Science.gov

Sample records for melt pool coolability

  1. Nuclear reactor melt arrest and coolability device

    DOEpatents

    Theofanous, Theo G.; Dinh, Nam Truc; Wachowiak, Richard M.

    2016-06-14

    Example embodiments provide a Basemat-Internal Melt Arrest and Coolability device (BiMAC) that offers improved spatial and mechanical characteristics for use in damage prevention and risk mitigation in accident scenarios. Example embodiments may include a BiMAC having an inclination of less than 10-degrees from the basemat floor and/or coolant channels of less than 4 inches in diameter, while maintaining minimum safety margins required by the Nuclear Regulatory Commission.

  2. Melt coolability modeling and comparison to MACE test results

    SciTech Connect

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

    1992-04-01

    An important question in the assessment of severe accidents in light water nuclear reactors is the ability of water to quench a molten corium-concrete interaction and thereby terminate the accident progression. As part of the Melt Attack and Coolability Experiment (MACE) Program, phenomenological models of the corium quenching process are under development. The modeling approach considers both bulk cooldown and crust-limited heat transfer regimes, as well as criteria for the pool thermal hydraulic conditions which separate the two regimes. The model is then compared with results of the MACE experiments.

  3. Melt coolability modeling and comparison to MACE test results

    SciTech Connect

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

    1992-01-01

    An important question in the assessment of severe accidents in light water nuclear reactors is the ability of water to quench a molten corium-concrete interaction and thereby terminate the accident progression. As part of the Melt Attack and Coolability Experiment (MACE) Program, phenomenological models of the corium quenching process are under development. The modeling approach considers both bulk cooldown and crust-limited heat transfer regimes, as well as criteria for the pool thermal hydraulic conditions which separate the two regimes. The model is then compared with results of the MACE experiments.

  4. Crust formation and its effect on the molten pool coolability

    SciTech Connect

    Park, R.J.; Lee, S.J.; Sim, S.K.

    1995-09-01

    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  5. In-vessel coolability and retention of a core melt

    SciTech Connect

    Theofanous, T.G.; Liu, C.; Additon, S.

    1997-02-01

    The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. The technical treatment in this assessment includes: (a) new data on energy flow from either volumetrically heated pools or non-heated layers on top, boiling and critical heat flux in inverted, curved geometries, emissivity of molten (superheated) samples of steel, and chemical reactivity proof tests, (b) a simple but accurate mathematical formulation that allows prediction of thermal loads by means of convenient hand calculations, (c) a detailed model programmed on the computer to sample input parameters over the uncertainty ranges, and to produce probability distributions of thermal loads and margins for departure from nucleate boiling at each angular position on the lower head, and (d) detailed structural evaluations that demonstrate that departure from nucleate boiling is a necessary and sufficient criterion for failure. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is {open_quotes}physically unreasonable.{close_quotes} Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings.

  6. Coolability of a control rod which has melted and foamed in its septifoil channel

    SciTech Connect

    Walkowiak, D.A.

    1991-10-01

    During a Loss of Control Rod Cooling (LCRC) event, the control rods which are in the affected septifoil can be postulated to melt. Melting of a control rod which has been irradiated creates a special concern since the entrapped gases expand rapidly and cause the melt to manifest itself initially in a foamed state. The foamed material then contacts the septifoil outer housing and the inner septifoil web material, where heat is conducted out of the foamed material. A second concern relating to the foamed melt is that its thermal conductivity is greatly reduced from that of the solid material, and also that of the non-foamed liquid. The purpose of this report is to address how, even in the presence of decreased thermal conductivity, the foamed melt may aid in cooling the control rod material.

  7. The coolability limits of a reactor pressure vessel lower head

    SciTech Connect

    Theofanous, T.G.; Syri, S.

    1995-09-01

    Configuration II of the ULPU experimental facility is described, and from a comprehensive set of experiments are provided. The facility affords full-scale simulations of the boiling crisis phenomenon on the hemispherical lower head of a reactor pressure vessel submerged in water, and heated internally. Whereas Configuration I experiments (published previously) established the lower limits of coolability under low submergence, pool-boiling conditions, with Configuration II we investigate coolability under conditions more appropriate to practical interest in severe accident management; that is, heat flux shapes (as functions of angular position) representative of a core melt contained by the lower head, full submergence of the reactor pressure vessel, and natural circulation. Critical heat fluxes as a function of the angular position on the lower head are reported and related the observed two-phase flow regimes.

  8. Melt pool dynamics during selective electron beam melting

    NASA Astrophysics Data System (ADS)

    Scharowsky, T.; Osmanlic, F.; Singer, R. F.; Körner, C.

    2014-03-01

    Electron beam melting is a promising additive manufacturing technique for metal parts. Nevertheless, the process is still poorly understood making further investigations indispensable to allow a prediction of the part's quality. To improve the understanding of the process especially the beam powder interaction, process observation at the relevant time scale is necessary. Due to the difficult accessibility of the building area, the high temperatures, radiation and the very high scanning speeds during the melting process the observation requires an augmented effort in the observation equipment. A high speed camera in combination with an illumination laser, band pass filter and mirror system is suitable for the observation of the electron beam melting process. The equipment allows to observe the melting process with a high spatial and temporal resolution. In this paper the adjustment of the equipment and results of the lifetime and the oscillation frequencies of the melt pool for a simple geometry are presented.

  9. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  10. Thermocapillary convection in a melted pool during laser surface remelting

    NASA Astrophysics Data System (ADS)

    Morvan, D.; Bournot, Philippe; Garino, A.; Dufresne, Daniel

    1993-05-01

    The melted pools produced during some laser material processing (welding, surface treatment, etc.) are subjected to high convective motions which very significantly affect the thermal coupling between the laser beam and the working piece. This flow is produced by the surface tension gradient which results from the non-uniform temperature distribution at the free surface of the material. This physical phenomenon is known as the Marangoni or thermocapillary convection. The thermocapillary convection induces a strong mixing effect which reduces the gradients of any quantity transported in the melted material (such as temperature, composition, etc.). The shape factor of the melted pool, and therefore the free surface stability, are greatly modified by these convective motions. For some experimental conditions, distortions of the free surface could exist after resolidification, producing a rough state of the surface. We present in this paper a numerical simulation of thermocapillary convection in a melted pool produced by a stationary heat flux on a rectangular target (the resolution is limited to the 2-D problem). After a short presentation of the physical and mathematical model, the temperature fields and the streamlines obtained for various physical conditions are analyzed.

  11. Coolability of Particle Beds: Examination and Influence of Friction Laws

    SciTech Connect

    Schaefer, Patrick; Groll, Manfred; Schmidt, Werner; Widmann, Walter; Buerger, Manfred

    2004-07-01

    In the very unlikely case of a severe accident in a light water reactor, the core may melt and be relocated to the lower plenum of the reactor pressure vessel (RPV). In contact with residual water, the melt jet will fragment, and then settle as particulate debris. This may happen either in the RPV, or, after vessel failure, ex-vessel in the cavity. For safety analyses, it is important to investigate coolability limits (dryout phenomena) based on the vapour removal and various kinds of water inflow into the bed. Analyses based on one-dimensional top flooding configurations strongly underestimate the coolability of realistic multi-dimensional configurations, where lateral water access and water inflow via bottom regions are favoured. Adequate descriptions especially for the friction laws in co-, as well as in counter-current flow situations, are thus required in the codes. The DEBRIS experiments at IKE are especially designed to allow checking and elaboration of these local exchange laws. The necessity for explicit consideration of the interfacial drag is experimentally shown and applied in the WABE-2D code to a typical ex-vessel debris configuration. (authors)

  12. Remnants of Melt Pools and Melt Films Associated with Dewatering of Nominally Anhydrous Minerals in Lower Crustal Granite

    NASA Astrophysics Data System (ADS)

    Seaman, S. J.; Williams, M. L.

    2013-12-01

    Water locked in structural sites and in fluid inclusions in nominally anhydrous minerals in lower crustal granitoids may act as a flux for partial melting of these source rocks. Microtextural study of the 2.6 Ga Stevenson granite of the Athabasca Granulite Terrane of northern Saskatchewan shows that increasing intensity of deformation of the granite correlates with migration of water from within crystals to grain boundaries. Dark, ultrafine-grained, water-richer matrix material consisting of quartz, plagioclase, alkali feldspar and fine iron oxides are interpreted to be former melt films that resulted, at least in part, from fluxing by NAM-derived water. Melt films on the grain boundaries of plagioclase, potassium feldspar and quartz are approximately 20 microns wide. Melt pools are up to 100+ microns in diameter. Water in nominally anhydrous minerals has the potential to lower the solidus significantly enough to initiate partial melting in lower crustal granitoids at high ambient temperatures. 3000 ppm water in minerals that make up large volumes of crustal rocks (alkali feldspar, plagioclase feldspar, quartz) would lower the dry solidus of granite by 273oC at 1 GPa, for initiation of partial melting. Generation of small volumes of partial melt on grain boundaries may lead to further rock weakening and localization of further deformation.

  13. Geologic mapping and distribution of impact melt pools of the lunar crater Tycho

    NASA Astrophysics Data System (ADS)

    Krüger, Tim; Hiesinger, Harald; Howes van der Bogert, Carolyn

    2013-04-01

    We will present a new, detailed geological map of the lunar crater Tycho, as well as a map of all melt pools within our study area. Tycho crater is ~ 83 km in diameter and is located in the southern highlands on the nearside of the Moon. The distribution of melt pools and the new topographical analysis show evidence for an oblique impact from the southwest [1,2]. Our melt pool map also indicates that pre-existing topography affected the spatial distribution of melt pools [3].Crater size-frequency distribution (CSFD) model ages show discrepancies between absolute model ages of the ejecta blanket and the melt pools [4,5]. The apparent absolute model ages measured for melt pools at Tycho crater are younger than the ages of the ejecta blanket. The geological map shows that Tycho is a typical complex crater with a central peak, terraced crater walls and a continuous ejecta blanket [6]. The emplacement of melt pools has two major controlling factors: (1) the direction of the impact and (2) the pre-existing topography. Impact melt pools at Tycho are mostly located outside of the crater rim and are more or less evenly distributed around the crater, with the exception of the zone of avoidance related to the impactor path from the SW [1,2]. With increasing distance from the crater center, the melt pools tend to get smaller in size and less frequent. Melt pools with larger overall surface areas are clustered in the ENE and ESE of Tycho crater, likely influenced by preexisting topography. Oblique impacts often show, the most extensive melt deposits in the inferred downrange direction. Therefore, the distribution of the impact melt pools around Tycho is consistent with an oblique impact from the southwest. Absolute model ages derived from CSFD measurements of different melt pools give ages between 14.1 ± 1.4 Ma (Ncum(D ≥ 1 km) = 1.18 x 10-5) and 56.9 ± 5.1 Ma (Ncum(D ≥ 1 km) = 4.77 x 10-5), whereas our model age for the ejecta blanket is 73.5 ± 0.89 Ma (Ncum(D ≥ 1 km

  14. On heat transfer characteristics of real and simulant melt pool experiments

    SciTech Connect

    Dinh, T.N.; Nourgaliev R.R.; Sehgal, B.R.

    1995-09-01

    The paper presents results of analytical studies of natural convection heat transfer in scaled and/or simulant melt pool experiments related to the PWR in-vessel melt retention issue. Specific reactor-scale effects of a large decay-heated core melt pool in the reactor pressure vessel lower plenum are first reviewed, and then the current analytical capability of describing physical processes under prototypical situations is examined. Experiments and experimental approaches are analysed by focusing on their ability to represent prototypical situations. Calculations are carried out in order to assess the significance of some selected effects, including variations in melt properties, pool geometry and heating conditions. Rayleigh numbers in the present analysis are limited to 10{sup 12}, where uncertainties in turbulence modeling are not overriding other uncertainties. The effects of fluid Prandtl number on heat transfer to the lowermost part of cooled pool walls are examined for square and semicircular cavities. Calculations are performed also to explore limitations of using side-wall heating and direct electrical heating in reproducing the physical picture of interest. Needs for further experimental and analytical efforts are discussed as well.

  15. Key findings and remaining questions in the areas of core-concrete interaction and debris coolability

    DOE PAGES

    Farmer, M. T.; Gerardi, C.; Bremer, N.; ...

    2016-10-31

    The reactor accidents at Fukushima-Dai-ichi have rekindled interest in late phase severe accident behavior involving reactor pressure vessel breach and discharge of molten core melt into the containment. Two technical issues of interest in this area include core-concrete interaction and the extent to which the core debris may be quenched and rendered coolable by top flooding. The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) programs at Argonne National Laboratory included the conduct of large scale reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensionalmore » molten core-concrete interactions under both wet and dry cavity conditions. These tests provided a broad database to support accident management planning, as well as the development and validation of models and codes that can be used to extrapolate the experiment results to plant conditions. This paper provides a high level overview of the key experiment results obtained during the program. Finally, a discussion is also provided that describes technical gaps that remain in this area, several of which have arisen based on the sequence of events and operator actions during Fukushima.« less

  16. Key findings and remaining questions in the areas of core-concrete interaction and debris coolability

    SciTech Connect

    Farmer, M. T.; Gerardi, C.; Bremer, N.; Basu, S.

    2016-10-31

    The reactor accidents at Fukushima-Dai-ichi have rekindled interest in late phase severe accident behavior involving reactor pressure vessel breach and discharge of molten core melt into the containment. Two technical issues of interest in this area include core-concrete interaction and the extent to which the core debris may be quenched and rendered coolable by top flooding. The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) programs at Argonne National Laboratory included the conduct of large scale reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. These tests provided a broad database to support accident management planning, as well as the development and validation of models and codes that can be used to extrapolate the experiment results to plant conditions. This paper provides a high level overview of the key experiment results obtained during the program. Finally, a discussion is also provided that describes technical gaps that remain in this area, several of which have arisen based on the sequence of events and operator actions during Fukushima.

  17. Theoretical description of laser melt pool dynamics, Task order number B239634, Quarter 3 report

    SciTech Connect

    Dykhne, A.

    1995-05-10

    Melting of solid matter under laser radiation is realized in almost every process of laser technology. The present paper addresses melted material flows in cases when melt zones are shallow, i.e., the zone width is appreciably greater than or of the same order as its depth. Such conditions are usually realized when hardening, doping or perforating thin plates or when using none-deep penetration. Melted material flowing under conditions of deep penetration, drilling of deep openings and cutting depends on a number of additional factors (as compared to the shallow-pool case), namely, formation of a vapor and gas cavern in the sample and propagation of the laser beam through the cavern. These extra circumstances complicate hydrodynamic consideration of the liquid bath and will be addressed is the paper to follow.

  18. Natural Convection in a Stable Multi Layer Melt Pool with Volumetric Heat Generation

    SciTech Connect

    Sehgal, Bal Raj

    2004-07-01

    This paper describes the results obtained from several sets of experiments, performed over several years in the SIMECO facility a the NPS Division, KTH on natural convection in multi-layered liquid pools with volumetric heat generation in one or more layers. The safety issue, to which these experiments are directed, is that of the thermal loading on the reactor pressure vessel (RPV) wall due to corium melt pool convection in the lower head. Multi layer pools are considered due to the observations made in the RASPLAV (Asmolov et al., 1998) and the MASCA (Asmolov et al.,2003) experimental programs on convection of prototypic material (UO{sub 2}+ZrO{sub 2}+ZR+Fe) melt pools. The SIMECO is a slice facility of 1/8. scale and the corium melt simulants employed have been water, salt water, paraffin and molten salt. Cerrobend was employed as simulant for the metal layer. The implications of the experimental results on the accident management strategy of in-vessel retention, practiced for the Loviisa VVER-440, the Westinghouse's AP-600, AP- 1000, the Framatome's BWR-1000 and KEPCO's Advanced PWR-1400 reactors are discussed. (authors)

  19. Influence of Adapted Wavelengths on Temperature Fields and Melt Pool Geometry in Laser Transmission Welding

    NASA Astrophysics Data System (ADS)

    Schkutow, A.; Frick, T.

    Laser transmission welding is an established joining technology for the creation of strong, hermetic and aesthetic weld seams between thermoplastic parts. However, weld seam properties are strongly dependent on the optical properties of the materials involved. This paper investigates the wavelength-dependent absorption properties of polymeric materials and carbon black, their influence on temperature field generation and the resulting melt pool geometry in laser transmission welding. A FE simulation model is developed to examine the possibilities of influencing the temperature fields during contour and quasi-simultaneous laser transmission welding by adapting the wavelengths under consideration of the absorption and scattering properties. The application of laser wavelengths in the spectral range of 1400 nm to 2000 nm leads to modified temperature fields and melt pool geometries, which are expected to feature a better load-bearing capacity and a much improved gap-bridging capability.

  20. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    SciTech Connect

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

  1. Experimental study on flowing burning behaviors of a pool fire with dripping of melted thermoplastics.

    PubMed

    Xie, Qiyuan; Tu, Ran; Wang, Nan; Ma, Xin; Jiang, Xi

    2014-02-28

    The objective of this work is to quantitatively investigate the dripping-burning and flowing fire of thermoplastics. A new experimental setup is developed with a heating vessel and a T-trough. Hot thermoplastic liquids are generated in the vessel by electric heating. N2 gas is continuously injected into the vessel to avoid a sudden ignition of fuel in it. The detailed flowing burning behaviors of pool fire in the T-trough are analyzed through the measurements of the mass, heat flux and temperatures etc. The experimental results suggest that a continuous dripping of melted thermoplastic liquids in a nearly constant mass rate can be successfully made in the new setup. It also shows that the mass dripping rate of melted PS liquid is smaller than PP and PE since its large viscosity. In addition, the flame spread velocities of hot liquids of PS in the T-trough are also smaller than that of PP and PE because of its large viscosity. The mass burning rate of the PP and PE pool fire in T-trough are smaller than PS. Finally, considering the heating, melting, dripping and flowing burning behaviors of these polymers, it is suggested that the fire hazard of PE and PP are obviously higher than PS for their faster flowing burning.

  2. Wind tunnel experiments: cold-air pooling and atmospheric decoupling above a melting snow patch

    NASA Astrophysics Data System (ADS)

    Mott, R.; Paterna, E.; Horender, S.; Crivelli, P.; Lehning, M.

    2015-10-01

    The longevity of perennial snow fields is not fully understood but it is known that strong atmospheric stability and thus boundary layer decoupling limits the amount of (sensible and latent) heat that can be transmitted to the snow surface. The strong stability is typically caused by two factors, (i) the temperature difference between the (melting) snow surface and the near-surface atmosphere and (ii) cold-air pooling in topographic depressions. These factors are almost always a prerequisite for perennial snow fields to exist. For the first time, this contribution investigates the relative importance of the two factors in a controlled wind tunnel environment. Vertical profiles of sensible heat fluxes are measured using two-component hot wire and one-component cold-wire anemometry directly over the melting snow patch. The comparison between a flat snow surface and one that has a depression shows that atmospheric decoupling is strongly increased in the case of topographic sheltering but only for low to moderate wind speeds. For those conditions, the near-surface suppression of turbulent mixing was observed to be strongest and drainage flows were decoupled from the surface enhancing atmospheric stability and promoting the cold-air pooling over the single snow patch. Further work is required to systematically and quantitatively describe the flux distribution for varying terrain geometry, wind speeds and air temperatures.

  3. OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003.

    SciTech Connect

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. The Melt Coolability and Concrete Interaction (MCCI) program is pursuing separate effect tests to examine the viability of the melt coolability mechanisms identified as part of the MACE program. These mechanisms include bulk cooling, water ingression, volcanic eruptions, and crust breach. At the second PRG meeting held at ANL on 22-23 October 2002, a preliminary design1 for a separate effects test to investigate the melt eruption cooling mechanism was presented for PRG review. At this meeting, NUPEC made several recommendations on the experiment approach aimed at optimizing the chances of achieving a floating crust boundary condition in this test. The principal recommendation was to incorporate a mortar sidewall liner into the test design, since data from the COTELS experiment program indicates that corium does not form a strong mechanical bond with this material. Other recommendations included: (i) reduction of the electrode elevation to well below the melt upper surface elevation (since the crust may bond to these solid surfaces), and (ii) favorably taper the mortar liner to facilitate crust detachment and relocation during the experiment. Finally, as a precursor to implementing these modifications, the PRG recommended the development of a design for a small-scale scoping test intended to verify the ability of the mortar liner to preclude formation of an anchored bridge crust under core-concrete interaction conditions. This revised Melt Eruption Test (MET) plan is intended to

  4. Wind tunnel experiments: cold-air pooling and atmospheric decoupling above a melting snow patch

    NASA Astrophysics Data System (ADS)

    Mott, Rebecca; Paterna, Enrico; Horender, Stefan; Crivelli, Philip; Lehning, Michael

    2016-02-01

    The longevity of perennial snowfields is not fully understood, but it is known that strong atmospheric stability and thus boundary-layer decoupling limit the amount of (sensible and latent) heat that can be transmitted from the atmosphere to the snow surface. The strong stability is typically caused by two factors, (i) the temperature difference between the (melting) snow surface and the near-surface atmosphere and (ii) cold-air pooling in topographic depressions. These factors are almost always a prerequisite for perennial snowfields to exist. For the first time, this contribution investigates the relative importance of the two factors in a controlled wind tunnel environment. Vertical profiles of sensible heat and momentum fluxes are measured using two-component hot-wire and one-component cold-wire anemometry directly over the melting snow patch. The comparison between a flat snow surface and one that has a depression shows that atmospheric decoupling is strongly increased in the case of topographic sheltering but only for low to moderate wind speeds. For those conditions, the near-surface suppression of turbulent mixing was observed to be strongest, and the ambient flow was decoupled from the surface, enhancing near-surface atmospheric stability over the single snow patch.

  5. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    NASA Astrophysics Data System (ADS)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  6. Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances

    NASA Astrophysics Data System (ADS)

    Pinkerton, Andrew J.; Li, Lin

    2004-07-01

    The additive manufacturing technique of laser direct metal deposition allows multiple tracks of full density metallic material to be built to form complex parts for rapid tooling and manufacture. Practical results and theoretical models have shown that the geometries of the tracks are governed by multiple factors. Original work with single layer cladding identified three basic clad profiles but, so far, models of multiple layer, powder-feed deposition have been based on only two of them. At higher powder mass flow rates, experimental results have shown that a layer's width can become greater than the melt pool width at the substrate surface, but previous analytical models have not been able to accommodate this. In this paper, a model based on this third profile is established and experimentally verified. The model concentrates on mathematical analysis of the melt pool and establishes mass and energy balances based on one-dimensional heat conduction to the substrate. Deposition track limits are considered as arcs of circles rather than of ellipses, as used in most established models, reflecting the dominance of surface tension forces in the melt pool, and expressions for elongation of the melt pool with increasing traverse speed are incorporated. Trends in layer width and height with major process parameters are captured and predicted layer dimensions correspond well to the experimental values.

  7. The Role of Lug Preheating, Melt Pool Temperature, and Lug Entrance Delay on the Cast-on-Strap Joining Process

    NASA Astrophysics Data System (ADS)

    Pahlavan, Sohrab; Nikpour, Saman; Mirjalili, Mostafa; Alagheband, Ali; Azimi, Mohammadyousef; Taji, Iman

    2017-07-01

    This work deals with effective parameters in the cast-on-strap (COS) process during which grid lugs of a lead-acid battery are joined together by a strap. The effects of lug preheating, melt pool temperature, and lug entrance delay on the quality of joints and casting defects were investigated. Lug preheating was found to propitiously reduce joint internal voids because of flux elimination. Its adverse effect on lowering lug wettability, however, made it unfavorable under the experimental conditions. The melt pool temperature also showed a two-sided effect depending on the process conditions. Raising the temperature increases the strap melt fluidity, which improves the joint contact area; however, it has a negative effect on lug wettability by flux evaporation. Besides, higher temperatures cause more lug back-melting and, hence, lower relative contact lengths. Therefore, an intermediate temperature of 683 K (410 °C) was found to make the most proper condition. Moreover, the case at which the lugs enter the mold coincident with its filling by the melt rendered the best joint quality. In this condition, the melt flows through the interlug spaces, which helps the voids to escape, resulting in the better joint interface. As the conclusion, the lug entrance time has the most effective role on joint quality, considering that lug preheating does not show any improving effect.

  8. Ex-vessel melt-coolant interactions in deep water pool: Studies and accident management for Swedish BWRs

    SciTech Connect

    Sienicki, J.J.; Chu, C.C.; Spencer, B.W.; Frid, W.; Loewenhielm, G.

    1993-01-01

    In Swedish BWRs having an annular suppression pool, the lower drywell beneath the reactor vessel is flooded with water to mitigate against the effects of melt release into the drywell during a severe accident. The THIRMAL code has been used to analyze the effectiveness of the water pool to protect lower drywell penetrations by fragmenting and quenching the melt as it relocates downward through the water. Experiments have also been performed to investigate the benefits of adding surfactants to the water to reduce the likelihood of fine-scale debris formation from steam explosions. This paper presents an overview of the accident management approach and surfactant investigations together with results from the THIRMAL analyses.

  9. Effect of pool rotation on three-dimensional flow in a shallow annular pool of silicon melt with bidirectional temperature gradients

    NASA Astrophysics Data System (ADS)

    Zhang, Quan-Zhuang; Peng, Lan; Wang, Fei; Liu, Jia

    2016-08-01

    In order to understand the effect of pool rotation on silicon melt flow with the bidirectional temperature gradients, we conducted a series of unsteady three-dimensional (3D) numerical simulations in a shallow annular pool. The bidirectional temperature gradients are produced by the temperature difference between outer and inner walls as well as a constant heat flux at the bottom. Results show that when Marangoni number is small, a 3D steady flow is common without pool rotation. But it bifurcates to a 3D oscillatory flow at a low rotation Reynolds number. Subsequently, the flow becomes steady and axisymmetric at a high rotation Reynolds number. When the Marangoni number is large, pool rotation can effectively suppress the temperature fluctuation on the free surface, meanwhile, it improves the flow stability. The critical heat flux density diagrams are mapped, and the effects of radial and vertical temperature gradients on the flow are discussed. Additionally, the transition process from the flow dominated by the radial temperature gradient to the one dominated by the vertical temperature gradient is presented.

  10. Modeling and simulation of anode melting pool flow under the action of high-current vacuum arc

    SciTech Connect

    Wang Lijun; Jia Shenli; Liu Yu; Chen Bin; Yang Dingge; Shi Zongqian

    2010-06-15

    In this paper, a transient magnetohydrodynamic (MHD) model of an anode melting pool (AMP) flow (AMPF) is established. Mass equation, momentum equations along axial, radial and azimuthal directions, energy equation, and current continuity equations are considered in the model. In the momentum equations, the influence of electromagnetic force, viscosity force and Marangoni force (anode surface shear stress) are included. Joule heating is also included in the energy equations. According to the MHD model of AMPF, the influence of different heat flux densities to melting pool flow velocities (including azimuthal, radial, and axial velocity), anode temperature, fraction of liquid, melting depth, melting radius, and anode vapor flux will be analyzed. In the AMP, the azimuthal velocity is dominant, whose value approximately approaches velocity magnitude, the radial velocity is much smaller than azimuthal velocity, and the axial velocity is the smallest one compared with radial and azimuthal velocity. According to simulation results, anode surface temperature, melting width, melting depth, and anode vapor flux are increased with the increase in heat flux densities, but the increase in azimuthal velocity is not significant. Simulation results also show that the maximum anode temperature appears near 6.5-7 ms (50 Hz), but the maximum velocity of AMPF appears near 8-10 ms, which is in agreement with the experimental observation. Simulation result of AMPF swirl velocity (about 0.4 m/s) is approximately close to experimental result (about 0.6 m/s) based on high-speed camera data. Simulation results also show that the influence of joule heating and radiation on anode temperature can be neglected. The influence of Marangoni force on AMPF is significant.

  11. Transient dissolution of a steel structure in an aluminum melt pool

    SciTech Connect

    Cheung, F.B.; Yang, B.C.; Cho, D.H.; Tan, M.J.

    1992-12-31

    A numerical model is developed to describe the process of transient dissolution of the interior surface of a reactor bottom head in a pool of molten aluminum resulting from a severe core meltdown accident. The model accounts for the transient heat conduction in the steel structure, the mass transfer due to dissolution, and the time variations of the bulk pool temperature and concentration. Results indicate that over the range of accident conditions considered in the study, the bulk pool always attains a saturated state while the interface temperature approaches an asymptotic value. Once this saturated state is achieved, no further dissolution would take place. For a given pool inventory, the critical time for achieving the saturated state is found to be a function of the Nusselt number and the dissolution coefficient. On the other hand, the fraction of the steel structure that is dissolved before reaching the saturated state is a function of the Nusselt number alone.

  12. X-Ray and Optical Videography for 3D Measurement of Capillary and Melt Pool Geometry in Laser Welding

    NASA Astrophysics Data System (ADS)

    Boley, M.; Abt, F.; Weber, R.; Graf, T.

    This paper describes a method to reconstruct the 3D shape of the melt pool and the capillary of a laser keyhole welding process. Three different diagnostic methods, including X-Ray and optical videography as well as metallographic cross sections are combined to gain the three dimensional data of the solidus-liquidus-surface. A detailed description of the experimental setup and a discussion of different methods to combine the 2D data sets of the three different diagnostic methods to a 3D-model will be given. The result will be a static 3D description of the welding process.

  13. Coolability of stratified UO/sub 2/ debris in sodium with downward heat removal: The D13 experiment

    SciTech Connect

    Ottinger, C.A.; Mitchell, G.W.; Reed, A.W.; Meister, H.

    1987-03-01

    The LMFBR Debris Coolability Program at Sandia National Laboratories investigates the coolability of particle beds that may form following a severe accident involving core disassembly in a nuclear reactor. The D series experiments utilize fission heating of fully enriched UO/sub 2/ particles submerged in sodium to realistically simulate decay heating. The D13 experiment is the first in the series to study the effects of bottom cooling of stratified debris, which could be provided in an actual accident condition by structural materials onto which the debris might settle. Additionally, the D13 experiment was designed to achieve maximum temperatures in the debris approaching the melting point of UO/sub 2/. The experiment was operated for over 40 hours and investigated downward heat removal at specific powers of 0.22 to 2.58 W/g. Channeled dryout in the debris was achieved at powers from 0.94 to 2.58 W/g. Maximum temperatures approaching 2700/sup 0/C were attained. Bottom heat removal was up to 750 kW/m/sup 2/ as compared to 450 kW/m/sup 2/ in the D10 experiment.

  14. D10 experiment: coolability of UO/sub 2/ debris in sodium with downward heat removal. [LMFBR

    SciTech Connect

    Mitchell, G.W.; Ottinger, C.A.; Meister, H.

    1984-12-01

    The LMFBR Debris Coolability Program at Sandia National Laboratories investigates the coolability of particle beds which may form following a severe accident involving core disassembly in a nuclear reactor. The D series experiments utilize fission heating of fully enriched UO/sub 2/ particles submerged in sodium to realistically simulate decay heating. The D10 experiment is the first in the series to study the effects of bottom cooling of the debris that could be provided in an actual accident condition by structural materials onto which the debris might settle. Additionally, the D10 experiment was designed to achieve maximum temperatures in the debris approaching the melting point of UO/sub 2/. The experiment was successfully operated for over 50 hours and investigated downward heat removal in a packed bed at specific powers of 0.16 to 0.58 W/g. Dryout in the debris was achieved at powers from 0.42 to 0.58 W/g. Channels were induced in the bed and channeled bed dryout was achieved at powers of 1.06 to 1.77 W/g. Maximum temperatures in excess of 2500/sup 0/C were attained.

  15. Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: Evidence from olivine-hosted melt inclusions and glasses

    NASA Astrophysics Data System (ADS)

    Shaw, Alison M.; Behn, Mark D.; Humphris, Susan E.; Sohn, Robert A.; Gregg, Patricia M.

    2010-01-01

    We present new analyses of volatile, major, and trace elements for a suite of glasses and melt inclusions from the 85°E segment of the ultra-slow spreading Gakkel Ridge. Samples from this segment include limu o pele and glass shards, proposed to result from CO 2-driven explosive activity. The major element and volatile compositions of the melt inclusions are more variable and consistently more primitive than the glass data. CO 2 contents in the melt inclusions extend to higher values (167-1596 ppm) than in the co-existing glasses (187-227 ppm), indicating that the melt inclusions were trapped at greater depths. These melt inclusions record the highest CO 2 melt concentrations observed for a ridge environment. Based on a vapor saturation model, we estimate that the melt inclusions were trapped between seafloor depths (˜ 4 km) and ˜ 9 km below the seafloor. However, the glasses are all in equilibrium with their eruption depths, which is inconsistent with the rapid magma ascent rates expected for explosive activity. Melting conditions inferred from thermobarometry suggest relatively deep (25-40 km) and cold (1240°-1325 °C) melting conditions, consistent with a thermal structure calculated for the Gakkel Ridge. The water contents and trace element compositions of the melt inclusions and glasses are remarkably homogeneous; this is an unexpected result for ultra-slow spreading ridges, where magma mixing is generally thought to be less efficient based on the assumption that steady-state crustal magma chambers are absent in these environments. All melts can be described by a single liquid line of descent originating from a pooled melt composition that is consistent with the aggregate melt calculated from a geodynamic model for the Gakkel Ridge. These data suggest a model in which deep, low degree melts are efficiently pooled in the upper mantle (9-20 km depth), after which crystallization commences and continues during ascent and eruption. Based on our melting model

  16. Studies on in-vessel debris coolability in ALPHA program

    SciTech Connect

    Maruyama, Yu; Yamano, Norihiro; Moriyama, Kiyofumi

    1997-02-01

    In-vessel debris coolability experiments have been performed in ALPHA Program at JAERI. Aluminum oxide (Al{sub 2}O{sub 3}) produced by a thermite reaction was applied as a debris simulant. Two scoping experiments using approximately 30 kg or 50 kg of Al{sub 2}O{sub 3} were conducted. In addition to post-test observations, temperature histories of the debris simulant and the lower head experimental vessel were evaluated. Rapid temperature reduction observed on the outer surface of the experimental vessel may imply that water penetration into a gap between the solidified debris and the experimental vessel occurred resulting in an effective cooling of once heated vessel wall. Preliminary measurement of a gap width was made with an ultrasonic device. Signals to show the existence of gaps, ranging from 0.7 mm to 1.4 mm, were detected at several locations.

  17. Evidence for deep pooling of low degree melts from volatile, major, and trace element chemistry of olivine-hosted melt inclusions and glasses from the ultra-slow spreading Gakkel Ridge

    NASA Astrophysics Data System (ADS)

    Shaw, A. M.; Behn, M. D.; Humphris, S. E.; Reves-Sohn, R. A.; Gregg, P. M.

    2009-12-01

    We present new analyses of volatiles and major elements for a suite of glasses and melt inclusions from ~85°E on the ultra-slow spreading Gakkel Ridge. The major element and volatile compositions of the melt inclusions are more variable and consistently more primitive than the glass data. CO2 contents in the melt inclusions extend to higher values (167-1596 ppm) than in the co-existing glasses (187-227 ppm), indicating that the melt inclusions were trapped at greater depths. Based on a vapor saturation model, we estimate that the melt inclusions were trapped between seafloor depths (~4 km) and ~9 km below seafloor, as compared to the glasses, which are all in equilibrium with their eruption depths. Melting conditions inferred from thermobarometry suggest relatively deep (25-40 km), cold (1240°-1325°C) melting conditions, consistent with the calculated thermal structure for the ultra-slow spreading Gakkel Ridge. The water contents and trace element compositions of the melt inclusions and glasses are remarkably homogeneous, an unexpected result for ultra-slow spreading environments where wide geochemical diversity is anticipated. Moreover, all melts can be described by a single liquid line of descent originating from a pooled melt composition that is consistent with the aggregate melt calculated from a thermal model for the Gakkel Ridge. These data suggest a model in which deep, low degree melts are efficiently pooled near the top of the melting column (9-20 km depth), after which crystallization commences and continues during ascent and eruption of the magma. Based on this melting model and the assumption that CO2 is perfectly incompatible, we show that the highest CO2 concentrations of the melt inclusions (~1600 ppm) are consistent with calculated CO2 concentrations of primary undegassed melts and yield a MORB source mantle CO2 content of ~90 ppm. This value is slightly lower than that inferred from the highest measured CO2/Nb ratio of Gakkel Ridge melt

  18. Characterization of melting level clouds over the tropical western pacific warm pool

    SciTech Connect

    Jensen, M.; Johnson, K.; Billings, J.; Troyan, D.; Long, C.; Comstock, J.

    2010-03-15

    A cursory examination of historical ARSCL data indicates a common cloud feature in the tropics are thin detrainment shelves (Attendant Shelf Clouds, or ASCs) near the melting level (see figure for example). We use the ARSCL product to identify ASCs by defining them as cloud layers with bases above 4 km, a corresponding top below 6 km, and a thickness of less than 1 km. In order to prevent biases in determination of the diurnal cycle of cloud occurrence, we require that both the MMCR and MPL are operating well. In this study we use a total of 55 months of data collected over 14 years of deployments at the Manus, Nauru, and Darwin ARM sites in the Tropical Western Pacific to define the frequency of occurrence (~ 14% of the time) and diurnal cycle of these clouds, along with the atmospheric thermodynamic profile. We further investigate the horizontal extent, cloud radiative forcing, and cloud particle phase through a series of “golden cases” where there is a general absence of additional cloud types in the column and nearby deep convection. These cases indicate that the clouds can cover horizontal areas on the order of a GCM gridbox, have significant (but not always) cloud radiative forcing, and may be composed of liquid or ice water.

  19. VAPORIZATION OF ELEMENTAL MERCURY FROM POOLS OF MOLTEN LEAD AT LOW CONCENTRATIONS.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    Should coolant accidentally be lost to the APT (Accelerator Production of Tritium) blanket and target, and the decay heat in the target be deposited in the surrounding blanket by thermal radiation, temperatures in the blanket modules could exceed structural limits and cause a physical collapse of the blanket modules into a non-coolable geometry. Such a sequence of unmitigated events could result in some melting of the APT blanket and create the potential for the release of mercury into the target-blanket cavity air space. Experiments were conducted which simulate such hypothetical accident conditions in order to measure the rate of vaporization of elemental mercury from pools of molten lead to quantify the possible severe accident source term for the APT blanket region. Molten pools of from 0.01% to 0.10% mercury in lead were prepared under inert conditions. Experiments were conducted, which varied in duration from several hours to as long as a month, to measure the mercury vaporization from the lead pools. The melt pools and gas atmospheres were held fixed at 340 C during the tests. Parameters which were varied in the tests included the mercury concentration, gas flow rate over the melt and agitation of the melt, gas atmosphere composition and the addition of aluminum to the melt. The vaporization of mercury was found to scale roughly linearly with the concentration of mercury in the pool. Variations in the gas flow rates were not found to have any effect on the mass transfer, however agitation of the melt by a submerged stirrer did enhance the mercury vaporization rate. The rate of mercury vaporization with an argon (inert) atmosphere was found to exceed that for an air (oxidizing) atmosphere by as much as a factor of from ten to 20; the causal factor in this variation was the formation of an oxide layer over the melt pool with the air atmosphere which served to retard mass transfer across the melt-atmosphere interface. Aluminum was introduced into the melt to

  20. Quenching behavior of molten pool with different strategies – A review

    SciTech Connect

    Shrikant, Pandel, U.; Duchaniya, R. K.; Nayak, A. K.

    2016-05-06

    After the major severe accident in nuclear reactor, there has been lot of concerns regarding long term core melt stabilization following a severe accident in nuclear reactors. Numerous strategies have been though for quenching and stabilization of core melt like top flooding, bottom flooding, indirect cooling, etc. However, the effectiveness of these schemes is yet to be determined properly, for which, lot of experiments are needed. Several experiments have been performed for coolability of melt pool under bottom flooding as well as for indirect cooling. Besides these tests are very scattered because they involve different simulants material initial temperatures and masses of melt, which makes it very complex to judge the effectiveness of a particular technique and advantage over the other. In this review paper, a study has been carried on different cooling techniques of simulant materials with same mass. Three techniques have been compared here and the results are discussed. Under top flooding technique it took several hours to cool the melt under without decay heat condition. In bottom flooding technique was found to be the best technique among in indirect cooling technique, top flooded technique, and bottom flooded technique.

  1. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments

    NASA Astrophysics Data System (ADS)

    Yuan, Pengpeng; Gu, Dongdong

    2015-01-01

    Simulation of temperature evolution and thermal behaviour of the molten pool during selective laser melting (SLM) of TiC/AlSi10Mg nanocomposites was performed, using a finite volume method. Some important physical phenomena, such as a transition from powder to solid, nonlinearities produced by temperature-dependent material properties and fluid flow, were taken into account in the calculation. The effects of Marangoni convection and SLM processing parameters, such as laser power and scan speed, on temperature evolution behaviour, molten pool dimensions and liquid lifetime were thoroughly investigated. The simulation results showed that Marangoni convection played a crucial role in intensifying the convective heat transfer and changing the molten pool geometry. The temperature of laser-powder interaction zone, the molten pool dimensions and liquid lifetime increased with increasing laser power or decreasing scan speed. The maximum temperature gradient within the molten pool increased significantly with increasing the applied laser power, but increased slightly as a higher scan speed was applied. The experimental study on the interlayer bonding and densification behaviour and the surface morphologies and balling effect of the SLM-processed TiC/AlSi10Mg nanocomposites parts was performed. The experimental results validated the thermal behaviour and underlying physical mechanism of the molten pool obtained in the simulations.

  2. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    SciTech Connect

    M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

    2005-04-26

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

  3. In-vessel coolability and retention of a core melt. Volume 2

    SciTech Connect

    Theofanous, T.G.; Liu, C.; Additon, S.; Angelini, S.; Kymaelaeinen, O.; Salmassi, T.

    1996-10-01

    The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is physically unreasonable. Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings. The AP600 is particularly favorable to in-vessel retention. Some ideas to enhance the assessment basis as well as performance in this respect, for applications to larger and/or higher power density reactors are also provided.

  4. In-vessel coolability and retention of a core melt. Volume 1

    SciTech Connect

    Theofanous, T.G.; Liu, C.; Additon, S.; Angelini, S.; Kymaelaeinen, O.; Salmassi, T.

    1996-10-01

    The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is physically unreasonable. Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings. The AP600 is particularly favorable to in-vessel retention. Some ideas to enhance the assessment basis as well as performance in this respect, for applications to larger and/or higher power density reactors are also provided.

  5. Investigation of the coolability of a continuous mass of relocated debris to a water-filled lower plenum. Technical report

    SciTech Connect

    Rempe, J.L.; Wolf, J.R.; Chavez, S.A.; Condie, K.G.; Hagrman, D.L.; Carmack, W.J.

    1994-09-01

    This report documents work performed to support the development of an analytical and experimental program to investigate the coolability of a continuous mass of debris that relocates to a water-filled lower plenum. The objective of this program is to provide an adequate data base for developing and validating a model to predict the coolability of a continuous mass of debris relocating to a water-filled lower plenum. The model must address higher pressure scenarios, such as the TMI-2 accident, and lower pressure scenarios, which recent calculations indicate are more likely for most operating LWR plants. The model must also address a range of possible debris compositions.

  6. Melting Point

    NASA Image and Video Library

    2015-03-06

    Impact crater floors are commonly flat and relatively smooth, the result of the cooling and solidification of impact melt generated by the impact event itself. Often, the pool of impact melt cracks as it cools, a process well illustrated by the striking Abedin crater. Although not visible in the frame above, this crater also hosts cooling cracks on its floor. It also boasts numerous terraces along its inner wall, which likely formed after the impact melt solidified. Note how the fine-grained texture of the inner walls contrasts with the crater's floor. http://photojournal.jpl.nasa.gov/catalog/PIA19231

  7. Ex-Vessel Core Melt Modeling Comparison between MELTSPREAD-CORQUENCH and MELCOR 2.1

    SciTech Connect

    Robb, Kevin R.; Farmer, Mitchell; Francis, Matthew W.

    2014-03-01

    System-level code analyses by both United States and international researchers predict major core melting, bottom head failure, and corium-concrete interaction for Fukushima Daiichi Unit 1 (1F1). Although system codes such as MELCOR and MAAP are capable of capturing a wide range of accident phenomena, they currently do not contain detailed models for evaluating some ex-vessel core melt behavior. However, specialized codes containing more detailed modeling are available for melt spreading such as MELTSPREAD as well as long-term molten corium-concrete interaction (MCCI) and debris coolability such as CORQUENCH. In a preceding study, Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Melt Spreading and Core-Concrete Interaction Analyses with MELTSPREAD and CORQUENCH, the MELTSPREAD-CORQUENCH codes predicted the 1F1 core melt readily cooled in contrast to predictions by MELCOR. The user community has taken notice and is in the process of updating their systems codes; specifically MAAP and MELCOR, to improve and reduce conservatism in their ex-vessel core melt models. This report investigates why the MELCOR v2.1 code, compared to the MELTSPREAD and CORQUENCH 3.03 codes, yield differing predictions of ex-vessel melt progression. To accomplish this, the differences in the treatment of the ex-vessel melt with respect to melt spreading and long-term coolability are examined. The differences in modeling approaches are summarized, and a comparison of example code predictions is provided.

  8. Swimming Pools.

    ERIC Educational Resources Information Center

    Ministry of Housing and Local Government, London (England).

    Technical and engineering data are set forth on the design and construction of swimming pools. Consideration is given to site selection, pool construction, the comparative merits of combining open air and enclosed pools, and alternative uses of the pool. Guidelines are presented regarding--(1) pool size and use, (2) locker and changing rooms, (3)…

  9. Swimming Pools.

    ERIC Educational Resources Information Center

    Ministry of Housing and Local Government, London (England).

    Technical and engineering data are set forth on the design and construction of swimming pools. Consideration is given to site selection, pool construction, the comparative merits of combining open air and enclosed pools, and alternative uses of the pool. Guidelines are presented regarding--(1) pool size and use, (2) locker and changing rooms, (3)…

  10. Experimental and Numerical Investigations on Debris Bed Coolability in a Multidimensional and Homogeneous Configuration with Volumetric Heat Source

    SciTech Connect

    Atkhen, Kresna; Berthoud, Georges

    2003-06-15

    Within the framework of severe reactor accident studies, we present experimental and numerical parametric studies on debris bed coolability. Data are provided by the SILFIDE multidimensional experimental facility at Electricite de France. The bed is composed of inductively heated steel sphere beads (diameters ranging from 2 to 7.18 mm) contained in a 50- x 60- x 10-cm vessel. Numerical computations are obtained with MC3D REPO developed by Commissariat a l'Energie Atomique.Because of heterogeneous power distribution within the bed, two definitions (mean and local) for the critical heat flux (CHF) are proposed. Even in the first case, the CHF was higher than the Lipinsky one-dimensional flux. As the power is being increased, temperature plateaus above saturation temperature are observed. An analysis is proposed, based on possible different hydrodynamic flow configurations occurring in postdryout regimes. In some experiments, some spheres were superficially molten and stacked together, but globally, the bed was still coolable.The influence of operational parameters such as bottom coolant injection, height of the water, fluidization of upper particles, and subcooled liquid injection on dryout phenomena and CHF values are also described.The MC3D-REPO calculations assuming a thermal equilibrium between the three phases gives results in accordance with experimental data.

  11. Exciting Pools

    ERIC Educational Resources Information Center

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  12. Welding pool measurement using thermal array sensor

    NASA Astrophysics Data System (ADS)

    Cho, Chia-Hung; Hsieh, Yi-Chen; Chen, Hsin-Yi

    2015-08-01

    Selective laser melting (SLM) is an additive manufacturing (AM) technology that uses a high-power laser beam to melt metal powder in chamber of inert gas. The process starts by slicing the 3D CAD data as a digital information source into layers to create a 2D image of each layer. Melting pool was formed by using laser irradiation on metal powders which then solidified to consolidated structure. In a selective laser melting process, the variation of melt pool affects the yield of a printed three-dimensional product. For three dimensional parts, the border conditions of the conductive heat transport have a very large influence on the melt pool dimensions. Therefore, melting pool is an important behavior that affects the final quality of the 3D object. To meet the temperature and geometry of the melting pool for monitoring in additive manufacturing technology. In this paper, we proposed the temperature sensing system which is composed of infrared photodiode, high speed camera, band-pass filter, dichroic beam splitter and focus lens. Since the infrared photodiode and high speed camera look at the process through the 2D galvanometer scanner and f-theta lens, the temperature sensing system can be used to observe the melting pool at any time, regardless of the movement of the laser spot. In order to obtain a wide temperature detecting range, 500 °C to 2500 °C, the radiation from the melting pool to be measured is filtered into a plurality of radiation portions, and since the intensity ratio distribution of the radiation portions is calculated by using black-body radiation. The experimental result shows that the system is suitable for melting pool to measure temperature.

  13. Fukushima Daiichi Unit 1 ex-vessel prediction: Core melt spreading

    SciTech Connect

    Farmer, M. T.; Robb, K. R.; Francis, M. W.

    2016-10-31

    Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis has been carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input. MELTSPREAD was then used to predict the spatially-dependent melt conditions and extent of spreading during relocation from the vessel. Lastly, this information was then used as input for the long-term debris coolability analysis with CORQUENCH that is reported in a companion paper.

  14. Fukushima Daiichi Unit 1 ex-vessel prediction: Core melt spreading

    DOE PAGES

    Farmer, M. T.; Robb, K. R.; Francis, M. W.

    2016-10-31

    Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis has been carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input.more » MELTSPREAD was then used to predict the spatially-dependent melt conditions and extent of spreading during relocation from the vessel. Lastly, this information was then used as input for the long-term debris coolability analysis with CORQUENCH that is reported in a companion paper.« less

  15. Pool Purification

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Caribbean Clear, Inc. used NASA's silver ion technology as a basis for its automatic pool purifier. System offers alternative approach to conventional purification chemicals. Caribbean Clear's principal markets are swimming pool owners who want to eliminate chlorine and bromine. Purifiers in Caribbean Clear System are same silver ions used in Apollo System to kill bacteria, plus copper ions to kill algae. They produce spa or pool water that exceeds EPA Standards for drinking water.

  16. Microscopy of Si films during laser melting

    SciTech Connect

    Lemons, R.A.; Boesch, M.A.

    1982-04-15

    By using an optical microscope to directly observe thin Si films as they are melted with a cw argon laser beam, the crystallization process can be better understood. In an environment containing oxygen, stable filaments of solid silicon precipitate from the molten pool at low laser power. The surrounding melt may contain dissolved oxygen which reduces the melting point, allowing the liquid and solid to coexist. As laser power is increased a uniform molten pool is achieved. In emitted light the pool is dark compared to the surrounding solid due to the melt's low emissivity. The spectrum of this emitted thermal radiation accurately fits the Planck law at 1740 /sup 0/K, confirming the temperature of the melt.

  17. ECOKATS-2: A Large Scale Experiment on Melt Spreading and Subsequent Cooling by Top Flooding

    SciTech Connect

    Alsmeyer, H.; Cron, T.; Messemer, G.; Haefner, W.

    2004-07-01

    Spreading of a melt and subsequent top flooding are investigated in a large scale experiment, using a 2 m by 2 m concrete cavity that is filled with 3200 kg high temperature steel and oxide melt. During the first phase of intense concrete erosion, the surface of the spread melt is flooded with coolant water. The interaction of melt and coolant water is mild and does not produce energetic interactions. A closed surface crust is formed that is strictly anchored to the concrete sidewalls. Efficient cooling through formation of an upper crust with high porosity is restricted to the upper 4 cm of the original melt. The contribution of volcanic eruptions to coolability is small, as no loose particles were ejected. The bulk of the oxide melt and the iron layer at the bottom are not cooled by water ingression from the top. With respect to reactor application it is concluded that top flooding alone is unlikely to stop concrete erosion through deeper corium melts. (authors)

  18. Method and apparatus for melting glass batch

    DOEpatents

    Fassbender, Alexander G.; Walkup, Paul C.; Mudge, Lyle K.

    1988-01-01

    A glass melting system involving preheating, precalcining, and prefluxing of batch materials prior to injection into a glass furnace. The precursors are heated by convection rather than by radiation in present furnaces. Upon injection into the furnace, batch materials are intimately coated with molten flux so as to undergo or at least begin the process of dissolution reaction prior to entering the melt pool.

  19. Method for the melting of metals

    DOEpatents

    White, Jack C.; Traut, Davis E.

    1992-01-01

    A method of quantitatively determining the molten pool configuration in melting of metals. The method includes the steps of introducing hafnium metal seeds into a molten metal pool at intervals to form ingots, neutron activating the ingots and determining the hafnium location by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  20. Three dimensional model of melting and crystallization kinetics during laser cladding process

    NASA Astrophysics Data System (ADS)

    Mirzade, F. K.; Khomenko, M. D.; Niziev, V. G.; Grishaev, R. V.; Panchenko, V. Y.

    2012-01-01

    Unsteady heat transfer with simultaneous melting and crystallization at laser cladding process with coaxial metal powder injection is investigated numerically. Numerical modeling determined that the main parameters that govern melt pool dynamics and system maximum temperature are mass feed rate, laser power and scanning speed. Also it is determined that taking in to account the kinetics of phase change results in melt pool boundary and melting temperature mismatch. Dimensions of melted zone and cladding height are compared with experimental data.

  1. Impact Melt in Small Lunar Highlands Craters

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Cintala, M. J.; Robinson, M. S.; Barnouin, O.; Hawke, B. R.

    2011-01-01

    Impact-melt deposits are a typical characteristic of complex impact craters, occurring as thick pools on the crater floor, ponds on wall terraces, veneers on the walls, and flows outside and inside the rim. Studies of the distribution of impact melt suggested that such deposits are rare to absent in and around small (km to sub-km), simple impact craters. noted that the smallest lunar crater observed with impact melt was approximately 750 m in diameter. Similarly, theoretical models suggest that the amount of melt formed is a tiny fraction (<1%) of the total crater volume and thus significant deposits would not be expected for small lunar craters. LRO LROC images show that impact-melt deposits can be recognized associated with many simple craters to diameters down to approximately 200 m. The melt forms pools on the crater floor, veneer on the crater walls or ejecta outside the crater. Such melt deposits are relatively rare, and can be recognized only in some fresh craters. These observations indicate that identifiable quantities of impact melt can be produced in small impacts and the presence of such deposits shows that the material can be aggregated into recognizable deposits. Further, the present of such melt indicates that small craters could be reliably radiometrically dated helping to constrain the recent impact flux.

  2. Swimming pool granuloma

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  3. Swimming pool cleaner poisoning

    MedlinePlus

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  4. Characterizing convective cold pools

    NASA Astrophysics Data System (ADS)

    Drager, Aryeh J.; van den Heever, Susan C.

    2017-06-01

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the density potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.

  5. The science of pooling

    SciTech Connect

    Gilbert, E.

    1995-10-01

    The pooling of data from radon studies is described. Pooling refers to the analysis of original data from several studies, not meta-analysis in which summary measures from published data are analyzed. A main objective for pooling is to reduce uncertainty and to obtain more precise estimates of risk than would be available from any single study.

  6. Impact melt in small lunar highland craters

    NASA Astrophysics Data System (ADS)

    Plescia, J. B.; Cintala, M. J.

    2012-03-01

    Impact melt deposits have been identified in small, simple impact craters within the lunar highlands. Such deposits are rare, but have been observed in craters as small as 170 m diameter. The melt occurs as well-defined pools on the crater floor, as well as veneers on the inner crater wall and stringers of material extending over the rim and away from the crater. Model calculations indicate that the amount of melt formed in craters 100-2000 m diameter would amount to a few to ˜106 m3, representing <1% of the crater volume. Thus, significant, visible impact melt deposits would not be expected in such small craters as most of the melt material that was formed would be ejected. Variations in the properties of the projectile or the target cannot account for the amount of observed melt; the amount of melt produced is largely insensitive to such variations. Rather, we suggest that these small melt-containing craters represent near-vertical impacts in which the axes of melting and melt motion are essentially straight down, toward the base of the transient cavity. For a given event energy under vertical impact conditions, the volume of melt produced would be greater than in an oblique impact and the momentum of the material would be directed vertically downward with minimal lateral momentum such that most of the melt is retained within the crater interior. Since vertical impacts are relatively rare, such small craters with visible, interior melt deposits are rare. While we focus here on the highlands, such craters also occur on the maria.

  7. Further studies of degraded core coolability: The effect of pressure and coolant flow from below: Interim report

    SciTech Connect

    Tsai, F.P.; Jakobsson, J.O.; Catton, I.

    1986-11-01

    An experimental investigation was made to study dryout of a bed of inductively heated particles, cooled by an overlying liquid pool and a through flow of coolant or gas. Stainless steel particles of diameters .59 to .79 mm, 1.6 mm, 3.2 mm, and 4.8 mm were used. Freon-113, acetone, methanol and water were used as coolants and pressure was varied from 1 to 5.76 atm-abs. Bed height was varied from 8.0 cm to 21.0 cm and the overlying liquid ratio (liquid depth to bed height) was varied from 0.0 to 2.0. At 1 atm. abs. pressure the through flow was also varied. The measured dryout heat flux was found to increase with increased pressure and usually lower than predicted by available analytical models. The coolant above the bed was found to have little effect at higher pressures. The dryout heat flux also increased as the inlet flow increased and asymptotically approached the total evaporation energy of the inlet flow. The experimental measurements of dryout heat flux as a function of pressure were scaled so the reduced dryout heat flux was a function of reduced pressure and geometry only. The scaled Freon-113 results represent water up to 37.3 atm. The effect of gas flow from below on dryout was also studied experimentally. Freon-113 and water were used as coolants and gas mass flux varied from 0 to 0.211 kg/m/sup 2/sec. The dryout heat flux decreases as a result of increased bottom gas flow. The gas flow was found to have a stronger effect on small particle beds.

  8. PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

  9. A multi-component evaporation model for beam melting processes

    NASA Astrophysics Data System (ADS)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  10. Modeling Vernal Pool Hydrology and Vegetation in the Sierra Nevadas

    NASA Astrophysics Data System (ADS)

    Montrone, A. K.; Saito, L.; Weisberg, P.; Gosejohan, M.

    2012-12-01

    Vernal pools are geographic depressions with relatively impermeable substrates that are subject to four distinct seasons in mountainous regions: they fill with snow in the winter, melt into inundated pools in the spring, become unsaturated and vegetated by summer, then dry and become fully desiccated by fall. Vernal pools in California are greatly threatened. Over 90% of the pools in California have been destroyed by urbanization and other land use changes and continue to disappear with population growth. Furthermore, these pools face threats posed by climate change due to altered precipitation and temperature regimes. In the context of anthropogenic climate change, we are evaluating the direct and indirect effects of grazing management on ecohydrology and plant community structure in vernal pools Northern Sierra Nevada mountains. Hydrologic models of vernal pool basins, driven by climatic variables, are used to 1) determine if a changing climate will alter the magnitude and spatial distribution of inundation period within the pools; 2) determine how the available habitat for vernal pool vegetation specialists will change with climate change; 3) determine if increased soil compaction due to cattle grazing can help mitigate effects of climate change resulting from changes in hydraulic conductivity; and 4) determine the importance of spatial resolution in constructing the physical representation of the pools within the hydrologic models. Preliminary results from the models including calibration error metrics and hydroperiod impacts of grazing for models with varying spatial complexity will be presented.

  11. 13 CFR 120.611 - Pools backing Pool Certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Pools backing Pool Certificates. 120.611 Section 120.611 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Secondary Market Certificates § 120.611 Pools backing Pool Certificates. (a) Pool characteristics. As...

  12. Pool spacing in forest channels

    Treesearch

    David R. Montgomery; John M. Buffington; Richard D. Smith; Kevin M. Schmidt; George Pess

    1995-01-01

    Field surveys of stream channels in forested mountain drainage basins in southeast Alaska and Washington reveal that pool spacing depends on large woody debris (LWD) loading and channel type, slope, and width. Mean pool spacing in pool-riffle, plane-bed, and forced pool-riffle channels systematically decreases from greater than 13 channel widths per pool to less than 1...

  13. Swimming pool. View of aisle between swimming pool and seating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Swimming pool. View of aisle between swimming pool and seating area. Non-original spa pool is partially visible on right. - Jewish Community Center of San Francisco, 3200 California Street, San Francisco, San Francisco County, CA

  14. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

  15. Vitamin D Pooling Project

    Cancer.gov

    The Vitamin D Pooling Project of Rarer Cancers brought together investigators from 10 cohorts to conduct a large prospective epidemiologic study of the association between vitamin D status and seven rarer cancers.

  16. Storage Pool Deficiencies

    MedlinePlus

    ... group of disorders caused by problems with platelet granules. Granules are little sacs inside the platelet in which ... function are stored. There are two types of granules: alpha granules and dense granules. Some storage pool ...

  17. Swimming Pool Chemistry Teaching.

    ERIC Educational Resources Information Center

    Harding, Jennifer

    1994-01-01

    Outlines a strategy for the teaching of equilibrium in a poolside atmosphere. Illustrates the practical application of knowledge about equilibrium as demonstrated by pool staff as they satisfy the needs of both the swimmers and local health inspectors. (DDR)

  18. Pools for the Handicapped.

    ERIC Educational Resources Information Center

    American School and University, 1979

    1979-01-01

    Three institutions in Ohio now stress hydrotherapy and water recreation as important parts of individual educational programs for the handicapped. Specially designed and adapted pools provide freedom of movement and ego building as well as physical education and recreation. (Author)

  19. Swimming Pool Safety

    MedlinePlus

    ... closing/self-latching Window guards Pool alarms Swimming Lessons - Where We Stand Children need to learn to ... Some factors you may consider before starting swimming lessons for younger children include: Frequency of exposure to ...

  20. Pools for the Handicapped.

    ERIC Educational Resources Information Center

    American School and University, 1979

    1979-01-01

    Three institutions in Ohio now stress hydrotherapy and water recreation as important parts of individual educational programs for the handicapped. Specially designed and adapted pools provide freedom of movement and ego building as well as physical education and recreation. (Author)

  1. Melting of MORB at core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Pradhan, Gopal K.; Fiquet, Guillaume; Siebert, Julien; Auzende, Anne-Line; Morard, Guillaume; Antonangeli, Daniele; Garbarino, Gaston

    2015-12-01

    We investigated the melting properties of natural mid-ocean ridge basalt (MORB) up to core-mantle boundary (CMB) pressures using laser-heated diamond anvil cell. Textural and chemical characterizations of quenched samples were performed by analytical transmission electron microscopy. We used in situ X-ray diffraction primarily for phase identification whereas our melting criterion based on laser power versus temperature plateau combined with textural analysis of recovered solidus and subsolidus samples is accurate and unambiguous. At CMB pressure (135 GPa), the MORB solidus temperature is 3970 (± 150) K. Quenched melt textures observed in recovered samples indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition derived from the central melt pool is enriched in FeO, which suggests that such melt pockets may be gravitationally stable at the core mantle boundary.

  2. Melt Purification via Filtration

    DTIC Science & Technology

    1981-06-01

    function of melt flow rate . This work was extended to encompass variations in deep bed filter characteristics such as porosity, length of bed...of a, which is the concentration of entrapped inclusions, as well as a function of the melt physical properties, melt flow rates and the shape and...filtration runs at different flow rates . Measurement of thfe inclusion (Al^O,) concentration in the inlet and filtered melt at different flowrate allows one

  3. Imaging of the Dynamic Melt Movement Induced by a Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Samarjy, Ramiz S. M.; Kaplan, Alexander F. H.

    A special case of an interrupted superheated process was developed, governed by the ablation pressure of a boiling melt, induced by a pulsed Nd:YAG-laser. A kind of cutting process was carried out, but at very low speed to generate a large melt pool that can be well studied. The interaction zone was observed by high speed imaging, with and without illumination. When switching the laser pulse on or off, different dynamic phenomena can be clearly observed, like drilling into a bulk of melt, breaking of a melt bridge, controlled pushing of the melt pool, waves running down, all driven by boiling. After the pulse, the melt smoothens and oscillates and is dragged back upwards by the surface tension forces from the melt shape curvature, ending in a torus-like equilibrium shape. The fundamental understanding that was generated could be applied to improve processes like keyhole laser welding, laser remote fusion cutting or laser drilling

  4. Vernal Pool Lessons and Activities.

    ERIC Educational Resources Information Center

    Childs, Nancy; Colburn, Betsy

    This curriculum guide accompanies Certified: A Citizen's Step-by-Step Guide to Protecting Vernal Pools which is designed to train volunteers in the process of identifying vernal pool habitat so that as many of these pools as possible can be certified by the Massachusetts Natural Heritage and Endangered Species Program. Vernal pools are a kind of…

  5. Vernal Pool Lessons and Activities.

    ERIC Educational Resources Information Center

    Childs, Nancy; Colburn, Betsy

    This curriculum guide accompanies Certified: A Citizen's Step-by-Step Guide to Protecting Vernal Pools which is designed to train volunteers in the process of identifying vernal pool habitat so that as many of these pools as possible can be certified by the Massachusetts Natural Heritage and Endangered Species Program. Vernal pools are a kind of…

  6. Melt removal mechanism by transverse gas flow during laser irradiation

    NASA Astrophysics Data System (ADS)

    Wei, Cheng-hua; Zhu, Yong-xiang; Zhou, Meng-lian; Ma, Zhi-liang; Wu, Tao-tao

    2017-05-01

    To determine the mechanism of melt removal by transverse gas flow, a lateral visualization technique of hydrodynamics on melt pool was developed and experimental apparatus were built. The intensity distribution of the focused beam was confirmed to be in top-hat shape with the 15mm×40mm rectangular. The interface of liquid-solid and free surface of molten metal was observed by a high velocity video camera with acquisition rate of 1kHz. Gas flow blew from left to right and the velocity varied from 15m/s to 90m/s to investigate the evolution of hydrodynamics. Experiment results showed that surface wave was generated at the initial stage and molten metal was removed out from the melt pool by shear stress. When some amount molten metal was removed from melt pool, gas flow separated at the leading edge and reattaches downstream of melt pool. Thus a stagnation point was formed at the downstream edge and a recirculation zone was generated on the left side of stagnation. With recirculation gas flow constrain, the molten metal only can be entrained into main stream and then be swept away. The molten material was removed out by shear stress on the right side of stagnation.

  7. NEW APPROACHES: Pool table

    NASA Astrophysics Data System (ADS)

    Parry, Malcolm

    1998-05-01

    This article explains a novel way of demonstrating the principle of conservation of energy. This can be difficult to demonstrate in the laboratory, but if students have been convinced of the conservation of momentum, two-dimensional collisions on a pool table may be used.

  8. Thread Pool Interface (TPI)

    SciTech Connect

    Edwards, H. Carter

    2008-04-01

    Thread Pool Interface (TpI) provides a simple interface for running functions written in C or C++ in a thread-parallel mode. Application or library codes may need to perform operations thread-parallel on machines with multicore processors. the TPI library provides a simple mechanism for managing thread activation, deactivation, and thread-parallel execution of application-provided subprograms.

  9. Thread Pool Interface (TPI)

    SciTech Connect

    Edwards, H. Carter

    2008-04-01

    Thread Pool Interface (TpI) provides a simple interface for running functions written in C or C++ in a thread-parallel mode. Application or library codes may need to perform operations thread-parallel on machines with multicore processors. the TPI library provides a simple mechanism for managing thread activation, deactivation, and thread-parallel execution of application-provided subprograms.

  10. Swimming Pools for Schools.

    ERIC Educational Resources Information Center

    Neilson, Donald W.; Nixon, John E.

    The increasing interest in swimming instruction and recreation for elementary and secondary school children has resulted in the development of this guide for swimming pool use, design, and construction. Introductory material discussed the need for swimming in the educational program and the organization of swimming programs in the school. Design…

  11. Getting Pool Light Right.

    ERIC Educational Resources Information Center

    Hunsaker, Scot

    1998-01-01

    Examines the use of lighting, both artificial and natural, that can enhance the aesthetic quality and functionality of areas with indoor swimming pools. Discusses glare and shadow-reduction measures that aid competitive events, including lighting above and below water levels, and highlights lighting issues during televised events. Descriptions of…

  12. The Future of Pooling.

    ERIC Educational Resources Information Center

    Young, Peter C.; Fone, Martin

    1997-01-01

    Discusses seven propositions underlying the strategies that insurance pools can, will, and must pursue: (1) risk management versus risk financing; (2) elimination of windfall advantages; (3) the maintenance of market-dominant status; (4) cost leadership; (5) client focus; (6) innovation and diversification; and (7) leadership challenges. A sidebar…

  13. The Future of Pooling.

    ERIC Educational Resources Information Center

    Young, Peter C.; Fone, Martin

    1997-01-01

    Discusses seven propositions underlying the strategies that insurance pools can, will, and must pursue: (1) risk management versus risk financing; (2) elimination of windfall advantages; (3) the maintenance of market-dominant status; (4) cost leadership; (5) client focus; (6) innovation and diversification; and (7) leadership challenges. A sidebar…

  14. Melt containment member

    SciTech Connect

    Rieken, Joel R.; Heidloff, Andrew J.

    2014-09-09

    A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

  15. Allergic to Pool Water

    PubMed Central

    2012-01-01

    To identify the allergy problem of a 36-year old swimming instructor, who experiences heavy itching and rashes whenever she comes in contact with pool water. Patch tests were performed with European standard series and materials from the work floor. A positive patch test to aluminum chloride and flocculant was observed. Occupational dermatitis is, based on a contact allergy to aluminum chloride in the flocculant. PMID:22993713

  16. Melt Purification via Filtration.

    DTIC Science & Technology

    1980-04-01

    to determine the melt flow - rate through the filter. A filtration run consists of first stirring the melt rigorously in order to prevent settling of...as an on/off valve to regulate melt flow through the filter. The filter bed preparation consists of heating the SiC tube to 970-1070*K and adding to it...the initial P1020 infiltrant aluminum has been purged out of the filter and the contaminated melt is flowing through the bed inlet and filtered

  17. Stochastic pooling networks

    NASA Astrophysics Data System (ADS)

    McDonnell, Mark D.; Amblard, Pierre-Olivier; Stocks, Nigel G.

    2009-01-01

    We introduce and define the concept of a stochastic pooling network (SPN), as a model for sensor systems where redundancy and two forms of 'noise'—lossy compression and randomness—interact in surprising ways. Our approach to analysing SPNs is information theoretic. We define an SPN as a network with multiple nodes that each produce noisy and compressed measurements of the same information. An SPN must combine all these measurements into a single further compressed network output, in a way dictated solely by naturally occurring physical properties—i.e. pooling—and yet cause no (or negligible) reduction in mutual information. This means that SPNs exhibit redundancy reduction as an emergent property of pooling. The SPN concept is applicable to examples in biological neural coding, nanoelectronics, distributed sensor networks, digital beamforming arrays, image processing, multiaccess communication networks and social networks. In most cases the randomness is assumed to be unavoidably present rather than deliberately introduced. We illustrate the central properties of SPNs for several case studies, where pooling occurs by summation, including nodes that are noisy scalar quantizers, and nodes with conditionally Poisson statistics. Other emergent properties of SPNs and some unsolved problems are also briefly discussed.

  18. Characterizing convective cold pools: Characterizing Convective Cold Pools

    DOE PAGES

    Drager, Aryeh J.; van den Heever, Susan C.

    2017-05-09

    Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the densitymore » potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.« less

  19. How to identify garnet lherzolite melts and distinguish them from pyroxenite melts

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Holbig, E.; Barr, J. A.; Till, C.; Krawczynski, M. J.

    2013-12-01

    -shield lavas are garnet lherzolite melts from depths of 80 - 90 km that pooled at the base of the lithosphere. When magmatic flux increases and the lithosphere beneath Hawaii is heated during shield growth, we find melt-wall rock reaction becomes common, and the resulting tholeiites separate from harzburgite sources at mid-lithospheric depths (30 - 42 km). In our analysis of the major element characteristics of the extensive data set available for Hawaii, only three samples have the major element compositional characteristics of pyroxenite melts and suggest pyroxenite melts are truly rare in Hawaii.

  20. ECS DAAC Data Pools

    NASA Astrophysics Data System (ADS)

    Kiebuzinski, A. B.; Bories, C. M.; Kalluri, S.

    2002-12-01

    As part of its Earth Observing System (EOS), NASA supports operations for several satellites including Landsat 7, Terra, and Aqua. ECS (EOSDIS Core System) is a vast archival and distribution system and includes several Distributed Active Archive Centers (DAACs) located around the United States. EOSDIS reached a milestone in February when its data holdings exceeded one petabyte (1,000 terabytes) in size. It has been operational since 1999 and originally was intended to serve a large community of Earth Science researchers studying global climate change. The Synergy Program was initiated in 2000 with the purpose of exploring and expanding the use of remote sensing data beyond the traditional research community to the applications community including natural resource managers, disaster/emergency managers, urban planners and others. This included facilitating data access at the DAACs to enable non-researchers to exploit the data for their specific applications. The combined volume of data archived daily across the DAACs is of the order of three terabytes. These archived data are made available to the research community and to general users of ECS data. Currently, the average data volume distributed daily is two terabytes, which combined with an ever-increasing need for timely access to these data, taxes the ECS processing and archival resources for more real-time use than was previously intended for research purposes. As a result, the delivery of data sets to users was being delayed in many cases, to unacceptable limits. Raytheon, under the auspices of the Synergy Program, investigated methods at making data more accessible at a lower cost of resources (processing and archival) at the DAACs. Large on-line caches (as big as 70 Terabytes) of data were determined to be a solution that would allow users who require contemporary data to access them without having to pull it from the archive. These on-line caches are referred to as "Data Pools." In the Data Pool concept

  1. Melt segregation and magma movement in the crust.

    NASA Astrophysics Data System (ADS)

    Sawyer, E. W.; Bonnay, M.

    2003-04-01

    Melt flow out of rocks undergoing partial melting occurs in three stages. 1) A short distance of porous flow along grain boundaries and grain edges from the site of melt generation, followed by, 2) channel flow through an interconnected network of short linked segments of shear bands, boudin necks, dilatant foliation or bedding planes. Melt accumulates in this network, dilating foliation and bedding planes and forming stromatic leucosomes until, 3) melt escapes out of the source layers by a more focussed channel flow along fewer, but larger, oblique dilatant fractures. Steps 1 and 2 constitute the draining network and 3 the melt-transfer network. When the transfer network forms, the drainage network collapses and channels may disappear; the observed leucosome network no longer represents that of peak melt extraction. The result is a melt-depleted rock with few leucosomes. The geometry of the channel network by which melt passes through the middle crust above melt source is less well known, consequently we have studied several intermediate level transfer networks from localities in central Australia. Our analysis reveals that two, or in some cases three, magmas from different sources passed through these fracture arrays and that locally they mixed forming hybrids. These particular vein networks may have been fed from a small volume source and represent the level at which fracture propagation stopped, rather than a slice through the feeder network to plutons higher in the crust. The rate of magma influx at plutons has been considered rapid. However, plots of melt fraction vs temperature for biotite dehydration melting show a uniform rate of melt generation over 100 to150 degrees. If this temperature interval corresponds to millions or 10's of millions of years, then the melt flux out of the source is a continuous dribble, or as many small batches, over that period. Rapid pluton formation then requires pooling of melt somewhere in the crust. Furthermore, many granites

  2. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  3. Control of back weld pool shape in MIG welding by using switch back method

    SciTech Connect

    Jin, B.; Kaneko, Yasuyoshi; Soeda, Masahiro; Ohshima, Kenji

    1995-12-31

    This paper deals with the problem concerning the sensing and controlling of weld pool shape in MIG welding of plate. In the robotic one side MIG welding process without backing plate, for obtaining the good quality of the weld, it is important to control the weld pool shape so as to prevent the melting metal from burning through. The method of controlling the weld pool shape is discussed. The moving torch is repeat switch change, which is named switch back method. The primary welding experimental results have proved that the switch back method is effective and satisfactory for controlling the back weld pool shape in one side MIG welding process without backing plate.

  4. Melt inclusions: Chapter 6

    USGS Publications Warehouse

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  5. Dispersion and thermal interactions of molten metal fuel settling on a horizontal steel plate through a sodium pool

    SciTech Connect

    Gabor, J.D.; Purviance, R.T.; Aeschlimann, R.W.; Spencer, B.W.

    1989-01-01

    Although the Integral Fast Reactor (IFR) possesses inherent safety features, an assessment of the consequences of melting of the metal fuel is necessary for risk analysis. As part of this effort an experimental study was conducted to determine the depths of sodium at 600 C required for pour streams of various molten uranium alloys (U, U-5 wt % Zr, U-10 wt % Zr, and U-10 wt % Fe) to break up and solidify. The quenched particulate material, which was in the shape of filaments and sheets, formed coolable beds because of the high voidage ({approximately}0.9) and large particle size ({approximately}10 mm). In a test with a 0.15-m sodium depth, the fragments from a pure uranium pour stream did not completely solidify but formed an agglomerated mass which did not fuse to the base plate. However, the agglomerated fragments of U-10 wt % Fe eutectic fused to the stainless steel base plate. An analysis of the temperature response of a 25-mm thick base plate was made by volume averaging the properties of the sodium and metal particle phases and assuming two semi-infinite solids coming into contact. Good agreement was obtained with the data during the initial 5 to 10 s of the contact period. 16 refs., 5 figs., 1 tab.

  6. Secondary pool boiling effects

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.

    2016-02-01

    A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.

  7. Freezing and melting water in lamellar structures.

    PubMed Central

    Gleeson, J T; Erramilli, S; Gruner, S M

    1994-01-01

    The manner in which ice forms in lamellar suspensions of dielaidoylphosphatidylethanolamine, dielaidoylphosphatidylcholine, and dioleoylphosphatidylcholine in water depends strongly on the water fraction. For weight fractions between 15 and 9%, the freezing and melting temperatures are significantly depressed below 0 degree C. The ice exhibits a continuous melting transition spanning as much as 20 degrees C. When the water weight fraction is below 9%, ice never forms at temperatures as low as -40 degrees C. We show that when water contained in a lamellar lipid suspension freezes, the ice is not found between the bilayers; it exists as pools of crystalline ice in equilibrium with the bound water associated with the polar lipid headgroups. We have used this effect, together with the known chemical potential of ice, to measure hydration forces between lipid bilayers. We find exponentially decaying hydration repulsion when the bilayers are less than about 7 A apart. For larger separations, we find significant deviations from single exponential decay. PMID:7948683

  8. Signatures of nonthermal melting

    PubMed Central

    Zier, Tobias; Zijlstra, Eeuwe S.; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E.

    2015-01-01

    Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822

  9. Melt Purification via Filtration.

    DTIC Science & Technology

    1980-10-01

    resistance furnace with an orifice at the bottom to control the flow rate . The well stirred melt containing synthetic tracer inclusions of TiB 2...investigation. Good correlation was noted and conclusions were drawn as to the inclusion removal rate and efficiency as a function of melt flow rate . To...packing density , would result. The bed was given a high flow rate flush with clean diesel to remove any loose contaminants. The known carbonate/diesel

  10. Melt fracture revisited

    SciTech Connect

    Greenberg, J. M.

    2003-07-16

    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referred to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.

  11. Convective Mixing in Porosity Waves during Melt Migration

    NASA Astrophysics Data System (ADS)

    Jordan, J.; Hesse, M. A.

    2014-12-01

    Models of trace element partitioning during non-reactive, one-dimensional melt migration predict the decoupling of tracers with different partition coefficients (e.g. La and Sm)(Navon & Stolper 1987, DePaolo 1996 Liang 2008). Such decoupling is often not observed in igneous products at the surface. We propose a numeric melt migration model derived from first principles to aid our understanding of mixing during melt migration in the mantle. We assert that circulation within a porosity wave could provide an explanation for this disparity. Buoyancy drives regions of elevated melt fraction through the overlying mantle as porosity waves (Richter & McKenzie 1984, Spiegelman 1993). Within those waves we expect porous flow to lead to the transport and mixing of distinct peridotite-derived lithologies (Kelemen 1997). A consequence of this mixing includes partitioning of trace elements in the partially molten, mixing lithologies. We begin our numeric experiment by imposing a partially molten region in a nearly impermeable background. As the partially molten region rises, the buoyant melt races to the front of the porosity wave. Once the melt reaches the edge of the porosity wave, it encounters an extreme drop in permeability. Though the melt within the porosity wave may move faster than the wave itself, the permeable region confines the melt. Since the melt cannot outrun the porosity wave, it would pool at the edge of the impermeable region. However, the porosity wave continues to rise around the melt. This causes the melt to appear to double back into the more permeable region within the porosity wave. After "turning back", the buoyant melt hugs the low permeability wall of the porosity wave as it continues to migrate. Near the bottom of the porosity wave the melt changes direction and begins to move upward again. The porosity wave and melt create a convective mixing cell. Modeled circulation of melt within the porosity wave could explain why the linear decoupling of trace

  12. Predicting Melting Behavior of an Industrial Electroslag Remelting Ingot

    NASA Astrophysics Data System (ADS)

    Yanke, Jeff; Fezi, Kyle; Fahrmann, Mike; Krane, Matthew John M.

    Electroslag remelting (ESR) is a secondary melting process used to cast stainless steel and superalloy ingots. In this process, current flows through a consumable electrode immersed in an electrically resistive slag, providing the heat to melt the electrode. Droplets from the electrode sink through the slag, pooling at the bottom of the mold and forming the final ingot. The electrode melt rate is a key parameter, affecting the probability of surface and macrosegregation defects. This work uses an axisymmetric model to simulate flow, heat and mass transfer, solidification, and electromagnetics in the production of industrial scale ESR ingots. The simulated melt rate, sump shape, and surface defects are qualitatively similar to measured data. However, quantitative comparisons are difficult to obtain due to large uncertainty in slag properties and lack of electrode motion in the present model.

  13. Morphology of drying blood pools

    NASA Astrophysics Data System (ADS)

    Laan, Nick; Smith, Fiona; Nicloux, Celine; Brutin, David; D-Blood project Collaboration

    2016-11-01

    Often blood pools are found on crime scenes providing information concerning the events and sequence of events that took place on the scene. However, there is a lack of knowledge concerning the drying dynamics of blood pools. This study focuses on the drying process of blood pools to determine what relevant information can be obtained for the forensic application. We recorded the drying process of blood pools with a camera and measured the weight. We found that the drying process can be separated into five different: coagulation, gelation, rim desiccation, centre desiccation, and final desiccation. Moreover, we found that the weight of the blood pool diminishes similarly and in a reproducible way for blood pools created in various conditions. In addition, we verify that the size of the blood pools is directly related to its volume and the wettability of the surface. Our study clearly shows that blood pools dry in a reproducible fashion. This preliminary work highlights the difficult task that represents blood pool analysis in forensic investigations, and how internal and external parameters influence its dynamics. We conclude that understanding the drying process dynamics would be advancement in timeline reconstitution of events. ANR funded project: D-Blood Project.

  14. Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yu, Guanqun; Gu, Dongdong; Dai, Donghua; Xia, Mujian; Ma, Chenglong; Chang, Kun

    2016-10-01

    A three-dimensional mesoscopic model, considering the powder-to-solid transition, motion of gas bubbles within molten pool and the effect of surface tension, has been established in order to investigate the evolution rule of pores and re-melting densification mechanism during selective laser melting of AlSi10Mg. The results indicated that re-melting phenomenon of previous fabricated layer induced by laser melting of current powder layer played a crucial role on the increase in densification rate. During the re-melting process, the trapped gas pores in previous layer rose up swiftly and came to the surface consequently, resulting in remarkably elevated densification in previous layer. The influences of laser scan speed on the single-track morphology, types of pores and laser penetration depth have also been studied. It showed that the maximum re-melting depth (31 µm) was attained, and meanwhile, pores left in preceding layer got eliminated completely due to the mass transfer within molten pool, when an appropriate laser scan speed (150 mm/s) was applied. In this case, reasonable laser energy per unit length and irradiation time tended to enhance the laser penetration depth for powder bed and decrease the porosity in as-fabricated layer. A series of experimental study were performed to verify the reliability of the above mesoscopic simulation, including the surface topography of single track and the types of pores. The redistribution of bubbles between the adjacent layers as well as the localized re-melting densification, which were observed from the longitudinal section of samples, was in good agreement with simulation results.

  15. 1. OVERVIEW OF POOLE POWERHOUSE COMPLEX SETTING. POOLE POWERHOUSE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERVIEW OF POOLE POWERHOUSE COMPLEX SETTING. POOLE POWERHOUSE AND TRIPLEX COTTAGE ARE VISIBLE AT PHOTO CENTER IN SMALL CLEARING AMONG TREES IN LEE VINING CREEK VALLEY. VIEW TO SOUTH EAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  16. Under-ice melt ponds in the Arctic

    NASA Astrophysics Data System (ADS)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  17. Modeling of Melt Growth During Carbothermal Processing of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu S.; Hegde, U.

    2012-01-01

    The carbothermal processing of lunar regolith has been proposed as a means to produce carbon monoxide and ultimately oxygen to support human exploration of the moon. In this process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Carbon gets deposited on the surface of the melt, and mixes and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. Carbon monoxide is further processed in other reactors downstream to ultimately produce oxygen. The amount of oxygen produced crucially depends on the amount of regolith that is molten. In this paper we develop a model of the heat transfer in carbothermal processing. Regolith in a suitable container is heated by a heat flux at its surface such as by continuously shining a beam of solar energy or a laser on it. The regolith on the surface absorbs the energy and its temperature rises until it attains the melting point. The energy from the heat flux is then used for the latent heat necessary to change phase from solid to liquid, after which the temperature continues to rise. Thus a small melt pool appears under the heated zone shortly after the heat flux is turned on. As time progresses, the pool absorbs more heat and supplies the energy required to melt more of the regolith, and the size of the molten zone increases. Ultimately, a steady-state is achieved when the heat flux absorbed by the melt is balanced by radiative losses from the surface. In this paper, we model the melting and the growth of the melt zone with time in a bed of regolith when a portion of its surface is subjected to a constant heat flux. The heat flux is assumed to impinge on a circular area. Our model is based on an axisymmetric three-dimensional variation of the temperature field in the domain. Heat transfer occurs only by conduction, and effects of convective heat transport are assumed negligible. Radiative heat loss from the

  18. Analysis of melt ejection during long pulsed laser drilling

    NASA Astrophysics Data System (ADS)

    Ting-Zhong, Zhang; Zhi-Chao, Jia; Hai-Chao, Cui; De-Hua, Zhu; Xiao-Wu, Ni; Jian, Lu

    2016-05-01

    In pulsed laser drilling, melt ejection greatly influences the keyhole shape and its quality as well, but its mechanism has not been well understood. In this paper, numerical simulation and experimental investigations based on 304 stainless steel and aluminum targets are performed to study the effects of material parameters on melt ejection. The numerical method is employed to predict the temperatures, velocity fields in the solid, liquid, and vapour front, and melt pool dynamics of targets as well. The experimental methods include the shadow-graphic technique, weight method, and optical microscope imaging, which are applied to real-time observations of melt ejection phenomena, measurements of collected melt and changes of target mass, observations of surface morphology and the cross-section of the keyhole, respectively. Numerical and experimental results show that the metallic material with high thermal diffusivity like aluminum is prone to have a thick liquid zone and a large quantity of melt ejection. Additionally, to the best of our knowledge, the liquid zone is used to illustrate the relations between melt ejection and material thermal diffusivity for the first time. The research result in this paper is useful for manufacturing optimization and quality control in laser-material interaction. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. KYLX_0341) and the National Natural Science Foundation of China (Grant No. 61405147).

  19. Tidal Pools--Miniature Oceans

    ERIC Educational Resources Information Center

    Plake, Linda Perry

    1977-01-01

    A comprehensive discussion of the biological activity in tidal pools is provided. The importance of environmental factors such as oxygen supply, temperature, salinity, and light is detailed. Plants and animals that might be found in a tidal pool are identified and described. (BT)

  20. Tidal Pools--Miniature Oceans

    ERIC Educational Resources Information Center

    Plake, Linda Perry

    1977-01-01

    A comprehensive discussion of the biological activity in tidal pools is provided. The importance of environmental factors such as oxygen supply, temperature, salinity, and light is detailed. Plants and animals that might be found in a tidal pool are identified and described. (BT)

  1. Synaptic Vesicle Pools: An Update

    PubMed Central

    Denker, Annette; Rizzoli, Silvio O.

    2010-01-01

    During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or “pools”. We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are “fixed”. Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool. PMID:21423521

  2. Staphylococci in swimming pool water

    PubMed Central

    Crone, P. B.; Tee, G. H.

    1974-01-01

    During a period of five years 1192 water samples from swimming pools were examined for staphylococci and 338 for coliform organisms only. Eighty-nine different pools were sampled. Numbers of staphylococci, estimated by the membrane filtration technique did not bear any significant relation to either bathing load or concentration of free chlorine. Wide variation in the staphylococcal count was observed when different parts of a pool were sampled on the same occasion. The only practicable standard for pool samples in relation to staphylococci would appear to be that these organisms should be absent from 100 ml. water when the pool has been out of use during at least ten hours before sampling if filtration and chlorination are adequate. PMID:4608265

  3. Low melting mesophase pitches

    SciTech Connect

    Diefendorf, R.J.; Chen, S.H.

    1984-04-17

    A low melting point, low molecular weight, heptane insoluble, 1,2,4-trichlorobenzene soluble mesophase pitch useful in carbon fiber spinning as such or as a plasticizer in a carbon fiber spinning composition is obtained by heating chrysene, triphenylene or paraterphenyl as well as mixtures thereof and hydrocarbon fractions containing the same, dissolving the resulting heat treated material with 1,2,4-trichlorobenzene, and separating the insolubles, and then contacting the 1,2,4-trichlorobenzene soluble fraction with a sufficient amount of heptane to precipitate the low melting point, low molecular weight mesophase pitch.

  4. Melting of gold microclusters

    NASA Astrophysics Data System (ADS)

    Garzón, I. L.; Jellinek, J.

    1991-03-01

    The transition from solid-like to liquid-like behavior in Au n , n=6, 7, 13, clusters is studied using molecular dynamics simulations. A Gupta-type potential with all-neighbour interactions is employed to incorporate n-body effects. The melting-like transition is described in terms of short-time averages of the kinetic energy per particle, root-mean-square bond length fluctuations and mean square displacements. A comparison between melting temperatures of Au n and Ni n clusters is presented.

  5. Rank Pooling for Action Recognition.

    PubMed

    Fernando, Basura; Gavves, Efstratios; Oramas M, Jose Oramas; Ghodrati, Amir; Tuytelaars, Tinne

    2017-04-01

    We propose a function-based temporal pooling method that captures the latent structure of the video sequence data - e.g., how frame-level features evolve over time in a video. We show how the parameters of a function that has been fit to the video data can serve as a robust new video representation. As a specific example, we learn a pooling function via ranking machines. By learning to rank the frame-level features of a video in chronological order, we obtain a new representation that captures the video-wide temporal dynamics of a video, suitable for action recognition. Other than ranking functions, we explore different parametric models that could also explain the temporal changes in videos. The proposed functional pooling methods, and rank pooling in particular, is easy to interpret and implement, fast to compute and effective in recognizing a wide variety of actions. We evaluate our method on various benchmarks for generic action, fine-grained action and gesture recognition. Results show that rank pooling brings an absolute improvement of 7-10 average pooling baseline. At the same time, rank pooling is compatible with and complementary to several appearance and local motion based methods and features, such as improved trajectories and deep learning features.

  6. Core-concrete molten pool dynamics and interfacial heat transfer. [PWR; BWR

    SciTech Connect

    Benjamin, A.S.

    1980-01-01

    Theoretical models are derived for the heat transfer from molten oxide pools to an underlying concrete surface and from molten steel pools to a general concrete containment. To accomplish this, two separate effects models are first developed, one emphasizing the vigorous agitation of the molten pool by gases evolving from the concrete and the other considering the insulating effect of a slag layer produced by concrete melting. The resulting algebraic expressions, combined into a general core-concrete heat transfer representation, are shown to provide very good agreement with experiments involving molten steel pours into concrete crucibles.

  7. Design report on SCDAP/RELAP5 model improvements - debris bed and molten pool behavior

    SciTech Connect

    Allison, C.M.; Rempe, J.L.; Chavez, S.A.

    1994-11-01

    the SCDAP/RELAP5/MOD3 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and in combination with VICTORIA, fission product release and transport during severe accidents. Improvements for existing debris bed and molten pool models in the SCDAP/RELAP5/MOD3.1 code are described in this report. Model improvements to address (a) debris bed formation, heating, and melting; (b) molten pool formation and growth; and (c) molten pool crust failure are discussed. Relevant data, existing models, proposed modeling changes, and the anticipated impact of the changes are discussed. Recommendations for the assessment of improved models are provided.

  8. Pooling techniques for bioassay screening

    SciTech Connect

    Sun, L.C.; Baum, J.W.; Kaplan, E; Moorthy, A.R.

    1996-03-01

    Pooling techniques commonly are used to increase the throughput of samples used for screening purposes. While the advantages of such techniques are increased analytical efficiency and cost savings, the sensitivity of measurements decreases because it is inversely proportional to the number of samples in the pools. Consequently, uncertainties in estimates of dose and risk which are based on the results of pooled samples increase as the number of samples in the pools increases in all applications. However, sensitivities may not be seriously degraded, for example, in urinalysis, if the samples in the pools are of known time duration, or if the fraction of some attribute of the grab urine samples to that in a 24-hour composite is known (e.g., mass, specific gravity, creatinine, or volume, per 24-h interval). This paper presents square and cube pooling schemes that greatly increase throughput and can considerably reduce analytical costs (on a sample basis). The benefit-cost ratios for 5{times}5 square and 5{times}5{times}5 cube pooling schemes are 2.5 and 8.3, respectively. Three-dimensional and higher arrayed pooling schemes would result in even greater economies; however, significant improvements in analytical sensitivity are required to achieve these advantages. These are various other considerations for designing a pooling scheme, where the number of dimensions and of samples in the optimum array are influenced by: (1) the minimal detectable amount (MDA) of the analytical processes, (2) the screening dose-rate requirements, (3) the maximum masses or volumes of the composite samples that can be analyzed, (4) the information already available from results of composite analysis, and (5) the ability of an analytical system to guard against both false negative and false positive results. Many of these are beyond the scope of this paper but are being evaluated.

  9. Viscosity Measurement for Tellurium Melt

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  10. Viscosity Measurement for Tellurium Melt

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  11. Thermoacoustic Streaming and Ultrasonic Processing of Low Melting Melts

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1997-01-01

    Ultrasonic levitation allows the processing of low melting materials both in 1 G as well as in microgravity. The free suspension of the melts also facilitates undercooling, permitting the measurements of the physical properties of the metastable liquids.

  12. Carbon release from boreal peatland open water pools: Implication for the contemporary C exchange

    NASA Astrophysics Data System (ADS)

    Pelletier, Luc; Strachan, Ian B.; Garneau, Michelle; Roulet, Nigel T.

    2014-03-01

    While peatland ecosystems overall are long-term net carbon (C) sinks, the open water pools that are characteristic of boreal peatlands have been found to be C sources to the atmosphere. However, the contribution of these pools to the ecosystem level C budget is often ignored even if they cover a significant area of the peatland surface. Here we examine the annual CO2 and CH4 ecosystem-atmosphere exchange, including the release following ice melt, from pools in a boreal maritime peatland, in order to estimate the annual loss of C from these water bodies. Over a 16 month period, dissolved CO2 and CH4 were measured periodically in five pools while continuous measurements of CO2 were made in one pool using a nondispersive infrared (NDIR) sensor. Fluxes were calculated using the thin boundary layer model and the eddy covariance technique (spring release only). We calculated an annual C release from pools of 103.3 g C m-2 yr-1 of which 15% was released during the spring ice melt. This release is the same order of magnitude, but with the opposite sign, as the average net ecosystem carbon balance for pool-free northern peatlands (-22 to -70 g C m-2 yr-1). We discuss the origin of the released C, as the magnitude of the release could have a significant impact on the contemporary C exchange of boreal peatlands.

  13. Swimming Pools and Molluscum Contagiosum

    MedlinePlus

    ... to another if they share a towel or toys. Parents and others often ask if molluscum virus ... it can spread by sharing swimming equipment, pool toys, or towels. Some investigations report that spread of ...

  14. Pooling and Correlated Neural Activity

    PubMed Central

    Rosenbaum, Robert J.; Trousdale, James; Josić, Krešimir

    2009-01-01

    Correlations between spike trains can strongly modulate neuronal activity and affect the ability of neurons to encode information. Neurons integrate inputs from thousands of afferents. Similarly, a number of experimental techniques are designed to record pooled cell activity. We review and generalize a number of previous results that show how correlations between cells in a population can be amplified and distorted in signals that reflect their collective activity. The structure of the underlying neuronal response can significantly impact correlations between such pooled signals. Therefore care needs to be taken when interpreting pooled recordings, or modeling networks of cells that receive inputs from large presynaptic populations. We also show that the frequently observed runaway synchrony in feedforward chains is primarily due to the pooling of correlated inputs. PMID:20485451

  15. Core formation by giant impacts: Conditions for intact melt region formation

    NASA Technical Reports Server (NTRS)

    Tonks, W. B.; Melosh, H. J.

    1993-01-01

    Among the many effects of high-speed, giant impacts is widescale melting that can potentially trigger catastrophic core formation. If the projectile is sufficiently large, the melt pools to form an intact melt region. The dense phase then segregates from the melt, forming a density anomoly at the melt region's base. If the anomoly produces a differential stress larger than a certain minimum, it overcomes the mantle's long-term elastic strength and rapidly forms a core. It was previously shown that giant impacts effectively trigger core formation in silicate bodies by the time they grow to the mass of Mercury and in icy bodies by the time they grow larger than Triton. In order for this process to be viable, an intact melt region must be formed. Conditions under which this occurs is examined in more detail than previously published.

  16. Simulation of time-dependent pool shape during laser spot welding: Transient effects

    NASA Astrophysics Data System (ADS)

    Ehlen, Georg; Ludwig, Andreas; Sahm, Peter R.

    2003-12-01

    The shape and depth of the area molten during a welding process is of immense technical importance. This study investigates how the melt pool shape during laser welding is influenced by Marangoni convection and tries to establish general qualitative rules of melt pool dynamics. A parameter study shows how different welding powers lead to extremely different pool shapes. Special attention is paid to transient effects that occur during the melting process as well as after switching off the laser source. It is shown that the final pool shape can depend strongly on the welding duration. The authors use an axisymmetric two-dimensional (2-D) control-volume-method (CVM) code based on the volume-averaged two-phase model of alloy solidification by Ni and Beckermann[1] and the SIMPLER algorithm by Patankar.[2] They calculate the transient distribution of temperatures, phase fractions, flow velocities, pressures, and concentrations of alloying elements in the melt and two solid phases (peritectic solidification) for a stationary laser welding process. Marangoni flow is described using a semiempirical model for the temperature-dependent surface tension gradient. The software was parallelized using the shared memory standard OpenMP.

  17. Pool impacts of Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Maquet, Laurent; Dorbolo, Stephane; Dehandschoewercker, Eline; Pan, Zhao; Truscott, Tadd

    2015-11-01

    This work concerns the impact of a droplet made of a volatile liquid (typically HFE) on a pool of an other liquid (typically silicone oil) which temperature is above the boiling point of the drop. Depending on the properties of the two liquids and the impacting conditions, four different regimes are observed. For low impacting speeds, the droplet bounces on the surface of the bath and finally levitates above it in a Leidenfrost state. Such a regime occurs as soon as the pool temperature exceeds the boiling point of the drop. This observation means that there is no threshold in temperature for a Leidenfrost effect on a liquid surface contrary to the case of a solid substrate. For intermediate impacting velocities, the pinch-off of the surface of the pool entraps the drop in the liquid bulk. The entrapped drop is separated from the pool by a layer of its own vapour in a similar way of antibulles. For increasing impacting speeds, the vapour layer between the drop and the pool does not hold during the pinch-off event. The contact of the drop with the hot liquid provokes a sudden and intense evaporation. At very large impacting speeds, the drop rapidely contacts the pool, spreads and finally induces a hemi-spherical cavity. In the end, these four different regimes are summarized in a Froud-Weber diagram which boundaries are discussed.

  18. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  19. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  20. Laser Additive Melting and Solidification of Inconel 718: Finite Element Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Romano, John; Ladani, Leila; Sadowski, Magda

    2016-03-01

    The field of powdered metal additive manufacturing is experiencing a surge in public interest finding uses in aerospace, defense, and biomedical industries. The relative youth of the technology coupled with public interest makes the field a vibrant research topic. The authors have expanded upon previously published finite element models used to analyze the processing of novel engineering materials through the use of laser- and electron beam-based additive manufacturing. In this work, the authors present a model for simulating fabrication of Inconel 718 using laser melting processes. Thermal transport phenomena and melt pool geometries are discussed and validation against experimental findings is presented. After comparing experimental and simulation results, the authors present two correction correlations to transform the modeling results into meaningful predictions of actual laser melting melt pool geometries in Inconel 718.

  1. Gravitational effects on the development of weld-pool and solidification microstructures

    SciTech Connect

    Boatner, L.A.; David, S.A.; Workman, G.

    1994-09-01

    This research effort has as its objective the development of a quantitative understanding of the effects of both low- and high-g environments on the solidification microstructures and morphologies that are produced in alloy single crystals during a variety of melting and solidification processes. The overall goal of the effort is to delineate the nature of the roles played by natural convection, surface-tension-driven convection, and mass transport effects due to interactions associated with various heating methods that are used to form melt pools in practical, commercially important alloy systems. The experimental and theoretical investigations comprising this effort encompass the study of configurations in which stationary heat sources are employed as well as melt pools formed by moving heat sources like those frequently used in fusion-welding processes.

  2. Dissolution of a 316L stainless steel vessel by a pool of molten aluminum

    SciTech Connect

    Tutu, N.K.; Finfrock, C.C.; Lara, J.D.; Schwarz, C.E.; Greene, G.A.

    1993-01-01

    Two experiments to study the dissolution of a torospherical stainless steel vessel by an isothermal pool of molten aluminum have been performed. The test vessels consisted of 24 inch diameter 316L stainless steel ``ASME Flanged and Dished Heads.`` The nominal values of the average melt temperatures for the two tests were: 977{degree}C and 1007{degree}C. The measurements of the dissolution depth as a function of the position along the vessel surface showed the dissolution to be spatially highly non-uniform. Large variations in the dissolution depth with respect to the azimuthal coordinate were also observed. The maximum value of the measured time averaged dissolution rate was found to be 5.05 mm/hr, and this occurred near the edge of the molten pool. The concentration measurements indicated that the molten pool was highly stratified with respect to the concentration of stainless steel in the melt (molten aluminum-stainless steel solution).

  3. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  4. Effect of Convection on Weld Pool Shape and Microstructure.

    DTIC Science & Technology

    1986-07-01

    as tracers to provide contrast. Microfocus x - ray is used to produce a focused x - ray beam. This x - ray beam is directed through the test section. An...119 Figure 3.4.2 Schematic Diagram of the Experimental Set Up - X - ray Shadow Graph .......................... 120 Figure 3.4.3 Mlcrograph of the Cross...section of the Laser Melted Pool, Laser Power = 8.0 kW, Beam Radius = 0.5 mm, Scanning Speed = 50 mm/sec ..... 121 Figure 3.4.4 X - ray Shadow Graph of

  5. Molten pool characterization of laser lap welded copper and aluminum

    NASA Astrophysics Data System (ADS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  6. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Pistorius, Petrus Christiaan

    2017-01-01

    AlSi10Mg cylinders produced by laser powder-bed fusion have somewhat different yield behavior for cylinders with XY orientation and Z orientation. Earlier yielding for Z-oriented samples is likely related to micro-residual stress, resulting from the difference in thermal expansion of the aluminum matrix and cellular silicon. Smaller tensile reduction in area of Z-oriented samples is related to tearing along the softer region at the boundaries of melt pools, where the silicon cell spacing is larger. Indentation measurements confirmed the lower hardness at the edges of melt pools.

  7. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Pistorius, Petrus Christiaan

    2017-03-01

    AlSi10Mg cylinders produced by laser powder-bed fusion have somewhat different yield behavior for cylinders with XY orientation and Z orientation. Earlier yielding for Z-oriented samples is likely related to micro-residual stress, resulting from the difference in thermal expansion of the aluminum matrix and cellular silicon. Smaller tensile reduction in area of Z-oriented samples is related to tearing along the softer region at the boundaries of melt pools, where the silicon cell spacing is larger. Indentation measurements confirmed the lower hardness at the edges of melt pools.

  8. Design of an Optical system for the In Situ Process Monitoring of Selective Laser Melting (SLM)

    NASA Astrophysics Data System (ADS)

    Lott, Philipp; Schleifenbaum, Henrich; Meiners, Wilhelm; Wissenbach, Konrad; Hinke, Christian; Bültmann, Jan

    Selective Laser Melting (SLM) is an Additive Manufacturing technology that enables the production of complex shaped individual parts with series identical mechanical properties. Areas of improvement are up to now quality and reproducibility of parts made by SLM due to different kinds of errors. Therefore the integration of a monitoring and control module into a SLM-machine is aspired. The design of such an optical system capable of monitoring high scanning velocities and melt pool dynamics is introduced as a first step.

  9. Melt spinning study

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Thomas

    1993-01-01

    Containerless processing of materials provides an excellent opportunity to study nucleation phenomena and produce unique materials, primarily through the formation of metastable phases and deep undercoolings. Deep undercoolings can be readily achieved in falling drops of molten material. Extended solute solubilities and greatly refined microstructures can also be obtained in containerless processing experiments. The Drop Tube Facility at Marshall Space Flight Center has played an important role in enhancing that area of research. Previous experiments performed in the Drop Tube with refractory metals has shown very interesting microstructural changes associated with deep undercoolings. It is apparent also that the microstructure of the deep undercooled species may be changing due to the release of the latent heat of fusion during recalescence. For scientific purposes, it is important to be able to differentiate between the microstructures of the two types of metallic species. A review of the literature shows that although significant advances have been made with respect to the engineering aspects of rapid solidification phenomena, there is still much to be learned in terms of understanding the basic phenomena. The two major ways in which rapid solidification processing provides improved structures and hence improved properties are: (1) production of refined structures such as fine dendrites and eutectics, and (2) production of new alloy compositions, microstructures, and phases through extended solid solubility, new phase reaction sequences, and the formation of metallic-glass microstructures. The objective of this work has been to determine the optimal methodology required to extract this excess energy without affecting the thermo-physical parameters of the under-cooled melt. In normal containerless processing experiments recalescence occurs as the melt returns toward the melting point in order to solidify. A new type of experiment is sought in which the resultant

  10. Investigation of Partial Melting in Planetary Interiors using Electrical Measurements

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Evans, R. L.; Leinenweber, K. D.; Kohlstedt, D. L.

    2016-12-01

    Partial melting is induced by major processes that shape the interior of terrestrial bodies and contributes to their differentiation, structure, and dynamics. Among the tools used to investigate planetary interiors, electromagnetic (EM) data probe the electrical response of planetary interiors and can detect the presence of partially molten areas. Combined with laboratory experiments on partially molten samples and petrological constraints, electrical measurements help place constraints on the amount, geometry, interconnectivity, and storage conditions of melt. In particular, electrical experiments on partially molten rocks provide a test of the likelihood of a molten lowermost mantle, as suggested for the Moon, and can be used to investigate melt alignment and distribution in active tectonic contexts on Earth. Here, we use two recent electrical conductivity datasets to investigate partially molten zones in the deep Lunar mantle and Earth's asthenosphere. Electrical experiments were performed at high temperature on 1) olivine compacts (Fo77 and Fo90) during melting experiments at 4 and 6 GPa and 2) sheared olivine (+MORB) samples at 3 GPa, with shear strains up to 7.3. All measurements were conducted using the impedance spectroscopy technique with the two-electrode method. Partial melting experiments show that at T> Tsolidus + 75°C, conductivity increases significantly, by a factor of ˜30 to 100, due to a transition from a tube-dominated network to a structure in which melt films and pools become prominent features. At higher T, a plateau suggests that the electrical response of the investigated samples lacks sensitivity to temperature at an advanced stage of melting. Comparison of our results with EM data of the Moon supports the hypothesis of the presence of interconnected melt at the base of the mantle and provides upper bounds on melt fraction. Experiments on sheared samples suggest that the presence of melt in a sheared rock will provide high conductivities

  11. Core-concrete interactions with overlying water pools. The WETCOR-1 test

    SciTech Connect

    Blose, R.E.; Powers, D.A.; Copus, E.R.; Brockmann, J.E.; Simpson, R.B.; Lucero, D.A.

    1993-11-01

    The WETCOR-1 test of simultaneous interactions of a high-temperature melt with water and a limestone/common-sand concrete is described. The test used a 34.1-kg melt of 76.8 w/o Al{sub 2}O{sub 3}, 16.9 w/o CaO, and 4.0 w/o SiO{sub 2} heated by induction using tungsten susceptors. Once quasi-steady attack on concrete by the melt was established, an attempt was made to quench the melt at 1850 K with 295 K water flowing at 57 liters per minute. Net power into the melt at the time of water addition was 0.61 {plus_minus} 0.19 W/cm{sup 3}. The test configuration used in the WETCOR-1 test was designed to delay melt freezing to the walls of the test fixture. This was done to test hypotheses concerning the inherent stability of crust formation when high-temperature melts are exposed to water. No instability in crust formation was observed. The flux of heat through the crust to the water pool maintained over the melt in the test was found to be 0.52 {plus_minus} 0.13 MW/m{sup 2}. Solidified crusts were found to attenuate aerosol emissions during the melt concrete interactions by factors of 1.3 to 3.5. The combination of a solidified crust and a 30-cm deep subcooled water pool was found to attenuate aerosol emissions by factors of 3 to 15.

  12. Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits

    NASA Astrophysics Data System (ADS)

    Krüger, T.; van der Bogert, C. H.; Hiesinger, H.

    2016-07-01

    Using SELENE/Kaguya Terrain Camera and Lunar Reconnaissance Orbiter Camera (LROC) data, we produced a new, high-resolution (10 m/pixel), geomorphological and impact melt distribution map for the lunar crater Tycho. The distal ejecta blanket and crater rays were investigated using LROC wide-angle camera (WAC) data (100 m/pixel), while the fine-scale morphologies of individual units were documented using high resolution (∼0.5 m/pixel) LROC narrow-angle camera (NAC) frames. In particular, Tycho shows a large coherent melt sheet on the crater floor, melt pools and flows along the terraced walls, and melt pools on the continuous ejecta blanket. The crater floor of Tycho exhibits three distinct units, distinguishable by their elevation and hummocky surface morphology. The distribution of impact melt pools and ejecta, as well as topographic asymmetries, support the formation of Tycho as an oblique impact from the W-SW. The asymmetric ejecta blanket, significantly reduced melt emplacement uprange, and the depressed uprange crater rim at Tycho suggest an impact angle of ∼25-45°.

  13. Comprehensive analysis of correlation coefficients estimated from pooling heterogeneous microarray data

    PubMed Central

    2013-01-01

    Background The synthesis of information across microarray studies has been performed by combining statistical results of individual studies (as in a mosaic), or by combining data from multiple studies into a large pool to be analyzed as a single data set (as in a melting pot of data). Specific issues relating to data heterogeneity across microarray studies, such as differences within and between labs or differences among experimental conditions, could lead to equivocal results in a melting pot approach. Results We applied statistical theory to determine the specific effect of different means and heteroskedasticity across 19 groups of microarray data on the sign and magnitude of gene-to-gene Pearson correlation coefficients obtained from the pool of 19 groups. We quantified the biases of the pooled coefficients and compared them to the biases of correlations estimated by an effect-size model. Mean differences across the 19 groups were the main factor determining the magnitude and sign of the pooled coefficients, which showed largest values of bias as they approached ±1. Only heteroskedasticity across the pool of 19 groups resulted in less efficient estimations of correlations than did a classical meta-analysis approach of combining correlation coefficients. These results were corroborated by simulation studies involving either mean differences or heteroskedasticity across a pool of N > 2 groups. Conclusions The combination of statistical results is best suited for synthesizing the correlation between expression profiles of a gene pair across several microarray studies. PMID:23822712

  14. Carbon concentrations and transformations in peatland pools

    NASA Astrophysics Data System (ADS)

    Chapman, Pippa; Holden, Joseph; Baird, Andrew; Turner, Edward; Dooling, Gemma; Billett, Mike; McKenzie, Rebecca; Leith, Fraser; Dinsmore, Kerry

    2016-04-01

    Peatland pools may act as important features for aquatic and gaseous carbon production, transformation and release. Peatland restoration often results in new pools being created. Here we compare aquatic carbon concentrations in nearby natural and artificial pool systems monitored at three sites in northern Scotland over a three-year period. We found significant differences in pool water carbon concentrations between pool types with larger dissolved organic carbon (DOC) and dissolved carbon dioxide (CO2) in artificial pools. The differences were strong for all sites and occurred in all seasons. Importantly, the DOC outflows from natural pools were markedly lower than the DOC flowing into natural pools showing that processes in these pools were transforming and removing the DOC. These effects were not found in the artificial pools. Data on the composition of the DOC (absorbance ratios, specific ultraviolet absorbance) suggested that natural pools tended to have DOC that had been processed, and was older (radiocarbon dating) while the DOC in artificial pools was young and had not undergone much biochemical processing. Slope position was an important factor influencing pool DOC with those pools with a longer upslope contributing area and collecting water with a longer hillslope residence time having larger DOC concentrations. Dissolved methane (CH4) concentrations were not significantly different between pool types but the concentrations were always above atmospheric levels with values ˜ 200 times atmospheric concentrations not uncommon. Dissolved CO2 concentrations in the artificial pools were extremely large; typically ˜20 times atmospheric levels while those in natural pools were typically only just above atmospheric levels. The pools were strong sources of CH4 and CO2 evasion from the peat system. The smaller size of the artificial pools means that more of their CO2 is stored in the water until it reaches the stream system, while the larger natural pools have

  15. 21 CFR 1250.89 - Swimming pools.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Swimming pools. 1250.89 Section 1250.89 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.89 Swimming pools. (a) Fill and draw swimming pools shall not be installed or used. (b) Swimming pools of the recirculation type shall be...

  16. Swimming Pools. Managing School Facilities, Guide 2.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide for schools with swimming pools offers advice concerning appropriate training for pool managers, the importance of water quality and testing, safety in the handling of chemicals, maintenance and cleaning requirements, pool security, and health concerns. The guide covers both indoor and outdoor pools, explains some technical terms,…

  17. 13 CFR 120.1708 - Pool Certificates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Certificates. (a) SBA Guarantee of Pool Certificates. SBA guarantees to a Pool Investor the timely payment of... Investor is entitled. If an Obligor misses a scheduled payment pursuant to the terms of the Pool Note... the schedule of interest and principal payments to the Pool Investor. If SBA makes such payments,...

  18. 13 CFR 120.1708 - Pool Certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Certificates. (a) SBA Guarantee of Pool Certificates. SBA guarantees to a Pool Investor the timely payment of... Investor is entitled. If an Obligor misses a scheduled payment pursuant to the terms of the Pool Note... the schedule of interest and principal payments to the Pool Investor. If SBA makes such payments,...

  19. HYDROLOGY AND LANDSCAPE CONNECTIVITY OF VERNAL POOLS

    EPA Science Inventory

    Vernal pools are shaped by hydrologic processes which influence many aspects of pool function. The hydrologic budget of a pool can be summarized by a water balance equation that relates changes in the amount of water in the pool to precipitation, ground- and surface-water flows, ...

  20. HYDROLOGY AND LANDSCAPE CONNECTIVITY OF VERNAL POOLS

    EPA Science Inventory

    Vernal pools are shaped by hydrologic processes which influence many aspects of pool function. The hydrologic budget of a pool can be summarized by a water balance equation that relates changes in the amount of water in the pool to precipitation, ground- and surface-water flows, ...

  1. 21 CFR 1250.89 - Swimming pools.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Swimming pools. 1250.89 Section 1250.89 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.89 Swimming pools. (a) Fill and draw swimming pools shall not be installed or used. (b) Swimming pools of the recirculation type shall...

  2. 21 CFR 1250.89 - Swimming pools.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Swimming pools. 1250.89 Section 1250.89 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.89 Swimming pools. (a) Fill and draw swimming pools shall not be installed or used. (b) Swimming pools of the recirculation type shall...

  3. European Swimming Pool Designs Cross the Atlantic.

    ERIC Educational Resources Information Center

    Jaskulak, Neil

    1983-01-01

    Conventional swimming pools have been built with the needs of competitive swimmers in mind. Planners in several European countries have greatly increased swimming pool attendance by designing "leisure pools," based primarily on the needs and behavior of recreationists. Design of these pools and their equipment requirements are discussed.…

  4. European Swimming Pool Designs Cross the Atlantic.

    ERIC Educational Resources Information Center

    Jaskulak, Neil

    1983-01-01

    Conventional swimming pools have been built with the needs of competitive swimmers in mind. Planners in several European countries have greatly increased swimming pool attendance by designing "leisure pools," based primarily on the needs and behavior of recreationists. Design of these pools and their equipment requirements are discussed.…

  5. Melting the Divide

    NASA Astrophysics Data System (ADS)

    Gibson, S. M.

    2014-12-01

    Presenting Quaternary Environmental Change to students who fall into Widening Participation criteria at the University of Cambridge, gives a unique opportunity to present academic debate in an approachable and entertaining way. Literally by discussing the melting of our ice caps, melts the divide Cambridge has between its reputation and the reality for the brightest, underprivileged, students. There is a balance between presenting cutting edge research with the need to come across as accessible (and importantly valuable to "learning"). Climate change over the Quaternary lends itself well to this aim. By lecturing groups of potential students through the entire Quaternary in an hour, stopping to discuss how our ancestors interacted with past Interglacials and what are the mechanisms driving change (in generalized terms), you are able to introduce cutting edge research (such as the latest NEEM ice core) to the students. This shows the evolution and importance of higher education and academic research. The lecture leads well onto group discussions (termed "supervisions" in Cambridge), to explore their opinions on the concern for present Anthropogenic Climate Change in relation to Past Climate Change after being presented with images that our ancestors "made it". Here discussion thrives off students saying obvious things (or sarcastic comments!) which quickly can lead into a deep technical discussion on their terms. Such discussions give the students a zest for higher education, simply throwing Ruddiman's (2003) "The Anthroprocene Started Several Thousand Years Ago" at them, questions in a second their concept of Anthropogenic Climate Change. Supervisions lend themselves well to bright, articulate, students and by offering these experiences to students of Widening Participation criteria we quickly melt the divide between the reputation of Cambridge ( and higher education as a whole) and the day to day practice. Higher education is not for the privileged, but a free and

  6. Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials

    NASA Astrophysics Data System (ADS)

    Safdar, Shakeel; Li, Lin; Sheikh, M. A.

    2007-01-01

    Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data.

  7. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    NASA Astrophysics Data System (ADS)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  8. Melt Rheology of Block Copolymers in Relation to Melt Structure.

    DTIC Science & Technology

    1980-06-23

    According to their theory, (A-B-A) type block copolymer melts are expected to exhibit a network response including a yield stress at very low shear rates ...observed the following very unusual flow behavior with SBS block copolymers . 1. The viscosities of SBS block copolymers at low shear rates go...unusual flow properties. One can expect from the probable two-phase structure in the melt that block copolymer melts would exhibit strong elastic

  9. Melt Heterogeneity and Degassing at MT Etna from Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Salem, L. C.; Edmonds, M.; Maclennan, J.; Corsaro, R. A.

    2014-12-01

    The melts feeding Mt Etna, Italy, are rich in volatiles and drive long-lasting powerful eruptions of basaltic magma in both effusive and explosive styles of activity. The volatile systematics of the volcanic system are well understood through melt inclusion and volcanic gas studies. Etna's melts are generated from a complex mantle setting, with subduction-related chemical modifications as well as OIB-type features, and then the melts must travel through thick carbonate-rich crust. The continual influx of mantle-derived volatile-rich magma controls the major compositional and eruptive features of Mount Etna and magma mixing has been recognized as an important process driving large eruptions [Kamenetsky, 2007]. Our study focusses on the 1669 eruption, the largest in historical times. Olivine-hosted melt inclusions were analyzed for volatile, trace and major elements using electron microprobe and ion probe (SIMS). We use volatile systematics and geochemical data to deconvolve mantle-derived heterogeneity from melt mixing and crystal fractionation. Our data are well described by a mixing trend between two distinct melts: a CO2-rich (CO2~1000ppm), incompatible trace element depleted melt (La/Yb~16), and a CO2-poor, enriched melt. The mixing also generates a strong correlation between Sr and CO2 in the melt inclusions dataset, reflecting the presence of a strong Sr anomaly in one of the end-member melts. We investigate the origin of this Sr anomaly by considering plagioclase dissolution and crustal assimilation. We also investigate degassing processes in the crust and plumbing system of the volcano. We compare our results with similar studies of OIB and arc-related basalts elsewhere and assess the implications for linking eruption size and style with the nature of the mantle-derived melts. Kamenetsky et al. (2007) Geology 35, 255-258.

  10. Method of measuring a liquid pool volume

    DOEpatents

    Garcia, Gabe V.; Carlson, Nancy M.; Donaldson, Alan D.

    1991-01-01

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

  11. Analysis of melt copolymers.

    PubMed

    Montaudo, Maurizio S

    2007-01-01

    Melt copolymer chains are the main (most abundant) reaction product obtained when heating a blend of two (or more) condensation polymers (such as polyester + polycarbonate or polyester + polyamide or polyester + polyester) in which exchange reactions occur. In fact, during the melt-mixing reaction, an AB copolymer is formed and, as a consequence, the sample is a complex mixture made of three components or simply "parts", referred to as Z1, Z2 and Z3, where Z1 and Z2 are the parts for unreacted homopolymers (A and B), whereas Z3 is the part for the copolymer. In this paper, it is shown that matrix-assisted laser desorption/ionization mass spectrometry (and mass spectrometry in general) can be used to monitor the yield of the reactive blending reaction, YR, by measuring the amount of unreacted homopolymer (Z1 and Z2). In order to allow for comparisons, the paper also discusses conventional methods for measuring Z1 and Z2, such as liquid chromatography and nuclear magnetic resonance.

  12. Melting in Martian Snowbanks

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Sutter, B.

    2005-01-01

    Precipitation as snow is an emerging paradigm for understanding water flow on Mars, which gracefully resolves many outstanding uncertainties in climatic and geomorphic interpretation. Snowfall does not require a powerful global greenhouse to effect global precipitation. It has long been assumed that global average temperatures greater than 273K are required to sustain liquid water at the surface via rainfall and runoff. Unfortunately, the best greenhouse models to date predict global mean surface temperatures early in Mars' history that differ little from today's, unless exceptional conditions are invoked. Snowfall however, can occur at temperatures less than 273K; all that is required is saturation of the atmosphere. At global temperatures lower than 273K, H2O would have been injected into the atmosphere by impacts and volcanic eruptions during the Noachian, and by obliquity-driven climate oscillations more recently. Snow cover can accumulate for a considerable period, and be available for melting during local spring and summer, unless sublimation rates are sufficient to remove the entire snowpack. We decided to explore the physics that controls the melting of snow in the high-latitude regions of Mars to understand the frequency and drainage of snowmelt in the high martian latitudes.

  13. Flame spread across liquid pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.

    1993-01-01

    For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.

  14. ENERGY STAR Certified Pool Pumps

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Pool Pumps that are effective as of February 15, 2013. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=poolpumps.pr_crit_poolpumps

  15. Monitoring pool-tail fines

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Potyondy, J. P.; Abt, S. R.; Swingle, K. W.

    2010-12-01

    Fine sediment < 2 and < 6 mm deposited in pool-tail areas of mountain streams is often measured to monitor changes in the supply of fines (e.g., by dam removal, bank erosion, or watershed effects including fires and road building) or to assess the status and trend of aquatic ecosystems. Grid counts, pebble counts, and volumetric bedmaterial samples are typically used to quantify pool-tail fines. Grid-count results exhibit a high degree of variability not only among streams and among operators, but also among crews performing a nearly identical procedure (Roper et al. 2010). Variability is even larger when diverse methods are employed, each of which quantifies fines in a different way: grid counts visually count surface fines on small patches within the pool-tail area, pebble counts pick up and tally surface particles along (riffle) transects, and volumetric samples sieve out fines from small-scale bulk samples; and even when delimited to pool-tail areas, individual methods focus on different sampling locales. Two main questions were analyzed: 1) Do pool-tail fines exhibit patterns of spatial variability and are some grid count schemes more likely to provide accurate results than others. 2) How and why does the percentage of fines vary among grid counts, pebble counts, and volumetric samples. In a field study, grids were placed at 7 locales in two rows across the wetted width of 10 pool tails in a 14-m wide 3rd order coarse gravel-bed mountain stream with <4% sand and <8% < 6 mm. Several pebble count transects were placed across each pool-tail area, and three volumetric samples were collected in each of three pool tails. Pebble and grid counts both indicated a fining trend towards one or both banks, sometimes interrupted by a secondary peak of fines within the central half of the wetted width. Among the five sampling schemes tested, grid counts covering the wetted width with 7 locales produced the highest accuracy and the least variability among the pools of the

  16. Melting of Ice under Pressure

    SciTech Connect

    Schwegler, E; Sharma, M; Gygi, F; Galli, G

    2008-07-31

    The melting of ice under pressure is investigated with a series of first principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10 to 50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 to 40 GPa, ice melts as a molecular solid. For pressures above {approx}45 GPa there is a sharp increase in the slope of the melting curve due to the presence of molecular dissociation and proton diffusion in the solid, prior to melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid.

  17. Melting of ice under pressure.

    PubMed

    Schwegler, Eric; Sharma, Manu; Gygi, François; Galli, Giulia

    2008-09-30

    The melting of ice under pressure is investigated with a series of first-principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10-50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 and 40 GPa, ice melts as a molecular solid. For pressures above approximately 45 Gpa, there is a sharp increase in the slope of the melting curve because of the presence of molecular dissociation and proton diffusion in the solid before melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid.

  18. The influence of pre-melting in laser drilling with temporally modulated pulse

    NASA Astrophysics Data System (ADS)

    Duan, Wenqiang; Wang, Kedian; Dong, Xia; Mei, Xuesong; Wang, Wenjun; Fan, Zhengjie; Lv, Jing

    2016-05-01

    Laser drilling by temporally modulated pulse is a promising technique and has many advantages compared with normal pulse drilling. In this work, the effect of modulated pulse comprising pre-heating front and sharp trail was mainly studied. The function of the former was to pre-melt the radiated material, and the latter was to expel the liquid melt from the molten pool, thus to form a blind hole. While the trail subpulse was kept constant, the difference in the pre-heating subpulse parameter could cause a considerable influence on the hole quality and drilling efficiency. The depth and volume of the molten pool were proportional to the pre-heating energy, and inversely proportional to the pre-heating duration. With pre-heating subpulses of proper parameters, the sharp trail subpulse was very effective in expelling the melt liquid, leaving only a small quantity of melt to re-solidify as the recast layer, which was observably thinner compared with the holes drilled using the normal pulse mode. In the pre-melting process, the directional melt flow and heat conduction were found to be the reasons why the deep melting phenomenon had occurred.

  19. Melting line of polymeric nitrogen

    NASA Astrophysics Data System (ADS)

    Yakub, L. N.

    2013-05-01

    We made an attempt to predict location of the melting line of polymeric nitrogen using two equations for Helmholtz free energy: proposed earlier for cubic gauche-structure and developed recently for liquid polymerized nitrogen. The P-T relation, orthobaric densities and latent heat of melting were determined using a standard double tangent construction. The estimated melting temperature decreases with increasing pressure, alike the temperature of molecular-nonmolecular transition in solid. We discuss the possibility of a triple point (solid-molecular fluid-polymeric fluid) at ˜80 GPa and observed maximum of melting temperature of nitrogen.

  20. A Sample from an Ancient Sea of Impact Melt

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2016-06-01

    Sophisticated computer modeling of the formation of lunar multi-ringed basins by impact indicate that substantial volumes of impact melt are produced, leading to melt bodies hundreds of kilometers in diameter and tens of kilometers deep. The impressively large bodies of magma created by the impact of a projectile 50 to 300 kilometers across might have differentiated, producing a zoned body with denser minerals concentrated towards the bottom and less dense minerals concentrated near the top, a process called fractional crystallization. Marc Norman (Australian National University) and colleagues at the University of Tennessee and the Johnson Space Center have studied a sample (67955) collected in the lunar highlands during the Apollo 16 mission. The overall texture, composition, and mineralogy of a clast (a fragment) in the rock indicate that it formed as an accumulation of crystals from a magma that was enriched in trace elements. Mineral compositions and crystal intergrowths suggest a similar depth of origin to lunar igneous rocks that formed more than 10 kilometers deep in the lunar crust, implying an impact melt pool at least as deep. Such a deep melt pool would have formed in an impact basin the size of Orientale, a multi-ringed basin whose inner ring is 480 kilometers across. Norman and co-workers also determined from samarium and neodymium isotopes that the igneous clast is 4.2 billion years old, clearly older than the typical age of 3.8-3.9 billion years assigned to visible lunar basins. The authors conclude that the clast in 67955 is a sample of a differentiated impact melt sea formed in an impact basin on the nearside of the Moon 4.2 billion years ago. The rock was part of a pile of ejecta thrown to the Apollo 16 site, possibly by the impact event that excavated the Imbrium basin.

  1. Interactions between pool geometry and hydraulics

    USGS Publications Warehouse

    Thompson, D.M.; Nelson, J.M.; Wohl, E.E.

    1998-01-01

    An experimental and computational research approach was used to determine interactions between pool geometry and hydraulics. A 20-m-long, 1.8-m-wide flume was used to investigate the effect of four different geometric aspects of pool shape on flow velocity. Plywood sections were used to systematically alter constriction width, pool depth, pool length, and pool exit-slope gradient, each at two separate levels. Using the resulting 16 unique geometries with measured pool velocities in four-way factorial analyses produced an empirical assessment of the role of the four geometric aspects on the pool flow patterns and hence the stability of the pool. To complement the conclusions of these analyses, a two-dimensional computational flow model was used to investigate the relationships between pool geometry and flow patterns over a wider range of conditions. Both experimental and computational results show that constriction and depth effects dominate in the jet section of the pool and that pool length exhibits an increasing effect within the recirculating-eddy system. The pool exit slope appears to force flow reattachment. Pool length controls recirculating-eddy length and vena contracta strength. In turn, the vena contracta and recirculating eddy control velocities throughout the pool.

  2. Melt damage to the JET ITER-like Wall and divertor

    NASA Astrophysics Data System (ADS)

    Matthews, G. F.; Bazylev, B.; Baron-Wiechec, A.; Coenen, J.; Heinola, K.; Kiptily, V.; Maier, H.; Reux, C.; Riccardo, V.; Rimini, F.; Sergienko, G.; Thompson, V.; Widdowson, A.; Contributors, JET

    2016-02-01

    In October 2014, JET completed a scoping study involving high power scenario development in preparation for DT along with other experiments critical for ITER. These experiments have involved intentional and unintentional melt damage both to bulk beryllium main chamber tiles and to divertor tiles. This paper provides an overview of the findings of concern for machine protection in JET and ITER, illustrating each case with high resolution images taken by remote handling or after removal from the machine. The bulk beryllium upper dump plate tiles and some other protection tiles have been repeatedly flash melted by what we believe to be mainly fast unmitigated disruptions. The flash melting produced in this way is seen at all toroidal locations and the melt layer is driven by j × B forces radially outward and upwards against gravity. In contrast, the melt pools caused while attempting to use MGI to mitigate deliberately generated runaway electron beams are localized to several limiters and the ejected material appears less influenced by j × B forces and shows signs of boiling. In the divertor, transient melting of bulk tungsten by ELMs was studied in support of the ITER divertor material decision using a specially prepared divertor module containing an exposed edge. Removal of the module from the machine in 2015 has provided improved imaging of the melt and this confirms that the melt layers are driven by ELMs. No other melt damage to the other 9215 bulk tungsten lamellas has yet been observed.

  3. Transient interaction of a boiling melt with a pulsed Nd:YAG-laser

    NASA Astrophysics Data System (ADS)

    Samarjy, R. S. M.; Kaplan, A. F. H.

    2017-01-01

    The boiling front induced by a pulsed Nd:YAG-laser at very slow translation speed was studied. The purpose is to understand fundamental melt movement mechanisms. The melt was observed by high speed imaging, with and without illumination. When switching on the laser beam a hole is drilled through a bulk of melt. The hole expands and the boiling pressure gradually opens the melt bridge, instead developing an interaction front similar to cutting. These conditions remain in quasi-steady state during the pulse. The ablation pressure from boiling shears waves down the front and keeps the melt downwards in a stable position. When switching off, the waves smoothen and in absence of boiling the surface tension drags the melt back upwards, to semi-torus-like Catenoid shape. Evidence on the large melt pool and its shape was achieved by three-dimensional reconstruction from cross section macrographs. The basic findings how melt can move with and without ablation pressure can enable controlled melt dynamics for various laser processing techniques, like remote cutting, ablation, keyhole welding or drilling.

  4. Melt Pond Optics

    NASA Image and Video Library

    2017-09-27

    On July 6, 2011, Don Perovich, of Cold Regions Research and Engineering Laboratory, used a spectroradiometer to measure the amount of sunlight reflected from the surface of ice and melt ponds in the Chukchi Sea. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Sampling Melt Ponds

    NASA Image and Video Library

    2017-09-27

    On July 10, 2011, Jens Ehn of Scripps Institution of Oceanography (left), and Christie Wood of Clark University (right), scooped water from melt ponds on sea ice in the Chukchi Sea. The water was later analyzed from the Healy's onboard science lab. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Waste glass melting stages

    SciTech Connect

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600[degrees]C--1000[degrees]C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied.

  7. Waste glass melting stages

    SciTech Connect

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600{degrees}C--1000{degrees}C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied.

  8. Tin in silicate melts

    NASA Astrophysics Data System (ADS)

    Paparoni, Guido

    An experimental technique that uses Re metal capsules as containers for tin-bearing systems has been developed and successfully used in the study of the compositional dependence of SnO2 solubility in silicate melts. These experiments have been performed in the absence of an aqueous fluid phase and oxygen fugacity (fO2) has been established by the addition of tin-metal to SnO2. This approach solves three long-standing problems in the study of SnO 2 solubility in silicate melts: (1) Alloying of noble-metal crucibles and corrosion of ceramic crucibles is avoided; (2) fO 2 is established by direct contact of a metal-oxide oxygen buffer; (3) Gaseous SnO is not lost to the furnace atmosphere. The Re-capsule technique, combined with evacuated silica-tube experiments, has been applied to the study of the system SnO-SiO2 at pressures of 1 atm and 10 kbar. SnO2 solubilities of up to 95 wt% SnO are reported. The system SnO-SiO2 is found to be a pseudo-binary of the ternary system Sn°-SnO2-SiO2. A revised phase diagram for the system SnO-SiO2 at a pressure ≈1 atm is provided, and a new phase diagram for the system SnOSiO2 at a pressure = 10 kbar has been constructed. These results are used to suggest the topology of the ternary system Sn°-SnO2SiO2. The Re-capsule technique has also been applied to the study of the subaluminous haplogranite system (SiO2NaAlSi3O8-KAlSi 3O8) at T = 1100°C, P = 10 kbar and fO 2 at Sn°-SnO2. Solubilities span the range of 41 to 80 wt% SnO. In the haplogranite system, the solubility of SnO2 increases with the proportion of normative SiO2, and SnO is found to expand the stability field of SiO2. In the feldspar join, Na-based melts dissolve a larger proportion of SnO than K-based melts. This effect is lost as SiO2 is progressively added to the feldspar join. Small amounts of F (1 wt%) are found to increase the solubility of SnO 2 by an equivalent 15 wt% normative quartz as shown with the Spor Mountain rhyolite. A comparison of SnO2 solubilities

  9. In Brief: Melting glaciers

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Tretkoff, Ernie

    2010-12-01

    Glaciers in Patagonia and Alaska have been losing their mass, and for longer than glaciers elsewhere in the world, according to a 7 December report compiled by the United Nations Environment Programme (UNEP). “Climate change is causing significant mass loss of glaciers in high mountains worldwide,” notes the report, which calls for accelerated research, monitoring, and modeling of glaciers and snow and their role in water supplies. The report “also highlights the vulnerability and exposure of people dependent upon [glacier-fed] rivers to floods, droughts and eventually shortages as a result of changes in the melting and freezing cycles linked with climate change and other pollution impacts,” according to UNEP executive director Achim Steiner. For more information, visit http://www.grida.no/publications/high­mountain-glaciers/.

  10. Melting and melt-movement in the Earth

    NASA Astrophysics Data System (ADS)

    White, Robert S.

    Researchers came together to discuss melting and melt-movement in the Earth at a 2-day Royal Society Discussion Meeting held in March 1992 at the Royal Society, London.In recent years, many new tools have become available to geologists studying igneous and metamorphic rocks. They can be examined at ever-higher magnifications: the composition within individual crystals can be measured; their isotopic, trace, and rare-earth element concentrations can be determined; and measurements of partition coefficients and melting behavior can be made in the laboratory at pressures and temperatures appropriate to in-situ rocks. Along with these improvements in instrumentation and experimental techniques, advances have been made in understanding the physics of melt generation and separation, and computers have been developed that are sufficiently powerful to model theoretical formulations of the behavior of melt in the Earth.

  11. NASA Science Flights Target Melting Arctic Sea Ice

    NASA Image and Video Library

    2017-09-28

    This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge

  12. Sustainability of common pool resources

    PubMed Central

    Timilsina, Raja Rajendra; Kamijo, Yoshio

    2017-01-01

    Sustainability has become a key issue in managing natural resources together with growing concerns for capitalism, environmental and resource problems. We hypothesize that the ongoing modernization of competitive societies, which we refer to as “capitalism,” affects human nature for utilizing common pool resources, thus compromising sustainability. To test this hypothesis, we design and implement a set of dynamic common pool resource games and experiments in the following two types of Nepalese areas: (i) rural (non-capitalistic) and (ii) urban (capitalistic) areas. We find that a proportion of prosocial individuals in urban areas is lower than that in rural areas, and urban residents deplete resources more quickly than rural residents. The composition of proself and prosocial individuals in a group and the degree of capitalism are crucial in that an increase in prosocial members in a group and the rural dummy positively affect resource sustainability by 65% and 63%, respectively. Overall, this paper shows that when societies move toward more capitalistic environments, the sustainability of common pool resources tends to decrease with the changes in individual preferences, social norms, customs and views to others through human interactions. This result implies that individuals may be losing their coordination abilities for social dilemmas of resource sustainability in capitalistic societies. PMID:28212426

  13. Sustainability of common pool resources.

    PubMed

    Timilsina, Raja Rajendra; Kotani, Koji; Kamijo, Yoshio

    2017-01-01

    Sustainability has become a key issue in managing natural resources together with growing concerns for capitalism, environmental and resource problems. We hypothesize that the ongoing modernization of competitive societies, which we refer to as "capitalism," affects human nature for utilizing common pool resources, thus compromising sustainability. To test this hypothesis, we design and implement a set of dynamic common pool resource games and experiments in the following two types of Nepalese areas: (i) rural (non-capitalistic) and (ii) urban (capitalistic) areas. We find that a proportion of prosocial individuals in urban areas is lower than that in rural areas, and urban residents deplete resources more quickly than rural residents. The composition of proself and prosocial individuals in a group and the degree of capitalism are crucial in that an increase in prosocial members in a group and the rural dummy positively affect resource sustainability by 65% and 63%, respectively. Overall, this paper shows that when societies move toward more capitalistic environments, the sustainability of common pool resources tends to decrease with the changes in individual preferences, social norms, customs and views to others through human interactions. This result implies that individuals may be losing their coordination abilities for social dilemmas of resource sustainability in capitalistic societies.

  14. Biogeochemical hotspots within forested landscapes: quantifying the functional role of vernal pools in ecosystem processes

    NASA Astrophysics Data System (ADS)

    Capps, K. A.; Rancatti, R.; Calhoun, A.; Hunter, M.

    2013-12-01

    Biogeochemical hotspots are characterized as small areas within a landscape matrix that show comparably high chemical reaction rates relative to surrounding areas. For small, natural features to generate biogeochemical hotspots within a landscape, their contribution to nutrient dynamics must be significant relative to nutrient demand of the surrounding landscape. In northeastern forests in the US, vernal pools are abundant, small features that typically fill in spring with snow melt and precipitation and dry by the end of the summer. Ephemeral flooding alters soil moisture and the depth of the oxic/anoxic boundary in the soil, which may affect leaf-litter decomposition rates and nutrient dynamics including denitrification. Additionally, pool-breeding organisms may influence nutrient dynamics via consumer-driven nutrient remineralization. We studied the effects of vernal pools on rates of leaf-litter decomposition and denitrification in forested habitats in Maine. Our results indicate leaf-litter decomposition and denitrification rates in submerged habitats of vernal pools were greater than in upland forest habitat. Our data also suggest pool-breeding organisms, such as wood frogs, may play an important role in nutrient dynamics within vernal pools. Together, the results suggest vernal pools may function as biogeochemical hotspots within forested landscapes.

  15. Co-settling of Chromite and Sulfide Melt Droplets and Trace Element Partitioning between Sulfide and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Manoochehri, S.; Schmidt, M. W.; Guenther, D.

    2013-12-01

    Gravitational settling of immiscible, dense sulfide melt droplets together with other cumulate phases such as chromite, combined with downward percolation of these droplets through a cumulate pile, is thought to be one of the possible processes leading to the formation of PGE rich sulfide deposits in layered mafic intrusions. Furthermore some chromitite seams in the Merensky Reef (Bushveld Complex) are considered to be acting as a filter or barrier for further downward percolation of sulfide melts into footwall layers. To investigate the feasibility of such mechanical processes and to study the partitioning behavior of 50 elements including transition metals and REEs (but not PGEs) between a silicate and a sulfide melt, two separate series of high temperature (1250-1380 °C) centrifuge-assisted experiments at 1000 g, 0.4-0.6 GPa were conducted. A synthetic silicate glass with a composition representative of the parental magma of the Bushveld Complex (~ 55 wt% SiO2) was mixed with pure FeS powder. For the first series of experiments, 15 or 25 wt% natural chromite with average grain sizes of ~ 5 or 31 μm were added to a mixture of silicate glass and FeS (10 wt%) adding 1 wt% water. For the second series, a mixture of the same glass and FeS was doped with 50 trace elements. These mixtures were first statically equilibrated and then centrifuged. In the first experimental series, sulfide melt droplets settled together with, but did not segregate from chromite grains even after centrifugation at 1000 g for 12 hours. A change in initial chromite grain size and proportions didn't have any effect on segregation. Without chromite, the starting mixture resulted in the formation of large sulfide melt pools together with finer droplets still disseminated through the silicate glass and both at the bottom of the capsule. The incomplete segregation of sulfide melt is interpreted as being due to high interfacial energies between sulfide and silicate melts/crystals which hinder

  16. Computational Investigation of Synchronized Multibeam Strategies for the Selective Laser Melting Process

    NASA Astrophysics Data System (ADS)

    Heeling, Thorsten; Wegener, Konrad

    The selective laser melting process features a nearly incomparable freedom of design. But its potential is still limited due to remaining porosity, cracking, distortion, low build-up rates and a limited range of materials. While there is some progress in process control and multiple parallel scan fields to tackle these issues, the potential of synchronized multibeam strategies has not yet been investigated. The presented synchronized multibeam approach is characterized by two widely overlapping scan fields fed by two independent laser sources that can be controlled to work in a synchronized manner with or without a defined offset. This allows a selective manipulation of the local temperature field and thus of melt pool dynamics, the temperature gradients and cooling rates, which are all influencing the processes' porosity, cracking and distortion behavior. Therefore the influences of these strategies on the melt pool dimensions and dynamics as well as the temperature gradients are investigated in this work.

  17. Fault rheology beyond frictional melting.

    PubMed

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E; Hess, Kai-Uwe; Dingwell, Donald B

    2015-07-28

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or "pseudotachylytes." It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics.

  18. Fault rheology beyond frictional melting

    PubMed Central

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E.; Hess, Kai-Uwe; Dingwell, Donald B.

    2015-01-01

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or “pseudotachylytes.” It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics. PMID:26124123

  19. CDC Study Finds Fecal Contamination in Pools

    MedlinePlus

    ... were sampled. The study did not address water parks, residential pools or other types of recreational water. ... contact with contaminated water in swimming pools, water parks, hot tubs, interactive fountains, water play areas, lakes, ...

  20. Pool Safety: A Few Simple Rules.

    ERIC Educational Resources Information Center

    PTA Today, 1993

    1993-01-01

    Presents suggestions by the National Swimming Pool Safety Committee on how to keep children safe while swimming. Ideas include maintaining strict adult supervision, pool and spa barriers, and knowledge of cardiopulmonary resuscitation. (SM)

  1. Cold Pools in the Columbia Basin

    SciTech Connect

    Whiteman, Charles D.; Zhong, Shiyuan; Shaw, William J.; Hubbe, John M.; Bian, Xindi; Mittelstadt, J.

    2001-01-01

    Persistent midwinter cold air pools produce multi-day periods of cold, dreary weather in valleys and basins. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures below freezing while the air above is warmer, freezing precipitation often occurs with consequent effects on transportation and safety. Forecasting the buildup and breakdown of these cold pools is difficult because the physical mechanisms leading to their formation, maintenance, and destruction have received little study. This paper provides a succinct meteorological definition of a cold pool, develops a climatology of Columbia Basin cold pools, and analyzes remote and in situ temperature and wind sounding data for two winter cold pool episodes that were accompanied by fog and stratus, illustrating many of the physical mechanisms affecting cold pool evolution.

  2. Pool power control in remelting systems

    DOEpatents

    Williamson, Rodney L [Albuquerque, NM; Melgaard, David K [Albuquerque, NM; Beaman, Joseph J [Austin, TX

    2011-12-13

    An apparatus for and method of controlling a remelting furnace comprising adjusting current supplied to an electrode based upon a predetermined pool power reference value and adjusting the electrode drive speed based upon the predetermined pool power reference value.

  3. Pool Safety: A Few Simple Rules.

    ERIC Educational Resources Information Center

    PTA Today, 1993

    1993-01-01

    Presents suggestions by the National Swimming Pool Safety Committee on how to keep children safe while swimming. Ideas include maintaining strict adult supervision, pool and spa barriers, and knowledge of cardiopulmonary resuscitation. (SM)

  4. Swimming Pool Survey, Offutt AFB, Nebraska.

    DTIC Science & Technology

    1987-12-01

    70-RIl9 236 SWIMMING POOL SIEVEY OFFUTT NWD NEURASIR(U) AIR FORCE 1/1 OCCUIPATIONAL AND EIWIRONHENTAL HEALTH LAIDBOOKS NFl TX ft 0 INGY! DEC 87... test in swimming pool evaluations to determine the severity of’ future contamination problems. C. In order to maintain pool water stability...154EQ0146MSB I4 Swimming Pool Survey, Offutt AFB NE ROBERT D. BINOVI, Lt Col, USAF, BSC vTO ELECTEOEC 3 1197 ,: i December 1987 Final Report Distribution

  5. Swimming pools soak up the sun

    SciTech Connect

    Cuoghi, D.; Hesse, P.; Schiller, T.

    1996-05-01

    Solar pool heaters survived the boom and bust solar years of the 1970s and 1980s. Today they are even popular and cost-effective in parts of the country where many people think solar is impractical. This article discusses the following topics: how solar pool heaters work; types of solar pool heater collectors; collector and pump sizing; collector siting and mounting; systems costs and economics; pool covers. 3 figs.

  6. Large-scale pool fire test recommendations

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.

    1979-01-01

    The important aspects of external pool fires are outlined. The research objectives are: (1) determine heat flux to surfaces as a function of pool size (convective and radiative heat flux); (2) obtain information that can be compared with theoretical models for radiative flux in the near field; and (3) predict radiative heat flux for arbitrary pool size. The measurements and instrumentation (calorimeters and thermocouples) used for pool fires are outlined.

  7. Melt Production in Oblique Impacts

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Melosh, H. J.

    2000-05-01

    Hydrocode modeling is a fundamental tool for the study of melt production in planetary impact events. Until recently, however, numerical modeling of impacts for melt production studies has been limited to vertical impacts. We present the first results of the investigation of melt production in oblique impacts. Simulations were carried out using Sandia's three-dimensional hydrocode CTH, coupled to the SESAME equation of state. While keeping other impact parameters constant, the calculations span impact angles (measured from the surface) from 90° (vertical impact) to 15°. The results show that impact angle affects the strength and distribution of the shock wave generated in the impact. As a result, both the isobaric core and the regions of melting in the target appear asymmetric and concentrated in the downrange, shallower portion of the target. The use of a pressure-decay power law (which describes pressure as function of linear distance from the impact point) to reconstruct the region of melting and vaporization is therefore complicated by the asymmetry of the shock wave. As an analog to the pressure decay versus distance from the impact point, we used a "volumetric pressure decay," where the pressure decay is modeled as a function of volume of target material shocked at or above the given shock pressure. We find that the volumetric pressure decay exponent is almost constant for impact angles from 90° to 30°, dropping by about a factor of two for a 15° impact. In the range of shock pressures at which most materials of geologic interest melt or begin to vaporize, we find that the volume of impact melt decreases by at most 20% for impacts from 90° down to 45°. Below 45°, however, the amount of melt in the target decreases rapidly with impact angle. Compared to the vertical case, the reduction in volume of melt is about 50% for impacts at 30° and more than 90% for a 15° impact. These estimates do not include possible melting due to shear heating, which can

  8. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  9. 7 CFR 1006.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  10. 7 CFR 1126.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  11. 7 CFR 1005.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  12. 7 CFR 1007.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  13. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  14. 7 CFR 1005.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  15. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  16. 7 CFR 1005.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  17. 7 CFR 1007.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  18. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  19. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  20. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  1. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  2. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  3. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  4. 7 CFR 1131.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this...

  5. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of...

  6. 7 CFR 1006.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  7. 7 CFR 1126.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  8. 7 CFR 1126.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  9. 7 CFR 1006.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  10. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h)...

  11. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  12. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h)...

  13. 7 CFR 1131.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this...

  14. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified...

  15. 7 CFR 1007.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant...

  16. 7 CFR 1131.7 - Pool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this...

  17. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of...

  18. 1968 Listing of Swimming Pool Equipment.

    ERIC Educational Resources Information Center

    National Sanitation Foundation, Ann Arbor, MI. Testing Lab.

    An up-to-date listing of swimming pool equipment including--(1) companies authorized to display the National Sanitation Foundation seal of approval, (2) equipment listed as meeting NSF swimming pool equipment standards relating to diatomite type filters, (3) equipment listed as meeting NSF swimming pool equipment standard relating to sand type…

  19. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h) of...

  20. 7 CFR 1005.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  1. 7 CFR 1131.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this section...

  2. 7 CFR 1007.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  3. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of this...

  4. 7 CFR 1001.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h) of...

  5. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h) of...

  6. 7 CFR 1006.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  7. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of this...

  8. 7 CFR 1033.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of this...

  9. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in...

  10. 7 CFR 1126.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  11. 7 CFR 1006.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  12. 7 CFR 1030.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h) of...

  13. 7 CFR 1131.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this section...

  14. 7 CFR 1126.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  15. 7 CFR 1005.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  16. 7 CFR 1124.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in...

  17. 7 CFR 1032.7 - Pool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of this...

  18. 7 CFR 1007.7 - Pool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...

  19. Apparatus for heating a swimming pool

    SciTech Connect

    Kremen, R.D.

    1983-09-06

    This disclosure relates to a solar heater apparatus for a swimming pool which incorporates a submersible suspendible black body sheet to serve as a device to absorb solar radiation and transfer the collected energy to the pool water so that the pool water can be efficiently heated.

  20. 47 CFR 13.215 - Question pools.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Question pools. 13.215 Section 13.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL RADIO OPERATORS Examination System § 13.215 Question pools. The question pool for each written examination element will be composed of questions...

  1. 1968 Listing of Swimming Pool Equipment.

    ERIC Educational Resources Information Center

    National Sanitation Foundation, Ann Arbor, MI. Testing Lab.

    An up-to-date listing of swimming pool equipment including--(1) companies authorized to display the National Sanitation Foundation seal of approval, (2) equipment listed as meeting NSF swimming pool equipment standards relating to diatomite type filters, (3) equipment listed as meeting NSF swimming pool equipment standard relating to sand type…

  2. Mercury: The Kuiper Melt

    NASA Image and Video Library

    2017-09-27

    Date acquired: April 05, 2013 This striking image of Kuiper shows the crater in a new perspective. This image highlights the crater's smooth impact melt and central peaks. Kuiper, first seen by Mariner 10, is an easily identifiable feature on Mercury's surface due to its bright rays, similar to Hokusai. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

  3. Thermodynamics of Oligonucleotide Duplex Melting

    NASA Astrophysics Data System (ADS)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-05-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply rigorous thermodynamic analysis to an important biochemical problem. Because the stacking of base pairs on top of one another is a significant factor in the energetics of oligonucleotide melting, several investigators have applied van't Hoff analysis to melting temperature data using a nearest-neighbor model and have obtained entropies and enthalpies for the stacking of bases. The present article explains how the equilibrium constant for the dissociation of strands from double-stranded oligonucleotides can be expressed in terms of the total strand concentration and thus how the total strand concentration influences the melting temperature. It also presents a simplified analysis based on the entropies and enthalpies of stacking that is manually tractable so that students can work examples to help them understand the thermodynamics of oligonucleotide melting.

  4. The Human Genomic Melting Map

    PubMed Central

    Liu, Fang; Tøstesen, Eivind; Sundet, Jostein K; Jenssen, Tor-Kristian; Bock, Christoph; Jerstad, Geir Ivar; Thilly, William G; Hovig, Eivind

    2007-01-01

    In a living cell, the antiparallel double-stranded helix of DNA is a dynamically changing structure. The structure relates to interactions between and within the DNA strands, and the array of other macromolecules that constitutes functional chromatin. It is only through its changing conformations that DNA can organize and structure a large number of cellular functions. In particular, DNA must locally uncoil, or melt, and become single-stranded for DNA replication, repair, recombination, and transcription to occur. It has previously been shown that this melting occurs cooperatively, whereby several base pairs act in concert to generate melting bubbles, and in this way constitute a domain that behaves as a unit with respect to local DNA single-strandedness. We have applied a melting map calculation to the complete human genome, which provides information about the propensities of forming local bubbles determined from the whole sequence, and present a first report on its basic features, the extent of cooperativity, and correlations to various physical and biological features of the human genome. Globally, the melting map covaries very strongly with GC content. Most importantly, however, cooperativity of DNA denaturation causes this correlation to be weaker at resolutions fewer than 500 bps. This is also the resolution level at which most structural and biological processes occur, signifying the importance of the informational content inherent in the genomic melting map. The human DNA melting map may be further explored at http://meltmap.uio.no. PMID:17511513

  5. Tektites: Origin as melts produced by the impact of small projectiles onto dry targets

    NASA Technical Reports Server (NTRS)

    Wasson, John T.

    1988-01-01

    The formation of tektites in general and layered tektites in particular seems to require a very special kind of cratering event. Evidence for the formation of pools of melt free of unmelted clasts has not been reported for the well-studied terrestrial craters such as Manicouagan or Ries. It is suggested that large amounts of relict-free melt were produced only when a sizeable fraction of the cratered target consisted of dry, high-porosity materials such as aeolian sediments. Since dry, high-porosity target materials are always confined to the outer 100 to 200 m of the Earth, the fraction of melt produced melt is probably higher in small (radius 50 to 500 m) craters than in large (r greater than 1 km) craters. Another reason to infer that the Southeast Asian tektites were produced in a multitude of small craters is the wide distribution of layered tektites. The file spans at least 1200 km, which would require ballistic ejection at velocities greater than 2 km s(-1) if all melt was generated in a single crater. It seems impossible to devise a scenario that would lead to the deposition of primary melt as a crystal-free pool at a distance of 600 km from the crater.

  6. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting

    SciTech Connect

    Tammas-Williams, S.; Zhao, H.; Léonard, F.; Derguti, F.; Todd, I.; Prangnell, P.B.

    2015-04-15

    Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (< 0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship was found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. - Graphical abstract: Display Omitted - Highlights: • Vast majority of defects detected were small spherical gas pores. • Gas bubbles trapped in the powder granules expand and coalesce in the melt pool. • Pores have been shown not to be randomly distributed. • Larger and deeper melt pools give more opportunity for gas to escape. • Minor changes to melt strategy result in significant reductions in pore population.

  7. 13 CFR 120.1709 - Transfers of Pool Certificates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of transmittal must accompany each Pool Certificate which a Pool Investor submits to the CSA for transfer. The Pool Investor must supply the following information in the letter: (1) Pool number; (2) Pool... recovery. At the same time a Pool Investor submits a letter of transmittal for a Pool Certificate...

  8. 13 CFR 120.1709 - Transfers of Pool Certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of transmittal must accompany each Pool Certificate which a Pool Investor submits to the CSA for transfer. The Pool Investor must supply the following information in the letter: (1) Pool number; (2) Pool... recovery. At the same time a Pool Investor submits a letter of transmittal for a Pool Certificate...

  9. Tunable molten oxide pool assisted plasma-melter vitrification systems

    DOEpatents

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical

  10. Melt instability and crystallization in thin amorphous Ni P films

    NASA Astrophysics Data System (ADS)

    Nink, T.; Mao, Z. L.; Bostanjoglo, O.

    2000-02-01

    High-speed TEM (exposure time 10 ns and frame propagation time ≥20 ns) was applied to study hydrodynamic instabilities and crystallization of melt pools produced by focused 5 ns laser pulses in amorphous Ni 1- XP X films ( X=0.2…0.3). Melt flow starts within 15 ns after the laser pulse and accumulates material at the center. The displacement of the liquid continues for several 100 ns. A texture with a non-monotonous distribution of crystal size and with a gradient in composition, containing lattice planes, which occur in Ni-P compounds of a broad range of composition, is produced within 15 μs.

  11. Modeling and database for melt-water interfacial heat transfer

    SciTech Connect

    Farmer, M.T.; Spencer, B.W.; Schneider, J.P.; Bonomo, B.; Theofanous, G.

    1992-04-01

    A mechanistic model is developed to predict the transition superficial gas velocity between bulk cooldown and crust-limited heat transfer regimes in a sparged molten pool with a coolant overlayer. The model has direct applications in the analysis of ex-vessel severe accidents, where molten corium interacts with concrete, thereby producing sparging concrete decomposition gases. The analysis approach embodies thermal, mechanical, and hydrodynamic aspects associated with incipient crust formation at the melt/coolant interface. The model is validated against experiment data obtained with water (melt) and liquid nitrogen (coolant) simulants. Predictions are then made for the critical gas velocity at which crust formation will occur for core material interacting with concrete in the presence of water.

  12. Modeling and database for melt-water interfacial heat transfer

    SciTech Connect

    Farmer, M.T.; Spencer, B.W. ); Schneider, J.P. ); Bonomo, B. ); Theofanous, G. )

    1992-01-01

    A mechanistic model is developed to predict the transition superficial gas velocity between bulk cooldown and crust-limited heat transfer regimes in a sparged molten pool with a coolant overlayer. The model has direct applications in the analysis of ex-vessel severe accidents, where molten corium interacts with concrete, thereby producing sparging concrete decomposition gases. The analysis approach embodies thermal, mechanical, and hydrodynamic aspects associated with incipient crust formation at the melt/coolant interface. The model is validated against experiment data obtained with water (melt) and liquid nitrogen (coolant) simulants. Predictions are then made for the critical gas velocity at which crust formation will occur for core material interacting with concrete in the presence of water.

  13. Laser thermoelastic generation in metals above the melt threshold

    NASA Astrophysics Data System (ADS)

    Every, A. G.; Utegulov, Z. N.; Veres, I. A.

    2013-11-01

    An approach is presented for calculating thermoelastic generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation. Detailed consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the appearance and subsequent growth and then contraction of the melt pool, and the time dependent thermal conduction in the melt and surrounding solid throughout. The excitation of the ultrasound takes place during and shortly after the laser pulse and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. It is shown how, because of this, the output of the thermal simulations can be expressed as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response to these force distributions is obtained by two methods, the one based on the elastodynamic Green's functions for plate geometry determined by the Cagniard generalized ray method and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported on the epicentral displacement response of a 3.12 mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold.

  14. Laser thermoelastic generation in metals above the melt threshold

    SciTech Connect

    Every, A. G.; Utegulov, Z. N.; Veres, I. A.

    2013-11-28

    An approach is presented for calculating thermoelastic generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation. Detailed consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the appearance and subsequent growth and then contraction of the melt pool, and the time dependent thermal conduction in the melt and surrounding solid throughout. The excitation of the ultrasound takes place during and shortly after the laser pulse and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. It is shown how, because of this, the output of the thermal simulations can be expressed as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response to these force distributions is obtained by two methods, the one based on the elastodynamic Green's functions for plate geometry determined by the Cagniard generalized ray method and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported on the epicentral displacement response of a 3.12 mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold.

  15. Plasma arc melting of zirconium

    SciTech Connect

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-12-31

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming.

  16. Electrical Conductivity of Cryolite Melts

    NASA Astrophysics Data System (ADS)

    Fellner, P.; Grjotheim, K.; Kvande, H.

    1985-11-01

    This paper proposes an equation for the electrical conductivity of multicomponent cryolite-based mixtures. The equation is based on a physical model which assumes that the conductivity is proportional to the number density of the effective electric charges in the melt. The various authors in the available literature show a great discrepancy in conductivity data of cryolite-based melts. The equation based on the physical model enables determination of which set of data is preferable. Special consideration in this respect is given to the influence of magnesium flouride and lithium flouride additions to the melt.

  17. Hot melt adhesive attachment pad

    NASA Technical Reports Server (NTRS)

    Fox, R. L.; Frizzill, A. W.; Little, B. D.; Progar, D. J.; Coultrip, R. H.; Couch, R. H.; Gleason, J. R.; Stein, B. A.; Buckley, J. D.; St.clair, T. L. (Inventor)

    1984-01-01

    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond.

  18. Modeling of heat and mass transfer processes during core melt discharge from a reactor pressure vessel

    SciTech Connect

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R.

    1995-09-01

    The objective of the paper is to study heat and mass transfer processes related to core melt discharge from a reactor vessel is a severe light water reactor accident. The phenomenology of the issue includes (1) melt convection in and heat transfer from the melt pool in contact with the vessel lower head wall; (2) fluid dynamics and heat transfer of the melt flow in the growing discharge hole; and (3) multi-dimensional heat conduction in the ablating lower head wall. A program of model development, validation and application is underway (i) to analyse the dominant physical mechanisms determining characteristics of the lower head ablation process; (ii) to develop and validate efficient analytic/computational methods for estimating heat and mass transfer under phase-change conditions in irregular moving-boundary domains; and (iii) to investigate numerically the melt discharge phenomena in a reactor-scale situation, and, in particular, the sensitivity of the melt discharge transient to structural differences and various in-vessel melt progression scenarios. The paper presents recent results of the analysis and model development work supporting the simulant melt-structure interaction experiments.

  19. Patent Pools: Intellectual Property Rights and Competition

    PubMed Central

    Rodriguez, Victor

    2010-01-01

    Patent pools do not correct all problems associated with patent thickets. In this respect, patent pools might not stop the outsider problem from striking pools. Moreover, patent pools can be expensive to negotiate, can exclude patent holders with smaller numbers of patents or enable a group of major players to form a cartel that excludes new competitors. For all the above reasons, patent pools are subject to regulatory clearance because they could result in a monopoly. The aim of this article is to present the relationship between patents and competition in a broad context. PMID:20200607

  20. Method of measuring a liquid pool volume

    DOEpatents

    Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

    1991-03-19

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

  1. Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder

    NASA Astrophysics Data System (ADS)

    Pei, Wei; Zhengying, Wei; Zhen, Chen; Junfeng, Li; Shuzhe, Zhang; Jun, Du

    2017-08-01

    A three-dimensional numerical model was developed to investigate effects of laser scanning speed, laser power, and hatch spacing on the thermodynamic behaviors of the molten pool during selective laser melting of AlSi10Mg powder. A randomly distributed packed powder bed was achieved using discrete element method (DEM). The powder bed can be treated as a porous media with interconnected voids in the simulation. A good agreement between numerical results and experimental results establish the validity of adopted method. The numerical results show that the Marangoni flow within the molten pool was significantly affected by the processing parameters. An intense Marangoni flow leads to a perturbation within the molten pool. In addition, a relatively high scanning speed tends to cause melt instability. The perturbation or the instability within the molten pool results in the formation of pores during SLM, which have a direct influence on the densification level.

  2. Nitrogen Control in VIM Melts

    NASA Astrophysics Data System (ADS)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  3. Study of iron nanoparticle melting

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Shulgin, A. V.; Lavruk, S. A.

    2016-10-01

    In paper melting process of iron nanoparticles was investigated with molecular dynamics method. Melting temperatures was found for particles with radius from 1.5 to 4 nm. Results match with data of other authors. Heat capacity was calculated based on investigation of caloric curves. Dependence between heat capacity and temperature for different size of nanoparticles was approximated. Heat conductivity of iron nanoparticles was calculated.

  4. The distribution of partial melt in a granitic system: The application of liquid phase sintering theory

    NASA Astrophysics Data System (ADS)

    Jurewicz, Stephen R.; Watson, E. Bruce

    1985-05-01

    Two series of experiments, four crystallization and four partial melting, were performed at 1000°C and 10 kilobars in the quartz-alkali feldspar-granitic melt system in order to determine the equilibrium melt distribution and textural adjustment processes. The melt distribution in both types of experiments was characterized by melt residing at grain edge intersections and in a few large pools scattered throughout the sample. Wetting angle measurements from both sets of experiments gave values of 44, 49, and 59 degrees for the feldspar/feldspar, feldspar/quartz, and quartz/quartz wetting angles, respectively. Interparticle welding, a process consistent with the measured wetting angles, resulted in the formation of a skeleton of solid grains with very few unattached grains in any sample. Analysis of wetting angle distributions indicates that the longest duration experiments closely approached textural equilibrium and that the distributions of observed wetting angles from both sets of experiments were nearly identical. Measurement of quartz grain sizes from the 2, 4, 7, and 14-day crystallization experiments revealed: 1) a probable cube root of time dependence for the quartz growth rate; 2) a decrease in the number of quartz grains per square micron with increasing time; 3) a normalized distribution of grain sizes that appeared stationary in time. These results were shown to be consistent with the processes observed during the liquid phase sintering of ceramic materials and suggest that identical processes may occur in natural partially-molten systems. Finally, it was shown that interfacial energy considerations lead to a model of interparticle welding (clustering) in which it is discovered that there is an equilibrium melt fraction stable along grain edges of a partially-molten crystalline aggregate. This melt fraction may be greater, equal to, or less than the equilibrium fraction of melt dictated by the pressure, temperature, and chemical potential conditions. If

  5. Scaleable Clean Aluminum Melting Systems

    SciTech Connect

    Han, Q.; Das, S.K.

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  6. Melting in super-earths.

    PubMed

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  7. Melting efficiency in fusion welding

    SciTech Connect

    Fuerschbach, P.W.

    1991-01-01

    Basic to our knowledge of the science of welding is an understanding of the melting efficiency, which indicates how much of the heat deposited by the welding process is used to produce melting. Recent calorimetric studies of GTAW, PAW, and LBW processes have measured the net heat input to the part thereby quantifying the energy transfer efficiency and in turn permitting an accurate determination of the melting efficiency. It is indicated that the weld process variables can dramatically affect the melting efficiency. This limiting value is shown to depend on the weld heat flow geometry as predicted by analytical solutions to the heat flow equation and as demonstrated by the recent empirical data. A new dimensionless parameter is used to predict the melting efficiency and is shown to correlate extremely well with recent empirical data. This simple prediction methodology is notable because it requires only a knowledge of the weld schedule and the material properties in order to estimate melting efficiency. 22 refs., 16 figs.

  8. Laser melting of uranium carbides

    NASA Astrophysics Data System (ADS)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  9. Radioisotope Power System Pool Concept

    NASA Technical Reports Server (NTRS)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  10. Solar powered swimming pool skimmer

    SciTech Connect

    Distinti, J.A.; Fonti, R.G.

    1992-04-21

    This patent describes a swimming pool skimmer assembly. It comprises: a U-shaped housing which includes two spaced-apart pontoons and a leg connecting the pontoons together, a paddle wheel assembly mounted on the housing and including, a motor having an output shaft, a gear reduction assembly connected to the motor output shaft and a paddle wheel means connected to the gear reduction assembly; a debris catcher mounted on the housing adjacent to the paddle wheel; power means on the housing and connected to the motor, including a solar cell array mounted on the housing connecting leg, and electrically connected to the motor, and a solar concentrator mounted on the housing adjacent to the solar cell; and an alarm circuit means connected to the debris catcher.

  11. 1. OBLIQUE VIEW OF THE POOL BUILDING 307 AND THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OBLIQUE VIEW OF THE POOL BUILDING 307 AND THE POOL 308, LOOKING WEST. - Mill Valley Air Force Station, Pool Building & Swimming Pool, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

  12. Methods for Melting Temperature Calculation

    NASA Astrophysics Data System (ADS)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  13. Marangoni Flow and Surface Tension of High Temperature Melts

    NASA Astrophysics Data System (ADS)

    Hibiya, Taketoshi; Ozawa, Shumpei

    Marangoni flow plays an important role in the heat and mass transport for highly value-added high-temperature processes, such as crystal growth, welding, casting, and electron beam melting. For silicon single crystal growth, the effect of the oscillatory Marangoni flow on the introduction of growth striation was discussed by Chen and Wilcox for the first time in 1972 [1]. The existence of the Marangoni flow within molten silicon was proved through microgravity experiments in space on board a sounding rocket in 1983 by Eyer et al. [2], who found formation of growth striation in single crystals even under microgravity, where buoyancy-driven flow was suppressed. To explain the Marangoni effect at the melt surface, surface tension is essential. Keene [3] discussed the oxygen contamination in the surface tension measurement and recommended the use of a levitation technique, which is a containerless process and assures the contamination-free condition from measurement devices. It is well known that flow direction in the weld pool is dependent on surface contamination and that this is related to weldability [4, 5]. Flow direction is controlled by the temperature coefficient of surface tension for molten steels; contaminants are oxygen and sulfur. In the electron beam button melting system, the Marangoni flow is dominant because of intense heating at the melt surface [5]. In this chapter, surface tension of high temperature metallic melts is discussed from the viewpoint of the Marangoni effect in the value-added high temperature processes, particularly from the viewpoint of the effect of oxygen and sulfur. Theoretical treatment for oxygen adsorption is also discussed.

  14. Compositional Controls on Melt Polymerization

    NASA Astrophysics Data System (ADS)

    Brugger, C.; Hammer, J.

    2005-12-01

    The structure and rheology of silicate melts are strongly controlled by composition, namely the concentrations of network-forming and -modifying cations. Melt viscosity is implicated in kinetic theories of phase transformations as a proxy for component mobility, which partly controls rates of crystal and bubble nucleation and growth. To anticipate reaction kinetics in magmas and focus experimental work on key variables, compositional controls on melt structure are systematically investigated using NBO/T (Mysen, 1988), the ratio of non-bridging oxygens to tetrahedrally coordinated cations. Silicon, ferric iron, and aluminum are network-formers, whereas alkalis and divalent cations are network-modifiers unless needed to charge-balance trivalent cations in tetrahedral coordination. NBO/T calculations are performed over 4D composition space (alkalis, silica, divalent and trivalent cations), in which 3 components are varied independently, creating a cube. We assess the effects of individual components using slices through the cube contoured for NBO/T. Ratios are also calculated for naturally occurring liquids and MELTS-generated liquid lines of descent derived from basalts with similar silica contents but varying in alkalis. Naturally occurring melts are highly polymerized (NBO/T of 0-1) compared to silicate minerals (0-4). Calculations show that replacing network-modifiers with network-formers decreases NBO/T; conversely, replacing formers with modifiers increases the ratio. However, polymerization increases when alumina replaces silica or when alkalis replace divalent cations. Natural alkali-rich melts tend to have fewer divalent cations than alkali-poor melts at similar silica contents, thus they are more polymerized and have higher viscosities. Contrary to common perception, the lower viscosities of highly differentiated alkalic melts (e.g. trachytes, phonolites) compared to silica-rich rhyolites are attributed to lower silica rather than greater alkalis. In fact

  15. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites

    NASA Astrophysics Data System (ADS)

    Shi, Qimin; Gu, Dongdong; Xia, Mujian; Cao, Sainan; Rong, Ting

    2016-10-01

    A three-dimensional finite element model is proposed to study the effects of laser power and scan speed on the thermal behavior and melting/solidification mechanism during selective laser melting (SLM) of TiC/Inconel 718 powder system. The cooling time during powder delivery is taken into account to simulate the actual production process well. It shows obviously the existence of heat accumulation effect in SLM process and, the tailored set of cooling time of 10 ms during powder delivery alleviates that effectively. The maximum temperature gradient in the molten pool slightly increases from 1.30×104 °C/mm to 2.60×104 °C/mm as the laser power is increased from 75 W to 150 W. However, it is negligibly sensitive to the variation of scan speed. There is a positive corresponding relationship between the maximum rate of temperature change and processing parameters. A low laser power (75 W) or a high scan speed (300 mm/s) is more energy efficient in Z-direction of the molten pool, giving rise to a deep-narrow cross section of the pool. Whereas, a high laser power (150 W) or a low scan speed (50 mm/s) causes a shallow-wide cross section of the molten pool, meaning it is more energy efficient in the Y-direction of the melt. The combination of a laser power of 125 W and a scan speed of 100 mm/s contributes to achieve a sound metallurgical bonding between the neighbor layers and tracks, due to the proper molten pool size (width: 109.3 μm; length: 120.7 μm; depth: 67.8 μm). The SLM experiments on TiC/Inconel 718 powder system are performed to verify the reliability and accuracy of the physical model and, simulation results are proved to be correct.

  16. Impact melt generation and transport

    NASA Technical Reports Server (NTRS)

    Orphal, D. L.; Borden, W. F.; Larson, S. A.; Schultz, P. H.

    1980-01-01

    The results from the first two calculations in a series of continuum mechanics computer code calculations, investigating the effects of variations in impactor mass and velocity on the generation and transport of impact melt, are reported. In the present calculations, the impactor is modeled as a spherical iron projectile with a mass of one trillion grams, and the target as a gabbroic anorthosite (GA) half-space, where the cases calculated have impact velocities of 5 and 15.8 km/sec. Early-time ejection velocities are 1-2 km/sec in both cases. The first calculation results in 0.07 projectile masses of GA being partly or completely melted, with all the melted GA being ejected from the crater, and a maximum impact range for the ejected melted material of 30 km. The second calculation yields 10.4 projectile masses of melted GA, 50% of which is ejected from the crater to ranges of up to about 130 km. Peak shock pressure attenuation with depth is reported for both cases, and transient cavity dynamics are described and compared to that for surface and near-surface explosions.

  17. Melting of superheated molecular crystals

    NASA Astrophysics Data System (ADS)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  18. Improved capacitive melting curve measurements

    NASA Astrophysics Data System (ADS)

    Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi

    2009-02-01

    Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.

  19. Impact melting on Venus: Some considerations for the nature of the cratering record.

    NASA Astrophysics Data System (ADS)

    Grieve, Richard A. F.; Cintala, Mark J.

    1995-03-01

    Modeling the volume of impact melt and its variation with the size of the impact event indicates that, for similar-sized final craters, venusian impacts create about 25% more impact melt than terrestrial impacts. More significantly, venusian impacts result in approximately a factor of three more impact melt than lunar events producing equivalent-sized craters. This difference is due to the higher average impact velocity and higher ambient temperatures on Venus, which enhance impact-melt production, combined with higher planetary gravity, which inhibits crater growth for a given impact event. The initial, higher intrinsic temperature of incorporated clastic debris also contributes to impact melts with higher initial temperatures, lower viscosities, and longer cooling times on Venus with respect to lunar impact melts. The enhanced production of relatively hot, low-viscosity impact melts under venusian impact conditions may account for the long exterior runout flows and also for the radar-smooth interior floors of some venusian craters. We also argue that the anomalously deep character of Cleopatra may be attributed to drainage of its interior impact-melt pool to form the smooth deposits in the adjacent Fortuna Tessera. Increasing depth of melting with increasing cavity size, resulting in the progressive weakening of transient-cavity floor material, is offered as a possible explanation for the replacement of uplifted central peaks by rings with increasing crater diameter. A consequence of this process is that interior rings will increase in diameter relative to the diameter of the final crater's rim crest with increasing crater size, a trend observed on Venus and other terrestrial planets. This weakening of the target due to relatively enhanced impact-melt production in the venusian environment makes it unlikely that Orientale-style impact basins ever formed on Venus.

  20. Thermal behavior in single track during selective laser melting of AlSi10Mg powder

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Wei, Zhengying; Chen, Zhen; He, Yuyang; Du, Jun

    2017-09-01

    A three-dimensional model was developed to simulate the radiation heat transfer in the AlSi10Mg packed bed. The volume of fluid method (VOF) was used to capture the free surface during selective laser melting (SLM). A randomly packed powder bed was obtained using discrete element method (DEM) in Particle Flow Code (PFC). The proposed model has demonstrated a high potential to simulate the selective laser melting process (SLM) with high accuracy. In this paper, the effect of the laser scanning speed and laser power on the thermodynamic behavior of the molten pool was investigated numerically. The results show that the temperature gradient and the resultant surface tension gradient between the center and the edge of the molten pool increase with decreasing the scanning speed or increasing the laser power, thereby intensifying the Marangoni flow and attendant turbulence within the molten pool. However, at a relatively high scanning speed, a significant instability may be generated in the molten pool. The perturbation and instability in the molten pool during SLM may result in an irregular shaped track.

  1. Partial Melting of the Indarch (EH4) Meteorite : A Textural, Chemical and Phase Relations View of Melting and Melt Migration

    NASA Technical Reports Server (NTRS)

    McCoy, Timothy J.; Dickinson, Tamara L.; Lofgren, Gary E.

    2000-01-01

    To Test whether Aubrites can be formed by melting of enstatite Chondrites and to understand igneous processes at very low oxygen fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000-1500 C. Silicate melting begins at 1000 C. Substantial melt migration occurs at 1300-1400 C and metal migrates out of the silicate change at 1450 C and approx. 50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts 9Si-, and C-rich), two immiscible sulfide melts(Fe-and FeMgMnCa-rich) and Silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite Chondrite suggest that igneous processes at low fO2 exhibit serveral unique features. The complete melting of sulfides at 1000 C suggest that aubritic sulfides are not relicts. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.

  2. Thermodynamics of freezing and melting

    PubMed Central

    Pedersen, Ulf R.; Costigliola, Lorenzo; Bailey, Nicholas P.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  3. Generalized melting criterion for amorphization

    SciTech Connect

    Devanathan, R. |; Lam, N.Q.; Okamoto, P.R.; Meshii, M.

    1992-12-01

    We present a thermodynamic model of solid-state amorphization based on a generalization of the well-known Lindemann criterion. The original Lindemann criterion proposes that melting occurs when the root-mean-square amplitude of thermal displacement exceeds a critical value. This criterion can be generalized to include solid-state amorphization by taking into account the static displacements. In an effort to verify the generalized melting criterion, we have performed molecular dynamics simulations of radiation-induced amorphization in NiZr, NiZr{sub 2}, NiTi and FeTi using embedded-atom potentials. The average shear elastic constant G was calculated as a function of the total mean-square atomic displacement following random atom-exchanges and introduction of Frenkel pairs. Results provide strong support for the generalized melting criterion.

  4. Thermodynamics of freezing and melting.

    PubMed

    Pedersen, Ulf R; Costigliola, Lorenzo; Bailey, Nicholas P; Schrøder, Thomas B; Dyre, Jeppe C

    2016-08-17

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature-pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system.

  5. Termination of light-water reactor core-melt accidents with a chemical core catcher: the core-melt source reduction system (COMSORS)

    SciTech Connect

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W.; Kenton, M.A.

    1996-09-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate light-water reactor core melt accidents and ensure containment integrity. A special dissolution glass is placed under the reactor vessel. If core debris is released onto the glass, the glass melts and the debris dissolves into the molten glass, thus creating a homogeneous molten glass. The molten glass, with dissolved core debris, spreads into a wide pool, distributing the heat for removal by radiation to the reactor cavity above or by transfer to water on top of the molten glass. Expected equilibrium glass temperatures are approximately 600 degrees C. The creation of a low-temperature, homogeneous molten glass with known geometry permits cooling of the glass without threatening containment integrity. This report describes the technology, initial experiments to measure key glass properties, and modeling of COMSORS operations.

  6. Association between swimming pool operator certification and reduced pool chemistry violations--Nebraska, 2005-2006.

    PubMed

    Buss, Bryan F; Safranek, Thomas J; Magri, Julie M; Török, Thomas J; Beach, Michael J; Foley, Brett P

    2009-04-01

    Previous studies have recommended mandatory education for all public pool operators, but substantiating data are limited. This study evaluates associations between pool operator certification and chemistry violations by using 2005-2006 Nebraska routine pool inspection reports. Training and certification for nonmunicipal pool operators are only required in two Nebraska counties. Free chlorine violations for nonmunicipal pool inspections were compared in counties with and without certified operator requirements. To control for water supply pH, inspections from nonmunicipal pools with shared-source water in two counties (one requiring certification) were compared for concurrent pH and free chlorine violations. Compared with locations that require certified operators, free chlorine violations and concurrent pH and free chlorine violations were twice as likely in locations without certification. As a result, pools without required operator certification might pose greater health risks. These results demonstrate the benefit of requiring pool operator certification to help prevent recreational water illnesses.

  7. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  8. Investigation of the Fission Product Release From Molten Pools Under Oxidizing Conditions With the Code RELOS

    SciTech Connect

    Kleinhietpass, Ingo D.; Unger, Hermann; Wagner, Hermann-Josef; Koch, Marco K.

    2006-07-01

    With the purpose of modeling and calculating the core behavior during severe accidents in nuclear power plants system codes are under development worldwide. Modeling of radionuclide release and transport in the case of beyond design basis accidents is an integrated feature of the deterministic safety analysis of nuclear power plants. Following a hypothetical, uncontrolled temperature escalation in the core of light water reactors, significant parts of the core structures may degrade and melt down under formation of molten pools, leading to an accumulation of large amounts of radioactive materials. The possible release of radionuclides from the molten pool provides a potential contribution to the aerosol source term in the late phase of core degradation accidents. The relevance of the amount of transferred oxygen from the gas atmosphere into the molten pool on the specification of a radionuclide and its release depends strongly on the initial oxygen inventory. Particularly for a low oxygen potential in the melt as it is the case for stratification when a metallic phase forms the upper layer and, respectively, when the oxidation has proceeded so far so that zirconium was completely oxidized, a significant influence of atmospheric oxygen on the specification and the release of some radionuclides has to be anticipated. The code RELOS (Release of Low Volatile Fission Products from Molten Surfaces) is under development at the Department of Energy Systems and Energy Economics (formerly Department of Nuclear and New Energy Systems) of the Ruhr-University Bochum. It is based on a mechanistic model to describe the diffusive and convective transport of fission products from the surface of a molten pool into a cooler gas atmosphere. This paper presents the code RELOS, i. e. the features and abilities of the latest code version V2.3 and the new model improvements of V2.4 and the calculated results evaluating the implemented models which deal with the oxygen transfer from the

  9. Fundamental Aspects of Selective Melting Additive Manufacturing Processes

    SciTech Connect

    van Swol, Frank B.; Miller, James E.

    2014-12-01

    Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.

  10. A Training Program for Swimming Pool Operators.

    ERIC Educational Resources Information Center

    Pope, James R., Jr.; Mihalik, Brian J.

    1985-01-01

    In the United States today, there is a dramatic shortage of qualified public swimming pool operators. This article describes a training program initiated in South Carolina to serve the needs of everyone responsible for and involved in the safe operation and management of a public swimming pool. (MT)

  11. Camera Would Monitor Weld-Pool Contours

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.; Gutow, David A.

    1990-01-01

    Weld pool illuminated and viewed coaxially along welding torch. Proposed monitoring subsystem for arc welder provides image in which horizontal portions of surface of weld pool highlighted. Monitoring and analyzing subsystems integrated into overall control system of robotic welder. Control system sets welding parameters to adapt to changing conditions, maintaining surface contour giving desired pattern of reflections.

  12. Shock treatment: swimming pool contact dermatitis.

    PubMed

    Salvaggio, Heather L; Scheman, Andrew J; Chamlin, Sarah L

    2013-01-01

    Allergic contact dermatitis to potassium peroxymonosulfate, used as a chemical shock treatment for hot tubs and swimming pools, should be in the differential diagnosis for patients presenting with dermatitis triggered by swimming pool or hot tub exposure. We report the first pediatric case of allergic contact dermatitis to potassium peroxymonosulfate after swimming exposure. © 2013 Wiley Periodicals, Inc.

  13. The Chemistry of Swimming Pool Maintenance

    ERIC Educational Resources Information Center

    Salter, Carl; Langhus, David L.

    2007-01-01

    The study of chemistry involved in the maintenance of a swimming pool provides a lot of chemical education to the students, including the demonstration of the importance of pH in water chemistry. The various chemical aspects hidden in the maintenance of the pool are being described.

  14. 10 CFR 36.33 - Irradiator pools.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... purification system designed to be capable of maintaining the water during normal operation at a conductivity..., irradiator pools must either: (1) Have a water-tight stainless steel liner or a liner metallurgically... water level that could allow water to drain out of the pool. Pipes that have intakes more than 0.5...

  15. 10 CFR 36.33 - Irradiator pools.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... purification system designed to be capable of maintaining the water during normal operation at a conductivity..., irradiator pools must either: (1) Have a water-tight stainless steel liner or a liner metallurgically... water level that could allow water to drain out of the pool. Pipes that have intakes more than 0.5 meter...

  16. 10 CFR 36.33 - Irradiator pools.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... purification system designed to be capable of maintaining the water during normal operation at a conductivity..., irradiator pools must either: (1) Have a water-tight stainless steel liner or a liner metallurgically... water level that could allow water to drain out of the pool. Pipes that have intakes more than 0.5 meter...

  17. 10 CFR 36.33 - Irradiator pools.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... purification system designed to be capable of maintaining the water during normal operation at a conductivity..., irradiator pools must either: (1) Have a water-tight stainless steel liner or a liner metallurgically... water level that could allow water to drain out of the pool. Pipes that have intakes more than 0.5 meter...

  18. 10 CFR 36.33 - Irradiator pools.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... purification system designed to be capable of maintaining the water during normal operation at a conductivity..., irradiator pools must either: (1) Have a water-tight stainless steel liner or a liner metallurgically... water level that could allow water to drain out of the pool. Pipes that have intakes more than 0.5 meter...

  19. 47 CFR 97.523 - Question pools.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Question pools. 97.523 Section 97.523 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Qualifying Examination Systems § 97.523 Question pools. All VECs must cooperate in maintaining one...

  20. 47 CFR 97.523 - Question pools.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Question pools. 97.523 Section 97.523 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Qualifying Examination Systems § 97.523 Question pools. All VECs must cooperate in maintaining one...

  1. 47 CFR 97.523 - Question pools.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Question pools. 97.523 Section 97.523 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Qualifying Examination Systems § 97.523 Question pools. All VECs must cooperate in maintaining one...

  2. 47 CFR 97.523 - Question pools.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Question pools. 97.523 Section 97.523 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Qualifying Examination Systems § 97.523 Question pools. All VECs must cooperate in maintaining one...

  3. 47 CFR 97.523 - Question pools.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Question pools. 97.523 Section 97.523 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Qualifying Examination Systems § 97.523 Question pools. All VECs must cooperate in maintaining one...

  4. The Chemistry of Swimming Pool Maintenance

    ERIC Educational Resources Information Center

    Salter, Carl; Langhus, David L.

    2007-01-01

    The study of chemistry involved in the maintenance of a swimming pool provides a lot of chemical education to the students, including the demonstration of the importance of pH in water chemistry. The various chemical aspects hidden in the maintenance of the pool are being described.

  5. LinguisticBelief and PoolEvidence

    SciTech Connect

    DARBY, JOHN

    2008-03-11

    LinguisticBelief allows the creation and analysis of combinations of linguistic variables with epistemic uncertainty for decision making. The model is solved using approximate reasoning to implement the belief/plausibility measure of uncertainty for combinations of variables expressed as purely linguistic fuzzy sets. PoolEvidence pools evidence for linguistic variables from many experts for input into LinguisticBelief.

  6. Volatile and light lithophile elements in high-anorthite plagioclase-hosted melt inclusions from Iceland

    NASA Astrophysics Data System (ADS)

    Neave, David A.; Hartley, Margaret E.; Maclennan, John; Edmonds, Marie; Thordarson, Thorvaldur

    2017-05-01

    Melt inclusions formed during the early stages of magmatic evolution trap primitive melt compositions and enable the volatile contents of primary melts and the mantle to be estimated. However, the syn- and post-entrapment behaviour of volatiles in primitive high-anorthite plagioclase-hosted melt inclusions from oceanic basalts remains poorly constrained. To address this deficit, we present volatile and light lithophile element analyses from a well-characterised suite of nine matrix glasses and 102 melt inclusions from the 10 ka Grímsvötn tephra series (i.e., Saksunarvatn ash) of Iceland's Eastern Volcanic Zone (EVZ). High matrix glass H2O and S contents indicate that eruption-related exsolution was arrested by quenching in a phreatomagmatic setting; Li, B, F and Cl did not exsolve during eruption. The almost uniformly low CO2 content of plagioclase-hosted melt inclusions cannot be explained by either shallow entrapment or the sequestration of CO2 into shrinkage bubbles, suggesting that inclusion CO2 contents were controlled by decrepitation instead. High H2O/Ce values in primitive plagioclase-hosted inclusions (182-823) generally exceed values expected for EVZ primary melts (∼ 180), and can be accounted for by diffusive H2O gain following the entrainment of primitive macrocrysts into evolved and H2O-rich melts a few days before eruption. A strong positive correlation between H2O and Li in plagioclase-hosted inclusions suggests that diffusive Li gain may also have occurred. Extreme F enrichments in primitive plagioclase-hosted inclusions (F/Nd = 51-216 versus ∼15 in matrix glasses) possibly reflect the entrapment of inclusions from high-Al/(Al + Si) melt pools formed by dissolution-crystallisation processes (as indicated by HFSE depletions in some inclusions), and into which F was concentrated by uphill diffusion since F is highly soluble in Al-rich melts. The high S/Dy of primitive inclusions (∼300) indicates that primary melts were S-rich in comparison

  7. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts

    NASA Astrophysics Data System (ADS)

    Mallik, Ananya; Dasgupta, Rajdeep

    2012-05-01

    We performed reaction experiments between partial melt of volatile-free MORB-eclogite and volatile-free fertile peridotite at 2.5-3 GPa, 1375 °C and 1440 °C. The fraction of added basaltic andesite melt was varied from ~ 8 to 50 wt.%. Melt was introduced either as a separate layer or mixed homogeneously with peridotite to simulate channelized and porous flow, respectively. Layered experiments produced a zone of orthopyroxene-rich garnet-websterite separating the reacted melt pool from a residual four phase lherzolite while mixed experiments produced a residual assemblage of orthopyroxene ± clinopyroxene ± olivine ± garnet co-existing with reacted melt where residual olivine was absent only in the experiments with 50 wt.% added melt. It is observed that the reacted melts display a continuous spectrum from tholeiitic to alkalic melts with increasing extent of wall-rock reaction for the layered runs and decreasing melt:rock ratio for the mixed experiments. The reacted melts at ~ 10-16 wt.% MgO match better with natural alkali basalts and basanite from intraplate ocean islands in terms of SiO2 (44-48 wt.%), TiO2 (2.2-4.1 wt.%), Al2O3 (12.6-14.3 wt.%), CaO (~ 8-11 wt.%), Na2O (~ 2-4 wt.%), and CaO/Al2O3 (0.52-0.81) as compared to partial melts of volatile-free peridotite and MORB-eclogite. FeO* content (~ 9-11 wt.%) of the reacted melts, however, remains poorer compared to most ocean island basalts (OIBs). We demonstrate that both alkalic and tholeiitic melts are produced in the process of MORB-eclogite partial melt and fertile peridotite reaction. We also demonstrate that near-primary alkali basalt can form at a temperature distinctly below the peridotite solidus and mantle potential temperature (TP) of ~ 1350 °C may be sufficient to generate near-primary alkalic OIBs. Our study obviates the necessity for exotic lithologies, such as silica-deficient garnet pyroxenites, in the solid state mantle to explain the genesis of alkalic OIBs.

  8. Greenhouse Gas Fluxes from Peatland Pools

    NASA Astrophysics Data System (ADS)

    Turner, E.; Baird, A. J.; Billett, M. F.; Chapman, P. J.; Dinsmore, K. J.; Holden, J.

    2015-12-01

    Peatlands contain around one third of the global soil carbon (C) stock. Understanding the processes in peatland C cycling, and in particular those involved in the release of the greenhouse gases (GHGs) CO2 and CH4 to the atmosphere, is a current research priority. Natural open-water pools are a common feature of many peatlands, and previous research suggests pools can be strong sources of atmospheric GHGs, particularly CH4, and thus have the potential to play an important role in global radiative forcing. The area of open-water in peatlands is rapidly expanding in a warming Arctic (e.g. Walter et al., 2007) while artificially created pools are becoming more commonplace in the recent drive to restore the hydrological functioning of drained peatlands by blocking ditches. We present the results of >2 years of comprehensive field monitoring from pool complexes in the Flow Country of northern Scotland, the largest expanse (c.4000 km2) of blanket bog in Europe. Concentrations and fluxes of CO2 and CH4 are presented from 12 intensively monitored pools and the adjacent terrestrial surface. We examined both natural (n = 6) and artificial (n = 6) pools, which allowed us to quantify how pools created during restoration compare to undisturbed sites. C and hydrology budgets were determined for the study pools and the adjacent terrestrial surface. Dissolved concentrations of GHGs ranged from 0.08-4.68 mg CO2-C L-1 and 0.01-731 µg CH4-C L-1 in natural pools, and 0.29-10.38 mg CO2-C L-1 and 0.04-239 µg CH4-C L-1 in artificial pools. GHG fluxes from natural pool surfaces ranged between -2.47-653 mg CH4 m-2 d-1 and -31.7-14.8 g CO2 m-2 d-1. Artificial pool GHG fluxes were -8.19-581 mg CH4 m-2 d-1 and -7.66-34.9 g CO2 m-2 d-1. We provide more accurate GHG budgets for peatlands with natural pool complexes by considering their relative importance at the landscape-scale, and outline the potential effect on GHG fluxes when creating artificial pools during peatland restoration

  9. Magnetic Biocomposites for Remote Melting.

    PubMed

    Zhou, Mengbo; Liebert, Tim; Müller, Robert; Dellith, Andrea; Gräfe, Christine; Clement, Joachim H; Heinze, Thomas

    2015-08-10

    A new approach toward the fabrication of biocompatible composites suitable for remote melting is presented. It is shown that magnetite nanoparticles (MNP) can be embedded into a matrix of biocompatible thermoplastic dextran esters. For that purpose, fatty acid esters of dextran with adjustable melting points in the range of 30-140 °C were synthesized. Esterification of the polysaccharide by activation of the acid as iminium chlorides guaranteed mild reaction conditions leading to high quality products as confirmed by FTIR- and NMR spectroscopy as well as by gel permeation chromatography (GPC). A method for the preparation of magnetically responsive bionanocomposites was developed consisting of combined dissolution/suspension of the dextran ester and hydrophobized MNPs in an organic solvent followed by homogenization with ultrasonication, casting of the solution, drying and melting of the composite for a defined shaping. This process leads to a uniform distribution of MNPs in nanocomposite as revealed by scanning electron microscope. Samples of different geometries were exposed to high frequency alternating magnetic field. It could be shown that defined remote melting of such biocompatible nanocomposites is possible for the first time. This may lead to a new class of magnetic remote control systems, which are suitable for controlled release applications or self-healing materials.

  10. Transcrystalline melt migration in clinopyroxene

    NASA Astrophysics Data System (ADS)

    Sonzogni, Yann; Provost, Ariel; Schiano, Pierre

    2011-03-01

    Glass inclusions in clinopyroxene phenocrysts from La Sommata (Vulcano Island, Aeolian Arc) were reheated and submitted to a sustained thermal gradient. Each remelted inclusion undergoes a transient textural and chemical reequilibration and concomitantly begins to migrate along a crystallographic direction, at a small angle with the thermal gradient. The completion of morphological evolution requires a characteristic time that is governed by chemical diffusion. Chemical reequilibration results in the formation of a colored halo that delineates the former location and shape of the inclusion after it has migrated away. Transcrystalline migration proceeds by dissolution of the host clinopyroxene ahead and precipitation astern. Its rate is not limited by Fick's law, but by the crystal-melt interface kinetics. Clinopyroxene dissolution and growth are slower than for olivine in similar conditions but obey the same analytical law, which can be transposed to equally or more sluggish melting or crystallization events in nature. When a gas bubble is initially present, it responds to elastic forces by quickly shifting toward the cold end of the inclusion, where it soon becomes engulfed as an isolated fluid inclusion in the reprecipitated crystal. This study confirms that transcrystalline melt migration, beside its possible implications for small-scale melt segregation and fluid-inclusion generation in the Earth's mantle, provides an experimental access to interfacial kinetic laws in near-equilibrium conditions.

  11. Convection in molten pool created by a concentrated energy flux on a solid metal target

    SciTech Connect

    Dikshit, B.; Zende, G. R.; Bhatia, M. S.; Suri, B. M.

    2009-08-15

    During surface evaporation of metals by use of a concentrated energy flux such as electron beam or lasers, a liquid metal pool having a very high temperature gradient is formed around the hot zone created by the beam. Due to temperature dependence of surface tension, density, and depression of the evaporating surface caused by back pressure of the emitted vapor in this molten pool, a strong convective current sets in the molten pool. A proposition is made that this convection may pass through three different stages during increase in the electron beam power depending upon dominance of the various driving forces. To confirm this, convective heat transfer is quantified in terms of dimensionless Nusselt number and its evolution with power is studied in an experiment using aluminum, copper, and zirconium as targets. These experimentally determined values are also compared to the theoretical values predicted by earlier researchers to test the validity of their assumptions and to know about the type of flow in the melt pool. Thus, conclusion about the physical characteristics of flow in the molten pool of metals could be drawn by considering the roles of surface tension and curvature of the evaporating surface on the evolution of convective heat transfer.

  12. Examination of the epicentral waveform for laser ultrasound in the melting regime

    SciTech Connect

    S.J. Reese; Z.N. Utegulov; F. Farzbod; R.S. Schley; D.H. Hurley

    2013-03-01

    A laser ultrasonic source just below the ablation regime is examined by recording an epicentral waveform in a high purity tungsten sample. Using pulse energy as a parameter, a slight delay in the shear wave arrival time is observed upon transition to the melting regime. This phenomenon is attributed to a change in character of the ultrasonic source. In the thermoelastic regime, shear waves are generated by mode conversion at the sample surface of longitudinal waves emanating from subsurface sources. Just above the melting threshold, a molten pool forms in the center of the generation volume. Shear waves are not supported by the molten pool. As a result, shear waves generated from off-axis thermoelastic sources are weighted more heavily. This results in a delay of the shear wave arrival time.

  13. Examination of the epicentral waveform for laser ultrasound in the melting regime.

    PubMed

    Reese, S J; Utegulov, Z N; Farzbod, F; Schley, R S; Hurley, D H

    2013-03-01

    A laser ultrasonic source just below the ablation regime is examined by recording an epicentral waveform in a high purity tungsten sample. Using pulse energy as a parameter, a slight delay in the shear wave arrival time is observed upon transition to the melting regime. This phenomenon is attributed to a change in character of the ultrasonic source. In the thermoelastic regime, shear waves are generated by mode conversion at the sample surface of longitudinal waves emanating from subsurface sources. Just above the melting threshold, a molten pool forms in the center of the generation volume. Shear waves are not supported by the molten pool. As a result, shear waves generated from off-axis thermoelastic sources are weighted more heavily. This results in a delay of the shear wave arrival time.

  14. Phosphorus Zoning Patterns and the Formation of Olivine-Hosted Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Milman-Barris, M. S.; Baker, M.; Beckett, J.; Sobolev, A.; Vielzeuf, D.; Stolper, E.

    2006-12-01

    composition produced ol (to ~2 mm in size) with coupled zoning of P, Al, and Cr; some show oscillatory or sector-zoning. Nearly all experimental ol grains have embayments and interior melt pools (up to 1 mm in longest dimension). While many of these are likely in contact with far-field melt, some may be isolated (i.e., true inclusions). Interior melt pools have aspect ratios of 1-40; the more elongate pools are similar in appearance to those of [3]. Enclosed, interior melt pools are surrounded by P-poor ol, but near P-rich ol. Also, boundaries between high- and low-P zones are often deflected in the vicinity of melt pools. These observations are reminiscent of inclusions observed in Hawaiian ol phenocrysts. Our experiments show that P-zoning in ol and associated interior melt pools can be produced by simple linear cooling histories. The proximity of melt inclusions to P-rich zones in both Hawaiian and experimental ol points to the importance of rapid growth in the formation of both features. Cross-cutting (and perhaps replacement) of high-P features in ol by the low-P zones surrounding natural melt inclusions may reflect trapping of melt inclusions in pits formed by localized dissolution of growing ol, recrystallization of high-energy ol adjacent to melt inclusions after trapping, and/or melting/reprecipitation of ol adjacent to trapped melt inclusions due to transient thermal gradients. [1] Sobolev et al. (2000) Nature 404, 986-990. [2] Norman et al. (2002) Chem. Geol. 183, 143-68. [3] Faure &Schiano (2005) EPSL 236, 882-98.

  15. The effect of under-ice melt ponds on their surroundings in the Arctic

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Smith, N.; Flocco, D.

    2016-12-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Sheets of ice, known as false bottoms, can subsequently form via double diffusion processes at the under-ice melt pond interface with the ocean, trapping the pond against the ice and completely isolating it from the ocean below. This has an insulating effect on the parent sea ice above the trapped pond, altering its rate of basal ablation. A one-dimensional, thermodynamic model of Arctic sea ice has been adapted to study the evolution of under-ice melt ponds and false bottoms over time. Comparing simulations of sea ice evolution with and without an under-ice melt pond provides a measure of how an under-ice melt pond affects the mass balance of the sea ice above it. Sensitivity studies testing the response of the model to a range of uncertain parameters have been performed, revealing some interesting implications of under-ice ponds during their life cycle. By changing the rate of basal ablation of the parent sea ice, and so the flux of fresh water and salt into the ocean, under-ice melt ponds affect the properties of the mixed layer beneath the sea ice. Our model of under-ice melt pond refreezing has been coupled to a simple oceanic mixed layer model to determine the effect on mixed layer depth, salinity and temperature.

  16. The hydrometeor partitioning and microphysical processes over the Pacific Warm Pool in numerical modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Chih; Wang, Pao K.

    2017-01-01

    Numerical modeling is conducted to study the hydrometeor partitioning and microphysical source and sink processes during a quasi-steady state of thunderstorms over the Pacific Warm Pool by utilizing the microphysical model WISCDYMM to simulate selected storm cases. The results show that liquid-phase hydrometeors dominate thunderstorm evolution over the Pacific Warm Pool. The ratio of ice-phase mass to liquid-phase mass is about 41%: 59%, indicating that ice-phase water is not as significant over the Pacific Warm Pool as the liquid water compared to the larger than 50% in the subtropics and 80% in the US High Plains in a previous study. Sensitivity tests support the dominance of liquid-phase hydrometeors over the Pacific Warm Pool. The major rain sources are the key hail sinks: melting of hail and shedding from hail; whereas the crucial rain sinks are evaporation and accretion by hail. The major snow sources are Bergeron-Findeisen process, transfer of cloud ice to snow and accretion of cloud water; whereas the foremost sink of snow is accretion by hail. The essential hail sources are accretions of rain, cloud water, and snow; whereas the critical hail sinks are melting of hail and shedding from hail. The contribution and ranking of sources and sinks of these precipitates are compared with the previous study. Hydrometeors have their own special microphysical processes in the development and depletion over the Pacific Warm Pool. Microphysical budgets depend on atmospheric dynamical and thermodynamical conditions which determine the partitioning of hydrometeors. This knowledge would benefit the microphysics parameterization in cloud models and cumulus parameterization in global circulation models.

  17. [Chlorine concentrations in the air of indoor swimming pools and their effects on swimming pool workers].

    PubMed

    Fernández-Luna, Álvaro; Burillo, Pablo; Felipe, José Luis; Gallardo, Leonor; Tamaral, Francisco Manuel

    2013-01-01

    To describe chlorine levels in the air of indoor swimming pools in Castilla-La Mancha (Spain) and relate them to other chemical parameters in the installation and to the health problems perceived by swimming pool workers. We analyzed 21 pools with chlorine as chemical treatment in Castilla-La Mancha. The iodometry method was applied to measure chlorine concentrations in the air. The concentrations of free and combined chlorine in water, pH and temperature were also evaluated. Health problems were surveyed in 230 swimming pool workers in these facilities. The mean chlorine level in the air of swimming pools was 4.3 ± 2.3mg/m(3). The pH values were within the legal limits. The temperature parameters did not comply with regulations in 17 of the 21 pools analyzed. In the pools where chlorine values in the air were above the legal regulations, a significantly higher percentage of swimming pool workers perceived eye irritation, dryness and irritation of skin, and ear problems. Chlorine values in the air of indoor swimming pools were higher than those reported in similar studies. Most of the facilities (85%) exceeded the concentration of 1.5mg/m(3) established as the limit for the risk of irritating effects. The concentration of chlorine in indoor swimming pool air has a direct effect on the self-perceived health problems of swimming pool workers. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.

  18. Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

  19. Effects of ZrB2 on substructure and wear properties of laser melted in situ ZrB2p/6061Al composites

    NASA Astrophysics Data System (ADS)

    Zeng, Yida; Chao, Yuhjin; Luo, Zhen; Cai, Yangchuan; Huang, Yongxian

    2016-03-01

    Aluminum matrix composites reinforced by in situ ZrB2 particles were successfully fabricated from an Al-KBF4-K2ZrF6 system via a direct melt reaction. A laser surface melting strategy is used to improve the surface strength of the in situ ZrB2p/6061Al composite, which includes a series of laser-melted composites with different laser power processed by a 2 kW YAG laser generator. XRD and EDS results demonstrated the existence of ZrB2 nanoparticles in the composite. After laser melting, the penetration depth of the molten pool increases with increasing power density. OM and SEM analysis indicate that the laser melting process yields narrower cellular spacing of the matrix and partly disperses the ZrB2 particle clusters. Compared with laser-melted matrix alloys, the crystal orientations near the melted layers edge of the composite are almost random due to heterogeneous nucleation in the melt and the pinning effect of laser-dispersed ZrB2 nanoparticles at the solidification front. Wear test results show that the laser melted layer performs better at wear resistance than both the substrate and the matrix AA6061 by measuring wear mass loss. Compared with composite samples prepared without laser melting, the wear mass loss of the laser melted composites decreased from 61 to 56 mg under a load of 98 N for 60 min.

  20. Pool-riffle Maintenance in Mountain Streams

    NASA Astrophysics Data System (ADS)

    Chartrand, S. M.

    2015-12-01

    Pool-riffles are maintained through a combination of at least several mechanisms that operate and interact over a range of temporal and spatial scales. Velocity or shear reversal is subsumed within several of these mechanisms, however a growing body of work suggests that (1) flow convergence into pools, (2) structuring of riffle crest sediments, and (3) local feedbacks between flood stage bedform evolution and hydrodynamics may be disproportionately important. We additionally propose that temporal and spatial patterns of sediment sorting across pool-riffles may also provide some level of bedform maintenance. A comprehensive understanding of these maintenance mechanisms is needed. We will report results of several flume experiments for autogenic pool-riffles. The experiments examined pool-riffle maintenance processes under variable flood and sediment supply conditions. A focus of our work is to characterize spatial and temporal patterns of pool-riffle sediment sorting, and to examine this in relation to temporal patterns of bedform evolution. The experiments represent a 5:1 scale-model of a prototype reach of a pool-riffle stream located within the University of British Columbia Malcolm Knapp Research Forest, Maple Ridge, BC.

  1. Main results of study on the interaction between the corium melt and steel in the VVER-1000 reactor vessel during a severe accident performed under the MASCA project

    SciTech Connect

    Asmolov, V. G.; Zagryazkin, V. N.; Tsurikov, D. F.; Vishnevsky, V. Yu.; D'yakov, Ye. K.; Kotov, A. Yu.; Repnikov, V. M.

    2010-12-15

    The interactions that take place in the corium melt in the reactor vessel in the case of a severe accident at a nuclear power plant were investigated in accordance with the MASCA international program. Results of the interaction between the oxide melt and iron (steel), partition of the main components [U, Zr, Fe (stainless steel)] between the oxide and the metal phases of the melt, partition of low-volatile simulators of fission products between the phases of the stratified core melt pool, and impact of the oxidizing atmosphere on the melt stratification are presented. The results obtained were used for prediction of thermodynamic properties of the melts belonging to the U-Zr-Fe-O system.

  2. Main results of study on the interaction between the corium melt and steel in the VVER-1000 reactor vessel during a severe accident performed under the MASCA project

    NASA Astrophysics Data System (ADS)

    Asmolov, V. G.; Zagryazkin, V. N.; Tsurikov, D. F.; Vishnevsky, V. Yu.; D'Yakov, Ye. K.; Kotov, A. Yu.; Repnikov, V. M.

    2010-12-01

    The interactions that take place in the corium melt in the reactor vessel in the case of a severe accident at a nuclear power plant were investigated in accordance with the MASCA international program. Results of the interaction between the oxide melt and iron (steel), partition of the main components [U, Zr, Fe (stainless steel)] between the oxide and the metal phases of the melt, partition of low-volatile simulators of fission products between the phases of the stratified core melt pool, and impact of the oxidizing atmosphere on the melt stratification are presented. The results obtained were used for prediction of thermodynamic properties of the melts belonging to the U-Zr-Fe-O system.

  3. Late-phase melt progression experiment: MP-2. Results and analysis

    SciTech Connect

    Gasser, R.D.; Gauntt, R.O.; Bourcier, S.C.

    1997-05-01

    In-pile experiments addressing late-phase processes in Light Water Reactors (LWRs) were performed in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories. Melt Progression (MP) experiments were designed to provide information to develop and verify computer models for analysis of LWR core damage in severe accidents. Experiments examine the formation and motion of ceramic molten pools in disrupted reactor core regions. The MP-2 experiment assembly consisted of: (1) a rubble bed of enriched UO{sub 2} and ZrO{sub 2} simulating severely disrupted reactor core regions, (2) a ceramic/metallic crust representing blockage formed by early phase melting, relocation, and refreezing of core components, and (3) an intact rod stub region that remained in place below the blockage region. The test assembly was fission heated in the central cavity of the ACRR at an average rate of about 0.2 KA, reaching a peak molten pool temperature around 3400 K. Melting of the debris bed ceramic components was initiated near the center of the bed. The molten material relocated downward, refreezing to form a ceramic crust near the bottom of the rubble bed. As power levels were increased, the crust gradually remelted and reformed at progressively lower positions in the bed until late in the experiment when it penetrated into and attacked the ceramic/metallic blockage. The metallic components of the blockage region melted and relocated to the bottom of the intact rod stub region before the ceramic melt penetrated the blockage region from above. The ceramic pool penetrated halfway into the blockage region by the end of the experiment. Measurements of thermal response and material relocation are compared to the results of the computer simulations. Postexperiment examination of the assembly with the associated material interactions and metallurgy are also discussed in detail with the analyses and interpretation of results. 16 refs., 206 figs., 24 tabs.

  4. Estimation of thermal loads on the VVER vessel under conditions of inversion of the stratified molten pool in a severe accident

    NASA Astrophysics Data System (ADS)

    Loktionov, V. D.; Mukhtarov, E. S.

    2016-09-01

    Analysis of the thermal state of molten pools that can be formed on the vessel bottom of the VVER-600 medium-power reactor during a severe anticipated accident with melting of the core is represented. Two types of the molten pool of core materials, with the two-layer and inverse three-layer stratification, are considered. Thermal loads acting on the reactor vessel from the melt are estimated depending on its formation time. Features of the thermal state of the melt in the case of its inverse stratification are analyzed. It is shown that thermal loads on the reactor vessel exceed the critical heat flux (CHF) when forming the two-layer stratified molten pool 10 and 24 h after its shutdown, and the thermal load is close to the corresponding CHF or somewhat exceeds it in 72 h. In the case of the formation of the inverse structure of the melt, one can observe a decrease by more than 2.5 times (in comparison with the two-layer stratified structure) in the thermal load on the reactor vessel in the region of its contact with the upper layer of the steel melt. Analysis of results showed that maximum densities of heat flux to the reactor vessel from the bottom metallic layer with the melt inversion did not exceed corresponding CHFs 24 and 72 h after the reactor shutdown. Because the thermal load on the reactor vessel can be localized in the region of its bottom, where the CHF is relatively small, during the inverse stratification of the melt, there is a need to carry out further in-depth experimental and analytical investigations of conditions for formation of the stratified molten pool and to obtain corrected experimental CHFs for conditions and outlines of cooling the external surface of the VVER-600 vessel in a severe accident.

  5. Airways disorders and the swimming pool.

    PubMed

    Bougault, Valérie; Boulet, Louis-Philippe

    2013-08-01

    Concerns have been expressed about the possible detrimental effects of chlorine derivatives in indoor swimming pool environments. Indeed, a controversy has arisen regarding the possibility that chlorine commonly used worldwide as a disinfectant favors the development of asthma and allergic diseases. The effects of swimming in indoor chlorinated pools on the airways in recreational and elite swimmers are presented. Recent studies on the influence of swimming on airway inflammation and remodeling in competitive swimmers, and the phenotypic characteristics of asthma in this population are reviewed. Preventative measures that could potentially reduce the untoward effects of pool environment on airways of swimmers are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Examination of nanosecond laser melting thresholds in refractory metals by shear wave acoustics

    NASA Astrophysics Data System (ADS)

    Abdullaev, A.; Muminov, B.; Rakhymzhanov, A.; Mynbayev, N.; Utegulov, Z. N.

    2017-07-01

    Nanosecond laser pulse-induced melting thresholds in refractory (Nb, Mo, Ta and W) metals are measured using detected laser-generated acoustic shear waves. Obtained melting threshold values were found to be scaled with corresponding melting point temperatures of investigated materials displaying dissimilar shearing behavior. The experiments were conducted with motorized control of the incident laser pulse energies with small and uniform energy increments to reach high measurement accuracy and real-time monitoring of the epicentral acoustic waveforms from the opposite side of irradiated sample plates. Measured results were found to be in good agreement with numerical finite element model solving coupled elastodynamic and thermal conduction governing equations on structured quadrilateral mesh. Solid-melt phase transition was handled by means of apparent heat capacity method. The onset of melting was attributed to vanished shear modulus and rapid radial molten pool propagation within laser-heated metal leading to preferential generation of transverse acoustic waves from sources surrounding the molten mass resulting in the delay of shear wave transit times. Developed laser-based technique aims for applications involving remote examination of rapid melting processes of materials present in harsh environment (e.g. spent nuclear fuels) with high spatio-temporal resolution.

  7. Freshwater - the key to melt pond formation atop first year sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, C.; Golden, K. M.; Skyllingstad, E. D.; Perovich, D. K.

    2014-12-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance and light availability for photosynthesis in the upper Arctic Ocean. The initial formation process of melt ponds on first year ice typically requires that melt water be retained on the surface of ice several to tens of centimeters above sea level for several days. Albedo feedbacks during this time period create below-sea-level depressions which remain ponds later in summer. Both theory and observations, however, show that sea ice is so highly porous and permeable prior to the formation of melt ponds that retention of water tens of centimeters above hydraulic equilibrium for multiple days should not be possible. Here we present results of percolation test experiments that identify the mechanism allowing above-sea level melt pond formation. The infiltration of fresh water from snowmelt into the pore structure of the ice is responsible for plugging the pores with fresh ice, sealing the ice against further water percolation, and allowing water to pool above freeboard. Fresh meltwater availability and desalination processes, therefore, exert considerable influence over the formation of melt ponds. The findings demonstrate another mechanism through which changes in snowfall on sea ice, already being observed, are likely to alter ice mass balance and highlight the importance of efforts to improve treatment of ice salinity in models.

  8. Swimming Pools. A Guide to Their Planning, Design and Operation.

    ERIC Educational Resources Information Center

    Gabrielsen, M. Alexander, Ed.

    Information is presented regarding all phases of swimming pool development and operation from earliest planning considerations to final programing. This comprehensive book covers--(1) the steps involved in planning a pool, (2) designing the pool, (3) water circulation, filtration, and treatment, (4) community pools, school and agency pools, and…

  9. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool...

  10. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool water...

  11. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool water...

  12. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool water... 10 Energy 1 2012-01-01 2012-01-01 false Pool water purity. 36.63 Section 36.63 Energy...

  13. 10 CFR 36.63 - Pool water purity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Pool water purity. 36.63 Section 36.63 Energy NUCLEAR... § 36.63 Pool water purity. (a) Pool water purification system must be run sufficiently to maintain the conductivity of the pool water below 20 microsiemens per centimeter under normal circumstances. If pool...

  14. Breakup of molten aluminum jets injected into water

    SciTech Connect

    Greene, G.A.; Finfrock, C.C.; Schwarz, C.E.; Hyder, M.L.

    1992-01-01

    A series of eighteen tests were performed to investigate the behavior of a molten jet of aluminum as it penetrates a deep pool of subcooled water. Jet penetration lengths required for breakup were found to agree with an existing model. Debris size and density were measured and are presented as a function of the jet diameter and water pool temperature. For those tests that exhibited the ability to spread across the steel baseplate under the water, the melt spreading behavior is compared to the existing melt spreading correlation. In the jet mode of melt-water contact, no explosive interactions were observed in these tests. Due to the nearly prototypical nature of these tests, it appears reasonable to conclude that gamma heating of non-fuel components during the DEGB-LOCA would, at worst, benignly melt some aluminum components in the reactor tank, resulting in large particles or debris formations which would remain in the tank and be coolable.

  15. OECD MCCI project 2-D Core Concrete Interaction (CCI) tests : CCI-3 test data report-thermalhydraulic results. Rev. 0 October 15, 2005.

    SciTech Connect

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of a third long-term 2-D Core-Concrete Interaction (CCI) experiment designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-3 experiment, which was conducted on September 22, 2005. Test specifications for CCI-3 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 375

  16. OECD MCCI 2-D Core Concrete Interaction (CCI) tests : CCI-2 test data report-thermalhydraulic results, Rev. 0 October 15, 2004.

    SciTech Connect

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-2 experiment, which was conducted on August 24, 2004. Test specifications for CCI-2 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg

  17. OECD MMCI 2-D Core Concrete Interaction (CCI) tests : CCCI-1 test data report-thermalhydraulic results. Rev 0 January 31, 2004.

    SciTech Connect

    Farmer, M. T.; Lomperski, S.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten coreconcrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-1 experiment, which was conducted on December 19, 2003. Test specifications for CCI-1 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg

  18. OECD 2-D Core Concrete Interaction (CCI) tests : CCI-2 test plan, Rev. 0 January 31, 2004.

    SciTech Connect

    Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. The first of these two tests, CCI-1, was conducted on December 19, 2003. This test investigated the interaction of a fully oxidized 400 kg PWR core melt, initially containing 8 wt % calcined siliceous concrete, with a specially designed two

  19. Direct writing by way of melt electrospinning.

    PubMed

    Brown, Toby D; Dalton, Paul D; Hutmacher, Dietmar W

    2011-12-15

    Melt electrospun fibers of poly(ϵ-caprolactone) are accurately deposited using an automated stage as the collector. Matching the translation speed of the collector to the speed of the melt electrospinning jet establishes control over the location of fiber deposition. In this sense, melt electrospinning writing can be seen to bridge the gap between solution electrospinning and direct writing additive manufacturing processes.

  20. Thermodynamics of glass forming polymeric melts

    NASA Astrophysics Data System (ADS)

    Pandya, Prapti B.; Patel, Ashmi T.; Pratap, Arun

    2013-06-01

    The temperature dependence of the Gibbs free energy difference (ΔG) between the under cooled melt and the corresponding equilibrium solid has been analyzed for two samples of glass forming polymeric melts; polyamid-6 (PA-6), polypropylene oxide (PPO) in the entire temperature range: i.e. Tm (melting temperature) to Tg (glass transition temperature).

  1. Water Freezing and Ice Melting.

    PubMed

    Małolepsza, Edyta; Keyes, Tom

    2015-12-08

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to the freezing of liquid water and the melting of hexagonal and cubic ice. It is confirmed that coexisting states are well-sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice ↔ liquid and cubic ice ↔ liquid with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. Pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.

  2. Water freezing and ice melting

    SciTech Connect

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid, with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.

  3. Water freezing and ice melting

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  4. Viscoelastic properties of Ionomer Melt

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Kumar, Sanat

    2007-03-01

    Viscoelastic prperties of a model telechelic ionomer, i.e., a melt of non-polar polymers with a charge at each chain end along with neutralizing counterions, have been examined using molecular dynamics simulation. Equlibrium calculation of the loss modulus G^''(φ) and storage modulus G^'(φ) shows plateau at lower temperatures when the systems are not relaxed. In this situation the specific heat (Cv) peak corresponds to the self-assembly of the system, at lower temperatures the specific heat begins to plateau. Similarities of the dynamic features found for telechelic melts with those observed in glass-forming liquids and entangled polymers have been shown. Furthremore, using an athermal 'probe', the properties of these materials is being distinctly classified as 'strong' glass or physical gels.

  5. Dynamic crystallization of silicate melts

    NASA Technical Reports Server (NTRS)

    Russell, W. J.

    1984-01-01

    Two types of furnaces with differing temperature range capabilities were used to provide variations in melt temperatures and cooling rates in a study of the effects of heterogeneous nucleation on crystallization. Materials of chondrule composition were used to further understanding of how the disequilibrium features displayed by minerals in rocks are formed. Results show that the textures of natural chondrules were duplicated. It is concluded that the melt history is dominant over cooling rate and composition in controlling texture. The importance of nuclei, which are most readily derived from preexisting crystalline material, support an origin for natural chondrules based on remelting of crystalline material. This would be compatible with a simple, uniform chondrule forming process having only slight variations in thermal histories resulting in the wide range of textures.

  6. Optimal beam pattern to maximize inclusion residence time in an electron beam melting hearth

    SciTech Connect

    Powell, A.; Pal, U.; Avyle, J. van den

    1997-02-01

    Approximate probabilities of inclusion survival through an electron beam melting hearth are computed from nitride dissolution rates, flotation velocities, and residence times. Dissolution rates were determined by measuring shrinkage rates of pure TiN and nitrided sponge in small pools of molten titanium in an electron beam melting hearth. Flotation velocities were calculated using correlations for fluid flow around spheres, and show that particles sink or float unless their densities are extremely close to that of molten titanium. Flow field characteristics which lead to effective inclusion removal are discussed in terms of heat flux pattern required to produce them, based on the electron beam`s unique ability to impart a nearly arbitrary heat flux pattern to the melt surface.

  7. Molecular characterization of dissolved organic matter during the Arctic spring melt period

    NASA Astrophysics Data System (ADS)

    Gueguen, C.; Mangal, V.; Shi, Y. X.

    2016-02-01

    The application of high resolution electrospray ionization mass spectrometry has advanced our understanding of dissolved organic matter (DOM) at molecular level. The arctic spring melt period has been largely undersampled owing to logistical and safety issues, yet this period is extremely important to the overall flux of DOM and related contaminants including metals from high latitude rivers. In this study, we present high resolution molecular composition of 35 DOM samples collected in the Churchill River (Manitoba) during the 2015 spring melt period. As spring melt progresses, a significant change in the two most dominant carbon pools, protein and lignin, was observed. For example, the relative abundance of proteins detected in the river DOM samples increased from 19 to 44% during the spring flush, likely reflecting a change in DOM source. Similar patterns were found using fluorescence spectroscopy.

  8. The influence of melting and melt drainage on crustal rheology during orogenesis

    NASA Astrophysics Data System (ADS)

    Diener, Johann F. A.; Fagereng, Åke

    2014-08-01

    Partial melting significantly weakens crustal rocks by introducing a low-viscosity liquid phase. However, near-concomitant melt drainage can remove this weak phase, potentially reversing the rheological effects such that the strength of a specific lithology depends on when the prograde pressure-temperature path intersects a melting reaction, how much melt is produced, and how long this melt is retained before it is lost. Phase equilibria and mixed rheology modeling of typical metapelite and metagreywacke compositions indicate that these rocks undergo continuous but pulsed melt production during prograde metamorphism. Depending on whether melt removal is continuous or episodic, and assuming geological strain rates, the lithologies can retain a very low strength less than 1 MPa or transiently strengthen to ˜5 MPa following melt loss. Lithologies undergoing episodic melt loss can therefore cycle between being relatively weak and relatively strong components within a composite crustal section. Melt production, retention, and weakening in the middle to lower crust as a whole is more sustained during heating and melt production, consistent with geodynamic inferences of weak, melt-bearing lower crust. However, the long-term consequence of melting and melt loss is a 50-400% increase in the strength of residual lithologies. The strengthening is more pronounced in metapelite than metagreywacke and is achieved through a combination of dehydration and the removal of the weak mica framework coupled to increased proportions of strong feldspars and garnet. Despite prolonged weakness, melting and melt loss therefore ultimately result in a dry and elastic lower crust.

  9. Melt Spinning of Crystalline Alloys.

    DTIC Science & Technology

    1980-01-01

    manufactoring iron-based amorphous alloys for magnetic appli- cations (2). Liebermann and Graham (3) and Kavesh (-)’have discussed the effect of melt spinning...and Mn. The main objectige was to determine whether the conclusions of Liebermann and Graham and Kavesh can be applied over a wide range of materials...length, width and thickness, p is density (2.71.103 Kgm-3 ), and W is the measured weight. Liebermann and Graham (3) applied Bernoulli’s equation

  10. Melting And Purification Of Niobium

    NASA Astrophysics Data System (ADS)

    Moura, Hernane R. Salles; de Moura, Lourenço

    2007-08-01

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  11. Melting And Purification Of Niobium

    SciTech Connect

    Salles Moura, Hernane R.; Moura, Lourenco de

    2007-08-09

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  12. Crystal growing from the melt

    NASA Technical Reports Server (NTRS)

    Davis, S. H.

    1987-01-01

    The mechanical and electrical properties of crystals produced by a unidirectional process depend strongly on the temperature and flow fields since these control the concentration of solute at the melt-crystal interface. The solute gradient there drives morphological instabilities that lead to cellular or dendritic interfaces. In the presentation several features of flow-solidification interactions will be discussed. These will include the effects of convection driven by density changes and buoyancy and the imposition of forced flow.

  13. Investigations in Marine Chemistry: Tide Pool Ecology.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Students investigated the salinity of tide pools at different levels in the intertidal zone. Data are analyzed collectively. Students graphed and discussed data. Included are suggestions for evaluation and further study. (Author)

  14. Pooled genomic indexing of rhesus macaque

    PubMed Central

    Milosavljevic, Aleksandar; Harris, Ronald A.; Sodergren, Erica J.; Jackson, Andrew R.; Kalafus, Ken J.; Hodgson, Anne; Cree, Andrew; Dai, Weilie; Csuros, Miklos; Zhu, Baoli; de Jong, Pieter J.; Weinstock, George M.; Gibbs, Richard A.

    2005-01-01

    Pooled genomic indexing (PGI) is a method for mapping collections of bacterial artificial chromosome (BAC) clones between species by using a combination of clone pooling and DNA sequencing. PGI has been used to map a total of 3858 BAC clones covering ∼24% of the rhesus macaque (Macaca mulatta) genome onto 4178 homologous loci in the human genome. A number of intrachromosomal rearrangements were detected by mapping multiple segments within the individual rhesus BACs onto multiple disjoined loci in the human genome. Transversal pooling designs involving shuffled BAC arrays were employed for robust mapping even with modest DNA sequence read coverage. A further innovation, short-tag pooled genomic indexing (ST-PGI), was also introduced to further improve the economy of mapping by sequencing multiple, short, mapable tags within a single sequencing reaction. PMID:15687293

  15. Investigations in Marine Chemistry: Tide Pool Ecology.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Students investigated the salinity of tide pools at different levels in the intertidal zone. Data are analyzed collectively. Students graphed and discussed data. Included are suggestions for evaluation and further study. (Author)

  16. Movable Bottom Pools: The Ultimate in Flexibility.

    ERIC Educational Resources Information Center

    Jenkins, Judith

    1979-01-01

    Movable floors for swimming pools allow deep water to be converted to any depth desired. The advantages of increased flexibility and multiple use are obvious for nonswimmers, children, and handicapped persons. (Author/MLF)

  17. Pooling control in variable preparative chromatography processes.

    PubMed

    Westerberg, Karin; Degerman, Marcus; Nilsson, Bernt

    2010-03-01

    Preparative chromatographic columns that run at high loads are highly sensitive to batch-to-batch disturbances of the process parameters, placing high demands on the strategy used for pooling of the product fractions. A new approach to pooling control is presented in a proof-of-concept study. A model-based sensitivity analysis was performed identifying the critical process parameters to product purity and optimal cut points. From this, the robust fixed cut points were found and pooling control strategies for variations in the critical parameters were designed. Direct measurements and indirect measurements based on the UV detector signal were used as control signals. The method is demonstrated for two case studies of preparative protein chromatography: hydrophobic interaction and reversed phase chromatography. The yield improved from 88.18 to 92.88% when changing from fixed to variable pooling in hydrophobic interaction chromatography, and from 35.15 to 76.27% in the highly sensitive reversed phase chromatography.

  18. 21 CFR 1250.89 - Swimming pools.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... types of salt water pools shall be so operated that complete circulation and replacement of the water in... independent of all other pipes and shall originate at a point where maximum flushing of the pump and pipe line...

  19. 21 CFR 1250.89 - Swimming pools.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... types of salt water pools shall be so operated that complete circulation and replacement of the water in... independent of all other pipes and shall originate at a point where maximum flushing of the pump and pipe line...

  20. Compositional convection in viscous melts

    NASA Astrophysics Data System (ADS)

    Tait, Stephen; Jaupart, Claude

    1989-04-01

    DURING solidification of multi-component melts, gradients in temperature and composition develop on different scales because of the large difference between their respective molecular diffusivities. Two consequences are the development of double-diffusive convection1 and the creation of mushy zones in which solid and liquid intimately coexist with a complex small-scale geometry2,3. Theoretical analysis requires simplifying assumptions that must be verified by laboratory experiments. Hitherto, experiments have been carried out with aqueous solutions which do not accurately represent the dynamics of melts with high Prandtl numbers, such as magmas. Here we describe the characteristics of compositional convection using a new experimental technique which allows the viscosity of the solution to be varied independently of chemical composition and liquidus temperature. A supereutectic melt was cooled from below, causing the growth of a horizontal layer of crystals. Convective instability occurred when the local solutal Rayleigh number of the compositional boundary layer ahead of the advancing crystallization front attained a value of ~3 on average. We observed a novel regime of convection in which the thermal boundary layer above the crystallization front was essentially unmodified by the motion of the plumes. The plumes carried a small heat flux and did not mix the fluid to a uniform temperature.

  1. Melting Behaviour of Ferronickel Slags

    NASA Astrophysics Data System (ADS)

    Sagadin, Christoph; Luidold, Stefan; Wagner, Christoph; Wenzl, Christine

    2016-12-01

    The industrial manufacturing of ferronickel in electric furnaces produces large amounts of slag with strong acidic character and high melting points, which seriously stresses the furnace refractory lining. In this study, the melting behavior of synthetically produced ferronickel slags on magnesia as refractory material was determined by means of a hot stage microscope. Therefore, slags comprising the main oxides SiO2 (35-70 wt.%), MgO (15-45 wt.%) and Fe2O3 (5-35 wt.%) were melted in a graphite crucible and afterwards analyzed by a hot stage microscope. The design of experiments, which was created by the statistic software MODDE®, included 20 experiments with varying slag compositions as well as atmospheres. The evaluation of the test results occurred at three different characteristic states of the samples like the softening point according to DIN 51730 and the temperatures at which the area of residual cross-section of the samples amounted to 30% and 40%, respectively, of the original value depending of their SiO2/MgO ratio and iron oxide content. Additionally, the thickness of the zone influenced by the slag was measured and evaluated.

  2. Polymictic pool behavior in Sierra Nevada Streams

    NASA Astrophysics Data System (ADS)

    Lucas, R. G.; Conklin, M. H.; Tyler, S. W.; Suarez, F. I.; Moran, J. E.; Esser, B. K.

    2010-12-01

    Pools in streams and meadows in the mid to high Sierra Nevada (1800-2300 m) in low flow scenarios were observed to exhibit polymictic behavior during summer months. Although daily thermal stratification has been observed in pools of various sizes and in multiple locations, the degree and timing of stratification is highly variable and not well understood. Previous studies have shown that thermally stratified stream pools can provide cold water refugia for thermally sensitive species, specifically salmonid fish. Diel temperature patterns demonstrating daily thermal stratification and nightly mixing of small (1-4 m diameter and 1-2 m deep) pools in the Long Meadow complex (Sequoia National Park, CA) were observed during the deployment of a distributed temperature sensor (DTS) in 2008. Similar behavior was also noted in stream pools along Chilnualna Creek, a tributary of the South Fork of the Merced River, Yosemite National Park, CA. To further investigate this polymictic behavior, we developed a two-dimensional model of water temperature and flow using Fluent, a computational fluid dynamics solver. The model successfully simulated thermal patterns similar to those observed and indicated that groundwater inflow has a significant influence on pool stratification, consistent with observed low temperatures and raised Radon-222 activity in highly localized areas in the pool bottoms. Similar polymictic behavior was observed in larger (4-10 m diameter and 1.5-2 m deep) stream pools on Chilnualna Creek in the late summer under baseflow conditions. The significant factors that determine stratification or mixing conditions are stream flow velocity, groundwater influence, and density variations due to radiative heating. We use the Richardson number, which was originally developed for assessing thermal stratification in lakes and reservoirs, to develop a one-dimensional tool for prediction of stream pool stratification at multiple scales. This application allows us to assess the

  3. Visualization of Gas Tungsten Arc Weld Pools

    DTIC Science & Technology

    1991-09-01

    flow visualization of Gas Tungsten Arc weld pools for HY-80 steel is presented using a pulsed laser light source and a conventional night~vision...visualization of Gas Tungsten Arc weld pools for HY-80 steel is presented using a pulsed laser light source and a conventional night-vision image-intensifier...effects of electromagnetic stirring on GTA welds in austenitic stainless steel . Changes in shape and solidification structure of welds observed

  4. Pooling annotated corpora for clinical concept extraction

    PubMed Central

    2013-01-01

    Background The availability of annotated corpora has facilitated the application of machine learning algorithms to concept extraction from clinical notes. However, high expenditure and labor are required for creating the annotations. A potential alternative is to reuse existing corpora from other institutions by pooling with local corpora, for training machine taggers. In this paper we have investigated the latter approach by pooling corpora from 2010 i2b2/VA NLP challenge and Mayo Clinic Rochester, to evaluate taggers for recognition of medical problems. The corpora were annotated for medical problems, but with different guidelines. The taggers were constructed using an existing tagging system MedTagger that consisted of dictionary lookup, part of speech (POS) tagging and machine learning for named entity prediction and concept extraction. We hope that our current work will be a useful case study for facilitating reuse of annotated corpora across institutions. Results We found that pooling was effective when the size of the local corpus was small and after some of the guideline differences were reconciled. The benefits of pooling, however, diminished as more locally annotated documents were included in the training data. We examined the annotation guidelines to identify factors that determine the effect of pooling. Conclusions The effectiveness of pooling corpora, is dependent on several factors, which include compatibility of annotation guidelines, distribution of report types and size of local and foreign corpora. Simple methods to rectify some of the guideline differences can facilitate pooling. Our findings need to be confirmed with further studies on different corpora. To facilitate the pooling and reuse of annotated corpora, we suggest that – i) the NLP community should develop a standard annotation guideline that addresses the potential areas of guideline differences that are partly identified in this paper; ii) corpora should be annotated with a two

  5. Profit pools: a fresh look at strategy.

    PubMed

    Gadiesh, O; Gilbert, J L

    1998-01-01

    In charting strategy, many managers focus on revenue growth, assuming that profits will follow. But that approach is dangerous: today's deep revenue pool may become tomorrow's dry hole. To create strategies that result in profitable growth, managers need to look beyond revenues to see the shape of their industry's profit pool. The authors define an industry's profit pool as the total profits earned at all points along the industry's value chain. Although the concept is simple, the structure of a profit pool is usually quite complex. The pool will be deeper in some segments of the value chain than in others, and depths will vary within an individual segment as well. Segment profitability may, for example, vary widely by customer group, product category, geographic market, and distribution channel. Moreover, the pattern of profit concentration in an industry will often be very different from the pattern of revenue concentration. The authors describe how successful companies have gained competitive advantage by developing sophisticated profit-pool strategies. They explain how U-Haul identified new sources of profit in the consumer-truck-rental industry; how Merck reached beyond its traditional value-chain role to protect its profits in the pharmaceuticals industry; how Dell rebounded from a misguided channel decision by refocusing on its traditional source of profit; and how Anheuser-Busch made a series of astute product, pricing, and operating decisions to dominate the beer industry's profit pool. The companies with the best understanding of their industry's profit pool, the authors argue, will be in the best position to thrive over the long term.

  6. Performance Study of Swimming Pool Heaters

    SciTech Connect

    McDonald, R.J.

    2009-01-01

    The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

  7. Electromagnetic Interference in a Private Swimming Pool

    PubMed Central

    Iskandar, Sandia; Lavu, Madhav; Atoui, Moustapha; Lakkireddy, Dhanunjaya

    2016-01-01

    Although current lead design and filtering capabilities have greatly improved, Electromagnetic Interference (EMI) from environmental sources has been increasingly reported in patients with Cardiac Implantable Electronic Device (CIED) [1]. Few cases of inappropriate intracardiac Cardioverter Defibrillator (ICD) associated with swimming pool has been described [2]. Here we present a case of 64 year old male who presented with an interesting EMI signal that was subsequently identified to be related to AC current leak in his swimming pool. PMID:27479205

  8. How to map your industry's profit pool.

    PubMed

    Gadiesh, O; Gilbert, J L

    1998-01-01

    Many managers chart strategy without a full understanding of the sources and distribution of profits in their industry. Sometimes they focus their sights on revenues instead of profits, mistakenly assuming that revenue growth will eventually translate into profit growth. In other cases, they simply lack the data or the analytical tools required to isolate and measure variations in profitability. In this Manager's Tool Kit, the authors present a way to think clearly about where the money's being made in any industry. They describe a framework for analyzing how profits are distributed among the activities that form an industry's value chain. Such an analysis can provide a company's managers with a rich understanding of their industry's profit structure--what the authors call its profit pool--enabling them to identify which activities are generating disproportionately large or small shares of profits. Even more important, a profit-pool map opens a window onto the underlying structure of the industry, helping managers see the various forces that are determining the distribution of profits. As such, a profit-pool map provides a solid basis for strategic thinking. Mapping a profit pool involves four steps: defining the boundaries of the pool, estimating the pool's overall size, estimating the size of each value-chain activity in the pool, and checking and reconciling the calculations. The authors briefly describe each step and then apply the process by providing a detailed example of a hypothetical retail bank. They conclude by looking at ways of organizing the data in chart form as a first step toward plotting a profit-pool strategy.

  9. Occurrence of enteroviruses in community swimming pools.

    PubMed Central

    Keswick, B H; Gerba, C P; Goyal, S M

    1981-01-01

    Municipal swimming pools and wading pools were examined for the presence of human enteric viruses using a portable virus concentrator at the site to concentrate viruses from 100-gallon to 500-gallon samples. Ten of 14 samples contained viruses; three of these were positive for virus in the presence of residual free chlorine. Enteroviruses were isolated from two pools which exceeded the 0.4 ppm free residual chlorine standard. This study appears to be supportive of recent evidence that indicates a higher incidence of enterovirus infection among bathers. All seven wading pool samples contained virus. Coxsackieviruses B3 and B4, poliovirus 1, and echovirus 7 were isolated. Total coliform bacteria were not adequate indicators of the presence of virus, as six of the samples were positive for virus but negative for coliforms. Total plate counts appeared to provide a better indication of the sanitary quality of the pool water, but viruses could still be detected in samples that met currently recommended bacterial levels. It is possible that swimming and wading pools may serve as a means of transmission of enteroviral disease, especially in children, during summer months. PMID:6267950

  10. Characterisation of the Permafrost Carbon Pool

    USGS Publications Warehouse

    Kuhry, P.; Grosse, G.; Harden, J.W.; Hugelius, G.; Koven, C.D.; Ping, C.-L.; Schirrmeister, L.; Tarnocai, C.

    2013-01-01

    The current estimate of the soil organic carbon (SOC) pool in the northern permafrost region of 1672 Petagrams (Pg) C is much larger than previously reported and needs to be incorporated in global soil carbon (C) inventories. The Northern Circumpolar Soil Carbon Database (NCSCD), extended to include the range 0–300 cm, is now available online for wider use by the scientific community. An important future aim is to provide quantitative uncertainty ranges for C pool estimates. Recent studies have greatly improved understanding of the regional patterns, landscape distribution and vertical (soil horizon) partitioning of the permafrost C pool in the upper 3 m of soils. However, the deeper C pools in unconsolidated Quaternary deposits need to be better constrained. A general lability classification of the permafrost C pool should be developed to address potential C release upon thaw. The permafrost C pool and its dynamics are beginning to be incorporated into Earth System models, although key periglacial processes such as thermokarst still need to be properly represented to obtain a better quantification of the full permafrost C feedback on global climate change.

  11. Functional compartmentation of the nucleotide pool

    SciTech Connect

    Volkin, E.

    1981-01-01

    Various lines of evidence show that the total cellular ribonucleoside triphosphate pool serves as the percursor pool for RNA synthesis. Other reports strongly support the thesis that the ribonucleotide pool is compartmentalized. In particular, the suggestion has been put forward that, in some cell lines, nucleosides such as uridine are rapidly channeled into the putative functional pool. The present experiments were designed to obtain a more direct answer to the question of nucleotide pool compartmentation. From these data, one can assess the feasibility of using specific activities of the total pool nucleoside triphosphates for calculating rates of RNA synthesis. Two cell lines were used in this investigation. A rat transformed tracheal cell line, cloned from a keratinizing squamous cell carcinoma, was grown as a stratified epithelium, and Novikoff hepatoma cell line, grown in suspension culture. Tritiated nucleoside and /sup 32/PO/sub 4/ were added to cells in exponential growth. Under the conditions used, between 85 to 100% of the RNA is hydrolyzed to 5'-mononucleotides. Furthermore, the enzyme was shown to be almost free of 5'-nucleotidase and totally devoid of deaminase and phosphoryl-transferring activities. (ERB)

  12. Pool Boiling Experiment Has Successful Flights

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many Earthbound applications, such as steam-generation power plants, petroleum, and other chemical plants. Also, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  13. Pool Boiling Experiment Has Five Successful Flights

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    1997-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  14. Martian mantle primary melts - An experimental study of iron-rich garnet lherzolite minimum melt composition

    NASA Technical Reports Server (NTRS)

    Bertka, Constance M.; Holloway, John R.

    1988-01-01

    The minimum melt composition in equilibrium with an iron-rich garnet lherzolite assemblage is ascertained from a study of the liquidus relations of iron-rich basaltic compositions at 23 kb. The experimentally determined primary melt composition and its calculated sodium content reveal that Martian garnet lherzolite minimum melts are picritic alkali olivine basalts. Martian primary melts are found to be more picritic than terrestrial garnet lherzolite primary melts.

  15. Melting by temperature-modulated calorimetry

    SciTech Connect

    Wunderlich, B.; Okazaki, Iwao; Ishikiriyama, Kazuhiko; Boller, A. |

    1997-09-01

    Well-crystallized macromolecules melt irreversibly due to the need of molecular nucleation, while small molecules melt reversibly as long as crystal nuclei are present to assist crystallization. Furthermore, imperfect crystals of low-molar-mass polymers may have a sufficiently small region of metastability between crystallization and melting to show a reversing heat-flow component due to melting of poor crystals followed by crystallization of imperfect crystals which have insufficient time to perfect before the modulation switches to heating and melts the imperfect crystals. Many metals, in turn. melt sharply and reversibly as long as nuclei remain after melting for subsequent crystallization during the cooling cycle. Their analysis is complicated, however, due to thermal conductivity limitations of the calorimeters. Polymers of sufficiently high molar mass, finally, show a small amount of reversible. local melting that may be linked to partial melting of individual molecules. Experiments by temperature-modulated calorimetry and model calculations are presented. The samples measured included poly(ethylene terephthalate)s, poly(ethylene oxide)s, and indium. Two unsolved problems that arose from this research involve the origin of a high, seemingly stable, reversible heat capacity of polymers in the melting region, and a smoothing of melting and crystallization into a close-to-elliptical Lissajous figure in a heat-flow versus sample-temperature plot.

  16. Melt Generation in Heterogeneous Mantle Sources: A Three-Legged Stool Approach

    NASA Astrophysics Data System (ADS)

    Brown, E. L.; Lesher, C. E.

    2009-05-01

    The compositions and volumes of basalts generated by adiabatic decompression melting are primarily a function of three factors: mantle potential temperature, the style of mantle upwelling, and source composition. Attempts to use basalts to infer the relative importance of these three factors in specific localities are made difficult because even for homogeneous mantle sources, basalts are aggregates of melts generated over a range of pressures and temperatures within the melting regime. When source heterogeneity and differences in the melting behavior of source lithologies are accounted for, the complexity of relating basalts to the conditions of melt generation increases substantially. Advances in our understanding of mid - ocean ridge basalt petrogenesis have demonstrated the utility of creating geochemical models for melt generation that are constrained by experimental petrology [e.g. 1]. To better relate basalt compositions to the melting processes within a heterogeneous mantle source, we have developed a forward polybaric melting model that simulates the melting of a source comprised of pyroxenite and peridotite. The model uses thermodynamically - derived polybaric melting functions based on parameterizations of pyroxenite and peridotite melting [2, 3]. The model takes into account mantle potential temperature, style of mantle upwelling and variable amounts of pyroxenite, and outputs the isotopic and trace element compositions and volumes of pooled melts using the residual mantle column method [4]. We propagate uncertainties in model input parameters to assess robustness and compare our results with previous models [5-7]. We apply our model to ocean island and large igneous province environments to constrain potential temperature, upwelling rate and abundance of pyroxenite in the mantle source from observed basalt compositions and volumes. [1] Longhi 2002, G-cubed, doi:10.1029/2001/GC000204; [2] Katz et al. 2003, G-cubed, doi:10.1029/2002GC000433; [3

  17. Small particle melting of pure metals

    NASA Technical Reports Server (NTRS)

    Allen, G. L.; Bayles, R. A.; Gile, W. W.; Jesser, W. A.

    1986-01-01

    Submicron-sized crystallites of lead, tin, indium and bismuth were melted in situ in the modified specimen chamber of a Siemens transmission e lectron microscope. Melting point and size determinations were made directly from the dark field images of the crystallites. Particles exhibited melting points that decreased with decreasing particle size. A near-linear relationship was observed for the melting point as a function of the reciprocal of the radius. Thermodynamnic expressions based on the significant contributions of the surface energy to the free energy of the system also suggest a linear relation. Other factors, such as shape and surface contamination, were also observed to affect the size-dependent melting of particles. Crystallites of extended platelet shape did not exhibit a significant depression in melting point. Elevated residual gas pressures were found to lessen the melting point depression of spherical particles.

  18. Small particle melting of pure metals

    NASA Technical Reports Server (NTRS)

    Allen, G. L.; Bayles, R. A.; Gile, W. W.; Jesser, W. A.

    1986-01-01

    Submicron-sized crystallites of lead, tin, indium and bismuth were melted in situ in the modified specimen chamber of a Siemens transmission e lectron microscope. Melting point and size determinations were made directly from the dark field images of the crystallites. Particles exhibited melting points that decreased with decreasing particle size. A near-linear relationship was observed for the melting point as a function of the reciprocal of the radius. Thermodynamnic expressions based on the significant contributions of the surface energy to the free energy of the system also suggest a linear relation. Other factors, such as shape and surface contamination, were also observed to affect the size-dependent melting of particles. Crystallites of extended platelet shape did not exhibit a significant depression in melting point. Elevated residual gas pressures were found to lessen the melting point depression of spherical particles.

  19. Melt Conditioned Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Scamans, Geoff; Li, Hu-Tian; Fan, Zhongyun

    High shear melt conditioning of aluminum alloy melts disperses oxide films and provides potent nuclei to promote non-dendritic solidification leading to refined as cast microstructures for shape castings, semis or continuously cast product forms. A new generation of high shear melt conditioning equipment has been developed based on a dispersive mixer that can condition either a batch melt or can provide a continuous melt feed. Most significantly the melt conditioner can be used directly in the sump of a DC caster where it has a dramatic effect on the cast microstructure. The present goals are to expand the castable alloy range and to increase the tolerance of alloys used in transport applications to impurities to increase the use of recycled metal. The paper will review the current status of the melt conditioning technology across the range of casting options and will highlight development opportunities.

  20. Systematics of melt stagnation in peridotites from the Godzilla Megamullion

    NASA Astrophysics Data System (ADS)

    Loocke, M.; Snow, J. E.; Ohara, Y.

    2010-12-01

    amongst melt-impregnated samples with values ranging up to 50. This range is seen as having increasing minimum and maximum values with distance away from the medial section until it reaches its peak at a base Cr# of 30 with a maximum of 65. From this trend, a general model for the secular evolution of the GM mantle section can be established (5). The ridge segment experienced normal mid-oceanic ridge growth with robust mantle melting during the time period represented by the distal region. At the boundary to the medial region, a steep drop-off in melt productivity was experienced, leading to minimal mantle melting during the time period represented by the medial region. Soon thereafter, melting began again, but was trapped in a thickened and cooling lithosphere, causing the melt to pool and react with its host peridotite. (1) Ohara, et al., (2003) G3. 4 (7), 8611, 10.1029/2002GC000469. (2) Dick (1989) Geol Soc. Lond. Spec. Pub. 42:71-105. (3) Ohara, et al., (2009), Eos Trans. AGU, 90(52), Fall Meet. Suppl. Abst.Num. T33D-06 (4) Loocke, et al., (2009), Eos Trans. AGU, 90(52), Fall Meet. Suppl. Abst.Num. T21A-1776 (5) Snow, et al., (2009), Eos Trans. AGU, 90(52), Fall Meet. Suppl. Abst.Num. T33D-07

  1. 77 FR 76952 - Rescinding Spent Fuel Pool Exclusion Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 51 Rescinding Spent Fuel Pool Exclusion Regulations AGENCY... fuel pool storage impacts from license renewal environmental reviews. This action is necessary...

  2. 47 CFR 52.20 - Thousands-block number pooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) NUMBERING Number Portability § 52.20 Thousands-block number pooling. (a) Definition. Thousands... number pooling as a mandatory nationwide numbering resource optimization strategy, all carriers,...

  3. 47 CFR 52.20 - Thousands-block number pooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) NUMBERING Number Portability § 52.20 Thousands-block number pooling. (a) Definition. Thousands... number pooling as a mandatory nationwide numbering resource optimization strategy, all carriers,...

  4. 47 CFR 52.20 - Thousands-block number pooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) NUMBERING Number Portability § 52.20 Thousands-block number pooling. (a) Definition. Thousands... number pooling as a mandatory nationwide numbering resource optimization strategy, all carriers,...

  5. 47 CFR 52.20 - Thousands-block number pooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) NUMBERING Number Portability § 52.20 Thousands-block number pooling. (a) Definition. Thousands... number pooling as a mandatory nationwide numbering resource optimization strategy, all carriers,...

  6. Regulation of power pools and system operators: An international comparison

    SciTech Connect

    Barker, J. Jr.; Tenenbaum, B.; Woolf, F.

    1997-12-31

    This paper focuses on the governance and regulation of power pools outside the United States. The current governance and regulatory arrangements for four power pools, as developed in pool documents and government regulations and laws, are compared and contrasted. The power pools analyzed are located in England and Wales, Australia, Canada, and Scandinavia. Topics discussed in relation to these pools are the effects of structure on governance, how each pool has dealt with a number of basic governance decisions, how the pools monitor the markets, ways in which regulators and other institutions control pools, and self-governance issues.

  7. Rotation of melting ice disks due to melt fluid flow

    NASA Astrophysics Data System (ADS)

    Dorbolo, S.; Adami, N.; Dubois, C.; Caps, H.; Vandewalle, N.; Darbois-Texier, B.

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4°C for which the water density is maximum. The 4°C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  8. Rotation of melting ice disks due to melt fluid flow.

    PubMed

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  9. Self-formed waterfall plunge pools in homogeneous rock

    NASA Astrophysics Data System (ADS)

    Scheingross, Joel S.; Lo, Daniel Y.; Lamb, Michael P.

    2017-01-01

    Waterfalls are ubiquitous, and their upstream propagation can set the pace of landscape evolution, yet no experimental studies have examined waterfall plunge pool erosion in homogeneous rock. We performed laboratory experiments, using synthetic foam as a bedrock simulant, to produce self-formed waterfall plunge pools via particle impact abrasion. Plunge pool vertical incision exceeded lateral erosion by approximately tenfold until pools deepened to the point that the supplied sediment could not be evacuated and deposition armored the pool bedrock floor. Lateral erosion of plunge pool sidewalls continued after sediment deposition, but primarily at the downstream pool wall, which might lead to undermining of the plunge pool lip, sediment evacuation, and continued vertical pool floor incision in natural streams. Undercutting of the upstream pool wall was absent, and our results suggest that vertical drilling of successive plunge pools is a more efficient waterfall retreat mechanism than the classic model of headwall undercutting and collapse in homogeneous rock.

  10. Quantum melting of spin ice

    NASA Astrophysics Data System (ADS)

    Onoda, Shigeki; Tanaka, Yoichi

    2010-03-01

    A quantum melting of the spin ice is proposed for pyrochlore-lattice magnets Pr2TM2O7 (TM =Ir, Zr, and Sn). The quantum pseudospin-1/2 model is derived from the strong-coupling perturbation of the f-p electron transfer in the basis of atomic non-Kramers magnetic doublets. The ground states are characterized by a cooperative ferroquadrupole and pseudospin chirality in the cubic unit cell, forming a magnetic analog of smectic liquid crystals. Then, pinch points observed in spin correlations for dipolar spin-ice systems are replaced with the minima. The relevance to experiments is discussed.

  11. Coupling dynamic blow down and pool evaporation model for LNG.

    PubMed

    Woodward, John L

    2007-02-20

    Treating the dynamic effects of accidental discharges of liquefied natural gas (LNG) is important for realistic predictions of pool radius. Two phenomena have important influence on pool spread dynamics, time-varying discharge (blow down) and pool ignition. Time-varying discharge occurs because a punctured LNG tanker or storage tank drains with a decreasing liquid head and decreasing head-space pressure. Pool ignition increases the evaporation rate of a pool and consequently decreases the ultimate pool area. This paper describes an approach to treat these phenomena in a dynamic pool evaporation model. The pool evaporation model developed here has two separate regimes. Early in the spill, momentum forces dominate and the pool spreads independently of pool evaporation rate and the corresponding heat transfer rate. After the average pool depth drops below a minimum value, momentum forces are largely dissipated and the thin edges of the pool completely evaporate, so pool area is established by the heat transfer rate. The maximum extent of a burning pool is predicted to be significantly less than that of an unignited pool because the duration of the first regime is reduced by higher heat transfer rates. The maximum extent of an LNG pool is predicted to be larger upon accounting for blow down compared with using a constant average discharge rate. However, the maximum pool extent occurs only momentarily before retreating.

  12. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B. ); Hughes, E.D. )

    1991-01-01

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  13. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1991-12-31

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  14. Probing depth dependencies of melt emplacement on time dependent quantities in a continental rift scenario with melting and melt extraction

    NASA Astrophysics Data System (ADS)

    Wallner, Herbert; Schmeling, Harro

    2014-05-01

    Since some years seismological observations provide increasing evidence of a discontinuity near the mid of older mantle lithosphere. Explanation may be a melt infiltration front (MIF) as upper margin of an evolving network of veins. These are formed by crystallized melt supplied by episodic melting events in the asthenosphere. To test this concept geodynamically we performed numerical modelling applying melting, extraction of melt and emplacement in a viscous matrix. Thereupon, we were faced to the problem defining an intrusion level for the melt. Findings of prior studies led to the need of movable, process dependent boundaries of the emplacement zone additionally making the process probably more self-consistent. Here we present a preliminary study exploring several empirical attempts to relate time dependent states to an upward moving boundary for intrusion. Modeled physics is based on thermo-mechanics of visco-plastic flow. The equations of conservation of mass, momentum and energy are solved for a multi component (crust-mantle) and two phase (melt-matrix) system. Rheology is temperature-, pressure-, and stress-dependent. In consideration of depletion and enrichment melting and solidification are controlled by a simplified linear binary solid solution model. The Compaction Boussinesq Approximation and the high Prandtl number approximation are used, elasticity is neglected and geometry is restricted to 2D. Approximation is done with the Finite Difference Method with markers in an Eulerian formulation (FDCON). Model guiding scenario is a extending thick lithosphere associated to by updoming asthenosphere probably additionally heated by a plume nearby. As the P-T conditions in the asthenosphere are near the solidus caused changes may increase melting and generate partial melt. Against conventional expectations on permeability at lithosphere-asthenosphere boundary (LAB) depth a fast melt transport into and sometimes through the lithosphere often is observed. The

  15. Melting a Sample within TEMPUS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One of the final runs of the TEMPUS experiment shows heating of a sample on STS-94, July 15, 1997, MET:14/11:01 (approximate) and the flows on the surface. At the point this image was taken, the sample was in the process of melting. The surface of the sample is begirning to flow, looking like the motion of plate tectonics on the surface of a planet. During this mission, TEMPUS was able to run than 120 melting cycles with zirconium, with a maximum temperature of 2,000 degrees C, and was able to undercool by 340 degrees -- the highest temperature and largest undercooling ever achieved in space. The TEMPUS investigators also have provided the first measurements of viscosity of palladium-silicon alloys in the undercooled liquid alloy which are not possible on Earth. TEMPUS (stands for Tiegelfreies Elektromagnetisches Prozessiere unter Schwerelosigkeit (containerless electromagnetic processing under weightlessness). It was developed by the German Space Agency (DARA) for flight aboard Spacelab. The DARA project scientist was Igon Egry. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). DARA and NASA are exploring the possibility of flying an advanced version of TEMPUS on the International Space Station.(176KB JPEG, 1350 x 1516 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300193.html.

  16. Intelligent control of cupola melting

    SciTech Connect

    Larsen, E.D.; Clark, D.E.; Moore, K.L.; King, P.E.

    1997-05-01

    The cupola is a furnace used for melting steel scrap, cast iron scrap, and ferroalloys to produce cast iron. Its main energy source is coal coke. It is one of the oldest methods of producing cast iron, and it remains the dominate method because of its simplicity and low fuel cost. Cupolas range in size from 18 inches to 13 feet in diameter, and can produce up to 100 tons per hour of cast iron. Although cupola melting has a long history, automatic control has been elusive because the process has been poorly understood. Most foundries rely on the intuition of experienced operators to make control decisions. The purpose of this work, which has been underway for three years of an anticipated four year program, is to develop a controller for the cupola using intelligent and conventional control methods. The project is a cooperative effort between the Idaho National Engineering and Environmental Laboratory, the Department of Energy Albany Research Center, Idaho State University, and the American Foundrymen`s Society.

  17. Reserve Growth of Alberta Oil Pools

    USGS Publications Warehouse

    Verma, Mahendra K.; Cook, Troy

    2008-01-01

    This Open-File Report is based on a presentation delivered at the Fourth U.S. Geological Survey Workshop on Reserve Growth on March 10-11, 2008. It summarizes the results of a study of reserve growth of oil pools in Alberta Province, Canada. The study is part of a larger effort involving similar studies of fields in other important petroleum provinces around the world, with the overall objective of gaining a better understanding of reserve growth in fields with different geologic/reservoir parameters and different operating environments. The goals of the study were to: 1. Evaluate historical oil reserve data and assess reserve growth. 2. Develop reserve growth models/functions to help forecast hydrocarbon volumes. 3. Study reserve growth sensitivity to various parameters ? for example, pool size, porosity, oil gravity, and lithology. 4. Compare reserve growth in oil pools/fields of Alberta provinces with those from other large petroleum provinces.

  18. Automatic swimming pool identification for fire suppression

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Bo; Buck, Heidi

    2012-09-01

    Southern California experienced some of the largest wildfires ever seen in 2003 and 2007. The Cedar fire in 2003 resulted in 2,820 lost structures and 15 deaths, and the Witch fire in 2007 resulted in 1,650 lost structures and 2 deaths according to the California Department of Forestry and Fire Protection (CAL FIRE). Fighting fires of this magnitude requires every available resource, and an adequate water supply is vital in the firefighting arsenal. Utilizing the fact that many homes in Southern California have swimming pools, firefighters could have access to strategically placed water supplies. The problem is accurately and quickly identifying which residences have actively filled swimming pools at the time of the emergency. The proposed method approaches the problem by employing satellite imagery and remote sensing techniques. Specifically, swimming pool identification is attempted with Spectral Angle Mapper (SAM) on multispectral imagery from the Worldview-2 satellite.

  19. Species pool and dynamics of marine paleocommunities.

    PubMed

    Buzas, M A; Culver, S J

    1994-06-03

    Foraminiferal communities in the Cenozoic shelf deposits of the North American Atlantic Coastal Plain exhibit little unity during almost 55 million years of successive transgressions and regressions. Transgression communities are composed of a dynamic mixture of immigrants and newly evolved species. During regressions, species within these communities either became extinct or emigrated. Some emigrants returned during subsequent transgressions, but many did not. The neritic species of the Atlantic and Gulf continental margins constitute a species pool. Immigrants and emigrants transferred into and out of the species pool, while extinctions and originations repeatedly altered its species composition. While the results indicate a lack of local community unity, at the same time they demonstrate the necessity of a species pool to sustain species diversity.

  20. SNP calling by sequencing pooled samples

    PubMed Central

    2012-01-01

    Background Performing high throughput sequencing on samples pooled from different individuals is a strategy to characterize genetic variability at a small fraction of the cost required for individual sequencing. In certain circumstances some variability estimators have even lower variance than those obtained with individual sequencing. SNP calling and estimating the frequency of the minor allele from pooled samples, though, is a subtle exercise for at least three reasons. First, sequencing errors may have a much larger relevance than in individual SNP calling: while their impact in individual sequencing can be reduced by setting a restriction on a minimum number of reads per allele, this would have a strong and undesired effect in pools because it is unlikely that alleles at low frequency in the pool will be read many times. Second, the prior allele frequency for heterozygous sites in individuals is usually 0.5 (assuming one is not analyzing sequences coming from, e.g. cancer tissues), but this is not true in pools: in fact, under the standard neutral model, singletons (i.e. alleles of minimum frequency) are the most common class of variants because P(f) ∝ 1/f and they occur more often as the sample size increases. Third, an allele appearing only once in the reads from a pool does not necessarily correspond to a singleton in the set of individuals making up the pool, and vice versa, there can be more than one read – or, more likely, none – from a true singleton. Results To improve upon existing theory and software packages, we have developed a Bayesian approach for minor allele frequency (MAF) computation and SNP calling in pools (and implemented it in a program called snape): the approach takes into account sequencing errors and allows users to choose different priors. We also set up a pipeline which can simulate the coalescence process giving rise to the SNPs, the pooling procedure and the sequencing. We used it to compare the performance of snape to that

  1. An approach to modeling trace component activities in silicate melts: NiO

    NASA Astrophysics Data System (ADS)

    Colson, Russell O.

    2017-06-01

    This report presents a model predicting activities for NiO in a wide range of silicate melts that include the components SiO2, TiO2, Al2O3, MgO, FeO, CaO, Na2O, and K2O. The conceptual simplicity of this model, combined with its success in modeling complex variations in activity with melt composition, suggests that the approach may provide insight into the character of trace components in the melt. The model presented in this report considers NiO to exist as Ni2+ and O2- in the melt, and predicts the activity of NiO by modeling variations in both aNi2+ and aO2-. Activities of Ni2+ are modeled assuming that NiO mixes randomly with a hypothetical `mixing pool' of cations dominated by cations of similar size and charge to Ni2+, mainly Fe2+, Mg2+, Ca2+, and Ni2+. aO2- is modeled as a function of total oxygen - 2·network-forming cations, with the understanding that O2- in silicate melts exists in equilibrium with bridging and non-bridging oxygens through reactions of the type Si-O-Si + O2- → 2 Si-O. For illustration, the model is applied to reduced mafic lunar samples that may have equilibrated with a Ni-bearing metal phase.

  2. New surveys of the Chesapeake Bay impact structure suggest melt pockets and target-structure effect

    USGS Publications Warehouse

    Shah, A.K.; Brozena, J.; Vogt, P.; Daniels, D.; Plescia, J.

    2005-01-01

    We present high-resolution gravity and magnetic field survey results over the 85-km-diameter Chesapeake Bay impact structure. Whereas a continuous melt sheet is anticipated at a crater this size, shallow-source magnetic field anomalies of ???100 nT instead suggest that impact melt pooled in kilometer-scaled pockets surrounding the base of a central peak. A central anomaly of ???300 nT may represent additional melt or rock that underwent shock-induced remagnetization. Models predict that the total volume of the melt ranges from ???0.4 to 10 km3, a quantity that is several orders of magnitude smaller than expected for an impact structure this size. However, this volume is within predictions given a transient crater of diameter of 20-40 km for a target covered with water and sedimentary deposits such that melt fragments were widely dispersed at the time of impact. Gravity data delineate a gently sloping inner basin and a central peak via a contrast between crystalline and sedimentary rock. Both features are ovoid, oriented parallel to larger preimpact basement structures. Conceptual models suggest how lateral differences in rock strength due to these preimpact structures helped to shape the crater's morphology during transient-crater modification. ?? 2005 Geological Society of America.

  3. Pulsed laser generation of ultrasound in a metal plate between the melting and ablation thresholds

    SciTech Connect

    Every, A. G.; Utegulov, Z. N.; Veres, I. A.

    2015-03-31

    The generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation, is treated. Consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the evolution of the melt pool, and thermal conduction in the melt and surrounding solid. The excitation of the ultrasound takes place over a few nanoseconds, and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. Because of this, the output of the thermal simulations can be represented as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response at the opposite surface to these forces is obtained by two methods, the one based on the elastodynamic Green’s functions for plate geometry determined by the Cagniard generalized ray method, and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported of the epicentral displacement response of a 3.12mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold. Comparison is made between results obtained using available temperature dependent thermophysical data, and room temperature materials constants except near the melting point.

  4. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.; Skyllingstad, Eric; Arnsten, Alexandra; Stwertka, Carolyn; Wright, Nicholas

    2017-01-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance in the Arctic Ocean. During late spring and summer, the ponds determine sea ice albedo and how much solar radiation is transmitted into the upper ocean through the sea ice. The initial formation of ponds requires that melt water be retained above sea level on the ice surface. Both theory and observations, however, show that first year sea ice is so highly porous prior to the formation of melt ponds that multiday retention of water above hydraulic equilibrium should not be possible. Here we present results of percolation experiments that identify and directly demonstrate a mechanism allowing melt pond formation. The infiltration of fresh water into the pore structure of sea ice is responsible for blocking percolation pathways with ice, sealing the ice against water percolation, and allowing water to pool above sea level. We demonstrate that this mechanism is dependent on fresh water availability, known to be predominantly from snowmelt, and ice temperature at melt onset. We argue that the blockage process has the potential to exert significant control over interannual variability in ice albedo. Finally, we suggest that incorporating the mechanism into models would enhance their physical realism. Full treatment would be complex. We provide a simple temperature threshold-based scheme that may be used to incorporate percolation blockage behavior into existing model frameworks.

  5. Effects of indoor swimming pools on the nasal cytology of pool workers.

    PubMed

    Erkul, E; Yaz, A; Cıngı, C; İnançli, H M; San, T; Bal, C

    2014-05-01

    We aimed to evaluate the relationship between swimming pool pollutants and allergic rhinitis in swimming pool workers. Twenty-seven indoor pool workers (group 1) and 49 control subjects (group 2) were enrolled in the study. A skin prick test was performed and a nasal smear was obtained from each subject to evaluate rhinitis. When the groups were compared in terms of epithelial cells, group 1 had significantly more epithelial cells than group 2. When the groups were compared with regard to eosinophils, group 1 had significantly more eosinophils than group 2. The skin prick test results for both groups were not significantly different. Indoor pool workers showed severe symptoms of rhinitis and eosinophilic nasal cytology, likely due to chlorine. Nasal cytology is an easy-to-administer diagnostic test and can be used to follow up rhinitis in indoor pool workers, along with nasal endoscopy, a detailed clinical history and a skin prick test.

  6. Melting, solidification, remelting, and separation of glass and metal

    SciTech Connect

    Ebadian, M.A.; Xin, R.C.; Liu, Y.Z.

    1998-01-01

    Several high-temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to support these processes. This research project involves an experimental investigation of the melting, solidification, remelting, and separation of glass and metal and the development of an efficient separation technology. The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. This two-year project commenced in October 1995 (FY96). In the first fiscal year, the following tasks were accomplished: (1) A literature review and an assessment of the baseline glass and metal separation technologies were performed. The results indicated that the baseline technology yields a high percentage of glass in the metal phase, requiring further separation. (2) The main melting and solidification system setup was established. A number of melting and solidification tests were conducted. (3) Temperature distribution, solidification patterns, and flow field in the molten metal pool were simulated numerically for the solidification processes of molten aluminum and iron steel. (4) Initial designs of the laboratory-scale DCS and CS technologies were also completed. The principal demonstration separation units were constructed. (5) An application for a patent for an innovative liquid-liquid separation technology was submitted and is pending.

  7. Morphology and Melting Behavior of Polypropylenes

    NASA Astrophysics Data System (ADS)

    Alamo, R. G.; Mandelkern, L.

    1997-03-01

    The double melting of isothermally crystallized polypropylenes (metallocenes or Ziegler fractions) of a low defect content, is found to be associated with the presence of dominant (usually thicker) and daughter lamellae. A double population of lamellae thicknesses that adheres to the formulated epitaxial crystallization is seen by TEM even in samples crystallized at temperatures above 160 degC. Mixed and positive spherulites are also observed to grow linearly at these temperatures. During the melting process, positive or mixed spherulites show a well defined change to a negative character at a temperature corresponding to the low temperature endotherm in agreement with the melting of the daughter lamellae at this temperature. It is also found that the melting and stability of the dominant lamellae are influenced by the presence of epitaxial transversal lamellae. The kinetics of the melting process are investigated in relation to the initial morphology. Higher defected polypropylenes with a high concentration of gamma crystals do not show associated melting kinetics.

  8. 17 CFR 229.1105 - (Item 1105) Static pool information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false (Item 1105) Static pool....1105 (Item 1105) Static pool information. (a) For amortizing asset pools, unless the registrant determines that such information is not material: (1) Provide static pool information, to the extent...

  9. 17 CFR 229.1105 - (Item 1105) Static pool information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false (Item 1105) Static pool....1105 (Item 1105) Static pool information. (a) For amortizing asset pools, unless the registrant determines that such information is not material: (1) Provide static pool information, to the extent...

  10. 17 CFR 229.1105 - (Item 1105) Static pool information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false (Item 1105) Static pool....1105 (Item 1105) Static pool information. (a) For amortizing asset pools, unless the registrant determines that such information is not material: (1) Provide static pool information, to the extent...

  11. 17 CFR 229.1105 - (Item 1105) Static pool information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false (Item 1105) Static pool....1105 (Item 1105) Static pool information. (a) For amortizing asset pools, unless the registrant determines that such information is not material: (1) Provide static pool information, to the extent...

  12. 17 CFR 4.22 - Reporting to pool participants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... controls, is controlled by, or is under common control with, the pool operator of a pool in which the commodity pool has invested. (5) Where the pool is comprised of more than one ownership class or series... ownership class or series, information for the series or class on which the financial statements are...

  13. A Strategy for Optimizing Item-Pool Management

    ERIC Educational Resources Information Center

    Ariel, Adelaide; van der Linden, Wim J.; Veldkamp, Bernard P.

    2006-01-01

    Item-pool management requires a balancing act between the input of new items into the pool and the output of tests assembled from it. A strategy for optimizing item-pool management is presented that is based on the idea of a periodic update of an optimal blueprint for the item pool to tune item production to test assembly. A simulation study with…

  14. Rank-based pooling for deep convolutional neural networks.

    PubMed

    Shi, Zenglin; Ye, Yangdong; Wu, Yunpeng

    2016-11-01

    Pooling is a key mechanism in deep convolutional neural networks (CNNs) which helps to achieve translation invariance. Numerous studies, both empirically and theoretically, show that pooling consistently boosts the performance of the CNNs. The conventional pooling methods are operated on activation values. In this work, we alternatively propose rank-based pooling. It is derived from the observations that ranking list is invariant under changes of activation values in a pooling region, and thus rank-based pooling operation may achieve more robust performance. In addition, the reasonable usage of rank can avoid the scale problems encountered by value-based methods. The novel pooling mechanism can be regarded as an instance of weighted pooling where a weighted sum of activations is used to generate the pooling output. This pooling mechanism can also be realized as rank-based average pooling (RAP), rank-based weighted pooling (RWP) and rank-based stochastic pooling (RSP) according to different weighting strategies. As another major contribution, we present a novel criterion to analyze the discriminant ability of various pooling methods, which is heavily under-researched in machine learning and computer vision community. Experimental results on several image benchmarks show that rank-based pooling outperforms the existing pooling methods in classification performance. We further demonstrate better performance on CIFAR datasets by integrating RSP into Network-in-Network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Strategy for Optimizing Item-Pool Management

    ERIC Educational Resources Information Center

    Ariel, Adelaide; van der Linden, Wim J.; Veldkamp, Bernard P.

    2006-01-01

    Item-pool management requires a balancing act between the input of new items into the pool and the output of tests assembled from it. A strategy for optimizing item-pool management is presented that is based on the idea of a periodic update of an optimal blueprint for the item pool to tune item production to test assembly. A simulation study with…

  16. 13 CFR 120.1705 - Pool formation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Pool formation requirements. 120.1705 Section 120.1705 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS... roles. (d) When the Pool Originator does not own the Pool Loan. When a Pool Originator proposes to...

  17. 13 CFR 120.1705 - Pool formation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Pool formation requirements. 120.1705 Section 120.1705 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS... roles. (d) When the Pool Originator does not own the Pool Loan. When a Pool Originator proposes to...

  18. IPFR: Integrated Pool Fusion Reactor concept

    SciTech Connect

    Sze, D.K.

    1986-01-01

    The IPFR (Integrated Pool Fusion Reactor) concept is to place a fusion reactor into a pool of molten Flibe. The Flibe will serve the multiple functions of breeding, cooling, shielding, and moderating. Therefore, the only structural material between the superconducting magnets and the plasma is the first wall. The first wall is a stand-alone structure with no coolant connection and is cooled by Flibe at the atmospheric pressure. There is also no need of the primary coolant loop. The design is expected to improve the safety, reliability, and maintainability aspects of the fusion system.

  19. Analysis of the TRIGA Reactor Pool Water

    DTIC Science & Technology

    1993-08-01

    AD-A270 956 L11L1I~I1 11 11 :1Ji ili! August 1993 AFRRI 93-5 TECHNICAL REPORT Analysis of the TRIGA Reactor Pool Water L OCT 1 93 John Dickson Robert...COVER~ED I August 1993 Technical Report 4 TITLE AND SUBTITLE S.FNDN NUMBERS Analysis of the TRIGA Reactor Pool Water PE: NWED QAXM 6, AUTHOR(S) Dickson...AVAILABIIY STATEMENT 1 2b. DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT tMaxtm -um 200 words ) 14. SUBJECTTERMS 1S

  20. Surface melting on ice shelves and icebergs

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga V.

    Disintegration of Larsen Ice Shelf A and B, in 1995 and 2002, respectively, were preceded by two decades of extended summer melt seasons and by surface melt-water accumulation in ponds, surface crevasses and depressions produced by the elastic flexure of the ice. The extraordinary rapidity of ice-shelf fragmentation into large iceberg plumes following the appearance of surface melt water implies that the mechanical effects of surface melt water accumulation may represent an unforeseen process allowing abrupt, large-scale change of Antarctica's ice mass. The present study of surface melting and subsequent movement of melt water, both vertically (i.e., downward percolation into underlying firn) and horizontally (e.g., into crevasses and surface depressions created by ice-shelf flexure in response to both side boundary conditions and the melt-water load itself), is motivated by the need to further describe the energy, mass and momentum balances associated with ice shelves and their surrogates-large tabular icebergs-in the face of unprecedented changes in surface mass balance. The goal of this dissertation is to examine both the thermodynamic and mechanical aspects of surface melting on ice shelves and icebergs subject to sudden changes in climate conditions (e.g ., global warming). Thermodynamic aspects of the study include the development and application of surface energy balance models capable of describing the process of surface melting and subsequent vertical movement of melt water through a porous firn. Mechanical aspects of this study include the analysis of vertical melt-water flow, and more particularly, the elastic flexure response of the ice shelf or iceberg to the melt-water loads. Work presented here involves three methodologies, numerical modeling, field observation, and mathematical analysis (e.g., development of analytic solutions to simple, idealized ice-shelf flexure problems).

  1. Disequilibrium melt distributions during static recrystallisation

    NASA Astrophysics Data System (ADS)

    Walte, N. P.; Bons, P. D.; Passchier, C. W.; Koehn, D.; Arnold, J.

    2003-04-01

    DISEQUILIBRIUM MELT DISTRIBUTIONS DURING STATIC RECRYSTALLISATION N.P. Walte (1), P.D. Bons (2), C.W. Passchier (1), D. Koehn (1), J. Arnold (1) (1) Institute for Earth Sciences, Johannes Gutenberg-University, Mainz, Germany, (2) Institute for Earth Sciences, Eberhard Karls University, Tübingen, Germany (walte@mail.uni-mainz.de) The geometry of melt-filled pores in a partially molten rock strongly controls the permeability, rheology and initial segregation of melt. Current theory for monomineralic aggregates, using only the wetting angle and melt fraction as parameters, predicts a perfectly regular melt framework or equally shaped melt inclusions on grain boundary junctions. However, published melt-present high-temperature experiments with rock forming minerals such as quartz or olivine show considerable deviations from this predicted regular equilibrium melt geometry. Disequilibrium features, such as fully wetted grain boundaries, melt lenses, and large melt patches have been described, and were attributed to surface energy anisotropy of the minerals. This study used static analogue experiments with norcamphor plus ethanol liquid, that allow continuous in-situ observation of the evolving distribution of melt during static recrystallisation. The liquid-crystal surface energy of norcamphor is effectively isotropic. For the experiments an approximately 0.1 mm thin sample of norcamphor plus ethanole was placed between two glass plates and observed with a miroscope. Ethanol was used as a melt analogue because it allows to run experiments at room temperature, avoiding any temperature gradients. The wetting angle is approximately 15°, which is well below 60° and within the range reported for quartz and olivine plus melt experiments. The experiments show that all described disequilibrium features can form during fluid-enhanced static recrystallisation, especially where surrounding grains consume small, few-sided grains. These features are unstable and transient: a

  2. Melt inclusions in Luna 24 soil fragments

    NASA Technical Reports Server (NTRS)

    Roedder, W.; Weiblen, P. W.

    1978-01-01

    Optical examinations of 28 slides of Luna 24 soil fragments revealed melt inclusions in grains of olivine, plagioclase, spinel, and ilmenite as well as interstitial inclusions. In contrast with Apollo samples, the Luna 24 samples contain sulfide melt inclusions, which indicates that saturation with respect to an iron sulfide melt took place throughout much of the crystallization history, even while olivine was crystallizing. The Luna 24 silicate-melt inclusions have recorded a more extensive differentiation toward higher iron magmas than have the Apollo inclusions, but they have also recorded some inexplicably low aluminum values.

  3. Low Melt Height Solidification of Superalloys

    NASA Astrophysics Data System (ADS)

    Montakhab, Mehdi; Bacak, Mert; Balikci, Ercan

    2016-06-01

    Effect of a reduced melt height in the directional solidification of a superalloy has been investigated by two methods: vertical Bridgman (VB) and vertical Bridgman with a submerged baffle (VBSB). The latter is a relatively new technique and provides a reduced melt height ahead of the solidifying interface. A low melt height leads to a larger primary dendrite arm spacing but a lower mushy length, melt-back transition length, and porosity. The VBSB technique yields up to 38 pct reduction in the porosity. This may improve a component's mechanical strength especially in a creep-fatigue type dynamic loading.

  4. Water diffusion in a basaltic melt

    NASA Technical Reports Server (NTRS)

    Zhang, Youxue; Stolper, E. M.

    1991-01-01

    Measurements of water diffusivity in a basaltic liquid are reported. The concentration-dependent total water diffusivities in the basaltic melt at 1300-1500 C are 30-50 times as large as those in rhyolitic melts and are greater than the total CO2 diffusivity in basaltic melts, contrary to previous expectations. These results suggest that diffusive fractionation would increase the ratio of water to CO2 in growing bubbles relative to equilibrium partitioning and decrease the ratio in interface melts near an advancing anhydrous phenocryst.

  5. Melt inclusions in Luna 24 soil fragments

    NASA Technical Reports Server (NTRS)

    Roedder, W.; Weiblen, P. W.

    1978-01-01

    Optical examinations of 28 slides of Luna 24 soil fragments revealed melt inclusions in grains of olivine, plagioclase, spinel, and ilmenite as well as interstitial inclusions. In contrast with Apollo samples, the Luna 24 samples contain sulfide melt inclusions, which indicates that saturation with respect to an iron sulfide melt took place throughout much of the crystallization history, even while olivine was crystallizing. The Luna 24 silicate-melt inclusions have recorded a more extensive differentiation toward higher iron magmas than have the Apollo inclusions, but they have also recorded some inexplicably low aluminum values.

  6. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting.

    PubMed

    Hedberg, Yolanda S; Qian, Bin; Shen, Zhijian; Virtanen, Sannakaisa; Wallinder, Inger Odnevall

    2014-05-01

    Selective laser melting (SLM) is increasingly used for the fabrication of customized dental components made of metal alloys such as CoCrMo. The main aim of the present study is to elucidate the influence of the non-equilibrium microstructure obtained by SLM on corrosion susceptibility and extent of metal release (measure of biocompatibility). A multi-analytical approach has been employed by combining microscopic and bulk compositional tools with electrochemical techniques and chemical analyses of metals in biologically relevant fluids for three differently SLM fabricated CoCrMo alloys and one cast CoCrMo alloy used for comparison. Rapid cooling and strong temperature gradients during laser melting resulted in the formation of a fine cellular structure with cell boundaries enriched in Mo (Co depleted), and suppression of carbide precipitation and formation of a martensitic ɛ (hcp) phase at the surface. These features were shown to decrease the corrosion and metal release susceptibility of the SLM alloys compared with the cast alloy. Unique textures formed in the pattern of the melting pools of the three different laser melted CoCrMo alloys predominantly explain observed small, though significant, differences. The susceptibility for corrosion and metal release increased with an increased number (area) of laser melt pool boundaries. This study shows that integrative and interdisciplinary studies of microstructural characteristics, corrosion, and metal release are essential to assess and consider during the design and fabrication of CoCrMo dental components of optimal biocompatibility. The reason is that the extent of metal release from CoCrMo is dependent on fabrication procedures. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Melt Inclusions in SNC Meteorites as Indicators of Parental Melt on Mars

    NASA Astrophysics Data System (ADS)

    Stockstill, K. R.; Bodnar, R. J.; McSween, H. Y., Jr.; Lentz, R. C. F.

    2002-03-01

    Compositions of homogenized melt inclusions in SNC meteorites disagree with evolved compositions reported in other melt inclusions work. The compositions agree most closely with composition NK01 from Treiman and Goodrich (2001).

  8. Volume reduction of contaminated metal waste. [Sorting, size reduction, drip melting, induction melting

    SciTech Connect

    Copeland, G L; Heestand, R L

    1980-01-01

    A conceptual waste treatment plan comprises sorting the metal scrap into alloy types, size reduction of the scrap to fit in the melting equipment, further alloy segregation by sequentially raising the temperature of mixed scrap lots and allowing the low-melting alloys to drip-melt out, induction melting of the high-melting alloys, and casting all alloy type into ingots. Laboratory melts of various metals were made to compare the observed partitioning of uranium to the slag with thermodynamic calculations. An engineering-scale demonstration was also conducted in which typical metal scrap contaminated with UO/sub 2/ was processed by mechanical size reduction, drip melting, and induction melting. Results show decontamination was successful. 5 figures, 2 tables. (DLC)

  9. 24 CFR 320.9 - Pool administration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Pool administration. 320.9 Section 320.9 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) GOVERNMENT NATIONAL MORTGAGE ASSOCIATION, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT GUARANTY OF...

  10. [Nursing] Test Pool Questions. Area II.

    ERIC Educational Resources Information Center

    Watkins, Nettie; Patton, Bob

    This manual consists of area 2 test pool questions which are designed to assist instructors in selecting appropriate questions to help prepare practical nursing students for the Oklahoma state board exam. Multiple choice questions are utilized to facilitate testing of nursing 2 curriculum objectives. Each test contains questions covering each…

  11. [Nursing] Test Pool Questions. Area I.

    ERIC Educational Resources Information Center

    Watkins, Nettie; Patton, Bob

    This manual consists of area 1 test pool questions which are designed to assist instructors in selecting appropriate questions to help prepare practical nursing students for the Oklahoma state board exam. Multiple choice questions are utilized to facilitate testing of nursing 1 curriculum objectives. Each test contains questions covering each…

  12. Transferring Goods or Splitting a Resource Pool

    ERIC Educational Resources Information Center

    Dijkstra, Jacob; Van Assen, Marcel A. L. M.

    2008-01-01

    We investigated the consequences for exchange outcomes of the violation of an assumption underlying most social psychological research on exchange. This assumption is that the negotiated direct exchange of commodities between two actors (pure exchange) can be validly represented as two actors splitting a fixed pool of resources (split pool…

  13. The Pool with the Movable Bottom

    ERIC Educational Resources Information Center

    American School and University, 1977

    1977-01-01

    A major diagnostic, therapeutic, educational, and training center for the handicapped has under construction a swimming pool with a floor that will rise to deck level to enable handicapped persons to roll their wheel chairs on and then float free as the floor is lowered. (Author/MLF)

  14. Women in Elite Pools and Elite Positions.

    ERIC Educational Resources Information Center

    Ward, Patricia A.; And Others

    1992-01-01

    Uses characteristic education, occupation, and job experience credentials of current elites in U.S. institutions to approximate the proportion of women in the pool of potential elites. Includes breakdowns for law, Ph.D. programs, managers, accountants, and M.B.A.s. Concludes that women's representation in elite positions is consistent with their…

  15. [Nursing] Test Pool Questions. Area II.

    ERIC Educational Resources Information Center

    Watkins, Nettie; Patton, Bob

    This manual consists of area 2 test pool questions which are designed to assist instructors in selecting appropriate questions to help prepare practical nursing students for the Oklahoma state board exam. Multiple choice questions are utilized to facilitate testing of nursing 2 curriculum objectives. Each test contains questions covering each…

  16. Swimming Pools, Hot Rods, and Qualitative Analysis.

    ERIC Educational Resources Information Center

    Clyde, Dale D.

    1988-01-01

    Describes some reactions for the identification and application of cyanuric acid. Suggests students may find this applied chemistry interesting because of the use of cyanuric acid in swimming pools and diesel engines. Lists three tests for cyanate ion and two tests for cyanuric acid. (MVL)

  17. The Pool Is Not Just for Swimming

    ERIC Educational Resources Information Center

    Metzker, Andrea

    2004-01-01

    Participating in water fitness workouts is one way to benefit one's health at very little cost. If the pool at a school is used only for swimming, then the benefits of having one barely causes a ripple. When the properties of water and how humans react to water are understood and applied to water activity programs, health benefits and enjoyment…

  18. 28 CFR 540.64 - Press pools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PERSONS IN THE COMMUNITY Contact With News Media § 540.64 Press pools. (a) The Warden may establish a... national and international news services; (2) The television and radio networks and outlets; (3) The news magazines and newspapers; and (4) All media in the local community where the institution is located. If no...

  19. 28 CFR 540.64 - Press pools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PERSONS IN THE COMMUNITY Contact With News Media § 540.64 Press pools. (a) The Warden may establish a... national and international news services; (2) The television and radio networks and outlets; (3) The news magazines and newspapers; and (4) All media in the local community where the institution is located. If no...

  20. The Pool Is Not Just for Swimming

    ERIC Educational Resources Information Center

    Metzker, Andrea

    2004-01-01

    Participating in water fitness workouts is one way to benefit one's health at very little cost. If the pool at a school is used only for swimming, then the benefits of having one barely causes a ripple. When the properties of water and how humans react to water are understood and applied to water activity programs, health benefits and enjoyment…

  1. Pool boiling inversion through bubble induced macroconvection

    NASA Astrophysics Data System (ADS)

    Jaikumar, A.; Kandlikar, S. G.

    2017-02-01

    While numerous surface geometries have been explored to achieve enhancements in pool boiling critical heat flux and heat transfer coefficient (HTC), their mechanistic contributions towards the characteristics of the pool boiling curve are not clear. Recently reported pool boiling curves in literature have shown a trend where an increase in heat flux leads to a decrease in wall superheat. Consequently, a negative slope in the pool boiling curve accompanied by a sharp increase in HTC, termed here as boiling inversion, is observed. We demonstrate that this inversion is due to vapor stream induced reinforcement of an impinging liquid jet over the non-boiling regions. This behavior is characteristic of surfaces developed using separate liquid-vapor pathways and macroconvection enhancement mechanism resulting in a highly efficient self-sustained boiling configuration. The increased jet impingement velocities lead to higher HTCs with lower wall superheats. The analytical models available in literature are employed to quantitatively explain this trend. Furthermore, a self-adjusting boiling mechanism is seen at play wherein a reduction in nucleation activity due to lowering of wall superheat counters the increase in HTC induced by the macroconvective currents.

  2. Increasing Accessibility by Pooling Digital Resources

    ERIC Educational Resources Information Center

    Cushion, Steve

    2004-01-01

    There are now many CALL authoring packages that can create interactive websites and a large number of language teachers are writing materials for the whole range of such packages. Currently, each product stores its data in different formats thus hindering interoperability, pooling of digital resources and moving between software packages based in…

  3. Contractor's case study: the Petaluma pool

    SciTech Connect

    Livingston, J.

    1983-11-01

    The design of a solar heating system for a swim center is discussed. The heating system for the 12,000 ft/sup 2/ municipal pool employs a massive array of solar collectors along with the necessary piping, pumps, and sensors.

  4. Women in Elite Pools and Elite Positions.

    ERIC Educational Resources Information Center

    Ward, Patricia A.; And Others

    1992-01-01

    Uses characteristic education, occupation, and job experience credentials of current elites in U.S. institutions to approximate the proportion of women in the pool of potential elites. Includes breakdowns for law, Ph.D. programs, managers, accountants, and M.B.A.s. Concludes that women's representation in elite positions is consistent with their…

  5. Swimming Pools, Hot Rods, and Qualitative Analysis.

    ERIC Educational Resources Information Center

    Clyde, Dale D.

    1988-01-01

    Describes some reactions for the identification and application of cyanuric acid. Suggests students may find this applied chemistry interesting because of the use of cyanuric acid in swimming pools and diesel engines. Lists three tests for cyanate ion and two tests for cyanuric acid. (MVL)

  6. Contour Mapping for Pools and Ponds.

    ERIC Educational Resources Information Center

    Berry, Noel

    1985-01-01

    Simple jigs (positioning devices) to make contour mapping tasks easier and more accurate are easily constructed from 5mm-thick acetate sheets. These plastic holders are used with meter sticks to provide scanning guides to measure pools and ponds. Instructions for making the jigs and sample results are included. (DH)

  7. Transferring Goods or Splitting a Resource Pool

    ERIC Educational Resources Information Center

    Dijkstra, Jacob; Van Assen, Marcel A. L. M.

    2008-01-01

    We investigated the consequences for exchange outcomes of the violation of an assumption underlying most social psychological research on exchange. This assumption is that the negotiated direct exchange of commodities between two actors (pure exchange) can be validly represented as two actors splitting a fixed pool of resources (split pool…

  8. 28 CFR 540.64 - Press pools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PERSONS IN THE COMMUNITY Contact With News Media § 540.64 Press pools. (a) The Warden may establish a... shall notify all news media representatives who have requested interviews or visits that have not been... national and international news services; (2) The television and radio networks and outlets; (3) The news...

  9. 28 CFR 540.64 - Press pools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PERSONS IN THE COMMUNITY Contact With News Media § 540.64 Press pools. (a) The Warden may establish a... shall notify all news media representatives who have requested interviews or visits that have not been... national and international news services; (2) The television and radio networks and outlets; (3) The news...

  10. 28 CFR 540.64 - Press pools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PERSONS IN THE COMMUNITY Contact With News Media § 540.64 Press pools. (a) The Warden may establish a... shall notify all news media representatives who have requested interviews or visits that have not been... national and international news services; (2) The television and radio networks and outlets; (3) The news...

  11. Increasing Accessibility by Pooling Digital Resources

    ERIC Educational Resources Information Center

    Cushion, Steve

    2004-01-01

    There are now many CALL authoring packages that can create interactive websites and a large number of language teachers are writing materials for the whole range of such packages. Currently, each product stores its data in different formats thus hindering interoperability, pooling of digital resources and moving between software packages based in…

  12. Weld pool oscillation during pulsed GTA welding

    SciTech Connect

    Aendenroomer, A.J.R.; Ouden, G. den

    1996-12-31

    This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Under these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.

  13. 24 CFR 320.9 - Pool administration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) GOVERNMENT NATIONAL MORTGAGE ASSOCIATION, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT GUARANTY OF MORTGAGE-BACKED SECURITIES Pass-Through Type Securities § 320.9 Pool administration. The Association will only guarantee securities if the issuer executes a guaranty agreement or contractual agreement in the form...

  14. Surface melting of electronic order.

    SciTech Connect

    Wilkins, S. B.; Liu, X.; Wakabayashi, Y.; Kim, J.-W.; Ryan, P. J.; Mitchell, J. F.; Hill, J. P.

    2011-01-01

    We report temperature-dependent surface x-ray scattering studies of the orbital ordered surface in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. We find that as the bulk ordering temperature is approached from below the thickness of the interface between the electronically ordered and electronically disordered regions at the surface grows, though the bulk correlation length remains unchanged. Close to the transition, the surface is so rough that there is no well-defined electronic surface, despite the presence of bulk electronic order. That is, the electronic ordering at the surface has melted. Above the bulk transition, long-range ordering in the bulk is destroyed but finite-sized isotropic fluctuations persist, with a correlation length roughly equal to that of the low-temperature in-plane surface correlation length.

  15. Structure of a bottlebrush melt

    NASA Astrophysics Data System (ADS)

    Paturej, Jaroslaw; Sheiko, Sergei; Panyukov, Sergey; Rubinstein, Michael

    2014-03-01

    A bottlebrush polymer is a branched macromolecule composed of a linear chain (backbone) with side chains densely tethered to it. High grafting density of side chains gives rise to various unique structural properties, such as highly extended conformations of their backbones and tunable character of their stiffness and rheological properties with degree of polymerization of the side chains. We conducted coarse-grained molecular dynamics simulations to determine how the number of Kuhn segments in a bottlebrush backbone L and in the side chains N affect size, stiffness, and structure of these molecules. We found that the size (root-mean-squared radius of gyration and end-to-end distance) and persistence length of bottlebrushes in a melt state scales as N 1 / 2.

  16. M551 metals melting experiment

    NASA Technical Reports Server (NTRS)

    Busch, G.

    1977-01-01

    Electron beam welding studies were conducted in the Skylab M551 metals melting experiment, on three different materials; namely 2219-T87 aluminum alloy, 304L stainless steel, and commercially pure tantalum (0.5 wt % columbium). Welds were made in both one gravity and zero gravity (Skylab) environments. Segments from each of the welds were investigated by microhardness, optical microscopy, scanning microscopy, and electron probe techniques. In the 2219-T87 aluminum alloy samples, macroscopic banding and the presence of an eutectic phase in the grain boundaries of the heat affected zone were observed. The stainless steel samples exhibited a sharp weld interface and macroscopic bands. The primary microstructural features found in the tantalum were the presence of either columnar grains (ground base) or equiaxed grains (Skylab). The factors contributing to these effects are discussed and the role of reduced gravity in welding is considered.

  17. Electrolysis of simulated lunar melts

    NASA Technical Reports Server (NTRS)

    Lewis, R. H.; Lindstrom, D. J.; Haskin, L. A.

    1985-01-01

    Electrolysis of molten lunar soil or rock is examined as an attractive means of wresting useful raw materials from lunar rocks. It requires only hat to melt the soil or rock and electricity to electrolyze it, and both can be developed from solar power. The conductivities of the simple silicate diopside, Mg CaSi2O6 were measured. Iron oxide was added to determine the effect on conductivity. The iron brought about substantial electronic conduction. The conductivities of simulated lunar lavas were measured. The simulated basalt had an AC conductivity nearly a fctor of two higher than that of diopside, reflecting the basalt's slightly higher total concentration of the 2+ ions Ca, Mg, and Fe that are the dominant charge carriers. Electrolysis was shown to be about 30% efficient for the basalt composition.

  18. Transition metals in superheat melts

    NASA Technical Reports Server (NTRS)

    Jakes, Petr; Wolfbauer, Michael-Patrick

    1993-01-01

    A series of experiments with silicate melts doped with transition element oxides was carried out at atmospheric pressures of inert gas at temperatures exceeding liquidus. As predicted from the shape of fO2 buffer curves in T-fO2 diagrams the reducing conditions for a particular oxide-metal pair can be achieved through the T increase if the released oxygen is continuously removed. Experimental studies suggest that transition metals such as Cr or V behave as siderophile elements at temperatures exceeding liquidus temperatures if the system is not buffered by the presence of other oxide of more siderophile element. For example the presence of FeO prevents the reduction of Cr2O3. The sequence of decreasing siderophility of transition elements at superheat conditions (Mo, Ni, Fe, Cr) matches the decreasing degree of depletion of siderophile elements in mantle rocks as compared to chondrites.

  19. Generalizing Pooling Functions in CNNs: Mixed, Gated, and Tree.

    PubMed

    Lee, Chen-Yu; Gallagher, Patrick; Tu, Zhuowen

    2017-05-12

    In this paper, we seek to improve deep neural networks by generalizing the pooling operations that play a central role in the current architectures. We pursue a careful exploration of approaches to allow pooling to learn and to adapt to complex and variable patterns. The two primary directions lie in: (1) learning a pooling function via (two strategies of) combining of max and average pooling, and (2) learning a pooling function in the form of a tree-structured fusion of pooling filters that are themselves learned. In our experiments every generalized pooling operation we explore improves performance when used in place of average or max pooling. We experimentally demonstrate that the proposed pooling operations provide a boost in invariance properties relative to conventional pooling and set the state of the art on several widely adopted benchmark datasets. These benefits come with only a light increase in computational overhead during training (ranging from additional 5% to 15% in time complexity) and a very modest increase in the number of model parameters (e.g. additional 1, 9, and 27 parameters for mixed, gated, and 2-level tree pooling operators, respectively). To gain more insights about our proposed pooling methods, we also visualize the learned pooling masks and the embeddings of the internal feature responses for different pooling operations. Our proposed pooling operations are easy to implement and can be applied within various deep neural network architectures.

  20. Water loss from olivine hosted melt inclusions

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Provost, A.; Schiano, P.; Cluzel, N.

    2009-12-01

    Water content in melt inclusions has long been used as an important index for the water content of the hosting magma. However, many studies have shown that post-entrapment diffusive re-equilibration can affect the water content of melt inclusions. This process must be considered when using melt inclusions to infer water content of the hosting magma. Theoretical model on the diffusive re-equilibration between melt inclusions and external melts showed that the re-equilibration rate depends on the diffusivity of the re-equilibrating species in the host mineral, the partition coefficient of this species between the host mineral and melt, and the geometry of the melt inclusion and host mineral. The water diffusivity in olivine and water partition coefficient between melt and olivine have been measured by recent studies, therefore the diffusive re-equilibration model can be tested by experiments. In this study, we carried out in-situ Fourier transform infrared spectroscopy (FTIR) measurements on the water content of olivine hosted melt inclusions at high temperatures. Initial water content of the melt inclusions is about 4 wt%. A heating stage system is combined with a microscope FTIR and the absorption spectrum through the olivine and melt inclusion is repeatedly measured. Although the absorption band at around 3540 cm-1 has not be calibrated at high temperatures, it is assumed that the absorbance is linearly related to the total water concentration in the melt inclusion, and the relative water content can be inferred. Cautions have been exercised to maintain a consistent measurement spot such that the thickness of the melt inclusion within the beam path did not change significantly during each experiment. Oxygen fugacity in the heating stage is controlled by Zr purified Ar gas to be about 7 logarithm units below the QFM buffer and about 1 logarithm unit above the QIF buffer at 1473 K. Preliminary results showed that at 1430 and 1581 K, the total water content of the

  1. Do Melt Inclusions Answer Big Questions?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Sobolev, A. V.

    2009-12-01

    In a pioneering paper, Sobolev and Shimizu (1993) demonstrated the existence of ultra-depleted melt inclusions in olivine phenocrysts in MORB. They interpreted these as evidence for the preservation of parental melts formed by progressive near-fractional melting. Subsequently many cases have been described where melt inclusions from single basalt samples display enormous chemical and isotopic heterogeneity. The interpretation of these observations hinges critically on whether such melt inclusions can faithfully preserve primary or parental melt composition. If they do, melt inclusion data can truly answer big questions from small-scale observations. If they do not, they answer rather small questions. Favoring the second possibility, Danyushevsky et al. (2004) have suggested that much of the observed variability of highly incompatible trace elements in melt inclusions “may not represent geologically significant melts, but instead reflect localized, grain-scale reaction processes within the magmatic plumbing system.” We disagree and show that this mechanism cannot, for example, explain isotopic heterogeneity measured in several suites of melt inclusions, nor does it not account for the presence of ultra-depleted melts and "ghost" plagioclase signatures in other inclusions. More recently, Spandler et al. (2007) have suggested on the basis of experimental evidence that diffusion rates for REE in olivine are so rapid that parental melt compositions in melt inclusions are rapidly falsified by diffusional exchange with (evolved) host lava. We show that the very fact that extreme chemical and isotopic heterogeneities are routinely preserved in melt inclusions demonstrates that this conclusion is unwarranted, either because residence times of the olivine phenocrysts are much shorter than assumed by Spandler et al. or because the high experimental diffusion rates are caused by an unknown experimental artifact. Although there is no obvious flaw in design and execution of

  2. Study on weld pool behaviors and ripple formation in dissimilar welding under pulsed laser

    NASA Astrophysics Data System (ADS)

    Liang, Rong; Luo, Yu

    2017-08-01

    A three-transient numerical model is developed to study the dissimilar metal welding under pulsed laser. The melting, resolidification and vaporization inducing recoil pressure are considered in this model. Their effects on molten pool dynamic and the weld bead formation are studied. The similar metal welding and dissimilar metal welding under pulsed laser are respectively simulated by using this model. It is found that surface ripples are caused mainly by the periodical laser and molten pool solidification. In the first, this model is validated by the weld bead geometry comparison between the simulated and experimental results in similar metal welding. Then, this model is applied to simulate the dissimilar metal welding under pulsed laser. The results show that the distributions of the temperature, melt-flow velocity and surface ripples are asymmetric due to the differences in physical properties of the materials. The higher pulse overlapping factor decreases the solidification rate, leading to the more uniform penetration depths and the finer ripples. Good agreements between the experimental observations and simulation results are obtained by the proposed model.

  3. Suncatcher and cool pool. Project report

    SciTech Connect

    Hammond, J.

    1981-03-01

    The Suncatcher is a simple, conical solar concentrating device that captures light entering clerestory windows and directs it onto thermal storage elements at the back of a south facing living space. The cone shape and inclination are designed to capture low angle winter sunlight and to reflect away higher angle summer sunlight. It is found that winter radiation through a Suncatcher window is 40 to 50% higher than through an ordinary window, and that the average solar fraction is 59%. Water-filled steal culvert pipes used for thermal storage are found to undergo less stratification, and thus to be more effective, when located where sunlight strikes the bottom rather than the top. Five Suncatcher buildings are described. Designs are considered for 32/sup 0/, 40/sup 0/ and 48/sup 0/ north latitude, and as the latitude increases, the inclination angle of the cone should be lowered. The Cool Pool is an evaporating, shaded roof pond which thermosiphons cool water into water-filled columns within a building. Preliminary experiments indicate that the best shade design has unimpeded north sky view, good ventilation, complete summer shading, a low architectural profile, and low cost attic vent lowers work. Another series of experiments established the satisfactory performance of the Cool Pool on a test building using four water-filled cylinders, two cylinders, and two cylinders connected to the Cool Pool through a heat exchanger. Although an unshaded pool cools better at night than a shaded one, daytime heat gain far offsets this advantage. A vinyl waterbag heat exchanger was developed for use with the Cool Pool. (LEW)

  4. Analysis of metabolic pools in broilers chicks.

    PubMed

    Sartori, Maria Márcia Pereira; Denadai, Juliana Célia; Sartori, José Roberto; Campos, Daniel; Macari, Marcos; Pezzato, Antônio Celso; Ducatti, Carlos

    2015-01-01

    This paper shows the possibility of obtaining new parameters for the mathematical modelling of data on stable isotopes in biological systems and its application in obtaining data on metabolic pools of blood plasma, blood serum, liver and muscle of broilers. This theory states that the modelling of turnover used for studies of isotopic incorporation when the metabolism has a single metabolic pool is feasible by the technique of setting an exponential. However, when the metabolism has more than one metabolic pool, it is necessary to apply the linearization technique, linear regression adjustment and evaluation of the assumptions of regression to obtain the kinetic parameters such as half-life (T1/2) and isotope exchange rate (k). The application of this technique on carbon-13 data from 100 one-day-old chicks, with the change of diet composed of grains of the photosynthetic cycle of plants from C4 to C3, in broilers has enabled the discovery that the liver, blood plasma and blood serum have a single metabolic pool; however, the pectoral muscle has two metabolic pools. For the liver, blood plasma and blood serum, the half-life values were found by the exponential fit being T1/2 = 1.4 days with the rate of exchange of k = 0.502, T1/2 = 2.4 days with k = 0.293 and T1/2 = 2.0 days with k = 0.348, respectively. For the pectoral muscle, after linearization, the half-life values were found for T1/2(1) = 1.7 and T1/2(2) = 3 days, with exchange rates of k1 = 0.405 and k2 = 0.235, representing approximately 66 and 34%, respectively.

  5. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, C.; Enfield, D. B.

    2002-12-01

    The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.

  6. A benchmark initiative on mantle convection with melting and melt segregation

    NASA Astrophysics Data System (ADS)

    Schmeling, Harro; Dannberg, Juliane; Dohmen, Janik; Kalousova, Klara; Maurice, Maxim; Noack, Lena; Plesa, Ana; Soucek, Ondrej; Spiegelman, Marc; Thieulot, Cedric; Tosi, Nicola; Wallner, Herbert

    2016-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we carry out a benchmark comparison. The reference model is taken from the mantle convection benchmark, cases 1a to 1c (Blankenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and Rayleigh numbers of 104 to 10^6. Melting is modelled using a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) five cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 is identical to case 1 except that latent heat is switched on. Case 3 includes batch melting, melt buoyancy (melt Rayleigh number Rm) and depletion buoyancy, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms), the maximum and the total melt volume and qm approaching a statistical steady state. Case 4 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases are carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. For cases 1 - 3 very good agreement

  7. Summer Melts Immigrant Students' College Plans

    ERIC Educational Resources Information Center

    Naranjo, Melissa M.; Pang, Valerie Ooka; Alvarado, Jose Luis

    2016-01-01

    Many college-intending students find themselves dealing with the undermatch and summer melt phenomena. Undermatch refers to the situation where academically-successful high-school graduates choose not to go to any college or to go to a local community college not commensurate with their academic achievements. Summer melt describes how students may…

  8. Summer Melts Immigrant Students' College Plans

    ERIC Educational Resources Information Center

    Naranjo, Melissa M.; Pang, Valerie Ooka; Alvarado, Jose Luis

    2016-01-01

    Many college-intending students find themselves dealing with the undermatch and summer melt phenomena. Undermatch refers to the situation where academically-successful high-school graduates choose not to go to any college or to go to a local community college not commensurate with their academic achievements. Summer melt describes how students may…

  9. Oceanic slab melting and mantle metasomatism.

    PubMed

    Scaillet, B; Prouteau, G

    2001-01-01

    Modern plate tectonic brings down oceanic crust along subduction zones where it either dehydrates or melts. Those hydrous fluids or melts migrate into the overlying mantle wedge trigerring its melting which produces arc magmas and thus additional continental crust. Nowadays, melting seems to be restricted to cases of young (< 50 Ma) subducted plates. Slab melts are silicic and strongly sodic (trondhjemitic). They are produced at low temperatures (< 1000 degrees C) and under water excess conditions. Their interaction with mantle peridotite produces hydrous metasomatic phases such as amphibole and phlogopite that can be more or less sodium rich. Upon interaction the slab melt becomes less silicic (dacitic to andesitic), and Mg, Ni and Cr richer. Virtually all exposed slab melts display geochemical evidence of ingestion of mantle material. Modern slab melts are thus unlike Archean Trondhjemite-Tonalite-Granodiorite rocks (TTG), which suggests that both types of magmas were generated via different petrogenetic pathways which may imply an Archean tectonic model of crust production different from that of the present-day, subduction-related, one.

  10. Purification of tantalum by plasma arc melting

    DOEpatents

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  11. Melt Process, Flux Pinning and Levitation

    NASA Astrophysics Data System (ADS)

    Murakami, M.

    The following sections are included: * INTRODUCTION * MELT PROCESSING FOR HIGH Jc * Texturing by melt process * Melt Textured Growth Process * Phase diagram * Modified MTG process * Quench and melt growth (QMG) process and Melt-Powder-Melt-Growth (MPMG)process * Outline of the MPMG process * Powder control for melt growth * Effect of Pt addition * Grain growth * Beneficial points of the MPMG process * Modified MPMG process * Seeding * CRITICAL CURRENT AND FLUX PINNING * Pinning mechanism * Introduction * Elementary pinning interaction * Anisotropy * Bulk pinning force * Flux pinning sites in melt processed Y-Ba-Cu-O * Twin planes * Stacking faults * Oxygen defects * Cracks * Dislocations * Pinning due to Y2BaCuO5 inclusion * Introduction * Comparison of Jc * The size of the pinning center * 211/123 Interface * The bulk pinning force and Jc * Scaling law * Direct observations * LEVITATION * Introduction * Force between a superconductor and a magnet * Magnetic force * Effect of microstructure on the levitation force * Magnetization and the repulsive/attractive force * APPLICATION * Introduction * Levitation * Physics experiment * Lunar telescope * Display * Suspension * Transport system on a guide rail * Transport system without magnetic guide rail * Rotation device * Magnetic bearing * Flywheel system using bulk superconductors * Application of flux trapping * SUMMARY AND PROSPECTS * Appendix I * Appendix II * Appendix III * Acknowledgements * References

  12. Shock-induced melting and rapid solidification

    SciTech Connect

    Nellis, W.J.; Gourdin, W.H.; Maple, M.B.

    1987-08-01

    Model calculations are presented to estimate that approx.50 GPa is required to completely shock melt metal powders with quenching at rates up to 10/sup 8/ K/s. Experiments are discussed for powders of a Cu-Zr alloy compacted in the usual way at 16 GPa and melted by shocking to 60 GPa. 12 refs.

  13. Stabilizing Crystal Oscillators With Melting Metals

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Miller, C. G.

    1984-01-01

    Heat of fusion provides extended period of constant temperature and frequency. Crystal surrounded by metal in spherical container. As outside temperature rises to melting point of metal, metal starts to liquefy; but temperature stays at melting point until no solid metal remains. Potential terrestrial applications include low-power environmental telemetering transmitters and instrumentation transmitters for industrial processes.

  14. Melt dumping in string stabilized ribbon growth

    DOEpatents

    Sachs, Emanuel M.

    1986-12-09

    A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.

  15. Recent Changes in the Arctic Melt Season

    NASA Technical Reports Server (NTRS)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  16. Purification of Niobium by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Sankar, M.; Mirji, K. V.; Prasad, V. V. Satya; Baligidad, R. G.; Gokhale, A. A.

    2016-06-01

    Pure niobium metal, produced by alumino-thermic reduction of niobium oxide, contains various impurities which need to be reduced to acceptable levels to obtain aerospace grade purity. In the present work, an attempt has been made to refine niobium metals by electron beam drip melting technique to achieve purity confirming to the ASTM standard. Input power to the electron gun and melt rate were varied to observe their combined effect on extend of refining and loss of niobium. Electron beam (EB) melting is shown to reduce alkali metals, trace elements and interstitial impurities well below the specified limits. The reduction in the impurities during EB melting is attributed to evaporation and degassing due to the combined effect of high vacuum and high melt surface temperature. The % removal of interstitial impurities is essentially a function of melt rate and input power. As the melt rate decreases or input power increases, the impurity levels in the solidified niobium ingot decrease. The EB refining process is also accompanied by considerable amount of niobium loss, which is attributed to evaporation of pure niobium and niobium sub-oxide. Like other impurities, Nb loss increases with decreasing melt rate or increase in input power.

  17. Effect of solvent on melting gel behavior

    NASA Astrophysics Data System (ADS)

    Degnah, Ahmed Abdulaziz

    Melting gel and hybrid glass are organic-inorganic materials derived from sol gel processing. The behavior of the melting gel is that it is a solid at room temperature, but when the melting gel is reheated to 110°C (T1) it becomes fluid. The melting gel has reversible behavior due to incomplete crosslinking between polysiloxane chains. When the melting gel is heated to its consolidation temperature of 150°C (T2) the gel no longer softens (T2>T1), because crosslinking is completed. The melting gel at the consolidation temperature becomes hybrid glass. Melting gel coatings were applied to titanium alloy substrates. Melting gels were prepared containing phenyl substitutions with 1.0 mole Phenyltrimethoxysilane (PhTMS) in ratio to 0.25 moles of Diphenyldimethoxysilane (DPhDMS). The methanol to DPhDMS ratio was varied to change the thickness of the coatings. The coatings were inspected visually to see that there is good adhesion between the coating and the substrate. Nanoindenter tests were performed to determine hardness. The coated samples were placed in an oven and heated to 150ºC for 24, 48 or 96 hours before cooling back to room temperature, which took about 4 hours. The measurements of the hardness on samples containing 3 levels of solvent and heat treatment were collected by indentation technique. The best combination of solvent and temperature was 1:8 PhTMS:MeOH for all temperatures.

  18. Natural melting within a spherical shell

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    1990-01-01

    Fundamental heat transfer experiments were performed on the melting of a phase change medium in a spherical shell. Free expansion of the medium into a void space within the sphere was permitted. A step function temperature jump on the outer shell wall was imposed and the timewise evolution of the melting process and the position of the solid-liquid interface was photographically recorded. Numerical integration of the interface position data yielded information about the melted mass and the energy of melting. It was found that the rate of melting and the heat transfer were significantly affected by the movement of the solid medium to the base of the sphere due to gravity. The energy transfer associated with melting was substantially higher than that predicted by the conduction model. Furthermore, the radio of the measured values of sensible energy in the liquid melt to the energy of melting were nearly proportional to the Stefan number. The experimental results are in agreement with a theory set forth in an earlier paper.

  19. Mechanism of surface morphology in electron beam melting of Ti6Al4V based on computational flow patterns

    NASA Astrophysics Data System (ADS)

    Ge, Wenjun; Han, Sangwoo; Fang, Yuchao; Cheon, Jason; Na, Suck Joo

    2017-10-01

    In this study, a 3D numerical model was proposed that uses the computational fluid dynamics (CFD) method to investigate molten pool formation in electron beam melting under different process parameters. Electron beam ray tracking was used to determine energy deposition in the powder bed model. The melt tracks obtained in this study can be divided into three categories: a balling pattern, distortion pattern and straight pattern. The 3D mesoscale model revealed that it is possible to obtain different molten pool temperature distributions, flow patterns and top surface morphologies using different process parameters. Detailed analysis was performed on the formation mechanism of both the balling defect and distortion pattern. The simulation results of the top surface morphology were also compared with experimental results and showed good agreement.

  20. Metallic Recovery and Ferrous Melting Processes

    SciTech Connect

    Luis Trueba

    2004-05-30

    The effects of melting atmosphere and charge material type on the metallic and alloy recovery of ferrous charge materials were investigated in two sets of experiments (Tasks 1 and 2). In addition, thermodynamic studies were performed (Task 3) to determine the suitability of ladle treatment for the production of ductile iron using scrap charge materials high in manganese and sulfur. Task 1--In the first set of experiments, the charge materials investigated were thin steel scrap, thick steel scrap, cast iron scrap, and pig iron in the rusty and clean states. Melting atmospheres in this set of experiments were varied by melting with and without a furnace cover. In this study, it was found that neither covered melting nor melting clean (non-rusty) ferrous charge materials improved the metallic recovery over the recovery experienced with uncovered melting or rusty charge materials. However, the silicon and manganese recoveries were greater with covered melting and clean materials. Silicon and manganese in the molten iron react with oxygen dissolved in the iron from uncovered melting and oxidized iron (surface rust). Silica and manganese silicates are formed which float to the slag decreasing recoveries of silicon and manganese. Cast iron and pig iron had higher metallic recoveries than steel scrap. Carbon recovery was affected by the carbon content of the charge materials, and not by the melting conditions. Irons with higher silicon contents had higher silicon recovery than irons with lower silicon contents. Task 2--In the second set of experiments, briquetted turnings and borings were used to evaluate the effects of briquette cleanliness, carbon additions, and melting atmosphere on metallic and alloy recovery. The melting atmosphere in this set of experiments was varied by melting in air and with an argon atmosphere using the SPAL process. In this set of experiments, carbon additions to the briquettes were found to have the greatest effect on metallic and alloy