellular ATP levels, cell counting and clonogenic assays. Moreover, FACS analyses of annexin V-PI staining and DNA content showed that PCTAIRE1 knockdown caused apoptosis in A2058 cells. In contrast, PCTAIRE1 does not appear to be involved in the proliferation of immortalized human keratinocyte HaCaT cells. Depletion of PCTAIRE1 by siRNA/shRNA led to p27 accumulation in melanoma cells but not HaCaT cells. In tumor xenografts of melanoma A2058 cells, conditional knockdown of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Our findings reveal a crucial role for PCTAIRE1 in regulating p27 protein levels and tumor growth in melanoma cells, suggesting that PCTAIRE1 could provide a target for melanoma treatment. PMID:25593992

  3. Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas.

    PubMed Central

    Chi, D. D.; Merchant, R. E.; Rand, R.; Conrad, A. J.; Garrison, D.; Turner, R.; Morton, D. L.; Hoon, D. S.

    1997-01-01

    Both melanocytes and glial cells are derived embryologically from the neural ectoderm. Their malignant transformed counterparts, melanoma and glioma cells, respectively, may share common antigens. Numerous tumor-associated antigens have been identified in melanomas but only a few a gliomas. Using an established reverse transcriptase polymerase chain reaction plus Southern blot assay, we compared the mRNA expression of melanoma-associated antigens (MAAs) of melanomas to brain tumors primarily derived from glial cells. The MAAs studied included tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (TRP-1 and TRP-2), gp100, human melanoma antigen-encoding genes 1 and 3 (MAGE-1 and MAGE-3), and melanotransferrin (p97). Glioblastoma multiforme (n = 21), anaplastic astrocytoma (n = 3), ependymoma (n = 2), meningioma (n = 3), oligodendroglioma (n = 1), and melanoma (n = 12) tumor specimens were assayed for MAA mRNA expression. Glioblastoma multiforme, astrocytoma, and melanoma cell lines were also assayed. We observed that individual MAA mRNAs were expressed in these brain tumors and cell lines at varying frequencies. The melanogenesis-pathway-related MAAs Tyr, TRP-1, TRP-2, and gp100 mRNAs were also expressed at different levels in normal brain tissues but at a much lower frequency than in glioblastoma multiforme and melanoma. MAGE-1 and MAGE-3 mRNA were expressed in different types of tumor specimens and cell lines but never in normal brain tissue. Tumor antigen p97 was expressed in all types of tumors and also in normal brain tissues. These studies demonstrate that melanomas and primary brain tumors express common MAAs and could be exploited in patients with malignant glioma by active specific immunotherapy against these common MAAs. Images Figure 1 Figure 2 Figure 3 PMID:9176405

  4. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib.

    PubMed

    Goodall, Megan L; Wang, Tong; Martin, Katie R; Kortus, Matthew G; Kauffman, Audra L; Trent, Jeffrey M; Gately, Stephen; MacKeigan, Jeffrey P

    2014-06-01

    Autophagy is a dynamic cell survival mechanism by which a double-membrane vesicle, or autophagosome, sequesters portions of the cytosol for delivery to the lysosome for recycling. This process can be inhibited using the antimalarial agent chloroquine (CQ), which impairs lysosomal function and prevents autophagosome turnover. Despite its activity, CQ is a relatively inadequate inhibitor that requires high concentrations to disrupt autophagy, highlighting the need for improved small molecules. To address this, we screened a panel of antimalarial agents for autophagy inhibition and chemically synthesized a novel series of acridine and tetrahydroacridine derivatives. Structure-activity relationship studies of the acridine ring led to the discovery of VATG-027 as a potent autophagy inhibitor with a high cytotoxicity profile. In contrast, the tetrahydroacridine VATG-032 showed remarkably little cytotoxicity while still maintaining autophagy inhibition activity, suggesting that both compounds act as autophagy inhibitors with differential effects on cell viability. Further, knockdown of autophagy-related genes showed no effect on cell viability, demonstrating that the ability to inhibit autophagy is separate from the compound cytotoxicity profiles. Next, we determined that both inhibitors function through lysosomal deacidification mechanisms and ultimately disrupt autophagosome turnover. To evaluate the genetic context in which these lysosomotropic inhibitors may be effective, they were tested in patient-derived melanoma cell lines driven by oncogenic BRAF (v-raf murine sarcoma viral oncogene homolog B). We discovered that both inhibitors sensitized melanoma cells to the BRAF V600E inhibitor vemurafenib. Overall, these autophagy inhibitors provide a means to effectively block autophagy and have the potential to sensitize mutant BRAF melanomas to first-line therapies.

  5. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib

    PubMed Central

    Goodall, Megan L; Wang, Tong; Martin, Katie R; Kortus, Matthew G; Kauffman, Audra L; Trent, Jeffrey M; Gately, Stephen; MacKeigan, Jeffrey P

    2014-01-01

    Autophagy is a dynamic cell survival mechanism by which a double-membrane vesicle, or autophagosome, sequesters portions of the cytosol for delivery to the lysosome for recycling. This process can be inhibited using the antimalarial agent chloroquine (CQ), which impairs lysosomal function and prevents autophagosome turnover. Despite its activity, CQ is a relatively inadequate inhibitor that requires high concentrations to disrupt autophagy, highlighting the need for improved small molecules. To address this, we screened a panel of antimalarial agents for autophagy inhibition and chemically synthesized a novel series of acridine and tetrahydroacridine derivatives. Structure-activity relationship studies of the acridine ring led to the discovery of VATG-027 as a potent autophagy inhibitor with a high cytotoxicity profile. In contrast, the tetrahydroacridine VATG-032 showed remarkably little cytotoxicity while still maintaining autophagy inhibition activity, suggesting that both compounds act as autophagy inhibitors with differential effects on cell viability. Further, knockdown of autophagy-related genes showed no effect on cell viability, demonstrating that the ability to inhibit autophagy is separate from the compound cytotoxicity profiles. Next, we determined that both inhibitors function through lysosomal deacidification mechanisms and ultimately disrupt autophagosome turnover. To evaluate the genetic context in which these lysosomotropic inhibitors may be effective, they were tested in patient-derived melanoma cell lines driven by oncogenic BRAF (v-raf murine sarcoma viral oncogene homolog B). We discovered that both inhibitors sensitized melanoma cells to the BRAF V600E inhibitor vemurafenib. Overall, these autophagy inhibitors provide a means to effectively block autophagy and have the potential to sensitize mutant BRAF melanomas to first-line therapies. PMID:24879157

  6. In vitro melanoma cell growth after preenucleation radiation therapy

    SciTech Connect

    Kenneally, C.Z.; Farber, M.G.; Smith, M.E.; Devineni, R.

    1988-02-01

    The in vitro efficacy of 20 Gy (2000 rad) of external beam irradiation delivered to patients with choroidal melanomas prior to enucleation was investigated in 11 patients whose tumors were grown in cell culture. Phase-contrast microscopy was used to compare growth patterns between irradiated and nonirradiated tumors. Cell types were determined by histologic stains, and electron microscopy identified intracytoplasmic melanin. Irradiated melanomas did not grow and did not attach to culture flasks, thus demonstrating that preenucleation irradiation alters the in vitro growth of melanoma cells.

  7. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti–CTLA-4 therapy against melanoma

    PubMed Central

    Simpson, Tyler R.; Li, Fubin; Montalvo-Ortiz, Welby; Sepulveda, Manuel A.; Bergerhoff, Katharina; Arce, Frederick; Roddie, Claire; Henry, Jake Y.; Yagita, Hideo; Wolchok, Jedd D.; Peggs, Karl S.; Ravetch, Jeffrey V.

    2013-01-01

    Treatment with monoclonal antibody specific for cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti–CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions. Importantly, T reg cell depletion is dependent on the presence of Fcγ receptor–expressing macrophages within the tumor microenvironment, indicating that T reg cells are depleted in trans in a context-dependent manner. Our results reveal further mechanistic insight into the activity of anti-CTLA-4–based cancer immunotherapy, and illustrate the importance of specific features of the local tumor environment on the final outcome of antibody-based immunomodulatory therapies. PMID:23897981

  8. Melanoma Stem Cells and Metastasis: Mimicking Hematopoietic Cell Trafficking?

    PubMed Central

    Lee, Nayoung; Barthel, Steven R.; Schatton, Tobias

    2014-01-01

    Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. Additionally, MMICs are enriched among circulating tumor cells (CTCs) in the peripheral blood of cancer patients, suggesting that MMICs may be a critical player in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells (CSCs) in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines, and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced

  9. Activation and propagation of tumor infiltrating lymphocytes on clinical-grade designer artificial antigen presenting cells for adoptive immunotherapy of melanoma

    PubMed Central

    Forget, Marie-Andrée; Malu, Shruti; Liu, Hui; Toth, Christopher; Maiti, Sourindra; Kale, Charuta; Haymaker, Cara; Bernatchez, Chantale; Huls, Helen; Wang, Ena; Marincola, Francesco M.; Hwu, Patrick; Cooper, Laurence J. N.; Radvanyi, Laszlo G.

    2014-01-01

    PURPOSE Adoptive cell therapy (ACT) with autologous tumor infiltrating lymphocytes (TIL) is a therapy for metastatic melanoma with response rates up to 50%. However, the generation of the TIL transfer product is challenging, requiring pooled allogeneic normal donor peripheral blood mononuclear cells (PBMC) used in vitro as “feeders” to support a rapid expansion protocol (REP). Here, we optimized a platform to propagate TIL to a clinical scale using K562-cells genetically modified to express costimulatory molecules such as CD86, CD137-ligand and membrane-bound IL-15 to function as artificial antigen-presenting cell (aAPC) as an alternative to using PBMC feeders. EXPERIMENTAL DESIGN We used aAPC or γ-irradiated PBMC feeders to propagate TIL and measured rates of expansion. The activation and differentiation state was evaluated by flow cytometry and differential gene expression analyses. Clonal diversity was assessed based on pattern of T-cell receptor (TCR) usage. T-cell effector function was measured by evaluation of cytotoxic granule content and killing of target cells. RESULTS The aAPC propagated TIL at numbers equivalent to that found with PBMC feeders, while increasing the frequency of CD8+ T-cell expansion with a comparable effector-memory phenotype. mRNA profiling revealed an up-regulation of genes in the Wnt and stem-cell pathways with the aAPC. The aAPC platform did not skew clonal diversity and CD8+ T cells showed comparable anti-tumor function as those expanded with PBMC feeders. CONCLUSIONS TIL can be rapidly expanded with aAPC to clinical scale generating T cells with similar phenotypic and effector profiles as with PBMC feeders. These data support the clinical-application of aAPC to manufacture TIL for the treatment of melanoma. PMID:25304728

  10. Artificial cytokine storm combined with hyperthermia induces significant anti-tumor effect in mice inoculated with lewis lung carcinoma and B16 melanoma cells.

    PubMed

    Kushida, Shigeki; Ohmae, Hiroshi; Kamma, Hiroshi; Totsuka, Rumiko; Matsumura, Masayuki; Takeuchi, Akira; Saiki, Ikuo; Yanagawa, Toru; Onizawa, Kojiro; Ishii, Tetsuro; Ohn, Tadao

    2006-12-01

    In cancer immunotherapies combined with hyperthermia, one or two cytokines have been tested to augment the anti-tumor effect. However, the therapies have not shown sufficient improvement. The aim of this study is to find a new potent tumor immunotherapy in order to augment antitumor effect of hyperthermia by the cytokine cocktails in vivo. We used a combination therapy of local hyperthermia (LH) and various cytokine cocktails composed of IFNs (IFN-alpha, -beta, and -gamma), Thl cytokines (IL-2, -12, -15, and -18), a Th2 cytokine (IL-4), inflammatory cytokines (IL-lalpha and TNF-alpha), and dendritic cell-inducible cytokines (IL-3 and GM-CSF). These cytokines in a proper combination augmented the anti-tumor effect of LH and prolonged survival time in Lewis lung carcinoma or B16 melanoma significantly. Moreover, the 12-cytokine cocktail suppressed B 16 metastasis to the lung and lymph nodes, and complete regression of the tumors without regrowth occurred in 3 of 5 mice. In the cured three B16 mice, there was hyperplasia of lymphatic organs with many CD3-positive T lymphocytes. The most effective cytokine combination should be able to augment the anti-tumor effect of other therapies besides hyperthermia that induce the necrosis of tumor cells.

  11. Melanoma educates mesenchymal stromal cells towards vasculogenic mimicry

    PubMed Central

    VARTANIAN, AMALIA; KARSHIEVA, SAIDA; DOMBROVSKY, VLADISLAV; BELYAVSKY, ALEXANDER

    2016-01-01

    Accumulating evidence suggests that mesenchymal stromal cells (MSCs) are recruited to the tumor, and promote tumor development and growth. The present study was performed to investigate the communication between aggressive melanoma and MSCs in vasculogenic mimicry (VM). Normal human MSCs plated on Matrigel were unable to form capillary-like structures (CLSs). By contrast, MSCs co-cultured with aggressive melanoma cell lines, namely, Mel Cher, Mel Kor and Mel P, generated CLSs. Significantly, MSCs co-cultured with poorly aggressive melanoma cells, namely, Mel Me, failed to form CLSs. To identify factors responsible for VM, the effects of vascular endothelial growth factor A (VEGFA), pro-epidermal growth factor, basic fibroblast growth factor and stromal cell-derived factor 1α on the formation of CLSs by MSCs were tested. VM was induced by the addition of VEGFA, whereas other cytokines were inefficient. To confirm the hypothesis that aggressive tumor cells can increase the vasculogenic ability of MSCs, a standard B16/F10 mouse melanoma test system was used. MSCs isolated from the adipose tissues of C57BL/6 mice with melanoma formed a vascular-like network on Matrigel, whereas MSCs from healthy mice failed to form such structures. This study provides the first direct evidence that melanoma tumors educate MSCs to engage in VM. The education may occur distantly. These findings offer promise for novel therapeutic directions in the treatment of metastatic melanoma. PMID:27313776

  12. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  13. Conditional ablation of Ikkb inhibits melanoma tumor development in mice.

    PubMed

    Yang, Jinming; Splittgerber, Ryan; Yull, Fiona E; Kantrow, Sara; Ayers, Gregory D; Karin, Michael; Richmond, Ann

    2010-07-01

    Several lines of evidence suggest that tumor cells show elevated activity of the NF-kappaB transcription factor, a phenomenon often resulting from constitutive activity of IkappaB kinase beta (IKKbeta). However, others have found that loss of NF-kappaB activity or IKKbeta is tumor promoting. The role of NF-kappaB in tumor progression is therefore controversial and varies with tumor type. We sought to more extensively investigate the role IKKbeta in melanoma tumor development by specifically disrupting Ikkb in melanocytes in an established mouse model of spontaneous melanoma, whereby HRasV12 is expressed in a melanocyte-specific, doxycycline-inducible manner in mice null for the gene encoding the tumor suppressor inhibitor cyclin-dependent kinase 4/alternative reading frame (Ink4a/Arf). Our results show that Ink4a/Arf-/- mice with melanocyte-specific deletion of Ikkb were protected from HRasV12-initiated melanoma only when p53 was expressed. This protection was accompanied by cell cycle arrest, with reduced cyclin-dependent kinase 2 (Cdk2), Cdk4, Aurora kinase A, and Aurora kinase B expression. Increased p53-mediated apoptosis was also observed, with decreased expression of the antiapoptotic proteins Bcl2 and survivin. Enhanced stabilization of p53 involved increased phosphorylation at Ser15 and reduced phosphorylation of double minute 2 (Mdm2) at Ser166. Together, our findings provide genetic and mechanistic evidence that mutant HRas initiation of tumorigenesis requires Ikkbeta-mediated NF-kappaB activity. PMID:20530876

  14. A Study of CD45RA+ Depleted Haploidentical Stem Cell Transplantation in Children With Relapsed or Refractory Solid Tumors and Lymphomas

    ClinicalTrials.gov

    2016-10-18

    Ewing Sarcoma; Gastrointestinal Tumor; Germ Cell Tumor; Hepatic Tumor; Lymphoma; Wilms Tumor; Rhabdoid Tumor; Clear Cell Carcinoma; Renal Cell Carcinoma; Melanoma; Neuroblastoma; Rhabdomyosarcoma; Non-rhabdomyosarcoma

  15. Patterns of tumor initiation in choroidal melanoma.

    PubMed

    Li, W; Judge, H; Gragoudas, E S; Seddon, J M; Egan, K M

    2000-07-15

    This study attempts to document the occurrence of tumors with respect to clock hour location and distance from the macula and to evaluate tumor location in relation to retinal topography and light dose distribution on the retinal sphere. Analysis of patterns of tumor initiation may provide new evidence to clarify the controversy regarding the possible light-related etiology of choroidal melanoma. Incident cases of choroidal and ciliary body melanoma in Massachusetts residents diagnosed between 1984 and 1993 were the basis for analysis. Conventional fundus drawings and photos were used to assess the initiation site of each tumor. The initiation site was defined as the intersect between the largest tumor diameter and the largest perpendicular diameter of the tumor. Initiation sites were recorded using spherical coordinates. The retinal sphere was divided into 61 mutually exclusive sectors defined according to clock hour and anteroposterior distance from the macula. Rates of initiation were computed for each sector, overall, and according to gender and other clinical factors. Results were similar in left and right eyes; therefore, these were combined in analysis. Tumor initiation had a predilection for the macula (P < 0.0001). Overall, no significant clock hour preference was observed (P = 0.63). However, the parafoveal zone showed a strong circular trend (P < 0.01), with highest rates occurring in the temporal region, and the lowest rates occurring in the nasal region. Rates of occurrence in six progressively more anterior concentric zones (designated as the foveal, parafoveal, posterior, peripheral, anterior, and ciliary body zones) were 21.4, 14.2, 12.1, 8.9, 4.5, and 4.3 counts per spherical unit per 1000 eyes, respectively. Concentric zone location did not vary by gender (P = 0.93) or laterality (P = 0.78). However, posterior location was associated with light iris color (P = 0.01). Tumor diameters were largest in the peripheral region of the fundus and smallest

  16. Hinokitiol, a tropolone derivative, inhibits mouse melanoma (B16-F10) cell migration and in vivo tumor formation.

    PubMed

    Huang, Chien-Hsun; Lu, Shing-Hwa; Chang, Chao-Chien; Thomas, Philip Aloysius; Jayakumar, Thanasekaran; Sheu, Joen-Rong

    2015-01-01

    Invasion and metastasis are the major causes of treatment failure in patients with cancer. Hinokitiol, a natural bioactive compound found in Chamacyparis taiwanensis, has been used in hair tonics, cosmetics, and food as an antimicrobial agent. In this study, we investigated the effects and possible mechanisms of action of hinokitiol on migration by the metastatic melanoma cell line, B16-F10, in which matrix metalloproteinase-1 (MMP-1) is found to be highly- expressed. Treatment with hinokitiol revealed a concentration-dependent inhibition of migration of B16-F10 melanoma cells. Hinokitiol appeared to achieve this effect by reducing the expression of MMP-1 and by suppressing the phosphorylation of mitogen- activated protein kinase (MAPK) signaling molecules such as extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK and c-Jun N-terminal kinases (JNK). On the other hand, hinokitiol treatment reversed IκB-α degradation and inhibited the phosphorylation of p65 nuclear factor kappa B (NF-κB) and cJun in B16-F10 cells. In addition, hinokitiol suppressed the translocation of p65 NF-κB from the cytosol to the nucleus, suggesting reduced NF-κB activation. Consistent with these in vitro findings, our in vivo study demonstrated that hinokitiol treatment significantly reduced the total number of mouse lung metastatic nodules and improved histological alterations in B16-F10 injected C57BL/6 mice. These findings suggest that treatment of B16-F10 cells with hinokitiol significantly inhibits metastasis, possibly by blocking MMP-1 activation, MAPK signaling pathways and inhibition of the transcription factors, NF-κB and c-Jun, involved in cancer cell migration. These results may accelerate the development of novel therapeutic agents for the treatment of malignant cancers. PMID:25449038

  17. Cell Cycle Regulation and Melanoma.

    PubMed

    Xu, Wen; McArthur, Grant

    2016-06-01

    Dysregulation of cell cycle control is a hallmark of melanomagenesis. Agents targeting the G1-S and G2-M checkpoints, as well as direct anti-mitotic agents, have all shown promising preclinical activity in melanoma. However, in vivo, standalone single agents targeting cell cycle regulation have only demonstrated modest efficacy in unselected patients. The advent of specific CDK 4/6 inhibitors targeting the G1-S transition, with an improved therapeutic index, is a significant step forward. Potential synergy exists with the combination of CDK4/6 inhibitors with existing therapies targeting the MAPK pathway, particularly in subsets of metastatic melanomas such as NRAS and BRAF mutants. This reviews summaries of the latest developments in both preclinical and clinical data with cell cycle-targeted therapies in melanoma. PMID:27106898

  18. Salmonella VNP20009-mediated RNA interference of ABCB5 moderated chemoresistance of melanoma stem cell and suppressed tumor growth more potently

    PubMed Central

    Zhang, Xiaoxin; Cheng, Xiawei; Lai, Yueyang; Zhou, Yuqiang; Cao, Wenmin; Hua, Zi-Chun

    2016-01-01

    Drug resistance remains an obstacle hindering the success of chemotherapy. Cancer stem cells (CSCs) have been recently found to confer resistance to chemotherapy. Therefore functional markers of CSCs should be discovered and specific therapies targeting these cells should be developed. In our investigation, a small population of B16F10 cells which was positive for ATP-binding cassette sub-family B member 5 (ABCB5) was isolated. This population displayed characteristics similar to those of CSCs and ABCB5 was identified to confer tumor growth and drug resistance in B16F10 cell line. Although targeting ABCB5 by small short interfering RNA delivered by VNP20009 failed to inhibit tumor growth, the combined treatment of VNP-shABCB5 and chemotherapy can act synergistically to delay tumor growth and enhance survival time in a primary B16F10 mice model. Results suggest that the combined treatment of VNP-shABCB5 and chemotherapy can improve the efficacy of chemotherapeutic drugs. Therefore, this combination therapy is of potential significance for melanoma treatment. PMID:26910836

  19. Differential regulation by interleukin-4 and interferon-gamma of an autologous melanoma-specific cytotoxic T-cell clone and the tumor-infiltrating lymphocytes from which it was established.

    PubMed

    Yamada, T; Holmes, E C; Golub, S H

    1990-01-01

    To investigate the specificity of human tumor-infiltrating lymphocytes (TIL) against autologous tumors, TIL from five metastatic melanoma patients were expanded with rIL-2 and assessed for cytotoxicity in chromium release assays. TIL from a patient showing preferential cytotoxicity against autologous melanoma cells were further analysed. TIL were cloned by limiting dilution. Four out of 27 clones showed substantial cytotoxicity against autologous melanoma and one clone, designated as No. 8a-5 (CD3+, CD4-, CD8+, CD56-), selectively killed autologous melanoma but did not kill six different allogeneic melanoma, K562, or autologous or allogeneic Con A lymphoblast targets. Cytotoxicity of No. 8a-5 cells was inhibited by anti-HLA class I MAb (w6/32), by anti-beta 2-microglobulin MAb, and by anti-CD3 (OKT3) MAb, suggesting that the specific cytotoxicity was HLA class I-restricted and that the clone utilized the T-cell receptor complex for recognition of targets. Pretreatment with rIFN-gamma increased the sensitivity of autologous melanoma targets to lysis by No. 8a-5 cells. Exogenous rIL-4 enhanced [3H]TdR incorporation by these TIL. In contrast, rIFN-gamma reduced the sensitivity of the autologous melanoma to lysis by uncloned TIL, and rIL-4 suppressed the cytotoxicity and cell proliferation of uncloned TIL. These results indicate that both specific and non-specific cytotoxic cells can be developed from the same TIL and that these can be differentially regulated.

  20. Kinase fusions are frequent in Spitz tumors and spitzoid melanomas

    PubMed Central

    Esteve-Puig, Rosaura; Botton, Thomas; Yeh, Iwei; Lipson, Doron; Otto, Geoff; Brennan, Kristina; Murali, Rajmohan; Garrido, Maria; Miller, Vincent A.; Ross, Jeffrey S; Berger, Michael F.; Sparatta, Alyssa; Palmedo, Gabriele; Cerroni, Lorenzo; Busam, Klaus J.; Kutzner, Heinz; Cronin, Maureen T; Stephens, Philip J; Bastian, Boris C.

    2014-01-01

    Spitzoid neoplasms are a group of melanocytic tumors with distinctive histopathologic features. They include benign tumors (Spitz nevi), malignant tumors (spitzoid melanomas), and tumors with borderline histopathologic features and uncertain clinical outcome (atypical Spitz tumors). Their genetic underpinnings are poorly understood, and alterations in common melanoma-associated oncogenes are typically absent. Here we show that spitzoid neoplasms harbor kinase fusions of ROS1 (17%), NTRK1 (16%), ALK (10%), BRAF (5%), and RET (3%) in a mutually exclusive pattern. The chimeric proteins are constitutively active, stimulate oncogenic signaling pathways, are tumorigenic, and are found in the entire biologic spectrum of spitzoid neoplasms, including 55% of Spitz nevi, 56% of atypical Spitz tumors, and 39% of spitzoid melanomas. Kinase inhibitors suppress the oncogenic signaling of the fusion proteins in vitro. In summary, kinase fusions account for the majority of oncogenic aberrations in spitzoid neoplasms, and may serve as therapeutic targets for metastatic spitzoid melanomas. PMID:24445538

  1. Molecular biology of malignant melanoma and other cutaneous tumors.

    PubMed

    Pons, M; Quintanilla, M

    2006-07-01

    Skin cancer is the most common cancer worldwide. Its incidence is doubling every 15-20 years likely because of an aging population, changes in behaviour towards sun exposure, and increased UV light fluency at the earth surface due to ozone depletion. In this review, we summarize the most important genetic changes contributing to the development of malignant melanoma, basal cell carcinoma and squamous cell carcinoma, the main tumor entities arising in the skin. While our understanding of the oncogenes and tumor suppressor genes involved in the development and progression of skin tumors is still fragmentary, recent advances have shown alterations affecting conserved signalling pathways that control cellular proliferation and viability. These pathways include INK4alpha/Rb, ARF/p53, RAS/MAPKs, and sonic hedgehog/Gli. PMID:16870533

  2. Contrary melanoma-associated antigen-A expression at the tumor front and center: A comparative analysis of stage I and IV head and neck squamous cell carcinoma

    PubMed Central

    Hartmann, Stefan; Brisam, Muna; Rauthe, Stephan; Driemel, Oliver; Brands, Roman C.; Rosenwald, Andreas; Kübler, Alexander C.; Müller-Richter, Urs D. A.

    2016-01-01

    There is a growing body of evidence indicating that several melanoma-associated antigen-A (MAGE-A) subgroups contribute to the malignancy of head and neck cancer. The present study retrospectively analyzed the expression of all known MAGE-A subgroups in the tumor front and center of 38 head and neck cancer patients (Union for International Cancer Control stage I or IV) by immunohistochemistry. MAGE-A1, -A6, -A8, -A9 and -A11 were expressed at significantly higher levels at the tumor front of stage IV specimens compared with the tumor front of stage I specimens. In stage I cancer, the tumor center and front ratio (C/F ratio) for each subgroup was >1.0. In stage IV cancer, the C/F ratio was <1.0 in 9/11 subgroups. The most significant change in the expression pattern was observed for MAGE-A11. These results indicated that there is a marked alteration and shift to the invasive front of almost all MAGE-A subgroups, but particularly MAGE-A11, during the progression of head and neck squamous cell carcinoma. PMID:27703530

  3. Tumor-suppressive effects of natural-type interferon-β through CXCL10 in melanoma

    SciTech Connect

    Kobayashi, Hikaru; Nobeyama, Yoshimasa Nakagawa, Hidemi

    2015-08-21

    Introduction: Type 1 interferon is in widespread use as adjuvant therapy to inhibit melanoma progression. Considering the tumor-suppressive effects of local administration of interferon-β (IFN-β) on lymphatic metastasis, the present study was conducted to identify melanoma-suppressive molecules that are up-regulated by IFN-β treatment of lymphatic endothelial cells. Materials and methods: Lymphatic endothelial cells, fibroblasts, and melanoma cells were treated with natural-type IFN-β, and melanoma cells were treated with CXCL10. Genome-wide oligonucleotide microarray analysis was performed using lymphatic endothelial cells with or without IFN-β treatment. Quantitative real-time reverse transcription-PCR and an enzyme-linked immunosorbent assay were performed to examine CXCL10 expression. A proliferation assay was performed to examine the effects of IFN-β and CXCL10 in melanoma cells. Results: Genome-wide microarray analyses detected CXCL10 as a gene encoding a secretory protein that was up-regulated by IFN-β in lymphatic endothelial cells. IFN-β treatment significantly induced CXCL10 in dermal lymphatic endothelial cells and melanoma cells that are highly sensitive to IFN-β. CXCL10 reduced melanoma cell proliferation in IFN-β-sensitive cells as well as resistant cells. Melanoma cells in which CXCL10 was knocked down were sensitive to IFN-β. CXCR3-B, which encodes the CXCL10 receptor, was up-regulated in melanoma cells with high sensitivity to IFN-β and down-regulated in melanoma cells with medium to low sensitivity. Conclusions: Our data suggest that IFN-β suppresses proliferation and metastasis from the local lymphatic system and melanoma cells via CXCL10. Down-regulation of CXCR3-B by IFN-β may be associated with resistance to IFN-β. - Highlights: • We search melanoma-suppressive molecules induced by IFN-β. • IFN-β induces a high amount of CXCL10 from lymphatic endothelial cells. • CXCL10 induction level in melanoma cells is correlated

  4. Metastatic melanoma mimicking solitary fibrous tumor: report of two cases.

    PubMed

    Bekers, Elise M; van Engen-van Grunsven, Adriana C H; Groenen, Patricia J T A; Westdorp, Harm; Koornstra, Rutger H T; Bonenkamp, Johannes J; Flucke, Uta; Blokx, Willeke A M

    2014-02-01

    Malignant melanomas are known for their remarkable morphological variation and aberrant immunophenotype with loss of lineage-specific markers, especially in recurrences and metastases. Hot spot mutations in BRAF, NRAS, GNAQ, and GNA11 and mutations in KIT are oncogenic events in melanomas. Therefore, genotyping can be a useful ancillary diagnostic tool. We present one case each of recurrent and metastatic melanoma, both showing histological and immunohistochemical features of solitary fibrous tumor (SFT). Mutational analysis detected BRAF and NRAS mutations in the primary and secondary lesions, respectively. This result confirmed the diagnosis of recurrent/metastastic melanoma.

  5. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma

    PubMed Central

    Zhu, Yongxia; Ye, Tinghong; Yu, Xi; Lei, Qian; Yang, Fangfang; Xia, Yong; Song, Xuejiao; Liu, Li; Deng, Hongxia; Gao, Tiantao; Peng, Cuiting; Zuo, Weiqiong; Xiong, Ying; Zhang, Lidan; Wang, Ningyu; Zhao, Lifeng; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2016-01-01

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma. PMID:26830149

  6. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma.

    PubMed

    Zhu, Yongxia; Ye, Tinghong; Yu, Xi; Lei, Qian; Yang, Fangfang; Xia, Yong; Song, Xuejiao; Liu, Li; Deng, Hongxia; Gao, Tiantao; Peng, Cuiting; Zuo, Weiqiong; Xiong, Ying; Zhang, Lidan; Wang, Ningyu; Zhao, Lifeng; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2016-01-01

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma. PMID:26830149

  7. Dendritic Versus Tumor Cell Presentation of Autologous Tumor Antigens for Active Specific Immunotherapy in Metastatic Melanoma: Impact on Long-Term Survival by Extent of Disease at the Time of Treatment

    PubMed Central

    McClay, Edward F.; Barth, Neil M.; Amatruda, Thomas T.; Schwartzberg, Lee S.; Mahdavi, Khosrow; de Leon, Cristina; Ellis, Robin E.; DePriest, Carol

    2015-01-01

    Abstract In patients with metastatic melanoma, sequential single-arm and randomized phase II trials with a therapeutic vaccine consisting of autologous dendritic cells (DCs) loaded with antigens from self-renewing, proliferating, irradiated autologous tumor cells (DC-TC) showed superior survival compared with similar patients immunized with irradiated tumor cells (TC). We wished to determine whether this difference was evident in cohorts who at the time of treatment had (1) no evidence of disease (NED) or (2) had detectable disease. Eligibility criteria and treatment schedules were the same for all three trials. Pooled data confirmed that overall survival (OS) was longer in 72 patients treated with DC-TC compared with 71 patients treated with TC (median OS 60 versus 22 months; 5-year OS 51% versus 32%, p=0.004). Treatment with DC-TC was associated with longer OS in both cohorts. Among 70 patients who were NED at the time that treatment was started, OS was better for DC-TC: 5-year OS 73% versus 43% (p=0.015). Among 73 patients who had detectable metastases, OS was better for DC-TC: median 38.8 months versus 14.7 months, 5-year OS 33% versus 20% (p=0.025). This approach is promising as an adjunct to other therapies in patients who have had metastatic melanoma. PMID:26083950

  8. Genetically Engineered Cancer Models, But Not Xenografts, Faithfully Predict Anticancer Drug Exposure in Melanoma Tumors

    PubMed Central

    Combest, Austin J.; Roberts, Patrick J.; Dillon, Patrick M.; Sandison, Katie; Hanna, Suzan K.; Ross, Charlene; Habibi, Sohrab; Zamboni, Beth; Müller, Markus; Brunner, Martin; Sharpless, Norman E.

    2012-01-01

    Background. Rodent studies are a vital step in the development of novel anticancer therapeutics and are used in pharmacokinetic (PK), toxicology, and efficacy studies. Traditionally, anticancer drug development has relied on xenograft implantation of human cancer cell lines in immunocompromised mice for efficacy screening of a candidate compound. The usefulness of xenograft models for efficacy testing, however, has been questioned, whereas genetically engineered mouse models (GEMMs) and orthotopic syngeneic transplants (OSTs) may offer some advantages for efficacy assessment. A critical factor influencing the predictability of rodent tumor models is drug PKs, but a comprehensive comparison of plasma and tumor PK parameters among xenograft models, OSTs, GEMMs, and human patients has not been performed. Methods. In this work, we evaluated the plasma and tumor dispositions of an antimelanoma agent, carboplatin, in patients with cutaneous melanoma compared with four different murine melanoma models (one GEMM, one human cell line xenograft, and two OSTs). Results. Using microdialysis to sample carboplatin tumor disposition, we found that OSTs and xenografts were poor predictors of drug exposure in human tumors, whereas the GEMM model exhibited PK parameters similar to those seen in human tumors. Conclusions. The tumor PKs of carboplatin in a GEMM of melanoma more closely resembles the tumor disposition in patients with melanoma than transplanted tumor models. GEMMs show promise in becoming an improved prediction model for intratumoral PKs and response in patients with solid tumors. PMID:22993143

  9. Inhibition of melanocortin 1 receptor slows melanoma growth, reduces tumor heterogeneity and increases survival.

    PubMed

    Kansal, Rita G; McCravy, Matthew S; Basham, Jacob H; Earl, Joshua A; McMurray, Stacy L; Starner, Chelsey J; Whitt, Michael A; Albritton, Lorraine M

    2016-05-01

    Melanoma risk is increased in patients with mutations of melanocortin 1 receptor (MC1R) yet the basis for the increased risk remains unknown. Here we report in vivo evidence supporting a critical role for MC1R in regulating melanoma tumor growth and determining overall survival time. Inhibition of MC1R by its physiologically relevant competitive inhibitor, agouti signaling protein (ASIP), reduced melanin synthesis and morphological heterogeneity in murine B16-F10 melanoma cells. In the lungs of syngeneic C57BL/6 mice, mCherry-marked, ASIP-secreting lung tumors inhibited MC1R on neighboring tumors lacking ASIP in a dose dependent manner as evidenced by a proportional loss of pigment in tumors from mice injected with 1:1, 3:1 and 4:1 mixtures of parental B16-F10 to ASIP-expressing tumor cells. ASIP-expressing B16-F10 cells formed poorly pigmented tumors in vivo that correlated with a 20% longer median survival than those bearing parental B16-F10 tumors (p=0.0005). Mice injected with 1:1 mixtures also showed survival benefit (p=0.0054), whereas injection of a 4:1 mixture showed no significant difference in survival. The longer survival time of mice bearing ASIP-expressing tumors correlated with a significantly slower growth rate than parental B16-F10 tumors as judged by quantification of numbers of tumors and total tumor load (p=0.0325), as well as a more homogeneous size and morphology of ASIP-expressing lung tumors. We conclude that MC1R plays an important role in regulating melanoma growth and morphology. Persistent inhibition of MC1R provided a significant survival advantage resulting in part from slower tumor growth, establishing MC1R as a compelling new molecular target for metastatic melanoma. PMID:27028866

  10. Inhibition of melanocortin 1 receptor slows melanoma growth, reduces tumor heterogeneity and increases survival

    PubMed Central

    Kansal, Rita G.; McCravy, Matthew S.; Basham, Jacob H.; Earl, Joshua A.; McMurray, Stacy L.; Starner, Chelsey J.

    2016-01-01

    Melanoma risk is increased in patients with mutations of melanocortin 1 receptor (MC1R) yet the basis for the increased risk remains unknown. Here we report in vivo evidence supporting a critical role for MC1R in regulating melanoma tumor growth and determining overall survival time. Inhibition of MC1R by its physiologically relevant competitive inhibitor, agouti signaling protein (ASIP), reduced melanin synthesis and morphological heterogeneity in murine B16-F10 melanoma cells. In the lungs of syngeneic C57BL/6 mice, mCherry-marked, ASIP-secreting lung tumors inhibited MC1R on neighboring tumors lacking ASIP in a dose dependent manner as evidenced by a proportional loss of pigment in tumors from mice injected with 1:1, 3:1 and 4:1 mixtures of parental B16-F10 to ASIP-expressing tumor cells. ASIP-expressing B16-F10 cells formed poorly pigmented tumors in vivo that correlated with a 20% longer median survival than those bearing parental B16-F10 tumors (p=0.0005). Mice injected with 1:1 mixtures also showed survival benefit (p=0.0054), whereas injection of a 4:1 mixture showed no significant difference in survival. The longer survival time of mice bearing ASIP-expressing tumors correlated with a significantly slower growth rate than parental B16-F10 tumors as judged by quantification of numbers of tumors and total tumor load (p=0.0325), as well as a more homogeneous size and morphology of ASIP-expressing lung tumors. We conclude that MC1R plays an important role in regulating melanoma growth and morphology. Persistent inhibition of MC1R provided a significant survival advantage resulting in part from slower tumor growth, establishing MC1R as a compelling new molecular target for metastatic melanoma. PMID:27028866

  11. In-Vivo Detection and Tracking of T Cells in Various Organs in a Melanoma Tumor Model by 19F-Fluorine MRS/MRI

    PubMed Central

    Gonzales, Christine; Yoshihara, Hikari A. I.; Dilek, Nahzli; Leignadier, Julie; Irving, Melita; Mieville, Pascal; Helm, Lothar; Michielin, Olivier; Schwitter, Juerg

    2016-01-01

    Background 19F-MRI and 19F-MRS can identify specific cell types after in-vitro or in-vivo 19F-labeling. Knowledge on the potential to track in-vitro 19F-labeled immune cells in tumor models by 19F-MRI/MRS is scarce. Aim To study 19F-based MR techniques for in-vivo tracking of adoptively transferred immune cells after in-vitro 19F-labeling, i.e. to detect and monitor their migration non-invasively in melanoma-bearing mice. Methods Splenocytes (SP) were labeled in-vitro with a perfluorocarbon (PFC) and IV-injected into non-tumor bearing mice. In-vitro PFC-labeled ovalbumin (OVA)-specific T cells from the T cell receptor-transgenic line OT-1, activated with anti-CD3 and anti-CD28 antibodies (Tact) or OVA-peptide pulsed antigen presenting cells (TOVA-act), were injected into B16 OVA melanoma-bearing mice. The distribution of the 19F-labelled donor cells was determined in-vivo by 19F-MRI/MRS. In-vivo 19F-MRI/MRS results were confirmed by ex-vivo 19F-NMR and flow cytometry. Results SP, Tact, and TOVA-act were successfully PFC-labeled in-vitro yielding 3x1011-1.4x1012 19F-atoms/cell in the 3 groups. Adoptively transferred 19F-labeled SP, TOVA-act, and Tact were detected by coil-localized 19F-MRS in the chest, abdomen, and left flank in most animals (corresponding to lungs, livers, and spleens, respectively, with highest signal-to-noise for SP vs TOVA-act and Tact, p<0.009 for both). SP and Tact were successfully imaged by 19F-MRI (n = 3; liver). These in-vivo data were confirmed by ex-vivo high-resolution 19F-NMR-spectroscopy. By flow cytometric analysis, however, TOVA-act tended to be more abundant versus SP and Tact (liver: p = 0.1313; lungs: p = 0.1073; spleen: p = 0.109). Unlike 19F-MRI/MRS, flow cytometry also identified transferred immune cells (SP, Tact, and TOVA-act) in the tumors. Conclusion SP, Tact, and TOVA-act were successfully PFC-labeled in-vitro and detected in-vivo by non-invasive 19F-MRS/MRI in liver, lung, and spleen. The portion of 19F-labeled T cells

  12. Impact of MAPK Pathway Activation in BRAF(V600) Melanoma on T Cell and Dendritic Cell Function.

    PubMed

    Ott, Patrick A; Bhardwaj, Nina

    2013-10-28

    Constitutive upregulation of the MAPK pathway by a BRAF(V600) mutation occurs in about half of melanomas. This leads to increased oncogenic properties such as tumor cell invasion, metastatic potential, and resistance to apoptosis. Blockade of the MAPK pathway with highly specific kinase inhibitors induces unprecedented tumor response rates in patients with advanced BRAF(V600) mutant melanoma. Immune checkpoint blockade with monoclonal antibodies targeting cytotoxic T-lymphocyte antigen 4 and programed death-1/PD-L1 has also demonstrated striking anti-tumor activity in patients with advanced melanoma. Tumor responses are likely limited by multiple additional layers of immune suppression in the tumor microenvironment. There is emerging preclinical and clinical evidence suggesting that MAPK inhibition has a beneficial effect on the immunosuppressive tumor microenvironment, providing a strong rationale for combined immunotherapy and MAPK pathway inhibition in melanoma. The T cell response has been the main focus in the studies reported to date. Since dendritic cells (DCs) are important in the induction of tumor-specific T cell responses, the impact of MAPK pathway activation in melanoma on DC function is critical for the melanoma directed immune response. BRAF(V600E) melanoma cells modulate DCs through the MAPK pathway because its blockade in melanoma cells can reverse suppression of DC function. As both MEK/BRAF inhibition and immune checkpoint blockade have recently taken center stage in the treatment of melanoma, a deeper understanding of how MAPK pathway inhibition affects the tumor immune response is needed.

  13. Tumor-infiltrating lymphocytes predict cutaneous melanoma survival.

    PubMed

    Fortes, Cristina; Mastroeni, Simona; Mannooranparampil, Thomas J; Passarelli, Francesca; Zappalà, Alba; Annessi, Giorgio; Marino, Claudia; Caggiati, Alessio; Russo, Nicoletta; Michelozzi, Paola

    2015-08-01

    Understanding differences in survival across distinct subgroups of melanoma patients may help with the choice of types of therapy. Tumor-infiltrating lymphocytes (TILs) are considered a manifestation of the host immune response to tumor, but the role of TILs in melanoma mortality is controversial. The aim of this study was to investigate independent prognostic factors for melanoma mortality. We carried out a 10-year cohort study on 4133 melanoma patients from the same geographic area (Lazio) with primary cutaneous melanoma diagnosed between January 1998 and December 2008. The probability of survival was estimated using Kaplan-Meier methods and prognostic factors were evaluated by multivariate analysis (Cox proportional hazards model). The 10-year survival rate for melanoma decreased with increasing Breslow thickness (Pfor trend<0.0001) and with age (Pfor trend<0.0001) whereas survival increased with increasing levels of TILs (Pfor trend=0.0001). The 10-year survival rate for melanoma divided into TILs intensity as scanty, moderate, and marked was 88.0, 92.2, and 97.0%, respectively. In the multivariate Cox model, the presence of high levels of TILs in primary invasive melanomas was associated with a lower risk of melanoma death (hazard ratio 0.32; 95% confidence interval 0.13-0.82) after controlling for sex, age, Breslow thickness, histological type, mitotic rate, and ulceration. After including lymph node status in the multivariate analysis, the protective effect of marked TILs on melanoma mortality remained (hazard ratio 0.37; 95% confidence interval 0.15-0.94). The results of this study suggest that the immune microenvironment affects melanoma survival. PMID:25933208

  14. Renalase Expression by Melanoma and Tumor-Associated Macrophages Promotes Tumor Growth through a STAT3-Mediated Mechanism.

    PubMed

    Hollander, Lindsay; Guo, Xiaojia; Velazquez, Heino; Chang, John; Safirstein, Robert; Kluger, Harriet; Cha, Charles; Desir, Gary V

    2016-07-01

    To sustain their proliferation, cancer cells overcome negative-acting signals that restrain their growth and promote senescence and cell death. Renalase (RNLS) is a secreted flavoprotein that functions as a survival factor after ischemic and toxic injury, signaling through the plasma calcium channel PMCA4b to activate the PI3K/AKT and MAPK pathways. We show that RNLS expression is increased markedly in primary melanomas and CD163(+) tumor-associated macrophages (TAM). In clinical specimens, RNLS expression in the tumor correlated inversely with disease-specific survival, suggesting a pathogenic role for RNLS. Attenuation of RNLS by RNAi, blocking antibodies, or an RNLS-derived inhibitory peptide decreased melanoma cell survival, and anti-RNLS therapy blocked tumor growth in vivo in murine xenograft assays. Mechanistic investigations showed that increased apoptosis in tumor cells was temporally related to p38 MAPK-mediated Bax activation and that increased cell growth arrest was associated with elevated expression of the cell-cycle inhibitor p21. Overall, our results established a role for the secreted flavoprotein RNLS in promoting melanoma cell growth and CD163(+) TAM in the tumor microenvironment, with potential therapeutic implications for the management of melanoma. Cancer Res; 76(13); 3884-94. ©2016 AACR. PMID:27197188

  15. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    SciTech Connect

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  16. Photoacoustic imaging of single circulating melanoma cells in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Yao, Junjie; Zhang, Ruiying; Xu, Song; Li, Guo; Zou, Jun; Wang, Lihong V.

    2015-03-01

    Melanoma, one of the most common types of skin cancer, has a high mortality rate, mainly due to a high propensity for tumor metastasis. The presence of circulating tumor cells (CTCs) is a potential predictor for metastasis. Label-free imaging of single circulating melanoma cells in vivo provides rich information on tumor progress. Here we present photoacoustic microscopy of single melanoma cells in living animals. We used a fast-scanning optical-resolution photoacoustic microscope to image the microvasculature in mouse ears. The imaging system has sub-cellular spatial resolution and works in reflection mode. A fast-scanning mirror allows the system to acquire fast volumetric images over a large field of view. A 500-kHz pulsed laser was used to image blood and CTCs. Single circulating melanoma cells were imaged in both capillaries and trunk vessels in living animals. These high-resolution images may be used in early detection of CTCs with potentially high sensitivity. In addition, this technique enables in vivo study of tumor cell extravasation from a primary tumor, which addresses an urgent pre-clinical need.

  17. Visualization of melanoma tumor with lectin-conjugated rare-earth doped fluoride nanocrystals

    PubMed Central

    Dumych, Tetiana; Lutsyk, Maxym; Banski, Mateusz; Yashchenko, Antonina; Sojka, Bartlomiej; Horbay, Rostyslav; Lutsyk, Alexander; Stoika, Rostyslav; Misiewicz, Jan; Podhorodecki, Artur; Bilyy, Rostyslav

    2014-01-01

    Aim To develop specific fluorescent markers for melanoma tumor visualization, which would provide high selectivity and reversible binding pattern, by the use of carbohydrate-recognizing proteins, lectins, combined with the physical ability for imaging deep in the living tissues by utilizing red and near infrared fluorescent properties of specific rare-earth doped nanocrystals (NC). Methods B10F16 melanoma cells were inoculated to C57BL/6 mice for inducing experimental melanoma tumor. Tumors were removed and analyzed by lectin-histochemistry using LABA, PFA, PNA, HPA, SNA, GNA, and NPL lectins and stained with hematoxylin and eosin. NPL lectin was conjugated to fluorescent NaGdF4:Eu3+-COOH nanoparticles (5 nm) via zero length cross-linking reaction, and the conjugates were purified from unbound substances and then used for further visualization of histological samples. Fluorescent microscopy was used to visualize NPL-NaGdF4:Eu3+ with the fluorescent emission at 600-720 nm range. Results NPL lectin selectively recognized regions of undifferentiated melanoblasts surrounding neoangiogenic foci inside melanoma tumor, PNA lectin recognized differentiated melanoblasts, and LCA and WGA were bound to tumor stroma regions. NPL-NaGdF4:Eu3+ conjugated NC were efficiently detecting newly formed regions of melanoma tumor, confirmed by fluorescent microscopy in visible and near infrared mode. These conjugates possessed high photostability and were compatible with convenient xylene-based mounting systems and preserved intensive fluorescent signal at samples storage for at least 6 months. Conclusion NPL lectin-NaGdF4:Eu3+ conjugated NC permitted distinct identification of contours of the melanoma tissue on histological sections using red excitation at 590-610 nm and near infrared emission of 700-720 nm. These data are of potential practical significance for development of glycans-conjugated nanoparticles to be used for in vivo visualization of melanoma tumor. PMID:24891277

  18. Genetically modified murine adipose-derived mesenchymal stem cells producing interleukin-2 favor B16F10 melanoma cell proliferation.

    PubMed

    Bahrambeigi, Vahid; Ahmadi, Nafiseh; Salehi, Rasoul; Javanmard, Shaghayegh Haghjooy

    2015-01-01

    Adipose-derived mesenchymal stem cells (ADSCs) are attractive tools for cancer gene therapy due to their intrinsic tropism to the tumor environment. Interleukin-2 (IL2) is recognized as a key regulatory molecule, which enhances the activity and growth of the immune effector cell function. High-Dose IL2 Therapy is an option for treatment of malignant melanoma but has frequent, often serious and sometimes life-threatening side effects. Here we investigated the effect of genetically modified ADSCs (GM-ADSCs) expressing IL2 in immunocompetent mouse models of subcutaneous and lung metastatic melanoma. Prior to in vivo studies, we demonstrated that IL2 produced by GM-ADSCs may act as a growth factor for melanoma cells due to the increased viability and reduced apoptosis of melanoma cells after in vitro treatment. Subcutaneous co-injection of IL2-expressing ADSCs with melanoma cells significantly enhanced the melanoma tumor growth. Furthermore, histological analysis of subcutaneous tumors for IL2 and Melan-A (a melanocytic differentiation marker) confirmed that most of cells in melanoma/IL2-ADSC co-injected tumors are melanoma cells, not IL2-ADSCs. In pulmonary metastases model, melanoma cells were injected intravenously and 10 days later mice were treated by systematical injection of GM-ADSCs. Intravenously injected IL2-ADSCs engrafted into melanoma lung tumors but were unable to reduce melanoma lung metastases. Besides, administered IL2-ADSCs significantly reduced systemic CD4+ cells and did not impact the total survival of lung metastases melanoma bearing mice. In conclusion, this study showed that IL2-producing ADSCs can favor B16F10 melanoma cell proliferation. Therefore, therapies utilizing IL2 have to be taken into careful consideration.

  19. Thigmotropism of malignant melanoma cells.

    PubMed

    Quatresooz, Pascale; Piérard-Franchimont, Claudine; Noël, Fanchon; Piérard, Gérald E

    2012-01-01

    During malignant melanoma (MM) progression including incipient metastasis, neoplastic cells follow some specific migration paths inside the skin. In particular, they progress along the dermoepidermal basement membrane, the hair follicles, the sweat gland apparatus, nerves, and the near perivascular space. These features evoke the thigmotropism phenomenon defined as a contact-sensing growth of cells. This process is likely connected to modulation in cell tensegrity (control of the cell shape). These specifically located paucicellular aggregates of MM cells do not appear to be involved in the tumorigenic growth phase, but rather they participate in the so-called "accretive" growth model. These MM cell collections are often part of the primary neoplasm, but they may, however, correspond to MM micrometastases and predict further local overt metastasis spread. PMID:22203839

  20. Advances in Personalized Targeted Treatment of Metastatic Melanoma and Non-Invasive Tumor Monitoring

    PubMed Central

    Klinac, Dragana; Gray, Elin S.; Millward, Michael; Ziman, Mel

    2013-01-01

    Despite extensive scientific progress in the melanoma field, treatment of advanced stage melanoma with chemotherapeutics and biotherapeutics has rarely provided response rates higher than 20%. In the past decade, targeted inhibitors have been developed for metastatic melanoma, leading to the advent of more personalized therapies of genetically characterized tumors. Here we review current melanoma treatments and emerging targeted molecular therapies. In particular we discuss the mutant BRAF inhibitors Vemurafenib and Dabrafenib, which markedly inhibit tumor growth and advance patients’ overall survival. However this response is almost inevitably followed by complete tumor relapse due to drug resistance hampering the encouraging initial responses. Several mechanisms of resistance within and outside the MAPK pathway have now been uncovered and have paved the way for clinical trials of combination therapies to try and overcome tumor relapse. It is apparent that personalized treatment management will be required in this new era of targeted treatment. Circulating tumor cells (CTCs) provide an easily accessible means of monitoring patient relapse and several new approaches are available for the molecular characterization of CTCs. Thus CTCs provide a monitoring tool to evaluate treatment efficacy and early detection of drug resistance in real time. We detail here how advances in the molecular analysis of CTCs may provide insight into new avenues of approaching therapeutic options that would benefit personalized melanoma management. PMID:23515890

  1. In vivo 6-thioguanine-resistant T cells from melanoma patients have public TCR and share TCR beta amino acid sequences with melanoma-reactive T cells

    PubMed Central

    Zuleger, Cindy L.; Macklin, Michael D.; Bostwick, Bret L.; Pei, Qinglin; Newton, Michael A.; Albertini, Mark R.

    2011-01-01

    In vivo hypoxanthine-guanine phosphoribosyltransferase (HPRT)-deficient T cells (MT) from melanoma patients are enriched for T cells with in vivo clonal amplifications that traffic between blood and tumor tissues. Melanoma is thus a model cancer to test the hypothesis that in vivo MT from cancer patients can be used as immunological probes for immunogenic tumor antigens. MT were obtained by 6-thioguanine (TG) selection of lymphocytes from peripheral blood and tumor tissues, and wild-type T cells (WT) were obtained analogously without TG selection. cDNA sequences of the T cell receptor beta chains (TRB) were used as unambiguous biomarkers of in vivo clonality and as indicators of T cell specificity. Public TRB were identified in MT from the blood and tumor of different melanoma patients. Such public TRB were not found in normal control MT or WT. As an indicator of T cell specificity for melanoma, the >2600 MT and WT TRB, including the public TRB from melanoma patients, were compared to a literature-derived empirical database of >1270 TRB from melanoma-reactive T cells. Various degrees of similarity, ranging from 100% conservation to 3-amino acid motifs (3-mer), were found between both melanoma patient MT and WT TRBs and the empirical database. The frequency of 3-mer and 4-mer TRB matching to the empirical database was significantly higher in MT compared with WT in the tumor (p=0.0285 and p=0.006, respectively). In summary, in vivo MT from melanoma patients contain public TRB as well as T cells with specificity for characterized melanoma antigens. We conclude that in vivo MT merit study as novel probes for uncharacterized immunogenic antigens in melanoma and other malignancies. PMID:21182840

  2. In vivo 6-thioguanine-resistant T cells from melanoma patients have public TCR and share TCR beta amino acid sequences with melanoma-reactive T cells.

    PubMed

    Zuleger, Cindy L; Macklin, Michael D; Bostwick, Bret L; Pei, Qinglin; Newton, Michael A; Albertini, Mark R

    2011-02-28

    In vivo hypoxanthine-guanine phosphoribosyltransferase (HPRT)-deficient T cells (MT) from melanoma patients are enriched for T cells with in vivo clonal amplifications that traffic between blood and tumor tissues. Melanoma is thus a model cancer to test the hypothesis that in vivo MT from cancer patients can be used as immunological probes for immunogenic tumor antigens. MT were obtained by 6-thioguanine (TG) selection of lymphocytes from peripheral blood and tumor tissues, and wild-type T cells (WT) were obtained analogously without TG selection. cDNA sequences of the T cell receptor beta chains (TRB) were used as unambiguous biomarkers of in vivo clonality and as indicators of T cell specificity. Public TRB were identified in MT from the blood and tumor of different melanoma patients. Such public TRB were not found in normal control MT or WT. As an indicator of T cell specificity for melanoma, the >2600 MT and WT TRB, including the public TRB from melanoma patients, were compared to a literature-derived empirical database of >1270 TRB from melanoma-reactive T cells. Various degrees of similarity, ranging from 100% conservation to 3-amino acid motifs (3-mer), were found between both melanoma patient MT and WT TRBs and the empirical database. The frequency of 3-mer and 4-mer TRB matching to the empirical database was significantly higher in MT compared with WT in the tumor (p=0.0285 and p=0.006, respectively). In summary, in vivo MT from melanoma patients contain public TRB as well as T cells with specificity for characterized melanoma antigens. We conclude that in vivo MT merit study as novel probes for uncharacterized immunogenic antigens in melanoma and other malignancies. PMID:21182840

  3. Clinicopathologic features of incident and subsequent tumors in patients with multiple primary cutaneous melanomas

    PubMed Central

    Murali, Rajmohan; Goumas, Chris; Kricker, Anne; From, Lynn; Busam, Klaus J.; Begg, Colin B.; Dwyer, Terence; Gruber, Stephen B.; Kanetsky, Peter A.; Orlow, Irene; Rosso, Stefano; Thomas, Nancy E.; Berwick, Marianne; Scolyer, Richard A.; Armstrong, Bruce K.

    2011-01-01

    Background 0.6–12.7% of patients with primary cutaneous melanoma will develop additional melanomas. Pathologic features of tumors in patients with multiple primary cutaneous melanomas have not been well described. In this large international multi-center case-control study, we compared the clinicopathologic features of a subsequent melanoma with the preceding (usually the first) melanoma in patients with multiple primary cutaneous melanomas, and with those of melanomas in patients with single primary cutaneous melanomas. Methods Multiple primary melanoma (cases) and single primary invasive melanoma (controls) patients from the Genes, Environment and Melanoma (GEM) study were included if their tumors were available for pathologic review and confirmed as melanoma. Clinicopathologic characteristics of invasive subsequent and first melanomas in cases and invasive single melanomas in controls were compared. Results 473 pairs comprising a subsequent and a first melanoma and 1989 single melanomas were reviewed. Forward stepwise regression modeling in 395 pairs with complete data showed that, compared to first melanomas, subsequent melanomas were: more commonly contiguous with a dysplastic nevus; more prevalent on the head/neck and legs than other sites; and thinner. Compared with single primary melanomas, subsequent melanomas were also more likely to be: associated with a contiguous dysplastic nevus; more prevalent on the head/neck and legs; and thinner. The same differences were observed when subsequent melanomas were compared with single melanomas. First melanomas were more likely than single melanomas to have associated solar elastosis and no observed mitoses. Conclusions Thinner subsequent than first melanomas suggest earlier diagnosis, perhaps due to closer clinical scrutiny. The association of subsequent melanomas with dysplastic nevi is consistent with the latter being risk factors or risk markers for melanoma. PMID:21913010

  4. β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice.

    PubMed

    Jung, Jae In; Kim, Eun Ji; Kwon, Gyoo Taik; Jung, Yoo Jin; Park, Taesung; Kim, Yongkang; Yu, Rina; Choi, Myung-Sook; Chun, Hyang Sook; Kwon, Seung-Hae; Her, Song; Lee, Ki Won; Park, Jung Han Yoon

    2015-09-01

    We reported previously that high-fat diet (HFD) feeding stimulated solid tumor growth and lymph node (LN) metastasis in C57BL/6N mice injected with B16F10 melanoma cells. β-caryophyllene (BCP) is a natural bicyclic sesquiterpene found in many essential oils and has been shown to exert anti-inflammatory activities. To examine whether BCP inhibits HFD-induced melanoma progression, 4-weeks old, male C57BL/6N mice were fed a control diet (CD, 10 kcal% fat) or HFD (60 kcal% fat + 0, 0.15 or 0.3% BCP) for the entire experimental period. After 16 weeks of feeding, B16F10s were subcutaneously injected into mice. Three weeks later, tumors were resected, and mice were killed 2 weeks post-resection. Although HFD feeding increased body weight gain, fasting blood glucose levels, solid tumor growth, LN metastasis, tumor cell proliferation, angiogenesis and lymphangiogenesis, it decreased apoptotic cells, all of which were suppressed by dietary BCP. HFD feeding increased the number of lipid vacuoles and F4/80+ macrophage (MΦ) and macrophage mannose receptor (MMR)+ M2-MΦs in tumor tissues and adipose tissues surrounding the LN, which was suppressed by BCP. HFD feeding increased the levels of CCL19 and CCL21 in the LN and the expression of CCR7 in the tumor; these changes were blocked by dietary BCP. In vitro culture results revealed that BCP inhibited lipid accumulation in 3T3-L1 preadipocytes; monocyte migration and monocyte chemoattractant protein-1 secretion by B16F10s, adipocytes and M2-MΦs; angiogenesis and lymphangiogenesis. The suppression of adipocyte and M2-cell accumulation and the inhibition of CCL19/21-CCR7 axis may be a part of mechanisms for the BCP suppression of HFD-stimulated melanoma progression.

  5. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    SciTech Connect

    Misu, Masayasu; Ouji, Yukiteru; Kawai, Norikazu; Nishimura, Fumihiko; Nakamura-Uchiyama, Fukumi; Yoshikawa, Masahide

    2015-08-07

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.

  6. The receptor for advanced glycation end products influences the expression of its S100 protein ligands in melanoma tumors.

    PubMed

    Meghnani, Varsha; Wagh, Anil; Indurthi, Venkata S K; Koladia, Mohit; Vetter, Stefan W; Law, Benedict; Leclerc, Estelle

    2014-12-01

    Recent studies have suggested that the receptor for advanced glycation end products (RAGE) participates in melanoma progression by promoting tumor growth. However, the mechanisms of RAGE activation in melanoma tumors are not clearly understood. To get deeper insights into these mechanisms, we transfected a melanoma cell line, which was established from a human melanoma primary tumor, with RAGE, and studied the effect of RAGE overexpression on cell proliferation and migration in vitro. We observed that overexpression of RAGE in these cells not only resulted in significantly increased migration rates compared to control cells, but also in decreased proliferation rates (Meghnani et al., 2014). In the present study, we compared the growth of xenograft tumors established from RAGE overexpressing WM115 cells, to that of control cells. We observed that when implanted in mice, RAGE overexpressing cells generated tumors faster than control cells. Analysis of protein tumor extracts showed increased levels of the RAGE ligands S100B, S100A2, S100A4, S100A6 and S100A10 in RAGE overexpressing tumors compared to control tumors. We show that the tumor growth was significantly reduced when the mice were treated with anti-RAGE antibodies, suggesting that RAGE, and probably several S100 proteins, were involved in tumor growth. We further demonstrate that the anti-RAGE antibody treatment significantly enhanced the efficacy of the alkylating drug dacarbazine in reducing the growth rate of RAGE overexpressing tumors. PMID:25310905

  7. Monoclonal Antibody-Directed Effector Cells Selectively Lyse Human Melanoma Cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Schulz, Gregor; Bumol, Thomas F.; Reisfeld, Ralph A.

    1983-09-01

    Monoclonal antibody 9.2.27 (mAb 9.2.27) directed to a chondroitin sulfate proteoglycan on human melanoma cells was able to suppress tumor growth in athymic (nu/nu) mice more effectively when bound with polyethylene glycol to murine effector cells than when injected alone. These ``armed'' effector cells also proved more effective than the monoclonal antibody in eliciting antibody-dependent cellular cytotoxicity against human melanoma target cells in vitro.

  8. Cell proliferation and expression of connexins differ in melanotic and amelanotic canine oral melanomas.

    PubMed

    Teixeira, Tarso Felipe; Gentile, Luciana Boffoni; da Silva, Tereza Cristina; Mennecier, Gregory; Chaible, Lucas Martins; Cogliati, Bruno; Roman, Marco Antonio Leon; Gioso, Marco Antonio; Dagli, Maria Lucia Zaidan

    2014-03-01

    Melanoma is a malignant neoplasm occurring in several animal species, and is the most frequently found tumor in the oral cavity in dogs. Melanomas are classified into two types: melanotic and amelanotic. Prior research suggests that human amelanotic melanomas are more aggressive than their melanotic counterparts. This study evaluates the behavior of canine melanotic and amelanotic oral cavity melanomas and quantifies cell proliferation and the expression of connexins. Twenty-five melanomas (16 melanotic and 9 amelanotic) were collected from dogs during clinical procedures at the Veterinary Hospital of the School of Veterinary Medicine and Animal Science of the University of São Paulo, Brazil. After diagnosis, dogs were followed until death or euthanasia. Histopathology confirmed the gross melanotic or amelanotic characteristics and tumors were classified according to the WHO. HMB45 or Melan A immunostainings were performed to confirm the diagnosis of amelanotic melanomas. Cell proliferation was quantified both by counting mitotic figures and PCNA positive nuclei. Expressions of connexins 26 and 43 were evaluated by immunohistochemistry, qRT-PCR and Western blot. Dogs bearing amelanotic melanomas presented a shorter lifespan in comparison to those with melanotic melanomas. Cell proliferation was significantly higher in amelanotic melanomas. Expressions of Connexins 26 and 43 were significantly reduced in amelanotic melanomas. The results presented here suggest that oral cavity melanotic and amelanotic melanomas differ regarding their behavior, cell proliferation and connexin expression in dogs, indicating a higher aggressiveness of amelanotic variants. PMID:24126842

  9. Ultrasonic enhancement of gene transfection in murine melanoma tumors.

    PubMed

    Miller, D L; Bao, S; Gies, R A; Thrall, B D

    1999-11-01

    The enhancement of gene transfection by ultrasound (US) was evaluated in vitro and in vivo using the B16 mouse melanoma model. Cultured cells were either exposed in suspensions in vitro or implanted subcutaneously in female C57BL/6 mice for 10-14 days and, subsequently exposed, in vivo. For comparison to results with a luciferase plasmid, a reporter plasmid for green fluorescent protein (GFP) was used to evaluate transfection efficiency. US was supplied by a system, similar to a Dornier HM-3 lithotripter, that produced shock waves (SW) of 24.4 MPa peak positive and 5.2 MPa peak negative pressure amplitudes at the focus. The plasmids were mixed with the suspensions to achieve 20 ,microL mL(-1), or were injected intratumorally to provide 0.2 mg DNA per mL of tumor. Acoustic cavitation was promoted by retaining 0.2 mL of air in the 1.2-mL exposure chambers in vitro and by injecting air at 10% of tumor volume in vivo. In vitro, cell counts declined to 5.3% of shams after 800 SW exposure, with 1.4% of the cells expressing GFP after 2 days of culture. In vivo, 2 days after 400 SW exposure, viable-cell recovery from excised tumors was reduced to 4.2% of shams and cell transfection was enhanced by a factor of about 8, reaching 2.5% of cell counts (p < 0.005 in t-test). These results show that strong tumor ablation induced by US shock wave treatment can be coupled with simultaneous enhancement of gene transfection. PMID:10626630

  10. An electrochemical immunosensing method for detecting melanoma cells.

    PubMed

    Seenivasan, Rajesh; Maddodi, Nityanand; Setaluri, Vijaysaradhi; Gunasekaran, Sundaram

    2015-06-15

    An electrochemical immunosensing method was developed to detect melanoma cells based on the affinity between cell surface melanocortin 1 receptor (MC1R) antigen and anti-MC1R antibody (MC1R-Ab). The MC1R-Abs were immobilized in amino-functionalized silica nanoparticles (n-SiNPs)-polypyrrole (PPy) nanocomposite modified on working electrode surface of screen-printed electrode (SPE). Cyclic voltammetry was employed, with the help of redox mediator ([Fe(CN)6](3-)), to measure the change in anodic oxidation peak current arising due to the specific interaction between MC1R antigens and MC1R-Abs when the target melanoma cells are present in the sample. Various factors affecting the sensor performance, such as the amount of MC1R-Abs loaded, incubation time with the target melanoma cells, the presence of interfering non-melanoma cells, were tested and optimized over different expected melanoma cell loads in the range of 50-7500 cells/2.5 mL. The immunosensor is highly sensitive (20 cells/mL), specific, and reproducible, and the antibody-loaded electrode in ready-to-use stage is stable over two weeks. Thus, in conjunction with a microfluidic lab-on-a-chip device our electrochemical immunosensing approach may be suitable for highly sensitive, selective, and rapid detection of circulating tumor cells (CTCs) in blood samples.

  11. An electrochemical immunosensing method for detecting melanoma cells

    PubMed Central

    Seenivasan, Rajesh; Maddodi, Nityanand; Setaluri, Vijaysaradhi; Gunasekaran, Sundaram

    2015-01-01

    An electrochemical immunosensing method was developed to detect melanoma cells based on the affinity between cell surface melanocortin 1 receptor (MC1R) antigen and anti-MC1R antibody (MC1R-Ab). The MC1R-Abs were immobilized in amino-functionalized silica nanoparticles (n-SiNPs)-polypyrrole (PPy) nanocomposite modified on working electrode surface of screen-printed electrode (SPE). Cyclic voltammetry was employed, with the help of redox mediator ([Fe(CN)6]3−), to measure the change in anodic oxidation peak current arising due to the specific interaction between MC1R antigens and MC1R-Abs when the target melanoma cells are present in the sample. Various factors affecting the sensor performance, such as the amount of MC1R-Abs loaded, incubation time with the target melanoma cells, the presence of interfering non-melanoma cells, were tested and optimized over different expected melanoma cell loads in the range of 50–7500 cells/2.5 mL. The immunosensor is highly sensitive (20 cells/mL), specific, and reproducible, and the antibody-loaded electrode in ready-to-use stage is stable over two weeks. Thus, in conjunction with a microfluidic lab-on-a-chip device our electrochemical immunosensing approach may be suitable for highly sensitive, selective, and rapid detection of circulating tumor cells (CTCs) in blood samples. PMID:25636023

  12. PRMT1 regulates tumor growth and metastasis of human melanoma via targeting ALCAM.

    PubMed

    Li, Lei; Zhang, Zhengwen; Ma, Tengxiao; Huo, Ran

    2016-07-01

    Overexpression of protein arginine methyltransferases (PRMTs) is associated with various types of cancer. The present study aimed to determine the expression level of PRMT1 in human melanoma and investigate its biological function. The clinical significance of PRMT1 was determined by screening the Oncomine database, and the increased expression of PRMT in melanoma was confirmed by western blot analysis. Furthermore, the current study demonstrated that PRMT1 was overexpressed in melanoma cell lines compared with human immortalized keratinocytes and PIG1 immortalized human melanocytes. Silencing PRMT1 in A375 and Hs294T cells significantly suppressed tumor growth and metastatic ability of the melanoma cell line compared with the negative control. These changes were in accordance with the upregulation of the cadherin 1 level and downregulation of several metastatic‑associated genes determined by a quantitative polymerase chain reaction array. Liquid chromatography‑mass spectrometry demonstrated that activated leukocyte cell adhesion molecule (ALCAM) may be a direct target of PRMT1, and the interaction was confirmed by co‑immunoprecipitation. Compared with negative controls, the protein level of ALCAM was decreased following the silencing of PRMT1, and re‑expression of ALCAM in A375/shPRMT1 or Hs294T/shPRMT1 cells using an expression vector restored the colony formation and metastatic ability of the cells. In conclusion, the current results indicated that PRMT1 is overexpressed in human melanoma, and may regulate tumor growth and metastasis via targeting ALCAM. PMID:27175582

  13. Cell Surface CD74-MIF Interactions Drive Melanoma Survival in Response to Interferon-γ

    PubMed Central

    Tanese, Keiji; Hashimoto, Yuuri; Berkova, Zuzana; Wang, Yuling; Samaniego, Felipe; Lee, Jeffrey E.; Ekmekcioglu, Suhendan; Grimm, Elizabeth A.

    2015-01-01

    While melanoma is believed to be a highly immunogenic tumor and recent developments in immunotherapies are promising. Interferon-γ (IFN-γ) produced by immune cells plays a crucial role in tumor immune surveillance; however, it has also been reported to be pro-tumorigenic. In the current study, we found that IFN-γ enhances the expression of CD74, which interacts with its ligand, macrophage migration inhibitory factor (MIF), and thereby activates the PI3K/AKT pathway in melanoma, promoting tumor survival. IFN-γ increased phosphorylation of AKT Ser473 and upregulated total and cell surface expression of CD74 in human melanoma cell lines tested. CD74 was highly expressed in melanoma tissues. Moreover, the expression of CD74 on tumor cells correlated with plasma IFN-γ levels in melanoma patient samples. In our analysis of melanoma cell lines, all produced MIF constitutively. Blockade of CD74-MIF interaction reduced AKT phosphorylation and expression of pro-tumorigenic molecules, including interleukin-6, interleukin-8 and BCL-2. Inhibition of CD74-MIF interaction significantly suppressed tumor growth in the presence of IFN-γ in our xenograft mouse model. Thus, we conclude that IFN-γ promotes melanoma cell survival by regulating CD74-MIF signaling, suggesting that targeting the CD74-MIF interaction under IFN-γ–stimulatory conditions would be an effective therapeutic approach for melanoma. PMID:26039541

  14. Cell Surface CD74-MIF Interactions Drive Melanoma Survival in Response to Interferon-γ.

    PubMed

    Tanese, Keiji; Hashimoto, Yuuri; Berkova, Zuzana; Wang, Yuling; Samaniego, Felipe; Lee, Jeffrey E; Ekmekcioglu, Suhendan; Grimm, Elizabeth A

    2015-11-01

    Melanoma is believed to be a highly immunogenic tumor and recent developments in immunotherapies are promising. IFN-γ produced by immune cells has a crucial role in tumor immune surveillance; however, it has also been reported to be pro-tumorigenic. In the current study, we found that IFN-γ enhances the expression of CD74, which interacts with its ligand, macrophage migration inhibitory factor (MIF), and thereby activates the PI3K/AKT pathway in melanoma, promoting tumor survival. IFN-γ increased phosphorylation of AKT Ser473 and upregulated total cell surface expression of CD74 in human melanoma cell lines tested. CD74 was highly expressed in melanoma tissues. Moreover, the expression of CD74 on tumor cells correlated with plasma IFN-γ levels in melanoma patient samples. In our analysis of melanoma cell lines, all produced MIF constitutively. Blockade of CD74-MIF interaction reduced AKT phosphorylation and expression of pro-tumorigenic molecules, including IL-6, IL-8, and BCL-2. Inhibition of CD74-MIF interaction significantly suppressed tumor growth in the presence of IFN-γ in our xenograft mouse model. Thus, we conclude that IFN-γ promotes melanoma cell survival by regulating CD74-MIF signaling, suggesting that targeting the CD74-MIF interaction under IFN-γ-stimulatory conditions would be an effective therapeutic approach for melanoma.

  15. β-Actin-binding Complementarity-determining Region 2 of Variable Heavy Chain from Monoclonal Antibody C7 Induces Apoptosis in Several Human Tumor Cells and Is Protective against Metastatic Melanoma*

    PubMed Central

    Arruda, Denise C.; Santos, Luana C. P.; Melo, Filipe M.; Pereira, Felipe V.; Figueiredo, Carlos R.; Matsuo, Alisson L.; Mortara, Renato A.; Juliano, Maria A.; Rodrigues, Elaine G.; Dobroff, Andrey S.; Polonelli, Luciano; Travassos, Luiz R.

    2012-01-01

    Complementarity-determining regions (CDRs) from monoclonal antibodies tested as synthetic peptides display anti-infective and antitumor activities, independent of the specificity of the native antibody. Previously, we have shown that the synthetic peptide C7H2, based on the heavy chain CDR 2 from monoclonal antibody C7, a mAb directed to a mannoprotein of Candida albicans, significantly reduced B16F10 melanoma growth and lung colony formation by triggering tumor apoptosis. The mechanism, however, by which C7H2 induced apoptosis in tumor cells remained unknown. Here, we demonstrate that C7H2 interacts with components of the tumor cells cytoskeleton, being rapidly internalized after binding to the tumor cell surface. Mass spectrometry analysis and in vitro validation revealed that β-actin is the receptor of C7H2 in the tumor cells. C7H2 induces β-actin polymerization and F-actin stabilization, linked with abundant generation of superoxide anions and apoptosis. Major phenotypes following peptide binding were chromatin condensation, DNA fragmentation, annexin V binding, lamin disruption, caspase 8 and 3 activation, and organelle alterations. Finally, we evaluated the cytotoxic efficacy of C7H2 in a panel of human tumor cell lines. All tumor cell lines studied were equally susceptible to C7H2 in vitro. The C7H2 amide without further derivatization significantly reduced lung metastasis of mice endovenously challenged with B16F10-Nex2 melanoma cells. No significant cytotoxicity was observed toward nontumorigenic cell lines on short incubation in vitro or in naïve mice injected with a high dose of the peptide. We believe that C7H2 is a promising peptide to be developed as an anticancer drug. PMID:22334655

  16. Loss of alleles from the distal short arm of chromosome 1 occurs late in melanoma tumor progression

    SciTech Connect

    Dracopoli, N.C.; Harnett, P.; Bale, S.J.; Stanger, B.Z.; Tucker, M.A.; Housman, D.E.; Kefford, R.F. )

    1989-06-01

    The gene for familial malignant melanoma and its precursor lesion, the dysplastic nevus, has been assigned to a region of the distal short arm of chromosome 1, which is frequently involved in karyotypic abnormalities in melanoma cells. The authors have examined loci on chromosome 1p for loss-of-constitutional heterozygosity in 35 melanomas and 21 melanoma cell lines to analyze the role of these abnormalities in melanocyte transformation. Loss-of-heterozygosity at loci on chromosome 1p was identified in 15/35 (43%) melanomas and 11/21 (52%) melanoma cell lines. Analysis of multiple metastases derived from the same patient and of melanoma and lymphoblastoid samples from a family with hereditary melanoma showed that the loss-of-heterozygosity at loci on distal 1p is a late event in tumor progression, rather than the second mutation that would occur if melanoma were due to a cellular recessive mechanism. Comparisons with neuroblastoma and multiple endocrine neoplasia (MEN2) suggest that the frequent 1p loss-of-heterozygosity in these malignancies is a common late event of neuroectodermal tumor progression.

  17. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  18. Tumor necrosis is associated with increased alphavbeta3 integrin expression and poor prognosis in nodular cutaneous melanomas

    PubMed Central

    Bachmann, Ingeborg M; Ladstein, Rita G; Straume, Oddbjørn; Naumov, George N; Akslen, Lars A

    2008-01-01

    Background Tumor necrosis and apoptotic activity are considered important in cancer progression, but these features have not been much studied in melanomas. Our hypothesis was that rapid growth in cutaneous melanomas of the vertical growth phase might lead to tissue hypoxia, alterations in apoptotic activity and tumor necrosis. We proposed that these tumor characteristics might be associated with changes in expression of cell adhesion proteins leading to increased invasive capacity and reduced patient survival. Methods A well characterized series of nodular melanoma (originally 202 cases) and other benign and malignant melanocytic tumors (109 cases) were examined for the presence of necrosis, apoptotic activity (TUNEL assay), immunohistochemical expression of hypoxia markers (HIF-1 α, CAIX, TNF-α, Apaf-1) and cell adhesion proteins (αvβ3 integrin, CD44/HCAM and osteopontin). We hypothesized that tumor hypoxia and necrosis might be associated with increased invasiveness in melanoma through alterations of tumor cell adhesion proteins. Results Necrosis was present in 29% of nodular melanomas and was associated with increased tumor thickness, tumor ulceration, vascular invasion, higher tumor proliferation and apoptotic index, increased expression of αvβ3 integrin and poor patient outcome by multivariate analysis. Tumor cell apoptosis did also correlate with reduced patient survival. Expression of TNF-α and Apaf-1 was significantly associated with tumor thickness, and osteopontin expression correlated with increased tumor cell proliferation (Ki-67). Conclusion Tumor necrosis and apoptotic activity are important features of melanoma progression and prognosis, at least partly through alterations in cell adhesion molecules such as increased αvβ3 integrin expression, revealing potentially important targets for new therapeutic approaches to be further explored. PMID:19061491

  19. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection.

    PubMed Central

    Kawakami, Y; Eliyahu, S; Delgado, C H; Robbins, P F; Sakaguchi, K; Appella, E; Yannelli, J R; Adema, G J; Miki, T; Rosenberg, S A

    1994-01-01

    The cultured T-cell line TIL1200, established from the tumor-infiltrating lymphocytes (TILs) of a patient with advanced metastatic melanoma, recognized an antigen on most HLA-A2+ melanomas and on all HLA-A2+ cultured neonatal melanocytes in an HLA-A2 restricted manner but not on other types of tissues or cell lines tested. A cDNA encoding an antigen recognized by TIL1200 was isolated by screening an HLA-A2+ breast cancer cell line transfected with an expression cDNA library prepared from an HLA-A2+ melanoma cell line. The nucleotide and amino acid sequences of this cDNA were almost identical to the genes encoding glycoprotein gp100 or Pmel17 previously registered in the GenBank. Expression of this gene was restricted to melanoma and melanocyte cell lines and retina but was not expressed on other fresh or cultured normal tissues or other types of tumor tested. The cell line transfected with this cDNA also expressed antigen recognized by the melanoma-specific antibody HMB45 that bound to gp100. A synthetic 10-amino acid peptide derived from gp100 was recognized by TIL1200 in the context of HLA-A2.1. Since the administration of TIL1200 plus interleukin 2 resulted in regression of metastatic cancer in the autologous patient, gp100 is a possible tumor rejection antigen and may be useful for the development of immunotherapies for patients with melanoma. Images PMID:8022805

  20. Selective BRAF inhibition decreases tumor-resident lymphocyte frequencies in a mouse model of human melanoma.

    PubMed

    Hooijkaas, Anna; Gadiot, Jules; Morrow, Michelle; Stewart, Ross; Schumacher, Ton; Blank, Christian U

    2012-08-01

    The development of targeted therapies and immunotherapies has markedly advanced the treatment of metastasized melanoma. While treatment with selective BRAF(V600E) inhibitors (like vemurafenib or dabrafenib) leads to high response rates but short response duration, CTLA-4 blocking therapies induce sustained responses, but only in a limited number of patients. The combination of these diametric treatment approaches may further improve survival, but pre-clinical data concerning this approach is limited. We investigated, using Tyr::CreER(T2)PTEN(F-/-)BRAF(F-V600E/+) inducible melanoma mice, whether BRAF(V600E) inhibition can synergize with anti-CTLA-4 mAb treatment, focusing on the interaction between the BRAF(V600E) inhibitor PLX4720 and the immune system. While PLX4720 treatment strongly decreased tumor growth, it did not induce cell death in BRAF(V600E)/PTEN(-/-) melanomas. More strikingly, PLX4720 treatment led to a decreased frequency of tumor-resident T cells, NK-cells, MDSCs and macrophages, which could not be restored by the addition of anti-CTLA-4 mAb. As this effect was not observed upon treatment of BRAF wild-type B16F10 tumors, we conclude that the decreased frequency of immune cells correlates to BRAF(V600E) inhibition in tumor cells and is not due to an off-target effect of PLX4720 on immune cells. Furthermore, anti-CTLA-4 mAb treatment of inducible melanoma mice treated with PLX4720 did not result in enhanced tumor control, while anti-CTLA-4 mAb treatment did improve the effect of tumor-vaccination in B16F10-inoculated mice. Our data suggest that vemurafenib may negatively affect the immune activity within the tumor. Therefore, the potential effect of targeted therapy on the tumor-microenvironment should be taken into consideration in the design of clinical trials combining targeted and immunotherapy.

  1. Enhancing the treatment effect on melanoma by heat shock protein 70-peptide complexes purified from human melanoma cell lines.

    PubMed

    Gao, Yanwei; Gao, Weishi; Chen, Xia; Cha, Nier; Wang, Xiaoli; Jia, Xiangdong; Wang, Bingping; Ren, Meng; Ren, Jun

    2016-09-01

    Dendritic cell (DC) vaccines are currently one of the most effective approaches to treat melanoma. The immunogenicity of antigens loaded into DCs determines the treatment effects. Patients treated with autologous antigen-loaded DC vaccines achieve the best therapeutic effects. In China, most melanoma patients cannot access their autologous antigens because of formalin treatment of tumor tissue after surgery. In the present study, we purified heat shock protein 70 (HSP70)-peptide complexes (PCs) from human melanoma cell lines A375, A875, M21, M14, WM‑35, and SK‑HEL‑1. We named the purified product as M‑HSP70‑PCs, and determined its immunological activities. Autologous HSP70‑PCs purified from primary tumor cells of melanoma patients (nine cases) were used as controls. These two kinds of tumor antigenic complexes loaded into DCs were used to stimulate an antitumor response against tumor cells in the corresponding patients. Mature DCs pulsed with M‑HSP70‑PCs stimulated autologous T cells to secrete the same levels of type I cytokines compared with the autologous HSP70‑PCs. Moreover, DCs pulsed with M‑HSP70‑PCs induced CD8+ T cells with an equal ability to kill melanoma cells from patients compared with autologous HSP70‑PCs. Next, we used these PC‑pulsed autologous DCs and induced autologous specific CD8+ T cells to treat one patient with melanoma of the nasal skin and lung metastasis. The treatment achieved a good effect after six cycles. These findings provide a new direction for DC-based immunotherapy for melanoma patients who cannot access autologous antigens. PMID:27431432

  2. Enhancing the treatment effect on melanoma by heat shock protein 70-peptide complexes purified from human melanoma cell lines

    PubMed Central

    Gao, Yanwei; Gao, Weishi; Chen, Xia; Cha, Nier; Wang, Xiaoli; Jia, Xiangdong; Wang, Bingping; Ren, Meng; Ren, Jun

    2016-01-01

    Dendritic cell (DC) vaccines are currently one of the most effective approaches to treat melanoma. The immunogenicity of antigens loaded into DCs determines the treatment effects. Patients treated with autologous antigen-loaded DC vaccines achieve the best therapeutic effects. In China, most melanoma patients cannot access their autologous antigens because of formalin treatment of tumor tissue after surgery. In the present study, we purified heat shock protein 70 (HSP70)-peptide complexes (PCs) from human melanoma cell lines A375, A875, M21, M14, WM-35, and SK-HEL-1. We named the purified product as M-HSP70-PCs, and determined its immunological activities. Autologous HSP70-PCs purified from primary tumor cells of melanoma patients (nine cases) were used as controls. These two kinds of tumor antigenic complexes loaded into DCs were used to stimulate an antitumor response against tumor cells in the corresponding patients. Mature DCs pulsed with M-HSP70-PCs stimulated autologous T cells to secrete the same levels of type I cytokines compared with the autologous HSP70-PCs. Moreover, DCs pulsed with M-HSP70-PCs induced CD8+ T cells with an equal ability to kill melanoma cells from patients compared with autologous HSP70-PCs. Next, we used these PC-pulsed autologous DCs and induced autologous specific CD8+ T cells to treat one patient with melanoma of the nasal skin and lung metastasis. The treatment achieved a good effect after six cycles. These findings provide a new direction for DC-based immunotherapy for melanoma patients who cannot access autologous antigens. PMID:27431432

  3. Adoptive Cell Therapy of Melanoma with Cytokine-induced Killer Cells

    PubMed Central

    Kim, Ji Sung; Kim, Yong Guk; Pyo, Minji; Lee, Hong Kyung; Hong, Jin Tae; Kim, Youngsoo

    2015-01-01

    Melanoma is the most aggressive skin cancer and its incidence is gradually increasing worldwide. Patients with metastatic melanoma have a very poor prognosis (estimated 5-year survival rate of <16%). In the last few years, several drugs have been approved for malignant melanoma, such as tyrosine kinase inhibitors and immune checkpoint blockades. Although new therapeutic agents have improved progression-free and overall survival, their use is limited by drug resistance and drug-related toxicity. At the same time, adoptive cell therapy of metastatic melanoma with tumor-infiltrating lymphocytes has shown promising results in preclinical and clinical studies. In this review, we summarize the currently available drugs for treatment of malignant melanoma. In addition, we suggest cytokine-induced killer (CIK) cells as another candidate approach for adoptive cell therapy of melanoma. Our preclinical study and several previous studies have shown that CIK cells have potent anti-tumor activity against melanomas in vitro and in an in vivo human tumor xenograft model without any toxicity. PMID:25922594

  4. Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation

    PubMed Central

    2013-01-01

    Background We previously found that the low frequency magnetic fields (LF-MF) inhibited gastric and lung cancer cell growth. We suppose that exposure to LF-MF may modulate immune function so as to inhibit tumor. We here investigated whether LF-MF can inhibit the proliferation and metastasis of melanoma and influence immune function. Methods The effect of MF on the proliferation, cell cycle and ultrastracture of B16-F10 in vitro was detected by cell counting Kit-8 assay, flow cytometry, and transmission electron microscopy. Lung metastasis mice were prepared by injection of 2 × 105 B16-F10 melanoma cells into the tail vein in C57BL/6 mice. The mice were then exposed to an LF-MF (0.4 T, 7.5 Hz) for 43 days. Survival rate, tumor markers and the innate and adaptive immune parameters were measured. Results The growth of B16-F10 cells was inhibited after exposure to the LF-MF. The inhibition was related to induction of cell cycle arrest and decomposition of chromatins. Moreover, the LF-MF prolonged the mouse survival rate and inhibited the proliferation of B16-F10 in melanoma metastasis mice model. Furthermore, the LF-MF modulated the immune response via regulation of immune cells and cytokine production. In addition, the number of Treg cells was decreased in mice with the LF-MF exposure, while the numbers of T cells as well as dendritic cells were significantly increased. Conclusion LF-MF inhibited the growth and metastasis of melanoma cancer cells and improved immune function of tumor-bearing mice. This suggests that the inhibition may be attributed to modulation of LF-MF on immune function and LF-MF may be a potential therapy for treatment of melanoma. PMID:24314291

  5. BPTF transduces MITF-driven prosurvival signals in melanoma cells

    PubMed Central

    Dar, Altaf A.; Majid, Shahana; Bezrookove, Vladimir; Phan, Binh; Ursu, Sarah; Nosrati, Mehdi; De Semir, David; Sagebiel, Richard W.; Miller, James R.; Debs, Robert; Cleaver, James E.; Kashani-Sabet, Mohammed

    2016-01-01

    Microphthalmia-associated transcription factor (MITF) plays a critical and complex role in melanocyte transformation. Although several downstream targets of MITF action have been identified, the precise mechanisms by which MITF promotes melanocytic tumor progression are incompletely understood. Recent studies identified an oncogenic role for the bromodomain plant homeodomain finger transcription factor (BPTF) gene in melanoma progression, in part through activation of BCL2, a canonical target of MITF signaling. Analysis of the BPTF promoter identified a putative MITF-binding site, suggesting that MITF may regulate BPTF expression. Overexpression of MITF resulted in up-regulation of BPTF in a panel of melanoma and melanocyte cell lines. shRNA-mediated down-regulation of MITF in melanoma cells was accompanied by down-regulation of BPTF and BPTF-regulated genes (including BCL2) and resulted in reduced proliferative capacity of melanoma cells. The suppression of cell growth mediated by MITF silencing was rescued by overexpression of BPTF cDNA. Binding of MITF to the BPTF promoter was demonstrated using ChIP analysis. MITF overexpression resulted in direct transcriptional activation of BPTF, as evidenced by increased luciferase activity driven by the BPTF promoter. These results indicate that BPTF transduces key prosurvival signals driven by MITF, further supporting its important role in promoting melanoma cell survival and progression. PMID:27185926

  6. BPTF transduces MITF-driven prosurvival signals in melanoma cells.

    PubMed

    Dar, Altaf A; Majid, Shahana; Bezrookove, Vladimir; Phan, Binh; Ursu, Sarah; Nosrati, Mehdi; De Semir, David; Sagebiel, Richard W; Miller, James R; Debs, Robert; Cleaver, James E; Kashani-Sabet, Mohammed

    2016-05-31

    Microphthalmia-associated transcription factor (MITF) plays a critical and complex role in melanocyte transformation. Although several downstream targets of MITF action have been identified, the precise mechanisms by which MITF promotes melanocytic tumor progression are incompletely understood. Recent studies identified an oncogenic role for the bromodomain plant homeodomain finger transcription factor (BPTF) gene in melanoma progression, in part through activation of BCL2, a canonical target of MITF signaling. Analysis of the BPTF promoter identified a putative MITF-binding site, suggesting that MITF may regulate BPTF expression. Overexpression of MITF resulted in up-regulation of BPTF in a panel of melanoma and melanocyte cell lines. shRNA-mediated down-regulation of MITF in melanoma cells was accompanied by down-regulation of BPTF and BPTF-regulated genes (including BCL2) and resulted in reduced proliferative capacity of melanoma cells. The suppression of cell growth mediated by MITF silencing was rescued by overexpression of BPTF cDNA. Binding of MITF to the BPTF promoter was demonstrated using ChIP analysis. MITF overexpression resulted in direct transcriptional activation of BPTF, as evidenced by increased luciferase activity driven by the BPTF promoter. These results indicate that BPTF transduces key prosurvival signals driven by MITF, further supporting its important role in promoting melanoma cell survival and progression. PMID:27185926

  7. Oxidative stress inhibits distant metastasis by human melanoma cells

    PubMed Central

    Piskounova, Elena; Agathocleous, Michalis; Murphy, Malea M.; Hu, Zeping; Huddlestun, Sara E.; Zhao, Zhiyu; Leitch, A. Marilyn; Johnson, Timothy M.; DeBerardinis, Ralph J.; Morrison, Sean J.

    2015-01-01

    Solid cancer cells commonly enter the blood and disseminate systemically but are highly inefficient at forming distant metastases for poorly understood reasons. We studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NSG mice. All melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficient metastasizers. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence upon NADPH-generating enzymes in the folate pathway. Anti-oxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumors in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo. PMID:26466563

  8. Melanoma susceptibility as a complex trait: genetic variation controls all stages of tumor progression.

    PubMed

    Ferguson, B; Ram, R; Handoko, H Y; Mukhopadhyay, P; Muller, H K; Soyer, H P; Morahan, G; Walker, G J

    2015-05-28

    Susceptibility to most common cancers is likely to involve interaction between multiple low risk genetic variants. Although there has been great progress in identifying such variants, their effect on phenotype and the mechanisms by which they contribute to disease remain largely unknown. We have developed a mouse melanoma model harboring two mutant oncogenes implicated in human melanoma, CDK4(R24C) and NRAS(Q61K). In these mice, tumors arise from benign precursor lesions that are a recognized strong risk factor for this neoplasm in humans. To define molecular events involved in the pathway to melanoma, we have for the first time applied the Collaborative Cross (CC) to cancer research. The CC is a powerful resource designed to expedite discovery of genes for complex traits. We characterized melanoma genesis in more than 50 CC strains and observed tremendous variation in all traits, including nevus and melanoma age of onset and multiplicity, anatomical site predilection, time for conversion of nevi to melanoma and metastases. Intriguingly, neonatal ultraviolet radiation exposure exacerbated nevus and melanoma formation in most, but not all CC strain backgrounds, suggesting that genetic variation within the CC will help explain individual sensitivity to sun exposure, the major environmental skin carcinogen. As genetic variation brings about dramatic phenotypic diversity in a single mouse model, melanoma-related endophenotype comparisons provide us with information about mechanisms of carcinogenesis, such as whether melanoma incidence is dependent upon the density of pre-existing nevus cells. Mouse models have been used to examine the functional role of gene mutations in tumorigenesis. This work represents their next phase of development to study how biological variation greatly influences lesion onset and aggressiveness even in the setting of known somatic driver mutations.

  9. Melanoma susceptibility as a complex trait: genetic variation controls all stages of tumor progression.

    PubMed

    Ferguson, B; Ram, R; Handoko, H Y; Mukhopadhyay, P; Muller, H K; Soyer, H P; Morahan, G; Walker, G J

    2015-05-28

    Susceptibility to most common cancers is likely to involve interaction between multiple low risk genetic variants. Although there has been great progress in identifying such variants, their effect on phenotype and the mechanisms by which they contribute to disease remain largely unknown. We have developed a mouse melanoma model harboring two mutant oncogenes implicated in human melanoma, CDK4(R24C) and NRAS(Q61K). In these mice, tumors arise from benign precursor lesions that are a recognized strong risk factor for this neoplasm in humans. To define molecular events involved in the pathway to melanoma, we have for the first time applied the Collaborative Cross (CC) to cancer research. The CC is a powerful resource designed to expedite discovery of genes for complex traits. We characterized melanoma genesis in more than 50 CC strains and observed tremendous variation in all traits, including nevus and melanoma age of onset and multiplicity, anatomical site predilection, time for conversion of nevi to melanoma and metastases. Intriguingly, neonatal ultraviolet radiation exposure exacerbated nevus and melanoma formation in most, but not all CC strain backgrounds, suggesting that genetic variation within the CC will help explain individual sensitivity to sun exposure, the major environmental skin carcinogen. As genetic variation brings about dramatic phenotypic diversity in a single mouse model, melanoma-related endophenotype comparisons provide us with information about mechanisms of carcinogenesis, such as whether melanoma incidence is dependent upon the density of pre-existing nevus cells. Mouse models have been used to examine the functional role of gene mutations in tumorigenesis. This work represents their next phase of development to study how biological variation greatly influences lesion onset and aggressiveness even in the setting of known somatic driver mutations. PMID:25088201

  10. In vitro and in vivo anti-tumor activity of CoQ0 against melanoma cells: inhibition of metastasis and induction of cell-cycle arrest and apoptosis through modulation of Wnt/β-catenin signaling pathways

    PubMed Central

    Hseu, You-Cheng; Thiyagarajan, Varadharajan; Tsou, Hsiao-Tung; Lin, Kai-Yuan; Chen, Hui-Jye; Lin, Chung-Ming; Liao, Jiuun-Wang; Yang, Hsin-Ling

    2016-01-01

    Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a novel quinone derivative, has been shown to modulate cellular redox balance. However, effect of this compound on melanoma remains unclear. This study examined the in vitro or in vivo anti-tumor, apoptosis, and anti-metastasis activities of CoQ0 (0-20 μM) through inhibition of Wnt/β-catenin signaling pathway. CoQ0 exhibits a significant cytotoxic effect on melanoma cell lines (B16F10, B16F1, and A2058), while causing little toxicity toward normal (HaCaT) cells. The suppression of β-catenin was seen with CoQ0 administration accompanied by a decrease in the expression of Wnt/β-catenin transcriptional target c-myc, cyclin D1, and survivin through GSK3β-independent pathway. We found that CoQ0 treatment caused G1 cell-cycle arrest by reducing the levels of cyclin E and CDK4. Furthermore, CoQ0 treatment induced apoptosis through caspase-9/-3 activation, PARP degradation, Bcl-2/Bax dysregulation, and p53 expression. Notably, non- or sub-cytotoxic concentrations of CoQ0 markedly inhibited migration and invasion, accompanied by the down-regulation of MMP-2 and -9, and up-regulation of TIMP-1 and -2 expressions in highly metastatic B16F10 cells. Furthermore, the in vivo study results revealed that CoQ0 treatment inhibited the tumor growth in B16F10 xenografted nude mice. Histological analysis and western blotting confirmed that CoQ0 significantly decreased the xenografted tumor progression as demonstrated by induction of apoptosis, suppression of β-catenin, and inhibition of cell cycle-, apoptotic-, and metastatic-regulatory proteins. The data suggest that CoQ0 unveils a novel mechanism by down-regulating Wnt/β-catenin pathways and could be used as a potential lead compound for melanoma chemotherapy. PMID:26968952

  11. INO80 governs superenhancer-mediated oncogenic transcription and tumor growth in melanoma.

    PubMed

    Zhou, Bingying; Wang, Li; Zhang, Shu; Bennett, Brian D; He, Fan; Zhang, Yan; Xiong, Chengliang; Han, Leng; Diao, Lixia; Li, Pishun; Fargo, David C; Cox, Adrienne D; Hu, Guang

    2016-06-15

    Superenhancers (SEs) are large genomic regions with a high density of enhancer marks. In cancer, SEs are found near oncogenes and dictate cancer gene expression. However, how oncogenic SEs are regulated remains poorly understood. Here, we show that INO80, a chromatin remodeling complex, is required for SE-mediated oncogenic transcription and tumor growth in melanoma. The expression of Ino80, the SWI/SNF ATPase, is elevated in melanoma cells and patient melanomas compared with normal melanocytes and benign nevi. Furthermore, Ino80 silencing selectively inhibits melanoma cell proliferation, anchorage-independent growth, tumorigenesis, and tumor maintenance in mouse xenografts. Mechanistically, Ino80 occupies >90% of SEs, and its occupancy is dependent on transcription factors such as MITF and Sox9. Ino80 binding reduces nucleosome occupancy and facilitates Mediator recruitment, thus promoting oncogenic transcription. Consistently, genes co-occupied by Ino80 and Med1 are selectively expressed in melanomas compared with melanocytes. Together, our results reveal an essential role of INO80-dependent chromatin remodeling in SE function and suggest a novel strategy for disrupting SEs in cancer treatment. PMID:27340176

  12. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells.

    PubMed

    Lugini, Luana; Matarrese, Paola; Tinari, Antonella; Lozupone, Francesco; Federici, Cristina; Iessi, Elisabetta; Gentile, Massimo; Luciani, Francesca; Parmiani, Giorgio; Rivoltini, Licia; Malorni, Walter; Fais, Stefano

    2006-04-01

    The phenomenon of cell cannibalism, which generally refers to the engulfment of cells within other cells, was described in malignant tumors, but its biological significance is still largely unknown. In the present study, we investigated the occurrence, the in vivo relevance, and the underlying mechanisms of cannibalism in human melanoma. As first evidence, we observed that tumor cannibalism was clearly detectable in vivo in metastatic lesions of melanoma and often involved T cells, which could be found in a degraded state within tumor cells. Then, in vitro experiments confirmed that cannibalism of T cells was a property of metastatic melanoma cells but not of primary melanoma cells. In particular, morphologic analyses, including time-lapse cinematography and electron microscopy, revealed a sequence of events, in which metastatic melanoma cells were able to engulf and digest live autologous melanoma-specific CD8(+) T cells. Importantly, this cannibalistic activity significantly increased metastatic melanoma cell survival, particularly under starvation condition, supporting the evidence that tumor cells may use the eating of live lymphocytes as a way to "feed" in condition of low nutrient supply. The mechanism underlying cannibalism involved a complex framework, including lysosomal protease cathepsin B activity, caveolae formation, and ezrin cytoskeleton integrity and function. In conclusion, our study shows that human metastatic melanoma cells may eat live T cells, which are instead programmed to kill them, suggesting a novel mechanism of tumor immune escape. Moreover, our data suggest that cannibalism may represent a sort of "feeding" activity aimed at sustaining survival and progression of malignant tumor cells in an unfavorable microenvironment. PMID:16585188

  13. Embryonic Chicken Transplantation is a Promising Model for Studying the Invasive Behavior of Melanoma Cells

    PubMed Central

    Jayachandran, Aparna; McKeown, Sonja J.; Woods, Briannyn L.; Prithviraj, Prashanth; Cebon, Jonathan

    2015-01-01

    Epithelial-to-mesenchymal transition is a hallmark event in the metastatic cascade conferring invasive ability to tumor cells. There are ongoing efforts to replicate the physiological events occurring during mobilization of tumor cells in model systems. However, few systems are able to capture these complex in vivo events. The embryonic chicken transplantation model has emerged as a useful system to assess melanoma cells including functions that are relevant to the metastatic process, namely invasion and plasticity. The chicken embryo represents an accessible and economical 3-dimensional in vivo model for investigating melanoma cell invasion as it exploits the ancestral relationship between melanoma and its precursor neural crest cells. We describe a methodology that enables the interrogation of melanoma cell motility within the developing avian embryo. This model involves the injection of melanoma cells into the neural tube of chicken embryos. Melanoma cells are labeled using fluorescent tracker dye, Vybrant DiO, then cultured as hanging drops for 24 h to aggregate the cells. Groups of approximately 700 cells are placed into the neural tube of chicken embryos prior to the onset of neural crest migration at the hindbrain level (embryonic day 1.5) or trunk level (embryonic day 2.5). Chick embryos are reincubated and analyzed after 48 h for the location of melanoma cells using fluorescent microscopy on whole mounts and cross-sections of the embryos. Using this system, we compared the in vivo invasive behavior of epithelial-like and mesenchymal-like melanoma cells. We report that the developing embryonic microenvironment confers motile abilities to both types of melanoma cells. Hence, the embryonic chicken transplantation model has the potential to become a valuable tool for in vivo melanoma invasion studies. Importantly, it may provide novel insights into and reveal previously unknown mediators of the metastatic steps of invasion and dissemination in melanoma

  14. Embryonic Chicken Transplantation is a Promising Model for Studying the Invasive Behavior of Melanoma Cells.

    PubMed

    Jayachandran, Aparna; McKeown, Sonja J; Woods, Briannyn L; Prithviraj, Prashanth; Cebon, Jonathan

    2015-01-01

    Epithelial-to-mesenchymal transition is a hallmark event in the metastatic cascade conferring invasive ability to tumor cells. There are ongoing efforts to replicate the physiological events occurring during mobilization of tumor cells in model systems. However, few systems are able to capture these complex in vivo events. The embryonic chicken transplantation model has emerged as a useful system to assess melanoma cells including functions that are relevant to the metastatic process, namely invasion and plasticity. The chicken embryo represents an accessible and economical 3-dimensional in vivo model for investigating melanoma cell invasion as it exploits the ancestral relationship between melanoma and its precursor neural crest cells. We describe a methodology that enables the interrogation of melanoma cell motility within the developing avian embryo. This model involves the injection of melanoma cells into the neural tube of chicken embryos. Melanoma cells are labeled using fluorescent tracker dye, Vybrant DiO, then cultured as hanging drops for 24 h to aggregate the cells. Groups of approximately 700 cells are placed into the neural tube of chicken embryos prior to the onset of neural crest migration at the hindbrain level (embryonic day 1.5) or trunk level (embryonic day 2.5). Chick embryos are reincubated and analyzed after 48 h for the location of melanoma cells using fluorescent microscopy on whole mounts and cross-sections of the embryos. Using this system, we compared the in vivo invasive behavior of epithelial-like and mesenchymal-like melanoma cells. We report that the developing embryonic microenvironment confers motile abilities to both types of melanoma cells. Hence, the embryonic chicken transplantation model has the potential to become a valuable tool for in vivo melanoma invasion studies. Importantly, it may provide novel insights into and reveal previously unknown mediators of the metastatic steps of invasion and dissemination in melanoma.

  15. Uptake of indium-111-labeled monoclonal antibody ZME-018 as a function of tumor size in a patient with melanoma

    SciTech Connect

    Macey, D.J.; Denardo, S.J.; Denardo, G.L.; Goodnight, J.K.; Unger, M.W.

    1988-01-01

    The accumulation of an Indium-111-labeled monoclonal antibody (MoAb), ZME-018, in melanoma tumors in a patient was determined by sequential, quantitative gamma camera imaging. The amount and concentration of In-111 in each tumor changed in a characteristic pattern with time, reaching a peak at day 3 followed by a steady clearance. The concentration of In-111 in the tumor and the ratios of tumor to whole-body or blood decreased as the size of the tumor increased. These results were interpreted to indicate that the fraction of active, perfused tumor decreased as the melanoma lesions increased in size. The maximum number of MoAb molecules bound per melanoma cell was calculated to be abut 35,000. The implications of these observations for radioimmunoimaging and therapy are significant.

  16. SMARCA4 (BRG1) loss of expression is a useful marker for the diagnosis of ovarian small cell carcinoma of the hypercalcemic type (ovarian rhabdoid tumor): a comprehensive analysis of 116 rare gynecologic tumors, 9 soft tissue tumors, and 9 melanomas.

    PubMed

    Karanian-Philippe, Marie; Velasco, Valérie; Longy, Michel; Floquet, Anne; Arnould, Laurent; Coindre, Jean-Michel; Le Naoures-Méar, Cécile; Averous, Gerlinde; Guyon, Frédéric; MacGrogan, Gaëtan; Croce, Sabrina

    2015-09-01

    Ovarian small cell carcinoma of the hypercalcemic type (SCCOHT)/ovarian rhabdoid tumor is a rare and highly malignant tumor that typically occurs in young women. Up until now the diagnosis has been made on the basis of morphology without any specific immunohistochemical (IHC) markers. However, several authors have shown recently that SCCOHTs are characterized by inactivation of the SMARCA4 gene (encoding the BRG1 protein) resulting in a loss of BRG1 protein expression in IHC. We evaluated BRG1 and INI1 expression in 12 SCCOHTs and in a series of 122 tumors that could mimic SCCOHT morphologically: 9 juvenile granulosa cell tumors, 47 adult granulosa cell tumors, 33 high-grade ovarian serous carcinomas, 9 desmoplastic round cell tumors, 13 Ewing sarcomas (5 from the pelvis and 8 from soft tissues), 1 round cell sarcoma associated with CIC-DUX4 translocation from soft tissue (thigh), 1 case of high-grade endometrial stromal sarcoma of the ovary, and 9 melanomas. Forty-four adult granulosa cell tumors were interpretable by IHC. All 12 SCCOHTs were devoid of BRG1 expression and expressed INI1. All other interpretable 119 tumors showed BRG1 nuclear positivity, with variable staining proportions, ranging from 10% to 100% of positive cells (mean: 77%, median: 80%), variable intensities (weak: 5%, moderate: 37%, strong: 58%), and distributions: diffuse in 82 cases (70%) and heterogenous in 36 cases (30%). BRG1 positivity was heterogenous in desmoplastic round cell tumors and adult granulosa cell tumors. Overall, BRG1 is a useful diagnostic marker in SCCOHT, showing the absence of expression in SCCOHT. Nevertheless, the possible heterogeneity and the variable intensity of this staining warrant caution in the interpretation of BRG1 staining in biopsy specimens.

  17. Increased NY-ESO-1 expression and reduced infiltrating CD3+ T cells in cutaneous melanoma.

    PubMed

    Giavina-Bianchi, Mara; Giavina-Bianchi, Pedro; Sotto, Mirian Nacagami; Muzikansky, Alona; Kalil, Jorge; Festa-Neto, Cyro; Duncan, Lyn M

    2015-01-01

    NY-ESO-1 is a cancer-testis antigen aberrantly expressed in melanomas, which may serve as a robust and specific target in immunotherapy. NY-ESO-1 antigen expression, tumor features, and the immune profile of tumor infiltrating lymphocytes were assessed in primary cutaneous melanoma. NY-ESO-1 protein was detected in 20% of invasive melanomas (16/79), rarely in in situ melanoma (1/10) and not in benign nevi (0/20). Marked intratumoral heterogeneity of NY-ESO-1 protein expression was observed. NY-ESO-1 expression was associated with increased primary tumor thickness (P = 0.007) and inversely correlated with superficial spreading melanoma (P < 0.02). NY-ESO-1 expression was also associated with reduced numbers and density of CD3+ tumor infiltrating lymphocytes (P = 0.017). When NY-ESO-1 protein was expressed, CD3+ T cells were less diffusely infiltrating the tumor and were more often arranged in small clusters (P = 0.010) or as isolated cells (P = 0.002) than in large clusters of more than five lymphocytes. No correlation of NY-ESO-1 expression with gender, age, tumor site, ulceration, lymph node sentinel status, or survival was observed. NY-ESO-1 expression in melanoma was associated with tumor progression, including increased tumor thickness, and with reduced tumor infiltrating lymphocytes.

  18. Interferon-β gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    PubMed

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported.

  19. Epigenetic inactivation of tumor suppressor genes in serum of patients with cutaneous melanoma.

    PubMed

    Marini, Alessandra; Mirmohammadsadegh, Alireza; Nambiar, Sandeep; Gustrau, Annett; Ruzicka, Thomas; Hengge, Ulrich R

    2006-02-01

    Small amounts of cell-free DNA circulate in both healthy and diseased human blood, while increased concentrations of DNA are present in the serum of cancer patients. Tumor-specific mutations or epigenetic modifications have predominantly been detected in tissue specimens. The purpose of this study was to investigate methylation of five different genes involved in tumor suppression and DNA repair (suppressors of cytokine signaling 1 and 2 (SOCS1, SOCS2)), Ras-association domain family protein 1A (RASSF1a), D-type p16(INK4a) cyclin-dependent kinase inhibitor (CDKN), and O6-methylguanine DNA-methyltransferase (MGMT)) in the serum of 100 patients using methylation-specific PCR. In all, 41 melanoma patients (stage I = 18; stage II = 10; stage III/IV = 13), 13 healthy controls without nevi, and 10 individuals with more than 15 nevi of >5 mm in size were investigated. For comparison, sera from patients with other skin tumors (nine basal cell cancers, five Kaposi's sarcoma), different metastasized cancers (five breast cancers, five colon cancers), and several chronic inflammatory diseases (n = 12) were also analyzed. In addition, we examined if methylation was involved in silencing transcription of these genes in 12 melanoma specimens. SOCS1, SOCS2, RASSF1a, CDKN2a, and MGMT were methylated in 75, 43, 64, 75, and 64% of melanoma samples, respectively. Of the 41 melanoma patients, 83% had one hypermethylated gene, while 66, 51, and 41% had two, three, or four hypermethylated genes, respectively. Also, 20% of these patients showed hypermethylation for all genes, while only 17% showed no methylation. Importantly, the methylation profile of the selected genes from melanoma patients was distinct from the other analyzed tumors. Transcription of SOCS1, SOCS2, CDKN2a, and RASSF1a genes was significantly reduced in fresh melanoma samples, while MGMT showed a 12-fold upregulation at the messenger ribonucleic acid level (P < 0.001). Our findings suggest that epigenetic silencing of

  20. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  1. Leptin serves as angiogenic/mitogenic factor in melanoma tumor growth

    PubMed Central

    Amjadi, Fatemehsadat; Mehdipoor, Roshanak; Zarkesh-Esfahani, Hamid; Javanmard, Shaghayegh Haghjooy

    2016-01-01

    Background: Tumor development is angiogenesis dependent. There is evidence that leptin contributes to tumor growth. However, all the mechanisms by which leptin does this has not been clearly established. The objective of the present study was to test the hypothesis that leptin enhances melanoma tumor growth through inducing angiogenesis and cell proliferation. Materials and Methods: We injected 2 × 106 B16F10 melanoma cells subcutaneously to 32 C57BL6 mice. The mice were randomly divided into four groups of eight animals, on day 8. Two groups received twice daily intraperitoneal (i.p.) injections of either phosphate buffered saline or recombinant murine leptin (1 μg/g initial body weight). Two groups received i.p. injections of either 9F8 an anti leptin receptor antibody or the control mouse IgG at 50 μg/injection every 3 consecutive days. By the end of the 2nd week, the animals were euthanized and blood samples and tumors were analyzed. Angiogenesis and proliferation were assessed by immunohistochemical staining for CD31 and Ki-67 respectively. Results: Tumors size, capillary density, plasma levels of vascular endothelial growth factor, and the number of Ki-67-positive stained cells were significantly more in the leptin than 9F8 and both control groups (P < 0.05). Conclusion: Taken together, our findings reinforce the idea that leptin acts as an angiogenic and mitogenic factor to promote melanoma growth. PMID:27563637

  2. Tumor Endothelial Marker Imaging in Melanomas Using Dual-Tracer Fluorescence Molecular Imaging

    PubMed Central

    Tichauer, Kenneth M.; Deharvengt, Sophie J.; Samkoe, Kimberley S.; Gunn, Jason R.; Bosenberg, Marcus W.; Turk, Mary-Jo; Hasan, Tayyaba; Stan, Radu V.; Pogue, Brian W.

    2014-01-01

    Purpose Cancer-specific endothelial markers available for intravascular binding are promising targets for new molecular therapies. In this study, a molecular imaging approach of quantifying endothelial marker concentrations (EMCI) is developed and tested in highly light-absorbing melanomas. The approach involves injection of targeted imaging tracer in conjunction with an untargeted tracer, which is used to account for nonspecific uptake and tissue optical property effects on measured targeted tracer concentrations. Procedures Theoretical simulations and a mouse melanoma model experiment were used to test out the EMCI approach. The tracers used in the melanoma experiments were fluorescently labeled anti-Plvap/PV1 antibody (plasmalemma vesicle associated protein Plvap/PV1 is a transmembrane protein marker exposed on the luminal surface of endothelial cells in tumor vasculature) and a fluorescent isotype control antibody, the uptakes of which were measured on a planar fluorescence imaging system. Results The EMCI model was found to be robust to experimental noise under reversible and irreversible binding conditions and was capable of predicting expected overexpression of PV1 in melanomas compared to healthy skin despite a 5-time higher measured fluorescence in healthy skin compared to melanoma: attributable to substantial light attenuation from melanin in the tumors. Conclusions This study demonstrates the potential of EMCI to quantify endothelial marker concentrations in vivo, an accomplishment that is currently unavailable through any other methods, either in vivo or ex vivo. PMID:24217944

  3. Cancer stem cell vaccine expressing ESAT-6-gpi and IL-21 inhibits melanoma growth and metastases

    PubMed Central

    Zhao, Fengshu; He, Xiangfeng; Sun, Jianan; Wu, Di; Pan, Meng; Li, Miao; Wu, Songyan; Zhang, Rong; Yan, Chunguang; Dou, Jun

    2015-01-01

    Tumor vaccines may induce antitumor efficacy, however, weak immunogenicity of tumor antigens is one of the prime obstacles for excitation of the antitumor immune responses. Therefore, strategies that enhance immunogenicity of tumor vaccines are of particular interest. In this study, a novel melanoma B16F10 CD133+CD44+ cancer stem cell (CSC) vaccine expressing 6 kDa early secreted antigenic target (ESAT-6) in the glycosylphosphatidylinositol (GPI)-anchored form and secreting interleukin (IL)-21 was developed. Its anti-melanoma efficacy and mechanisms were investigated in mice. The results demonstrated that the B16F10-ESAT-6-gpi/IL-21 CD133+CD44+ CSC vaccine exhibited enhanced anti-melanoma efficacy as determined by inhibited melanoma growth, prolonged survival of melanoma bearing mice. The anti-melanoma immunity was associated with elevated levels of serum anti-ESAT-6 and interferon (IFN)-γ as well as increased cytotoxic activities of natural killer cells, splenocytes, and complement dependent cytotoxicity. Furthermore, this CSC-based vaccine apparently inhibited melanoma lung metastasis by decreasing the level of Vimentin while increasing the level of E-cadherin expression, suggesting an inhibited epithelial mesenchymal transition. Thus, the B16F10-ESAT-6-gpi/IL-21 CD133+CD44+ CSC vaccine may be used to reactivate the anti-tumor immunity and for treatment of melanoma. PMID:26692931

  4. Basic and clinical aspects of malignant melanoma

    SciTech Connect

    Nathanson, L. )

    1987-01-01

    This book contains the following 10 chapters: The role of oncogenes in the pathogenesis of malignant melanoma; Laminin and fibronectin modulate the metastatic activity of melanoma cells; Structure, function and biosynthesis of ganglioside antigens associated with human tumors derived from the neuroectoderm; Epidemiology of ocular melanoma; Malignant melanoma: Prognostic factors; Endocrine influences on the natural history of human malignant melanoma; Psychosocial factors associated with prognostic indicators, progression, psychophysiology, and tumor-host response in cutaneous malignant melanoma; Central nervous system metastases in malignant melanoma; Interferon trials in the management of malignant melanoma and other neoplasms: an overview; and The treatment of malignant melanoma by fast neutrons.

  5. Combination therapy using imatinib and vatalanib improves the therapeutic efficiency of paclitaxel towards a mouse melanoma tumor.

    PubMed

    Kłosowska-Wardęga, Agnieszka; Hasumi, Yoko; Åhgren, Aive; Heldin, Carl-Henrik; Hellberg, Carina

    2011-02-01

    Melanomas respond poorly to chemotherapy. In this study, we investigated the sensitization of B16 mouse melanoma tumors to paclitaxel by a combination of two tyrosine kinase inhibitors: vatalanib, targeting vascular endothelial growth factor receptors, and imatinib, an inhibitor targeting for example, Abl/BCR-ABL, the platelet-derived growth factor receptor, and stem cell factor receptor c-Kit. C57Bl6/J mice carrying B16/PDGF-BB mouse melanoma tumors were treated daily with vatalanib (25 mg/kg), imatinib (100 mg/kg), or a combination of these drugs. Paclitaxel was given subcutaneously twice during the study. The effects of the drugs on tumor cell proliferation in vitro were determined by counting cells. B16/PDGF-BB mouse melanoma tumors were not sensitive to paclitaxel at doses of either 5 or 20 mg/kg. However, the tumor growth was significantly reduced by 58%, in response to paclitaxel (5 mg/kg) when administered with daily doses of both vatalanib and imatinib. Paclitaxel only inhibited the in-vitro growth of B16/PDGF-BB tumor cells when given in combination with imatinib. Imatinib presumably targets c-Kit, as the cells do not express platelet-derived growth factor receptor and as another c-Abl inhibitor was without effect. This was supported by data from three c-Kit-expressing human melanoma cell lines showing varying sensitization to paclitaxel by the kinase inhibitors. In addition, small interfering RNA knockdown of c-Kit sensitized the cells to paclitaxel. These data show that combination of two tyrosine kinase inhibitors, imatinib and vatalanib, increases the effects of paclitaxel on B16/PDGF-BB tumors, thus suggesting a novel strategy for the treatment of melanomas expressing c-Kit. PMID:20975605

  6. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells

    PubMed Central

    Baenke, Franziska; Chaneton, Barbara; Smith, Matthew; Van Den Broek, Niels; Hogan, Kate; Tang, Haoran; Viros, Amaya; Martin, Matthew; Galbraith, Laura; Girotti, Maria R.; Dhomen, Nathalie; Gottlieb, Eyal; Marais, Richard

    2016-01-01

    BRAF inhibitors can extend progression-free and overall survival in melanoma patients whose tumors harbor mutations in BRAF. However, the majority of patients eventually develop resistance to these drugs. Here we show that BRAF mutant melanoma cells that have developed acquired resistance to BRAF inhibitors display increased oxidative metabolism and increased dependency on mitochondria for survival. Intriguingly, the increased oxidative metabolism is associated with a switch from glucose to glutamine metabolism and an increased dependence on glutamine over glucose for proliferation. We show that the resistant cells are more sensitive to mitochondrial poisons and to inhibitors of glutaminolysis, suggesting that targeting specific metabolic pathways may offer exciting therapeutic opportunities to treat resistant tumors, or to delay emergence of resistance in the first-line setting. PMID:26365896

  7. Glucocorticoid receptor knockdown decreases the antioxidant protection of B16 melanoma cells: an endocrine system-related mechanism that compromises metastatic cell resistance to vascular endothelium-induced tumor cytotoxicity.

    PubMed

    Obrador, Elena; Valles, Soraya L; Benlloch, María; Sirerol, J Antoni; Pellicer, José A; Alcácer, Javier; Coronado, Javier Alcácer-F; Estrela, José M

    2014-01-01

    We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2--generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium.

  8. Macrophage depletion reduces postsurgical tumor recurrence and metastatic growth in a spontaneous murine model of melanoma

    PubMed Central

    Tham, Muly; Khoo, Karen; Yeo, Kim Pin; Kato, Masashi; Prevost-Blondel, Amelle; Angeli, Veronique; Abastado, Jean-Pierre

    2015-01-01

    Surgical resection of tumors is often followed by regrowth at the primary site and metastases may emerge rapidly following removal of the primary tumor. Macrophages are important drivers of tumor growth, and here we investigated their involvement in postoperative relapse as well as explore macrophage depletion as an adjuvant to surgical resection. RETAAD mice develop spontaneous metastatic melanoma that begins in the eye. Removal of the eyes as early as 1 week of age did not prevent the development of metastases; rather, surgery led to increased proliferation of tumor cells locally and in distant metastases. Surgery-induced increase in tumor cell proliferation correlated with increased macrophage density within the tumor. Moreover, macrophages stimulate tumor sphere formation from tumor cells of post-surgical but not control mice. Macrophage depletion with a diet containing the CSF-1R specific kinase inhibitor Ki20227 following surgery significantly reduced postoperative tumor recurrence and abrogated enhanced metastatic outgrowth. Our results confirm that tumor cells disseminate early, and show that macrophages contribute both to post-surgical tumor relapse and growth of metastases, likely through stimulating a population of tumor-initiating cells. Thus macrophage depletion warrants exploration as an adjuvant to surgical resection. PMID:25762633

  9. Circulating Melanoma Cell Subpopulations: Their Heterogeneity and Differential Responses to Treatment.

    PubMed

    Gray, Elin S; Reid, Anna L; Bowyer, Samantha; Calapre, Leslie; Siew, Kelvin; Pearce, Robert; Cowell, Lester; Frank, Markus H; Millward, Michael; Ziman, Mel

    2015-08-01

    Metastatic melanoma is a highly heterogeneous tumor; thus, methods to analyze tumor-derived cells circulating in blood should address this diversity. Taking this into account, we analyzed, using multiparametric flow cytometry, the co-expression of the melanoma markers melanoma cell adhesion molecule and melanoma-associated chondroitin sulphate proteoglycan and the tumor-initiating markers ATP-binding cassette sub-family B member 5 (ABCB5), CD271, and receptor activator of NF-κβ (RANK) in individual circulating tumor cells (CTCs) from 40 late-stage (III-IV) and 16 early-stage (I-II) melanoma patients. CTCs were heterogeneous within and between patients, with limited co-expression between the five markers analyzed. Analysis of patient matched blood and metastatic tumors revealed that ABCB5 and RANK subpopulations are more common among CTCs than in the solid tumors, suggesting a preferential selection for these cells in circulation. Pairwise comparison of CTC subpopulations longitudinally before and 6-13 weeks after treatment initiation showed that the percentage of RANK(+) CTCs significantly increased in the patients undergoing targeted therapy (N=16, P<0.01). Moreover, the presence of ⩾5 RANK(+) CTCs in the blood of patients undergoing targeted therapies was prognostic of shorter progression-free survival (hazards ratio 8.73, 95% confidence interval 1.82-41.75, P<0.01). Taken together, our results provide evidence of the heterogeneity among CTC subpopulations in melanoma and the differential response of these subpopulations to targeted therapy.

  10. IL-2 Inducible T-cell Kinase, a Novel Therapeutic Target in Melanoma

    PubMed Central

    Carson, Craig C.; Moschos, Stergios J.; Edmiston, Sharon N.; Darr, David B.; Nikolaishvili-Feinberg, Nana; Groben, Pamela A.; Zhou, Xin; Kuan, Pei Fen; Pandey, Shaily; Chan, Keefe T.; Jordan, Jamie L.; Hao, Honglin; Frank, Jill S.; Hopkinson, Dennis A.; Gibbs, David C.; Alldredge, Virginia D.; Parrish, Eloise; Hanna, Sara C.; Berkowitz, Paula; Rubenstein, David S.; Miller, C. Ryan; Bear, James E.; Ollila, David W.; Sharpless, Norman E.; Conway, Kathleen; Thomas, Nancy E.

    2015-01-01

    Purpose Interleukin-2 inducible T-cell kinase (ITK) promoter CpG sites are hypomethylated in melanomas compared to nevi. The expression of ITK in melanomas, however, has not been established and requires elucidation. Experimental Design An ITK specific monoclonal antibody was used to probe sections from de-identified, formalin-fixed paraffin-embedded tumor blocks or cell line arrays and ITK was visualized by immunohistochemistry. Levels of ITK protein differed among melanoma cell lines and representative lines were transduced with four different lentiviral constructs that each contained an shRNA designed to knockdown ITK mRNA levels. The effects of the selective ITK inhibitor BI 10N on cell lines and mouse models were also determined. Results ITK protein expression increased with nevus to metastatic melanoma progression. In melanoma cell lines, genetic or pharmacological inhibition of ITK decreased proliferation and migration and increased the percentage of cells in the G0/G1 phase. Treatment of melanoma-bearing mice with BI 10N reduced growth of ITK-expressing xenografts or established autochthonous (Tyr-Cre/Pten null/Braf V600E) melanomas. Conclusions We conclude that ITK, formerly considered an immune cell-specific protein, is aberrantly expressed in melanoma and promotes tumor development and progression. Our finding that ITK is aberrantly expressed in most metastatic melanomas suggests that inhibitors of ITK may be efficacious for melanoma treatment. The efficacy of a small molecule ITK inhibitor in the Tyr-Cre/Ptennull/BrafV600E mouse melanoma model supports this possibility. PMID:25934889

  11. Mice lacking NCF1 exhibit reduced growth of implanted melanoma and carcinoma tumors.

    PubMed

    Kelkka, Tiina; Pizzolla, Angela; Laurila, Juha Petteri; Friman, Tomas; Gustafsson, Renata; Källberg, Eva; Olsson, Olof; Leanderson, Tomas; Rubin, Kristofer; Salmi, Marko; Jalkanen, Sirpa; Holmdahl, Rikard

    2013-01-01

    The NADPH oxidase 2 (NOX2) complex is a professional producer of reactive oxygen species (ROS) and is mainly expressed in phagocytes. While the activity of the NOX2 complex is essential for immunity against pathogens and protection against autoimmunity, its role in the development of malignant tumors remains unclear. We compared wild type and Ncf1 (m1J) mutated mice, which lack functional NOX2 complex, in four different tumor models. Ncf1 (m1J) mutated mice developed significantly smaller tumors in two melanoma models in which B16 melanoma cells expressing a hematopoietic growth factor FLT3L or luciferase reporter were used. Ncf1 (m1J) mutated mice developed significantly fewer Lewis Lung Carcinoma (LLC) tumors, but the tumors that did develop, grew at a pace that was similar to the wild type mice. In the spontaneously arising prostate carcinoma model (TRAMP), tumor growth was not affected. The lack of ROS-mediated protection against tumor growth was associated with increased production of immunity-associated cytokines. A significant increase in Th2 associated cytokines was observed in the LLC model. Our present data show that ROS regulate rejection of the antigenic B16-luc and LLC tumors, whereas the data do not support a role for ROS in growth of intrinsically generated tumors. PMID:24358335

  12. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity.

    PubMed

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  13. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity

    PubMed Central

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M. Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  14. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma.

    PubMed

    Huang, Suyun; Mills, Lisa; Mian, Badar; Tellez, Carmen; McCarty, Marya; Yang, X-D; Gudas, Jean M; Bar-Eli, Menashe

    2002-07-01

    Interleukin-8 (IL-8) has recently been shown to contribute to human melanoma progression by functioning as a mitogenic and angiogenic factor. In the present study, we investigated whether targeting IL-8 by a fully human anti-IL-8 antibody (ABX-IL8) could be a potential therapeutic strategy to control angiogenesis, growth, and metastasis of melanoma. The human melanoma cells A375SM (high IL-8 producer) and TXM-13 (intermediate IL-8 producer) were injected subcutaneously into nude mice, which were then treated with ABX-IL8 (1 mg/3 times weekly, i.p., for 3 weeks). Tumor growth of both melanomas in ABX-IL8-treated mice was significantly inhibited when compared with control IgG-treated animals. ABX-IL8 treatment also suppressed experimental metastasis when the melanoma cells were injected intravenously. IL-8 blockade by ABX-IL8 significantly inhibited the promoter activity and the collagenase activity of matrix metalloproteinase-2 in human melanoma cells, resulting in decreased invasion through reconstituted basement membrane in vitro. In vivo, ABX-IL8 treatment resulted in decreased expression of matrix metalloproteinase-2, and decreased vascularization (angiogenesis) of tumors concomitant with increased apoptosis of tumor cells. Moreover, in an in vitro vessel formation assay, ABX-IL8 directly interfered with the tubule formation by human umbilical vein endothelial cells. Taken together, these results point to the potential utility of ABX-IL8 as a modality to treat melanoma and other solid tumors either alone or in combination with conventional chemotherapy or other anti-tumor agents. PMID:12107097

  15. Melanoma

    MedlinePlus

    ... have melanoma that has spread. Help the patient’s immune system fight the cancer Ipilimumab (Yervoy®), which was FDA ... How ipilimumab works : This drug helps the patient’s immune system to recognize, target, and attack cancer cells. Healthy ...

  16. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.

    PubMed

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  17. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells

    PubMed Central

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M.; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L.; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  18. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.

    PubMed

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L; Festuccia, Claudio; Limonta, Patrizia

    2016-07-27

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma.

  19. The application of quantum dots for the melanoma tumor in vivo imaging

    NASA Astrophysics Data System (ADS)

    Feng, Yayi; Zhai, Peng; Wang, Xiaomei; Ying, Ming; Wu, Jinbo; Zhu, Xiaomei; Lin, Guimiao; Chen, Qiang; Xu, Gaixia

    2014-09-01

    Objective: Over the past decade, fluorescent semiconductor nanocrystals, also known as quantum dots (QDs), have been applied in biomedical imaging in vitro and in vivo because of their fascinating optical properties. In this work, we investigated the application of CdTe QDs for tumor fluorescence in vivo imaging. Methods: The transparent dorsal skin fold window chamber (DSFC) was constructed on the 4~6 week-old BALB/c mice. The melanoma cells stably expressing green fluorescent protein ---ZsGreen were transplanted into the chamber and the melanoma DSFC model was established successfully. The water soluble CdTe QDs were synthesized and then administrated in the model through the tail intravenous injection. The fluorescent expression of B16 cells were assayed by fluorescent microscopy, the tumor growth, the blood capillaries distributions and its dynamic changes were observed by stereomicroscopy and laser scanning confocal microscopy. Results: The results demonstrated that the expression efficiency of ZsGreen was 41%, which met the experimental requirement. The tumors was visible inside the chamber after implantation of melanoma cells for 5~6 days, while no obvious changes in mice behaviors were found. After injection of the QDs, CdTe QDs accumulated at the invading edge of a range of solid tumor. We could also observe the tumor cells growth near the blood vessels, the angiogenesis occurred inside the tumor and the local blood capillaries increased. Conclusions: This work provided a new strategy for the tumor in vivo imaging and the development of targeted antineoplastic drugs.

  20. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  1. Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines.

    PubMed

    Lazar, Ikrame; Clement, Emily; Ducoux-Petit, Manuelle; Denat, Laurence; Soldan, Vanessa; Dauvillier, Stéphanie; Balor, Stéphanie; Burlet-Schiltz, Odile; Larue, Lionel; Muller, Catherine; Nieto, Laurence

    2015-07-01

    Exosomes are important mediators in cell-to-cell communication and, recently, their role in melanoma progression has been brought to light. Here, we characterized exosomes secreted by seven melanoma cell lines with varying degrees of aggressivity. Extensive proteomic analysis of their exosomes confirmed the presence of characteristic exosomal markers as well as melanoma-specific antigens and oncogenic proteins. Importantly, the protein composition differed among exosomes from different lines. Exosomes from aggressive cells contained specific proteins involved in cell motility, angiogenesis, and immune response, while these proteins were less abundant or absent in exosomes from less aggressive cells. Interestingly, when exposed to exosomes from metastatic lines, less aggressive cells increased their migratory capacities, likely due to transfer of pro-migratory exosomal proteins to recipient cells. Hence, this study shows that the specific protein composition of melanoma exosomes depends on the cells' aggressivity and suggests that exosomes influence the behavior of other tumor cells and their microenvironment.

  2. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  3. In Situ Measurement of miR-205 in Malignant Melanoma Tissue Supports its Role as a Tumor Suppressor MicroRNA

    PubMed Central

    Hanna, Jason A.; Hahn, Lewis; Agarwal, Seema; Rimm, David L.

    2012-01-01

    Oncogenic and tumor suppressing miRNAs have emerged as key regulators of gene expression in many types of cancer including melanoma. We utilized quantitative in situ hybridization (qISH) to evaluate the tumor suppressing properties of miRNA, miR-205 in a population of human tumors. We hypothesize decreased miR-205 would be associated with more aggressive tumors. Multiplexing miR-205 qISH with immunofluorescent assessment of S100/GP100 allowed us to quantitatively evaluate miR-205 expression using the AQUA method of quantitative immunofluorescence. The specificity of the assay was validated using blocking oligos and transfected cell lines as controls. Outcomes were assessed on the Yale Melanoma Discovery Cohort consisting of 105 primary melanoma specimens and validated on an independent set of 206 primary melanomas (Yale Melanoma Validation Cohort). Measurement of melanoma cell miR-205 levels shows a significantly shorter melanoma specific survival in patients with low expression. Multivariate analysis shows miR-205 levels are significantly independent of stage, age, gender and Breslow depth. Low levels of melanoma cell miR-205 expression as quantified by ISH show worse outcome, supporting the role of miR-205 as a tumor suppressor miRNA. The quantification of miR205 in situ suggests potential for the use of miRNAs in future prognostic or predictive models. PMID:22890556

  4. TLR2/6 agonists and interferon-gamma induce human melanoma cells to produce CXCL10.

    PubMed

    Mauldin, Ileana S; Wang, Ena; Deacon, Donna H; Olson, Walter C; Bao, Yongde; Slingluff, Craig L

    2015-09-15

    Clinical approaches to treat advanced melanoma include immune therapies, whose benefits depend on tumor-reactive T-cell infiltration of metastases. However, most tumors lack significant immune infiltration prior to therapy. Selected chemokines promote T-cell migration into tumors; thus, agents that induce these chemokines in the tumor microenvironment (TME) may improve responses to systemic immune therapy. CXCL10 has been implicated as a critical chemokine supporting T-cell infiltration into the TME. Here, we show that toll-like receptor (TLR) agonists can induce chemokine production directly from melanoma cells when combined with IFNγ treatment. We find that TLR2 and TLR6 are widely expressed on human melanoma cells, and that TLR2/6 agonists (MALP-2 or FSL-1) synergize with interferon-gamma (IFNγ) to induce production of CXCL10 from melanoma cells. Furthermore, melanoma cells and immune cells from surgical specimens also respond to TLR2/6 agonists and IFNγ by upregulating CXCL10 production, compared to treatment with either agent alone. Collectively, these data identify a novel mechanism for inducing CXCL10 production directly from melanoma cells, with TLR2/6 agonists +IFNγ and raise the possibility that intratumoral administration of these agents may improve immune signatures in melanoma and have value in combination with other immune therapies, by supporting T-cell migration into melanoma metastases.

  5. Phyllodes Tumor of the Breast With Malignant Melanoma Component: A Case Report.

    PubMed

    Vergine, Marco; Guy, Catherine; Taylor, Mark R

    2015-09-01

    Phyllodes tumors of the breast display a wide variation in histological appearance and are classified into benign, borderline, and malignant categories based on a combination of histological parameters. These tumors may include a malignant heterologous component that is believed to originate through a process of multidirectional differentiation from a cancer stem cell. In these cases, the tumor is classified as a malignant phyllodes tumor. Among the heterologous elements that have been described in malignant phyllodes tumors are rhabdomyosarcoma, chondrosarcoma, osteosarcoma, liposarcoma and angiosarcoma. We present the first case of a phyllodes tumor with a malignant melanoma component in the breast of a 71-year-old lady, discussing the clinical implications of this diagnosis. PMID:26113664

  6. Bisphosphonamidate Clodronate Prodrug Exhibits Selective Cytotoxic Activity Against Melanoma Cell Lines

    PubMed Central

    Webster, Marie R.; Kamat, Chandrashekhar; Connis, Nick; Zhao, Ming; Weeraratna, Ashani T.; Rudek, Michelle A.; Hann, Christine L.; Freel Meyers, Caren L.

    2014-01-01

    Bisphosphonates are used clinically to treat disorders of calcium metabolism and malignant bone disease and are known to inhibit cancer cell growth, adhesion, and invasion. However, clinical use of these agents for the treatment of extraskeletal disease is limited due to low cell permeability. We recently described a bisphosphonamidate prodrug strategy for efficient intracellular release of bisphosphonates, including clodronate (CLO), in NSCLC cells. To evaluate anticancer activity of this prodrug class across many cancer cell types, the bisphosphonamidate clodronate prodrug (CLO prodrug) was screened against the NCI-60 cell line panel, and was found to exhibit selectivity toward melanoma cell lines. Here, we confirm efficient cellular uptake and intracellular activation of this prodrug class in melanoma cells. We further demonstrate inhibition of melanoma cell proliferation, induction of apoptosis, and an anti-tumor effect of CLO prodrug in a xenograft model. These data suggest a novel therapeutic application for the CLO prodrug and potential to selectively target melanoma cells. PMID:24310621

  7. Efficacy of acetylsalicylic acid (aspirin) in skin B16-F0 melanoma tumor-bearing C57BL/6 mice.

    PubMed

    Vad, Nikhil M; Kudugunti, Shashi K; Wang, Hezhen; Bhat, G Jayarama; Moridani, Majid Y

    2014-05-01

    Several epidemiological studies show that aspirin can act as a chemopreventive agent and decrease the incidences of various cancers including melanoma. In this work, we investigated the in vitro and in vivo efficacy of acetylsalicylic acid (ASA) as an antimelanoma agent in B16-F0 cells and skin B16-F0 melanoma tumor mouse model. Our findings indicate that the IC50 (48 h) for ASA in B16-F0 melanoma cells was 100 μM and that ASA caused a dose- and time-dependent GSH depletion and increase in reactive oxygen species (ROS) formation in B16-F0 melanoma cells. Male C57BL/6 mice were inoculated s.c. with 1 × 10(6) B16-F0 melanoma cells. ASA (80, 100, and 150 mg/kg) was initiated on day 1 or day 7, or day 9 after cell inoculation and continued daily for 13, 7, and 5 days, respectively. Animals were weighed daily and sacrificed on day 13. The tumors were excised and weighed. The animals receiving 13 days of ASA therapy at 80, 100, and 150 mg/kg demonstrated tumor growth inhibition by 1 ± 12%, 19 ± 22%, and 50 ± 29%, respectively. Animals receiving 7 days of therapy at 80, 100, and 150 mg/kg demonstrated tumor growth inhibition by 12 ± 14%, 27 ± 14%, and 40 ± 14%, respectively. No significant tumor growth inhibition was observed with 5 days of therapy. ASA at 100 and 150 mg/kg caused significant tumor growth inhibition in C57BL/6 mice when administered for 13 and 7 days, respectively. The results obtained in this study are consistent with the recent epidemiologically based report that aspirin is associated with lower melanoma risk in humans.

  8. Restoration of tumor equilibrium after immunotherapy for advanced melanoma: three illustrative cases.

    PubMed

    Wilgenhof, Sofie; Pierret, Lauranne; Corthals, Jurgen; Van Nuffel, An M T; Heirman, Carlo; Roelandt, Truus; De Coninck, Arlette; Verfaillie, Guy; Vandenbroucke, Frederik; Van Riet, Ivan; Bonehill, Aude; Thielemans, Kris; Neyns, Bart

    2011-04-01

    Metastatic melanoma runs a predictable detrimental course in the vast majority of patients. New modalities of immunotherapy, such as melanoma antigen-specific therapeutic vaccination and cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor blockade by monoclonal antibodies (mAbs), have been associated with atypical kinetics of tumor response that differ from those observed during cytotoxic treatment. Recently, new tumor response criteria have been proposed based on the tumor response characteristics observed in clinical studies with ipilimumab (the so-called 'immune-related response criteria'). We report three illustrative cases of the American Joint Committee on Cancer stage IV-M1c melanoma patients who experienced atypical kinetics of tumor response to the treatment with the CTLA-4-blocking mAb, ipilimumab (case 1), or an autologous dendritic cell vaccine in combination with interferon α-2b (cases 2 and 3). These cases show that atypical response patterns not only relate to the outcome of CTLA-4-blocking mAb therapy but also to the treatment with therapeutic vaccines and interferon α-2b.

  9. Fas-mediated apoptosis of melanoma cells and infiltrating lymphocytes in human malignant melanomas.

    PubMed

    Shukuwa, Tetsuo; Katayama, Ichiro; Koji, Takehiko

    2002-04-01

    In a rodent system, melanoma cells expressing Fas ligand (FasL) could kill Fas-positive lymphocytes, suggesting that FasL expression was an essential factor for melanoma cell survival in vivo. These findings led us to investigate apoptosis, and to histochemically analyze involvement of Fas and FasL in the induction of apoptosis, in human malignant melanoma tissues. The percentages of terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick end-labeling (TUNEL)-positive melanoma cells and of proliferating cell nuclear antigen (PCNA)-positive melanoma cells in melanoma tissues (n = 22) were greater than those in melanocytes in uninvolved skin (n = 6) and nevus cells in nevi tissues (n = 9). The infiltrating lymphocytes around melanomas were also TUNEL positive. Immunohistochemistry revealed expression of Fas and FasL in melanoma cells and lymphocytes, whereas no Fas or FasL expression was detected in normal skin melanocytes and nevus cells. There was significant correlation between Fas-positive indices and TUNEL indices in melanoma tissues. Moreover, TUNEL-, Fas-, and FasL-positive indices of melanoma cells from patients with Stage 3 melanomas were significantly lower than those with Stage 2 melanomas. The PCNA index of Stage 1 melanoma was significantly lower than that of the other stages, although the difference of PCNA index was insignificant among Stages 2 to 4. Among Stages 1 to 4, there was no difference in the PCNA, TUNEL-, and Fas-positive indices of lymphocytes, although the FasL-positive index of lymphocytes from Stage 3 melanomas was significantly lower than in that from Stage 2. These data reveal that melanoma cells and infiltrating lymphocytes have the potential to induce their own apoptosis regulated by Fas and FasL in an autocrine and/or paracrine fashion and that the decline of Fas-mediated apoptosis of melanoma cells, rather than the apoptosis of infiltrating lymphocytes, may affect the prognosis of melanoma patients, possibly through the

  10. Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment

    PubMed Central

    Kulesa, Paul M.; Kasemeier-Kulesa, Jennifer C.; Teddy, Jessica M.; Margaryan, Naira V.; Seftor, Elisabeth A.; Seftor, Richard E. B.; Hendrix, Mary J. C.

    2006-01-01

    Human metastatic melanoma cells express a dedifferentiated, plastic phenotype, which may serve as a selective advantage, because melanoma cells invade various microenvironments. Over the last three decades, there has been an increased focus on the role of the tumor microenvironment in cancer progression, with the goal of reversing the metastatic phenotype. Here, using an embryonic chick model, we explore the possibility of reverting the metastatic melanoma phenotype to its cell type of origin, the neural-crest-derived melanocyte. GFP-labeled adult human metastatic melanoma cells were transplanted in ovo adjacent to host chick premigratory neural crest cells and analyzed 48 and 96 h after egg reincubation. Interestingly, the transplanted melanoma cells do not form tumors. Instead, we find that transplanted melanoma cells invade surrounding chick tissues in a programmed manner, distributing along host neural-crest-cell migratory pathways. The invading melanoma cells display neural-crest-cell-like morphologies and populate host peripheral structures, including the branchial arches, dorsal root and sympathetic ganglia. Analysis of a melanocyte-specific phenotype marker (MART-1) and a neuronal marker (Tuj1) revealed a subpopulation of melanoma cells that invade the chick periphery and express MART-1 and Tuj1. Our results demonstrate the ability of adult human metastatic melanoma cells to respond to chick embryonic environmental cues, a subset of which may undergo a reprogramming of their metastatic phenotype. This model has the potential to provide insights into the regulation of tumor cell plasticity by an embryonic milieu, which may hold significant therapeutic promise. PMID:16505384

  11. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq

    PubMed Central

    Tirosh, Itay; Izar, Benjamin; Prakadan, Sanjay M.; Wadsworth, Marc H.; Treacy, Daniel; Trombetta, John J.; Rotem, Asaf; Rodman, Christopher; Lian, Christine; Murphy, George; Fallahi-Sichani, Mohammad; Dutton-Regester, Ken; Lin, Jia-Ren; Cohen, Ofir; Shah, Parin; Lu, Diana; Genshaft, Alex S.; Hughes, Travis K.; Ziegler, Carly G. K.; Kazer, Samuel W.; Gaillard, Aleth; Kolb, Kellie E.; Villani, Alexandra-Chloé; Johannessen, Cory M.; Andreev, Aleksandr Y.; Van Allen, Eliezer M.; Bertagnolli, Monica; Sorger, Peter K.; Sullivan, Ryan J.; Flaherty, Keith T.; Frederick, Dennie T.; Jané-Valbuena, Judit; Yoon, Charles H.; Rozenblatt-Rosen, Orit; Shalek, Alex K.; Regev, Aviv; Garraway, Levi A.

    2016-01-01

    To explore the distinct genotypic and phenotypic states of melanoma tumors we applied single-cell RNA-seq to 4,645 single cells isolated from 19 patients, profiling malignant, immune, stromal and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that “MITF-high” tumors also contained “AXL-high” tumor cells. Single-cell analyses suggested distinct tumor micro-environmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and to clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single cell genomics offers insights with implications for both targeted and immune therapies. PMID:27124452

  12. Electrotransfer of Plasmid DNA Encoding an Anti-Mouse Endoglin (CD105) shRNA to B16 Melanoma Tumors with Low and High Metastatic Potential Results in Pronounced Anti-Tumor Effects

    PubMed Central

    Dolinsek, Tanja; Sersa, Gregor; Prosen, Lara; Bosnjak, Masa; Stimac, Monika; Razborsek, Urska; Cemazar, Maja

    2015-01-01

    Endoglin overexpression is associated with highly proliferative tumor endothelium and also with some tumors, including melanoma. Its targeting has anti-tumor effectiveness, which can also be obtained by RNA interference. The aim of our study was to explore the anti-tumor effectiveness of endoglin silencing by electrotransfer of plasmid DNA encoding short hairpin RNA against endoglin in two murine B16 melanoma variants with different metastatic potential on cells, spheroids and subcutaneous tumors in mice. The results demonstrate that endoglin silencing with gene electrotransfer reduces the proliferation, survival and migration of melanoma cells and also has anti-tumor effectiveness, as the therapy resulted in a high percentage of tumor cures (23% and 58% on B16F1 and B16F10 tumors, respectively). The effectiveness of the therapy correlated with endoglin expression in melanoma cells; in vitro the effects were more pronounced in B16F1 cells, which express more endoglin than B16F10. However, the opposite was observed in vivo in tumors, where there was a higher expression of endoglin and better anti-tumor effectiveness in the B16F10 tumor. In conclusion, targeting endoglin for the treatment of melanoma seems to be a concept worthy of further exploration due to the increased therapeutic effect of the therapy based on simultaneous vascular targeting and its direct effect on tumor cells. PMID:26712792

  13. Raman spectroscopy detects melanoma and the tissue surrounding melanoma using tissue-engineered melanoma models

    PubMed Central

    Yorucu, Ceyla; Lau, Katherine; Mittar, Shweta; Green, Nicola H.; Raza, Ahtasham; Rehman, Ihtesham Ur; MacNeil, Sheila

    2016-01-01

    ABSTRACT Invasion of melanoma cells from the primary tumor involves interaction with adjacent tissues and extracellular matrix. The extent of this interaction is not fully understood. In this study Raman spectroscopy was applied to cryo-sections of established 3D models of melanoma in human skin. Principal component analysis was used to investigate differences between the tumor and normal tissue and between the peri-tumor area and the normal skin. Two human melanoma cells lines A375SM and C8161 were investigated and compared in 3D melanoma models. Changes were found in protein conformations and tryptophan configurations across the entire melanoma samples, in tyrosine orientation and in more fluid lipid packing only in tumor dense areas, and in increased glycogen content in the peri-tumor areas of melanoma. Raman spectroscopy revealed changes around the perimeter of a melanoma tumor as well as detecting differences between the tumor and the normal tissue. PMID:27158185

  14. Lentivirus-mediated downregulation of MAT2B inhibits cell proliferation and induces apoptosis in melanoma.

    PubMed

    Lei, Yu; Zhang, Bo; Zhang, Yaohua; Zhao, Yuan; Sun, Jingying; Zhang, Xuejun; Yang, Sen

    2016-09-01

    Malignant melanoma is the most lethal of skin cancers and its pathogenesis is complex and heterogeneous. The efficacy of conventional therapeutic regimens for melanoma remains limited. Thus, it is important to explore novel effective therapeutic targets in the treatment of melanoma. The MAT2B gene encodes for the regulatory subunit of methionine adenosyltransferase (MAT). Recent studies have suggested that MAT2B may have functional roles other than modulating catalytic activity of MAT. In order to identify the roles of MAT2B in the tumorigenesis of malignant melanoma, we compared MAT2B expression profile in melanoma tissues with that in benign nevus samples. We employed lentivirus-mediated RNAi to downregulate the expression of MAT2B in malignant melanoma cell lines (A375 and Mel-RM), and investigated the effects of MAT2B on cell growth, colony-formation ability and apoptosis in vitro, as well as tumor growth of a xenograft model in vivo. The expression levels of BCL2 and XAF1 proteins, which were closely related to tumor cell apoptosis, were analyzed by western blot analysis. Our data showed that MAT2B was elevated in both primary and metastatic melanoma tissues compared with benign nevus samples. Lentivirus-mediated downregulation of MAT2B suppressed cell growth, colony formation and induced apoptosis in A375 and Mel-RM cell lines in vitro, affected protein expression of BCL2 and XAF1, extended the transplanted tumor growth in vivo. These results indicated that MAT2B was critical in the proliferation of melanoma cells and tumorigenicity. It may be considered as a potential anti-melanoma therapeutic target. PMID:27573889

  15. Expression of the human endogenous retrovirus-K transmembrane envelope, Rec and Np9 proteins in melanomas and melanoma cell lines.

    PubMed

    Büscher, Kristina; Hahn, Silvia; Hofmann, Maja; Trefzer, Uwe; Ozel, Muhsin; Sterry, Wolfram; Löwer, Johannes; Löwer, Roswitha; Kurth, Reinhard; Denner, Joachim

    2006-06-01

    The human endogenous retrovirus-K encodes two potential tumor proteins, Rec and Np9. Rec is related to the Rev protein of HIV-1 and has been shown to be associated with tumor development in nude mice. Having shown the expression of human endogenous retrovirus-K in human melanomas and melanoma cell lines, tools were developed to allow the expression of the transmembrane envelope, Rec and Np9 mRNA and proteins to be studied in more detail. The expression of spliced env, rec and np9 was investigated by reverse transcriptase-polymerase chain reaction using a set of primers developed to discriminate between full-length and spliced mRNA. Env-specific, Rec-specific and Np9-specific antisera were produced, characterized and used to study protein expression in melanomas and melanoma cell lines by immunohistochemistry, immunofluorescence and Western blot analyses. Existence of human endogenous retrovirus-K Rec and Np9-specific antibodies in the sera of melanoma patients were analyzed by Western blot of immunofluorescence studies. The expression of both spliced env and rec mRNA was detected in 39% of the melanomas and in 40% of the melanoma cell lines and np9 mRNA was detected in 29 and 21%, respectively. In normal neonatal melanocytes, spliced rec mRNA was detected in the absence of spliced env mRNA. Using antisera specific for Rec and Np9, Rec protein was found in 14% of the melanomas but Np9 in none. In addition, cell surface expression of the putatively immunosuppressive transmembrane envelope protein and release of virus particles were shown. Antibodies specific for neither Rec nor Np9 were detected. The transmembrane envelope protein, Rec and Np9 proteins are expressed in melanoma cells with a pattern similar to that seen in teratocarcinoma cell lines. Additional experiments are needed to determine their involvement, if any, in cell proliferation and tumor progression.

  16. Detection and isolation of circulating melanoma cells using photoacoustic flowmetry.

    PubMed

    O'Brien, Christine M; Rood, Kyle; Sengupta, Shramik; Gupta, Sagar K; DeSouza, Thiago; Cook, Aaron; Viator, John A

    2011-01-01

    Circulating tumor cells (CTCs) are those cells that have separated from a macroscopic tumor and spread through the blood and lymph systems to seed secondary tumors(1,2,3). CTCs are indicators of metastatic disease and their detection in blood samples may be used to diagnose cancer and monitor a patient's response to therapy. Since CTCs are rare, comprising about one tumor cell among billions of normal blood cells in advanced cancer patients, their detection and enumeration is a difficult task. We exploit the presence of pigment in most melanoma cells to generate photoacoustic, or laser induced ultrasonic waves in a custom flow cytometer for detection of circulating melanoma cells (CMCs)(4,5). This process entails separating a whole blood sample using centrifugation and obtaining the white blood cell layer. If present in whole blood, CMCs will separate with the white blood cells due to similar density. These cells are resuspended in phosphate buffered saline (PBS) and introduced into the flowmeter. Rather than a continuous flow of the blood cell suspension, we induced two phase flow in order to capture these cells for further study. In two phase flow, two immiscible liquids in a microfluidic system meet at a junction and form alternating slugs of liquid(6,7). PBS suspended white blood cells and air form microliter slugs that are sequentially irradiated with laser light. The addition of a surfactant to the liquid phase allows uniform slug formation and the user can create different sized slugs by altering the flow rates of the two phases. Slugs of air and slugs of PBS with white blood cells contain no light absorbers and hence, do not produce photoacoustic waves. However, slugs of white blood cells that contain even single CMCs absorb laser light and produce high frequency acoustic waves. These slugs that generate photoacoustic waves are sequestered and collected for cytochemical staining for verification of CMCs. PMID:22143421

  17. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion

    PubMed Central

    Giordano, Marilyn; Henin, Coralie; Maurizio, Julien; Imbratta, Claire; Bourdely, Pierre; Buferne, Michel; Baitsch, Lukas; Vanhille, Laurent; Sieweke, Michael H; Speiser, Daniel E; Auphan-Anezin, Nathalie; Schmitt-Verhulst, Anne-Marie; Verdeil, Grégory

    2015-01-01

    T cells infiltrating neoplasms express surface molecules typical of chronically virus-stimulated T cells, often termed “exhausted” T cells. We compared the transcriptome of “exhausted” CD8 T cells infiltrating autochthonous melanomas to those of naïve and acutely stimulated CD8 T cells. Despite strong similarities between transcriptional signatures of tumor- and virus-induced exhausted CD8 T cells, notable differences appeared. Among transcriptional regulators, Nr4a2 and Maf were highly overexpressed in tumor-exhausted T cells and significantly upregulated in CD8 T cells from human melanoma metastases. Transduction of murine tumor-specific CD8 T cells to express Maf partially reproduced the transcriptional program associated with tumor-induced exhaustion. Upon adoptive transfer, the transduced cells showed normal homeostasis but failed to accumulate in tumor-bearing hosts and developed defective anti-tumor effector responses. We further identified TGFβ and IL-6 as main inducers of Maf expression in CD8 T cells and showed that Maf-deleted tumor-specific CD8 T cells were much more potent to restrain tumor growth in vivo. Therefore, the melanoma microenvironment contributes to skewing of CD8 T cell differentiation programs, in part by TGFβ/IL-6-mediated induction of Maf. PMID:26139534

  18. The BRAFV600E inhibitor, PLX4032, increases type I collagen synthesis in melanoma cells

    PubMed Central

    Jenkins, Molly H.; Croteau, Walburga; Mullins, David W.; Brinckerhoff, Constance E.

    2016-01-01

    Vertical growth phase (VGP) melanoma is frequently metastatic, a process mediated by changes in gene expression, which are directed by signal transduction pathways in the tumor cells. A prominent signaling pathway is the Ras-Raf-Mek-Erk MAPK pathway, which increases expression of genes that promote melanoma progression. Many melanomas harbor a mutation in this pathway, BRAFV600E, which constitutively activates MAPK signaling and expression of downstream target genes that facilitate tumor progression. In BRAFV600E melanoma, the small molecule inhibitor, vemurafenib (PLX4032), has revolutionized therapy for melanoma by inducing rapid tumor regression. This compound down-regulates the expression of many genes. However, in this study, we document that blocking the Ras-Raf-Mek-Erk MAPK pathway, either with an ERK (PLX4032) or a MEK (U1026) signaling inhibitor, in BRAFV600E human and murine melanoma cell lines increases collagen synthesis in vitro and collagen deposition in vivo. Since TGFβ signaling is a major mediator of collagen synthesis, we examined whether blocking TGFβ signaling with a small molecule inhibitor would block this increase in collagen. However, there was minimal reduction in collagen synthesis in response to blocking TGFβ signaling, suggesting additional mechanism(s), which may include activation of the p38 MAPK pathway. Presently, it is unclear whether this increased collagen synthesis and deposition in melanomas represent a therapeutic benefit or an unwanted “off target” effect of inhibiting the Ras-Raf-Erk-Mek pathway. PMID:25989506

  19. Akt Inhibitor MK2206 and Hydroxychloroquine in Treating Patients With Advanced Solid Tumors, Melanoma, Prostate or Kidney Cancer

    ClinicalTrials.gov

    2016-02-05

    Adult Solid Neoplasm; Hormone-Resistant Prostate Cancer; Recurrent Melanoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma

  20. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro

    PubMed Central

    Kemény, Lajos V.; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells’ nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma–stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments. PMID:27271591

  1. CIZ/NMP4 is expressed in B16 melanoma and forms a positive feedback loop with RANKL to promote migration of the melanoma cells.

    PubMed

    Sakuma, Tomomi; Nakamoto, Tetsuya; Hemmi, Hiroaki; Kitazawa, Sohei; Kitazawa, Riko; Notomi, Takuya; Hayata, Tadayoshi; Ezura, Yoichi; Amagasa, Teruo; Noda, Masaki

    2012-07-01

    Tumor metastasis to bone is a serious pathological situation that causes severe pain, and deterioration in locomoter function. However, the mechanisms underlying tumor metastasis is still incompletely understood. CIZ/NMP4 is a nucleocytoplasmic shuttling protein and its roles in tumor cells have not been known. We, therefore, hypothesized the role of CIZ/NMP4 in B16 melanoma cells that metastasize to bone. CIZ/NMP4 is expressed in B16 cells. The CIZ/NMP4 expression levels are correlated to the metastatic activity in divergent types of melanoma cells. Overexpression of CIZ/NMP4 increased B16 cell migration in Trans-well assay. Conversely, siRNA-based knockdown of CIZ/NMP4 suppressed migratory activity of these cells. As RANKL promotes metastasis of tumor cells in bone, we tested its effect on CIZ in melanoma cells. RANKL treatment enhanced CIZ/NMP4 expression. This increase of CIZ by RANKL promoted migration. Conversely, we identified CIZ/NMP4 binding site in the promoter of RANKL. Furthermore, luciferase assay indicated that CIZ/NMP4 overexpression enhanced RANKL promoter activities, revealing a positive feedback loop of CIZ/NMP4 and RANKL in melanoma. These observations indicate that CIZ/NMP4 is critical regulator of metastasis of melanoma cells. PMID:22307584

  2. Tumor-Infiltrating Lymphocyte Grade in Primary Melanomas Is Independently Associated With Melanoma-Specific Survival in the Population-Based Genes, Environment and Melanoma Study

    PubMed Central

    Thomas, Nancy E.; Busam, Klaus J.; From, Lynn; Kricker, Anne; Armstrong, Bruce K.; Anton-Culver, Hoda; Gruber, Stephen B.; Gallagher, Richard P.; Zanetti, Roberto; Rosso, Stefano; Dwyer, Terence; Venn, Alison; Kanetsky, Peter A.; Groben, Pamela A.; Hao, Honglin; Orlow, Irene; Reiner, Anne S.; Luo, Li; Paine, Susan; Ollila, David W.; Wilcox, Homer; Begg, Colin B.; Berwick, Marianne

    2013-01-01

    Purpose Although most hospital-based studies suggest more favorable survival with tumor-infiltrating lymphocytes (TILs) present in primary melanomas, it is uncertain whether TILs provide prognostic information beyond existing melanoma staging definitions. We addressed the issue in an international population-based study of patients with single and multiple primary melanomas. Patients and Methods On the basis of the Genes, Environment and Melanoma (GEM) study, we conducted follow-up of 2,845 patients diagnosed from 1998 to 2003 with 3,330 invasive primary melanomas centrally reviewed for TIL grade (absent, nonbrisk, or brisk). The odds of TIL grades associated with clinicopathologic features and survival by TIL grade were examined. Results Independent predictors (P < .05) for nonbrisk TIL grade were site, histologic subtype, and Breslow thickness, and for brisk TIL grade, they were age, site, Breslow thickness, and radial growth phase. Nonbrisk and brisk TIL grades were each associated with lower American Joint Committee on Cancer (AJCC) tumor stage compared with TIL absence (Ptrend < .001). Death as a result of melanoma was 30% less with nonbrisk TIL grade (hazard ratio [HR], 0.7; 95% CI, 0.5 to 1.0) and 50% less with brisk TIL grade (HR, 0.5; 95% CI, 0.3 to 0.9) relative to TIL absence, adjusted for age, sex, site, and AJCC tumor stage. Conclusion At the population level, higher TIL grade of primary melanoma is associated with a lower risk of death as a result of melanoma independently of tumor characteristics currently used for AJCC tumor stage. We conclude that TIL grade deserves further prospective investigation to determine whether it should be included in future AJCC staging revisions. PMID:24127443

  3. High Interstitial Fluid Pressure Is Associated with Tumor-Line Specific Vascular Abnormalities in Human Melanoma Xenografts

    PubMed Central

    Simonsen, Trude G.; Gaustad, Jon-Vidar; Leinaas, Marit N.; Rofstad, Einar K.

    2012-01-01

    Purpose Interstitial fluid pressure (IFP) is highly elevated in many solid tumors. High IFP has been associated with low radiocurability and high metastatic frequency in human melanoma xenografts and with poor survival after radiation therapy in cervical cancer patients. Abnormalities in tumor vascular networks have been identified as an important cause of elevated tumor IFP. The aim of this study was to investigate the relationship between tumor IFP and the functional and morphological properties of tumor vascular networks. Materials and Methods A-07-GFP and R-18-GFP human melanomas growing in dorsal window chambers in BALB/c nu/nu mice were used as preclinical tumor models. Functional and morphological parameters of the vascular network were assessed from first-pass imaging movies and vascular maps recorded after intravenous bolus injection of 155-kDa tetramethylrhodamine isothiocyanate-labeled dextran. IFP was measured in the center of the tumors using a Millar catheter. Angiogenic profiles of A-07-GFP and R-18-GFP cells were obtained with a quantitative PCR array. Results High IFP was associated with low growth rate and low vascular density in A-07-GFP tumors, and with high growth rate and high vascular density in R-18-GFP tumors. A-07-GFP tumors showed chaotic and highly disorganized vascular networks, while R-18-GFP tumors showed more organized vascular networks with supplying arterioles in the tumor center and draining venules in the tumor periphery. Furthermore, A-07-GFP and R-18-GFP cells differed substantially in angiogenic profiles. A-07-GFP tumors with high IFP showed high geometric resistance to blood flow due to high vessel tortuosity. R-18-GFP tumors with high IFP showed high geometric resistance to blood flow due to a large number of narrow tumor capillaries. Conclusions High IFP in A-07-GFP and R-18-GFP human melanoma xenografts was primarily a consequence of high blood flow resistance caused by tumor-line specific vascular abnormalities. PMID

  4. Melanoma-Derived BRAF(V600E) Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion.

    PubMed

    Kurgyis, Zsuzsanna; Kemény, Lajos V; Buknicz, Tünde; Groma, Gergely; Oláh, Judit; Jakab, Ádám; Polyánka, Hilda; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-01-01

    Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell's phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAF(V600E) melanoma, melanoma antigen recognized by T-cells (MART1)-negative peritumoral stromal cells express BRAF(V600E) protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAF(V600E) with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAF(V600E) mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAF(V600E) mutation or protein in the peritumoral stroma of BRAF(WT) melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome. PMID:27338362

  5. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    SciTech Connect

    Ungerer, Christopher; Doberstein, Kai; Boehm, Beate; Pfeilschifter, Josef; Mihic-Probst, Daniela; Gutwein, Paul

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  6. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.

    PubMed

    Tirosh, Itay; Izar, Benjamin; Prakadan, Sanjay M; Wadsworth, Marc H; Treacy, Daniel; Trombetta, John J; Rotem, Asaf; Rodman, Christopher; Lian, Christine; Murphy, George; Fallahi-Sichani, Mohammad; Dutton-Regester, Ken; Lin, Jia-Ren; Cohen, Ofir; Shah, Parin; Lu, Diana; Genshaft, Alex S; Hughes, Travis K; Ziegler, Carly G K; Kazer, Samuel W; Gaillard, Aleth; Kolb, Kellie E; Villani, Alexandra-Chloé; Johannessen, Cory M; Andreev, Aleksandr Y; Van Allen, Eliezer M; Bertagnolli, Monica; Sorger, Peter K; Sullivan, Ryan J; Flaherty, Keith T; Frederick, Dennie T; Jané-Valbuena, Judit; Yoon, Charles H; Rozenblatt-Rosen, Orit; Shalek, Alex K; Regev, Aviv; Garraway, Levi A

    2016-04-01

    To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.

  7. Melanoma-Derived BRAFV600E Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion

    PubMed Central

    Kurgyis, Zsuzsanna; Kemény, Lajos V.; Buknicz, Tünde; Groma, Gergely; Oláh, Judit; Jakab, Ádám; Polyánka, Hilda; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell’s phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAFV600E melanoma, melanoma antigen recognized by T-cells (MART1)-negative peritumoral stromal cells express BRAFV600E protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAFV600E with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAFV600E mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAFV600E mutation or protein in the peritumoral stroma of BRAFWT melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome. PMID:27338362

  8. A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme

    PubMed Central

    Galore-Haskel, Gilli; Nemlich, Yael; Greenberg, Eyal; Ashkenazi, Shira; Hakim, Motti; Itzhaki, Orit; Shoshani, Noa; Shapira-Fromer, Ronnie; Ben-Ami, Eytan; Ofek, Efrat; Anafi, Liat; Besser, Michal J.

    2015-01-01

    The blossom of immunotherapy in melanoma highlights the need to delineate mechanisms of immune resistance. Recently, we have demonstrated that the RNA editing protein, adenosine deaminase acting on RNA-1 (ADAR1) is down-regulated during metastatic transition of melanoma, which enhances melanoma cell proliferation and tumorigenicity. Here we investigate the role of ADAR1 in melanoma immune resistance. Importantly, knockdown of ADAR1 in human melanoma cells induces resistance to tumor infiltrating lymphocytes in a cell contact-dependent mechanism. We show that ADAR1, in an editing-independent manner, regulates the biogenesis of miR-222 at the transcription level and thereby Intercellular Adhesion Molecule 1 (ICAM1) expression, which consequently affects melanoma immune resistance. ADAR1 thus has a novel, pivotal, role in cancer immune resistance. Corroborating with these results, the expression of miR-222 in melanoma tissue specimens was significantly higher in patients who had no clinical benefit from treatment with ipilimumab as compared to patients that responded clinically, suggesting that miR-222 could function as a biomarker for the prediction of response to ipilimumab. These results provide not only novel insights on melanoma immune resistance, but also pave the way to the development of innovative personalized tools to enable optimal drug selection and treatment. PMID:26338962

  9. A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme.

    PubMed

    Galore-Haskel, Gilli; Nemlich, Yael; Greenberg, Eyal; Ashkenazi, Shira; Hakim, Motti; Itzhaki, Orit; Shoshani, Noa; Shapira-Fromer, Ronnie; Ben-Ami, Eytan; Ofek, Efrat; Anafi, Liat; Besser, Michal J; Schachter, Jacob; Markel, Gal

    2015-10-01

    The blossom of immunotherapy in melanoma highlights the need to delineate mechanisms of immune resistance. Recently, we have demonstrated that the RNA editing protein, adenosine deaminase acting on RNA-1 (ADAR1) is down-regulated during metastatic transition of melanoma, which enhances melanoma cell proliferation and tumorigenicity. Here we investigate the role of ADAR1 in melanoma immune resistance.Importantly, knockdown of ADAR1 in human melanoma cells induces resistance to tumor infiltrating lymphocytes in a cell contact-dependent mechanism. We show that ADAR1, in an editing-independent manner, regulates the biogenesis of miR-222 at the transcription level and thereby Intercellular Adhesion Molecule 1 (ICAM1) expression, which consequently affects melanoma immune resistance. ADAR1 thus has a novel, pivotal, role in cancer immune resistance. Corroborating with these results, the expression of miR-222 in melanoma tissue specimens was significantly higher in patients who had no clinical benefit from treatment with ipilimumab as compared to patients that responded clinically, suggesting that miR-222 could function as a biomarker for the prediction of response to ipilimumab.These results provide not only novel insights on melanoma immune resistance, but also pave the way to the development of innovative personalized tools to enable optimal drug selection and treatment.

  10. Standard melanoma-associated markers do not identify the MM127 metastatic melanoma cell line

    PubMed Central

    Haridas, Parvathi; McGovern, Jacqui A.; Kashyap, Abhishek S.; McElwain, D. L. Sean; Simpson, Matthew J.

    2016-01-01

    Reliable identification of different melanoma cell lines is important for many aspects of melanoma research. Common markers used to identify melanoma cell lines include: S100; HMB-45; and Melan-A. We explore the expression of these three markers in four different melanoma cell lines: WM35; WM793; SK-MEL-28; and MM127. The expression of these markers is examined at both the mRNA and protein level. Our results show that the metastatic cell line, MM127, cannot be detected using any of the commonly used melanoma-associated markers. This implies that it would be very difficult to identify this particular cell line in a heterogeneous sample, and as a result this cell line should be used with care. PMID:27087056

  11. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  12. Amelanotic Melanoma Masquerading as a Granular Cell Lesion

    PubMed Central

    Pandiar, Deepak; Basheer, Shaini; Shameena, P. M.; Sudha, S.; Dhana, Lakshmi J.

    2013-01-01

    Amelanotic melanoma (AM) presents a diagnostic challenge due to its wide clinical presentations, lack of pigmentation, and varied histological appearances. Immunohistochemistry plays a crucial role in the diagnosis of these lesions. Amelanotic melanoma of oral mucosa is an uncommon lesion. We report a case of a 50-year-old male patient with a growth on the anterior mandibular gingiva of seven-month duration. In the present case, histologically, the tumour resembled a granular cell lesion, which has not been reported previously in AM. Diagnosis was possible by a sequential panel of immunohistochemical markers, of which finally vimentin, S100, HMB45, and Melan-A were positive. The tumor was surgically excised, and postsurgical radiotherapy was given. PMID:23533832

  13. Expression of Tissue Factor by Melanoma Cells Promotes Efficient Hematogenous Metastasis

    NASA Astrophysics Data System (ADS)

    Mueller, Barbara M.; Reisfeld, Ralph A.; Edgington, Thomas S.; Ruf, Wolfram

    1992-12-01

    Metastasis is a multistep process which requires highly adapted interactions of tumor cells with host target organs. Compared with nonmetastatic cells, metastatic human melanoma cells express 1000-fold higher levels of tissue factor (TF), the major cellular initiator of the plasma coagulation protease cascades. To explore whether TF may contribute to metastatic tumor dissemination, we analyzed the effect of specific inhibition of TF function on human melanoma metastasis in severe combined immunodeficient (SCID) mice. Using species-specific antibodies to TF, we demonstrate that initial adherence is insufficient for successful tumor cell implantation in a target organ. Rapid arrest of human tumor cells in the lungs of mice was not diminished by inhibition of TF. However, inhibition of TF receptor function and consequent reduction in local protease generation abolished prolonged adherence of tumor cells, resulting in significantly reduced numbers of tumor cells retained in the vasculature of the lungs. The growth of pulmonary metastases was also significantly inhibited by a blocking anti-TF monoclonal antibody and Fab fragments thereof, whereas a noninhibitory antibody lacked antimetastatic effects. Cell surface expression of functional TF thus contributes to melanoma progression by allowing metastatic cells to provide requisite signals for prolonged adhesive interactions and/or transmigration of tumor cells across the endothelium, resulting in successful metastatic tumor implantation.

  14. Melanoma Affects the Composition of Blood Cell-Derived Extracellular Vesicles

    PubMed Central

    Koliha, Nina; Heider, Ute; Ozimkowski, Tobias; Wiemann, Martin; Bosio, Andreas; Wild, Stefan

    2016-01-01

    Extracellular vesicles (EVs) are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of EVs reflects the type and status of the originating cell and EVs in melanoma patient’s plasma could be indicative for the tumor. Likewise, EVs might influence tumor progression by regulating immune responses. We performed a broad protein characterization of EVs from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer (NK) cells, monocytes, monocyte-derived dendritic cells (moDCs), and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on EVs. Hierarchical clustering of protein intensity patterns grouped EVs according to their originating cell type. The analysis of EVs from stimulated B cells and moDCs revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of EVs from platelets, antigen-presenting cells and NK cells as shown by platelet markers, co-stimulatory proteins, and a NK cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers, indicating a changed vesicle secretion or protein loading of EVs by platelets and a lower CD8 signal that might be associated with a diminished activity of NK cells or T cells. As we hardly detected melanoma-derived vesicles in patient’s plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of EVs in melanoma plasma, but rather argue for an indirect influence of melanoma cells on the vesicle secretion or vesicle protein loading by blood cells. PMID:27507971

  15. Melanoma Affects the Composition of Blood Cell-Derived Extracellular Vesicles.

    PubMed

    Koliha, Nina; Heider, Ute; Ozimkowski, Tobias; Wiemann, Martin; Bosio, Andreas; Wild, Stefan

    2016-01-01

    Extracellular vesicles (EVs) are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of EVs reflects the type and status of the originating cell and EVs in melanoma patient's plasma could be indicative for the tumor. Likewise, EVs might influence tumor progression by regulating immune responses. We performed a broad protein characterization of EVs from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer (NK) cells, monocytes, monocyte-derived dendritic cells (moDCs), and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on EVs. Hierarchical clustering of protein intensity patterns grouped EVs according to their originating cell type. The analysis of EVs from stimulated B cells and moDCs revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of EVs from platelets, antigen-presenting cells and NK cells as shown by platelet markers, co-stimulatory proteins, and a NK cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers, indicating a changed vesicle secretion or protein loading of EVs by platelets and a lower CD8 signal that might be associated with a diminished activity of NK cells or T cells. As we hardly detected melanoma-derived vesicles in patient's plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of EVs in melanoma plasma, but rather argue for an indirect influence of melanoma cells on the vesicle secretion or vesicle protein loading by blood cells. PMID:27507971

  16. MMP16 Mediates a Proteolytic Switch to Promote Cell-Cell Adhesion, Collagen Alignment, and Lymphatic Invasion in Melanoma.

    PubMed

    Tatti, Olga; Gucciardo, Erika; Pekkonen, Pirita; Holopainen, Tanja; Louhimo, Riku; Repo, Pauliina; Maliniemi, Pilvi; Lohi, Jouko; Rantanen, Ville; Hautaniemi, Sampsa; Alitalo, Kari; Ranki, Annamari; Ojala, Päivi M; Keski-Oja, Jorma; Lehti, Kaisa

    2015-05-15

    Lymphatic invasion and accumulation of continuous collagen bundles around tumor cells are associated with poor melanoma prognosis, but the underlying mechanisms and molecular determinants have remained unclear. We show here that a copy-number gain or overexpression of the membrane-type matrix metalloproteinase MMP16 (MT3-MMP) is associated with poor clinical outcome, collagen bundle assembly around tumor cell nests, and lymphatic invasion. In cultured WM852 melanoma cells derived from human melanoma metastasis, silencing of MMP16 resulted in cell-surface accumulation of the MMP16 substrate MMP14 (MT1-MMP) as well as L1CAM cell adhesion molecule, identified here as a novel MMP16 substrate. When limiting the activities of these trans-membrane protein substrates toward pericellular collagen degradation, cell junction disassembly, and blood endothelial transmigration, MMP16 supported nodular-type growth of adhesive collagen-surrounded melanoma cell nests, coincidentally steering cell collectives into lymphatic vessels. These results uncover a novel mechanism in melanoma pathogenesis, whereby restricted collagen infiltration and limited mesenchymal invasion are unexpectedly associated with the properties of the most aggressive tumors, revealing MMP16 as a putative indicator of adverse melanoma prognosis. PMID:25808867

  17. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6

    PubMed Central

    Chen, Guang-Liang; Luo, Yubin; Eriksson, Daniel; Meng, Xianyi; Qian, Cheng; Bäuerle, Tobias; Chen, Xiao-Xiang; Schett, Georg; Bozec, Aline

    2016-01-01

    The impact of metabolic stress induced by obesity on the bone marrow melanoma niche is largely unknown. Here we employed diet induced obese mice model, where mice received high-fat (HFD) or normal diet (ND) for 6 weeks before challenge with B16F10 melanoma cells. Tumor size, bone loss and osteoclasts numbers were assessed histologically in the tibial bones. For defining the molecular pathway, osteopontin knock-out mice, interleukin 6 neutralizing antibody or Janus kinase 2 inhibition were carried out in the same model. Mechanistic studies such as adipocyte-melanoma co-cultures for defining adipocyte induced changes of tumor cell proliferation and expression profiles were also performed. As results, HFD enhanced melanoma burden in bone by increasing tumor area and osteoclast numbers. This process was associated with higher numbers of bone marrow adipocytes expressing IL-6 in direct vicinity to tumor cells. Inhibition of IL-6 or of downstream JAK2 blocked HFD-induced tumor progression. Furthermore, the phenotypic changes of melanoma cells triggered macrophage and osteoclast accumulation accompanied by increased osteopontin expression. Osteopontin triggered osteoclastogenesis and also exerted a positive feedback loop to tumor cells, which was abrogated in its absence. Metabolic stress by HFD promotes melanoma growth in the bone marrow by an increase in bone marrow adipocytes and IL-6-JAK2-osteopontin mediated activation of tumor cells and osteoclast differentiation. PMID:27049717

  18. MicroRNA-199a-5p inhibits tumor proliferation in melanoma by mediating HIF-1α.

    PubMed

    Yang, Xinghua; Lei, Shaorong; Long, Jianhong; Liu, Xiaojin; Wu, Qizhen

    2016-06-01

    The expression of hypoxia-inducible factor 1α (HIF-1α) is often abundant in human cancer and it is associated with poor prognosis. The present study aimed to investigate its regulation by microRNA (miRNA). The expression of miRNA-199a-5p (miR-199a-5p) in melanoma was detected by quantitative polymerase chain reaction on samples from 25 melanoma patients. The target of miR-199a-5p was predicted and demonstrated by a dual‑luciferase reporter system. The effects of miR-199a-5p on melanoma cells were assayed in B16 and HME1 melanoma cell lines. Furthermore, the potential of miR‑199a‑5p as a therapeutic target was illustrated in xenograft nude mice models. Low expression of miR‑199a‑5p in tumor melanoma tissue samples from patients was associated with high histological grade and advanced tumor stage. The 3'-untranslated region of HIF‑1α was identified as a target of miR‑199a‑5p by Targetscan software. The dual-luciferase reporter assay demonstrated that miR‑199a‑5p transfection of mimics decreased the luciferase activity significantly (P<0.05). In the B16 and HME1 cell lines, overexpression of miR‑199a‑5p suppressed cell proliferation and arrested the cell cycle in the G1 phase. In vivo overexpression of miR‑199a‑5p significantly suppressed xenograft growth and downregulated the expression of HIF‑1α (P<0.05). The results from the present study suggest that miR‑199a‑5p suppressed melanoma proliferation via HIF‑1α, suggesting it may be a potential therapeutic target for melanoma treatment. PMID:27122154

  19. HOXA1 drives melanoma tumor growth and metastasis and elicits an invasion gene expression signature that prognosticates clinical outcome

    PubMed Central

    Wardwell-Ozgo, Joanna; Dogruluk, Turgut; Gifford, Armel; Zhang, Yiqun; Heffernan, Timothy P.; van Doorn, Remco; Creighton, Chad J.; Chin, Lynda; Scott, Kenneth L.

    2014-01-01

    Metastatic melanoma is a highly lethal disease notorious for its aggressive clinical course and eventual resistance to existing therapies. Currently we possess a limited understanding of the genetic events driving melanoma progression, and much effort is focused on identifying pro-metastatic aberrations or perturbed signaling networks that constitute new therapeutic targets. In this study, we validate and assess the mechanism by which homeobox transcription factor A1 (HOXA1), a pro-invasion oncogene previously identified in a metastasis screen by our group, contributes to melanoma progression. Transcriptome and pathway profiling analyses of cells expressing HOXA1 reveals up-regulation of factors involved in diverse cytokine pathways that include the TGFβ signaling axis, which we further demonstrate to be required for HOXA1-mediated cell invasion in melanoma cells. Transcriptome profiling also shows HOXA1’s ability to potently down-regulate expression of microphthalmia-associated transcription factor (MITF) and other genes required for melanocyte differentiation, suggesting a mechanism by which HOXA1 expression de-differentiates cells into a pro-invasive cell state concomitant with TGFβ activation. Our analysis of publicly available datasets indicate that the HOXA1-induced gene signature successfully categorizes melanoma specimens based on their metastatic potential and, importantly, is capable of stratifying melanoma patient risk for metastasis based on expression in primary tumors. Together, these validation data and mechanistic insights suggest that patients whose primary tumors express HOXA1 are among a high-risk metastasis subgroup that should be considered for anti-TGFβ therapy in adjuvant settings. Moreover, further analysis of HOXA1 target genes in melanoma may reveal new pathways or targets amenable to therapeutic intervention. PMID:23435427

  20. HOXA1 drives melanoma tumor growth and metastasis and elicits an invasion gene expression signature that prognosticates clinical outcome.

    PubMed

    Wardwell-Ozgo, J; Dogruluk, T; Gifford, A; Zhang, Y; Heffernan, T P; van Doorn, R; Creighton, C J; Chin, L; Scott, K L

    2014-02-20

    Melanoma is a highly lethal malignancy notorious for its aggressive clinical course and eventual resistance to existing therapies. Currently, we possess a limited understanding of the genetic events driving melanoma progression, and much effort is focused on identifying pro-metastatic aberrations or perturbed signaling networks that constitute new therapeutic targets. In this study, we validate and assess the mechanism by which homeobox transcription factor A1 (HOXA1), a pro-invasion oncogene previously identified in a metastasis screen by our group, contributes to melanoma progression. Transcriptome and pathway profiling analyses of cells expressing HOXA1 reveals upregulation of factors involved in diverse cytokine pathways that include the transforming growth factor beta (TGFβ) signaling axis, which we further demonstrate to be required for HOXA1-mediated cell invasion in melanoma cells. Transcriptome profiling also shows HOXA1's ability to potently downregulate expression of microphthalmia-associated transcription factor (MITF) and other genes required for melanocyte differentiation, suggesting a mechanism by which HOXA1 expression de-differentiates cells into a pro-invasive cell state concomitant with TGFβ activation. Our analysis of publicly available data sets indicate that the HOXA1-induced gene signature successfully categorizes melanoma specimens based on their metastatic potential and, importantly, is capable of stratifying melanoma patient risk for metastasis based on expression in primary tumors. Together, these validation data and mechanistic insights suggest that patients whose primary tumors express HOXA1 are among a high-risk metastasis subgroup that should be considered for anti-TGFβ therapy in adjuvant settings. Moreover, further analysis of HOXA1 target genes in melanoma may reveal new pathways or targets amenable to therapeutic intervention. PMID:23435427

  1. Synthesis and biological evaluation of Fotemustine analogues on human melanoma cell lines.

    PubMed

    Winum, Jean Yves; Bouissière, Jean Luc; Passagne, Isabelle; Evrard, Alexandre; Montero, Véronique; Cuq, Pierre; Montero, Jean Louis

    2003-03-01

    Two new analogues of Fotemustine have been synthesized and tested on two melanoma cell lines. Compounds 4 and 8 proved to be more potent than the reference compound on A375 cell line which express the MGMT enzyme involved in the chemoresistance of tumoral cells. PMID:12667699

  2. Primary Malignant Melanoma of Renal Pelvis with Extensive Clear Cell Change

    PubMed Central

    Liapis, George; Sarlanis, Helen; Poulaki, Elpida; Stravodimos, Konstandinos; Lazaris, Andreas C

    2016-01-01

    Our presentation illustrates a rare case of primary renal pelvis malignant melanoma in a 35-year-old man. The diagnosis of malignant melanoma was based on immunophenotype and the detection of intracellular melanin pigment. The renal origin was proven by the presence of scattered melanocytes within the urothelium of the pelvis. The tumor exhibited extensive clear cell change that closely mimics clear cell renal cell carcinoma. The patient’s clinical history did not disclose any signs of previous melanocytic skin or mucosa lesions. Differential diagnosis includes tumors capable of synthesizing melanin or expressing melanocytic markers. PMID:27226943

  3. In-vivo visualization of melanoma tumor microvessels and blood flow velocity changes accompanying tumor growth

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroki; Hachiga, Tadashi; Andoh, Tsugunobu; Akiguchi, Shunsuke

    2012-11-01

    We demonstrate that using micro multipoint laser Doppler velocimetry (μ-MLDV) for noninvasive in-vivo imaging of blood vessels is useful for diagnosing malignant melanomas by comparison with visual diagnosis by dermoscopy. The blood flow velocity in microvessels varied during growth of melanomas transplanted in mouse ears. Mouse ears were observed by μ-MLDV up to 16 days after transplantation. The blood flow velocity in the tumor increased with increasing time and reached maximum of 4.5 mm/s at 9 days, which is more than twice that prior to transplantation. After 12 days, when the lesion had grown to an area of 6.6 mm2, we observed the formation of new blood vessels in the tumor. Finally, when the lesion had an area of 18 mm2 after 16 days, the flow velocity in the tumor decreased to approximately 3.2 mm/s.

  4. Serum CEACAM1 Elevation Correlates with Melanoma Progression and Failure to Respond to Adoptive Cell Transfer Immunotherapy

    PubMed Central

    Ortenberg, R.; Sapoznik, S.; Zippel, D.; Shapira-Frommer, R.; Itzhaki, O.; Kubi, A.; Zikich, D.; Besser, M. J.; Schachter, J.; Markel, G.

    2015-01-01

    Malignant melanoma is a devastating disease whose incidences are continuously rising. The recently approved antimelanoma therapies carry new hope for metastatic patients for the first time in decades. However, the clinical management of melanoma is severely hampered by the absence of effective screening tools. The expression of the CEACAM1 adhesion molecule on melanoma cells is a strong predictor of poor prognosis. Interestingly, a melanoma-secreted form of CEACAM1 (sCEACAM1) has recently emerged as a potential tumor biomarker. Here we add novel evidences supporting the prognostic role of serum CEACAM1 by using a mice xenograft model of human melanoma and showing a correlation between serum CEACAM1 and tumor burden. Moreover, we demonstrate that serum CEACAM1 is elevated over time in progressive melanoma patients who fail to respond to immunotherapy as opposed to responders and stable disease patients, thus proving a correlation between sCEACAM1, response to treatment, and clinical deterioration. PMID:26688824

  5. Genetic Engineering of T cells to Target HERV-K, an Ancient Retrovirus on Melanoma

    PubMed Central

    Krishnamurthy, Janani; Rabinovich, Brian A.; Mi, Tiejuan; Switzer, Kirsten C.; Olivares, Simon; Maiti, Sourindra N.; Plummer, Joshua B.; Singh, Harjeet; Kumaresan, Pappanaicken R.; Huls, Helen M.; Wang-Johanning, Feng; Cooper, Laurence J.N.

    2015-01-01

    Purpose The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor- associated antigen expressed on melanoma, but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T cell surface, such that they target tumors in advanced stages of melanoma. Experimental Design Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immuno-histochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR+ T cells were expanded ex vivo on activating and propagating cells (AaPC), and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR+ T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. Results We detected HERV-K env protein on melanoma, but not in normal tissues. After electroporation of T cells and selection on HERV-K+ AaPC, over 95% of genetically-modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env+ tumor targets in an antigen specific manner. Even though there is apparent shedding of this TAA from tumor cells which can be recognized by HERV-K env-specific CAR+ T cells, we observed a significant anti-tumor effect. Conclusion Adoptive cellular immunotherapy with HERV-K env-specific CAR+ T cells represents a clinically-appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. PMID:25829402

  6. Silencing of Foxp3 delays the growth of murine melanomas and modifies the tumor immunosuppressive environment

    PubMed Central

    Franco-Molina, Moisés A; Miranda-Hernández, Diana F; Mendoza-Gamboa, Edgar; Zapata-Benavides, Pablo; Coronado-Cerda, Erika E; Sierra-Rivera, Crystel A; Saavedra-Alonso, Santiago; Taméz-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2016-01-01

    Forkhead box p3 (Foxp3) expression was believed to be specific for T-regulatory cells but has recently been described in non-hematopoietic cells from different tissue origins and in tumor cells from both epithelial and non-epithelial tissues. The aim of this study was to elucidate the role of Foxp3 in murine melanoma. The B16F10 cell line Foxp3 silenced with small interference Foxp3 plasmid transfection was established and named B16F10.1. These cells had lower levels of Foxp3 mRNA (quantitative real-time reverse transcription-polymerase chain reaction [0.235-fold]), protein (flow cytometry [0.02%]), CD25+ expression (0.06%), cellular proliferation (trypan blue staining), and interleukin (IL)-2 production (enzyme-linked immunosorbent assay [72.35 pg/mL]) than those in B16F10 wild-type (WT) cells (P<0.05). Subcutaneous inoculation of the B16F10.1 cell line into C57BL/6 mice delayed the time of visible tumor appearance, increased the time of survival, and affected the weight of tumors, and also decreased the production of IL-10, IL-2, and transforming growth factor beta compared with mice inoculated with the B16F10 WT cell line. The B16F10.1 cells derived from tumors and free of T-cells (isolated by Dynabeads and plastic attachment) expressed relatively lower levels of Foxp3 and CD25+ than B16F10 WT cells (P<0.05) in a time-dependent manner. The population of tumor-infiltrating lymphocytes of T CD4+ cells (CD4+, CD4+CD25+, and CD4+CD25+Foxp3+) increased in a time-dependent manner (P<0.05) in tumors derived from B16F10 WT cells and decreased in tumors derived from B16F10.1 cells. Similar data were obtained from spleen cells. These results suggest that, in melanomas, Foxp3 partly induces tumor growth by modifying the immune system at the local and peripheral level, shifting the environment toward an immunosuppressive profile. Therapies incorporating this transcription factor could be strategies for cancer treatment. PMID:26834483

  7. Role of ING4 in human melanoma cell migration, invasion and patient survival.

    PubMed

    Li, Jun; Martinka, Magdalena; Li, Gang

    2008-07-01

    Inhibitor of growth (ING) 4 has been reported as a tumor suppressor and shown to diminish colony-forming efficiency, induce p53-dependent apoptosis and arrest cell cycle at G(2)-M phase. In this study, we investigated the role of ING4 in human melanoma pathogenesis. Using the tissue microarray technology, we found that ING4 expression is significantly decreased in malignant melanoma compared with dysplastic nevi (P < 0.0001, chi(2) test) and reduced ING4 staining is associated with melanoma thickness, ulceration (P = 0.034 and 0.002, respectively, chi(2) test) as well as poor overall and disease-specific 5-year survival of primary melanoma patients (P = 0.0002 and 0.001, respectively, chi(2) test). Cox regression analysis revealed that reduced ING4 staining is an independent factor for the poor prognosis of patients with primary melanomas. Furthermore, we found that overexpression of ING4 suppressed cell migration by 63% and inhibited the activity of Ras homolog gene family member A (RhoA) small GTPase protein and Rho-associated kinase (ROCK)-mediated formation of stress fiber in melanoma cells. Moreover, our data showed that overexpression of ING4 inhibited melanoma cell invasion by 43% compared with the control (P = 0.006, t-test) and ING4-overexpressing melanoma cells showed significantly reduced activity of matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, this study highlights the importance of ING4 in melanoma pathogenesis and ING4 may serve as a promising prognostic marker and a potential therapeutic target for human melanoma.

  8. Raspberry pulp polysaccharides inhibit tumor growth via immunopotentiation and enhance docetaxel chemotherapy against malignant melanoma in vivo.

    PubMed

    Yang, Yong-Jing; Xu, Han-Mei; Suo, You-Rui

    2015-09-01

    It has been reported previously that the systemic efficacy of chemotherapeutic agents is substantially restricted for some cancer types, including malignant melanoma. Therefore, the development of more effective treatment modalities remains a critical, albeit elusive, goal in anticancer therapy. The study presented here evaluates the antitumor activity of raspberry pulp polysaccharides (RPPs) against malignant melanoma using a murine tumor-bearing model. Furthermore, the underlying mechanism of this antitumor activity has also been investigated. The results show that while RPP exhibits no direct cytotoxic effect on HT-29, MGC-803, HeLa, Bel-7402, L02 and B16F10 cells in vitro, it does demonstrate a dose-dependent growth inhibition of melanoma in vivo with an inhibition ratio of 59.95% at a dose of 400 mg kg(-1). Besides this, the body weight and spleen index in tumor-bearing mice have also been improved in RPP-treated groups. RPP is also found to induce splenocyte proliferation and is able to upregulate the activity of immune-related enzymes, including acid phosphatase (ACP), alkaline phosphatase (AKP), lactate dehydrogenase (LDH) and superoxide dismutase (SOD) in the spleen of tumor-bearing mice. The levels of tumor necrosis factor α (TNF-α), interferon γ (IFN-γ) and interleukin 2 (IL-2) in the serum of tumor-bearing mice show to be effectively increased upon RPP treatment. Histopathological analyses show that RPP induces tumor tissue necrosis by increasing inflammatory cell infiltration and causes no lesions to liver and kidney tissues. Remarkably, RPP further enhances the antitumor effect of the chemotherapeutic drug docetaxel and alleviates docetaxel-induced liver and kidney lesions in tumor-bearing mice. These findings indicate that RPP exhibits antitumor activity in vivo against malignant melanoma, partly by enhancing the cellular immune response of the host organism. In summary, RPP features critical properties to potentially find use as an

  9. AC-93253 triggers the downregulation of melanoma progression markers and the inhibition of melanoma cell proliferation.

    PubMed

    Karwaciak, Iwona; Gorzkiewicz, Michal; Ryba, Katarzyna; Dastych, Jaroslaw; Pulaski, Lukasz; Ratajewski, Marcin

    2015-07-01

    A major challenge in anti-melanoma therapy is to develop treatments that are effective for advanced melanoma patients. Unfortunately, the currently used regimens are not efficient and have unsatisfactory effects on disease progression, thus increasing the pressure to develop new, profitable drugs and to identify new molecular targets. Here, we show for the first time that AC-93253, a SIRT2 inhibitor, exerts a negative effect on the expression of a set of genes involved in the progression and chemoresistance (e.g., oncogenes, apoptosis-related genes, ABC transporter genes, and cell cycle control genes) of melanoma cells. Furthermore, melanoma cells exposed to AC-93253 and doxorubicin displayed altered biological responses, including apoptosis and proliferation, compared to cells exposed to single treatments. Taken together, we conclude that the usage of AC-93253 in combined therapy could be a promising strategy for melanoma patients.

  10. In vivo transfection of melanoma cells by lithotripter shock waves.

    PubMed

    Bao, S; Thrall, B D; Gies, R A; Miller, D L

    1998-01-15

    The potential for gene transfection during shock wave tumor therapy was evaluated by searching for shock wave-induced DNA transfer in mouse tumor cells. B16 mouse melanoma cells were cultured by standard methods and implanted s.c. in female C57BL/6 mice 10-14 days before treatment. A luciferase reporter vector was used as the DNA plasmid for intratumoral injection at 0.2 mg/ml tumor. Air at 10% of tumor volume was injected after the DNA in some tumors to enhance acoustic cavitation activity. The shock wave generation system was similar to a Dornier HM-3 lithotripter with pressure amplitudes of 24.4 MPa peak positive and 5.2 MPa peak negative. Luciferase production in isolated tumor cells was measured with a luminometer 1 day after treatment to assess gene transfer and expression. Exposure to 800 shock waves, followed by immediate isolation and culture of tumor cells for 1 day, yielded 1.1 (0.43 SE) pg/10(6) cells for plasmid injection only and 7.5 (2.5 SE) pg/10(6) cells for plasmid plus air injection. Significantly increased luciferase production, relative to shams, occurred for 200-, 400-, 800-, and 1200-shock wave treatments with plasmid and air injection. Exposure with the isolation of tumor cells delayed for a day to allow gene expression within the growing tumors gave increased luciferase production for 100- and 400-shock wave exposures without and with air injection. Gene transfer therefore can be induced during lithotripter shock wave treatment in vivo, particularly with enhanced acoustic cavitation, which supports the concept that gene and shock wave therapy might be advantageously merged. PMID:9443395

  11. Regulatory T Cells in Melanoma Revisited by a Computational Clustering of FOXP3+ T Cell Subpopulations

    PubMed Central

    Fujii, Hiroko; Josse, Julie; Tanioka, Miki; Miyachi, Yoshiki; Husson, François

    2016-01-01

    CD4+ T cells that express the transcription factor FOXP3 (FOXP3+ T cells) are commonly regarded as immunosuppressive regulatory T cells (Tregs). FOXP3+ T cells are reported to be increased in tumor-bearing patients or animals and are considered to suppress antitumor immunity, but the evidence is often contradictory. In addition, accumulating evidence indicates that FOXP3 is induced by antigenic stimulation and that some non-Treg FOXP3+ T cells, especially memory-phenotype FOXP3low cells, produce proinflammatory cytokines. Accordingly, the subclassification of FOXP3+ T cells is fundamental for revealing the significance of FOXP3+ T cells in tumor immunity, but the arbitrariness and complexity of manual gating have complicated the issue. In this article, we report a computational method to automatically identify and classify FOXP3+ T cells into subsets using clustering algorithms. By analyzing flow cytometric data of melanoma patients, the proposed method showed that the FOXP3+ subpopulation that had relatively high FOXP3, CD45RO, and CD25 expressions was increased in melanoma patients, whereas manual gating did not produce significant results on the FOXP3+ subpopulations. Interestingly, the computationally identified FOXP3+ subpopulation included not only classical FOXP3high Tregs, but also memory-phenotype FOXP3low cells by manual gating. Furthermore, the proposed method successfully analyzed an independent data set, showing that the same FOXP3+ subpopulation was increased in melanoma patients, validating the method. Collectively, the proposed method successfully captured an important feature of melanoma without relying on the existing criteria of FOXP3+ T cells, revealing a hidden association between the T cell profile and melanoma, and providing new insights into FOXP3+ T cells and Tregs. PMID:26864030

  12. Melanotransferrin induces human melanoma SK-Mel-28 cell invasion in vivo

    SciTech Connect

    Bertrand, Yanick . E-mail: oncomol@nobel.si.uqam.ca

    2007-02-09

    The expression of melanotransferrin (MTf), a membrane-bound glycoprotein highly expressed in melanomas, is correlated with tumor vascularization and progression, suggesting a proinvasive function associated with MTf in malignant tumors. To test this hypothesis, we silenced MTf in human melanoma SK-MEL-28 cells using small interfering RNA (siRNA) and examined the plasmin activity and invasiveness of MTf-silenced melanoma. In vitro, the siRNA-mediated MTf knockdown inhibited by 58% the cell surface activation of plasminogen into plasmin. In addition, decreased expression of MTf in melanoma cells reduced cell migration. In vivo, we used a nude mice invasion model in which tissue factor (TF) induces vascular [{sup 125}I]-fibrin deposition following injection. Using this metastasis model, the invasive potential of MTf-silenced cells into the lungs was reduced by fivefold. Altogether, these findings strongly suggest that MTf overexpression in melanoma cells contributes to tumor progession by stimulating plasmin generation as well as cell migration and invasion.

  13. Combined inhibition of MEK and Plk1 has synergistic anti-tumor activity in NRAS mutant melanoma

    PubMed Central

    Vujic, I; Sanlorenzo, M; Ma, J; Kim, ST; Kleffel, S; Schatton, T; Rappersberger, K; Gutteridge, R; Ahmad, N; Ortiz/Urda, S

    2015-01-01

    About one third of cancers harbor activating mutations in rat sarcoma viral oncogene homolog (RAS) oncogenes. In melanoma, aberrant neuroblastoma-RAS (NRAS) signaling fuels tumor progression in about 20% of patients. Current therapeutics for NRAS driven malignancies barely impact overall survival. To date, pathway interference downstream of mutant NRAS seems to be the most promising approach. In this study, data revealed that mutant NRAS induced Plk1 expression, and pharmacologic inhibition of Plk1 stabilized the size of NRAS mutant melanoma xenografts. The combination of MEK and Plk1 inhibitors resulted in a significant growth reduction of NRAS mutant melanoma cells in vitro, and regression of xenografted NRAS mutant melanoma in vivo. Independent cell cycle arrest and increased induction of apoptosis underlies the synergistic effect of this combination. Data further suggest that the p53 signaling pathway is of key importance to the observed therapeutic efficacy. This study provides in vitro, in vivo and first mechanistic data, that a MEK/Plk1 inhibitor combination might be a promising treatment approach for patients with NRAS driven melanoma. Since mutant NRAS signaling is similar across different malignancies, this inhibitor combination could also offer a previously unreported treatment modality for NRAS mutant tumors of other cell origins. PMID:26016894

  14. miR-33a is downregulated in melanoma cells and modulates cell proliferation by targeting PCTAIRE1

    PubMed Central

    TIAN, FANGZHEN; WEI, HONGTU; TIAN, HUA; QIU, YING; XU, JIAN

    2016-01-01

    MicroRNA-33a (miR-33a) was previously identified as a lipid regulator that controls the cellular balance between cholesterol and fatty acid metabolism. However, its role in tumor progression is largely unknown. The present study identified that miR-33a acts as a tumor suppressor in melanoma cells. The present study revealed that miR-33a was downregulated in melanoma cells compared with melanocytes. Overexpression of miR-33a suppressed the colony formation of human melanoma SK-MEL-1 and WM-115 cells. Furthermore, a bromodeoxyuridine incorporation assay and anaphase analysis revealed that miR-33a inhibits melanoma cell proliferation. miR-33a overexpression inhibited p27 phosphorylation and upregulated p27 expression. Additionally, the present study demonstrated that PCTAIRE1 was a direct target of miR-33a; miR-33a overexpression suppressed the luciferase activity of a reporter construct containing a 3′-untranslated region of PCTAIRE1 and downregulated PCTAIRE1 in melanoma cells. An overexpression of PCTAIRE1 reversed the miR-33a-induced p27 accumulation and tumor suppressive effects. In summary, the present findings offer novel mechanistic insights into miR-33a and its downstream target in melanoma cells. PMID:27073545

  15. Melanocytes, melanocyte stem cells, and melanoma stem cells.

    PubMed

    Lang, Deborah; Mascarenhas, Joseph B; Shea, Christopher R

    2013-01-01

    Melanocyte stem cells differ greatly from melanoma stem cells; the former provide pigmented cells during normal tissue homeostasis and repair, and the latter play an active role in a lethal form of cancer. These 2 cell types share several features and can be studied by similar methods. Aspects held in common by both melanocyte stem cells and melanoma stem cells include their expression of shared biochemical markers, a system of similar molecular signals necessary for their maintenance, and a requirement for an ideal niche microenvironment for providing these factors. This review provides a perspective of both these cell types and discusses potential models of stem cell growth and propagation. Recent findings provide a strong foundation for the development of new therapeutics directed at isolating and manipulating melanocyte stem cells for tissue engineering or at targeting and eradicating melanoma specifically, while sparing nontumor cells.

  16. Common antigenic determinants on human melanoma, glioma, neuroblastoma, and sarcoma cells defined with monoclonal antibodies.

    PubMed

    Seeger, R C; Rosenblatt, H M; Imai, K; Ferrone, S

    1981-07-01

    Antigenic determinants that are common to melanomas, gliomas, neuroblastomas, and sarcomas but that are minimally or not detectably expressed by adult tissues were defined with monoclonal antibodies. Quantitative absorption of monoclonal antibody (Ab 165) with adult tissues followed by testing on antigen-positive UCLA-SO-M14 melanoma cells did not demonstrate antigenic determinant (Ag 165) in brain, lung, liver, kidney, intestine, adrenal, and muscle, Absorption of Ab 376 demonstrated Ag 376 in adult lung but minimal or no antigen in other tissues. Both antigens were associated with a variety of fetal tissues. Assessment of 28 human tumor cell lines with the 131I-staphylococcal Protein A-binding test demonstrated that Ab 165 reacted strongly with melanomas and gliomas and weakly with sarcomas. Ab 376 reacted strongly with melanomas, gliomas, neuroblastomas, and sarcomas. Neither of these antibodies reacted appreciably with carcinoma or teratoma cell lines. Absorption of Ab 165 and Ab 376 with noncultured tumors demonstrated that melanomas, sarcomas, and neuroblastomas can have greater quantities of these antigens in vivo than do normal adult tissues. Qualitative and quantitative antigenic heterogeneity within positive classes of tumors was demonstrated for both cultured and noncultured tumors. The differences in antigen expression in vivo between normal and neoplastic cells suggest potential value for these antibodies in immunodiagnosis and possibly immunotherapy.

  17. Preconditioned endothelial progenitor cells reduce formation of melanoma metastases through SPARC-driven cell-cell interactions and endocytosis.

    PubMed

    Defresne, Florence; Bouzin, Caroline; Grandjean, Marie; Dieu, Marc; Raes, Martine; Hatzopoulos, Antonis K; Kupatt, Christian; Feron, Olivier

    2011-07-15

    Tumor progression is associated with the release of signaling substances from the primary tumor into the bloodstream. Tumor-derived cytokines are known to promote the mobilization and the recruitment of cells from the bone marrow, including endothelial progenitor cells (EPC). Here, we examined whether such paracrine influence could also influence the capacity of EPC to interfere with circulating metastatic cells. We therefore consecutively injected EPC prestimulated by tumor-conditioned medium (EPC-CM) and luciferase-expressing B16 melanoma cells to mice. A net decrease in metastases spreading (vs. nonstimulated EPC) led us to carry out a 2-dimensional difference gel electrophoresis (2D-DIGE) proteomic study to identify possible mediators of EPC-driven protection. Among 33 proteins exhibiting significant changes in expression, secreted protein, acidic and rich in cysteine (SPARC) presented the highest induction after EPC exposure to CM. We then showed that contrary to control EPC, SPARC-silenced EPC were not able to reduce the extent of metastases when injected with B16 melanoma cells. Using adhesion tests and the hanging drop assay, we further documented that cell-cell interactions between EPC-CM and melanoma cells were promoted in a SPARC-dependent manner. This interaction led to the engulfment of melanoma cells by EPC-CM, a process prevented by SPARC silencing and mimicked by recombinant SPARC. Finally, we showed that contrary to melanoma cells, the prometastatic human breast cancer cell line MDA-MB231-D3H2 reduced SPARC expression in human EPC and stimulated metastases spreading. Our findings unravel the influence of tumor cells on EPC phenotypes through a SPARC-driven accentuation of macrophagic capacity associated with limitations to metastatic spread. PMID:21616936

  18. Comparative Metabolic Flux Profiling of Melanoma Cell Lines

    PubMed Central

    Scott, David A.; Richardson, Adam D.; Filipp, Fabian V.; Knutzen, Christine A.; Chiang, Gary G.; Ronai, Ze'ev A.; Osterman, Andrei L.; Smith, Jeffrey W.

    2011-01-01

    Metabolic rewiring is an established hallmark of cancer, but the details of this rewiring at a systems level are not well characterized. Here we acquire this insight in a melanoma cell line panel by tracking metabolic flux using isotopically labeled nutrients. Metabolic profiling and flux balance analysis were used to compare normal melanocytes to melanoma cell lines in both normoxic and hypoxic conditions. All melanoma cells exhibited the Warburg phenomenon; they used more glucose and produced more lactate than melanocytes. Other changes were observed in melanoma cells that are not described by the Warburg phenomenon. Hypoxic conditions increased fermentation of glucose to lactate in both melanocytes and melanoma cells (the Pasteur effect). However, metabolism was not strictly glycolytic, as the tricarboxylic acid (TCA) cycle was functional in all melanoma lines, even under hypoxia. Furthermore, glutamine was also a key nutrient providing a substantial anaplerotic contribution to the TCA cycle. In the WM35 melanoma line glutamine was metabolized in the “reverse” (reductive) direction in the TCA cycle, particularly under hypoxia. This reverse flux allowed the melanoma cells to synthesize fatty acids from glutamine while glucose was primarily converted to lactate. Altogether, this study, which is the first comprehensive comparative analysis of metabolism in melanoma cells, provides a foundation for targeting metabolism for therapeutic benefit in melanoma. PMID:21998308

  19. Chromomycin A2 induces autophagy in melanoma cells.

    PubMed

    Guimarães, Larissa Alves; Jimenez, Paula Christine; Sousa, Thiciana da Silva; Freitas, Hozana Patrícia S; Rocha, Danilo Damasceno; Wilke, Diego Veras; Martín, Jesús; Reyes, Fernando; Deusdênia Loiola Pessoa, Otília; Costa-Lotufo, Letícia Veras

    2014-12-04

    The present study highlights the biological effects of chromomycin A2 toward metastatic melanoma cells in culture. Besides chromomycin A2, chromomycin A3 and demethylchromomycin A2 were also identified from the extract derived from Streptomyces sp., recovered from Paracuru Beach, located in the northeast region of Brazil. The cytotoxic activity of chromomycin A2 was evaluated across a panel of human tumor cell lines, which found IC50 values in the nM-range for exposures of 48 and 72 h. MALME-3M, a metastatic melanoma cell line, showed the highest sensitivity to chromomycin A2 after 48h incubation, and was chosen as a model to investigate this potent cytotoxic effect. Treatment with chromomycin A2 at 30 nM reduced cell proliferation, but had no significant effect upon cell viability. Additionally, chromomycin A2 induced accumulation of cells in G0/G1 phase of the cell cycle, with consequent reduction of S and G2/M and unbalanced expression of cyclins. Chromomycin A2 treated cells depicted several cellular fragments resembling autophagosomes and increased expression of proteins LC3-A and LC3-B. Moreover, exposure to chromomycin A2 also induced the appearance of acidic vacuolar organelles in treated cells. These features combined are suggestive of the induction of autophagy promoted by chromomycin A2, a feature not previously described for chromomycins.

  20. The use of Zymosan A and bacteria anchored to tumor cells for effective cancer immunotherapy: B16-F10 murine melanoma model.

    PubMed

    Waldmannová, Eva; Caisová, Veronika; Fáberová, Julie; Sváčková, Petra; Kovářová, Markéta; Sváčková, Denisa; Kumžáková, Zuzana; Jačková, Adéla; Vácová, Nikol; Nedbalová, Pavla; Horká, Marie; Kopecký, Jan; Ženka, Jan

    2016-10-01

    The idea of using killed microorganisms or their parts for a stimulation of immunity in the cancer immunotherapy is very old, but the question of interactions and binding of these preparations to tumor cells has not been addressed so far. The attachment of Zymosan A and both Gram-positive and Gram-negative bacteria to tumor cells was tested in in vivo experiments. This binding was accomplished by charge interactions, anchoring based on hydrophobic chains and covalent bonds and proved to be crucial for a strong immunotherapeutic effect. The establishment of conditions for simultaneous stimulation of both Toll-like and phagocytic receptors led to very strong synergy. It resulted in tumor shrinkage and its temporary or permanent elimination. The role of neutrophils in cancer immunotherapy was demonstrated and the mechanism of their action (frustrated phagocytosis) was proposed. Finally, therapeutic approaches applicable for safe human cancer immunotherapy are discussed. Heat killed Mycobacterium tuberculosis covalently attached to tumor cells seems to be promising tool for this therapy.

  1. Genetic ablation of SOX18 function suppresses tumor lymphangiogenesis and metastasis of melanoma in mice.

    PubMed

    Duong, Tam; Proulx, Steven T; Luciani, Paola; Leroux, Jean-Christophe; Detmar, Michael; Koopman, Peter; Francois, Mathias

    2012-06-15

    The lymphatic vasculature provides a major route for tumor metastasis and inhibiting neolymphangiogenesis induced by tumors can reduce metastasis in animal models. Developmental biology studies have identified the transcription factor SOX18 as a critical switch for lymphangiogenesis in the mouse embryo. Here, we show that SOX18 is also critical for tumor-induced lymphangiogenesis, and we show that suppressing SOX18 function is sufficient to impede tumor metastasis. Immunofluorescence analysis of murine tumor xenografts showed that SOX18 is reexpressed during tumor-induced neolymphangiogenesis. Tumors generated by implantation of firefly luciferase-expressing B16-F10 melanoma cells exhibited a reduced rate of metastasis to the regional draining lymph node in Sox18-deficient mice, as assessed by live bioluminescence imaging. Lower metastatic rates correlated with reduced tumoral lymphatic vessel density and diameter and with impaired drainage of peritumoral injected liposomes specific for lymph vessels from the sentinel lymph nodes. Overall, our findings suggested that SOX18 induction is a key step in mediating tumor lymphangiogenesis and metastasis, and they identify SOX18 as a potential therapeutic target for metastatic blockade. PMID:22523034

  2. Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells

    PubMed Central

    Yvon, Eric; Vecchio, Michele Del; Savoldo, Barbara; Hoyos, Valentina; Dutour, Aurélie; Anichini, Andrea; Dotti, Gianpietro; Brenner, Malcolm K.

    2009-01-01

    Purpose Genetic engineering of human T lymphocytes to express tumor-directed chimeric antigen receptors (CAR) can produce anti-tumor effector cells that bypass tumor immune escape mechanisms that are due to abnormalities in protein-antigen processing and presentation. Moreover, these transgenic receptors can be directed to tumor associated antigens that are not protein derived, such as the ganglioside GD2, which is expressed on a high proportion of melanoma cells. Experimental design We generated chimeric T cells specific for the ganglioside GD2 by joining an extracellular antigen-binding domain derived from the GD2-specific antibody sc14.G2a to cytoplasmic signaling domains derived from the TCR ζ-chain, with the endodomains of the co-stimulatory molecules CD28 and OX40. We expressed this CAR in human T cells and assessed the targeting of GD2+ melanoma tumors in vitro and in a murine xenograft. Results Upon co-incubation with GD2-expressing melanoma cells, CAR-GD2 T lymphocytes incorporating the CD28 and OX40 endodomains secreted significant levels of cytokines in a pattern comparable to the cytokine response obtained by engagement of the native CD3 receptor. These CAR-T cells had anti-melanoma activity in vitro and in our xenograft model, increasing the survival tumor-bearing animals. Conclusion Redirecting human T lymphocytes to a tumor-associated ganglioside GD2 generates effector cells with anti-melanoma activity that should be testable in subjects with disease. PMID:19737958

  3. Reflections on the Histopathology of Tumor-infiltrating Lymphocytes in Melanoma and the Host Immune Response

    PubMed Central

    Mihm, Martin C.; Mulé, James J.

    2015-01-01

    In the last five decades the role for lymphocytes in host immune response to tumors has been shown, at least in some patients, to be a critical component in disease prognosis. Also, the heterogeneity of lymphocytes has been documented including the existence of regulatory T cells that suppress the immune response. As the functions of lymphocytes have become better defined in terms of antitumor immunity, specific targets on lymphocytes have been uncovered. The appreciation of the role of immune-checkpoints has also led to therapeutic approaches that illustrate the effectiveness of blocking negative regulators of the antitumor immune response. In this Masters of Immunology article, we trace the evolution of our understanding of tumor-infiltrating lymphocytes and discuss their role in melanoma prognosis from the very basic observation of their existence to the latest manipulation of their functions with the result of improvement of the host response against the tumor. PMID:26242760

  4. miR-186 suppressed CYLD expression and promoted cell proliferation in human melanoma

    PubMed Central

    Qiu, Haijiang; Yuan, Suirong; Lu, Xiaohe

    2016-01-01

    Previous studies have shown that microRNA-186 (miR-186) is overexpressed in various human cancers and is associated with the regulation of the carcinogenic processes. However, the underlying mechanisms of this microRNA in melanoma remain largely unknown. In the present study, the overexpression of miR-186 was identified in melanoma tissues and melanoma cells compared to the expression of miR-186 in the matched tumor adjacent tissues and normal human epidermal melanocytes. Overexpression of miR-186 promoted the proliferation and anchorage-independent growth of melanoma cells, whereas inhibition of miR-186 reduced this effect. Bioinformatics analysis also revealed cylindromatosis (CYLD), a putative tumor suppressor, to be a potential target of miR-186. Luciferase reporter assays showed that miR-186 directly targeted the 3′-untranslated regions of CYLD messenger RNA. Additional experiments showed that overexpression of miR-186 promoted the proliferation of melanoma cells, which was consistent with the inhibitory effects induced by knockdown of CYLD. In summary, the present study indicated that miRNA-186 plays a crucial role in melanoma growth and its oncogenic effect is mediated chiefly through the direct suppression of CYLD expression.

  5. High LIFr expression stimulates melanoma cell migration and is associated with unfavorable prognosis in melanoma.

    PubMed

    Guo, Hongwei; Cheng, Yabin; Martinka, Magdalena; McElwee, Kevin

    2015-09-22

    Increased or decreased expression of LIF receptor (LIFr) has been reported in several human cancers, including skin cancer, but its role in melanoma is unknown. In this study, we investigated the expression pattern of LIFr in melanoma and assessed its prognostic value. Using tissue microarrays consisting of 441 melanomas and 96 nevi, we found that no normal nevi showed high LIFr expression. LIFr staining was significantly increased in primary melanoma compared to dysplastic nevi (P = 0.0003) and further increased in metastatic melanoma (P = 0.0000). Kaplan-Meier survival curve and univariate Cox regression analyses showed that increased expression of LIFr was correlated with poorer 5-year patient survival (overall survival, P = 0.0000; disease-specific survival, P = 0.0000). Multivariate Cox regression analyses indicated that increased LIFr expression was an independent prognostic marker for primary melanoma (P = 0.036). LIFr knockdown inhibited melanoma cell migration in wound healing assays and reduced stress fiber formation. LIFr knockdown correlated with STAT3 suppression, but not YAP, suggesting that LIFr activation might stimulate melanoma cell migration through the STAT3 pathway. Our data indicate that strong LIFr expression identifies potentially highly malignant melanocytic lesions at an early stage and LIFr may be a potential target for the development of early intervention therapeutics. PMID:26329521

  6. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi

    PubMed Central

    Margaryan, Naira V.; Gilgur, Alina; Seftor, Elisabeth A.; Purnell, Chad; Arva, Nicoleta C.; Gosain, Arun K.; Hendrix, Mary J. C.; Strizzi, Luigi

    2016-01-01

    Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro-melanoma

  7. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death.

    PubMed

    Armstrong, Jane L; Hill, David S; McKee, Christopher S; Hernandez-Tiedra, Sonia; Lorente, Mar; Lopez-Valero, Israel; Eleni Anagnostou, Maria; Babatunde, Fiyinfoluwa; Corazzari, Marco; Redfern, Christopher P F; Velasco, Guillermo; Lovat, Penny E

    2015-06-01

    Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain <10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wild-type tumors. Targeting autophagy is a means to promote cancer cell death in chemotherapy-resistant tumors, and the aim of this study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma. Treatment with Δ(9)-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease. PMID:25674907

  8. ANTIPROLIFERATIVE EFFECT OF INOSITOL HEXAPHOSPHATE ON HUMAN SKIN MELANOMA CELLS IN VITRO.

    PubMed

    Wawszczyk, Joanna; Kapral, Małgorzata; Lodowska, Jolanta; Jesse, Katarzyna; Hollek, Andrzej; Węglarz, Ludmiła

    2015-01-01

    Human malignant melanoma is a highly metastatic tumor with poor prognosis. The majority of metastatic melanomas are resistant to diverse chemotherapeutic agents. Consequently, the search for novel antimelanoma agents continues. In recent years, the interest in plants and their biologically active constituents as a source of novel potential drugs significantly increased. Inositol hexaphosphate (IP6) is a naturally occurring compound that has been shown to inhibit the growth of a wide variety of tumor cells in multiple experimental model systems. The aim of this study was to evaluate the antiproliferative and cytotoxic influence of IP6 on melanotic melanoma cells in vitro. The A2058 cells used as a model of human skin melanoma malignum were exposed to different concentrations of IP6 (0.1-5 mM) for a various period of time and their growth was determined by sulforhodamine B assay after 24, 48 and 72 h. The cytotoxicity of IP6 was measured at 24 and 72 h by XTT assay. IP6 has been found to cause dose-dependent growth suppression of A2058 melanoma cells. At low concentrations (0.1 and 0.5 mM) it did not exert any influence on the cell proliferation as compared to control cultures. Higher concentrations of IP6 (from 1 to 5 mM) had a statistically significant, suppressive effect on cell proliferation after 24 h incubation. When the experimental time period was increased up to 72 h, statistically significant inhibition of cell proliferation was monitored at all IP6 concentrations used. Data obtained from XTT assay indicated that IP6 had dose- and time-dependent cytotoxic effect on melanoma cells. The results demonstrate the antiproliferative and cytotoxic properties of IP6 in a wide range of concentrations on human A2058 melanoma cells. Hence, it can be suggested that IP6 could have a promising therapeutic significance in treating cancer.

  9. Recent Skin Self-Examination and Doctor Visits in Relation to Melanoma Risk and Tumor Depth

    PubMed Central

    Titus, L.J.; Clough-Gorr, K.; Mackenzie, T.A.; Perry, A.; Spencer, S.K.; Weiss, J.; Abrahams-Gessel, S.; Ernstoff, M.S.

    2012-01-01

    Background Little is known about the potential benefit of skin self-examination for melanoma prevention and early detection. Objectives To determine whether skin self-examination is associated with reduced melanoma risk, self-detection of tumors, and reduced risk of deeper melanomas. Methods We used data from a population-based case-control study (423 cases, 678 controls) to assess recent skin self-examination in relation to self-detection, melanoma risk and tumor depth (<1 mm; ≥1 mm). Logistic regression was used to estimate odds ratios (OR) and confidence intervals (CI) for associations of interest. Results Skin self-examination conducted 1–11 times during a recent year was associated with a possible decrease in melanoma risk (OR: 0.74; 95% CI: 0.54, 1.02). Melanoma risk was decreased for those who conducted skin self-examination and saw a doctor (OR: 0.54; 95% CI: 0.38, 0.79). Among cases, those who examined their skin were twice as likely to self-detect the melanoma (OR: 2.23; 95% CI: 1.47, 3.38), but self-detection was not associated with shallower tumors. Tumor depth was reduced for those who conducted skin self-examination 1–11 times during a recent year (OR: 0.39; 95% CI: 0.18, 0.81), but was not influenced by seeing a doctor, or by conducting skin self-examination and seeing a doctor. Conclusions Risk of a deeper tumor and possibly risk of melanoma were reduced by skin self-examination 1–11 times annually. Melanoma risk was markedly reduced by skin self-examination coupled with a doctor visit. We cannot, however, exclude the possibility that our findings reflect bias or confounding. Additional studies are needed to elucidate the potential benefits of skin self-examination for melanoma prevention and early detection. PMID:22897437

  10. Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion.

    PubMed

    Saunders, Lauren P; Ouellette, Amy; Bandle, Russ; Chang, William Chozen; Zhou, Hongwen; Misra, Raj N; De La Cruz, Enrique M; Braddock, Demetrios T

    2008-10-01

    Autotaxin (ATX) is a prometastatic enzyme initially isolated from the conditioned medium of human melanoma cells that stimulates a myriad of biological activities, including angiogenesis and the promotion of cell growth, survival, and differentiation through the production of lysophosphatidic acid (LPA). ATX increases the aggressiveness and invasiveness of transformed cells, and ATX levels directly correlate with tumor stage and grade in several human malignancies. To study the role of ATX in the pathogenesis of malignant melanoma, we developed antibodies and small-molecule inhibitors against recombinant human protein. Immunohistochemistry of paraffin-embedded human tissue shows that ATX levels are markedly increased in human primary and metastatic melanoma relative to benign nevi. Chemical screens identified several small-molecule inhibitors with binding constants ranging from nanomolar to low micromolar. Cell migration and invasion assays with melanoma cell lines show that ATX markedly stimulates melanoma cell migration and invasion, an effect suppressed by ATX inhibitors. The migratory phenotype can be rescued by the addition of the enzymatic product of ATX, LPA, confirming that the observed inhibition is linked to suppression of LPA production by ATX. Chemical analogues of the inhibitors show structure-activity relationships important for ATX inhibition and indicate pathways for their optimization. These studies suggest that ATX is an approachable molecular target for the rational design of chemotherapeutic agents directed against malignant melanoma.

  11. Oral microparticulate vaccine for melanoma using M-cell targeting.

    PubMed

    D'Souza, Bernadette; Bhowmik, Tuhin; Shashidharamurthy, Rangaiah; Oettinger, Carl; Selvaraj, Periasamy; D'Souza, Martin

    2012-02-01

    Cancer vaccines are limited in their use, because of their inability to mount a robust anti-tumor immune response. Thus, targeting M-cells in the small intestine, which are responsible for entry of many pathogens, will be an attractive way to elicit a strong immune response toward particulate antigens. Therefore, in the present investigation, we demonstrated that efficient oral vaccination against melanoma antigens could be accomplished by incorporating the antigens in an albumin-based microparticle with a ligand AAL (Aleuria aurantia lectin) targeted specifically to M-cells. The oral microparticulate vaccine effectively protected the mice from subcutaneous challenge with tumor cells in prophylactic settings. The animals were vaccinated with antigen microparticles having a size range of around 1-1.25 µm where one prime and four booster doses were administered every 14 days over 10 weeks of duration, followed by challenge with live tumor cells, which showed complete tumor protection after oral vaccination. With the inclusion of ligand in the microparticles, we observed significantly higher IgG titers (1565 μg/mL) as compared to the microparticle formulations without AAL (872 μg/mL). This data suggests that ligand loaded microparticles may have the potential to target antigens to M-cells for an efficient oral vaccination.

  12. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation.

    PubMed

    Morandi, Fabio; Morandi, Barbara; Horenstein, Alberto L; Chillemi, Antonella; Quarona, Valeria; Zaccarello, Gianluca; Carrega, Paolo; Ferlazzo, Guido; Mingari, Maria Cristina; Moretta, Lorenzo; Pistoia, Vito; Malavasi, Fabio

    2015-09-22

    Nucleotide-metabolizing ectoenzymes are endowed with an extracellular catalytic domain, which is involved in regulating the extracellular nucleotide/nucleoside balance. The tumor microenvironment contains high levels of adenosine (ADO) generated by this enzymatic network, thus promoting tumor growth by inhibiting anti-tumor immune responses. ADO inhibition in melanoma murine models limits tumor metastases and restores anti-tumor immune responses. This work investigates the expression and function of ectoenzymes in primary human melanoma cell lines. All of latter cells expressed CD38, CD39, CD73, and CD203a/PC-1, and produced ADO from AMP and NAD(+ )T cell proliferation. Accordingly, phosphorylation of S6 ribosomal protein, p38 and Stat1 was lower in activated memory cells than in naïve CD4(+) T lymphocytes. Melanoma cells also inhibited proliferation of naïve, memory and -to a lesser extent- of effector CD8(+) T cells. These different inhibitory effects correlated with distinct patterns of expression of the ADO receptor A2a and A2b. These results show that primary human melanoma cell lines suppress in vitro T cell proliferation through an adenosinergic pathway in which CD38 and CD73 play a prominent role. PMID:26329660

  13. In vivo and Ex vivo MR Imaging of Slowly Cycling Melanoma Cells

    PubMed Central

    Magnitsky, S.; Roesch, A.; Herlyn, M.; Glickson, J.D.

    2011-01-01

    Slowly cycling cells are believed to play a critical role in tumor progression and metastatic dissemination. The goal of this study was to develop a method for in vivo detection of slowly cycling cells. To distinguish these cells from more rapidly proliferating cells that constitute the vast majority of cells in tumors, we utilized the well-known effect of label dilution due to division of cells with normal cycle and retention of contrast agent in slowly dividing cells. To detect slowly cycling cells melanoma cells were labeled with iron oxide particles. After labeling, we observed dilution of contrast agent in parallel with cell proliferation in the vast majority of normally cycling cells. A small and distinct sub-population of iron-retaining cells was detected by flow cytometry after 20 days of in vitro proliferation. These iron-retaining cells exhibited high expression of a biological marker of slowly cycling cells, JARID1B. After implantation of labeled cells as xenografts into immunocompromised mice, iron-retaining cells were detected in vivo and ex vivo by MRI that was confirmed by Prussian Blue staining. MR imaging detects not only iron retaining melanoma cells but also iron positive macrophages. Proposed method opens up opportunities to image subpopulation of melanoma cells, which is critical for continuous tumor growth. PMID:21523820

  14. Antitumor effects of celecoxib in COX-2 expressing and non-expressing canine melanoma cell lines

    PubMed Central

    Seo, Kyoung-won; Coh, Ye-rin; Rebhun, Robert B.; Ahn, Jin-ok; Han, Sei-Myung; Lee, Hee-woo; Youn, Hwa-Young

    2016-01-01

    Cyclooxygenase-2 (COX-2) is a potential target for chemoprevention and cancer therapy. Celecoxib, a selective COX-2 inhibitor, inhibits cell growth of various types of human cancer including malignant melanoma. In dogs, oral malignant melanoma represents the most common oral tumor and is often a fatal disease. Therefore, there is a desperate need to develop additional therapeutic strategies. The purpose of this study was to investigate the anticancer effects of celecoxib on canine malignant melanoma cell lines that express varying levels of COX-2. Celecoxib induced a significant anti-proliferative effect in both LMeC and CMeC-1 cells. In the CMeC cells, treatment of 50 µM celecoxib caused an increase in cells in the G0/G1 and a decreased proportion of cells in G-2 phase. In the LMeC cells, 50 µM of celecoxib led to an increase in the percentage of cells in the sub-G1 phase and a significant activation of caspase-3 when compared to CMeC-1 cells. In conclusion, these results demonstrate that celecoxib exhibits antitumor effects on canine melanoma LMeC and CMeC-1 cells by induction of G1-S cell cycle arrest and apoptosis. Our data suggest that celecoxib might be effective as a chemotherapeutic agent against canine malignant melanoma. PMID:24656746

  15. Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells

    PubMed Central

    Drummond, Catherine J.; McCarthy, Anna R.; Higgins, Maureen; Campbell, Johanna; Brodin, Bertha; Arnér, Elias S.J.; Laín, Sonia

    2015-01-01

    Malignant melanoma is the most dangerous type of skin cancer. Although recent progress in treatment has been achieved, lack of response, drug resistance and relapse remain major problems. The tumor suppressor p53 is rarely mutated in melanoma, yet it is inactive in the majority of cases due to dysregulation of upstream pathways. Thus, we screened for compounds that can activate p53 in melanoma cells. Here we describe effects of the small molecule MJ25 (2-{[2-(1,3-benzothiazol-2-ylsulfonyl)ethyl]thio}-1,3-benzoxazole), which increased the level of p53-dependent transactivation both as a single agent and in combination with nutlin-3. Furthermore, MJ25 showed potent cytotoxicity towards melanoma cell lines, whilst having weaker effects against human normal cells. MJ25 was also identified in an independent screen as an inhibitor of thioredoxin reductase 1 (TrxR1), an important selenoenzyme in the control of oxidative stress and redox regulation. The well-characterized TrxR inhibitor auranofin, which is FDA-approved and currently in clinical trials against leukemia and a number of solid cancers, displayed effects comparable with MJ25 on cells and led to eradication of cultured melanoma cells at low micromolar concentrations. In conclusion, auranofin, MJ25 or other inhibitors of TrxR1 should be evaluated as candidate compounds or leads for targeted therapy of malignant melanoma. PMID:26029997

  16. Proteome analysis identified the PPARγ ligand 15d-PGJ2 as a novel drug inhibiting melanoma progression and interfering with tumor-stroma interaction.

    PubMed

    Paulitschke, Verena; Gruber, Silke; Hofstätter, Elisabeth; Haudek-Prinz, Verena; Klepeisz, Philipp; Schicher, Nikolaus; Jonak, Constanze; Petzelbauer, Peter; Pehamberger, Hubert; Gerner, Christopher; Kunstfeld, Rainer

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been originally thought to be restricted to lipid metabolism or glucose homeostasis. Recently, evidence is growing that PPARγ ligands have inhibitory effects on tumor growth. To shed light on the potential therapeutic effects on melanoma we tested a panel of PPAR agonists on their ability to block tumor proliferation in vitro. Whereas ciglitazone, troglitazone and WY14643 showed moderate effects on proliferation, 15d-PGJ2 displayed profound anti-tumor activity on four different melanoma cell lines tested. Additionally, 15d-PGJ2 inhibited proliferation of tumor-associated fibroblasts and tube formation of endothelial cells. 15d-PGJ2 induced the tumor suppressor gene p21, a G(2)/M arrest and inhibited tumor cell migration. Shot gun proteome analysis in addition to 2D-gel electrophoresis and immunoprecipitation of A375 melanoma cells suggested that 15d-PGJ2 might exert its effects via modification and/or downregulation of Hsp-90 (heat shock protein 90) and several chaperones. Applying the recently established CPL/MUW database with a panel of defined classification signatures, we demonstrated a regulation of proteins involved in metastasis, transport or protein synthesis including paxillin, angio-associated migratory cell protein or matrix metalloproteinase-2 as confirmed by zymography. Our data revealed for the first time a profound effect of the single compound 15d-PGJ2 on melanoma cells in addition to the tumor-associated microenvironment suggesting synergistic therapeutic efficiency. PMID:23049949

  17. Identification of Preferentially Expressed Antigen of Melanoma as a Potential Tumor Suppressor in Lung Adenocarcinoma

    PubMed Central

    Huang, Quan; Li, Lin; Lin, Zaijun; Xu, Wei; Han, Shuai; Zhao, Chenglong; Li, Lei; Cao, Wenjiao; Yang, Xinghai; Wei, Haifeng; Xiao, Jianru

    2016-01-01

    Background Preferentially expressed antigen of melanoma (PRAME) is known as a tumor-associated antigen that is altered in a variety of malignancies, including lung cancer. However, the role of PRAME in lung cancer remains unclear. Material/Methods We analyzed the expression of PRAME in human lung adenocarcinomas and studied the function of PRAME using small interfering RNA (siRNA)-induced gene knockdown in lung cancer cell lines PC9 and A549. Results We found that PRAME expression is down-regulated in lung adenocarcinomas. Knockdown of PRAME promoted proliferation and suppressed apoptosis of PC9 and A549 cells. Conclusions In line with its roles in controlling cell growth, RPAME regulates multiple critical cell-growth related genes, including IGF1R oncogene. IGF1R up-regulation contributes to increase of cell growth upon the knockdown of PRAME. Taken together, our results suggest that PRAME has inhibitory roles in lung cancer. PMID:27241212

  18. Boron uptake in normal melanocytes and melanoma cells and boron biodistribution study in mice bearing B16F10 melanoma for boron neutron capture therapy.

    PubMed

    Faião-Flores, Fernanda; Coelho, Paulo Rogério Pinto; Arruda-Neto, João Dias Toledo; Camillo, Maria Aparecida Pires; Maria-Engler, Silvya Stuchi; Rici, Rose Eli Grassi; Sarkis, Jorge Eduardo Souza; Maria, Durvanei Augusto

    2012-08-01

    Information on (10)B distribution in normal tissues is crucial to any further development of boron neutron capture therapy (BNCT). The goal of this study was to investigate the in vitro and in vivo boron biodistribution in B16F10 murine melanoma and normal tissues as a model for human melanoma treatment by a simple and rapid colorimetric method, which was validated by HR-ICP-MS. The B16F10 melanoma cell line showed higher melanin content than human melanocytes, demonstrating a greater potential for boronophenylalanine uptake. The melanocytes showed a moderate viability decrease in the first few minutes after BNCT application, stabilizing after 75 min, whereas the B16F10 melanoma showed the greatest intracellular boron concentration at 150 min after application, indicating a different boron uptake of melanoma cells compared to normal melanocytes. Moreover, at this time, the increase in boron uptake in melanoma cells was approximately 1.6 times higher than that in normal melanocytes. The (10)B concentration in the blood of mice bearing B16F10 melanoma increased until 90 min after BNCT application and then decreased after 120 min, and remained low until the 240th minute. On the other hand, the (10)B concentration in tumors was increased from 90 min and maximal at 150 min after application, thus confirming the in vitro results. Therefore, the present in vitro and in vivo study of (10)B uptake in normal and tumor cells revealed important data that could enable BNCT to be possibly used as a treatment for melanoma, a chemoresistant cancer associated with high mortality.

  19. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth

    PubMed Central

    Hutzler, Marina; Abel, Simone; Alter, Christina; Stockmann, Christian; Kliche, Stefanie; Albert, Juliane; Sparwasser, Tim; Sakaguchi, Shimon; Westendorf, Astrid M.; Schadendorf, Dirk; Buer, Jan; Helfrich, Iris

    2012-01-01

    Infiltration of Foxp3+ regulatory T (T reg) cells is considered to be a critical step during tumor development and progression. T reg cells supposedly suppress locally an effective anti-tumor immune response within tumor tissues, although the precise mechanism by which T reg cells infiltrate the tumor is still unclear. We provide evidence that Neuropilin 1 (Nrp-1), highly expressed by Foxp3+ T reg cells, regulates the immunological anti-tumor control by guiding T reg cells into the tumor in response to tumor-derived vascular endothelial growth factor (VEGF). We demonstrate for the first time that T cell–specific ablation of Nrp-1 expression results in a significant breakdown in tumor immune escape in various transplantation models and in a spontaneous, endogenously driven melanoma model associated with strongly reduced tumor growth and prolonged tumor-free survival. Strikingly, numbers of tumor-infiltrating Foxp3+ T reg cells were significantly reduced accompanied by enhanced activation of CD8+ T cells within tumors of T cell–specific Nrp-1–deficient mice. This phenotype can be reversed by adoptive transfer of Nrp-1+ T reg cells from wild-type mice. Thus, our data strongly suggest that Nrp-1 acts as a key mediator of Foxp3+ T reg cell infiltration into the tumor site resulting in a dampened anti-tumor immune response and enhanced tumor progression. PMID:23045606

  20. MRP1-CD28 bi-specific oligonucleotide aptamers: target costimulation to drug-resistant melanoma cancer stem cells

    PubMed Central

    Soldevilla, Mario Martínez; Villanueva, Helena; Casares, Noelia; Lasarte, Juan Jose; Bendandi, Maurizio; Inoges, Susana; de Cerio, Ascensión López-Díaz; Pastor, Fernando

    2016-01-01

    In this work we show a clinically feasible strategy to convert in situ the own tumor into an endogenous vaccine by coating the melanoma cancerous cells with CD28 costimulatory ligands. This therapeutic approach is aimed at targeting T-cell costimulation to chemotherapy-resistant tumors which are refractory and been considered as untreatable cancers. These tumors are usually defined by an enrichment of cancer stem cells and characterized by the higher expression of chemotherapy-resistant proteins. In this work we develop the first aptamer that targets chemotherapy-resistant tumors expressing MRP1 through a novel combinatorial peptide-cell SELEX. With the use of the MRP1 aptamer we engineer a MRP1-CD28 bivalent aptamer that is able to bind MRP1-expressing tumors and deliver the CD28 costimulatory signal to tumor-infiltrating lymphocytes. The bi-specific aptamer is able to enhance costimulation in chemotherapy-resistant tumors. Melanoma-bearing mice systemically treated with MRP1-CD28 bivalent aptamer show reduced growth, thus proving an improved mice survival. Besides, we have designed a technically feasible and translational whole-cell vaccine (Aptvax). Disaggregated cells from tumors can be directly decorated with costimulatory ligand aptamers to generate the vaccine Aptvax. CD28Aptvax made of irradiated tumor cells coated with the CD28-agonistic aptamer attached to MRP1 elicits a strong tumor- cell immune response against melanoma tumors reducing tumor growth. PMID:26992239

  1. iTRAQ Quantitative Proteomic Comparison of Metastatic and Non-Metastatic Uveal Melanoma Tumors

    PubMed Central

    Crabb, John W.; Hu, Bo; Crabb, John S.; Triozzi, Pierre; Saunthararajah, Yogen; Singh, Arun D.

    2015-01-01

    Background Uveal melanoma is the most common malignancy of the adult eye. The overall mortality rate is high because this aggressive cancer often metastasizes before ophthalmic diagnosis. Quantitative proteomic analysis of primary metastasizing and non-metastasizing tumors was pursued for insights into mechanisms and biomarkers of uveal melanoma metastasis. Methods Eight metastatic and 7 non-metastatic human primary uveal melanoma tumors were analyzed by LC MS/MS iTRAQ technology with Bruch’s membrane/choroid complex from normal postmortem eyes as control tissue. Tryptic peptides from tumor and control proteins were labeled with iTRAQ tags, fractionated by cation exchange chromatography, and analyzed by LC MS/MS. Protein identification utilized the Mascot search engine and the human Uni-Prot/Swiss-Protein database with false discovery ≤ 1%; protein quantitation utilized the Mascot weighted average method. Proteins designated differentially expressed exhibited quantitative differences (p ≤ 0.05, t-test) in a training set of five metastatic and five non-metastatic tumors. Logistic regression models developed from the training set were used to classify the metastatic status of five independent tumors. Results Of 1644 proteins identified and quantified in 5 metastatic and 5 non-metastatic tumors, 12 proteins were found uniquely in ≥ 3 metastatic tumors, 28 were found significantly elevated and 30 significantly decreased only in metastatic tumors, and 31 were designated differentially expressed between metastatic and non-metastatic tumors. Logistic regression modeling of differentially expressed collagen alpha-3(VI) and heat shock protein beta-1 allowed correct prediction of metastasis status for each of five independent tumor specimens. Conclusions The present data provide new clues to molecular differences in metastatic and non-metastatic uveal melanoma tumors. While sample size is limited and validation required, the results support collagen alpha-3(VI) and

  2. Enhancing anti-melanoma immunity by electrochemotherapy and in vivo dendritic-cell activation

    PubMed Central

    Gerlini, Gianni; Di Gennaro, Paola; Borgognoni, Lorenzo

    2012-01-01

    Combining electrochemotherapy with dendritic cell-based immunotherapy is a promising strategy against human metastatic melanoma that deserves to be clinically assessed. While electrochemotherapy induces a rapid regression of metastases, immunotherapy generates systemic anticancer immunity, contributes to eradicate the tumor and maintains an immunological memory to control relapse. PMID:23264927

  3. Recurrent inactivating RASA2 mutations in melanoma

    PubMed Central

    Arafeh, Rand; Qutob, Nouar; Emmanuel, Rafi; Keren-Paz, Alona; Madore, Jason; Elkahloun, Abdel; Wilmott, James S.; Gartner, Jared J.; Di Pizio, Antonella; Winograd-Katz, Sabina; Sindiri, Sivasish; Rotkopf, Ron; Dutton-Regester, Ken; Johansson, Peter; Pritchard, Antonia; Waddell, Nicola; Hill, Victoria K.; Lin, Jimmy C.; Hevroni, Yael; Rosenberg, Steven A.; Khan, Javed; Ben-Dor, Shifra; Niv, Masha Y.; Ulitsky, Igor; Mann, Graham J; Scolyer, Richard A.; Hayward, Nicholas K.; Samuels, Yardena

    2016-01-01

    Analysis of 501 melanoma exomes revealed RASA2, encoding a RasGAP, as a tumor-suppressor gene mutated in 5% of melanomas. Recurrent loss-of-function mutations in RASA2 were found to increase RAS activation, melanoma cell growth and migration. RASA2 expression was lost in ≥30% of human melanomas and was associated with reduced patient survival. These findings reveal RASA2 inactivation as a melanoma driver and highlight the importance of Ras GAPs in cancer. PMID:26502337

  4. Hormone Conjugated with Antibody to CD3 Mediates Cytotoxic T Cell Lysis of Human Melanoma Cells

    NASA Astrophysics Data System (ADS)

    Liu, Margaret Ann; Nussbaum, Samuel R.; Eisen, Herman N.

    1988-01-01

    Cytotoxic T lymphocytes can be activated by antibodies to their antigen-specific receptor complex (TCR-CD3) to destroy target cells, regardless of the specificity of the cytotoxic T cells. A novel hormone-antibody conjugate, consisting of an analog of melanocyte-stimulating hormone chemically coupled to a monoclonal antibody to CD3, the invariant component of the T cell receptor complex, was used to target human melanoma cells for destruction by human cytotoxic T lymphocytes that bear no specificity for the tumor cells. As targeting components of such anti-CD3 conjugates, hormones or growth factors are expected to prove more effective than antibodies to tumor-associated antigens in focusing the destructive activity of cytotoxic T cells on tumor target cells.

  5. Autochthonous primary and metastatic melanomas in Hgf-Cdk4 R24C mice evade T-cell-mediated immune surveillance.

    PubMed

    Landsberg, Jennifer; Gaffal, Evelyn; Cron, Mira; Kohlmeyer, Judith; Renn, Marcel; Tüting, Thomas

    2010-10-01

    Genetically engineered mouse models offer new opportunities to investigate the role of cell-mediated immunity in the natural progression of melanoma in an immunocompetent host. Here we report that Hgf-Cdk4(R24C) mice spontaneously develop a spectrum of primary melanomas with high penetrance during their first year of life. Malignant transformation proceeds in a stepwise manner from multiple melanocytic nevi to single nodular melanomas and disseminated metastases in most mice. Migrating melanoma cells invade the draining lymph nodes without activating the immune system. Autochthonous primary tumors are destroyed following experimental introduction of immune surveillance using an adoptive lymphocyte transfer approach. However, some tumor cells are able to survive, evade immune cell control, and recur both locally and systemically. Immune tolerance in recurring tumors may be supported by immunosuppressive Gr1(+) myeloid cells. Taken together, our results demonstrate that primary and metastatic melanomas developing spontaneously in Hgf-Cdk4(R24C) mice effectively evade cellular immune surveillance.

  6. Hemostatic alterations are unrelated to the stage of tumor in untreated malignant melanoma and breast carcinoma.

    PubMed

    Mannucci, P M; Vaglini, M; Maniezzo, M; Magni, E; Mari, D; Cascinelli, N

    1985-06-01

    A study of hemostatic variables was carried out in 80 untreated patients with breast adenocarcinoma or malignant melanoma, chosen as examples of tumors that can be accurately staged for localization or spread. The most marked abnormalities were high levels of clotting factors V and VIII, plasminogen, von Willebrand factor and fibrogen-fibrin degradation products. These abnormalities occurred in both types of tumors, albeit slightly more markedly in melanomas, and were also present in localized tumors. Our data indicate that in tumors, abnormalities of the hemostatic system are an early phenomenon unrelated to the presence of widespread malignancy.

  7. Adenovirus-Mediated FKHRL1/TM Sensitizes Melanoma Cells to Apoptosis Induced by Temozolomide

    PubMed Central

    Egger, Michael E.; McNally, Lacey R.; Nitz, Jonathan; McMasters, Kelly M.

    2014-01-01

    Abstract Melanoma exhibits variable resistance to the alkylating agent temozolomide (TMZ). We evaluated the potential of adenovirus expressing forkhead human transcription factor like 1 triple mutant (Ad-FKHRL1/TM) to sensitize melanoma cells to TMZ. Four melanoma cell lines were treated with Ad-FKHRL1/TM and TMZ, alone or in combination. Apoptosis was assessed by activation and inhibition of caspase pathway, nuclei fragmentation, and annexin V staining. The potential therapeutic efficacy of Ad-FKHRL1/TM with TMZ was also assessed in a mouse melanoma xenograft model. Combination therapy of Ad-FKHRL1/TM and TMZ resulted in greater cell killing (<20% cell viability) compared with single therapy and controls (p<0.05). Combination indices of Ad-FKHRL1/TM and TMZ therapy indicated significant (p<0.05) synergistic killing effect. Greater apoptosis induction was found in cells treated with Ad-FKHRL1/TM and TMZ than with Ad-FKHRL1/TM or TMZ-treated cells alone. Treatment with TMZ enhanced adenovirus transgene expression in a cell type-dependent manner. In an in vivo model, combination therapy of Ad-FKHRL1/TM with TMZ results in greater tumor growth reduction in comparison with single treatments. We suggest that Ad-FKHRL1/TM is a promising vector to sensitize melanoma cells to TMZ, and that a combination of both approaches would be effective in the clinical setting. PMID:25238278

  8. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo

    PubMed Central

    Lakshmikanth, Tadepally; Burke, Shannon; Ali, Talib Hassan; Kimpfler, Silvia; Ursini, Francesco; Ruggeri, Loredana; Capanni, Marusca; Umansky, Viktor; Paschen, Annette; Sucker, Antje; Pende, Daniela; Groh, Veronika; Biassoni, Roberto; Höglund, Petter; Kato, Masashi; Shibuya, Kazuko; Schadendorf, Dirk; Anichini, Andrea; Ferrone, Soldano; Velardi, Andrea; Kärre, Klas; Shibuya, Akira; Carbone, Ennio; Colucci, Francesco

    2009-01-01

    NK cells use a variety of receptors to detect abnormal cells, including tumors and their metastases. However, in the case of melanoma, it remains to be determined what specific molecular interactions are involved and whether NK cells control metastatic progression and/or the route of dissemination. Here we show that human melanoma cell lines derived from LN metastases express ligands for natural cytotoxicity receptors (NCRs) and DNAX accessory molecule-1 (DNAM-1), two emerging NK cell receptors key for cancer cell recognition, but not NK group 2 member D (NKG2D). Compared with cell lines derived from metastases taken from other anatomical sites, LN metastases were more susceptible to NK cell lysis and preferentially targeted by adoptively transferred NK cells in a xenogeneic model of cell therapy. In mice, DNAM-1 and NCR ligands were also found on spontaneous melanomas and melanoma cell lines. Interference with DNAM-1 and NCRs by antibody blockade or genetic disruption reduced killing of melanoma cells. Taken together, these results show that DNAM-1 and NCRs are critical for NK cell–mediated innate immunity to melanoma cells and provide a background to design NK cell–based immunotherapeutic strategies against melanoma and possibly other tumors. PMID:19349689

  9. Microdistribution of MC1R-targeted polyplexes in murine melanoma tumor tissue

    PubMed Central

    Durymanov, Mikhail O; Slastnikova, Tatiana A; Kuzmich, Alexey I; Khramtsov, Yuri V; Ulasov, Alexey V; Rosenkranz, Andrey A1; Egorov, Sergey Y; Sverdlov, Eugene D; Sobolev, Alexander S

    2013-01-01

    Targeted sodium-iodide symporter (NIS) gene transfer can be considered as a promising approach for diagnostics of specific types of cancer. For this purpose we used targeted polyplexes based on PEI–PEG–MC1SP block-copolymer containing MC1SP-peptide, a ligand specific for melanocortin receptor-1 (MC1R) overexpressed on melanoma cells. Targeted polyplexes demonstrated enhanced NIS gene transfer compared to non-targeted (lacking MC1SP) ones in vitro. Using dorsal skinfold chamber and intravital microscopy we evaluated accumulation and microdistribution of quantum dot-labeled polyplexes in tumor and normal subcutaneous tissues up to 4 hours after intravenous injection. Polyplexes demonstrated significantly higher total accumulation in tumor tissue in comparison with subcutaneous ones (control). Targeted and non-targeted polyplexes extravasated and penetrated into the tumor tissue up to 20 μm from the vessel walls. In contrast, in normal subcutaneous tissue polyplexes penetrated less than 5 μm from the vessel walls with the level of extravasated polyplexes 400-fold less than in tumor. Accumulated polyplexes in tumor tissue caused NIS gene expression. Subsequent 123I- intravenous injection resulted in 6.8 ± 1.1 and 4.5 ± 0.8 % ID/g (p < 0.001) iodide accumulation in tumors in the case of targeted and non-targeted polyplexes, respectively, as was shown using SPECT/CT. PMID:24075405

  10. PLX4032 Mediated Melanoma Associated Antigen Potentiation in Patient Derived Primary Melanoma Cells

    PubMed Central

    George, Andrea L.; Suriano, Robert; Rajoria, Shilpi; Osso, Maria C.; Tuli, Neha; Hanly, Elyse; Geliebter, Jan; Arnold, Angelo N.; Wallack, Marc; Tiwari, Raj K.

    2015-01-01

    Over expression of various immunogenic melanoma associated antigens (MAAs) has been exploited in the development of immunotherapeutic melanoma vaccines. Expression of MAAs such as MART-1 and gp100 is modulated by the MAPK signaling pathway, which is often deregulated in melanoma. The protein BRAF, a member of the MAPK pathway, is mutated in over 60% of melanomas providing an opportunity for the identification and approval by the FDA of a small molecule MAPK signaling inhibitor PLX4032 that functions to inactivate mutant BRAFV600E. To this end, we characterized five patient derived primary melanoma cell lines with respect to treatment with PLX4032. Cells were treated with 5μM PLX4032 and harvested. Western blotting analysis, RT-PCR and in vitro transwell migration and invasion assays were utilized to determine treatment effects. PLX4032 treatment modulated phosphorylation of signaling proteins belonging to the MAPK pathway including BRAF, MEK, and ERK and abrogated cell phenotypic characteristics such as migration and invasion. Most significantly, PLX4032 led to an up regulation of many MAA proteins in three of the four BRAF mutated cell lines, as determined at the protein and RNA level. Interestingly, MAGE-A1 protein and mRNA levels were reduced upon PLX4032 treatment in two of the primary lines. Taken together, our findings suggest that the BRAFV600E inhibitor PLX4032 has therapeutic potential over and above its known target and in combination with specific melanoma targeting vaccine strategies may have further clinical utility. PMID:26640592

  11. Bioactive proanthocyanidins inhibit growth and induce apoptosis in human melanoma cells by decreasing the accumulation of β-catenin

    PubMed Central

    VAID, MUDIT; SINGH, TRIPTI; PRASAD, RAM; KATIYAR, SANTOSH K.

    2016-01-01

    Melanoma is a highly aggressive form of skin cancer with poor survival rate. Aberrant activation of Wnt/β-catenin has been observed in nearly one-third of human melanoma cases thereby indicating that targeting Wnt/β-catenin signaling could be a promising strategy against melanoma development. In the present study, we determined chemotherapeutic effect of grape seed proanthocyanidins (GSPs) on the growth of melanoma cells and validated their protective effects in vivo using a xenograft mouse model, and assessed if β-catenin is the target of GSP chemotherapeutic effect. Our in vitro data show that treatment of A375 and Hs294t human melanoma cells with GSPs inhibit the growth of melanoma cells, which was associated with the reduction in the levels of β-catenin. Administration of dietary GSPs (0.2 and 0.5%, w/w) in supplementation with AIN76A control diet significantly inhibited the growth of melanoma tumor xenografts in nude mice. Furthermore, dietary GSPs inhibited the xenograft growth of Mel928 (β-catenin-activated), while did not inhibit the xenograft growth of Mel1011 (β-catenin-inactivated) cells. These observations were further verified by siRNA knockdown of β-catenin and forced overexpression of β-catenin in melanoma cells using a cell culture model. PMID:26676402

  12. Malignant potential of cells isolated from lymph node or brain metastases of melanoma patients and implications for prognosis.

    PubMed

    Zhang, R D; Price, J E; Schackert, G; Itoh, K; Fidler, I J

    1991-04-15

    We studied the correlation between the formation of brain metastasis and the malignant growth potential of seven human melanoma cell lines, isolated from lymph node metastases (A375-SM, TXM-1, DM-4) or from brain metastases (TXM-13, TXM-18, TXM-34, TXM-40), and the potential of three variants of the mouse K-1735 melanoma. Growth rates in different concentrations of fetal bovine serum and colony-forming efficiency in semisolid agarose were measured, and the tumorigenicity and metastatic ability were determined in nude mice (for the human melanoma cell lines) or in C3H/HeN mice (for the K-1735 variants). The ability to form brain metastasis was tested by injection of cells into the carotid artery. A high colony-forming efficiency in agarose, especially at concentrations of agarose greater than 0.6%, corresponded with high tumor take rates, rapid tumor growth rates, and metastatic colonization of the lungs of the recipient mice. For the human melanomas, the lymph node metastasis-derived cells were more tumorigenic and metastatic than the brain metastasis-derived cells. In the K-1735 mouse melanoma, the tumorigenic and metastatic behavior of the cells after i.v. and s.c. injection corresponded with growth in agarose cultures. However, for growth in the brain after intracarotid injection, the different melanoma cell lines showed similar frequencies of tumor take, regardless of tumorigenicity in other sites of the recipient mice, although mice given injections of brain metastasis-derived cells survived longer than mice given injections of lymph node metastasis (human melanoma) or lung metastasis (K-1735 M-2)-derived cell lines. The results from the human and mouse melanoma cell lines show that the brain metastasis-derived cell lines were not more malignant than the lymph node or lung metastasis-derived cells. These data imply that the production of brain metastasis is not always the final stage of a metastatic cascade. PMID:1826230

  13. Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma.

    PubMed

    Bellone, M; Cantarella, D; Castiglioni, P; Crosti, M C; Ronchetti, A; Moro, M; Garancini, M P; Casorati, G; Dellabona, P

    2000-09-01

    Many preclinical studies of cancer immunotherapy are based on the testing of a single vaccination strategy in several tumor models. Moreover, most of those studies used xenogeneic Ags, which, owing to their high immunogenicity, may not represent realistic models for the validation of cancer immunotherapies. To address these issues, we compared the vaccination efficacy of three well established strategies (i.e., naked DNA; peptide-pulsed dendritic cells (DC), or a mixture of peptide and the Escherichia coli toxin LTR72) using the xenogeneic OVA or the naturally expressed tyrosinase-related protein 2 (TRP-2) tumor Ag in the B16 melanoma model. C57BL/6 mice received one to three s.c. injections of peptide-pulsed DC or DNA, or one to four mucosal administrations of peptide-toxin mixture. One to 2 wk later, the animals were challenged s.c. with B16 or B16 cells expressing OVA (B16-OVA). Vaccination of mice with OVA induced in all cases melanoma-specific CTL and protection against B16-OVA. When TRP-2 was used, all three vaccines elicited B16-specific CTL, but only DC pulsed with the immunodominant T cell epitope TRP-2181-188 allowed protection against B16. Even more importantly, a vaccination regimen with TRP-2-pulsed DC, started 24 h after the injection of a lethal number of B16 cells, caused a therapeutic effect in 60% of the challenged animals. Our results strongly emphasize the relevance of the tumor Ag in the definition of immunotherapeutic strategies for cancer, and support the use of peptide-pulsed DC as cancer vaccine in humans. PMID:10946294

  14. STING in tumor and host cells cooperatively work for NK cell-mediated tumor growth retardation.

    PubMed

    Takashima, Ken; Takeda, Yohei; Oshiumi, Hiroyuki; Shime, Hiroaki; Okabe, Masaru; Ikawa, Masahito; Matsumoto, Misako; Seya, Tsukasa

    2016-09-30

    An interferon-inducing DNA sensor STING participates in tumor rejection in mouse models. Here we examined what mechanisms contribute to STING-dependent growth retardation of B16 melanoma sublines by NK cells in vivo. The studies were designed using WT and STING KO black mice, and B16D8 (an NK-sensitive melanoma line having STING) and STING KO B16D8 sublines established for this study. The results from tumor-implant studies suggested that STING in host immune cells and tumor cells induced distinct profiles of chemokines including CXCL10, CCL5 and IL-33, and both participated in NK cell infiltration and activation in B16D8 tumor. Spontaneous activation of STING occurs in host-immune and tumor cells of this NK-sensitive tumor, thereby B16D8 tumor growth being suppressed in this model. Our data show that STING induces tumor cytotoxicity by NK cells through tumor and host immune cell network to contribute to innate surveillance and suppression of tumors in vivo. PMID:27608599

  15. Zinc Induces Apoptosis of Human Melanoma Cells, Increasing Reactive Oxygen Species, p53 and FAS Ligand.

    PubMed

    Provinciali, Mauro; Pierpaoli, Elisa; Bartozzi, Beatrice; Bernardini, Giovanni

    2015-10-01

    The aim of this study was to examine the in vitro effect of zinc on the apoptosis of human melanoma cells, by studying the zinc-dependent modulation of intracellular levels of reactive oxygen species (ROS) and of p53 and FAS ligand proteins. We showed that zinc concentrations ranging from 33.7 μM to 75 μM Zn(2+) induced apoptosis in the human melanoma cell line WM 266-4. This apoptosis was associated with an increased production of intracellular ROS, and of p53 and FAS ligand protein. Treatment of tumor cells with the antioxidant N-acetylcysteine was able to prevent Zn(2+)-induced apoptosis, as well as the increase of p53 and FAS ligand protein induced by zinc. Zinc induces apoptosis in melanoma cells by increasing ROS and this effect may be mediated by the ROS-dependent induction of p53 and FAS/FAS ligand.

  16. Dietary supplementation with secoisolariciresinol diglycoside (SDG) reduces experimental metastasis of melanoma cells in mice.

    PubMed

    Li, D; Yee, J A; Thompson, L U; Yan, L

    1999-07-19

    We investigated the effect of dietary supplementation with secoisolariciresinol diglycoside (SDG), a lignan precursor isolated from flaxseed, on experimental metastasis of B16BL6 murine melanoma cells in C57BL/6 mice. Four diets were compared: a basal diet (control group) and the basal diet supplemented with SDG at 73, 147 or 293 micromol/kg (equivalent to SDG provided in the 2.5, 5 or 10% flaxseed diet). Mice were fed the diet for 2 weeks before and after an intravenous injection of 0.6 x 10(5) tumor cells. At necropsy, the number and size of tumors that formed in the lungs were determined. The median number of tumors in the control group was 62, and those in the SDG-supplemented groups were 38, 36 and 29, respectively. The last was significantly different from the control (P < 0.01). Dietary supplementation with SDG at 73, 147 and 293 micromol/kg also decreased tumor size (tumor cross-sectional area and volume) in a dose-dependent manner compared with the control values. These results show that SDG reduced pulmonary metastasis of melanoma cells and inhibited the growth of metastatic tumors that formed in the lungs. It is concluded that dietary supplementation with SDG reduces experimental metastasis of melanoma cells in mice.

  17. Oncolytic adenoviruses coated with MHC-I tumor epitopes increase the antitumor immunity and efficacy against melanoma

    PubMed Central

    Capasso, Cristian; Hirvinen, Mari; Garofalo, Mariangela; Romaniuk, Dmitrii; Kuryk, Lukasz; Sarvela, Teea; Vitale, Andrea; Antopolsky, Maxim; Magarkar, Aniket; Viitala, Tapani; Suutari, Teemu; Bunker, Alex; Yliperttula, Marjo; Urtti, Arto; Cerullo, Vincenzo

    2016-01-01

    ABSTRACT The stimulation of the immune system using oncolytic adenoviruses (OAds) has attracted significant interest and several studies suggested that OAds immunogenicity might be important for their efficacy. Therefore, we developed a versatile and rapid system to adsorb tumor-specific major histocompatibility complex class I (MHC-I) peptides onto the viral surface to drive the immune response toward the tumor epitopes. By studying the model epitope SIINFEKL, we demonstrated that the peptide-coated OAd (PeptiCRAd) retains its infectivity and the cross presentation of the modified-exogenous epitope on MHC-I is not hindered. We then showed that the SIINFEKL-targeting PeptiCRAd achieves a superior antitumor efficacy and increases the percentage of antitumor CD8+ T cells and mature epitope-specific dendritic cells in vivo. PeptiCRAds loaded with clinically relevant tumor epitopes derived from tyrosinase-related protein 2 (TRP-2) and human gp100 could reduce the growth of primary-treated tumors and secondary-untreated melanomas, promoting the expansion of antigen-specific T-cell populations. Finally, we tested PeptiCRAd in humanized mice bearing human melanomas. In this model, a PeptiCRAd targeting the human melanoma-associated antigen A1 (MAGE-A1) and expressing granulocyte and macrophage colony-stimulating factor (GM-CSF) was able to eradicate established tumors and increased the human MAGE-A1-specific CD8+ T cell population. Herein, we show that the immunogenicity of OAds plays a key role in their efficacy and it can be exploited to direct the immune response system toward exogenous tumor epitopes. This versatile and rapid system overcomes the immunodominance of the virus and elicits a tumor-specific immune response, making PeptiCRAd a promising approach for clinical testing. PMID:27141389

  18. Primary Spindle Cell Malignant Melanoma of Esophagus: An Unusual Finding.

    PubMed

    Rawandale, Nirmalkumar A; Suryawanshi, Kishor H

    2016-02-01

    Malignant melanoma of esophagus is usually a metastatic tumour rather than a primary tumour. Primary malignant melanoma accounts for less than 0.2% of all esophageal neoplasm. We report a case of primary spindle cell malignant melanoma of esophagus in a 69-year-old male who presented with history of dysphagia since 1 month. Radiological examinations revealed polypoidal growth at lateral aspect of esophagus. Biopsy was reported as grade III squamous cell carcinoma. Video assisted thoracoscopic esophagectomy was performed. Histopathological examination along with immunohistochemistry gave confirmed diagnosis of primary spindle cell malignant melanoma of esophagus. Though a rare entity, due to its aggressive nature and poor prognosis primary malignant melanoma should be one of the differential diagnoses in a patient with polypoidal esophageal mass lesion. Despite radical surgical treatment prognosis is extremely poor. PMID:27042502

  19. Acid treatment of melanoma cells selects for invasive phenotypes.

    PubMed

    Moellering, Raymond E; Black, Kvar C; Krishnamurty, Chetan; Baggett, Brenda K; Stafford, Phillip; Rain, Matthew; Gatenby, Robert A; Gillies, Robert J

    2008-01-01

    Solid tumors become acidic due to hypoxia and upregulated glycolysis. We have hypothesized that this acidosis leads to more aggressive invasive behavior during carcinogenesis (Nature Reviews Cancer 4:891-899, 2004). Previous work on this subject has shown mixed results. While some have observed an induction of metastasis and invasion with acid treatments, others have not. To investigate this, human melanoma cells were acclimated to low pH growth conditions. Significant cell mortality occurred during acclimation, suggesting that acidosis selected for resistant phenotypes. Cells maintained under acidic conditions exhibited a greater range of motility, a reduced capacity to form flank tumors in SCID mice and did not invade more rapidly in vitro, compared to non-selected control cells. However, re-acclimation of these selected cells to physiological pH gave rise to stable populations with significantly higher in vitro invasion. These re-acclimated cells maintained higher invasion and higher motility for multiple generations. Transcriptomic analyses of these three phenotypes revealed significant differences, including upregulation of relevant pathways important for tissue remodeling, cell cycle control and proliferation. These results reinforce the hypothesis that acidosis promotes selection of stable, more invasive phenotypes, rather than inductive changes, which would be reversible.

  20. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells.

    PubMed

    Carreno, Beatriz M; Magrini, Vincent; Becker-Hapak, Michelle; Kaabinejadian, Saghar; Hundal, Jasreet; Petti, Allegra A; Ly, Amy; Lie, Wen-Rong; Hildebrand, William H; Mardis, Elaine R; Linette, Gerald P

    2015-05-15

    T cell immunity directed against tumor-encoded amino acid substitutions occurs in some melanoma patients. This implicates missense mutations as a source of patient-specific neoantigens. However, a systematic evaluation of these putative neoantigens as targets of antitumor immunity is lacking. Moreover, it remains unknown whether vaccination can augment such responses. We found that a dendritic cell vaccine led to an increase in naturally occurring neoantigen-specific immunity and revealed previously undetected human leukocyte antigen (HLA) class I-restricted neoantigens in patients with advanced melanoma. The presentation of neoantigens by HLA-A*02:01 in human melanoma was confirmed by mass spectrometry. Vaccination promoted a diverse neoantigen-specific T cell receptor (TCR) repertoire in terms of both TCR-β usage and clonal composition. Our results demonstrate that vaccination directed at tumor-encoded amino acid substitutions broadens the antigenic breadth and clonal diversity of antitumor immunity.

  1. Safety and Tumor Responses with Lambrolizumab (Anti–PD-1) in Melanoma

    PubMed Central

    Hamid, Omid; Robert, Caroline; Daud, Adil; Hodi, F. Stephen; Hwu, Wen-Jen; Kefford, Richard; Wolchok, Jedd D.; Hersey, Peter; Joseph, Richard W.; Weber, Jeffrey S.; Dronca, Roxana; Gangadhar, Tara C.; Patnaik, Amita; Zarour, Hassane; Joshua, Anthony M.; Gergich, Kevin; Elassaiss-Schaap, Jeroen; Algazi, Alain; Mateus, Christine; Boasberg, Peter; Tumeh, Paul C.; Chmielowski, Bartosz; Ebbinghaus, Scot W.; Li, Xiaoyun Nicole; Kang, S. Peter; Ribas, Antoni

    2014-01-01

    BACKGROUND The programmed death 1 (PD-1) receptor is a negative regulator of T-cell effector mechanisms that limits immune responses against cancer. We tested the anti–PD-1 antibody lambrolizumab (previously known as MK-3475) in patients with advanced melanoma. METHODS We administered lambrolizumab intravenously at a dose of 10 mg per kilogram of body weight every 2 or 3 weeks or 2 mg per kilogram every 3 weeks in patients with advanced melanoma, both those who had received prior treatment with the immune checkpoint inhibitor ipilimumab and those who had not. Tumor responses were assessed every 12 weeks. RESULTS A total of 135 patients with advanced melanoma were treated. Common adverse events attributed to treatment were fatigue, rash, pruritus, and diarrhea; most of the adverse events were low grade. The confirmed response rate across all dose cohorts, evaluated by central radiologic review according to the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, was 38% (95% confidence interval [CI], 25 to 44), with the highest confirmed response rate observed in the cohort that received 10 mg per kilogram every 2 weeks (52%; 95% CI, 38 to 66). The response rate did not differ significantly between patients who had received prior ipilimumab treatment and those who had not (confirmed response rate, 38% [95% CI, 23 to 55] and 37% [95% CI, 26 to 49], respectively). Responses were durable in the majority of patients (median follow-up, 11 months among patients who had a response); 81% of the patients who had a response (42 of 52) were still receiving treatment at the time of analysis in March 2013. The overall median progression-free survival among the 135 patients was longer than 7 months. CONCLUSIONS In patients with advanced melanoma, including those who had had disease progression while they had been receiving ipilimumab, treatment with lambrolizumab resulted in a high rate of sustained tumor regression, with mainly grade 1 or 2 toxic effects

  2. CD271 Expression on Patient Melanoma Cells Is Unstable and Unlinked to Tumorigenicity.

    PubMed

    Boyle, Samantha E; Fedele, Clare G; Corbin, Vincent; Wybacz, Elisha; Szeto, Pacman; Lewin, Jeremy; Young, Richard J; Wong, Annie; Fuller, Robert; Spillane, John; Speakman, David; Donahoe, Simon; Pohl, Miklos; Gyorki, David; Henderson, Michael A; Johnstone, Ricky W; Papenfuss, Anthony T; Shackleton, Mark

    2016-07-01

    The stability of markers that identify cancer cells that propagate disease is important to the outcomes of targeted therapy strategies. In human melanoma, conflicting data exist as to whether hierarchical expression of CD271/p75/NGFR (nerve growth factor receptor) marks cells with enriched tumorigenicity, which would compel their specific targeting in therapy. To test whether these discrepancies relate to differences among groups in assay approaches, we undertook side-by-side testing of published methods of patient-derived melanoma xenografting (PDX), including comparisons of tissue digestion procedures or coinjected Matrigel formulations. We found that CD271(-) and CD271(+) melanoma cells from each of seven patients were similarly tumorigenic, regardless of assay variations. Surprisingly variable CD271 expression patterns were observed in the analyses of sibling PDX tumors (n = 68) grown in the same experiments from either CD271(-) or CD271(+) cells obtained from patients. This indicates unstable intratumoral lineage relationships between CD271(-) and CD271(+) melanoma cells that are inconsistent with classical, epigenetically based theories of disease progression, such as the cancer stem cell and plasticity models. SNP genotyping of pairs of sibling PDX tumors grown from phenotypically identical CD271(-) or CD271(+) cells showed large pairwise differences in copy number (28%-48%). Differences were also apparent in the copy number profiles of CD271(-) and CD271(+) cells purified directly from each of the four melanomas (1.4%-23%). Thus, CD271 expression in patient melanomas is unstable, not consistently linked to increased tumorigenicity and associated with genetic heterogeneity, undermining its use as a marker in clinical studies. Cancer Res; 76(13); 3965-77. ©2016 AACR. PMID:27325642

  3. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation

    PubMed Central

    Perez-Villaroel, P.; Lee, C.; Cheng, F.; Knox, T.; Woods, D.M.; Barrios, K.; Powers, J.; Sahakian, E.; Wang, H.W.; Canales, J.; Marante, D.; Smalley, K.S.M.; Bergman, J.; Seto, E.; Kozikowski, A.; Pinilla-Ibarz, J.; Sarnaik, A.; Celis, E.; Weber, J.; Sotomayor, E.M.; Villagra, A.

    2015-01-01

    The median survival for metastatic melanoma is in the realm of 8–16 months and there are few therapies that offer significant improvement in overall survival. One of the recent advances in cancer treatment focuses on epigenetic modifiers to alter the survivability and immunogenicity of cancer cells. Our group and others have previously demonstrated that pan-HDAC inhibitors induce apoptosis, cell cycle arrest and changes in the immunogenicity of melanoma cells. Here we interrogated specific HDACs which may be responsible for this effect. We found that both genetic abrogation and pharmacologic inhibition of HDAC6 decreases in vitro proliferation and induces G1 arrest of melanoma cell lines without inducing apoptosis. Moreover, targeting this molecule led to an important upregulation in the expression of tumor associated antigens and MHC class I, suggesting a potential improvement in the immunogenicity of these cells. Of note, this anti-melanoma activity was operative regardless of mutational status of the cells. These effects translated into a pronounced delay of in vivo melanoma tumor growth which was, at least in part, dependent on intact immunity as evidenced by the restoration of tumor growth after CD4+ and CD8+ depletion. Given our findings, we provide the initial rationale for the further development of selective HDAC6 inhibitors as potential therapeutic anti-melanoma agents. PMID:25957812

  4. Triterpenoids Amplify Anti-Tumoral Effects of Mistletoe Extracts on Murine B16.F10 Melanoma In Vivo

    PubMed Central

    Strüh, Christian M.; Jäger, Sebastian; Kersten, Astrid; Schempp, Christoph M.; Scheffler, Armin; Martin, Stefan F.

    2013-01-01

    Purpose Mistletoe extracts are often used in complementary cancer therapy although the efficacy of that therapy is controversially discussed. Approved mistletoe extracts contain mainly water soluble compounds of the mistletoe plant, i.e. mistletoe lectins. However, mistletoe also contains water-insoluble triterpenoids (mainly oleanolic acid) that have anti-tumorigenic effects. To overcome their loss in watery extracts we have solubilized mistletoe triterpenoids with cyclodextrins, thus making them available for in vivo cancer experiments. Experimental design B16.F10 subcutaneous melanoma bearing C57BL/6 mice were treated with new mistletoe extracts containing both water soluble compounds and solubilized triterpenoids. Tumor growth and survival was monitored. In addition, histological examinations of the tumor material and tumor surrounding tissue were performed. Results Addition of solubilized triterpenoids increased the anti-tumor effects of the mistletoe extracts, resulting in reduced tumor growth and prolonged survival of the mice. Histological examination of the treated tumors showed mainly tumor necrosis and some apoptotic cells with active caspase-3 and TUNEL staining. A significant decrease of CD31-positive tumor blood vessels was observed after treatment with solubilized triterpenoids and different mistletoe extracts. Conclusion We conclude that the addition of solubilized mistletoe triterpenoids to conventional mistletoe extracts improves the efficacy of mistletoe treatment and may represent a novel treatment option for malignant melanoma. PMID:23614029

  5. Intravenous Delivery of siRNA Targeting CD47 Effectively Inhibits Melanoma Tumor Growth and Lung Metastasis

    PubMed Central

    Wang, Yuhua; Xu, Zhenghong; Guo, Shutao; Zhang, Lu; Sharma, Arati; Robertson, Gavin P; Huang, Leaf

    2013-01-01

    CD47 is a “self marker” that is usually overexpressed on the surface of cancer cells to enable them to escape immunosurveillance. Recognition of CD47 by its receptor, signal regulatory protein α (SIRPα), which is expressed in the macrophages, inhibits phagocytic destruction of cancer cells by the macrophages. In this study, we have first shown that clinical isolates of human melanoma significantly upregulate CD47, possibly as a mechanism to defend themselves against the macrophages. We then exploited RNA interference (RNAi) technology to test the hypothesis that knocking down CD47 in the tumor cells will render them targets for macrophage destruction; hence, creating a novel anti-cancer therapy. Anti-CD47 siRNA was encapsulated in a liposome-protamine-hyaluronic acid (LPH) nanoparticle (NP) formulation to address the challenge of targeted delivery of siRNA-based therapeutics in vivo. Efficient silencing of CD47 in tumor tissues with systemic administration of LPH(CD47) also significantly inhibited the growth of melanoma tumors. In a lung metastasis model, LPH(CD47) efficiently inhibited lung metastasis to about 27% of the untreated control. Moreover, no hematopoietic toxicity was observed in the animals that received multiple doses of LPH(CD47). Our findings indicate CD47 as a potential prognostic marker for melanoma development as well as a target for therapeutic intervention with RNAi-based nanomedicines. PMID:23774794

  6. Host-derived MCP-1 and MIP-1α regulate protective anti-tumor immunity to localized and metastatic B16 melanoma.

    PubMed

    Nakasone, Yuko; Fujimoto, Manabu; Matsushita, Takashi; Hamaguchi, Yasuhito; Huu, Doanh Le; Yanaba, Mizuki; Sato, Shinichi; Takehara, Kazuhiko; Hasegawa, Minoru

    2012-01-01

    Leukocytic infiltration into malignant melanoma lesions is tightly regulated by chemokines. To assess the role of the CC chemokines monocyte chemotactic protein-1 (MCP-1/chemokine ligand 2) and macrophage inflammatory protein-1α (MIP-1α/chemokine ligand 3) in this process, s.c. primary and metastatic B16 F10 melanoma tumor growth levels were examined in mice lacking MCP-1 or MIP-1α. Primary s.c. B16 F10 melanoma growth was augmented by loss of MCP-1 or MIP-1α. Similarly, lung metastasis was enhanced by the deficiency of MCP-1 or MIP-1α. Enhanced tumor outgrowth was associated with decreased percentages of infiltrating CD4(+) T cells, CD8(+) T cells, and natural killer cells. In the absence of MCP-1 or MIP-1α, melanoma outgrowth was correlated with reduced local expression of interferon-γ, IL-6, tumor necrosis factor-α, and transforming growth factor-β. Among these cytokines, reduced expression levels of interferon-γ and tumor necrosis factor-α on leukocytes from the spleen were associated with the development of lung metastasis in chemokine-deficient mice. The local s.c. administration of these four cytokines significantly augmented another chemokine's expression and suppressed primary melanoma growth in mice deficient for MCP-1 or MIP-1α. The s.c. injection of MCP-1 or MIP-1α significantly inhibited the primary tumor growth in wild-type mice. These results indicate that host-derived MCP-1 and MIP-1α regulate protective anti-tumor immunity to B16 F10 melanoma by promoting lymphocyte infiltration into the tumor and subsequent cytokine production.

  7. Establishment, characterization, and response to cytotoxic and radiation treatment of three human melanoma cell lines

    SciTech Connect

    Courdi, A.; Gioanni, J.; Lalanne, C.M.; Fischel, J.L.; Schneider, M.; Ettore, F.; Lambert, J.C.

    1983-06-01

    Three human melanoma cell lines were derived from tumor specimens and established in culture. CAL 1 originated from a bone marrow metastasis and CAL 4 and CAL 7 were derived from solid tumor fragments. CAL 1 and CAL 7 were cloned before establishment. Ultrastructural and chromosome analysis were carried out along with the response to nine chemotherapeutic agents at various concentrations. Survival curves after irradiation were also plotted. The uncloned cell line, CAL 4, displayed some differences from the other two cell lines as regards ploidy and response to chemotherapy. Greater spread of chromosome numbers were observed with this cell line, which contained both hypoploid and a hyperploid modal numbers. All three cell lines showed a relatively high extrapolation number after irradiation, suggesting that inherent cellular properties may be partly responsible for the clinical radioresistance of malignant melanomas.

  8. SIRT1 regulates lamellipodium extension and migration of melanoma cells.

    PubMed

    Kunimoto, Risa; Jimbow, Kowichi; Tanimura, Akihiko; Sato, Masahiro; Horimoto, Kouhei; Hayashi, Takashi; Hisahara, Shin; Sugino, Toshiya; Hirobe, Tomohisa; Yamashita, Toshiharu; Horio, Yoshiyuki

    2014-06-01

    Melanoma is highly metastatic, but the mechanism of melanoma cell migration is still unclear. We found that melanoma cells expressed the nicotinamide adenine dinucleotide-dependent protein deacetylase SIRT1 in the cytoplasm. Cell membrane extension and migration of melanoma cells were inhibited by SIRT1 inhibitors or SIRT1 knockdown, whereas SIRT1 activators enhanced elongation of protrusion and cellular motility. In B16F1 cells, growth factor stimulation induced lamellipodium extension, a characteristic feature at the leading edge of migrating cells, and SIRT1 was found in the lamellipodium. SIRT1 inhibitor nicotinamide (NAM) or SIRT1 small interfering RNAs suppressed the lamellipodium extension by serum or platelet-derived growth factor (PDGF). The lamellipodium formation by dominant-active Rac1 was also inhibited by NAM, a SIRT1 inhibitor. NAM inhibited the accumulation of phosphorylated Akt at the submembrane by serum or PDGF. Using fluorescence resonance energy transfer, we found that NAM impaired PDGF-dependent increase in the phosphatidylinositol-3,4,5-trisphosphate level at the leading edge. NAM inhibited the abdominal metastasis of transplanted B16F1 melanoma cells in C57BL6/J mice and improved survival. Finally, SIRT1-knockdown B16F1 cells showed significantly reduced metastasis in transplanted mice compared with that in control B16F1 cells. These results indicate that SIRT1 inhibition is a strategy to suppress metastasis of melanoma cells. PMID:24480879

  9. Cell behavior observation and gene expression analysis of melanoma associated with stromal fibroblasts in a three-dimensional magnetic cell culture array.

    PubMed

    Okochi, Mina; Matsumura, Taku; Yamamoto, And Shuhei; Nakayama, Eiichi; Jimbow, Kowichi; Honda, Hiroyuki

    2013-01-01

    A three-dimensional (3D) multicellular tumor spheroid culture array has been fabricated using a magnetic force-based cell patterning method, analyzing the effect of stromal fibroblast on the invasive capacity of melanoma. Formation of spheroids was observed when array-like multicellular patterns of melanoma were developed using a pin-holder device made of magnetic soft iron and an external magnet, which enables the assembly of the magnetically labeled cells on the collagen gel-coated surface as array-like cell patterns. The interaction of fibroblast on the invasion of melanoma was investigated using three types of cell interaction models: (i) fibroblasts were magnetically labeled and patterned together in array with melanoma spheroids (direct-interaction model), (ii) fibroblasts coexisting in the upper collagen gel (indirect-interaction model) of melanoma spheroids, and (iii) fibroblast-sheets coexisting under melanoma spheroids (fibroblast-sheet model). The fibroblast-sheet model has largely increased the invasive capacity of melanoma, and the promotion of adhesion, migration, and invasion were also observed. In the fibroblast-sheet model, the expression of IL-8 and MMP-2 increased by 24-fold and 2-fold, respectively, in real time RT-PCR compared to the absence of fibroblasts. The results presented in this study demonstrate the importance of fibroblast interaction to invasive capacity of melanoma in the 3D in vitro bioengineered tumor microenvironment.

  10. Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model.

    PubMed

    Galvan, Daniel L; O'Neil, Richard T; Foster, Aaron E; Huye, Leslie; Bear, Adham; Rooney, Cliona M; Wilson, Matthew H

    2015-01-01

    Adoptive transfer of gene modified T cells provides possible immunotherapy for patients with cancers refractory to other treatments. We have previously used the non-viral piggyBac transposon system to gene modify human T cells for potential immunotherapy. However, these previous studies utilized adoptive transfer of modified human T cells to target cancer xenografts in highly immunodeficient (NOD-SCID) mice that do not recapitulate an intact immune system. Currently, only viral vectors have shown efficacy in permanently gene-modifying mouse T cells for immunotherapy applications. Therefore, we sought to determine if piggyBac could effectively gene modify mouse T cells to target cancer cells in a mouse cancer model. We first demonstrated that we could gene modify cells to express murine interleukin-12 (p35/p40 mIL-12), a transgene with proven efficacy in melanoma immunotherapy. The OT-I melanoma mouse model provides a well-established T cell mediated immune response to ovalbumin (OVA) positive B16 melanoma cells. B16/OVA melanoma cells were implanted in wild type C57Bl6 mice. Mouse splenocytes were isolated from C57Bl6 OT-I mice and were gene modified using piggyBac to express luciferase. Adoptive transfer of luciferase-modified OT-I splenocytes demonstrated homing to B16/OVA melanoma tumors in vivo. We next gene-modified OT-I cells to express mIL-12. Adoptive transfer of mIL-12-modified mouse OT-I splenocytes delayed B16/OVA melanoma tumor growth in vivo compared to control OT-I splenocytes and improved mouse survival. Our results demonstrate that the piggyBac transposon system can be used to gene modify splenocytes and mouse T cells for evaluating adoptive immunotherapy strategies in immunocompetent mouse tumor models that may more directly mimic immunotherapy applications in humans. PMID:26473608

  11. Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model

    PubMed Central

    Foster, Aaron E.; Huye, Leslie; Bear, Adham; Rooney, Cliona M.; Wilson, Matthew H.

    2015-01-01

    Adoptive transfer of gene modified T cells provides possible immunotherapy for patients with cancers refractory to other treatments. We have previously used the non-viral piggyBac transposon system to gene modify human T cells for potential immunotherapy. However, these previous studies utilized adoptive transfer of modified human T cells to target cancer xenografts in highly immunodeficient (NOD-SCID) mice that do not recapitulate an intact immune system. Currently, only viral vectors have shown efficacy in permanently gene-modifying mouse T cells for immunotherapy applications. Therefore, we sought to determine if piggyBac could effectively gene modify mouse T cells to target cancer cells in a mouse cancer model. We first demonstrated that we could gene modify cells to express murine interleukin-12 (p35/p40 mIL-12), a transgene with proven efficacy in melanoma immunotherapy. The OT-I melanoma mouse model provides a well-established T cell mediated immune response to ovalbumin (OVA) positive B16 melanoma cells. B16/OVA melanoma cells were implanted in wild type C57Bl6 mice. Mouse splenocytes were isolated from C57Bl6 OT-I mice and were gene modified using piggyBac to express luciferase. Adoptive transfer of luciferase-modified OT-I splenocytes demonstrated homing to B16/OVA melanoma tumors in vivo. We next gene-modified OT-I cells to express mIL-12. Adoptive transfer of mIL-12-modified mouse OT-I splenocytes delayed B16/OVA melanoma tumor growth in vivo compared to control OT-I splenocytes and improved mouse survival. Our results demonstrate that the piggyBac transposon system can be used to gene modify splenocytes and mouse T cells for evaluating adoptive immunotherapy strategies in immunocompetent mouse tumor models that may more directly mimic immunotherapy applications in humans. PMID:26473608

  12. Anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells

    PubMed Central

    Czajkowski, Rafal; Zegarska, Barbara; Kowaliszyn, Bogna; Pokrywczynska, Marta; Drewa, Tomasz

    2016-01-01

    Introduction Statins are considered potential candidate agents for melanoma chemoprevention. Statin-induced mevalonate pathway inhibition leads to reduction of cholesterol synthesis and also to decreased cellular levels of non-steroidal isoprenoids, geranylgeranyl pyrophosphate and farnesyl pyrophosphate. This results in the impairment of protein prenylation which affects carcinogenesis. Aim To analyze anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells. Material and methods Melanoma cell lines (A375 and WM1552C) and normal fibroblasts (BJ) were used as the primary research material. Cells were treated with rosuvastatin at concentrations ranging from 0.01 µM to 10 µM. Cell viability was analyzed with the use of an MTT assay. Expression of proliferation marker Ki67 was assessed on the basis of immunofluorescence staining. Results Rosuvastatin reduced A375 and BJ cell viability in a time- and dose-dependent manner. After 72 h incubation, the IC50, half maximal inhibitory concentration, was 2.3 µM for melanoma cells and 7.4 µM for normal fibroblasts. In turn, rosuvastatin exhibited relatively lower activity against WM1552C cells. A significant reduction of Ki67 expression was also noted for BJ fibroblasts after prolonged incubation with the tested drug. Conclusions The results indicate that the anti-melanoma properties of rosuvastatin are highly dependent on the tumor cell line assessed. However, the concentrations required to decrease melanoma cell viability in vitro exceed the plasma concentrations reached in patients treated with rosuvastatin at well-tolerated doses. What is more disturbing, reduction of proliferation and viability observed in BJ fibroblasts indicated that rosuvastatin at high doses may be toxic for normal cells. PMID:27605895

  13. Anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells

    PubMed Central

    Czajkowski, Rafal; Zegarska, Barbara; Kowaliszyn, Bogna; Pokrywczynska, Marta; Drewa, Tomasz

    2016-01-01

    Introduction Statins are considered potential candidate agents for melanoma chemoprevention. Statin-induced mevalonate pathway inhibition leads to reduction of cholesterol synthesis and also to decreased cellular levels of non-steroidal isoprenoids, geranylgeranyl pyrophosphate and farnesyl pyrophosphate. This results in the impairment of protein prenylation which affects carcinogenesis. Aim To analyze anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells. Material and methods Melanoma cell lines (A375 and WM1552C) and normal fibroblasts (BJ) were used as the primary research material. Cells were treated with rosuvastatin at concentrations ranging from 0.01 µM to 10 µM. Cell viability was analyzed with the use of an MTT assay. Expression of proliferation marker Ki67 was assessed on the basis of immunofluorescence staining. Results Rosuvastatin reduced A375 and BJ cell viability in a time- and dose-dependent manner. After 72 h incubation, the IC50, half maximal inhibitory concentration, was 2.3 µM for melanoma cells and 7.4 µM for normal fibroblasts. In turn, rosuvastatin exhibited relatively lower activity against WM1552C cells. A significant reduction of Ki67 expression was also noted for BJ fibroblasts after prolonged incubation with the tested drug. Conclusions The results indicate that the anti-melanoma properties of rosuvastatin are highly dependent on the tumor cell line assessed. However, the concentrations required to decrease melanoma cell viability in vitro exceed the plasma concentrations reached in patients treated with rosuvastatin at well-tolerated doses. What is more disturbing, reduction of proliferation and viability observed in BJ fibroblasts indicated that rosuvastatin at high doses may be toxic for normal cells.

  14. Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination

    PubMed Central

    Bol, Kalijn F; Aarntzen, Erik H J G; Hout, Florentien E M in 't; Schreibelt, Gerty; Creemers, Jeroen H A; Lesterhuis, W Joost; Gerritsen, Winald R; Grunhagen, Dirk J; Verhoef, Cornelis; Punt, Cornelis J A; Bonenkamp, Johannes J; de Wilt, Johannes H W; Figdor, Carl G; de Vries, I Jolanda M

    2016-01-01

    Melanoma patients with regional metastatic disease are at high risk for recurrence and metastatic disease, despite radical lymph node dissection (RLND). We investigated the immunologic response and clinical outcome to adjuvant dendritic cell (DC) vaccination in melanoma patients with regional metastatic disease who underwent RLND with curative intent. In this retrospective study, 78 melanoma patients with regional lymph node metastasis who underwent RLND received autologous DCs loaded with gp100 and tyrosinase and were analyzed for functional tumor-specific T cell responses in skin-test infiltrating lymphocytes. The study shows that adjuvant DC vaccination in melanoma patients with regional lymph node metastasis is safe and induced functional tumor-specific T cell responses in 71% of the patients. The presence of functional tumor-specific T cells was correlated with a better 2-year overall survival (OS) rate. OS was significantly higher after adjuvant DC vaccination compared to 209 matched controls who underwent RLND without adjuvant DC vaccination, 63.6 mo vs. 31.0 mo (p = 0.018; hazard ratio 0.59; 95%CI 0.42–0.84). Five-year survival rate increased from 38% to 53% (p < 0.01). In summary, in melanoma patients with regional metastatic disease, who are at high risk for recurrence and metastatic disease after RLND, adjuvant DC vaccination is well tolerated. It induced functional tumor-specific immune responses in the majority of patients and these were related to clinical outcome. OS was significantly higher compared to matched controls. A randomized clinical trial is needed to prospectively validate the efficacy of DC vaccination in the adjuvant setting. PMID:26942068

  15. Delivery System of CpG Oligodeoxynucleotides through Eliciting an Effective T cell Immune Response against Melanoma in Mice

    PubMed Central

    Sun, Wei; Fang, Mingli; Chen, Yajing; Yang, Zhaogang; Xiao, Yue; Wan, Min; Wang, Hua; Yu, Yongli; Wang, Liying

    2016-01-01

    Purpose: In order to improve the immunogenicity of whole tumor cell lysate for tumor vaccine, we have designed a series of CpG ODNs to study their transport and to evaluate their anti-tumor activity in B16 melanoma mouse models. Methods: In this study, we investigated whether C-class CpG ODN (CpG ODN-685) could facilitate tumor cell lysate to induce vigorous anti-tumor activity against tumors in mice both prophylactically and therapeutically. Results: It was found that the combination of tumor cell lysate and CpG ODN-685 could inhibit the growth of B16 melanoma and prolong the survival of tumor-bearing mice. Moreover CpG ODN-685 with the addition of tumor cell lysate can also cause the generation of tumor specific immune memory by inducing specific cytotoxic T lymphocytes and helper T lymphocytes in mice. Conclusion: The results suggest that CpG ODN-685 could be developed as an efficient adjuvant for tumor vaccines against melanoma. PMID:26918036

  16. Human Macrophages and Dendritic Cells Can Equally Present MART-1 Antigen to CD8+ T Cells after Phagocytosis of Gamma-Irradiated Melanoma Cells

    PubMed Central

    Barrio, María Marcela; Abes, Riad; Colombo, Marina; Pizzurro, Gabriela; Boix, Charlotte; Roberti, María Paula; Gélizé, Emmanuelle; Rodriguez-Zubieta, Mariana

    2012-01-01

    Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8+ T cell clone. Confocal microscopy with Alexa Fluor®647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8+ T cell cross-presentation thereafter. PMID:22768350

  17. Para-Phenylenediamine Induces Apoptotic Death of Melanoma Cells and Reduces Melanoma Tumour Growth in Mice.

    PubMed

    Bhowmick, Debajit; Bhar, Kaushik; Mallick, Sanjaya K; Das, Subhadip; Chatterjee, Nabanita; Sarkar, Tuhin Subhra; Chakrabarti, Rajarshi; Das Saha, Krishna; Siddhanta, Anirban

    2016-01-01

    Melanoma is one of the most aggressive forms of cancer, usually resistant to standard chemotherapeutics. Despite a huge number of clinical trials, any success to find a chemotherapeutic agent that can effectively destroy melanoma is yet to be achieved. Para-phenylenediamine (p-PD) in the hair dyes is reported to purely serve as an external dyeing agent. Very little is known about whether p-PD has any effect on the melanin producing cells. We have demonstrated p-PD mediated apoptotic death of both human and mouse melanoma cells in vitro. Mouse melanoma tumour growth was also arrested by the apoptotic activity of intraperitoneal administration of p-PD with almost no side effects. This apoptosis is shown to occur primarily via loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS), and caspase 8 activation. p-PD mediated apoptosis was also confirmed by the increase in sub-G0/G1 cell number. Thus, our experimental observation suggests that p-PD can be a potential less expensive candidate to be developed as a chemotherapeutic agent for melanoma. PMID:27293892

  18. Para-Phenylenediamine Induces Apoptotic Death of Melanoma Cells and Reduces Melanoma Tumour Growth in Mice

    PubMed Central

    Bhowmick, Debajit; Bhar, Kaushik; Mallick, Sanjaya K.; Das, Subhadip; Chatterjee, Nabanita; Sarkar, Tuhin Subhra; Chakrabarti, Rajarshi; Das Saha, Krishna; Siddhanta, Anirban

    2016-01-01

    Melanoma is one of the most aggressive forms of cancer, usually resistant to standard chemotherapeutics. Despite a huge number of clinical trials, any success to find a chemotherapeutic agent that can effectively destroy melanoma is yet to be achieved. Para-phenylenediamine (p-PD) in the hair dyes is reported to purely serve as an external dyeing agent. Very little is known about whether p-PD has any effect on the melanin producing cells. We have demonstrated p-PD mediated apoptotic death of both human and mouse melanoma cells in vitro. Mouse melanoma tumour growth was also arrested by the apoptotic activity of intraperitoneal administration of p-PD with almost no side effects. This apoptosis is shown to occur primarily via loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS), and caspase 8 activation. p-PD mediated apoptosis was also confirmed by the increase in sub-G0/G1 cell number. Thus, our experimental observation suggests that p-PD can be a potential less expensive candidate to be developed as a chemotherapeutic agent for melanoma. PMID:27293892

  19. Impaired gp100-Specific CD8(+) T-Cell Responses in the Presence of Myeloid-Derived Suppressor Cells in a Spontaneous Mouse Melanoma Model.

    PubMed

    Mairhofer, David G; Ortner, Daniela; Tripp, Christoph H; Schaffenrath, Sandra; Fleming, Viktor; Heger, Lukas; Komenda, Kerstin; Reider, Daniela; Dudziak, Diana; Chen, Suzie; Becker, Jürgen C; Flacher, Vincent; Stoitzner, Patrizia

    2015-11-01

    Murine tumor models that closely reflect human diseases are important tools to investigate carcinogenesis and tumor immunity. The transgenic (tg) mouse strain tg(Grm1)EPv develops spontaneous melanoma due to ectopic overexpression of the metabotropic glutamate receptor 1 (Grm1) in melanocytes. In the present study, we characterized the immune status and functional properties of immune cells in tumor-bearing mice. Melanoma development was accompanied by a reduction in the percentages of CD4(+) T cells including regulatory T cells (Tregs) in CD45(+) leukocytes present in tumor tissue and draining lymph nodes (LNs). In contrast, the percentages of CD8(+) T cells were unchanged, and these cells showed an activated phenotype in tumor mice. Endogenous melanoma-associated antigen glycoprotein 100 (gp100)-specific CD8(+) T cells were not deleted during tumor development, as revealed by pentamer staining in the skin and draining LNs. They, however, were unresponsive to ex vivo gp100-peptide stimulation in late-stage tumor mice. Interestingly, immunosuppressive myeloid-derived suppressor cells (MDSCs) were recruited to tumor tissue with a preferential accumulation of granulocytic MDSC (grMDSCs) over monocytic MDSC (moMDSCs). Both subsets produced Arginase-1, inducible nitric oxide synthase (iNOS), and transforming growth factor-β and suppressed T-cell proliferation in vitro. In this work, we describe the immune status of a spontaneous melanoma mouse model that provides an interesting tool to develop future immunotherapeutical strategies.

  20. The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells.

    PubMed

    Pan, Tianhong; Zhu, Julie; Hwu, Wen-Jen; Jankovic, Joseph

    2012-01-01

    The relatively high co-occurrence of Parkinson's disease (PD) and melanoma has been established by a large number of epidemiological studies. However, a clear biological explanation for this finding is still lacking. Ultra-violet radiation (UVR)-induced skin melanin synthesis is a defense mechanism against UVR-induced damage relevant to the initiation of melanoma, whereas, increased neuromelanin (NM), the melanin synthesized in dopaminergic neurons, may enhance the susceptibility to oxidative stress-induced neuronal injury relevant to PD. SNCA is a PD-causing gene coding for alpha-Synuclein (α-Syn) that expresses not only in brain, but also in skin as well as in tumors, such as melanoma. The findings that α-Syn can interact with tyrosinase (TYR) and inhibit tyrosine hydroxylase (TH), both of which are enzymes involved in the biosynthesis of melanin and dopamine (DA), led us to propose that α-Syn may participate in the regulation of melanin synthesis. In this study, by applying ultraviolet B (UVB) light, a physiologically relevant stimulus of melanogenesis, we detected melanin synthesis in A375 and SK-MEL-28 melanoma cells and in SH-SY5Y and PC12 dopaminergic neuronal cells and determined effects of α-Syn on melanin synthesis. Our results showed that UVB light exposure increased melanin synthesis in all 4 cell lines. However, we found that α-Syn expression reduced UVB light-induced increase of melanin synthesis and that melanin content was lower when melanoma cells were expressed with α-Syn, indicating that α-Syn may have inhibitory effects on melanin synthesis in melanoma cells. Different from melanoma cells, the melanin content was higher in α-Syn-over-expressed dopaminergic neuronal SH-SY5Y and PC12 cells, cellular models of PD, than that in non-α-Syn-expressed control cells. We concluded that α-Syn could be one of the points responsible for the positive association between PD and melanoma via its differential roles in melanin synthesis in melanoma

  1. A Specific Subpopulation of Mesenchymal Stromal Cell Carriers Overrides Melanoma Resistance to an Oncolytic Adenovirus

    PubMed Central

    Bolontrade, Marcela F.; Sganga, Leonardo; Piaggio, Eduardo; Viale, Diego L.; Sorrentino, Miguel A.; Robinson, Aníbal; Sevlever, Gustavo; García, Mariana G.; Mazzolini, Guillermo

    2012-01-01

    The homing properties of mesenchymal stromal c´ells (MSCs) toward tumors turn them into attractive tools for combining cell and gene therapy. The aim of this study was to select in a feasible way a human bone marrow-derived MSC subpopulation that might exhibit a selective ability to target the tumor mass. Using differential in vitro adhesive capacities during cells isolation, we selected a specific MSC subpopulation (termed MO-MSCs) that exhibited enhanced multipotent capacity and increased cell surface expression of specific integrins (integrins α2, α3, and α5), which correlated with an enhanced MO-MSCs adhesiveness toward their specific ligands. Moreover, MO-MSCs exhibited a higher migration toward conditioned media from different cancer cell lines and fresh human breast cancer samples in the presence or not of a human microendothelium monolayer. Further in vivo studies demonstrated increased tumor homing of MO-MSCs toward established 578T and MD-MBA-231 breast cancer and A375N melanoma tumor xenografts. Tumor penetration by MO-MSCs was highly dependent on metallopeptidases production as it was inhibited by the specific inhibitor 1,10 phenantroline. Finally, systemically administered MO-MSCs preloaded with an oncolytic adenovirus significantly inhibited tumor growth in mice harboring established A375N melanomas, overcoming the natural resistance of the tumor to in situ administration of the oncolytic adenovirus. In summary, this work characterizes a novel MSC subpopulation with increased tumor homing capacity that can be used to transport therapeutic compounds. PMID:22462538

  2. B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells

    PubMed Central

    Krumm, Andrea; Merz, Stephanie; Switzeny, Olivier Jérôme; Christmann, Markus; Loquai, Carmen; Kaina, Bernd

    2014-01-01

    In the treatment of metastatic melanoma, a highly therapy-refractory cancer, alkylating agents are used and, for the subgroup of BRAFV600E cancers, the B-Raf inhibitor vemurafenib. Although vemurafenib is initially beneficial, development of drug resistance occurs leading to tumor relapse, which necessitates the requirement for combined or sequential therapy with other drugs, including genotoxic alkylating agents. This leads to the question whether vemurafenib and alkylating agents act synergistically and whether chronic vemurafenib treatment alters the melanoma cell response to alkylating agents. Here we show that a) BRAFV600E melanoma cells are killed by vemurafenib, driving apoptosis, b) BRAFV600E melanoma cells are neither more resistant nor sensitive to temozolomide/fotemustine than non-mutant cells, c) combined treatment with vemurafenib plus temozolomide or fotemustine has an additive effect on cell kill, d) acquired vemurafenib resistance of BRAFV600E melanoma cells does not affect MGMT, MSH2, MSH6, PMS2 and MLH1, nor does it affect the resistance to temozolomide and fotemustine, e) metastatic melanoma biopsies obtained from patients prior to and after vemurafenib treatment did not show a change in the MGMT promoter methylation status and MGMT expression level. The data suggest that consecutive treatment with vemurafenib and alkylating drugs is a reasonable strategy for metastatic melanoma treatment. PMID:25557167

  3. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model.

    PubMed

    Meyer, Christiane; Sevko, Alexandra; Ramacher, Marcel; Bazhin, Alexandr V; Falk, Christine S; Osen, Wolfram; Borrello, Ivan; Kato, Masashi; Schadendorf, Dirk; Baniyash, Michal; Umansky, Viktor

    2011-10-11

    Tumor microenvironment is characterized by chronic inflammation represented by infiltrating leukocytes and soluble mediators, which lead to a local and systemic immunosuppression associated with cancer progression. Here, we used the ret transgenic spontaneous murine melanoma model that mimics human melanoma. Skin tumors and metastatic lymph nodes showed increased levels of inflammatory factors such as IL-1β, GM-CSF, and IFN-γ, which correlated with tumor progression. Moreover, Gr1(+)CD11b(+) myeloid-derived suppressor cells (MDSCs), known to inhibit tumor reactive T cells, were enriched in melanoma lesions and lymphatic organs during tumor progression. MDSC infiltration was associated with a strong TCR ζ-chain down-regulation in all T cells. Coculturing normal splenocytes with tumor-derived MDSC induced a decreased T-cell proliferation and ζ-chain expression, verifying the MDSC immunosuppressive function and suggesting that the tumor inflammatory microenvironment supports MDSC recruitment and immunosuppressive activity. Indeed, upon manipulation of the melanoma microenvironment with the phosphodiesterase-5 inhibitor sildenafil, we observed reduced levels of numerous inflammatory mediators (e.g., IL-1β, IL-6, VEGF, S100A9) in association with decreased MDSC amounts and immunosuppressive function, indicating an antiinflammatory effect of sildenafil. This led to a partial restoration of ζ-chain expression in T cells and to a significantly increased survival of tumor-bearing mice. CD8 T-cell depletion resulted in an abrogation of sildenafil beneficial outcome, suggesting the involvement of MDSC and CD8 T cells in the observed therapeutic effects. Our data imply that inhibition of chronic inflammation in the tumor microenvironment should be applied in conjunction with melanoma immunotherapies to increase their efficacy. PMID:21969559

  4. Potentiated cytotoxic effects of statins and ajoene in murine melanoma cells.

    PubMed

    Ledezma, Eliades; Wittig, Olga; Alonso, Jose; Cardier, Jose E

    2009-04-01

    Because statins and ajoene inhibit the 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, we evaluated the hypothesis that the cytotoxic effect of these compounds may be potentiated when both are used in combination on tumor cells. We showed that cotreatment of the murine melanoma B16F10 cell with statins (atorvastatin and pravastatin) and ajoene, all at nontoxic doses, dramatically increased their cytotoxicity. B16F10 cell death induced by statins, but not by ajoene, was prevented by mevalonate and geranylgeranylpyrophosphate. To our knowledge, this is the first report that the combination of statins and ajoene, which alters the mevalonate pathway, might potentiate their cytotoxic effects on tumor cells.

  5. Suppression of microphthalmia-associated transcription factor, but not NF-kappa B sensitizes melanoma specific cell death.

    PubMed

    Mokhamatam, Raveendra B; Sahoo, Binay K; Manna, Sunil K

    2016-08-01

    Mutation in B-Raf leads to gain of function in melanoma and causes aggressive behavior for proliferation. Most of the therapeutics are ineffective in this scenario. However, regulation of this aggressive behavior by targeting the key molecules would be viable strategy to develop novel and effective therapeutics. In this report we provide evidences that the resveratrol is potent to regulate melanoma cell growth than other inducers of apoptosis. Resveratrol inhibits pronounced cell proliferation in melanoma than other tumor cell types. Cell cycle analysis using flow cytometry shows that the treatment with resveratrol results in S phase arrest. Resveratrol inhibits microphthalmia-associated transcription factor (MITF) and its dependent genes without interfering the MITF DNA binding in vitro. Resveratrol-mediated cell death is protected in MITF overexpressed cells and it is aggravated in MITF knocked down cells. These suggest the resveratrol-mediated decrease in MITF is the possible cause of melanoma cell death. Though resveratrol-mediated downregulation of NF-κB is responsible for cell apoptosis, but the downregulation of MITF is the main reason for melanoma-specific cell death. Thus, resveratrol can be effective chemotherapeutic agent against rapid proliferative melanoma cells. PMID:27325430

  6. Tumor growth suppressive effect of IL-4 through p21-mediated activation of STAT6 in IL-4Rα overexpressed melanoma models

    PubMed Central

    Song, Ju Kyoung; Jung, Yu Yeon; Kim, Youngsoo; Kim, Kyung Bo; Hwang, Dae Yeon; Yoon, Do Young; Song, Min Jong; Han, Sang Bae; Hong, Jin Tae

    2016-01-01

    To evaluate the significance of interleukin 4 (IL-4) in tumor development, we compared B16F10 melanoma growth in IL-4-overespressing transgenic mice (IL-4 mice) and non-transgenic mice. In IL-4 mice, reduced tumor volume and weight were observed when compared with those of non-transgenic mice. Significant activation of DNA binding activity of STAT6, phosphorylation of STAT6 as well as IL-4, IL-4Rα and p21 expression were found in the tumor tissues of IL-4 mice compared to non-transgenic mice. Higher expression of IL-4, STAT6 and p21 in human melanoma tissue compared to normal human skin tissue was also found. Higher expression of apoptotic protein such as cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax, p53 and p21, but lower expression levels of survival protein such as Bcl-2 were found in the tumor of IL-4 mice. In vitro study, we found that overexpression of IL-4 significantly inhibited SK-MEL-28 human melanoma cell and B16F10 murine melanoma cell growth via p21-mediated activation of STAT6 pathway as well as increased expression of apoptotic cell death proteins. Moreover, p21 knockdown with siRNA abolished IL-4 induced activation of STAT6 and expression of p53 and p21 accompanied with reduced IL-4 expression as well as melanoma cell growth inhibition. Therefore, these results showed that IL-4 overexpression suppressed tumor development through p21-mediated activation of STAT6 pathways in melanoma models. PMID:26993600

  7. Solanum nigrum Linn. water extract inhibits metastasis in mouse melanoma cells in vitro and in vivo.

    PubMed

    Wang, Hsueh-Chun; Wu, Dun-Hao; Chang, Yun-Ching; Li, Yi-Ju; Wang, Chau-Jong

    2010-11-24

    Metastatic melanoma is an aggressive skin cancer notoriously resistant to current cancer therapies. Thus, new treatment strategies are urgently needed. Solanum nigrum Linn., commonly used in Oriental medicine, has showed antineoplastic activity in human cancer cell lines. The aim of this study was to evaluate the inhibitive effect of S. nigrum Linn. water extract (SNWE) on melanoma metastasis and dissect the underlying mechanisms of SNWE actions. B16-F1 cells were analyzed for migrating and invasive abilities with SNWE treatment, and several putative targets involved in metastatic melanoma were examined. In parallel, primary mouse xenograft and lung metastasis of melanoma models were established to examine the therapeutic potential of SNWE. The results indicated SNWE significantly inhibited B16-F1 cell migration and invasion. Meanwhile, decreased Akt activity and PKCα, Ras, and NF-κB protein expressions were detected in dose-dependent manners. In line with this notion, >50% reduced tumor weight and lung metastatic nodules were observed in 1% SNWE fed mice. This was associated with reduced serum MMP-9 as well as Akt activity and PKCα, Ras, and NF-κB protein expressions. Thus, this work indicates SNWE has potential application for treating metastatic melanoma. PMID:21028816

  8. Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells.

    PubMed

    Buettner, Ralf; Mesa, Tania; Vultur, Adina; Lee, Frank; Jove, Richard

    2008-11-01

    Src family kinases (SFK) are involved in regulating a multitude of biological processes, including cell adhesion, migration, proliferation, and survival, depending on the cellular context. Therefore, although SFKs are currently being investigated as potential targets for treatment strategies in various cancers, the biological responses to inhibition of SFK signaling in any given tumor type are not predictable. Dasatinib (BMS-354825) is a dual Src/Abl kinase inhibitor with potent antiproliferative activity against hematologic malignancies harboring activated BCR-ABL. In this study, we show that dasatinib blocks migration and invasion of human melanoma cells without affecting proliferation and survival. Moreover, dasatinib completely inhibits SFK kinase activity at low nanomolar concentrations in all eight human melanoma cell lines investigated. In addition, two known downstream targets of SFKs, focal adhesion kinase and Crk-associated substrate (p130(CAS)), are inhibited with similar concentrations and kinetics. Consistent with inhibition of these signaling pathways and invasion, dasatinib down-regulates expression of matrix metalloproteinase-9. We also provide evidence that dasatinib directly inhibits kinase activity of the EphA2 receptor tyrosine kinase, which is overexpressed and/or overactive in many solid tumors, including melanoma. Thus, SFKs and downstream signaling are implicated as having key roles in migration and invasion of melanoma cells.

  9. The pharmacological NF-κB inhibitor BAY11-7082 induces cell apoptosis and inhibits the migration of human uveal melanoma cells.

    PubMed

    Hu, Shuiqing; Luo, Qingqiong; Cun, Biyun; Hu, Dan; Ge, Shengfang; Fan, Xianqun; Chen, Fuxiang

    2012-01-01

    Uveal melanomas are highly metastatic and have high rate of recurrence due to the lack of effective systemic therapy. The identification of important survival pathways in uveal melanomas provides novel therapeutic targets for effective treatment. In the present study, we found that the NF-κB signaling pathway was constitutively and highly activated in uveal melanoma cells. Treatment with the pharmacological NF-κB specific inhibitor BAY11-7082 markedly decreased the nuclear translocation of NF-κB. In a dose-dependent setting, BAY11-7082 inhibited the proliferation and growth of uveal melanoma cells by inducing apoptosis without effect on cell cycle. The migration capacity of uveal melanoma cells was also significantly suppressed by BAY11-7082 treatment. Mechanistically, BAY11-7082 increased the activity of caspase 3 and reduced the expression of anti-apoptotic protein Bcl-2, but did not influence the expression of pro-apoptotic protein Bax. Furthermore, BAY11-7082 induced uveal melanoma cell apoptosis and inhibited xenograft tumor growth in vivo. Collectively, the present study identified NF-κB as an important survival signal for uveal melanoma cells and suggested that administration of specific NF-κB inhibitor BAY11-7082 could serve as an effective treatment for patients with uveal melanoma.

  10. The Pharmacological NF-κB Inhibitor BAY11-7082 Induces Cell Apoptosis and Inhibits the Migration of Human Uveal Melanoma Cells

    PubMed Central

    Hu, Shuiqing; Luo, Qingqiong; Cun, Biyun; Hu, Dan; Ge, Shengfang; Fan, Xianqun; Chen, Fuxiang

    2012-01-01

    Uveal melanomas are highly metastatic and have high rate of recurrence due to the lack of effective systemic therapy. The identification of important survival pathways in uveal melanomas provides novel therapeutic targets for effective treatment. In the present study, we found that the NF-κB signaling pathway was constitutively and highly activated in uveal melanoma cells. Treatment with the pharmacological NF-κB specific inhibitor BAY11-7082 markedly decreased the nuclear translocation of NF-κB. In a dose-dependent setting, BAY11-7082 inhibited the proliferation and growth of uveal melanoma cells by inducing apoptosis without effect on cell cycle. The migration capacity of uveal melanoma cells was also significantly suppressed by BAY11-7082 treatment. Mechanistically, BAY11-7082 increased the activity of caspase 3 and reduced the expression of anti-apoptotic protein Bcl-2, but did not influence the expression of pro-apoptotic protein Bax. Furthermore, BAY11-7082 induced uveal melanoma cell apoptosis and inhibited xenograft tumor growth in vivo. Collectively, the present study identified NF-κB as an important survival signal for uveal melanoma cells and suggested that administration of specific NF-κB inhibitor BAY11-7082 could serve as an effective treatment for patients with uveal melanoma. PMID:23443086

  11. The pharmacological NF-κB inhibitor BAY11-7082 induces cell apoptosis and inhibits the migration of human uveal melanoma cells.

    PubMed

    Hu, Shuiqing; Luo, Qingqiong; Cun, Biyun; Hu, Dan; Ge, Shengfang; Fan, Xianqun; Chen, Fuxiang

    2012-01-01

    Uveal melanomas are highly metastatic and have high rate of recurrence due to the lack of effective systemic therapy. The identification of important survival pathways in uveal melanomas provides novel therapeutic targets for effective treatment. In the present study, we found that the NF-κB signaling pathway was constitutively and highly activated in uveal melanoma cells. Treatment with the pharmacological NF-κB specific inhibitor BAY11-7082 markedly decreased the nuclear translocation of NF-κB. In a dose-dependent setting, BAY11-7082 inhibited the proliferation and growth of uveal melanoma cells by inducing apoptosis without effect on cell cycle. The migration capacity of uveal melanoma cells was also significantly suppressed by BAY11-7082 treatment. Mechanistically, BAY11-7082 increased the activity of caspase 3 and reduced the expression of anti-apoptotic protein Bcl-2, but did not influence the expression of pro-apoptotic protein Bax. Furthermore, BAY11-7082 induced uveal melanoma cell apoptosis and inhibited xenograft tumor growth in vivo. Collectively, the present study identified NF-κB as an important survival signal for uveal melanoma cells and suggested that administration of specific NF-κB inhibitor BAY11-7082 could serve as an effective treatment for patients with uveal melanoma. PMID:23443086

  12. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma.

    PubMed

    Marrero, Bernadette; Messina, Jane L; Heller, Richard

    2009-10-01

    An in vitro 3D model was developed utilizing a synthetic microgravity environment to facilitate studying the cell interactions. 2D monolayer cell culture models have been successfully used to understand various cellular reactions that occur in vivo. There are some limitations to the 2D model that are apparent when compared to cells grown in a 3D matrix. For example, some proteins that are not expressed in a 2D model are found up-regulated in the 3D matrix. In this paper, we discuss techniques used to develop the first known large, free-floating 3D tissue model used to establish tumor spheroids. The bioreactor system known as the High Aspect Ratio Vessel (HARVs) was used to provide a microgravity environment. The HARVs promoted aggregation of keratinocytes (HaCaT) that formed a construct that served as scaffolding for the growth of mouse melanoma. Although there is an emphasis on building a 3D model with the proper extracellular matrix and stroma, we were able to develop a model that excluded the use of matrigel. Immunohistochemistry and apoptosis assays provided evidence that this 3D model supports B16.F10 cell growth, proliferation, and synthesis of extracellular matrix. Immunofluorescence showed that melanoma cells interact with one another displaying observable cellular morphological changes. The goal of engineering a 3D tissue model is to collect new information about cancer development and develop new potential treatment regimens that can be translated to in vivo models while reducing the use of laboratory animals. PMID:19533253

  13. Modeling Melanoma In Vitro and In Vivo

    PubMed Central

    Beaumont, Kimberley A.; Mohana-Kumaran, Nethia; Haass, Nikolas K.

    2013-01-01

    The behavior of melanoma cells has traditionally been studied in vitro in two-dimensional cell culture with cells adhering to plastic dishes. However, in order to mimic the three-dimensional architecture of a melanoma, as well as its interactions with the tumor microenvironment, there has been the need for more physiologically relevant models. This has been achieved by designing 3D in vitro models of melanoma, such as melanoma spheroids embedded in extracellular matrix or organotypic skin reconstructs. In vivo melanoma models have typically relied on the growth of tumor xenografts in immunocompromised mice. Several genetically engineered mouse models have now been developed which allow the generation of spontaneous melanoma. Melanoma models have also been established in other species such as zebrafish, which are more conducive to imaging and high throughput studies. We will discuss these models as well as novel techniques that are relevant to the study of the molecular mechanisms underlying melanoma progression. PMID:27429258

  14. Theranostic properties of a survivin-directed molecular beacon in human melanoma cells.

    PubMed

    Carpi, Sara; Fogli, Stefano; Giannetti, Ambra; Adinolfi, Barbara; Tombelli, Sara; Da Pozzo, Eleonora; Vanni, Alessia; Martinotti, Enrica; Martini, Claudia; Breschi, Maria Cristina; Pellegrino, Mario; Nieri, Paola; Baldini, Francesco

    2014-01-01

    Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB) that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells. We further assess the pro-apoptotic effect of MB by measuring internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (MMP) and changes in nuclear morphology. Transfection of MB into A375 and 501 Mel cells generated high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human melanocytes and monocytes). MB time dependently decreased survivin mRNA and protein expression in melanoma cells with the maximum effect reached at 72 h. Treatment of melanoma cells with MB induced apoptosis by significant changes in MMP, accumulation of histone-complexed DNA fragments in the cytoplasm and nuclear condensation. MB also enhanced the pro-apoptotic effect of standard chemotherapeutic drugs tested at clinically relevant concentrations. The MB tested in the current study conjugates the ability of imaging with the pharmacological silencing activity against survivin mRNA in human melanoma cells and may represent an innovative approach for cancer diagnosis and treatment.

  15. CD10-Equipped Melanoma Cells Acquire Highly Potent Tumorigenic Activity: A Plausible Explanation of Their Significance for a Poor Prognosis.

    PubMed

    Oba, Junna; Nakahara, Takeshi; Hashimoto-Hachiya, Akiko; Liu, Min; Abe, Takeru; Hagihara, Akihito; Yokomizo, Takehiko; Furue, Masutaka

    2016-01-01

    CD10 has been widely used in cancer diagnosis. We previously demonstrated that its expression in melanoma increased with tumor progression and predicted poor patient survival. However, the mechanism by which CD10 promotes melanoma progression remains unclear. In order to elucidate the role of CD10 in melanoma, we established CD10-overexpressing A375 melanoma cells and performed DNA microarray and qRT-PCR analyses to identify changes in the gene expression profile. The microarray analysis revealed that up-regulated genes in CD10-A375 were mostly involved in cell proliferation, angiogenesis, and resistance to apoptosis; down-regulated genes mostly belonged to the categories associated with cell adhesion and migration. Accordingly, in functional experiments, CD10-A375 showed significantly greater cell proliferation in vitro and higher tumorigenicity in vivo; CD10 enzymatic inhibitors, thiorphan and phosphoramidon, significantly blocked the tumor growth of CD10-A375 in mice. In migration and invasion assays, CD10-A375 displayed lower migratory and invasive capacity than mock-A375. CD10 augmented melanoma cell resistance to apoptosis mediated by etoposide and gemcitabine. These findings indicate that CD10 may promote tumor progression by regulating the expression profiles of genes related to cell proliferation, angiogenesis, and resistance to apoptosis. PMID:26881775

  16. CD10-Equipped Melanoma Cells Acquire Highly Potent Tumorigenic Activity: A Plausible Explanation of Their Significance for a Poor Prognosis

    PubMed Central

    Hashimoto-Hachiya, Akiko; Liu, Min; Abe, Takeru; Hagihara, Akihito; Yokomizo, Takehiko; Furue, Masutaka

    2016-01-01

    CD10 has been widely used in cancer diagnosis. We previously demonstrated that its expression in melanoma increased with tumor progression and predicted poor patient survival. However, the mechanism by which CD10 promotes melanoma progression remains unclear. In order to elucidate the role of CD10 in melanoma, we established CD10-overexpressing A375 melanoma cells and performed DNA microarray and qRT–PCR analyses to identify changes in the gene expression profile. The microarray analysis revealed that up-regulated genes in CD10-A375 were mostly involved in cell proliferation, angiogenesis, and resistance to apoptosis; down-regulated genes mostly belonged to the categories associated with cell adhesion and migration. Accordingly, in functional experiments, CD10-A375 showed significantly greater cell proliferation in vitro and higher tumorigenicity in vivo; CD10 enzymatic inhibitors, thiorphan and phosphoramidon, significantly blocked the tumor growth of CD10-A375 in mice. In migration and invasion assays, CD10-A375 displayed lower migratory and invasive capacity than mock-A375. CD10 augmented melanoma cell resistance to apoptosis mediated by etoposide and gemcitabine. These findings indicate that CD10 may promote tumor progression by regulating the expression profiles of genes related to cell proliferation, angiogenesis, and resistance to apoptosis. PMID:26881775

  17. miRNA-205 Suppresses Melanoma Cell Proliferation and Induces Senescence via Regulation of E2F1 Protein*

    PubMed Central

    Dar, Altaf A.; Majid, Shahana; de Semir, David; Nosrati, Mehdi; Bezrookove, Vladimir; Kashani-Sabet, Mohammed

    2011-01-01

    MicroRNAs (miRNAs) regulate gene expression by repressing translation or directing sequence-specific degradation of complementary mRNA. Here, we report that expression of miR-205 is significantly suppressed in melanoma specimens when compared with nevi and is correlated inversely with melanoma progression. miRNA target databases predicted E2F1 and E2F5 as putative targets. The expression levels of E2F1 and E2F5 were correlated inversely with that of miR-205 in melanoma cell lines. miR-205 significantly suppressed the luciferase activity of reporter plasmids containing the 3′-UTR sequences complementary to either E2F1 or E2F5. Overexpression of miR-205 in melanoma cells reduced E2F1 and E2F5 protein levels. The proliferative capacity of melanoma cells was suppressed by miR-205 and mediated by E2F-regulated AKT phosphorylation. miR-205 overexpression resulted in induction of apoptosis, as evidenced by increased cleaved caspase-3, poly-(ADP-ribose) polymerase, and cytochrome c release. Stable overexpression of miR-205 suppressed melanoma cell proliferation, colony formation, and tumor cell growth in vivo and induced a senescence phenotype accompanied by elevated expression of p16INK4A and other markers for senescence. E2F1 overexpression in miR-205-expressing cells partially reversed the effects on melanoma cell growth and senescence. These results demonstrate a novel role for miR-205 as a tumor suppressor in melanoma. PMID:21454583

  18. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment.

    PubMed

    Sustarsic, Elahu G; Junnila, Riia K; Kopchick, John J

    2013-11-01

    Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute's NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on this data, GH could be a new therapeutic target in melanoma. PMID:24134847

  19. Intravital Microscopy for Identifying Tumor Vessels in Patients With Stage IA-IV Melanoma That is Being Removed by Surgery

    ClinicalTrials.gov

    2016-01-13

    Recurrent Melanoma; Stage IA Skin Melanoma; Stage IB Skin Melanoma; Stage IIA Skin Melanoma; Stage IIB Skin Melanoma; Stage IIC Skin Melanoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Skin Melanoma

  20. In vivo anti-melanoma efficacy of allo-restricted CTLs specific for melanoma expanded by artificial antigen-presenting cells.

    PubMed

    Lu, Xiao-ling; Jiang, Xiao-bing; Liu, Ru-en; Zhang, Sheng-min; Liang, Z-h

    2009-04-01

    Cytotoxic CD8(+) T cells are key effectors in the immunotherapy of malignant and viral diseases. However, autologous T cell responses to tumor antigens presented by self-MHC are usually weak and ineffective. Allo-restricted T cells represent a potent source of tumor-specific T cells for adoptive immunotherapy. This study reports in vivo anti-melanoma efficacy of the pTRP2-specific allo-restricted CTLs expanded from the BALB/c splenocytes by multiple stimulations with aAPCs made by coating H-2K(b)-Ig/pTRP2 dimeric complexes, anti-CD28 antibody, 4-1BBL molecules and CD83 molecules to cell-sized latex beads. The induced allo-restricted CTLs exhibited specific lysis against RMA-S cells pulsed with the peptide pTRP2 and H-2K(b+) melanoma cells expressing TRP2, while a murine Lewis lung carcinoma cell line 3LL could not be recognized by the CTLs. The peptide-specific activity was inhibited by anti-H-2K(b) monoclonal antibody Y3. Adoptive transfer of the allo-restricted CTLs specific for malignant melanoma expanded by the aAPCs can mediate effective anti-melanoma response in vivo. These results suggested that the specific allo-restricted CTLs expanded by aAPCs coated with an MHC-Ig/peptide complex, anti-CD28 antibody, 4-1BBL and CD83 could be a potential option of specific immunotherapy for patients with malignant melanoma. PMID:18682943

  1. Targeting melanocyte and melanoma stem cells by 8-hydroxy-2-dipropylaminotetralin.

    PubMed

    Bonchak, Jonathan G; Eby, Jonathan M; Willenborg, Kristin A; Chrobak, David; Henning, Steven W; Krzywiec, Anna; Johnson, Steven L; Le Poole, I Caroline

    2014-12-01

    Monobenzyl ether of hydroquinone (MBEH) is cytotoxic towards melanocytes. Its treatment efficacy is limited by an inability to eradicate stem cells. By contrast, 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-DPAT) affects melanocyte stem cell survival. MBEH and 8-DPAT were added to melanocytes and melanoma cells to compare cytotoxicity. Stem cell content among viable cells was determined by fluorocytometry using markers CD34, Pax3, and CD271. Immunostaining was used to identify stem cells in skin explants treated with MBEH or 8-DPAT ex vivo. Mice were exposed to MBEH or 8-DPAT and scanned for depigmentation before harvesting skin. MBEH exposure prompted a relative increase in stem cells among cultured melanocytes and melanoma cells, as treatment preferentially eliminated differentiated cells and spared the stem cells. Viability of this remaining, enriched stem cell population was however rapidly reduced by exposure to 8-DPAT within melanocyte and melanoma cell cultures. In human skin explants, the abundance of melanocyte stem cells was also visibly reduced after 8-DPAT treatment, in contrast to tissue exposed to MBEH. Meanwhile, significant depigmentation of the mouse pelage and loss of differentiated melanocytes was observed in vivo in response to topical application of MBEH, but not 8-DPAT. Prolonged application of the latter agent instead appeared to effectively reduce the abundance of melanocyte stem cells in the dermis. This furthers the idea that MBEH and 8-DPAT target complementary cell populations. Results indicate that combination treatment may demonstrate superior therapeutic activity by eliminating both differentiated and tumor initiating populations.

  2. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo

    PubMed Central

    Sheen, Joon-Ho; Zoncu, Roberto; Kim, Dohoon; Sabatini, David M.

    2011-01-01

    SUMMARY Autophagy is of increasing interest as a target for cancer therapy. We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy. Hyperactivation of the RAS-MEK pathway, which is common in melanoma, prevents leucine deprivation from inhibiting mTORC1, the main repressor of autophagy under nutrient-rich conditions. In an in vivo tumor xenograft model, the combination of a leucine-free diet and an autophagy inhibitor synergistically suppresses the growth of human melanoma tumors and triggers widespread apoptosis of the cancer cells. Together, our study represents proof of principle that anti-cancer effects can be obtained with a combination of autophagy inhibition and strategies to deprive tumors of leucine. PMID:21575862

  3. A Subset of Nuclear Receptors are Uniquely Expressed in Uveal Melanoma Cells

    PubMed Central

    Huffman, Kenneth Edward; Carstens, Ryan; Martinez, Elisabeth D.

    2015-01-01

    Uveal melanoma (UM) is recognized as the most common intraocular malignancy and the second most common form of melanoma. Nearly 50% of UM patients develop untreatable and fatal metastases. The 48-member nuclear receptor (NR) superfamily represents a therapeutically targetable group of transcription factors known for their regulation of key cancer pathways in numerous tumor types. Here, we profiled the expression of the 48 human NRs by qRT-PCR across a melanoma cell line panel including 5 UM lines, 9 cutaneous melanoma (CM) lines, and normal primary melanocytes. NR expression patterns identified a few key features. First, in agreement with our past studies identifying RXRg as a CM-specific marker, we found that UM cells also exhibit high levels of RXRg expression, making it a universal biomarker for melanoma tumors. Second, we found that LXRb is highly expressed in both UM and CM lines, suggesting that it may be a therapeutic target in a UM metastatic setting as it has been in CM models. Third, we found that RARg, PPARd, EAR2, RXRa, and TRa expressions could subdivide UM from CM. Previous studies of UM cancers identified key mutations in three genes: GNAQ, GNA11, and BRAF. We found unique NR expression profiles associated with each of these UM mutations. We then performed NR-to-NR and NR-to-genome expression correlation analyses to find potential NR-driven transcriptional programs activated in UM and CM. Specifically, RXRg controlled gene networks were identified that may drive melanoma-specific signaling and metabolism. ERRa was identified as a UM-defining NR and genes correlated with its expression confirm the role of ERRa in metabolic control. Given the plethora of available NR agonists, antagonists, and selective receptor modulators, pharmacologic manipulation of these NRs and their transcriptional outputs may lead to a more comprehensive understanding of key UM pathways and how we can leverage them for better therapeutic alternatives. PMID:26217306

  4. Different immunology mechanisms of Phellinus igniarius in inhibiting growth of liver cancer and melanoma cells.

    PubMed

    Zhou, Cui; Jiang, Song-Song; Wang, Cui-Yan; Li, Rong; Che, Hui-Lian

    2014-01-01

    To assess inhibition mechanisms of a Phellinus igniarius (PI) extract on cancer, C57BL/6 mice were orally treated with PI extractive after or before implanting H22 (hepatocellular carcinoma ) or B16 (melanoma) cells. Mice were orally gavaged with different doses of PI for 36 days 24h after introduction of H22 or B16 cells. Mice in another group were orally treated as above daily for 42 days and implanted with H22 cells on day 7. Then the T lymphocyte, antibody, cytokine, LAK, NK cell activity in spleen, tumor cell apoptosis status and tumor inhibition in related organs, as well as the expression of iNOS and PCNA in tumor tissue were examined. The PI extract could improve animal immunity as well as inhibit cancer cell growth and metastasis with a dose-response relationship. Notably, PI's regulation with the two kinds of tumor appeared to occur in different ways, since the antibody profile and tumor metastasis demonstrated variation between animals implanted with hepatocellular carcinoma and melanoma cells. PMID:24870774

  5. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    SciTech Connect

    Sustarsic, Elahu G.; Junnila, Riia K.; Kopchick, John J.

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  6. Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T Cell Transfer Immunotherapy

    PubMed Central

    Rosenberg, Steven A.; Yang, James C.; Sherry, Richard M.; Kammula, Udai S.; Hughes, Marybeth S.; Phan, Giao Q.; Citrin, Deborah E.; Restifo, Nicholas P.; Robbins, Paul F.; Wunderlich, John R.; Morton, Kathleen E.; Laurencot, Carolyn M.; Steinberg, Seth M.; White, Donald E.; Dudley, Mark E.

    2011-01-01

    Purpose Most treatments for patients with metastatic melanoma have a low rate of complete regression and thus overall survival in these patients is poor. We have investigated the ability of adoptive cell transfer utilizing autologous, tumor infiltrating lymphocytes to mediate durable complete regressions in heavily pre-treated patients with metastatic melanoma. Experimental Design Ninety-three patients with measurable metastatic melanoma were treated with the adoptive transfer of autologous tumor-infiltrating lymphocytes administered in conjunction with interleukin-2 following a lymphodepleting preparative regimen on three sequential clinical trials. Ninety-five percent of these patients had progressive disease following a prior systemic treatment. Median potential followup was 62 months. Results Objective response rates by RECIST criteria in the three trials using lymphodepleting preparative regimens (chemotherapy alone or with 2Gy or 12Gy irradiation) were 49%, 52% and 72%. Twenty of the 93 patients (22%) achieved a complete tumor regression and 19 have ongoing complete regressions beyond three years The actuarial three and five year survivals for the entire group were 36% and 29% respectively but for the 20 complete responders were 100% and 93%. The likelihood of achieving a complete response was similar regardless of prior therapy. Factors associated with objective response included longer telomeres of the infused cells, the number of CD8+ CD27+ cells infused and the persistence of the infused cells in the circulation at one month (all p2<0.001). Conclusions Cell transfer therapy with autologous tumor infiltrating can mediate durable complete responses in patients with metastatic melanoma and has similar efficacy irrespective of prior treatment. PMID:21498393

  7. Long noncoding RNA MALAT1 promotes uveal melanoma cell growth and invasion by silencing of miR-140

    PubMed Central

    Sun, Lei; Sun, Peng; Zhou, Qi-ying; Gao, Xiangchun; Han, Qing

    2016-01-01

    Increasing evidences have demonstrated that long noncoding RNAs (LncRNAs) play a significant role in the development of tumor. However, the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in uveal melanoma remains unknown. In this study, we demonstrated that the expression of MALAT1 was upregulated in the uveal melanoma tissues compared to normal tissues. Among them, MALAT1 was upregulated in 72% (18/25) uveal melanoma tissues compared to their paired normal tissues. Knockdown of MALAT1 suppressed uveal melanoma cell proliferation, colony information, invasion and migration. Moreover, we showed that knockdown of MALAT1 promoted miR-140 expression and suppressed Slug and ADAM10 expression in the MUM-2C cell. In addition, we demonstrated that miR-140 was downregulated in the uveal melanoma tissues compared to normal tissues and cell lines. The expression level of MALAT1 was inversely correlated with the expression level of miR-140 in uveal melanoma tissues. These results suggested that MALAT1 served as an oncogenic LncRNA in the development of uveal melanoma. PMID:27725873

  8. Primary malignant melanoma

    PubMed Central

    Mısır, A. Ferhat; Durmuşlar, Mustafa C.; Zerener, Tamer; Gün, Banu D.

    2016-01-01

    Malignant melanomas (MM) of the oral cavity are extremely rare, accounting for 0.2% to 8.0% of all malignant melanomas. Malignant melanomas is more frequently seen at the level of the hard palate and gingiva. Early diagnosis and treatment are important for reducing morbidity. Malignant melanoma cells stain positively with antibodies to human melanoma black 45, S-100 protein, and vimentin; therefore, immunohistochemistry can play an important role in evaluating the depth of invasion and the location of metastases. A 76-year-old man developed an oral malignant melanoma, which was originally diagnosed as a bluish reactive denture hyperplasia caused by an ill-fitting lower denture. The tumor was removed surgically, and histopathological examination revealed a nodular-type MM. There was no evidence of recurrence over a 4-year follow-up period. PMID:27052289

  9. St John's Wort (Hypericum perforatum L.) Photomedicine: Hypericin-Photodynamic Therapy Induces Metastatic Melanoma Cell Death

    PubMed Central

    Kleemann, Britta; Loos, Benjamin; Scriba, Thomas J.; Lang, Dirk; Davids, Lester M.

    2014-01-01

    Hypericin, an extract from St John's Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT

  10. St John's Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death.

    PubMed

    Kleemann, Britta; Loos, Benjamin; Scriba, Thomas J; Lang, Dirk; Davids, Lester M

    2014-01-01

    Hypericin, an extract from St John's Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT

  11. Circulating tumor cell detection using photoacoustic spectral methods

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2014-03-01

    A method to detect and differentiate circulating melanoma tumor cells (CTCs) from blood cells using ultrasound and photoacoustic signals with frequencies over 100 MHz is presented. At these frequencies, the acoustic wavelength is similar to the dimensions of a cell, which results in unique features in the signal; periodically varying minima and maxima occur throughout the power spectrum. The spacing between minima depends on the ratio of the size to sound speed of the cell. Using a 532 nm pulsed laser and a 375 MHz center frequency wide-bandwidth transducer, the ultrasound and photoacoustic signals were measured from single cells. A total of 80 cells were measured, 20 melanoma cells, 20 white blood cells (WBCs) and 40 red blood cells (RBCs). The photoacoustic spectral spacing Δf between minima was 95 +/- 15 MHz for melanoma cells and greater than 230 MHz for RBCs. No photoacoustic signal was detected from WBCs. The ultrasonic spectral spacing between minima was 46 +/- 9 MHz for melanoma cells and 98 +/- 11 for WBCs. Both photoacoustic and ultrasound signals were detected from melanoma cells, while only ultrasound signals were detected from WBCs. RBCs showed distinct photoacoustic spectral variations in comparison to any other type of cell. Using the spectral spacing and signal amplitudes, each cell type could be grouped together to aid in cell identification. This method could be used for label-free counting and classifying cells in a sample.

  12. The effect of divalent cations on Cloudman melanoma cells.

    PubMed

    Borovanský, J; Riley, P A

    1983-01-01

    The effect of Ca2+, Cd2+, Cu2+, Mg2+ and Zn2+ as acetates (10(-3) - 10(-5)M) and of 2% DMSO on the proliferation and differentiation of clone M3 of the Cloudman S91 mouse melanoma was studied and compared with the behaviour of GPK (keratocyte) and MRC5 (fibroblast) cell lines. Whereas neither calcium nor magnesium ions influenced the proliferation of the cells as measured by [3H]-thymidine incorporation, absorbance at 280 nm of NaOH cell digests and cell counts, cadmium, zinc and copper ions selectively inhibited the melanoma line. Cd2+ (10(-5)M) and Zn2+ (10(-4)M) were selectively cytotoxic to melanoma cells in contrast to keratocytes and fibroblasts. No direct effect of the cations on melanogenesis, as estimated from the ratio of absorbance at 350 nm and 280 nm and by tyrosinase assays, was demonstrated. DMSO stimulated melanogenesis in melanoma cells but inhibited their growth. Experiments with ouabain indicate that active transport is involved in the uptake of zinc by melanoma cells. PMID:6682780

  13. Fluorescence in situ hybridization testing of chromosomes 6, 8, 9 and 11 in melanocytic tumors is difficult to automate and reveals tumor heterogeneity in melanomas

    PubMed Central

    Uguen, Arnaud; Uguen, Marie; Talagas, Matthieu; Gobin, Eric; Marcorelles, Pascale; De Braekeleer, Marc

    2016-01-01

    Malignant melanomas may be difficult to differentiate from benign nevi on the basis of histology. Contrary to nevi, the majority of melanomas harbor chromosomal imbalances. Comparative genomic hybridization-based and fluorescence in situ hybridization (FISH) tests can help differentiating malignant from benign tumors. In the present study, eight-bacterial artificial chromosome (BAC) probes targeting chromosomes 6, 8, 9 and 11 were tested by FISH, and compared with a commercial four-color FISH probe set targeting chromosomes 6 and 11 in a first set of 62 tissue microarray-included melanocytic tumors (47 melanomas and 15 nevi). A second set of 108 tumors (70 melanomas and 38 nevi) was analyzed with the eight-probes kit, and manual counting was compared with the newly developed automated FISH signals counting and with semi-quantitative visual detection of chromosomal imbalances. Intra-tumor heterogeneity was also evaluated in 12 melanomas and 10 patients with paired melanoma samples. Testing the tumors from the first set with the commercial kit and the eight-probes test permitted to correctly identify 45/47 and 47/47 melanomas, respectively. In the second tumor set, 65/70 malignant tumors presented at least one chromosomal imbalance, whereas none was detected in the nevi. The agreement between manual and automated signals counting was better in good-quality FISH slides compared with poor-quality slides. Semi-quantitative visual appreciation of chromosomal imbalances also reached strong agreement with exact manual counting. In addition, a frequent cytogenetic heterogeneity within melanomas and between paired tumors was noticed in patients with metastatic melanomas. To conclude, FISH testing targeting chromosomes 6, 8, 9 and 11 enabled to differentiate the majority of melanomas from nevi but was difficult to automate. Tumor cytogenetic heterogeneity was frequent and could impair FISH testing. PMID:27698849

  14. Fluorescence in situ hybridization testing of chromosomes 6, 8, 9 and 11 in melanocytic tumors is difficult to automate and reveals tumor heterogeneity in melanomas

    PubMed Central

    Uguen, Arnaud; Uguen, Marie; Talagas, Matthieu; Gobin, Eric; Marcorelles, Pascale; De Braekeleer, Marc

    2016-01-01

    Malignant melanomas may be difficult to differentiate from benign nevi on the basis of histology. Contrary to nevi, the majority of melanomas harbor chromosomal imbalances. Comparative genomic hybridization-based and fluorescence in situ hybridization (FISH) tests can help differentiating malignant from benign tumors. In the present study, eight-bacterial artificial chromosome (BAC) probes targeting chromosomes 6, 8, 9 and 11 were tested by FISH, and compared with a commercial four-color FISH probe set targeting chromosomes 6 and 11 in a first set of 62 tissue microarray-included melanocytic tumors (47 melanomas and 15 nevi). A second set of 108 tumors (70 melanomas and 38 nevi) was analyzed with the eight-probes kit, and manual counting was compared with the newly developed automated FISH signals counting and with semi-quantitative visual detection of chromosomal imbalances. Intra-tumor heterogeneity was also evaluated in 12 melanomas and 10 patients with paired melanoma samples. Testing the tumors from the first set with the commercial kit and the eight-probes test permitted to correctly identify 45/47 and 47/47 melanomas, respectively. In the second tumor set, 65/70 malignant tumors presented at least one chromosomal imbalance, whereas none was detected in the nevi. The agreement between manual and automated signals counting was better in good-quality FISH slides compared with poor-quality slides. Semi-quantitative visual appreciation of chromosomal imbalances also reached strong agreement with exact manual counting. In addition, a frequent cytogenetic heterogeneity within melanomas and between paired tumors was noticed in patients with metastatic melanomas. To conclude, FISH testing targeting chromosomes 6, 8, 9 and 11 enabled to differentiate the majority of melanomas from nevi but was difficult to automate. Tumor cytogenetic heterogeneity was frequent and could impair FISH testing.

  15. Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    PubMed Central

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.

    2010-01-01

    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533

  16. Effect of adipose-derived stem cell-conditioned medium on the proliferation and migration of B16 melanoma cells

    PubMed Central

    LEE, JU-HEE; PARK, CHUL HONG; CHUN, KWANG-HOON; HONG, SOON-SUN

    2015-01-01

    Adipose-derived stem cells (ASCs) are a population of cells derived from adipose tissue. ASCs exhibit multilineage development potential and are able to secrete various factors, which influence adjacent cells. Previous studies have reported the effectiveness of ASC-conditioned medium (ASC-CM) in wound healing, anti-melanogenesis, wrinkle improvement and hair growth. In the present study, the anticancer function of ASC-CM was investigated in vitro and in vivo. An MTT assay revealed that ASC-CM significantly decreased the proliferation of B16 melanoma cells in a time- and dose-dependent manner (P<0.01). Cell cycle analysis indicated that ASC-CM significantly increased the number of cells in G1 phase while reducing the number of cells in the S and G2/M phases (P<0.01). Furthermore, a wound migration model demonstrated that ASC-CM treatment significantly decreased the migration ability of B16 melanoma cells (P<0.01). In addition, C57BL/6 mice were administered with a single intratumoral injection of ASC-CM, daily or every other day, and a significant reduction in the volume of the tumor mass was observed compared with that of the control group (P<0.01). Thus, the findings of the present study indicated that ASC-CM has an anti-tumorigenic effect on B16 melanoma cells in vitro and in vivo, and may potentially be used to support the treatment of melanoma in the future. PMID:26622561

  17. M2/M1 ratio of tumor associated macrophages and PPAR-gamma expression in uveal melanomas with class 1 and class 2 molecular profiles.

    PubMed

    Herwig, Martina C; Bergstrom, Chris; Wells, Jill R; Höller, Tobias; Grossniklaus, Hans E

    2013-02-01

    macrophages was higher in tumors with extraocular extension (p = 0.01). PPAR-gamma was predominantly expressed in the cytoplasm of tumor cells. Its expression showed no association with the molecular RNA profile (p = 0.83). This study confirmed that the ratio of M2/M1 macrophages is another prognostic factor in uveal melanoma. Thus, polarization of macrophages plays an important role for patients' outcome. PPAR-gamma is expressed in uveal melanoma tumor cells and further studies are warranted to determine its role in tumor biology. PMID:23206928

  18. Nuclear stiffening inhibits migration of invasive melanoma cells

    PubMed Central

    Ribeiro, Alexandre J.S.; Khanna, Payal; Sukumar, Aishwarya; Dong, Cheng; Dahl, Kris Noel

    2014-01-01

    During metastasis, melanoma cells must be sufficiently deformable to squeeze through extracellular barriers with small pore sizes. We visualize and quantify deformability of single cells using micropipette aspiration and examine the migration potential of a population of melanoma cells using a flow migration apparatus. We artificially stiffen the nucleus with recombinant overexpression of Δ50 lamin A, which is found in patients with Hutchison Gilford progeria syndrome and in aged individuals. Melanoma cells, both WM35 and Lu1205, both show reduced nuclear deformability and reduced cell invasion with the expression of Δ50 lamin A. These studies suggest that cellular aging including expression of Δ50 lamin A and nuclear stiffening may reduce the potential for metastatic cancer migration. Thus, the pathway of cancer metastasis may be kept in check by mechanical factors in addition to known chemical pathway regulation. PMID:25544862

  19. Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells.

    PubMed

    Perdicchio, Maurizio; Cornelissen, Lenneke A M; Streng-Ouwehand, Ingeborg; Engels, Steef; Verstege, Marleen I; Boon, Louis; Geerts, Dirk; van Kooyk, Yvette; Unger, Wendy W J

    2016-02-23

    The increased presence of sialylated glycans on the tumor surface has been linked to poor prognosis, yet the effects on tumor-specific T cell immunity are hardly studied. We here show that hypersialylation of B16 melanoma substantially influences tumor growth by preventing the formation of effector T cells and facilitating the presence of high regulatory T cell (Treg) frequencies. Knock-down of the sialic acid transporter created "sialic acid low" tumors, that grew slower in-vivo than hypersialylated tumors, altered the Treg/Teffector balance, favoring immunological tumor control. The enhanced effector T cell response in developing "sialic acid low" tumors was preceded by and dependent on an increased influx and activity of Natural Killer (NK) cells. Thus, tumor hypersialylation orchestrates immune escape at the level of NK and Teff/Treg balance within the tumor microenvironment, herewith dampening tumor-specific T cell control. Reducing sialylation provides a therapeutic option to render tumors permissive to immune attack. PMID:26741508

  20. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice.

    PubMed

    Wang, Zili; Celis, Esteban

    2015-08-01

    Therapeutic vaccines to induce anti-tumor CD8 T cells have been used in clinical trials for advanced melanoma patients, but the clinical response rate and overall survival time have not improved much. We believe that these dismal outcomes are caused by inadequate number of antigen-specific CD8 T cells generated by most vaccines. In contrast, huge CD8 T cell responses readily occur during acute viral infections. High levels of type-I interferon (IFN-I) are produced during these infections, and this cytokine not only exhibits anti-viral activity but also promotes CD8 T cell responses. The studies described here were performed to determine whether promoting the production of IFN-I could enhance the potency of a peptide vaccine. We report that cyclic diguanylate monophosphate (c-di-GMP), which activates the stimulator of interferon genes, potentiated the immunogenicity and anti-tumor effects of a peptide vaccine against mouse B16 melanoma. The synergistic effects of c-di-GMP required co-administration of costimulatory anti-CD40 antibody, the adjuvant poly-IC, and were mediated in part by IFN-I. These findings demonstrate that peptides representing CD8 T cell epitopes can be effective inducers of large CD8 T cell responses in vaccination strategies that mimic acute viral infections.

  1. 6-Bromoindirubin-3'oxime (BIO) decreases proliferation and migration of canine melanoma cell lines.

    PubMed

    Chon, Esther; Flanagan, Brandi; de Sá Rodrigues, Lucas Campos; Piskun, Caroline; Stein, Timothy J

    2015-08-01

    Despite recent therapeutic advances, malignant melanoma is an aggressive tumor in dogs and is associated with a poor outcome. Novel, targeted agents are necessary to improve survival. In this study, 6-bromoindirubin-3'-oxime (BIO), a serine/threonine kinase inhibitor with reported specificity for glycogen synthase kinase-3 beta (GSK-3β) inhibition, was evaluated in vitro in three canine melanoma cell lines (CML-10C2, UCDK9M2, and UCDK9M3) for β-catenin-mediated transcriptional activity, Axin2 gene and protein expression levels, cell proliferation, chemotoxicity, migration and invasion assays. BIO treatment of canine malignant melanoma cell lines at 5 µM for 72 h enhanced β-catenin-mediated transcriptional activity, suggesting GSK-3β inhibition, and reduced cell proliferation and migration. There were no significant effects on invasion, chemotoxicity, or apoptosis. The results suggest that serine/threonine kinases may be viable therapeutic targets for the treatment of canine malignant melanoma.

  2. Vemurafenib enhances MHC induction in BRAFV600E homozygous melanoma cells

    PubMed Central

    Sapkota, Bishu; Hill, Charles E.; Pollack, Brian P.

    2013-01-01

    To optimally integrate targeted kinase inhibitors and immunotherapies in the treatment of melanoma, it will be critical to understand how BRAFV600E mutational status and BRAFV600E inhibition influence the expression of genes that govern antitumor immune responses. Because major histocompatibility complex (MHC) molecules are critical for interactions between tumor cells and lymphocytes, we investigated the impact of BRAFV600E-selective inhibitors on the expression of MHC molecules. We found that the treatment of A375 melanoma cells with vemurafenib enhances the induction of MHC Class I and Class II molecules by interferon γ and IFNα2b. Consistent with these findings, we observed that the forced overexpression of BRAFV600E has the opposite effect and can repress the baseline expression of MHC Class I molecules in A375 cells. Further studies utilizing eight other melanoma cell lines revealed that the vemurafenib-mediated enhancement of MHC induction by IFNγ only occurs in the context of homozygous, but not heterozygous, BRAFV600E mutation. These findings suggest that BRAFV600Eactivity directly influences the expression of MHC molecules and the response to Type I and Type II IFNs. Furthermore, our data suggest that the effect of vemurafenib on the expression of immune system-relevant genes may depend on the zygosity of the BRAFV600E mutation, which is not routinely assessed in melanoma patients. PMID:23483066

  3. 6-Bromoindirubin-3′oxime (BIO) decreases proliferation and migration of canine melanoma cell lines

    PubMed Central

    Chon, Esther; Flanagan, Brandi; de Sá Rodrigues, Lucas Campos; Piskun, Caroline; Stein, Timothy J.

    2014-01-01

    Despite recent therapeutic advances, malignant melanoma is an aggressive tumor in dogs and is associated with a poor outcome. Novel, targeted agents are necessary to improve survival. In this study, 6-bromoindirubin-3′-oxime (BIO), a serine/threonine kinase inhibitor with reported specificity for glycogen synthase kinase-3 beta (GSK-3β) inhibition, was evaluated in vitro in three canine melanoma cell lines (CML-10C2, UCDK9M2, and UCDK9M3) for β-catenin-mediated transcriptional activity, Axin2 gene and protein expression levels, cell proliferation, chemotoxicity, migration and invasion assays. BIO treatment of canine malignant melanoma cell lines at 5 µM for 72 h enhanced β-catenin-mediated transcriptional activity, suggesting GSK-3β inhibition, and reduced cell proliferation and migration. There were no significant effects on invasion, chemotoxicity, or apoptosis. The results suggest that serine/ threonine kinases may be viable therapeutic targets for the treatment of canine malignant melanoma. PMID:25130776

  4. Assaying Wnt5A-mediated invasion in melanoma cells.

    PubMed

    O'Connell, Michael P; French, Amanda D; Leotlela, Poloko D; Weeraratna, Ashani T

    2008-01-01

    Wnt5A has been implicated in melanoma metastasis, and the progression of other cancers including pancreatic, gastric, prostate, and lung cancers. Assays to test motility and invasion include both in vivo assays and in vitro assays. The in vivo assays include the use of tail vein or footpad injections of metastatic cells, and are often laborious and expensive. In vitro invasion assays provide quick readouts that can help to establish conditions that either activate or inhibit melanoma cell motility, and to assess whether the conditions in question are worth translating into an in vivo model. Here we describe two standard methods for assaying motility and invasion in vitro including wound healing assays and Matrigel invasion assays (Boyden chamber assays). In addition, we and several other laboratories have previously shown that melanoma cells require matrix metalloproteinase (MMP)-2 for their invasion, and have recently shown that Wnt5A treatment can increase the levels of this enzyme in melanoma cells, as demonstrated by gelatin zymography. The use of these techniques can help to assess the migratory capacity of melanoma cells in response to Wnt treatment.

  5. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    SciTech Connect

    Ryu, Min Sook; Woo, Min-Yeong; Kwon, Daeho; Hong, Allen E.; Song, Kye Yong; Park, Sun; Lim, In Kyoung

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  6. Tumor cell metabolism

    PubMed Central

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; B´ez-Viveros, José Luis; Aguilar-Cazares, Dolores

    2011-01-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism. PMID:22057267

  7. Improvement of the tumor-suppressive effect of boron neutron capture therapy for amelanotic melanoma by intratumoral injection of the tyrosinase gene.

    PubMed

    Morita, Norimasa; Hiratsuka, Junichi; Kondoh, Hirohumi; Uno, Masako; Asano, Tomoyuki; Niki, Yoko; Sakurai, Yoshinori; Ono, Koji; Harada, Tamotsu; Imajo, Yoshinari

    2006-04-01

    Boron neutron capture therapy (BNCT) is successful when there is a sufficient (10)B concentration in tumor cells. In melanoma, (10)B-para-boronophenylalanine (BPA) accumulation is proportional to melanin-producing activity. This study was done to confirm enhancement of the tumor-suppressive effect of BNCT on amelanotic melanoma by intratumoral injection of the tyrosinase gene. D178 or FF amelanotic melanomas were implanted s.c. in Syrian hamsters. One group of D178- or FF-bearing hamsters (TD178 or TFF group) received intratumoral injections of pcDNA-Tyrs constructed as a tyrosinase expression plasmid. The other hamsters (pD178 and pFF groups) were injected with pUC119, and control hamsters (D178 and FF groups) only with transfection reagents. All the groups underwent immunofluorescence analysis of tyrosinase expression and BPA biodistribution studies. BNCT experiments were done at the Kyoto University Research Reactor. Tyrosinase expression increased in the tumors of the TD178 and TFF groups but remained the same in the pD178 and pFF groups. Tumor boron concentrations in the TD178 and TFF groups increased significantly (TD178: 49.7 +/- 12.6 versus D178: 27.2 +/- 4.9 microg/g, P < 0.0001; TFF: 30.7 +/- 6.6 versus FF: 13.0 +/- 4.7 microg/g, P < 0.0001). The BNCT tumor-suppressive effect was marked in the TD178 and TFF groups. In vivo transfection with the tyrosinase gene increased BPA accumulation in the tumors, the BNCT tumor-suppressive effect on amelanotic melanoma being significantly enhanced. These findings suggest a potential new clinical strategy for the treatment of amelanotic melanoma with BNCT.

  8. Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme

    PubMed Central

    Laurenzana, Anna; Biagioni, Alessio; D'Alessio, Silvia; Bianchini, Francesca; Chillà, Anastasia; Margheri, Francesca; Luciani, Cristina; Mazzanti, Benedetta; Pimpinelli, Nicola; Torre, Eugenio; Danese, Silvio; Calorini, Lido; Rosso, Mario Del; Fibbi, Gabriella

    2014-01-01

    The receptor for the urokinase-type plasminogen activator (uPAR) accounts for many features of cancer progression, and is therefore considered a target for anti-tumoral therapy. Only full length uPAR mediates tumor progression. Matrix-metallo-proteinase-12 (MMP12)-dependent uPAR cleavage results into the loss of invasion properties and angiogenesis. MMP12 can be employed in the field of “targeted therapies” as a biological drug to be delivered directly in patient's tumor mass. Endothelial Progenitor Cells (EPCs) are selectively recruited within the tumor and could be used as cellular vehicles for delivering anti-cancer molecules. The aim of our study is to inhibit cancer progression by engeneering ECFCs, a subset of EPC, with a lentivirus encoding the anti-tumor uPAR-degrading enzyme MMP12. Ex vivo manipulated ECFCs lost the capacity to perform capillary morphogenesis and acquired the anti-tumor and anti-angiogenetic activity. In vivo MMP12-engineered ECFCs cleaved uPAR within the tumor mass and strongly inhibited tumor growth, tumor angiogenesis and development of lung metastasis. The possibility to exploit tumor homing and activity of autologous MMP12-engineered ECFCs represents a novel way to combat melanoma by a “personalized therapy”, without rejection risk. The i.v. injection of radiolabelled MMP12-ECFCs can thus provide a new theranostic approach to control melanoma progression and metastasis. PMID:25003596

  9. Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme.

    PubMed

    Laurenzana, Anna; Biagioni, Alessio; D'Alessio, Silvia; Bianchini, Francesca; Chillà, Anastasia; Margheri, Francesca; Luciani, Cristina; Mazzanti, Benedetta; Pimpinelli, Nicola; Torre, Eugenio; Danese, Silvio; Calorini, Lido; Del Rosso, Mario; Fibbi, Gabriella

    2014-06-15

    The receptor for the urokinase-type plasminogen activator (uPAR) accounts for many features of cancer progression, and is therefore considered a target for anti-tumoral therapy. Only full length uPAR mediates tumor progression. Matrix-metallo-proteinase-12 (MMP12)-dependent uPAR cleavage results into the loss of invasion properties and angiogenesis. MMP12 can be employed in the field of "targeted therapies" as a biological drug to be delivered directly in patient's tumor mass. Endothelial Progenitor Cells (EPCs) are selectively recruited within the tumor and could be used as cellular vehicles for delivering anti-cancer molecules. The aim of our study is to inhibit cancer progression by engeneering ECFCs, a subset of EPC, with a lentivirus encoding the anti-tumor uPAR-degrading enzyme MMP12. Ex vivo manipulated ECFCs lost the capacity to perform capillary morphogenesis and acquired the anti-tumor and anti-angiogenetic activity. In vivo MMP12-engineered ECFCs cleaved uPAR within the tumor mass and strongly inhibited tumor growth, tumor angiogenesis and development of lung metastasis. The possibility to exploit tumor homing and activity of autologous MMP12-engineered ECFCs represents a novel way to combat melanoma by a "personalized therapy", without rejection risk. The i.v. injection of radiolabelled MMP12-ECFCs can thus provide a new theranostic approach to control melanoma progression and metastasis. PMID:25003596

  10. Specifically targeting ERK1 or ERK2 kills Melanoma cells

    PubMed Central

    2012-01-01

    Background Overcoming the notorious apoptotic resistance of melanoma cells remains a therapeutic challenge given dismal survival of patients with metastatic melanoma. However, recent clinical trials using a BRAF inhibitor revealed encouraging results for patients with advanced BRAF mutant bearing melanoma, but drug resistance accompanied by recovery of phospho-ERK (pERK) activity present challenges for this approach. While ERK1 and ERK2 are similar in amino acid composition and are frequently not distinguished in clinical reports, the possibility they regulate distinct biological functions in melanoma is largely unexplored. Methods Rather than indirectly inhibiting pERK by targeting upstream kinases such as BRAF or MEK, we directly (and near completely) reduced ERK1 and ERK2 using short hairpin RNAs (shRNAs) to achieve sustained inhibition of pERK1 and/or pERK2. Results and discussion Using A375 melanoma cells containing activating BRAFV600E mutation, silencing ERK1 or ERK2 revealed some differences in their biological roles, but also shared roles by reduced cell proliferation, colony formation in soft agar and induced apoptosis. By contrast, chemical mediated inhibition of mutant BRAF (PLX4032) or MEK (PD0325901) triggered less killing of melanoma cells, although they did inhibit proliferation. Death of melanoma cells by silencing ERK1 and/or ERK2 was caspase dependent and accompanied by increased levels of Bak, Bad and Bim, with reduction in p-Bad and detection of activated Bax levels and loss of mitochondrial membrane permeability. Rare treatment resistant clones accompanied silencing of either ERK1 and/or ERK2. Unexpectedly, directly targeting ERK levels also led to reduction in upstream levels of BRAF, CRAF and pMEK, thereby reinforcing the importance of silencing ERK as regards killing and bypassing drug resistance. Conclusions Selectively knocking down ERK1 and/or ERK2 killed A375 melanoma cells and also increased the ability of PLX4032 to kill A375 cells

  11. A Well-Controlled Experimental System to Study Interactions of Cytotoxic T Lymphocytes with Tumor Cells

    PubMed Central

    Neubert, Natalie J.; Soneson, Charlotte; Barras, David; Baumgaertner, Petra; Rimoldi, Donata; Delorenzi, Mauro; Fuertes Marraco, Silvia A.; Speiser, Daniel E.

    2016-01-01

    While T cell-based immunotherapies are steadily improving, there are still many patients who progress, despite T cell-infiltrated tumors. Emerging evidence suggests that T cells themselves may provoke immune escape of cancer cells. Here, we describe a well-controlled co-culture system for studying the dynamic T cell – cancer cell interplay, using human melanoma as a model. We explain starting material, controls, and culture parameters to establish reproducible and comparable cultures with highly heterogeneous tumor cells. Low passage melanoma cell lines and melanoma-specific CD8+ T cell clones generated from patient blood were cultured together for up to 3 days. Living melanoma cells were isolated from the co-culture system by fluorescence-activated cell sorting. We demonstrate that the characterization of isolated melanoma cells is feasible using flow cytometry for protein expression analysis as well as an Agilent whole human genome microarray and the NanoString technology for differential gene expression analysis. In addition, we identify five genes (ALG12, GUSB, RPLP0, KRBA2, and ADAT2) that are stably expressed in melanoma cells independent of the presence of T cells or the T cell-derived cytokines IFNγ and TNFα. These genes are essential for correct normalization of gene expression data by NanoString. Further to the characterization of melanoma cells after exposure to CTLs, this experimental system might be suitable to answer a series of questions, including how the affinity of CTLs for their target antigen influences the melanoma cell response and whether CTL-induced gene expression changes in melanoma cells are reversible. Taken together, our human T cellmelanoma cell culture system is well suited to characterize immune-related mechanisms in cancer cells. PMID:27625650

  12. A Well-Controlled Experimental System to Study Interactions of Cytotoxic T Lymphocytes with Tumor Cells.

    PubMed

    Neubert, Natalie J; Soneson, Charlotte; Barras, David; Baumgaertner, Petra; Rimoldi, Donata; Delorenzi, Mauro; Fuertes Marraco, Silvia A; Speiser, Daniel E

    2016-01-01

    While T cell-based immunotherapies are steadily improving, there are still many patients who progress, despite T cell-infiltrated tumors. Emerging evidence suggests that T cells themselves may provoke immune escape of cancer cells. Here, we describe a well-controlled co-culture system for studying the dynamic T cell - cancer cell interplay, using human melanoma as a model. We explain starting material, controls, and culture parameters to establish reproducible and comparable cultures with highly heterogeneous tumor cells. Low passage melanoma cell lines and melanoma-specific CD8+ T cell clones generated from patient blood were cultured together for up to 3 days. Living melanoma cells were isolated from the co-culture system by fluorescence-activated cell sorting. We demonstrate that the characterization of isolated melanoma cells is feasible using flow cytometry for protein expression analysis as well as an Agilent whole human genome microarray and the NanoString technology for differential gene expression analysis. In addition, we identify five genes (ALG12, GUSB, RPLP0, KRBA2, and ADAT2) that are stably expressed in melanoma cells independent of the presence of T cells or the T cell-derived cytokines IFNγ and TNFα. These genes are essential for correct normalization of gene expression data by NanoString. Further to the characterization of melanoma cells after exposure to CTLs, this experimental system might be suitable to answer a series of questions, including how the affinity of CTLs for their target antigen influences the melanoma cell response and whether CTL-induced gene expression changes in melanoma cells are reversible. Taken together, our human T cell - melanoma cell culture system is well suited to characterize immune-related mechanisms in cancer cells. PMID:27625650

  13. A Well-Controlled Experimental System to Study Interactions of Cytotoxic T Lymphocytes with Tumor Cells

    PubMed Central

    Neubert, Natalie J.; Soneson, Charlotte; Barras, David; Baumgaertner, Petra; Rimoldi, Donata; Delorenzi, Mauro; Fuertes Marraco, Silvia A.; Speiser, Daniel E.

    2016-01-01

    While T cell-based immunotherapies are steadily improving, there are still many patients who progress, despite T cell-infiltrated tumors. Emerging evidence suggests that T cells themselves may provoke immune escape of cancer cells. Here, we describe a well-controlled co-culture system for studying the dynamic T cell – cancer cell interplay, using human melanoma as a model. We explain starting material, controls, and culture parameters to establish reproducible and comparable cultures with highly heterogeneous tumor cells. Low passage melanoma cell lines and melanoma-specific CD8+ T cell clones generated from patient blood were cultured together for up to 3 days. Living melanoma cells were isolated from the co-culture system by fluorescence-activated cell sorting. We demonstrate that the characterization of isolated melanoma cells is feasible using flow cytometry for protein expression analysis as well as an Agilent whole human genome microarray and the NanoString technology for differential gene expression analysis. In addition, we identify five genes (ALG12, GUSB, RPLP0, KRBA2, and ADAT2) that are stably expressed in melanoma cells independent of the presence of T cells or the T cell-derived cytokines IFNγ and TNFα. These genes are essential for correct normalization of gene expression data by NanoString. Further to the characterization of melanoma cells after exposure to CTLs, this experimental system might be suitable to answer a series of questions, including how the affinity of CTLs for their target antigen influences the melanoma cell response and whether CTL-induced gene expression changes in melanoma cells are reversible. Taken together, our human T cellmelanoma cell culture system is well suited to characterize immune-related mechanisms in cancer cells.

  14. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth.

    PubMed Central

    Jiang, H; Su, Z Z; Lin, J J; Goldstein, N I; Young, C S; Fisher, P B

    1996-01-01

    Cancer is a disease characterized by defects in growth control, and tumor cells often display abnormal patterns of cellular differentiation. The combination of recombinant human fibroblast interferon and the antileukemic agent mezerein corrects these abnormalities in cultured human melanoma cells resulting in irreversible growth arrest and terminal differentiation. Subtraction hybridization identifies a melanoma differentiation associated gene (mda-7) with elevated expression in growth arrested and terminally differentiated human melanoma cells. Colony formation decreases when mda-7 is transfected into human tumor cells of diverse origin and with multiple genetic defects. In contrast, the effects of mda-7 on growth and colony formation in transient transfection assays with normal cells, including human mammary epithelial, human skin fibroblast, and rat embryo fibroblast, is quantitatively less than that found with cancer cells. Tumor cells expressing elevated mda-7 display suppression in monolayer growth and anchorage independence. Infection with a recombinant type 5 adenovirus expressing antisense mda-7 eliminates mda-7 suppression of the in vitro growth and transformed phenotype. The ability of mda-7 to suppress growth in cancer cells not expressing or containing defects in both the retinoblastoma (RB) and p53 genes indicates a lack of involvement of these critical tumor suppressor elements in mediating mda-7-induced growth inhibition. The lack of protein homology of mda-7 with previously described growth suppressing genes and the differential effect of this gene on normal versus cancer cells suggests that mda-7 may represent a new class of cancer growth suppressing genes with antitumor activity. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8799171

  15. Characterization of PD-L1 Expression and Associated T cell Infiltrates in Metastatic Melanoma Samples from Variable Anatomic Sites

    PubMed Central

    Kluger, Harriet M.; Zito, Christopher R.; Barr, Meaghan L.; Baine, Marina K.; Chiang, Veronica L.S.; Sznol, Mario; Rimm, David L.; Chen, Lieping; Jilaveanu, Lucia B.

    2015-01-01

    Purpose Programmed death ligand-1 (PD-L1) tumor expression represents a mechanism of immune escape for melanoma cells. Drugs blocking PD-L1 or its receptor have shown unprecedented activity in melanoma, and our purpose was to characterize tumor PD-L1 expression and associated T-cell infiltration in metastatic melanomas. Experimental Design We used a tissue microarray (TMA) consisting of two cores from 95 metastatic melanomas characterized for clinical stage, outcome and anatomic site of disease. We assessed PD-L1 expression and tumor infiltrating lymphocytes (TIL) content (total T cells and CD4/CD8 subsets) by quantitative immunofluorescence. Results High PD-L1 expression was associated with improved survival (P=0.02) and higher T cell content (P=0.0005). Higher T cell content (total and CD8 cells) were independently associated with improved overall survival; PD-L1 expression was not independently prognostic. High TIL content in extra-cerebral metastases was associated with increased time to developing brain metastases (P=0.03). Cerebral and dermal metastases had slightly lower PD-L1 expression than other sites, not statistically significant. Cerebral metastases had less T cells (P=0.01). Conclusions T cell infiltrated melanomas, particularly those with high CD8 T cell content, are more likely to be associated with PD-L1 expression in tumor cells, an improved prognosis, and increased time to development of brain metastases. Studies of T cell content and subsets should be incorporated into trials of PD-1/PD-L1 inhibitors to determine their predictive value. Furthermore, additional studies of anatomic sites with less PD-L1 expression and T cell infiltrate are needed to determine if discordant responses to PD-1/PD-L1 inhibitors are seen at those sites. PMID:25788491

  16. Characterization of a new human melanoma cell line with CD133 expression.

    PubMed

    Gil-Benso, Rosario; Monteagudo, Carlos; Cerdá-Nicolás, Miguel; Callaghan, Robert C; Pinto, Sandra; Martínez-Romero, Alicia; Pellín-Carcelén, Ana; San-Miguel, Teresa; Cigudosa, Juan C; López-Ginés, Concha

    2012-06-01

    A novel human malignant melanoma cell line, designated MEL-RC08, was established from a pericranial metastasis of a malignant melanoma of the skin. The cell line has been subcultured for more than 150 passages and is tumorigenic in nude mice. Growth kinetics, cytogenetics, flow cytometry, and molecular techniques for analysis of the genes implicated in cell cycle control; mutations in BRAF, NRAS, C-KiT, RB, and TP53 genes; and amplification of MDM2, CDK4, and cyclin D1 have been studied. Cytogenetically, the tumor and the cell line showed a hypertriploid karyotype with many clonal numeric and structural abnormalities. DNA flow cytometry showed an aneuploid peak with a DNA index value of 1.5. Mutations in TP53 and BRAF genes were demonstrated in both tumor and cell line. Furthermore, stem cell marker CD133 expression was detected in most cells, together with other stem cell markers, suggesting the presence of cells with tumor-initiating potential in this cell line. PMID:22529031

  17. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy.

    PubMed Central

    Mhashilkar, A. M.; Schrock, R. D.; Hindi, M.; Liao, J.; Sieger, K.; Kourouma, F.; Zou-Yang, X. H.; Onishi, E.; Takh, O.; Vedvick, T. S.; Fanger, G.; Stewart, L.; Watson, G. J.; Snary, D.; Fisher, P. B.; Saeki, T.; Roth, J. A.; Ramesh, R.; Chada, S.

    2001-01-01

    BACKGROUND: The mda-7 gene (melanoma differentiation associated gene-7) is a novel tumor suppressor gene. The anti-proliferative activity of MDA-7 has been previously reported. In this report, we analyze the anti-tumor efficacy of Ad-mda7 in a broad spectrum of cancer lines. MATERIALS AND METHODS: Ad-mda7-transduced cancer or normal cell lines were assayed for cell proliferation (tritiated thymidine incorporation assay, Alamar blue assay, and trypan-blue exclusion assay), apoptosis (TUNEL, and Annexin V staining visualized by fluorescent microscopy or FACs analysis), and cell cycle regulation (Propidium Iodide staining and FACs analysis). RESULTS: Ad-mda7 treatment of tumor cells resulted in growth inhibition and apoptosis in a temporal and dose-dependent manner. The anti-tumor effects were independent of the genomic status of p53, RB, p16, ras, bax, and caspase 3 in these cells. In addition, normal cell lines did not show inhibition of proliferation or apoptotic response to Ad-mda7. Moreover, Ad-mda7-transduced cancer cells secreted a soluble form of MDA-7 protein. Thus, Ad-mda7 may represent a novel gene-therapeutic agent for the treatment of a variety of cancers. CONCLUSIONS: The potent and selective killing activity of Ad-mda7 in cancer cells but not in normal cells makes this vector a potential candidate for cancer gene therapy. PMID:11471572

  18. [Retroperitoneal germ cell tumor].

    PubMed

    Borrell Palanca, A; García Garzón, J; Villamón Fort, R; Domenech Pérez, C; Martínez Lorente, A; Gunthner, S; García Sisamón, F

    1999-03-01

    We report a case of retroperitoneal extragonadal germ-cell tumor in an 17 years old patient who presented with aedema and pain in left inferior extremity asociated with hemopthysis caused by pulmonar metastasis, who was treated with chemotherapy and resection of residual mass and pulmonary nodes. Dyagnosis was stableshed by fine neadle aspiration biopsy of the wass. We comment on the difficult of stableshing differential dyagnosis between retroperitoneal extragonadal germ-cell tumor and metastasis of a testicular tumor. Dyagnosis is stableshed by the finding of a histologically malignant germ-cell tumor with normal testis. We considered physical examination and ecographyc exploration enough for a correct dyagnosis.

  19. The Human Antibody Fragment DIATHIS1 Specific for CEACAM1 Enhances Natural Killer Cell Cytotoxicity Against Melanoma Cell Lines In Vitro

    PubMed Central

    Dupuis, Maria L.; Soriani, Alessandra; Ricci, Biancamaria; Dominici, Sabrina; Moricoli, Diego; Ascione, Alessandro; Santoni, Angela; Magnani, Mauro; Cianfriglia, Maurizio

    2015-01-01

    Several lines of evidence show that de novo expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is strongly associated with reduced disease-free survival of patients affected by metastatic melanoma. Previously published investigations report that homophilic interactions between CEACAM1 expressed on natural killer (NK) cells and tumors inhibit the NK cell-mediated killing independently of major histocompatibility complex class I recognition. This biological property can be physiologically relevant in metastatic melanoma because of the increased CEACAM1 expression observed on NK cells from some patients. Moreover, this inhibitory mechanism in many cases might hinder the efficacy of immunotherapeutic treatments of CEACAM1+ malignancies because of tumor evasion by activated effector cells. In the present study, we designed an in vitro experimental model showing that the human single-chain variable fragment (scFv) DIATHIS1 specific for CEACAM1 is able to enhance the lytic machinery of NK cells against CEACAM1+ melanoma cells. The coincubation of the scFv DIATHIS1 with CEACAM1+ melanoma cells and NK-92 cell line significantly increases the cell-mediated cytotoxicity. Moreover, pretreatment of melanoma cells with scFv DIATHIS1 promotes the activation and the degranulation capacity of in vitro–expanded NK cells from healthy donors. It is interesting to note that the melanoma cell line MelC and the primary melanoma cells STA that respond better to DIATHIS1 treatment, express higher relative levels of CEACAM1-3L and CEACAM1-3S splice variants isoforms compared with Mel501 cells that are less responsive to DIATHIS1-induced NK cell–mediated cytotoxicity. Taken together, our results suggest that the fully human antibody fragment DIATHIS1 originated by biopanning approach from a phage antibody library may represent a relevant biotechnological platform to design and develop completely human antimelanoma therapeutics of biological origin. PMID

  20. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo.

    PubMed

    Girola, Natalia; Figueiredo, Carlos R; Farias, Camyla F; Azevedo, Ricardo A; Ferreira, Adilson K; Teixeira, Sarah F; Capello, Tabata M; Martins, Euder G A; Matsuo, Alisson L; Travassos, Luiz R; Lago, João H G

    2015-11-27

    Natural monoterpenes were isolated from the essential oil of Piper cernuum Vell. (Piperaceae) leaves. The crude oil and the individual monoterpenes were tested for cytotoxicity in human tumor cell lineages and B16F10-Nex2 murine melanoma cells. In the present work we demonstrate the activity of camphene against different cancer cells, with its mechanism of action being investigated in vitro and in vivo in murine melanoma. Camphene induced apoptosis by the intrinsic pathway in melanoma cells mainly by causing endoplasmic reticulum (ER) stress, with release of Ca(2+) together with HmgB1 and calreticulin, loss of mitochondrial membrane potential and up regulation of caspase-3 activity. Importantly, camphene exerted antitumor activity in vivo by inhibiting subcutaneous tumor growth of highly aggressive melanoma cells in a syngeneic model, suggesting a promising role of this compound in cancer therapy. PMID:26471302

  1. The Cytolytic Amphipathic β(2,2)-Amino Acid LTX-401 Induces DAMP Release in Melanoma Cells and Causes Complete Regression of B16 Melanoma

    PubMed Central

    Eike, Liv-Marie; Mauseth, Brynjar; Camilio, Ketil André; Rekdal, Øystein; Sveinbjørnsson, Baldur

    2016-01-01

    In the present study we examined the ability of the amino acid derivative LTX-401 to induce cell death in cancer cell lines, as well as the capacity to induce regression in a murine melanoma model. Mode of action studies in vitro revealed lytic cell death and release of danger-associated molecular pattern molecules, preceded by massive cytoplasmic vacuolization and compromised lysosomes in treated cells. The use of a murine melanoma model demonstrated that the majority of animals treated with intratumoural injections of LTX-401 showed complete and long-lasting remission. Taken together, these results demonstrate the potential of LTX-401 as an immunotherapeutic agent for the treatment of solid tumors. PMID:26881822

  2. [Treatment options of non-melanoma skin tumors in organ transplant recipients in relation to a case report].

    PubMed

    Gellén, Emese; Péter, Zoltán; Emri, Gabriella; Asztalos, László; Remenyik, Éva

    2016-06-12

    The authors present the case of a 59-year-old male patient, whose first kidney transplantation was in 1983 and the second in 2000. The first squamous cell carcinoma appeared on the skin 2 years after the first transplantation. Since 2003, at least two precancerous lesions or non-melanoma skin tumors have been removed surgically yearly. These cancers appeared predominantly on the sun-exposed skin, and were multiple. As these tumors could behave aggressively and prone to recurrence, complex treatment was applied, which included a switch in immunosuppressive drugs and the application of field therapies. The authors give an overview of these treatment options in relation to the case presentation, emphasizing that not only early detection and active treatment of the precancerous lesions and skin cancers are essential, but education of proper sun-protection methods and dermatology care are also important in order to avoid the development of these tumors. PMID:27263436

  3. CpG island methylation profiling in human melanoma cell lines.

    PubMed

    Tellez, Carmen S; Shen, Lanlan; Estécio, Marcos R H; Jelinek, Jaroslav; Gershenwald, Jeffrey E; Issa, Jean-Pierre J

    2009-06-01

    A better understanding of key molecular changes during the pathogenesis of melanoma could impact strategies to reduce mortality from this cancer. Two epigenetic events involved in the pathogenesis of cancer are hypermethylation of tumor-suppressor gene promoters associated with transcriptional repression and hypomethylation associated with gene reexpression and genomic instability. We analyzed 16 melanoma cell lines for aberrant hypermethylation of 15 cancer-linked genes (ER alpha, MGMT, RAR beta 2, RIL, RASSF1A, PAX7, PGR beta, PAX2, NKX2-3, OLIG2, HAND1, ECAD, CDH13, MLH1, and p16) and hypomethylation of two genes (MAGEA1, maspin) and two repetitive sequences (LINE-1 and Alu) using pyrosequencing. We observed hypermethylation of ER alpha in 50% of the cell lines, MGMT (50%), RAR beta 2 (44%), RIL (88%), RASSF1A (69%), PAX7 (31%), PGR beta (56%), PAX2 (38%), NKX2-3 (63%), OLIG2 (63%), HAND1 (63%), ECAD (88%), CDH13 (44%), MLH1 (0%), and p16 (6%). In human melanoma cell lines, hypomethylation of MAGEA1 (44%), maspin (25%), LINE-1 (75%), and Alu (13%) is frequently observed. We analyzed a panel of cell lines for BRAF V600E and NRAS codon 61 mutations. In melanoma cell lines, the BRAF and NRAS mutations had no association with aberrant methylation. We found that the cumulative aberrant hypermethylation of the gene promoters was correlated with the level of global DNA methylation. We conclude that aberrant hypermethylation, is frequent in melanoma cell lines, directly correlated with global DNA methylation, and independent of BRAF and NRAS mutations.

  4. Fiber-mutant technique can augment gene transduction efficacy and anti-tumor effects against established murine melanoma by cytokine-gene therapy using adenovirus vectors.

    PubMed

    Okada, Yuka; Okada, Naoki; Nakagawa, Shinsaku; Mizuguchi, Hiroyuki; Kanehira, Makiko; Nishino, Naoko; Takahashi, Koichi; Mizuno, Nobuyasu; Hayakawa, Takao; Mayumi, Tadanori

    2002-03-01

    Melanoma cells are relatively resistant to adenovirus vector (Ad)-mediated gene transfer due to the low expression of Coxsackie-adenovirus receptor (CAR), which acts as a primitive Ad-receptor. Therefore, extremely high doses of Ad are required for effective gene therapy against melanoma. In the present study, we investigated whether fiber-mutant Ad containing the Arg-Gly-Asp (RGD) sequence in the fiber knob could promote gene delivery and anti-tumor effects in the murine B16 BL6 tumor model. B16 BL6 cells (in vitro) and tumors (in vivo) infected with RGD fiber-mutant Ad containing a tumor necrosis factor alpha gene (Ad-RGD-TNFalpha) produced more TNFalpha than those infected with conventional Ad-TNFalpha. In addition, Ad-RGD-TNFalpha required about one-tenth the dosage of Ad-TNFalpha for induction of equal therapeutic effects upon intratumoral injection into established B16 BL6 tumors. Furthermore, the combination of both TNFalpha- and interleukin 12-expressing RGD fiber-mutant Ads exhibited more effective tumor regression than the Ad expressing each alone. These results suggested that the fiber-mutant for altering Ad-tropism is a very potent technology for advancing gene therapy for melanoma. PMID:11809531

  5. Conditional quantile regression models of melanoma tumor growth curves for assessing treatment effect in small sample studies.

    PubMed

    Revzin, Ella; Majumdar, Dibyen; Bassett, Gilbert W

    2014-12-20

    Tumor growth curves provide a simple way to understand how tumors change over time. The traditional approach to fitting such curves to empirical data has been to estimate conditional mean regression functions, which describe the average effect of covariates on growth. However, this method ignores the possibility that tumor growth dynamics are different for different quantiles of the possible distribution of growth patterns. Furthermore, typical individual preclinical cancer drug study designs have very small sample sizes and can have lower power to detect a statistically significant difference in tumor volume between treatment groups. In our work, we begin to address these issues by combining several independent small sample studies of an experimental cancer treatment with differing study designs to construct quantile tumor growth curves. For modeling, we use a Penalized Fixed Effects Quantile Regression with added study effects to control for study differences. We demonstrate this approach using data from a series of small sample studies that investigated the effect of a naturally derived biological peptide, P28, on tumor volumes in mice grafted with human melanoma cells. We find a statistically significant quantile treatment effect on tumor volume trajectories and baseline values. In particular, the experimental treatment and a corresponding conventional chemotherapy had different effects on tumor growth by quantile. The conventional treatment, Dacarbazine (DTIC), tended to inhibit growth for smaller quantiles, while the experimental treatment P28 produced slower rates of growth in the upper quantiles, especially in the 95th quantile. PMID:25231497

  6. mRNA-based dendritic cell immunization improves survival in ret transgenic mouse melanoma model.

    PubMed

    Sharbi-Yunger, Adi; Grees, Mareike; Tzehoval, Esther; Utikal, Jochen; Umansky, Viktor; Eisenbach, Lea

    2016-06-01

    Malignant melanoma is characterized by a rapid progression, metastasis to distant organs and resistance to chemo and radiotherapy. Although melanoma is capable of eliciting an immune response, the disease progresses and the overall results of immunotherapeutic clinical studies are not satisfactory. Recently, we have developed a novel genetic platform for improving an induction of peptide-specific CD8(+) T cells by dendritic cell (DC) based on membrane-anchored β2-microglobulin (β2m) linked to a selected antigenic peptide at the N-terminus and to the cytosolic domain of TLR4 at the C-terminus. In vitro transcribed mRNA transfection of antigen-presenting cells (APCs) resulted in an efficient coupling of peptide presentation and cell activation. In this research, we utilize the chimeric platform to induce an immune response in ret transgenic mice that spontaneously develop malignant skin melanoma and to examine its effect on the overall survival of tumor-bearing mice. Following immunization with chimeric construct system, we observe a significantly prolonged survival of tumor-bearing mice as compared to the control group. Moreover, we see elevations in the frequency of CD62L(hi)CD44(hi) central and CD62L(lo)CD44(hi) effector memory CD8(+) T-cell subsets. Importantly, we do not observe any changes in frequencies of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the vaccinated groups. Our data suggest that this novel vaccination approach could be efficiently applied for the immunotherapy of malignant melanoma. PMID:27471629

  7. Sema6A and Mical1 control cell growth and survival of BRAFV600E human melanoma cells

    PubMed Central

    Loria, Rossella; Bon, Giulia; Perotti, Valentina; Gallo, Enzo; Bersani, Ilaria; Baldassari, Paola; Porru, Manuela; Leonetti, Carlo; Di Carlo, Selene; Visca, Paolo; Brizzi, Maria Felice; Anichini, Andrea; Mortarini, Roberta; Falcioni, Rita

    2015-01-01

    We used whole genome microarray analysis to identify potential candidate genes with differential expression in BRAFV600E vs NRASQ61R melanoma cells. We selected, for comparison, a peculiar model based on melanoma clones, isolated from a single tumor characterized by mutually exclusive expression of BRAFV600E and NRASQ61R in different cells. This effort led us to identify two genes, SEMA6A and MICAL1, highly expressed in BRAF-mutant vs NRAS-mutant clones. Real-time PCR, Western blot and immunohistochemistry confirmed preferential expression of Sema6A and Mical1 in BRAFV600E melanoma. Sema6A is a member of the semaphorin family, and it complexes with the plexins to regulate actin cytoskeleton, motility and cell proliferation. Silencing of Sema6A in BRAF-mutant cells caused cytoskeletal remodeling, and loss of stress fibers, that in turn induced cell death. Furthermore, Sema6A depletion caused loss of anchorage-independent growth, inhibition of chemotaxis and invasion. Forced Sema6A overexpression, in NRASQ61R clones, induced anchorage-independent growth, and a significant increase of invasiveness. Mical1, that links Sema/PlexinA signaling, is also a negative regulator of apoptosis. Indeed, Mical-1 depletion in BRAF mutant cells restored MST-1-dependent NDR phosphorylation and promoted a rapid and massive NDR-dependent apoptosis. Overall, our data suggest that Sema6A and Mical1 may represent new potential therapeutic targets in BRAFV600E melanoma. PMID:25576923

  8. Multiple granular cell tumor.

    PubMed

    Jones, J K; Kuo, T T; Griffiths, C M; Itharat, S

    1980-10-01

    Eleven cases of granular cell tumor were reviewed. In two of the cases multiple sites of involvement were seen. The tumor occurred in the oral cavity in both of these cases and each was initially wrongly diagnosed as squamous cell carcinoma. The most common site was the subcutaneous tissue (nine patients) and the tongue was involved in three cases. In one patient the parotid gland was involved. Eight of the patients were females and three were males; seven were black and four were white. The importance of differentiating between squamous cell carcinoma and granular cell tumor is stressed, as is the need for a simple wide surgical excision. PMID:7421377

  9. Convection-enhanced delivery of sorafenib and suppression of tumor progression in a murine model of brain melanoma through the inhibition of signal transducer and activator of transcription 3.

    PubMed

    Zou, Zhaoxia; Yin, Yufang; Lin, Jenny; Hsu, Li-Chen J; Brandon, Vanessa L; Yang, Fan; Jove, Richard; Jandial, Rahul; Li, Gang; Chen, Mike Y

    2016-05-01

    OBJECT Despite recent advances, metastatic melanoma remains a terminal disease, in which life-threatening brain metastasis occurs in approximately half of patients. Sorafenib is a multikinase inhibitor that induces apoptosis of melanoma cells in vitro. However, systemic administration has been ineffective because adequate tissue concentrations cannot be achieved. This study investigated if convection-enhanced delivery (CED) of sorafenib would enhance tumor control and survival via inhibition of the signal transducer and activator of transcription 3 (Stat3) pathway in a murine model of metastatic brain melanoma. METHODS Melanoma cells treated with sorafenib in vitro were examined for signaling and survival changes. The effect of sorafenib given by CED was assessed by bioluminescent imaging and animal survival. RESULTS The results showed that sorafenib induced cell death in the 4 established melanoma cell lines and in 1 primary cultured melanoma cell line. Sorafenib inhibited Stat3 phosphorylation in HTB65, WYC1, and B16 cells. Accordingly, sorafenib treatment also decreased expression of Mcl-1 mRNA in melanoma cell lines. Because sorafenib targets multiple pathways, the present study demonstrated the contribution of the Stat3 pathway by showing that mouse embryonic fibroblast (MEF) Stat3 +/+ cells were significantly more sensitive to sorafenib than MEF Stat3 -/- cells. In the murine model of melanoma brain metastasis used in this study, CED of sorafenib increased survival by 150% in the treatment group compared with animals receiving the vehicle control (p < 0.01). CED of sorafenib also significantly abrogated tumor growth. CONCLUSIONS The data from this study indicate that local delivery of sorafenib effectively controls brain melanoma. These findings validate further investigation of the use of CED to distribute molecularly targeted agents. PMID:26544779

  10. Convection-enhanced delivery of sorafenib and suppression of tumor progression in a murine model of brain melanoma through the inhibition of signal transducer and activator of transcription 3.

    PubMed

    Zou, Zhaoxia; Yin, Yufang; Lin, Jenny; Hsu, Li-Chen J; Brandon, Vanessa L; Yang, Fan; Jove, Richard; Jandial, Rahul; Li, Gang; Chen, Mike Y

    2016-05-01

    OBJECT Despite recent advances, metastatic melanoma remains a terminal disease, in which life-threatening brain metastasis occurs in approximately half of patients. Sorafenib is a multikinase inhibitor that induces apoptosis of melanoma cells in vitro. However, systemic administration has been ineffective because adequate tissue concentrations cannot be achieved. This study investigated if convection-enhanced delivery (CED) of sorafenib would enhance tumor control and survival via inhibition of the signal transducer and activator of transcription 3 (Stat3) pathway in a murine model of metastatic brain melanoma. METHODS Melanoma cells treated with sorafenib in vitro were examined for signaling and survival changes. The effect of sorafenib given by CED was assessed by bioluminescent imaging and animal survival. RESULTS The results showed that sorafenib induced cell death in the 4 established melanoma cell lines and in 1 primary cultured melanoma cell line. Sorafenib inhibited Stat3 phosphorylation in HTB65, WYC1, and B16 cells. Accordingly, sorafenib treatment also decreased expression of Mcl-1 mRNA in melanoma cell lines. Because sorafenib targets multiple pathways, the present study demonstrated the contribution of the Stat3 pathway by showing that mouse embryonic fibroblast (MEF) Stat3 +/+ cells were significantly more sensitive to sorafenib than MEF Stat3 -/- cells. In the murine model of melanoma brain metastasis used in this study, CED of sorafenib increased survival by 150% in the treatment group compared with animals receiving the vehicle control (p < 0.01). CED of sorafenib also significantly abrogated tumor growth. CONCLUSIONS The data from this study indicate that local delivery of sorafenib effectively controls brain melanoma. These findings validate further investigation of the use of CED to distribute molecularly targeted agents.

  11. Zebrafish Germ Cell Tumors.

    PubMed

    Sanchez, Angelica; Amatruda, James F

    2016-01-01

    Germ cell tumors (GCTs) are malignant cancers that arise from embryonic precursors known as Primordial Germ Cells. GCTs occur in neonates, children, adolescents and young adults and can occur in the testis, the ovary or extragonadal sites. Because GCTs arise from pluripotent cells, the tumors can exhibit a wide range of different histologies. Current cisplatin-based combination therapies cures most patients, however at the cost of significant toxicity to normal tissues. While GWAS studies and genomic analysis of human GCTs have uncovered somatic mutations and loci that might confer tumor susceptibility, little is still known about the exact mechanisms that drive tumor development, and animal models that faithfully recapitulate all the different GCT subtypes are lacking. Here, we summarize current understanding of germline development in humans and zebrafish, describe the biology of human germ cell tumors, and discuss progress and prospects for zebrafish GCT models that may contribute to better understanding of human GCTs. PMID:27165367

  12. T cell receptor (TCR) structure of autologous melanoma-reactive cytotoxic T lymphocyte (CTL) clones: tumor-infiltrating lymphocytes overexpress in vivo the TCR beta chain sequence used by an HLA-A2- restricted and melanocyte-lineage-specific CTL clone

    PubMed Central

    1993-01-01

    HLA-A2+ melanomas express common melanoma-associated antigens (Ags) recognized in vitro by autologous cytotoxic T lymphocytes (CTL). However, it is not known whether tumor Ags can drive in vivo a selective accumulation/expansion of Ag-specific, tumor-infiltrating T lymphocytes (TIL). Therefore, to evaluate this possibility, 39 CTL clones isolated from several independent mixed lymphocyte tumor cultures (MLTC) of TIL and peripheral blood lymphocytes (PBL) of an HLA- A2+ melanoma patient and selected for T cell receptor (TCR)-dependent, HLA-restricted tumor lysis, were used for analysis of TCR alpha and beta chain structure by the cDNA polymerase chain reaction (PCR) technique with variable gene-specific primers followed by sequencing. Despite absence of oligoclonality in fresh TIL and PBL, as well as in T cells of day 28 MLTC (day of cloning), sequence analysis of TCR alpha and beta chains of TIL clones revealed a dominance of a major category of melanoma-specific, HLA-A2-restricted T cells expressing a V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1 TCR. The same TCR was also found in 2 out of 14 PBL clones. The other PBL clones employed a V alpha 2.1 gene segment associated with either V beta 13.2, 14, or w22. Clones A81 (V alpha 2.1/J alpha IGRJ alpha 04/C alpha and V beta 14/D beta 1/J beta 1.2/C beta 1) and A21 (V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1), representative of the two most frequent TCR of PBL and TIL, respectively, expressed different lytic patterns, but both were HLA-A2 restricted and lysed only HLA-A2+ melanomas and normal melanocytes, thus indicating recognition of two distinct HLA-A2-associated and tissue-related Ags. Finally, by the inverse PCR technique, the specific TCR beta chain (V beta 2.1/D beta 1/J beta 1.1/C beta 1) expressed by the dominant TIL clone was found to represent 19 and 18.4% of all V beta 2 sequences expressed in the fresh tumor sample and in the purified TIL

  13. An Aggressive Hypoxia Related Subpopulation of Melanoma Cells is TRP-2 Negative.

    PubMed

    Lenggenhager, Daniela; Curioni-Fontecedro, Alessandra; Storz, Martina; Shakhova, Olga; Sommer, Lukas; Widmer, Daniel S; Seifert, Burkhardt; Moch, Holger; Dummer, Reinhard; Mihic-Probst, Daniela

    2014-04-01

    Despite existing vaccination strategies targeting TRP-2, its function is not yet fully understood. TRP-2 is an enzyme involved in melanin biosynthesis and therefore discussed as a differentiation antigen. However, in mice Trp-2 was shown to be expressed in melanocyte stem cells of the hair follicle and therefore also considered as an indicator of stemness. A proper understanding of the TRP-2 function is crucial, considering a vaccination targeting cells with stemness properties would be highly effective in contrast to a therapy targeting differentiated melanoma cells. Analysing over 200 melanomas including primaries, partly matched metastases and patients' cell cultures we show that TRP-2 is correlated with Melan A expression and decreases with tumor progression. In mice it is expressed in differentiated melanocytes as well as in stem cells. Furthermore, we identify a TRP-2 negative, proliferative, hypoxia related cell subpopulation which is significantly associated with tumor thickness and diseases progression. Patients with a higher percentage of those cells have a less favourable tumor specific survival. Our findings underline that TRP-2 is a differentiation antigen, highlighting the importance to combine TRP-2 vaccination with other strategies targeting the aggressive undifferentiated hypoxia related subpopulation. PMID:24746711

  14. Irradiation affects cellular properties and Eph receptor expression in human melanoma cells

    PubMed Central

    Mosch, Birgit; Pietzsch, Doreen; Pietzsch, Jens

    2012-01-01

    X-ray irradiation influences metastatic properties of tumor cells and, moreover, metastasis and cellular motility can be modified by members of the Eph receptor/ephrin family of receptor tyrosine kinases. We hypothesized that irradiation-induced changes in cellular properties relevant for metastasis in melanoma cells could be mediated by Eph receptor/ephrin signaling. In this pilot study, we analyzed one pre-metastatic (Mel-Juso) and three metastatic human melanoma (Mel-Juso-L3, A375, and A2058) cells lines and predominantly found anti-metastatic effects of X-ray irradiation with impaired cell growth, clonal growth and motility. Additionally, we observed an irradiation-induced increase in adhesion paralleled by a decrease in migration in Mel-Juso and Mel-Juso-L3 cells and, in part, also in A375 cells. We further demonstrate a decrease of EphA2 both in expression and activity at 7 d after irradiation paralleled by an upregulation of EphA3. Analyzing downstream signaling after irradiation, we detected decreased Src kinase phosphorylation, but unchanged focal adhesion kinase (FAK) phosphorylation, indicating, in part, irradiation-induced downregulation of signaling via the EphA2-Src-FAK axis in melanoma cells. However, to which extent this finding contributes to the modification of metastasis-relevant cellular properties remains to be elucidated. PMID:22568947

  15. Killing of human melanoma cells induced by activation of class I interferon-regulated signaling pathways via MDA-7/IL-24.

    PubMed

    Ekmekcioglu, Suhendan; Mumm, John B; Udtha, Malini; Chada, Sunil; Grimm, Elizabeth A

    2008-07-01

    Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1-regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN-alpha) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN-gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN-beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN-beta induction followed by IRF regulation and TRAIL/FasL system activation. PMID:18511292

  16. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma.

    PubMed

    Karreth, Florian A; Tay, Yvonne; Perna, Daniele; Ala, Ugo; Tan, Shen Mynn; Rust, Alistair G; DeNicola, Gina; Webster, Kaitlyn A; Weiss, Dror; Perez-Mancera, Pedro A; Krauthammer, Michael; Halaban, Ruth; Provero, Paolo; Adams, David J; Tuveson, David A; Pandolfi, Pier Paolo

    2011-10-14

    We recently proposed that competitive endogenous RNAs (ceRNAs) sequester microRNAs to regulate mRNA transcripts containing common microRNA recognition elements (MREs). However, the functional role of ceRNAs in cancer remains unknown. Loss of PTEN, a tumor suppressor regulated by ceRNA activity, frequently occurs in melanoma. Here, we report the discovery of significant enrichment of putative PTEN ceRNAs among genes whose loss accelerates tumorigenesis following Sleeping Beauty insertional mutagenesis in a mouse model of melanoma. We validated several putative PTEN ceRNAs and further characterized one, the ZEB2 transcript. We show that ZEB2 modulates PTEN protein levels in a microRNA-dependent, protein coding-independent manner. Attenuation of ZEB2 expression activates the PI3K/AKT pathway, enhances cell transformation, and commonly occurs in human melanomas and other cancers expressing low PTEN levels. Our study genetically identifies multiple putative microRNA decoys for PTEN, validates ZEB2 mRNA as a bona fide PTEN ceRNA, and demonstrates that abrogated ZEB2 expression cooperates with BRAF(V600E) to promote melanomagenesis. PMID:22000016

  17. Dendritic Cell Vaccination Combined with CTLA4 Blockade in Patients with Metastatic Melanoma

    PubMed Central

    Ribas, Antoni; Comin-Anduix, Begoña; Chmielowski, Bartosz; Jalil, Jason; de la Rocha, Pilar; McCannel, Tara A.; Ochoa, Maria Teresa; Seja, Elizabeth; Villanueva, Arturo; Oseguera, Denise K.; Straatsma, Bradley R.; Cochran, Alistair J.; Glaspy, John A.; Hui, Liu; Marincola, Francesco M.; Wang, Ena; Economou, James S.; Gomez-Navarro, Jesus

    2009-01-01

    Purpose Tumor antigen-loaded dendritic cells (DC) are believed to activate antitumor immunity by stimulating T cells, and cytotoxic T lymphocyte-associated antigen 4 (CTLA4)-blocking antibodies should release a key negative regulatory pathway on T cells. The combination was tested in a phase 1 clinical trial in patients with advanced melanoma. Experimental Design Autologous DC were pulsed with MART-126-35 peptide and administered with a dose escalation of the CTLA4 blocking antibody tremelimumab. Sixteen patients were accrued to 5 dose levels. Primary endpoints were safety and immune effects; clinical efficacy was a secondary endpoint. Results Dose-limiting toxicities (DLTs) of grade 3 diarrhea and grade 2 hypophysitis developed in 2 out of 3 patients receiving tremelimumab at 10 mg/kg monthly. Four patients had an objective tumor response, two partial responses (PR) and two complete responses (CR), all melanoma-free between 2 and 4 years after study initiation. There was no difference in immune monitoring results between patients with an objective tumor response and those without a response. Exploratory gene expression analysis suggested that immune-related gene signatures, in particular for B cell function, may be important in predicting response. Conclusion The combination of MART-1 peptide-pulsed DC and tremelimumab results in objective and durable tumor responses at the higher range of the expected response rate with either agent alone. PMID:19789309

  18. Spirooxindole derivative SOID-8 induces apoptosis associated with inhibition of JAK2/STAT3 signaling in melanoma cells.

    PubMed

    Tian, Yan; Nam, Sangkil; Liu, Lucy; Yakushijin, Fumiko; Yakushijin, Kenichi; Buettner, Ralf; Liang, Wei; Yang, Fan; Ma, Yuelong; Horne, David; Jove, Richard

    2012-01-01

    Melanoma is generally refractory to current chemotherapy, thus new treatment strategies are needed. In this study, we synthesized a series of spirooxindole derivatives (SOID-1 to SOID-12) and evaluated their antitumor effects on melanoma. Among the 12 spirooxindole derivatives, SOID-8 showed the strongest antitumor activity by viability screening. SOID-8 inhibited viability of A2058, A375, SK-MEL-5 and SK-MEL-28 human melanoma cells in a dose- and time-dependent manner. SOID-8 also induced apoptosis of these tumor cells, which was confirmed by positive Annexin V staining and an increase of poly(ADP-ribose) polymerase cleavage. The antiapoptotic protein Mcl-1, a member of the Bcl-2 family, was downregulated and correlated with SOID-8 induced apoptosis. In addition, SOID-8 reduced tyrosine phosphorylation of Signal Tansducer and Activator of Transcription 3 (STAT3) in both dose- and time-dependent manners. This inhibition was associated with decreased levels of phosphorylation of Janus-activated kinase-2 (JAK2), an upstream kinase that mediates STAT3 phosphorylation at Tyr705. Accordingly, SOID-8 inhibited IL-6-induced activation of STAT3 and JAK2 in melanoma cells. Finally, SOID-8 suppressed melanoma tumor growth in a mouse xenograft model, accompanied with a decrease of phosphorylation of JAK2 and STAT3. Our results indicate that the antitumor activity of SOID-8 is at least partially due to inhibition of JAK2/STAT3 signaling in melanoma cells. These findings suggest that the spirooxindole derivative SOID-8 is a promising lead compound for further development of new preventive and therapeutic agents for melanoma.

  19. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy

    PubMed Central

    Tarazona, Raquel; Duran, Esther; Solana, Rafael

    2016-01-01

    Natural killer (NK) cells participate in the early immune response against melanoma and also contribute to the development of an adequate adaptive immune response by their crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conventional therapies together with its high immunogenicity justifies the development of novel therapies aimed to stimulate effective immune responses against melanoma. However, melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of major histocompatibility complex (MHC) class I molecules. In this scenario, NK cells emerge as potential candidates for melanoma immunotherapy due to their capacity to recognize and destroy melanoma cells expressing low levels of MHC class I molecules. In addition, the possibility to combine immune checkpoint blockade with other NK cell potentiating strategies (e.g., cytokine induction of activating receptors) has opened new perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma. PMID:26779186

  20. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy.

    PubMed

    Tarazona, Raquel; Duran, Esther; Solana, Rafael

    2015-01-01

    Natural killer (NK) cells participate in the early immune response against melanoma and also contribute to the development of an adequate adaptive immune response by their crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conventional therapies together with its high immunogenicity justifies the development of novel therapies aimed to stimulate effective immune responses against melanoma. However, melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of major histocompatibility complex (MHC) class I molecules. In this scenario, NK cells emerge as potential candidates for melanoma immunotherapy due to their capacity to recognize and destroy melanoma cells expressing low levels of MHC class I molecules. In addition, the possibility to combine immune checkpoint blockade with other NK cell potentiating strategies (e.g., cytokine induction of activating receptors) has opened new perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma.

  1. Systemic treatments for brain metastases from breast cancer, non-small cell lung cancer, melanoma and renal cell carcinoma: an overview of the literature.

    PubMed

    Lombardi, Giuseppe; Di Stefano, Anna Luisa; Farina, Patrizia; Zagonel, Vittorina; Tabouret, Emeline

    2014-09-01

    The frequency of metastatic brain tumors has increased over recent years; the primary tumors most involved are breast cancer, lung cancer, melanoma and renal cell carcinoma. While radiation therapy and surgery remain the mainstay treatment in selected patients, new molecular drugs have been developed for brain metastases. Studies so far report interesting results. This review focuses on systemic cytotoxic drugs and, in particular, on new targeted therapies and their clinically relevant activities in brain metastases from solid tumors in adults.

  2. Expression of the Elm1 Gene, a Novel Gene of the CCN (Connective Tissue Growth Factor, Cyr61/Cef10, and Neuroblastoma Overexpressed Gene) Family, Suppresses In Vivo Tumor Growth and Metastasis of K-1735 Murine Melanoma Cells

    PubMed Central

    Hashimoto, Yasunobu; Shindo-Okada, Nobuko; Tani, Masachika; Nagamachi, Yasuhiro; Takeuchi, Kaori; Shiroishi, Toshihiko; Toma, Hiroshi; Yokota, Jun

    1998-01-01

    We previously isolated a partial cDNA fragment of a novel gene, Elm1 (expressed in low-metastatic cells), that is expressed in low-metastatic but not in high-metastatic K-1735 mouse melanoma cells. Here we determined the full-length cDNA structure of Elm1 and investigated the effect of Elm1 expression on growth and metastatic potential of K-1735 cells. The Elm1 gene encodes a predicted protein of 367 amino acids showing ∼40% amino acid identity with the CCN (connective tissue growth factor [CTGF], Cyr61/Cef10, neuroblastoma overexpressed gene [Nov]) family proteins, which consist of secreted cysteine-rich proteins with growth regulatory functions. Elm1 is also a cysteine-rich protein and contains a signal peptide and four domains conserved in the CCN family proteins. Elm1 was highly conserved, expressed ubiquitously in diverse organs, and mapped to mouse chromosome 15. High-metastatic K-1735 M-2 cells, which did not express Elm1, were transfected with an Elm1 expression vector, and several stable clones with Elm1 expression were established. The in vivo growth rates of cells expressing a high level of Elm1 were remarkably slower than those of cells expressing a low level of Elm1. Metastatic potential of transfectants was reduced in proportion to the level of Elm1 expression. Thus, Elm1 is a novel gene of CCN family that can suppress the in vivo growth and metastatic potential of K-1735 mouse melanoma cells. PMID:9449709

  3. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.

    PubMed Central

    Liu, D; Pearlman, E; Diaconu, E; Guo, K; Mori, H; Haqqi, T; Markowitz, S; Willson, J; Sy, M S

    1996-01-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the "molecular saboteurs" to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs. Images Fig. 1 Fig. 2 Fig. 3 PMID:8755562

  4. BRAF inhibition decreases cellular glucose uptake in melanoma in association with reduction in cell volume

    PubMed Central

    Theodosakis, Nicholas; Held, Matthew A.; Marzuka-Alcala, Alexander; Meeth, Katrina M.; Micevic, Goran; Long, Georgina V.; Scolyer, Richard A.; Stern, David F.; Bosenberg, Marcus W.

    2015-01-01

    BRAF kinase inhibitors have dramatically impacted treatment of BRAFV600E/K-driven metastatic melanoma. Early responses assessed using [18F]fluorodeoxyglucose uptake-positron emission tomography (FDG-PET) have shown dramatic reduction of radiotracer signal within two weeks of treatment. Despite high response rates, relapse occurs in nearly all cases, frequently at sites of treated metastatic disease. It remains unclear whether initial loss of 18FDG uptake is due to tumor cell death or other reasons. Here we provide evidence of melanoma cell volume reduction in a patient cohort treated with BRAF inhibitors. We present data demonstrating that BRAF inhibition reduces melanoma glucose uptake per cell, but that this change is no longer significant following normalization for cell volume changes. We also demonstrate that volume normalization greatly reduces differences in transmembrane glucose transport and hexokinase-mediated phosphorylation. Mechanistic studies suggest that this loss of cell volume is due in large part to decreases in new protein translation as a consequence of vemurafenib treatment. Ultimately, our findings suggest that cell volume regulation constitutes an important physiologic parameter that may significantly contribute to radiographic changes observed in clinic. PMID:25948295

  5. Pigmentation in the sentinel node correlates with increased sentinel node tumor burden in melanoma patients.

    PubMed

    van Lanschot, Cornelia G F; Koljenović, Senada; Grunhagen, Dirk-Jan; Verhoef, Cornelis; van Akkooi, Alexander C J

    2014-06-01

    The prognosis of sentinel node (SN)-positive melanoma patients is predicted by a number of characteristics such as size and site of the metastases in the SN. The pathway and prognosis of strong pigmentation of melanoma metastases in the SN is unclear. The aim of this study is to evaluate the role of pigmentation and growth pattern of metastases in the SN with respect to survival. A total of 389 patients underwent an SN procedure (1997-2011). Ninety-five patients had a positive SN and material from 75 patients was available for review. The median follow-up time was 75 months (range 6-164). Pigmentation was scored from 0 to 2 using the following scale: 0=absent, 1=slight, and 2=strong. Growth pattern was scored as either eccentric (1) or infiltrative (2). SN tumor burden was measured according to the Rotterdam criteria. The primary melanoma had a median Breslow thickness of 2.90 mm (0.8-12.00 mm). Ulceration was present in 34 patients (45.3%). There was a median SN tumor burden of 0.5 mm (0.05-7.00 mm). In a total of 75 patients, 59 patients (79%) had no pigmentation, 13 patients (17%) had slight pigmentation, and three patients (4%) had strong pigmentation in the SN. Because of the small numbers, the classification was modified to either absent 59 (79%) or present 16 (21%) pigmentation, respectively. The SN tumor burden was significantly higher (P=0.031) for patients with pigmentation. Patients with pigmentation had a 5-year melanoma-specific survival (MSS) of 47% and a 10-year MSS of 33%. Patients without pigmentation had a 5-year MSS of 70% and a 10-year MSS of 59% (P=0.06). There was no difference in MSS for patients with an eccentric or an infiltrative growth pattern, nor did it correlate with other prognostic factors. Multivariate analysis for MSS showed five significant factors associated with worse prognosis: male sex (P=0.036), nodular melanoma (P=0.001), truncal site (P=0.0001), SN tumor burden more than 1.0 mm (P=0.022), and positive completion lymph node

  6. Natural killer cells are essential for the ability of BRAF inhibitors to control BRAFV600E-mutant metastatic melanoma.

    PubMed

    Ferrari de Andrade, Lucas; Ngiow, Shin F; Stannard, Kimberley; Rusakiewicz, Sylvie; Kalimutho, Murugan; Khanna, Kum Kum; Tey, Siok-Keen; Takeda, Kazuyoshi; Zitvogel, Laurence; Martinet, Ludovic; Smyth, Mark J

    2014-12-15

    BRAF(V600E) is a major oncogenic mutation found in approximately 50% of human melanoma that confers constitutive activation of the MAPK pathway and increased melanoma growth. Inhibition of BRAF(V600E) by oncogene targeting therapy increases overall survival of patients with melanoma, but is unable to produce many durable responses. Adaptive drug resistance remains the main limitation to BRAF(V600E) inhibitor clinical efficacy and immune-based strategies could be useful to overcome disease relapse. Tumor microenvironment greatly differs between visceral metastasis and primary cutaneous melanoma, and the mechanisms involved in the antimetastatic efficacy of BRAF(V600E) inhibitors remain to be determined. To address this question, we developed a metastatic BRAF(V600E)-mutant melanoma cell line and demonstrated that the antimetastatic properties of BRAF inhibitor PLX4720 (a research analogue of vemurafenib) require host natural killer (NK) cells and perforin. Indeed, PLX4720 not only directly limited BRAF(V600E)-induced tumor cell proliferation, but also affected NK cell functions. We showed that PLX4720 increases the phosphorylation of ERK1/2, CD69 expression, and proliferation of mouse NK cells in vitro. NK cell frequencies were significantly enhanced by PLX4720 specifically in the lungs of mice with BRAF(V600E) lung metastases. Furthermore, PLX4720 also increased human NK cell pERK1/2, CD69 expression, and IFNγ release in the context of anti-NKp30 and IL2 stimulation. Overall, this study supports the idea that additional NK cell-based immunotherapy (by checkpoint blockade or agonists or cytokines) may combine well with BRAF(V600E) inhibitor therapy to promote more durable responses in melanoma.

  7. X-ray sensitivity of human tumor cells in vitro

    SciTech Connect

    Weichselbaum, R.R.; Nove, J.; Little, J.B.

    1980-04-01

    Clonally-derived cells from ten human malignant tumors considered radiocurable (breast, neuroblastoma, medulloblastoma) or non-radiocurable (osteosarcoma, hypernephroma, glioblastoma, melanoma) were studied in cell culture and their in vitro x-ray survival curve parameters determined (anti n, D/sub 0/). There were no significant differences among the tumor cell lines suggesting that survival parameters in vitro do not explain differences in clinical radiocurability. Preliminary investigation with density inhibited human tumor cells indicate that such an approach may yield information regarding inherent cellular differences in radiocurability.

  8. Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells

    SciTech Connect

    Fu, Tzu-Yen; Chang, Chia-Che; Lin, Chun-Ting; Lai, Cong-Hao; Peng, Shao-Yu; Ko, Yi-Ju; Tang, Pin-Chi

    2011-02-15

    Basigin (Bsg), also called extracellular matrix metalloproteinase inducer (EMMPRIN), is highly expressed on the surface of tumor cells and stimulates adjacent fibroblasts or tumor cells to produce matrix metalloproteinases (mmps). It has been shown that Bsg plays an important role in growth, development, cell differentiation, and tumor progression. MicroRNAs (miRNAs) are a class of short endogenous non-protein coding RNAs of 20-25 nucleotides (nt) that function as post-transcriptional regulators of gene expression by base-pairing to their target mRNAs and thereby mediate cleavage of target mRNAs or translational repression. In this study, let-7b, one of the let-7 family members, was investigated for its effect on the growth and invasiveness of the mouse melanoma cell line B16-F10. We have shown that let-7b can suppress the expression of Bsg in B16-F10 cells and also provided evidence that this suppression could result in the indirect suppression of mmp-9. The ability of B16-F10 cells transfected with let-7b to invade or migrate was significantly reduced. In addition, let-7b transfected B16-F10 cells displayed an inhibition of both cellular proliferation and colony formation. Furthermore, it was shown that the overexpression of let-7b in B16-F10 cells could reduce lung metastasis. Taken together, the present study identifies let-7b as a tumor suppressor that represses cancer cell proliferation and migration as well as tumor metastasis in mouse melanoma cells.

  9. Limited genomic heterogeneity of circulating melanoma cells in advanced stage patients

    NASA Astrophysics Data System (ADS)

    Ruiz, Carmen; Li, Julia; Luttgen, Madelyn S.; Kolatkar, Anand; Kendall, Jude T.; Flores, Edna; Topp, Zheng; Samlowski, Wolfram E.; McClay, Edward; Bethel, Kelly; Ferrone, Soldano; Hicks, James; Kuhn, Peter

    2015-02-01

    Purpose. Circulating melanoma cells (CMCs) constitute a potentially important representation of time-resolved tumor biology in patients. To date, genomic characterization of CMCs has been limited due to the lack of a robust methodology capable of identifying them in a format suitable for downstream characterization. Here, we have developed a methodology to detect intact CMCs that enables phenotypic, morphometric and genomic analysis at the single cell level. Experimental design. Blood samples from 40 metastatic melanoma patients and 10 normal blood donors were prospectively collected. A panel of 7 chondroitin sulfate proteoglycan 4 (CSPG4)-specific monoclonal antibodies (mAbs) was used to immunocytochemically label CMCs. Detection was performed by automated digital fluorescence microscopy and multi-parametric computational analysis. Individual CMCs were captured by micromanipulation for whole genome amplification and copy number variation (CNV) analysis. Results. Based on CSPG4 expression and nuclear size, 1-250 CMCs were detected in 22 (55%) of 40 metastatic melanoma patients (0.5-371.5 CMCs ml-1). Morphometric analysis revealed that CMCs have a broad spectrum of morphologies and sizes but exhibit a relatively homogeneous nuclear size that was on average 1.5-fold larger than that of surrounding PBMCs. CNV analysis of single CMCs identified deletions of CDKN2A and PTEN, and amplification(s) of TERT, BRAF, KRAS and MDM2. Furthermore, novel chromosomal amplifications in chr12, 17 and 19 were also found. Conclusions. Our findings show that CSPG4 expressing CMCs can be found in the majority of advanced melanoma patients. High content analysis of this cell population may contribute to the design of effective personalized therapies in patients with melanoma.

  10. Melanoma immunotherapy.

    PubMed

    Sivendran, Shanthi; Glodny, Bradley; Pan, Michael; Merad, Miriam; Saenger, Yvonne

    2010-01-01

    Melanoma immunotherapy has been an area of intense research for decades, and this work is now yielding more tangible results for patients. Work has focused on 4 main areas: cytokine therapy, administration of immune-modulating antibodies, adoptive T-cell therapy, and vaccines. Cytokine therapy is an established treatment for advanced melanoma, and immune-modulating antibodies have recently emerged as an exciting new area of drug development with efficacy now established in a phase III trial. Adoptive T-cell therapy provides the proof of principle that T cells can attack and eliminate tumors. It has been challenging, however, to adapt this treatment for widespread use. Vaccines have generally yielded poor results, but intratumor pathogen-based strategies have shown encouraging results in recent trials, perhaps due to stronger immune stimulation. A review of the field of melanoma immunotherapy is provided here, with emphasis on those agents that have reached clinical testing. Novel strategies to induce the immune system to attack melanomas are reviewed. In the future, it is envisioned that immunotherapy will have further application in combination with cytotoxic and targeted therapies.

  11. Potential to involve multiple effector cells with human recombinant interleukin-2 and antiganglioside monoclonal antibodies in a canine malignant melanoma immunotherapy model.

    PubMed

    Helfand, S C; Soergel, S A; Donner, R L; Gan, J; Hank, J A; Lindstrom, M J; Sondel, P M

    1994-10-01

    Human tumors originating from neuroectodermal cells such as malignant melanoma and neuroblastoma express high levels of disialogangliosides GD2 and GD3, making these antigens ideal for targeting by monoclonal antibodies (Mabs). The purpose of this study was to investigate expression and targeting of gangliosides on canine melanoma. Using immunohistochemical methods, we analyzed the expression of disialogangliosides GD2 and GD3 on canine oral malignant melanomas with murine Mabs 14.G2a and R24 that recognize GD2 and GD3 disialogangliosides, respectively, on human tumors. We also assessed the ability of Mab 14.G2a (and its mouse-human chimera, ch 14.18) to mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro against a canine malignant melanoma cell line with human recombinant interleukin-2 (IL-2) activated canine peripheral blood lymphocytes (PBL), or canine neutrophil effector cells. Our data show that Mabs 14.G2a and R24 recognized fresh frozen canine oral melanoma. Mabs 14.G2a or ch 14.18, or IL-2, potentiated lysis of the canine malignant melanoma cell line by canine PBL. The killing effect observed using the combination of either Mab with IL-2 was additive. Mab 14.G2a mediated potent ADCC of canine melanoma by canine neutrophils. These studies indicate that disialogangliosides are expressed on fresh canine melanoma cells. Mabs reactive with these antigens can target and trigger tumor killing by multiple canine effector populations and IL-2 can potentiate these effects by canine lymphocytes. Thus, canine oral malignant melanoma, a spontaneously occurring, metastatic cancer in the dog, may be a relevant animal model to investigate combination immunotherapy using antitumor Mab and IL-2.

  12. Circulating Tumor Cells.

    PubMed

    Paoletti, Costanza; Hayes, Daniel F

    2016-01-01

    Circulating Tumor Cells (CTC) are shed from primary or secondary tumors. Prior studies have demonstrated that enumeration of CTC is a robust independent prognostic factor of progression free and overall survival in patients with early and metastatic breast cancer. CTC, as well as other circulating tumor markers, have the appealing advantages over tissue biopsy of (1) ease of collection, (2) serial evaluation, and (3) interrogation of the entire tumor burden instead of just a limited part of the tumor. Advances have been recently made in phenotyping and genotyping of CTC, which should provide insights into the predictive role of CTC for sensitivity or resistance to therapies. In addition, CTC phenotypic marker changes during the course of treatment may serve as pharmacodynamic monitoring tools. Therefore, CTC may be considered "liquid biopsies," providing prognostic and predictive clinical information as well as additional understanding of tumor heterogeneity.

  13. IL-9 promotes the survival and function of human melanoma-infiltrating CD4(+) CD8(+) double-positive T cells.

    PubMed

    Parrot, Tiphaine; Allard, Mathilde; Oger, Romain; Benlalam, Houssem; Raingeard de la Blétière, Diane; Coutolleau, Anne; Preisser, Laurence; Desfrançois, Juliette; Khammari, Amir; Dréno, Brigitte; Labarrière, Nathalie; Delneste, Yves; Guardiola, Philippe; Gervois, Nadine

    2016-07-01

    We previously demonstrated an accumulation of tumor-reactive CD4(+) CD8(+) double positive (DP) T cells within melanoma-infiltrating lymphocytes, supporting their role in the regulation of anti-tumor immune responses. Similarly to their CD8(+) counterparts, intra-tumor DP T cells are MHC class-I restricted but differed by a limited lytic activity against autologous melanoma cells. Based on these observations and to further characterize DP T cells, both populations were compared at the transcriptional level. Our results revealed the overexpression of the IL-9 receptor (IL-9R) by DP T cells and prompted us to investigate the impact of IL-9 on their biology. We show that IL-9 favors DP T-cell survival by protecting them from apoptosis and by promoting their proliferation. In addition, IL-9 enhances their ability to produce cytokines and increased their levels of granzyme B/perforin as well as degranulation capacity, leading to a strengthened cytotoxic activity against melanoma cells. Taken together, the IL-9R(high) DP T-cell population could be a new preferential target for IL-9, which could take part in their retention within the melanoma infiltrate while also favoring their anti-tumor activity. More generally, our results extend the pleiotropic effects of IL-9 to IL-9R-expressing intra-tumorcells, which could further potentiate anti-tumor immune responses. PMID:27094152

  14. Differential PAX3 functions in normal skin melanocytes and melanoma cells

    SciTech Connect

    Medic, Sandra; Rizos, Helen; Ziman, Mel

    2011-08-12

    Highlights: {yields} PAX3 retains embryonic roles in adult melanocytes and melanoma cells. {yields} Promotes 'stem' cell-like phenotype via NES and SOX9 in both cells types. {yields} Regulates melanoma and melanocyte migration through MCAM and CSPG4. {yields} PAX3 regulates melanoma but not melanocyte proliferation via TPD52. {yields} Regulates melanoma cell (but not melanocyte) survival via BCL2L1 and PTEN. -- Abstract: The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if its function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as 'stem' cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated 'stem' cell like phenotype, PAX3 may contribute to melanoma development and progression.

  15. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line

    PubMed Central

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Objective Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. Materials and Methods In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133+, CD133- and spheroid cells. Significant differences of the two experimental groups were compared using student’s t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Results Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133+ cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Conclusion Although CD133+ derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells. PMID:27054115

  16. Adipose-derived mesenchymal stem cell-facilitated TRAIL expression in melanoma treatment in vitro

    PubMed Central

    JING, HAI XIA; DUAN, DE JIAN; ZHOU, HUI; HU, QING MEI; LEI, TIE CHI

    2016-01-01

    Adipose-derived stem cells (ADSCs) may be useful as an efficient vehicle in cell-based gene therapy of human diseases due to their ability to migrate to disease lesions. This study investigated the ability of ADSC-harbored human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cDNA to facilitate TRAIL expression and induce A375 melanoma cell apoptosis as observed using a Transwell co-culture system. A cell migration assay was used to observe ADSC migration ability. In addition, TRAIL protein expression was successfully detected by western blot analysis in ADSCs after stable transfection of TRAIL cDNA. The Transwell co-culture system data showed that TRAIL-ADSCs could induce A375 cell apoptosis in a dose-dependent manner. At the gene level, the killing activity of TRAIL-ADSCs was associated with activation of caspase-4 and caspase-8. Collectively, the data from the current study provides preclinical support of ADSC-facilitated TRAIL expression in the treatment of melanoma. Further investigation is required to evaluate and confirm the in vivo ability of TRAIL-ADSCs in therapy of melanoma in animal models. PMID:27177242

  17. Pyrostegia venusta heptane extract containing saturated aliphatic hydrocarbons induces apoptosis on B16F10-Nex2 melanoma cells and displays antitumor activity in vivo

    PubMed Central

    Figueiredo, Carlos R.; Matsuo, Alisson L.; Pereira, Felipe V.; Rabaça, Aline N.; Farias, Camyla F.; Girola, Nátalia; Massaoka, Mariana H.; Azevedo, Ricardo A.; Scutti, Jorge A.B.; Arruda, Denise C.; Silva, Luciana P.; Rodrigues, Elaine G.; Lago, João Henrique G.; Travassos, Luiz R.; Silva, Regildo M.G.

    2014-01-01

    Background: Pyrostegia venusta (Ker. Gawl.) Miers (Bignoniacea) is a medicinal plant from the Brazilian Cerrado used to treat leucoderma and common diseases of the respiratory system. Objective: To investigate the antitumor activity of P.venusta extracts against melanoma. Materials and Methods: The cytotoxic activity and tumor induced cell death of heptane extract (HE) from P. venusta flowers was evaluated against murine melanoma B16F10-Nex2 cells in vitro and in a syngeneic model in vivo. Results: We found that HE induced apoptosis in melanoma cells by disruption of the mitochondrial membrane potential, induction of reactive oxygen species and lat