Sample records for melt quenching method

  1. Determination of the liquidus temperature of tin using the heat pulse-based melting and comparison with traditional methods

    NASA Astrophysics Data System (ADS)

    Joung, Wukchul; Park, Jihye; Pearce, Jonathan V.

    2018-06-01

    In this work, the liquidus temperature of tin was determined by melting the sample using the pressure-controlled loop heat pipe. Square wave-type pressure steps generated periodic 0.7 °C temperature steps in the isothermal region in the vicinity of the tin sample, and the tin was melted with controllable heat pulses from the generated temperature changes. The melting temperatures at specific melted fractions were measured, and they were extrapolated to the melted fraction of unity to determine the liquidus temperature of tin. To investigate the influence of the impurity distribution on the melting behavior, a molten tin sample was solidified by an outward slow freezing or by quenching to segregate the impurities inside the sample with concentrations increasing outwards or to spread the impurities uniformly, respectively. The measured melting temperatures followed the local solidus temperature variations well in the case of the segregated sample and stayed near the solidus temperature in the quenched sample due to the microscopic melting behavior. The extrapolated melting temperatures of the segregated and quenched samples were 0.95 mK and 0.49 mK higher than the outside-nucleated freezing temperature of tin (with uncertainties of 0.15 mK and 0.16 mK, at approximately 95% level of confidence), respectively. The extrapolated melting temperature of the segregated sample was supposed to be a closer approximation to the liquidus temperature of tin, whereas the quenched sample yielded the possibility of a misleading extrapolation to the solidus temperature. Therefore, the determination of the liquidus temperature could result in different extrapolated melting temperatures depending on the way the impurities were distributed within the sample, which has implications for the contemporary methodology for realizing temperature fixed points of the International Temperature Scale of 1990 (ITS-90).

  2. The microdopant effects of surfactant elements on structure-phase transitions during the rapid quenched crystallization of Fe-C-based melts

    NASA Astrophysics Data System (ADS)

    Polukhin, V. A.; Belyakova, R. M.; Rigmant, L. K.

    2008-02-01

    The nature of microdopant effects of surfactant Te and H2 reagents on structure-phase transitions in rapidly quenched and crystallized eutectic Fe-C-based melts were studied by experimental and computer methods. On the base of results of statistic-geometrical analysis the new information about the structure changes in multi-scaling systems -from meso- to nano-ones were obtained.

  3. Microgravity Disturbance Characterization of the Quench Module Insert (QMI) Phase Change Device (PCD)

    NASA Technical Reports Server (NTRS)

    Gattis, Christy; Rodriguez, Pete (Technical Monitor)

    2000-01-01

    The Materials Science Research Facility (MSRF) is a multi-user, multi-purpose facility for materials science research. One experiment within the MSRF will be the Quench Module Insert (QMI), a high-temperature furnace with unique capabilities for processing different classes of materials. The primary functions of the QMI furnace are to melt, directionally solidify, and quench metallic samples, providing data to aid in understanding the effects of the microgravity environment on the characteristics of these processed metals. The QMI houses sealed individual sample ampoules containing material to be processed. Quenching of the samples in the QMI furnace is accomplished by releasing low-melting-point metallic shoes into contact with the outside of the sample ampoule, dissipating heat and cooling the sample inside. The impact from this method of quench will induce sample vibrations which could be large enough to adversely affect sample quality. Utilizing breadboard hardware, the sample quench sequence, releasing the shoes, was conducted. Data was collected from accelerometers located on the breadboard sample cartridge, indicating the maximum acceleration achieved by the sample. The primary objective of the test described in this presentation was to determine the acceleration imparted on the sample by the shoe contact. From this information, the science community can better assess whether this method of quench will allow them to obtain the data they need.

  4. Degassing of H2O in a phonolitic melt: A closer look at decompression experiments

    NASA Astrophysics Data System (ADS)

    Marxer, Holger; Bellucci, Philipp; Nowak, Marcus

    2015-05-01

    Melt degassing during magma ascent is controlled by the decompression rate and can be simulated in decompression experiments. H2O-bearing phonolitic melts were decompressed at a super-liquidus T of 1323 K in an internally heated argon pressure vessel, applying continuous decompression (CD) as well as to date commonly used step-wise decompression (SD) techniques to investigate the effect of decompression method on melt degassing. The hydrous melts were decompressed from 200 MPa at nominal decompression rates of 0.0028-1.7 MPa·s- 1. At final pressure (Pfinal), the samples were quenched rapidly at isobaric conditions with ~ 150 K·s- 1. The bubbles in the quenched samples are often deformed and dented. Flow textures in the glass indicate melt transport at high viscosity. We suggest that this observation is due to bubble shrinkage during quench. This general problem was mostly overlooked in the interpretation of experimentally degassed samples to date. Bubble shrinkage due to decreasing molar volume (Vm) of the exsolved H2O in the bubbles occurs during isobaric rapid quench until the melt is too viscous too relax. The decrease of Vm(H2O) during cooling at Pfinal of the experiments results in a decrease of the bubble volume by a shrinking factor Bs: At nominal decompression rates > 0.17 MPa·s- 1 and a Pfinal of 75 MPa, the decompression method has only minor influence on melt degassing. SD and CD result in high bubble number densities of 104-105 mm- 3. Fast P drop leads to immediate supersaturation with H2O in the melt. At such high nominal decompression rates, the diffusional transport of H2O is limited and therefore bubble nucleation is the predominant degassing process. The residual H2O contents in the melts decompressed to 75 MPa increase with nominal decompression rate. After homogeneous nucleation is triggered, CD rates ≤ 0.024 MPa·s- 1 facilitate continuous reduction of the supersaturation by H2O diffusion into previously nucleated bubbles. Bubble number densities of CD samples with low nominal decompression rates are several orders of magnitude lower than for SD experiments and the bubble diameters are larger. The reproducibility of MSD experiments with low nominal decompression rates is worse than for CD runs. Commonly used SD techniques are therefore not suitable to simulate melt degassing during continuous magma ascent with low ascent rates.

  5. A Comparative Cathodoluminescence Emission Study of Feldspathic Glasses in SNC Meteorites and Quenched Melts of These Glasses

    NASA Astrophysics Data System (ADS)

    Kubny, A.; Jagoutz, E.

    2001-12-01

    In this study the cathodoluminescence (electron-excited luminescence) emission spectra were measured in the range 200 to 900 nm of individual feldspathic glass grains in the SNC meteorites Shergotty 101, Shergotty 232, ALHA 84001, EETA 79001-47, EETA 79001-276, and Dar al Gani 476 and those of quenched melts of the feldspathic glass grains. The quenching experiments of the original feldspathic glasses were conducted at 1500° C and atmospheric pressure. The aim of this CL emission study was the characterization of feldspathic glasses of SNC meteorites by comparison of the diagnostic spectral features of the feldspathic glasses of SNC meteorites with those of their quenched melts. In the CL emission spectra of the studied feldspathic glasses generally broad bands in the blue (ca. 460 nm), green (ca. 560 nm), and red (ca. 700 nm) can appear. These emission bands are assigned to structural defects (Al-O--Al centers), and the structural incorporation of Mn2+ and Fe3+ , respectively. The blue emission band at about 460 nm attributed to Al-O--Al centers is observed in the spectra of the original feldspathic glasses whereas it is not present (or only in low relative intensity) in the spectra of the quenched melts. The green emission band at 550 to 575 nm assigned to electronic transitions of Mn2+ in M sites is observed in the spectra of the original feldspathic glasses. It is shifted to longer wavelengths of 590 to 605 nm in the spectra of the quenched melts. The occurrence of the red emission band at about 700 nm attributed to electronic transition of Fe3+ in the spectra of the quenched melts of the feldspathic glasses indicates the presence of structural units which allow the occupancy of Fe3+ on tetrahedral sites. The results obtained by CL emission spectroscopy confirm results of Raman spectroscopic studies that the stuctures of feldspathic glasses of the studied SNC meteorites are modified by melting and quenching at atmospheric pressure. Additionally, comparison with published work on CL emission of shocked oligoclases shows that the feldspathic glasses of the studied SNC meteorites are not diaplectic but melt glasses.

  6. Platinum and Palladium Exsolution Textures in Quenched Sulfide Melts

    NASA Astrophysics Data System (ADS)

    Reo, G.; Frank, M. R.; Loocke, M. P.; Macey, C. J.

    2017-12-01

    Magmatic sulfide ore deposits account for over 80% of the world's platinum group element (PGE) reserves. Layered mafic intrusions (LMIs), a type of magmatic sulfide ore deposit, contain alternating layers of silicate and sulfide mineralization that are thought to have coexisted as an immiscible silicate + sulfide melt pair. Platinum and palladium, the most common PGEs found in LMIs, heavily favor the sulfide melt. Nernst partition coefficients for Pt (D = wt% of Pt in sulfide/wt% of Pt in silicate) range from 102 to 109. This study examined the Pt- and Pd-bearing phases that formed from the quenched sulfide melts to better constrain the PGE-rich sulfide layers of LMIs system. Experiments were conducted with a basalt melt, sulfide melt, and Pt-Pd metal in a vertical tube furnace at 1100°C and 1 atm and with oxygen fugacity buffered to QFM (quartz-fayalite-magnetite). Following the experiments, run products containing both sulfide and silicate glasses (quenched melts) were analyzed by a Shimadzu EPMA-1720HT Electron Probe Microanalyzer. The focus here is on the quenched Fe-rich sulfides whereas data on the partitioning of Pt and Pd between the coexisting silicate and sulfide melts will be presented in the future. The sulfide samples were imaged in back-scattering mode and major and trace element concentrations of separate metal-rich phases in the sulfide matrix were ascertained through wavelength-dispersive x-ray spectroscopy. Three discernable PGE-rich phases were found to have exsolved from the sulfide matrix upon quenching of the sulfide melt. All of these phases had Fe and S of 21-24 and 16-22 wt.%, respectively. An irregularly shaped Pd- and Cu-rich sulfide phase ( 36 and 14 wt.%, respectively) makes up the majority of the exsolution product. A separate Pd- and Ni-rich phase ( 22 and 14 wt%, respectively) can be found as grains or rims adjacent to the exsolved Pd- and Cu-rich phase. A third Pd- and Pt-rich phase ( 26 and 18 wt.%, respectively) exhibits a dendritic quench texture and is usually surrounded by the sulfide matrix. These data indicate that multiple phases, each with a different Pt:Pd ratio can form upon quench of a homogenous sulfide melt. Thus, the analysis of PGE-rich sulfide domains within LMI may be best considered as a single phase when conducting exploration efforts.

  7. Characterization of melt-quenched and milled amorphous solids of gatifloxacin.

    PubMed

    Hattori, Yusuke; Suzuki, Ayumi; Otsuka, Makoto

    2016-11-01

    The objectives of this study were to characterize and investigate the differences in amorphous states of gatifloxacin. We prepared two types of gatifloxacin amorphous solids coded as M and MQ using milling and melt-quenching methods, respectively. The amorphous solids were characterized via X-ray diffraction (XRD), nonisothermal differential scanning calorimetry (DSC) and time-resolved near-infrared (NIR) spectroscopy. Both the solids displayed halo XRD patterns, the characteristic of amorphous solids; however, in the non-isothermal DSC profiles, these amorphous solids were distinguished by their crystallization and melting temperatures. The Kissinger-Akahira-Sunose plots of non-isothermal crystallization temperatures at various heating rates indicated a lower activation energy of crystallization for the amorphous solid M than that of MQ. These results support the differentiation between two amorphous states with different physical and chemical properties.

  8. Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mahata, Avik; Asle Zaeem, Mohsen; Baskes, Michael I.

    2018-02-01

    Homogeneous nucleation from aluminum (Al) melt was investigated by million-atom molecular dynamics simulations utilizing the second nearest neighbor modified embedded atom method potentials. The natural spontaneous homogenous nucleation from the Al melt was produced without any influence of pressure, free surface effects and impurities. Initially isothermal crystal nucleation from undercooled melt was studied at different constant temperatures, and later superheated Al melt was quenched with different cooling rates. The crystal structure of nuclei, critical nucleus size, critical temperature for homogenous nucleation, induction time, and nucleation rate were determined. The quenching simulations clearly revealed three temperature regimes: sub-critical nucleation, super-critical nucleation, and solid-state grain growth regimes. The main crystalline phase was identified as face-centered cubic, but a hexagonal close-packed (hcp) and an amorphous solid phase were also detected. The hcp phase was created due to the formation of stacking faults during solidification of Al melt. By slowing down the cooling rate, the volume fraction of hcp and amorphous phases decreased. After the box was completely solid, grain growth was simulated and the grain growth exponent was determined for different annealing temperatures.

  9. NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Craven, Paul D.

    2014-01-01

    Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.

  10. Partitioning of Mg, Ca, and Na between carbonatite melt and hydrous fluid at 0.1-0.2 GPa

    NASA Astrophysics Data System (ADS)

    Veksler, Ilya V.; Keppler, Hans

    Experimental studies of the element distribution between carbonatite melts and hydrous fluids are hampered by the fact that neither the fluid nor the melt can be isochemically quenched in conventional high-pressure vessels. In order to overcome this problem, we used a double-capsule technique to separate immiscible fluid and melt phases during and after the runs. The inner platinum capsules were charged with carbonate mixtures (CaCO3, MgCO3 and Na2CO3) and placed inside the outer capsules charged with distilled water and diamond powder. The latter was used as an inert trap for solids precipitating from the fluid on quenching. Carbonate melt and hydrous fluid equilibrated through a small hole left in the upper end of the inner capsule. The runs were performed in rapid-quench cold-seal pressure vessels at 0.1-0.2 GPa and 700-900°C in the two-phase (fluid+melt) stability region. Both quenched melt and quenched fluid were dissolved in dilute HCl and analysed by inductively coupled plasma atomic emission spectroscopy. The results show that under all conditions investigated, fluid/melt partition coefficients for Ca and Mg are similar and several times smaller than those for Na. At 0.1 GPa and a water/carbonatite ratio of 1 (by weight), the partition coefficients are DNa= 0.35+/- 0.02, DCa=0.09+/-0.02, and DMg=0.13+/- 0.01. Between 700 and 900°C, the effect of temperature on partitioning is negligible. However, DNa increases significantly with decreasing water/carbonatite ratio in the system. Our data show that the release of a hydrous fluid enriched in sodium and simultaneous crystallisation of calcite can transform an alkaline, vapour-saturated carbonatite melt into a body of pure calcite surrounded by zones of sodium metasomatism. Thus, it is quite possible that carbonate magmas with substantial amounts of alkalies were common parental liquids of plutonic carbonatites.

  11. Enhanced photoconductivity by melt quenching method for amorphous organic photorefractive materials

    NASA Astrophysics Data System (ADS)

    Tsujimura, S.; Fujihara, T.; Sassa, T.; Kinashi, K.; Sakai, W.; Ishibashi, K.; Tsutsumi, N.

    2014-10-01

    For many optical semiconductor fields of study, the high photoconductivity of amorphous organic semiconductors has strongly been desired, because they make the manufacture of high-performance devices easy when controlling charge carrier transport and trapping is otherwise difficult. This study focuses on the correlation between photoconductivity and bulk state in amorphous organic photorefractive materials to probe the nature of the performance of photoconductivity and to enhance the response time and diffraction efficiency of photorefractivity. The general cooling processes of the quenching method achieved enhanced photoconductivity and a decreased filling rate for shallow traps. Therefore, sample processing, which was quenching in the present case, for photorefractive composites significantly relates to enhanced photorefractivity.

  12. Experimental investigation of 150-KG-scale corium melt jet quenching in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magallon, D.; Hohmann, H.

    This paper compares and discusses the results of two large scale FARO quenching tests known as L-11 and L-14, which involved, respectively, 151 kg of W% 76.7 UO{sub 2} + 19.2 ZrO{sub 2} + 4.1 Zr and 125 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melts poured into 600-kg, 2-m-depth water at saturation at 5.0 MPa. The results are further compared with those of two previous tests performed using a pure oxidic melt, respectively 18 and 44 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melt quenched in 1-m-depth water at saturation at 5.0 MPa.more » In all the tests, significant breakup and quenching took place during the melt fall through the water. No steam explosion occurred. In the tests performed with a pure oxide UO{sub 2}-ZrO{sub 2} melt, part of the corium (from 1/6 to 1/3) did not breakup and reached the bottom plate still molten whatever the water depth was. Test L-11 data suggest that full oxidation and complete breakup of the melt occurred during the melt fall through the water. A proportion of 64% of the total energy content of the melt was released to the water during this phase ({approximately}1.5 s), against 44% for L-14. The maximum temperature increase of the bottom plate was 330 K (L-14). The mean particle size of the debris ranged between 2.5 and 4.8mm.« less

  13. Dependence of superconductivity in CuxBi2Se3 on quenching conditions

    NASA Astrophysics Data System (ADS)

    Schneeloch, J. A.; Zhong, R. D.; Xu, Z. J.; Gu, G. D.; Tranquada, J. M.

    2015-04-01

    Topological superconductivity, implying gapless protected surface states, has recently been proposed to exist in the compound CuxBi2Se3 . Unfortunately, low diamagnetic shielding fractions and considerable inhomogeneity have been reported in this compound. In an attempt to understand and improve on the finite superconducting volume fractions, we have investigated the effects of various growth and postannealing conditions. With a melt-growth (MG) method, diamagnetic shielding fractions of up to 56% in Cu0.3Bi2Se3 have been obtained, the highest value reported for this method. We investigate the efficacy of various quenching and annealing conditions, finding that quenching from temperatures above 560∘C is essential for superconductivity, whereas quenching from lower temperatures or not quenching at all is detrimental. A modified floating zone (FZ) method yielded large single crystals but little superconductivity. Even after annealing and quenching, FZ-grown samples had much less chance of being superconducting than MG-grown samples. From the low shielding fractions in FZ-grown samples and the quenching dependence, we suggest that a metastable secondary phase having a small volume fraction in most of the samples may be responsible for the superconductivity.

  14. Dependence of superconductivity in Cu x Bi 2 Se 3 on quenching conditions

    DOE PAGES

    Schneeloch, J. A.; Zhong, R. D.; Xu, Z. J.; ...

    2015-04-20

    Topological superconductivity, implying gapless protected surface states, has recently been proposed to exist in the compound Cu xBi₂Se₃. Unfortunately, low diamagnetic shielding fractions and considerable inhomogeneity have been reported in this compound. In an attempt to understand and improve on the finite superconducting volume fractions, we have investigated the effects of various growth and post-annealing conditions. With a melt-growth (MG) method, diamagnetic shielding fractions of up to 56% in Cu₀̣₃Bi₂Se₃ have been obtained, the highest value reported for this method. We investigate the efficacy of various quenching and annealing conditions, finding that quenching from temperatures above 560°C is essential formore » superconductivity, whereas quenching from lower temperatures or not quenching at all is detrimental. A modified floating zone (FZ) method yielded large single crystals but little superconductivity. Even after annealing and quenching, FZ-grown samples had much less chance of being superconducting than MG-grown samples. Thus, from the low shielding fractions in FZ-grown samples and the quenching dependence, we suggest that a metastable secondary phase having a small volume fraction in most of the samples may be responsible for the superconductivity.« less

  15. Experimental magma degassing: The revenge of the deformed bubbles

    NASA Astrophysics Data System (ADS)

    Marxer, H.; Bellucci, P.; Ulmer, S.; Nowak, M.

    2013-12-01

    We performed decompression experiments with a hydrated phonolitic melt at a T of 1323 K in an internally heated pressure vessel to investigate the effect of decompression method and rate on melt degassing. Samples were decompressed from 200 to 75 MPa with step-wise and continuous decompression (SD/CD) at nominal decompression rates (DRs) of 0.0028-1.7 MPa/s. At target P the samples were quenched rapidly under isobaric conditions with 150 K/s. The vesiculated glass products were compared in terms of bubble number density (BND), bubble size distribution (BSD) and residual H2O content. Almost all capsules were deformed after decompression: the initially crimped headspaces were expanded and the walls were inflexed in the capsule center. We postulate that the deformation is primarily due to the change in molar volume V(m) of exsolved H2O during rapid quench. Bubble growth in the melt contributes to the deformation by capsule expansion, but the main problem is the shrinkage and collapse of bubbles during cooling. In first approximation, the texture of the vesiculated melt is not frozen until the glass transition T (~773 K for this composition, [1]) is reached. From 1323 K to T(g) the melt will display viscous behavior. For a final P of 75 MPa, V(m) of the exsolved H2O at T(g) is only ~25% of V(m) at 1323 K [2]. The fluid P in the bubbles is therefore continuously decreasing during quench. In combination with constant external P, the bubbles can either contract isometrically, get deformed (flattened) or even become dented by sucking melt inwards, which can be observed in some glass products. The shrinkage of bigger bubbles in the capsules is sometimes affecting the whole vesicle texture in a sample. FPA-FTIR measurements did not reveal H2O diffusion profiles towards bubbles [3]. H2O concentration gradients around bubbles are expected to be disturbed or annihilated due to melt transport. All derived BSDs of our samples were corrected to resemble the bubble sizes prior to rapid quench. For a volumetric loss of 75% at a final P of 75 MPa, the initial diameter of a bubble in the melt has to be ~1.5x the diameter of a bubble in the glass. At DRs of >0.17 MPa/s the decompression method has only minor influence on melt degassing. SD and CD result in BNDs of 10^4-10^5 mm^-3. Fast P drop leads to immediate super-saturation with H2O in the melt. At high DRs, the diffusional transport of H2O is very limited and therefore bubble nucleation is the predominant degassing process. CD rates of ≤0.17 MPa/s provide sufficient time for H2O diffusion into existing bubbles. BNDs of CD samples with low DRs are several orders of magnitude lower than for SD experiments. In contrast to SD, bubble growth is the favored degassing mechanism. CD samples quenched at different target P at 0.024 MPa/s trace an equilibrium degassing path in terms of residual H2O content in the glass. SD techniques, as used in many studies before, are therefore not suitable to simulate melt degassing at continuous magma ascent. [1] Giordano, D; Russell, JK; Dingwell, DB; 2008. EPSL, 271: 123-134. [2] Duan, ZH; Zhang, ZG; 2006. GCA, 70: 2311-2324. [3] Marxer, H; Nowak, M; 2013. EJM, in press.

  16. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  17. Special features of the technology of boronizing steel in a calcium chloride melt

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.

    1999-12-01

    A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.

  18. A study of Bi-Pb-Sn-Cd-Sb penta-alloys rapidly quenched from melt

    NASA Astrophysics Data System (ADS)

    Kamal, M.; El-Bediwi, A. B.

    2004-11-01

    Optical microscopy, X-ray diffractometry, the double bridge method, the Vickers microhardness testing and dynamic resonance techniques have been used to investigate structure, electrical resistivity, hardness, internal friction and elastic modulus of quenched Bi-Pb-Sn-Cd-Sb penta-alloys. The properties of these penta-alloys are greatly affected by rapid quenching. The intermetallic compound chi(Pb-Bi) or Bi3Pb7 is obtained after rapid quenching using the melt-spinning technique, and this is in agreement with reports by other authors [Marshall, T.J., Mott, G. T. and Grieverson, M. H. (1975). Br. J. Radiol., 48, 924, Kamal, M., El-Bediwi, A. B. and Karman, M. B. (1998). Structure, mechanical properties and electrical resistivity of rapidly solidified Pb-Sn-Cd and Pb-Bi-Sn-Cd alloys. J. Mater. Sci.: Mater. Electron., 9, 425, Borromee-Gautier, C., Giessen, B. C. and Grrant, N. J. (1968). J. Chem. Phys., 48,1905, Moon, K.-W., Boettinger, W. J., Kanner, U. R., Handwerker, C. A. and Lee, D.-J. (2001). The effect of Pb contamination on the solidification behavior of Sn-Bi solders. J. Electron. Mater, 30, 45.]. The quenched Bi43.5Pb44.5Cd5Sn2Sb5 alloy has important properties for safety devices in fire detection and extinguishing systems.

  19. Experimental methods for quenching structures in lunar-analog silicate melts: Variations as a function of quench media and composition

    NASA Technical Reports Server (NTRS)

    Dyar, M. D.

    1985-01-01

    Compositions analogous to lunar green, organge, and brown glasses were synthesized under consistent conditions, then quenched into a variety of different media when the samples were removed from the furnace. Iron valence and coordination are a direct function of quench media used, spanning the range from brine/ice (most effective quench), water, butyl phthalate, silicone oil, liquid nitrogen, highly reducing CO-CO2 gas, to air (least efficient quench). In the green and brown glasses, Fe(3+) in four-fold and six-fold coordination is observed in the slowest-quenched samples; Fe(2+) coordination varies directly with quench efficiency. Less pronounced changes were observed in the Ti-rich orange glass. Therefore the remote-sensed spectrum of a glass-bearing regolith on the Moon may be influenced by the process by which the glass cooled, and extreme caution must be used when comparing spectra of synthetic glass analogs with real lunar glasses.

  20. Experimental methods for quenching structures in lunar-analog silicate melts - Variations as a function of quench media and composition

    NASA Technical Reports Server (NTRS)

    Dyar, M. D.

    1984-01-01

    Compositions analogous to lunar green, orange, and brown glasses were synthesized under consistent conditions, then quenched into a variety of different media when the samples were removed from the furnace. Iron valence and coordination are a direct function of quench media used, spanning the range from brine/ice (most effective quench), water, butyl phthalate, silicone oil, liquid nitrogen, highly reducing CO-CO2 gas, to air (least efficient quench). In the green and brown glasses, Fe(3+) in four-fold and six-fold coordination is observed in the slowest-quenched samples; Fe(2+) coordination varies directly with quench efficiency. Less pronounced changes were observed in the Ti-rich orange glass. Therefore the remote-sensed spectrum of a glass-bearing regolith on the moon may be influenced by the process by which the glass cooled, and extreme caution must be used when comparing spectra of synthetic glass analogs with real lunar glasses.

  1. Bright and durable field emission source derived from refractory taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less

  2. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    PubMed

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  3. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    NASA Astrophysics Data System (ADS)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  4. Phase equilibria in the iron oxide-cobalt oxide-phosphorus oxide system

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Prasanna, T. R. S.; Kalonji, Gretchen; O'Handley, Robert C.

    1987-01-01

    Two novel ternary compounds are noted in the present study of 1000 C solid-state equilibria in the Fe-Co-P-O system's Fe2O3-FePO4-Co3(Po4)2-CoO region: CoFe(PO4)O, which undergoes incongruent melting at 1130 C, and Co3Fe4(PO4)6, whose incongruent melting occurs at 1080 C. The liquidus behavior-related consequences of rapidly solidified cobalt ferrite formation from cobalt ferrite-phosphate melts are discussed with a view to spinel formation. It is suggested that quenching from within the spinel-plus-liquid region may furnish an alternative to quenching a homogeneous melt.

  5. The Ultrafine Mineralogy of a Molten Interplanetary Dust Particle as an Example of the Quench Regime of Atmospheric Entry Heating

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1996-01-01

    Melting and degassing of interplanetary dust particle L2005B22 at approx. 1200 C was due to flash heating during atmospheric entry. Preservation of the porous particle texture supports rapid quenching from the peak heating temperature whereby olivine and pyroxene nanocrystals (3 nm-26 nm) show partial devitrification of the quenched melt at T approx. = 450 C - 740 C. The implied ultrahigh cooling rates are calculated at approx. 105 C/h-106 C/h, which is consistent with quench rates inferred from the temperature-time profiles based on atmospheric entry heating models. A vesicular rim on a nonstoichiometric relic forsterite grain in this particle represents either evaporative magnesium loss during flash heating or thermally annealed ion implantation texture.

  6. Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses.

    PubMed

    Dmowski, W; Gierlotka, S; Wang, Z; Yokoyama, Y; Palosz, B; Egami, T

    2017-07-26

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids, but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.

  7. PHOSPHITE STABILIZATION EFFECTS ON TWO-STEP MELT-SPUN FIBERS OF POLYLACTIDE. (R826733)

    EPA Science Inventory

    The effects of molecular weight stabilization on mechanical properties of polylactide (PLA) fibers are investigated. The textile-grade PLA contains a 98:02 ratio of L:D stereocenters and fibers are produced by the two step method, involving a primary quench and cold drawing. M...

  8. Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique

    NASA Astrophysics Data System (ADS)

    Singh, Harinder; Singh, Tejbir; Thakur, Anup; Sharma, Jeewan

    2018-05-01

    Nanocrystalline ZnxTe100-x (x=0, 5, 20, 30, 40, 50) alloys have been synthesized using melt quenching technique. Energy-dispersive X-Ray spectroscopy (EDS) has been used to verify the elemental composition of samples. Various absorption modes are recorded from Fourier transform infrared spectroscopy (FTIR) confirming the formation of ZnTe. The structural study has been performed using X-Ray Diffraction (XRD) method. All synthesized samples have been found to be nanocrystalline in nature with average crystallite size in the range from 49.3 nm to 77.1 nm. Results have shown that Zn0Te100 exhibits hexagonal phase that transforms into a cubic ZnTe phase as the amount of zinc is increased. Pure ZnTe phase has been obtained for x = 50. The texture coefficient (Tc) has been calculated to find the prominent orientations of different planes.

  9. The undercooling of liquids

    NASA Technical Reports Server (NTRS)

    Turnbull, D.

    1984-01-01

    The formation by melt quenching of such metastable structures as glassy or microcrystalline solids and highly supersaturated solutions is made possible by the extreme resistance of most melts to homophase crystal nucleation at deep undercooling. This nucleation resistance contrasts sharply with the very low kinetic resistance to the movement of crystal-melt interfaces, once formed, in metals and other fluid systems at even minute undercooling. The methods of nucleation study which have proven especially effective in bypassing nucleation by heterophase impurities thereby exposing the high resistance of melts to homophase nucleation may be summarized as follows: observation of the crystallization behavior of dispersed small droplets; drop tube experiments in which liquid drops solidify, under containerless conditions, during their fall in the tube; and observation of the crystallization of bulk specimens immersed in fluxes chosen to dissolve or otherwise deactivate (e.g., by wetting) heterophase nucleants. This method has proven to be remarkably effective in deactivating such nucleants in certain pure metals.

  10. Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses

    PubMed Central

    Pei, Zhipu; Ju, Dongying

    2017-01-01

    The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons. PMID:28772779

  11. Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses.

    PubMed

    Pei, Zhipu; Ju, Dongying

    2017-04-17

    The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons.

  12. Atomizer with liquid spray quenching

    DOEpatents

    Anderson, Iver E.; Osborne, Matthew G.; Terpstra, Robert L.

    1998-04-14

    Method and apparatus for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled.

  13. Atomizer with liquid spray quenching

    DOEpatents

    Anderson, I.E.; Osborne, M.G.; Terpstra, R.L.

    1998-04-14

    Method and apparatus are disclosed for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled. 6 figs.

  14. Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmowski, W.; Gierlotka, S.; Wang, Z.

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids,more » but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.« less

  15. Description of the containerless melting of glass in low gravity

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Day, D. E.

    1983-01-01

    A brief description is given of a single-axis, acoustic levitator/furnace apparatus used to position, heat, melt, and quench multicomponent oxide, glass-forming compositions in low gravity. This apparatus is capable of processing eight approximately spherical samples (about 6 mm diameter) at temperatures up to 1550 C in a dry air atmosphere. Results are also presented for a containerless melting experiment conducted on SPAR VI where a ternary CaO-Ga2O3-SiO2 composition was levitated and quenched to a glass. Selected properties of the glass prepared on SPAR VI are compared with the properties of glass samples of identical composition prepared on earth.

  16. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-04-02

    A method of preparing high temperature superconductor single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid. 2 figs.

  17. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker R.; Sengupta, Suvankar; Shi, Donglu

    1996-01-01

    A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

  18. Sahara 99555 and D'Orbigny: Possible Pristine Parent Magma of Quenched Angrites

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; McKay, G. A.; Jones, J. H.

    2004-01-01

    Angrites constitute a small, but important group of basaltic achondrites showing unusual mineralogy and old crystallization ages. The currently known angrites are divided into two subgroups. Angra dos Reis (ADOR) and LEW86010 show slow cooling histories ("slowly-cooled" angrites) and differ from the later found angrites (LEW87051, Asuka 881371, Sahara 99555, D Orbigny, NWA1670, NWA1298). This second group has textures that suggest rapid cooling histories ("quenched" angrites). The petrogenesis of angrites has been controversial, partly due to the small number of available samples. In this abstract, we suggest a possible parent melt composition for the quenched angrites and its relationship to the partial melts of carbonaceous chondrites.

  19. The mechanism and regularity of quenching the effect of bases on fluorophores: the base-quenched probe method.

    PubMed

    Mao, Huihui; Luo, Guanghua; Zhan, Yuxia; Zhang, Jun; Yao, Shuang; Yu, Yang

    2018-04-30

    The base-quenched probe method for detecting single nucleotide polymorphisms (SNPs) relies on real-time PCR and melting-curve analysis, which might require only one pair of primers and one probe. At present, it has been successfully applied to detect SNPs of multiple genes. However, the mechanism of the base-quenched probe method remains unclear. Therefore, we investigated the possible mechanism of fluorescence quenching by DNA bases in aqueous solution using spectroscopic techniques. It showed that the possible mechanism might be photo-induced electron transfer. We next analyzed electron transfer or transmission between DNA bases and fluorophores. The data suggested that in single-stranded DNA, the electrons of the fluorophore are transferred to the orbital of pyrimidine bases (thymine (T) and cytosine (C)), or that the electron orbitals of the fluorophore are occupied by electrons from purine bases (guanine (G) and adenine (A)), which lead to fluorescence quenching. In addition, the electrons of a fluorophore excited by light can be transmitted along double-stranded DNA, which gives rise to stronger fluorescence quenching. Furthermore, we demonstrated that the quenching efficiency of bases is in the order of G > C ≥ A ≥ T and the capability of electron transmission of base-pairs in double-stranded DNA is in the order of CG[combining low line] ≥ GC[combining low line] > TA[combining low line] ≥ AT[combining low line] (letters representing bases on the complementary strand of the probe are bold and underlined), and the most common commercial fluorophores including FAM, HEX, TET, JOE, and TAMRA could be influenced by bases and are in line with this mechanism and regularity.

  20. The binary system K2SO4CaSO4

    USGS Publications Warehouse

    Rowe, J.J.; Morey, G.W.; Hansen, I.D.

    1965-01-01

    The binary system K2SO4CaSO4 was studied by means of heating-cooling curves, differential thermal analysis, high-temperature quenching technique and by means of a heating stage mounted on an X-ray diffractometer. Compositions and quench products were identified optically and by X-ray. Limited solid solution of CaSO4 in K2SO4 was found. There is a eutectic at 875??C and 34 wt. per cent CaSO4. Calcium langbeinite melts incongruently at 1011??C. The melting-point of CaSO4 (1462??C) was determined by the quenching technique using sealed platinum tubes. The only intermediate crystalline phase found in the system is K2SO4??2CaSO4 (calcium langbeinite). ?? 1965.

  1. Experimental and theoretical approach on the optical properties of zinc borotellurite glass doped with dysprosium oxide.

    PubMed

    Halimah, M K; Ami Hazlin, M N; Muhammad, F D

    2018-04-15

    A series of glass samples with chemical formula {[(TeO 2 ) 0.7 (B 2 O 3 ) 0.3 ] 0.7 (ZnO) 0.3 } 1-x (Dy 2 O 3 ) x where x=0.01, 0.02, 0.03, 0.04 and 0.05M fraction were synthesized through conventional melt-quenching method. The most common way to fabricate a glass material is by fusion of two or more component oxides followed by their quenching. This technique is known as melt-quenching technique. Kaur et al. (2016) [1] highlighted that the melt-quenching method able to enhance the mechanical properties like hardness and flexural strength of the material. The nature of the glass systems is proven to be amorphous based on the XRD pattern. The FTIR spectra of the glass systems confirm the existence of five bands which are assigned for the BO 4 , BO 3, TeO 4 and TeO 3 vibrational groups. The density of the glass systems is increased with the addition of Dy 2 O 3 while the molar volume is found to be inversely proportional to the density of the proposed glass. The optical properties of the glasses are determined through the absorption spectra obtained from the UV-VIS spectrophotometer. From the absorption spectra, the indirect and direct optical band gaps and the Urbach energy are found to be inversely proportional to each other. As the molar fraction of the Dy 2 O 3 increased, the optical band gaps are observed to increase as opposed to the Urbach energy. For this glass system, the values of refractive index, electronic polarizability, oxide ion polarizability and the optical basicity are found to decrease as the addition of the dysprosium oxide is increased. From the emission spectra, two intense blue and yellow emission bands are observed, which correspond to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions of Dy 3+ ions respectively. The CIE chromaticity coordinates of the zinc borotellurite glass systems are found to be located in the white light region. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Global Optimization of Pt13 Cluster Using the First-Principle Molecular Dynamics with the Quenching Technique

    NASA Astrophysics Data System (ADS)

    Chen, Xiangping; Duan, Haiming; Cao, Biaobing; Long, Mengqiu

    2018-03-01

    The high-temperature first-principle molecular dynamics method used to obtain the low energy configurations of clusters [L. L. Wang and D. D. Johnson, PRB 75, 235405 (2007)] is extended to a considerably large temperature range by combination with the quenching technique. Our results show that there are strong correlations between the possibilities for obtaining the ground-state structure and the temperatures. Larger possibilities can be obtained at relatively low temperatures (as corresponds to the pre-melting temperature range). Details of the structural correlation with the temperature are investigated by taking the Pt13 cluster as an example, which suggests a quite efficient method to obtain the lowest-energy geometries of metal clusters.

  3. A Novel Method of Preparation of Inorganic Glasses by Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Vaidhyanathan, B.; Ganguli, Munia; Rao, K. J.

    1994-12-01

    Microwave heating is shown to provide an extremely facile and automatically temperature-controlled route to the synthesis of glasses. Glass-forming compositions of several traditional and novel glasses were melted in a kitchen microwave oven, typically within 5 min and quenched into glasses. This is only a fraction of the time required in normal glass preparation methods. The rapidity of melting minimizes undesirable features such as loss of components of the glass, variation of oxidation states of metal ions, and oxygen loss leading to reduced products in the glass such as metal particles. This novel procedure of preparation is applicable when at least one of the components of the glass-forming mixture absorbs microwaves.

  4. What is the origin of concentration quenching of Cu+ luminescence in glass?

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.

    2016-10-01

    Monovalent copper-doped luminescent glasses are attractive materials for white light-emitting devices, photonic waveguides, and solar spectral conversion in photovoltaic cells. However, the occurrence of concentration quenching in such is not fully understood at present. In this work, calcium-phosphate glasses with high concentrations of luminescent Cu+ ions have been prepared by a simple melt-quench method via CuO and SnO co-doping. The aim is to elucidate the origin of concentration quenching of Cu+ light emission. A spectroscopic characterization was carried out by optical absorption and photoluminescence (PL) spectroscopy including emission decay dynamics. The concentrations of both CuO and SnO dopants were varied as 5, 10 and 15 mol%. Monovalent copper content is estimated in the CuO/SnO-containing glasses following the assessment of the concentration dependence of Cu2+ absorption in the visible for CuO singly-doped glasses. Contrary to the conventionally acknowledged direct Cu+→Cu2+ transfer, the data supports a Cu+-Cu+ energy migration channel at the origin of the PL quenching.

  5. Recent Progress in the Development of Neodymium Doped Ceramic Yttria

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Edwards, Chris; Trivedi, Sudhir B.; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra; Kear, Bernard

    2007-01-01

    Solid-state lasers play a significant role in providing the technology necessary for active remote sensing of the atmosphere. Neodymium doped yttria (Nd:Y2O3) is considered to be an attractive material due to its possible lasing wavelengths of aprrox.914 nm and approx.946 nm for ozone profiling. These wavelengths when frequency tripled can generate UV light at approx.305 nm and approx.315 nm, which is particularly useful for ozone sensing using differential absorption lidar technique. For practical realization of space based UV transmitter technology, ceramic Nd:Y2O3 material is considered to possess great potential. A plasma melting and quenching method has been developed to produce Nd3+ doped powders for consolidation into Nd:Y2O3 ceramic laser materials. This far-from-equilibrium processing methodology allows higher levels of rare earth doping than can be achieved by equilibrium methods. The method comprises of two main steps: (a) plasma melting and quenching to generate dense, and homogeneous doped metastable powders, (b) pressure assisted consolidation of these powders by hot isostatic pressing to make dense nanocomposite ceramics. Using this process, several 1" x 1" ceramic cylinders have been produced. The infrared transmission of undoped Y2O3 ceramics was as high as approx.75% without anti-reflection coating. In the case of Nd:Y2O3 ceramics infrared transmission values of approx.50% were achieved. Furthermore, Nd:Y2O3 samples with dopant concentrations of up to approx.2 at. % were prepared without significant emission quenching.

  6. Effect of Sn addition on glassy Si-Te bulk sample

    NASA Astrophysics Data System (ADS)

    Babanna, Jagannatha K.; Roy, Diptoshi; Varma, Sreevidya G.; Asokan, Sundarrajan; Das, Chandasree

    2018-05-01

    Bulk Si20Te79Sn1 glass is prepared by melt-quenching method, amorphous nature of the as-quenched glass is confirmed by XRD. I-V characteristics reveals that Si20Te79Sn1 bulk sample exhibits threshold type electrical switching behavior. The thermal parameters such as crystallization temperature, glass transition temperature are obtained using differential scanning calorimetry. The crystalline peak study of the sample annealed at crystallization temperature for 2 hr shows that the Sn atom interact with Si or Te but do not interact with the Si-Te matrix in a greater extent and it forms a separate phase network individually.

  7. Melting Processes at the Base of the Mantle Wedge: Melt Compositions and Melting Reactions for the First Melts of Vapor-Saturated Lherzolite

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Till, C. B.

    2014-12-01

    Vapor-saturated melting experiments have been performed at pressures near the base of the mantle wedge (3.2 GPa). The starting composition is a metasomatized lherzolite containing 3 wt. % H2O. Near-solidus melts and coexisting mineral phases have been characterized in experiments that span 925 to 1100 oC with melt % varying from 6 to 9 wt. %. Olivine, orthopyroxene, clinopyroxene and garnet coexist with melt over the entire interval and rutile is also present at < 1000 oC. Melt is andesitic in composition and varies from 60 wt. % SiO2 at 950 oC to 52 wt. % at 1075 oC. The Al2O3 contents of the melt are 13 to 14 wt. %, and CaO contents range from 1 and 4 wt. %. Melting is peritectic with orthopyroxene + liquid produced by melting of garnet + olivine + high-Ca pyroxene. In addition to quenched melt, we observe a quenched silicate component that is rhyolitic (>72 % SiO2) that we interpret as a precipitate from the coexisting supercritical H2O-rich vapor. Extrapolation of the measured compositional variation toward the solidus suggests that the first melt may be very SiO2 rich (i.e., granitic). We suggest that these granitic melts are the first melts of the mantle near the slab-wedge interface. As these SiO2-rich melts ascend into shallower, hotter overlying mantle, they continue to interact with the surrounding mantle and evolve in composition. These first melts may elucidate the geochemical and physical processes that accompany the beginnings of H2O flux melting.

  8. Gaussian decomposition of high-resolution melt curve derivatives for measuring genome-editing efficiency

    PubMed Central

    Zaboikin, Michail; Freter, Carl

    2018-01-01

    We describe a method for measuring genome editing efficiency from in silico analysis of high-resolution melt curve data. The melt curve data derived from amplicons of genome-edited or unmodified target sites were processed to remove the background fluorescent signal emanating from free fluorophore and then corrected for temperature-dependent quenching of fluorescence of double-stranded DNA-bound fluorophore. Corrected data were normalized and numerically differentiated to obtain the first derivatives of the melt curves. These were then mathematically modeled as a sum or superposition of minimal number of Gaussian components. Using Gaussian parameters determined by modeling of melt curve derivatives of unedited samples, we were able to model melt curve derivatives from genetically altered target sites where the mutant population could be accommodated using an additional Gaussian component. From this, the proportion contributed by the mutant component in the target region amplicon could be accurately determined. Mutant component computations compared well with the mutant frequency determination from next generation sequencing data. The results were also consistent with our earlier studies that used difference curve areas from high-resolution melt curves for determining the efficiency of genome-editing reagents. The advantage of the described method is that it does not require calibration curves to estimate proportion of mutants in amplicons of genome-edited target sites. PMID:29300734

  9. Glass-ceramic route of BSCCO superconductors - Fabrication of amorphous precursor

    NASA Astrophysics Data System (ADS)

    Nilsson, Andreas; Gruner, Wolfgang; Acker, Jörg; Wetzig, Klaus

    2007-09-01

    It is well known that many Bi-Sr-Ca-Cu-O compositions are glass-forming and some Bi-based glasses such as Bi 2Sr 2CaCu 2O x and Bi 2Sr 2Ca 2Cu 3O x are converted into high critical temperature superconductors after proper annealing. In order to fabricate superconductors having high- Tc and high critical current density using the glass-ceramic route, it is necessary to clarify the total chemical composition of the quenched glasses prepared in most cases by rapid quenching of melts from around 1200 °C in air. The total oxygen content measured directly reflects a significant oxygen deficit due to the melting process. We have also investigated the cation content in quenched Bi 2Sr 2Ca 2Cu 3O x precursors and found that there are substantial differences from the nominal composition to the quenched materials especially for calcium. Such glasses also show some CaO crystalline reflexes in the XRD patterns.

  10. Process parameters, orientation, and functional properties of melt-processed bulk Y-Ba-Cu-O superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharchenko, I.V.; Terryll, K.M.; Rao, K.V.

    1995-03-01

    This study compared the microstructure, texturing, and functional properties (critical currents) of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}-based bulk pellets that were prepared by the quench-melt-growth-process (QMGP), melt-textured growth (MTG), and conventional solid-state reaction (SSR) approaches. Using two X-ray diffraction (XRD) methods, {theta}-2{theta}, and rocking curves, the authors found that the individual grains of two melt-processed pellets exhibited remarkable preferred orientational alignment (best rocking curve width = 3.2{degree}). However, the direction of the preferred orientation among the grains was random. Among the three types of bulk materials studied, the QMGP sample was found to have the best J{sub c} values, {approx} 4,500more » A/cm{sup 2} at 77 K in a field of 2 kG, as determined from SQUID magnetic data.« less

  11. Magmatic infiltration and melting in the lower crust and upper mantle beneath the Cima volcanic field, California

    USGS Publications Warehouse

    Wilshire, H.G.; McGuire, A.V.

    1996-01-01

    Xenoliths of lower crustal and upper mantle rocks from the Cima volcanic field (CVF) commonly contain glass pockets, veins, and planar trains of glass and/or fluid inclusions in primary minerals. Glass pockets occupy spaces formerly occupied by primary minerals of the host rocks, but there is a general lack of correspondence between the composition of the glass and that of the replaced primary minerals. The melting is considered to have been induced by infiltration of basaltic magma and differentiates of basaltic magma from complex conduits formed by hydraulic fracturing of the mantle and crustal rocks, and to have occurred during the episode of CVF magmatism between ???7.5 Ma and present. Variable compositions of quenched melts resulted from mixing of introduced melts and products of melting of primary minerals, reaction with primary minerals, partial crystallization, and fractionation resulting from melt and volatile expulsion upon entrainment of the xenoliths. High silica melts (> ??? 60% SiO2) may result by mixing introduced melts with siliceous melts produced by reaction of orthopyroxene. Other quenched melt compositions range from those comparable to the host basalts to those with intermediate Si compositions and elevated Al, alkalis, Ti, P, and S; groundmass compositions of CVF basalts are consistent with infiltration of fractionates of those basalts, but near-solidus melting may also contribute to formation of glass with intermediate silica contents with infiltration only of volatile constituents.

  12. Thermally efficient melting for glass making

    DOEpatents

    Chen, Michael S. K.; Painter, Corning F.; Pastore, Steven P.; Roth, Gary; Winchester, David C.

    1991-01-01

    The present invention is an integrated process for the production of glass utilizing combustion heat to melt glassmaking materials in a glassmaking furnace. The fuel combusted to produce heat sufficient to melt the glassmaking materials is combusted with oxygen-enriched oxidant to reduce heat losses from the offgas of the glassmaking furnace. The process further reduces heat losses by quenching hot offgas from the glassmaking furnace with a process stream to retain the heat recovered from quench in the glassmaking process with subsequent additional heat recovery by heat exchange of the fuel to the glassmaking furnace, as well as the glassmaking materials, such as batch and cullet. The process includes recovery of a commercially pure carbon dioxide product by separatory means from the cooled, residual offgas from the glassmaking furnace.

  13. Deep Metastable Eutectic Nanometer-Scale Particles in the MgO-Al2O3-SiO2 System

    NASA Technical Reports Server (NTRS)

    Reitmeijer, Frans J. M.; Nash, J. A., III

    2011-01-01

    Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time-temperature regime and melt/glass transformation.

  14. Development, preparation, and characterization of high-performance superconducting materials for space applications

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Barkatt, Aaron

    1991-01-01

    The preparation of high-temperature superconducting ceramics in bulk form is a major challenge in materials science. The current status of both partial melting and melt quenching techniques, with or without an intermediate powder processing stage, is described in detail, and the problems associated with each of the methods are discussed. Results of studies performed on melt-processed materials are reported and discussed. The discussion places emphasis on magnetization and on other physical properties associated with it, such as critical current density, levitation force, and flux creep. The nature of structural features which give rise to flux pinning, including both small and large defects, is discussed with reference to theoretical considerations. The rates of flux creep and the factors involved in attempting to retard the decay of the magnetization are surveyed.

  15. Chromium Oxidation State in Planetary Basalts: Oxygen Fugacity Indicator and Critical Variable for Cr-Spinel Stability

    NASA Technical Reports Server (NTRS)

    Bell, A. S.; Burger, P. V.; Le, Loan; Papike, J. J.; Jone, J.; Shearer, C. K.

    2014-01-01

    Cr is a ubiquitous and relatively abundant minor element in basaltic, planetary magmas. At the reduced oxidation states (

  16. AsS melt under pressure: one substance, three liquids.

    PubMed

    Brazhkin, V V; Katayama, Y; Kondrin, M V; Hattori, T; Lyapin, A G; Saitoh, H

    2008-04-11

    An in situ high-temperature--high-pressure study of liquid chalcogenide AsS by x-ray diffraction, resistivity measurements, and quenching from melt is presented. The obtained data provide direct evidence for the existence in the melt under compression of two transformations: one is from a moderate-viscosity molecular liquid to a high-viscosity nonmetallic polymerized liquid at P approximately 1.6-2.2 GPa; the other is from the latter to a low-viscosity metallic liquid at P approximately 4.6-4.8 GPa. Upon rapid cooling, molecular and metallic liquids crystallize to normal and high-pressure phases, respectively, while a polymerized liquid is easily quenched to a new AsS glass. General aspects of multiple phase transitions in liquid AsS, including relations to the phase diagram of the respective crystalline, are discussed.

  17. Molecular dynamics study of dual-phase microstructure of Titanium and Zirconium metals during the quenching process

    NASA Astrophysics Data System (ADS)

    Miyazaki, Narumasa; Sato, Kazunori; Shibutani, Yoji

    Dual-phase (DP) transformation, which is composed of felite- and/or martensite- multicomponent microstructural phases, is one of the most effective tools to product functional alloys. To obtain this DP structure such as DP steels and other materials, we usually apply thermal processes such as quenching, tempering and annealing. As the transformation dynamics of DP microstructure depends on conditions of temperature, annealing time, and quenching rate, physical properties of materials are able to be tuned by controlling microstructure type, size, their interfaces and so on. In this study, to understand the behavior of DP transformation and to control physical properties of materials by tuning DP microstructures, we analyze the atomistic dynamics of DP transformation during the quenching process and the detail of DP microstructures by using the molecular dynamics simulations. As target metals of DP transformation, we focus on group 4 transition metals, such as Ti and Zr described by EAM interatomic potentials. For Ti and Zr models we perform molecular dynamics simulations by assuming melt-quenching process from 3000 K to 0 K under the isothermal-isobaric ensemble. During the process for each material, we observe liquid to HCP like transition around the melting temperature, and continuously HCP-BCC like transition around martensitic transformation temperature. Furthermore, we clearly distinguish DP microstructure for each quenched model.

  18. Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature

    NASA Technical Reports Server (NTRS)

    Cebe, Peggy; Chung, Shirley Y.; Hong, Su-Don

    1987-01-01

    The effect of thermal history on the tensile properties of polyetheretherketone neat resin films was investigated at different test temperatures (125, 25, and -100) using four samples: fast-quenched amorphous (Q); quenched, then crystallized at 180 C (C180); slowly cooled (for about 16 h) from the melt (SC); and air-cooled (2-3 h) from the melt (AC). It was found that thermal history significantly affects the tensile properties of the material below the glass transition. Fast quenched amorphous films were most tough, could be drawn to greatest strain before rupture, and undergo densification during necking; at the test temperature of -100 C, these films had the best ultimate mechanical properties. At higher temperatures, the semicrystalline films AC and C180 had properties that compared favorably with the Q films. The SC films exhibited poor mechanical properties at all test temperatures.

  19. Metal-silicate interaction in quenched shock-induced melt of the Tenham L6-chondrite

    NASA Astrophysics Data System (ADS)

    Leroux, Hugues; Doukhan, Jean-Claude; Guyot, François

    2000-07-01

    The metal-silicate microstructures in the shock-induced melt pockets of the Tenham (L6) chondrite have been investigated by analytical transmission electron microscopy. The melt areas, formed under high-pressure, high-temperature dynamic shock conditions, consist of spherical Fe-Ni metal/iron sulfide globules embedded in a silicate glass matrix, showing that the melt was quenched at high cooling rate. The Fe-Ni fraction in the globules is two-phase, composed of a bcc phase (˜5 wt% Ni) and an fcc phase (˜49 wt% Ni), indicating that fractional crystallisation of the metal occurred during the fast cooling. The metal fraction also contains appreciable amounts of non-siderophile elements (mostly Si, Mg and O) suggesting that these elements were trapped in the metal, either as alloying components or as tiny silicate or oxide inclusions. In the iron sulfide fraction, the Na content is high (>3 wt%), suggesting chalcophile behaviour for Na during the shock event. The composition of the silicate glass reflects non-equilibrium melting of several silicate phases (olivine, pyroxene and plagioclase). Moreover, the FeO content is high compared to the FeO contents of the unmelted silicates. Some Fe redistribution took place between metal and silicate liquids during the shock event. The silicate glass also contains tiny iron sulfide precipitates which most probably originated by exsolution during quench, suggesting that the molten silicate retained significant amounts of S, dissolved at high temperature and high pressure. Based on these observations, we suggest that non-equilibrium phenomena may be important in determining the compositions of metal and silicate reservoirs during their differentiation.

  20. Crystallization behaviors and seal application of basalt based glass-ceramics

    NASA Astrophysics Data System (ADS)

    Ateş, A.; Önen, U.; Ercenk, E.; Yılmaz, Ş.

    2017-02-01

    Basalt based glass-ceramics were prepared by conventional melt-quenching technique and subsequently converted to glass-ceramics by a controlled nucleation and crystallization process. Glass materials were obtained by melt at 1500°C and quenched in cold water. The powder materials were made by milling and spin coating. The powders were applied on the 430 stainless steel interconnector material, and heat treatment was carried out. The interface characteristics between the glass-ceramic layer and interconnector were investigated by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The results showed that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.

  1. Raman structural study of melt-mixed blends of isotactic polypropylene with polyethylene of various densities

    NASA Astrophysics Data System (ADS)

    Prokhorov, K. A.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Guseva, M. A.; Shklyaruk, B. F.; Gerasin, V. A.

    2018-04-01

    We report a Raman structural study of melt-mixed blends of isotactic polypropylene with two grades of polyethylene: linear high-density and branched low-density polyethylenes. Raman methods, which had been suggested for the analysis of neat polyethylene and isotactic polypropylene, were modified in this study for quantitative analysis of polyethylene/polypropylene blends. We revealed the dependence of the degree of crystallinity and conformational composition of macromolecules in the blends on relative content of the blend components and preparation conditions (quenching or annealing). We suggested a simple Raman method for evaluation of the relative content of the components in polyethylene/polypropylene blends. The degree of crystallinity of our samples, evaluated by Raman spectroscopy, is in good agreement with the results of analysis by differential scanning calorimetry.

  2. Alloy Development, Processing and Characterization of Devitrified Titanium Base Microcrystalline Alloys.

    DTIC Science & Technology

    1984-12-01

    quench rates (10V 10V [/sec). Since the heat transport and temperature profile of Ti melt in the cold copper crucible are not well known, melting...experiments in a cold copper crucible by arc heating were conducted using Ti-6.3Si alloy. The temperature measurement at both the surface and the bottom of the...melt spinning compart- ment B, and ribbon processing chamber C. The pre-melted alloy ingot is . - " charged directly into a cold copper crucible while

  3. Bromine speciation in hydrous haplogranitic melts up to 7 GPa

    NASA Astrophysics Data System (ADS)

    Cochain, B.; de Grouchy, C.; Crepisson, C.; Kantor, I.; Irifune, T.; Sanloup, C.

    2013-12-01

    Halogens are minor volatiles in the Earth's mantle and crust, but they have significant and specific influences on magmatic and degassing processes. They also provide insights about subsurface magma movement and eruption likelihood in subduction-related volcanism. Their speciation in silicate melts affects volatile exsolution, rheology, and the thermodynamic properties of the melts but still remains relatively unknown. A few studies have explored halogen speciation at room conditions, i.e. in glasses but no firm conclusion has yet been reached. Furthermore, halogen speciation remains unexplored at high pressures and temperatures. In this work we investigate the speciation of Br in subduction-related melt (hydrous haplogranite melt) up to 1200°C and 7 GPa using X-ray absorption spectroscopy (XANES and EXAFS) at the Br K-edge. High P-T conditions were generated by the Paris-Edinburgh press. The use of nanocrystalline diamond capsules enabled us to avoid glitches in the EXAFS spectra. The results provide valuable information on Br speciation and its evolution with pressure. It gives insights into solubility mechanisms for halogens in magmas at depth and on their degassing from the melt. In addition, we were able to identify quench effects on the atomic environment of Br by comparison of high P-T in-situ spectra and ex-situ spectra recorded on quenched samples.

  4. Quenching behavior of molten pool with different strategies – A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrikant,, E-mail: 2014rmt9018@mnit.ac.in; Pandel, U.; Duchaniya, R. K.

    After the major severe accident in nuclear reactor, there has been lot of concerns regarding long term core melt stabilization following a severe accident in nuclear reactors. Numerous strategies have been though for quenching and stabilization of core melt like top flooding, bottom flooding, indirect cooling, etc. However, the effectiveness of these schemes is yet to be determined properly, for which, lot of experiments are needed. Several experiments have been performed for coolability of melt pool under bottom flooding as well as for indirect cooling. Besides these tests are very scattered because they involve different simulants material initial temperatures andmore » masses of melt, which makes it very complex to judge the effectiveness of a particular technique and advantage over the other. In this review paper, a study has been carried on different cooling techniques of simulant materials with same mass. Three techniques have been compared here and the results are discussed. Under top flooding technique it took several hours to cool the melt under without decay heat condition. In bottom flooding technique was found to be the best technique among in indirect cooling technique, top flooded technique, and bottom flooded technique.« less

  5. 3-D Modeling of Directional Solidification of a Non-Dilute Alloy with Temperature and Concentration Fields Coupling via Materials Properties Dependence and via Double Diffusive Convection

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.

  6. In situ study at high pressure and temperature of the environment of water in hydrous Na and Ca aluminosilicate melts and coexisting aqueous fluids

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Dalou, Célia; Mysen, Bjorn O.

    2017-07-01

    The bonding and speciation of water dissolved in Na silicate and Na and Ca aluminosilicate melts were inferred from in situ Raman spectroscopy of the samples, in hydrothermal diamond anvil cells, while at crustal temperature and pressure conditions. Raman data were also acquired on Na silicate and Na and Ca aluminosilicate glasses, quenched from hydrous melts equilibrated at high temperature and pressure in a piston cylinder apparatus. In the hydrous melts, temperature strongly influences O-H stretching ν(O-H) signals, reflecting its control on the bonding of protons between different molecular complexes. Pressure and melt composition effects are much smaller and difficult to discriminate with the present data. However, the chemical composition of the melt + fluid system influences the differences between the ν(O-H) signals from the melts and the fluids and, hence, between their hydrogen partition functions. Quenching modifies the O-H stretching signals: strong hydrogen bonds form in the glasses below the glass transition temperature Tg, and this phenomenon depends on glass composition. Therefore, glasses do not necessarily record the O-H stretching signal shape in melts near Tg. The melt hydrogen partition function thus cannot be assessed with certainty using O-H stretching vibration data from glasses. From the present results, the ratio of the hydrogen partition functions of hydrous silicate melts and aqueous fluids mostly depends on temperature and the bulk melt + fluid system chemical composition. This implies that the fractionation of hydrogen isotopes between magmas and aqueous fluids in water-saturated magmatic systems with differences in temperature and bulk chemical composition will be different.

  7. Rapid Quench in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  8. Rapid Quench in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Michael M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory’s main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, iron-chromium-nickel, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. The system is described and some initial results are presented.

  9. Graphite solubility and co-vesiculation in basalt-like melts at one-ATM

    NASA Technical Reports Server (NTRS)

    Colson, R. O.

    1993-01-01

    The identity and source of the vapor phase that caused lunar lava-fountaining and vesiculation in lunar basalts continues to be of interest because of its implications for the composition and state of the lunar interior and because of its implications for lunar resources. In light of the apparent near-absence of H2O on the Moon, it has been suggested that the vapor phase may be CO2-CO. This premise is supported by the presence of carbon on the surface of volcanic glass beads. However, although the rapid exsolution of CO2 from a melt during decompression may be consistent with firefountaining, it fails to provide a satisfying explanation for vesiculation in mare basalt where exsolution of the gas phase would more reasonably be related to cooling/crystallization at low pressure rather than decompression from high pressure. Also, geochemical trends in lunar volcanic glasses suggest that their source has an oxygen fugacity more reducing than the iron-wustite buffer, an oxygen fugacity that is inconsistent with presence of dissolved CO2-CO at depth. The results of experiments in which a vesicular 'basalt' is produced from a melt equilibrated with graphite and pure CO gas at one atmosphere pressure are reported. The vesiculation is apparently related to exsolution of CO or a CO species during cooling of the melt or growth of quench crystals. Additionally, particulate carbon dispersed through the quenched sample suggests that elemental carbon is either in solution in the melt prior to quenching or tends to go into suspension perhaps as colloid-like particles. These two observations may provide insight into the nature of fire-fountaining and vesiculation on the Moon.

  10. Shock Pressures, Temperatures and Durations in L Chondrites: Constraints from Shock-Vein Mineralogy

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Aramovish Weaver, C.; Decarli, P. S.; Sharp, T. G.

    2003-12-01

    Shock effects in meteorites provide a record of major impact events on meteorite parent bodies. Shock veins in chondrites, which result from local melting during shock loading, are the location of all high-pressure minerals. Shock veins contain igneous assemblages, produced by the crystallization of shock-induced melt, and metamorphic assemblages, produced by solid-state transformation in entrained host-rock clasts and wall rock. The mineralogy, distribution of high-pressure minerals and microstructures in shock veins provide a record of crystallization pressures and quench histories that can be used to constrain shock pressures and pulse duration. Here we report mineralogical and microstructural studies of shock-induced melt veins in L chondrites that provide insight into the impact history of the L-chondrite parent body. Eight L6 chondrites were investigated using FESEM and TEM and Raman spectroscopy: RC 106 (S6), Tenham (S6), Umbarger (S4-S6), Roy (S3-S5), Ramsdorf (S4), Kunashak (S4), Nakhon Pathon (S4) and La Lande (S4). Igneous melt-vein assemblages, combined with published phase equilibrium data (Agee et al. 1996), indicate crystallization pressures from less than 2.5 GPa for Kunashack and LaLande to approximately 25 GPa for Tenham. Because shock veins quench primarily by thermal conduction, crystallization starts at vein edges and progresses inward. Variation in the igneous assemblage across shock veins, combined with thermal modelling, provides constraints on quench times and pressure variation during quench. Most samples appear to have crystallized prior to shock release, whereas Kunashack and LaLande apparently crystallized after pressure release. RC 106 and Tenham (both S6), which have thick melt veins with uniform igneous assemblages, crystallized under equilibrium shock pressures of approximately 22-25 GPa during shock events that lasted at least 500 ms and 50ms, respectively. The fact that S6 samples do not appear to have crystallized at a pressures greater than about 25 GPa, suggest that the impacts that produced shock veins in chondrites had low relative impact velocities.

  11. In Situ XANES of U and Th in Silicate Liquids at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Mallmann, G.; Wykes, J.; Berry, A.; O'Neill, H. S.; Cline, C. J., II; Turner, S.; Rushmer, T. A.

    2016-12-01

    Although the chemical environments of elements in silicate melts at specific conditions of temperature, pressure and oxygen fugacity (fO2) are often inferred from measurements after quenching the melts to glasses, it is widely recognized that changes may occur during the quenching process, making measurements in situ at high pressure and temperature highly desirable. A case of importance in geochemistry is the speciation of uranium in silicate melts as a function of pressure. Evidence from mineral-melt partitioning and XANES (X-ray Absorption Near-Edge Structure) spectroscopy of glasses suggests that U5+ may be stable at low pressures in the Earth's crust (along with U4+ or U6+, depending on fO2) where basaltic liquids crystallize, but not in the Earth's upper mantle where peridotite partially melts to produce such liquids. To test these observations we recorded in situ transmission U and Th L3-edge XANES spectra of U and Th-doped silicate liquids at 1.6 GPa and 1350°C using the D-DIA apparatus at the X-ray Absorption Spectroscopy Beamline of the Australian Synchrotron. Data for thorium, which occurs exclusively as a tetravalent cation under terrestrial fO2 conditions, were collected as a `control' to monitor for changes in coordination. The cell assembly consisted of a boron-epoxy cube as pressure medium, alumina sleeve and cylindrical graphite heater. The starting mix, a powdered synthetic average MORB silicate glass doped with 2 wt.% of U and Th, was loaded into San Carlos olivine capsules along with solid oxygen buffers (either Re-ReO2 or Ru-RuO2) in a sandwich arrangement. The capsule was then placed inside the graphite heater and insulated with crushable MgO powder. Temperature was monitored using a type D thermocouple. U and Th L3-edge XANES spectra were recorded throughout the heating/compression cycle and then after quenching. Our preliminary assessment indicates that the U-XANES spectra recorded for the liquid in situ at high pressure and temperature and subsequently for the quenched glass are very similar, which would suggest no apparent change in uranium coordination and/or valence state on cooling/decompression.

  12. Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland

    USGS Publications Warehouse

    Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.

    2013-01-01

    The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of the felsite, accompanied locally by partial assimilation. The interstitial melt in the felsite has similar normalized SiO2 content as the rhyolite melt but is distinguished by higher K2O and lower CaO and plots near the minimum melt composition in the granite system. Augite in the partially melted felsite has re-equilibrated to more calcic metamorphic compositions. Rare quenched glass fragments containing glomeroporphyritic crystals derived from the felsite show textural evidence for resorption of alkali feldspar and quartz. The glass in these fragments is enriched in SiO2 relative to the rhyolite melt or the interstitial felsite melt, consistent with the textural evidence for quartz dissolution. The quenching of these melts by drilling fluids at in situ conditions preserves details of the melt–wall rock interaction that would not be readily observed in rocks that had completely crystallized. However, these processes may be recognizable by a combination of textural analysis and in situ analytical techniques that document compositional heterogeneity due to partial melting and local assimilation.

  13. Spectroscopic studies on samarium oxide (Sm2O3) doped tungsten tellurite glasses

    NASA Astrophysics Data System (ADS)

    Shekhawat, M. S.; Basha, S. K. Shahenoor; Rao, M. C.

    2018-05-01

    Samarium oxide (Sm2O3) doped tungsten tellurite glasses have been prepared by conventional rapid melt quenching method. The optical absorption spectrum of Samarium oxide doped tellurite glasses showed an absorption peak at 301 nm. FT-Raman studies suggested that Sm2O3 could modify the properties of glass and CIE chromaticity coordinates were calculated for the generation of white light from the luminescence spectra.

  14. Structure of Al-Fe alloys prepared by different methods after severe plastic deformation under pressure

    NASA Astrophysics Data System (ADS)

    Dobromyslov, A. V.; Taluts, N. I.

    2017-06-01

    Al-Fe alloys prepared by casting, rapid quenching from the melt, and mechanical alloying from elemental powders have been studied using X-ray diffraction analysis, optical metallography, transmission electron microscopy, and microhardness measurements in the initial state and after severe plastic deformation by high-pressure torsion using Bridgman anvils. The relationship between the phase composition, microstructure, and the microhardness of the investigated alloys has been established.

  15. Pressure-jump induced rapid solidification of melt: a method of preparing amorphous materials

    NASA Astrophysics Data System (ADS)

    Liu, Xiuru; Jia, Ru; Zhang, Doudou; Yuan, Chaosheng; Shao, Chunguang; Hong, Shiming

    2018-04-01

    By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in rapid compression process for several kinds of materials, such as elementary sulfur, polymer polyether-ether-ketone (PEEK) and poly-ethylene-terephthalate, alloy La68Al10Cu20Co2 and Nd60Cu20Ni10Al10. Experimental results clearly show that their melts could be solidified to be amorphous states through the rapid compression process. Bulk amorphous PEEK with 24 mm in diameter and 12 mm in height was prepared, which exceeds the size obtained by melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K for the first time. Furthermore, it is suggested that the glass transition pressure and critical compression rate exist to form the amorphous phase. This approach of rapid compression is very attractive not only because it is a new technique of make bulk amorphous materials, but also because novel properties are expected in the amorphous materials solidified by the pressure-jump within milliseconds or microseconds.

  16. The Erevan howardite: Petrology of glassy clasts and mineral chemistry

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Ariskin, A. A.

    1993-01-01

    The Erevan howardite is a polymict regolith breccia containing xenoliths of carbonaceous chondrites. In this work, we studied glassy clasts, which could be considered as primary quenched melts, and mineral chemistry of the breccia. The study reveals that the Erevan howardite consists of common rocks of the HED suite. However, unique glassy clasts, which are present in some eucritic melts, were identified. The mineral chemistry and the simulation of crystallization of the melts suggest that the compositions of the melts reflect those of some primary lithologies of EPB.

  17. Early structural development in melt-quenched polymer PTT from atomistic molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Kang; Lin, Shiang-Tai

    2009-12-01

    Molecular dynamics simulations are performed to study the initial structural development in poly(trimethylene terephthalate) (PTT) when quenched below its melting point. The development of local ordering has been observed in our simulations. The thermal properties, such as the glass transition temperature (Tg) and the melting temperature (Tm), determined from our simulations are in reasonable agreement with experimental values. It is found that, between these two temperatures, the number of local structures quickly increases during the thermal relaxation period soon after the system is quenched and starts to fluctuate afterwards. The formation and development of local structures is found to be driven mainly by the torsional and van der Waals forces and follows the classical nucleation-growth mechanism. The variation of local structures' fraction with temperature exhibits a maximum between Tg and Tm, resembling the temperature dependence of the crystallization rate for most polymers. In addition, the backbone torsion distribution for segments within the local structures preferentially reorganizes to the trans-gauche-gauche-trans (t-g-g-t) conformation, the same as that in the crystalline state. As a consequence, we believe that such local structural ordering could be the baby nuclei that have been suggested to form in the early stage of polymer crystallization.

  18. Silicate glasses and sulfide melts in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure, Virginia, USA

    USGS Publications Warehouse

    Belkin, H.E.; Horton, J. Wright

    2009-01-01

    Optical and electron-beam petrography of melt-rich suevite and melt-rock clasts from selected samples from the Eyreville B core, Chesapeake Bay impact structure, reveal a variety of silicate glasses and coexisting sulfur-rich melts, now quenched to various sulfi de minerals (??iron). The glasses show a wide variety of textures, fl ow banding, compositions, devitrifi cation, and hydration states. Electron-microprobe analyses yield a compositional range of glasses from high SiO2 (>90 wt%) through a range of lower SiO2 (55-75 wt%) with no relationship to depth of sample. Some samples show spherical globules of different composition with sharp menisci, suggesting immiscibility at the time of quenching. Isotropic globules of higher interfacial tension glass (64 wt% SiO2) are in sharp contact with lower-surface-tension, high-silica glass (95 wt% SiO2). Immiscible glass-pair composition relationships show that the immiscibility is not stable and probably represents incomplete mixing. Devitrifi cation varies and some low-silica, high-iron glasses appear to have formed Fe-rich smectite; other glass compositions have formed rapid quench textures of corundum, orthopyroxene, clinopyroxene, magnetite, K-feldspar, plagioclase, chrome-spinel, and hercynite. Hydration (H2O by difference) varies from ~10 wt% to essentially anhydrous; high-SiO2 glasses tend to contain less H2O. Petrographic relationships show decomposition of pyrite and melting of pyrrhotite through the transformation series; pyrite? pyrrhotite? troilite??? iron. Spheres (~1 to ~50 ??m) of quenched immiscible sulfi de melt in silicate glass show a range of compositions and include phases such as pentlandite, chalcopyrite, Ni-As, monosulfi de solid solution, troilite, and rare Ni-Fe. Other sulfi de spheres contain small blebs of pure iron and exhibit a continuum with increasing iron content to spheres that consist of pure iron with small, remnant blebs of Fe-sulfi de. The Ni-rich sulfi de phases can be explained by melting and/or concentrating targetderived Ni without requiring an asteroid impactor source component. The presence of locally unaltered glasses in these rocks suggests that in some rock volumes, isolation from postimpact hydrothermal systems was suffi cient for glass preservation. Pressure and temperature indicators suggest that, on a thin-section scale, the suevites record rapid mixing and accumulation of particles that sustained widely different peak temperatures, from clasts that never exceeded 300 ?? 50 ??C, to the bulk of the glasses where melted sulfi de and unmelted monazite suggest temperatures of 1500 ?? 200 ??C. The presence of coesite in some glass-bearing samples suggests that pressures exceeded ~3 GPa. ?? 2009 Geological Society of America.

  19. Reconfigurable Antenna Aperture with Optically Controlled GeTe-Based RF Switches

    DTIC Science & Technology

    2015-03-31

    duration (~100ns) but high amplitude raises the material’s temperature above the melting point . As a liquid, the atoms are randomly distributed...100ns, there is sufficient optical energy to heat and melt a 100nm thick GeTe PCM area of approximately 3µm 2 . Figure 3. Optimum PCM area...which tracks well with previously published thin film heater model [9]. Figure 4. Validation of Melt /Quench Thermal Model Optical Control: The

  20. Superconducting ceramics in the Bi1.5SrCaCu2O sub x system by melt quenching technique

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Deguire, Mark R.

    1989-01-01

    Bi sub 1.5 SrCaCu sub 2 O sub x has been prepared in the glassy state by rapid quenching of the melt. The kinetics of crystallization of various phases in the glass have been evaluated by a variable heating rate differential scanning calorimetry method. The formation various phases on thermal treatments of the glass has been investigated by powder X-ray diffraction and electrical resistivity measurements. Heating at 450 C formed Bi sub 2 Sr sub 2 CuO sub 6, which disappeared on further heating at 765 C, where Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 formed. Prolonged heating at 845 C resulted in the formation of a small amount of a phase with T sub c onset of approx. 108 K, believed to be Bi sub 2 Sr sub 2 Ca sub 2 Cu sub 3 O sub 10. This specimen showed zero resistivity at 54 K. The glass ceramic approach could offer several advantages in the fabrication of the high-T sub c superconductors in desired practical shapes such as continuous fibers, wires, tapes, etc.

  1. Optical properties of nanocrystalline potassium lithium niobate in the glass system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5).

    PubMed

    Ahamad, M Niyaz; Varma, K B R

    2009-08-01

    Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5) (2 < or = x < or = 12, in molar ratio) were prepared by the melt-quenching technique. The glassy nature of the as-quenched samples was established via differential scanning calorimetry (DSC). The amorphous and the crystalline nature of the as-quenched and heat-treated samples were confirmed by the X-ray powder diffraction and transmission electron microscopic (TEM) studies. Transparent glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T(g)). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.

  2. Rotation-induced grain growth and stagnation in phase-field crystal models.

    PubMed

    Bjerre, Mathias; Tarp, Jens M; Angheluta, Luiza; Mathiesen, Joachim

    2013-08-01

    We consider grain growth and stagnation in polycrystalline microstructures. From the phase-field crystal modeling of the coarsening dynamics, we identify a transition from a grain-growth stagnation upon deep quenching below the melting temperature T(m) to a continuous coarsening at shallower quenching near T(m). The grain evolution is mediated by local grain rotations. In the deep quenching regime, the grain assembly typically reaches a metastable state where the kinetic barrier for recrystallization across boundaries is too large and grain rotation with subsequent coalescence or boundary motion is infeasible. For quenching near T(m), we find that the grain growth depends on the average rate of grain rotation, and follows a power-law behavior with time, with a scaling exponent that depends on the quenching depth.

  3. Aluminosilicate melts and glasses at 1 to 3 GPa: Temperature and pressure effects on recovered structural and density changes

    USGS Publications Warehouse

    Bista, S; Stebbins, Jonathan; Hankins, William B.; Sisson, Thomas W.

    2015-01-01

    In the pressure range in the Earth’s mantle where many basaltic magmas are generated (1 to 3 GPa) (Stolper et al. 1981), increases in the coordination numbers of the network-forming cations in aluminosilicate melts have generally been considered to be minor, although effects on silicon and particularly on aluminum coordination in non-bridging oxygen-rich glasses from the higher, 5 to 12 GPa range, are now well known. Most high-precision measurements of network cation coordination in such samples have been made by spectroscopy (notably 27Al and 29Si NMR) on glasses quenched from high-temperature, high-pressure melts synthesized in solid-media apparatuses and decompressed to room temperature and 1 bar pressure. There are several effects that could lead to the underestimation of the extent of actual structural (and density) changes in high-pressure/temperature melts from such data. For non-bridging oxygen-rich sodium and calcium aluminosilicate compositions in the 1 to 3 GPa range, we show here that glasses annealed near to their glass transition temperatures systematically record higher recovered increases in aluminum coordination and in density than samples quenched from high-temperature melts. In the piston-cylinder apparatus used, rates of cooling through the glass transition are measured as very similar for both higher and lower initial temperatures, indicating that fictive temperature effects are not the likely explanation of these differences. Instead, transient decreases in melt pressure during thermal quenching, which may be especially large for high initial run temperatures, of as much as 0.5 to 1 GPa, may be responsible. As a result, the equilibrium proportion of high-coordinated Al in this pressure range may be 50 to 90% greater than previously estimated, reaching mean coordination numbers (e.g., 4.5) that are probably high enough to significantly affect melt properties. New data on jadeite (NaAlSi2O6) glass confirm that aluminum coordination increase with pressure is inhibited in compositions low in non-bridging O atoms.

  4. Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Vermeulen, Paul. A.; Momand, Jamo; Kooi, Bart J.

    2014-07-01

    The reversible amorphous-crystalline phase change in a chalcogenide material, specifically the Se1-xTex alloy, has been investigated for the first time using ultrafast differential scanning calorimetry. Heating rates and cooling rates up to 5000 K/s were used. Repeated reversible amorphous-crystalline phase switching was achieved by consecutively melting, melt-quenching, and recrystallizing upon heating. Using a well-conditioned method, the composition of a single sample was allowed to shift slowly from 15 at. %Te to 60 at. %Te, eliminating sample-to-sample variability from the measurements. Using Energy Dispersive X-ray Spectroscopy composition analysis, the onset of melting for different Te-concentrations was confirmed to coincide with the literature solidus line, validating the use of the onset of melting Tm as a composition indicator. The glass transition Tg and crystallization temperature Tc could be determined accurately, allowing the construction of extended phase diagrams. It was found that Tm and Tg increase (but Tg/Tm decrease slightly) with increasing Te-concentration. Contrarily, the Tc decreases substantially, indicating that the amorphous phase becomes progressively unfavorable. This coincides well with the observation that the critical quench rate to prevent crystallization increases about three orders of magnitude with increasing Te concentration. Due to the employment of a large range of heating rates, non-Arrhenius behavior was detected, indicating that the undercooled liquid SeTe is a fragile liquid. The activation energy of crystallization was found to increase 0.5-0.6 eV when the Te concentration increases from 15 to 30 at. % Te, but it ceases to increase when approaching 50 at. % Te.

  5. Submersion Quenching of Undercooled Liquid Metals in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.

    2016-01-01

    The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. The laboratory has recently added a new capability, a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals and alloys. This is the first submersion quench system inside an electrostatic levitator. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and silicon-cobalt alloys. This rapid quench system will allow materials science studies of undercooled materials and new materials development, including studies of metastable phases and transient microstructures. In this presentation, the system is described and some initial results are presented.

  6. Features of Crystallization of Rapidly Quenched Ni45Ti32Hf18Cu5 and Ni25Ti32Hf18Cu25 Alloys from Melt with High-Temperature Shape Memory Effect

    NASA Astrophysics Data System (ADS)

    Pushin, A. V.; Pushin, V. G.; Kuntsevich, T. E.; Kuranova, N. N.; Makarov, V. V.; Uksusnikov, A. N.; Kourov, N. I.

    2017-12-01

    A comparative study of the structure and the chemical and phase composition of Ni45Ti32Hf18Cu5 and Ni25Ti32Hf18Cu25 amorphous alloys obtained by fast-quenching of melt stream by spinning has been carried out by transmission and scanning electron microscopy and X-ray diffraction. The critical temperatures of their devitrification were determined by the data of temperatures measurements of electrical resistance. The features of the formation of ultrafine structure and the phase transformation at the vitrification depending on the regimes of heat treatment and chemical composition of alloy have been established.

  7. Electrical switching in Sb doped Al23Te77 glasses

    NASA Astrophysics Data System (ADS)

    Pumlianmunga; Ramesh, K.

    2017-08-01

    Bulk glasses (Al23Te77)Sbx (0≤ x≤10) prepared by melt quenching method show a change in switching type from threshold to memory for x≥5. An increase in threshold current (Ith) and a concomitant decrease in threshold voltage (Vth) and resisitivity(ρ) have been observed with the increase of Sb content. Raman spectra of the switched region in memory switching compositions show a red shift with respect to the as prepared glasses whereas in threshold switching compositions no such shift is observed. The magic angle spinning nuclear magnetic resonance (MAS NMR) of 27Al atom shows three different environments for Al ([4]Al, [5]Al and [6]Al). The samples annealed at their respective crystallization temperatures show rapid increase in [4]Al sites by annihilating [5]Al sites. The melts of threshold switching glasses (x≤2.5) quenched in water at room temperature (27 °C) show amorphous structure whereas, the melt of memory switching glasses (x>2.5) solidify into crystalline structure. The higher coordination of Al increases the cross-linking and rigidity. The addition of Sb increases the glass transition(Tg) and decreases the crystallization temperature(Tc). The decrease in the interval between the Tg and Tc eases the transition between the amorphous and crystalline states and improves the memory properties. The temperature rise at the time of switching can be as high as its melting temperature and the material in between the electrodes may melt to form a filament. The filament may consists of temporary (high resistive amorphous) and permanent (high conducting crystalline) units. The ratio between the temporary and the permanent units may decide the switching type. The filament is dominated by the permanent units in memory switching compositions and by the temporary units in threshold switching compositions. The present study suggests that both the threshold and memory switching can be understood by the thermal model and filament formation.

  8. Nonlinear optical properties of TeO2-P2 O5- ZnO-LiNbO3 glass doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Miedzinski, R.; Fuks-Janczarek, I.; El Sayed Said, Y.

    2016-10-01

    A series of lithium niobate LiNbO3 (LN) single crystals doped with Er3+ were grown under the same conditions by melt-quenching method. The distribution coefficients of rare-earth (RE) elements in the "crystal-melt" system of LN were determined at the beginning of the crystal growth. Their dependence on the dopant concentration in melt for 0.4 and 0.8 wt % was investigated. The procedure is applied to RE-doped lithium niobate (LiNbO3), a material of great interest for optoelectronic applications. We have obtained the real χR(3) and imaginary parts χI(3) of the third-order, nonlinear optical susceptibility to the nonlinear refractive index n2 and the nonlinear absorption coefficient β that are valid for absorbing systems. We show that nonlinear refractive or absorptive effects are the consequence of the interplay between the real and imaginary parts of the third-order susceptibilities of the materials. The method for measuring non-linear absorption coefficients and nonlinear refractive index based on well-known Z-scan is presented.

  9. Structural Evolution of Q-Carbon and Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Gupta, Siddharth; Bhaumik, Anagh; Sachan, Ritesh; Narayan, Jagdish

    2018-04-01

    This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbon and nanodiamonds by nanosecond laser melting and quenching of diamond-like carbon (DLC) thin films. DLC films with different sp 3 content were melted rapidly in a controlled way in super-undercooled state and quenched, leading to formation of distinct nanostructures, i.e., nanodiamonds, Q-carbon, and Q-carbon nanocomposites. This analysis provides direct evidence of the dependence of the super-undercooling on the structural evolution of Q-carbon. Finite element heat flow calculations showed that the super-undercooling varies monotonically with the sp 3 content. The phenomenon of solid-liquid interfacial instability during directional solidification from the melt state is studied in detail. The resulting lateral segregation leads to formation of cellular filamentary Q-carbon nanostructures. The dependence of the cell size and wavelength at the onset of instability on the sp 3 content of DLC thin films was modeled based on perturbation theory.

  10. Preparation of glass-ceramics from molten steel slag using liquid-liquid mixing method.

    PubMed

    Zhang, Kai; Liu, Jianwen; Liu, Wanchao; Yang, Jiakuan

    2011-10-01

    A novel approach to prepare glass-ceramics from molten steel slag (MSS) was proposed. In laboratory, the water-quenched steel slag was melted at 1350 °C to simulate the MSS. A mixture of additive powders in wt.% (55 quartz powder, 5 Na2O, 16 emery powder, 15 CaO, 8 MgO, 1 TiO2) were melted into liquid at 1350 °C separately. Then the MSS and the molten additives were mixed homogeneously in order to obtain parent glass melt. The proportion of MSS in the melt was 50 wt.%. The melt was subsequently cast, annealed, heat-treated and transformed into glass-ceramics. Their microstructure and crystallization behavior were analyzed. The samples exhibited excellent properties and displayed bulk crystallization. The major crystallized phase was diopside ((Fe0.35Al0.20Mg0.44)Ca0.96(Fe0.08Si0.70Al0.20)2O6.12), which was uniformly distributed in the microstructure. The novel approach may help iron and steel industry achieve zero disposal of steel slag with utilization of the heat energy of the MSS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Physical properties of glasses in the Ag2GeS3-AgBr system

    NASA Astrophysics Data System (ADS)

    Moroz, M. V.; Demchenko, P. Yu.; Prokhorenko, S. V.; Moroz, V. M.

    2013-08-01

    Glasses have been prepared by quenching melts in the Ag2GeS3-AgBr system in a range of 0-53 mol % AgBr. The concentration dependences of density, microhardness, glass transition temperatures, and crystallization of alloys have been established. The conductivity of glasses has been investigated by the dc probe method in a range of 240-420 K. The models of the drift motion of silver and halogen ions have been proposed.

  12. XANES study on Fe, U and Th in hydrous melts at high temperature and pressure

    NASA Astrophysics Data System (ADS)

    Wilke, M.; Schmidt, C.; Farges, F.; Borchert, M.; Simionovici, A.; Hahn, M.

    2005-12-01

    Insight to the structural units of melts is an important key to model properties of magmas. The effect of water and pressure on the local structure around minor to trace elements in silicate melts was investigated at in-situ conditions. The study was performed using XANES spectroscopy and a diamond anvil-cell. This was done to characterize spurious effects observed on glasses that are potentially invoked by quenching [1] and to understand better the processes occurring during the quench. We present results of in-situ XANES measurements on iron, uranium and thorium in hydrous silicate melt up to 1 GPa and 700° C. In-situ XANES spectra were recorded at the ESRF (Grenoble, France), beamline ID 22, using a hydrothermal diamond anvil cell with a design optimized for such measurements [2], i.e. recesses on the front and the back-side of one of the diamond anvils that provide the possibility to collect spectra at relatively low energies (down to 7 keV) and relatively low concentrations (0.1-1 wt%). In-situ Fe K-edge XANES spectra of Fe(II) in hydrous haplogranitic melt at 700° C and 500 MPa suggests that the local structure around Fe in hydrous glass observed previously is probably due to ordering during the quench. Additionally, the XANES is very similar to in-situ spectra taken on Fe(II) in anhydrous haplogranitic melt at 1150° C and ambient pressure. This indicates that the combined effect of water and pressure (0-500 MPa range) does not influence drastically the local structure of Fe in this type of melt composition. In-situ LIII-edge XANES of U in hydrous haplogranitic melt (1 wt% U) at 700° C and 620 MPa show that, upon reduction, U precipitated as uraninite. This suggests a low amount of NBO's (to which tetravalent actinides preferentially bond [3]) in this water-saturated melt. In contrast, U-bearing (1000 ppm) hydrous sodium-tri-silicate melt shows the presence of U(IV) dissolved in the melt as 6-7 coordinated species, as in dry glasses [3]. Similar structural information is obtained for Th(IV). Spectra taken above and below the complete miscibility of the silicate and aqueous phase (ca. 460° C) also reveal no difference in speciation. The aqueous fluid measured at ambient conditions after the run did not show any significant amount of dissolved tetravalent actinides [1] Wilke et al. (2002) Chem. Geol., 189, 55-67. [2] Schmidt C., Rickers K. (2003) Am. Mineral., 88, 288-292. [3] Farges F. (1991) Geochim. Cosmochim. Acta, 55, 3303-3319.

  13. Modifications to the rapid melt/rapid quench and transparent polymer video furnaces for the KC-135

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Kosten, Sue E.; Workman, Gary L.

    1990-01-01

    Given here is a summary of tasks performed on two furnace systems, the Transparent Polymer (TPF) and the Rapid Melt/Rapid Quench (RMRQ) furnaces, to be used aboard NASA's KC-135. It was determined that major changes were needed for both furnaces to operate according to the scientific investigators' experiment parameters. Discussed here are what the problems were, what was required to solve the problems, and possible future enhancements. It was determined that the enhancements would be required for the furnaces to perform at their optimal levels. Services provided include hardware and software modifications, Safety DataPackage documentation, ground based testing, transportation to and from Ellington Air Field, operation of hardware during KC-135 flights, and post-flight data processing.

  14. Polymorphism of phosphoric oxide

    USGS Publications Warehouse

    Hill, W.L.; Faust, G.T.; Hendricks, S.B.

    1943-01-01

    The melting points and monotropic relationship of three crystalline forms of phosphoric oxide were determined by the method of quenching. Previous vapor pressure data are discussed and interpreted to establish a pressure-temperature diagram (70 to 600??) for the one-component system. The system involves three triple points, at which solid, liquid and vapor (P4O10) coexist in equilibrium, namely: 420?? and 360 cm., 562?? and 43.7 cm. and 580?? and 55.5 cm., corresponding to the hexagonal, orthorhombic and stable polymorphs, respectively, and at least two distinct liquids, one a stable polymer of the other, which are identified with the melting of the stable form and the hexagonal modification, respectively. Indices of refraction of the polymorphs and glasses were determined. The density and the thermal, hygroscopic and structural properties of the several phases are discussed.

  15. Measurement of process-dependent material properties of pharmaceutical solids by nanoindentation.

    PubMed

    Liao, Xiangmin; Wiedmann, Timothy Scott

    2005-01-01

    The purpose of this work was to evaluate nanoindentation as a means to characterize the material properties of pharmaceutical solids. X-ray diffraction of potassium chloride and acetaminophen showed that samples prepared by cooling a melt to a crystalline sample as opposed to slow recrystallization had the same crystal structure. With analysis of the force-displacement curves, the KCl quenched samples had a hardness that was 10 times higher than the recrystallized KCl, while acetaminophen quenched samples were 25% harder than the recrystallized samples. The elastic moduli of the quenched samples were also much greater than that observed for the recrystallized samples. Although the elasticity was independent of load, the hardness increased with load for acetaminophen. With each sample, the flow at constant load increased with applied load. Etching patterns obtained by atomic force microscopy showed that the KCl quenched sample had a higher dislocation density than the recrystallized sample, although there was no evident difference in the acetaminophen samples. Overall, the differences in the observed sample properties may be related to the dislocation density. Thus, nanoindentation has been shown to be a sensitive method for determining a processed-induced change in the hardness, creep, and elasticity of KCl and acetaminophen. (c) 2004 Wiley-Liss, Inc.

  16. Primary arm spacing in chill block melt spun Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  17. Primary arm spacing in chill block melt spun Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1987-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt pct Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacing measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  18. Temperature and Time Constraints on Dissolution, Fe-Mg Exchange and Zoning between Relict Forsterite and Chondrule Melt - Implications for Thermal History of Chondrules

    NASA Astrophysics Data System (ADS)

    Ustunisik, G. K.; Ebel, D. S. S.; Walker, D.

    2016-12-01

    The chemical and textural characteristics of different generations of relict olivine grains in chondrules record the fact that chondrules were re-melted. Mineral dissolution, Fe-Mg exchange, and zoning within the relict crystals constrain the T-t aspects of this re-melting process. Here, we performed isothermal and dynamic cooling experiments at LDEO of Columbia University. For each run, a cubic crystal of known dimensions of Mogok forsterite (Fo99) was placed in synthetic Type IIA chondrule mesostasis with 4.92 wt% FeO (TLiq 1315ºC). Pressed pellets of this mixture were hung on Pt-wire loops and inserted in vertical Deltech furnace where CO-CO2 gas mixtures kept fO2 IW-1. For isothermal experiments, each charge was heated to 1428ºC, 1350ºC, 1250ºC, and 1150ºC and was held there from 20 mins to several days (>3 days) before drop-quenching into cold water. The dynamic crystallization experiments were held at 1428ºC for 20 mins, cooled at rates of 75ºC, 722ºC, and 1444ºC/hr to 1000ºC and then water quenched. X-ray-CT and EMPA at AMNH were used to image the partially resorbed/zoned olivines in 3-D before and after each run to observe textural evolution of the crystal shapes and volumes and to determine chemical changes. The isothermal experiments at 1150 and 1250ºC for 20 mins, produced no bulk FeO diffusion into the Mogok forsterite. Very minor Fe-Mg exchange at the crystal rims gives slight MgO zoning within the nearby melt. With increasing duration (1 hr and 22 hrs), at 1250ºC, embayments of melt form into the rims of the crystal (amplified at 22 hrs) with significant Fe-Mg exchange. FeO content of Mogok increased with major MgO zonation within nearby melt. At 1150ºC, the same increase in FeO in Mogok and zonation in nearby glass could only be achieved in >3 days experiment. At high Ts (1428ºC) in 20 min run, 75 volume % of Mogok forsterite has been dissolved into the melt. Resorption erodes the Fe-Mg exchange at the rims of the crystal. At longer duration experiments (1250ºC, 22 hrs and 1150ºC, >3days) quench olivine crystals and silica (cristobalite) have been observed within the melt along with low-Ca pyroxene along the edges of the Mogok forsterite. The metastable pyroxene acts as a protective cover thwarting Fe-Mg exchange between Mogok and Fe-bearing melt. The cristobalite occurred as a result of melt fractionation.

  19. Picritic glasses from Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Weber, W.S.; Dixon, J.E.

    1991-01-01

    ESTIMATES of the MgO content of primary Hawaiian tholeiitic melts range from 8wt% to as high as 25wt% (refs 1, 2). In general, these estimates are derived from analysis of the whole-rock composition of lavas, coupled with the compositions of the most magnesian olivine phenocrysts observed. But the best estimate of magma composition comes from volcanic glass, as it represents the liquid composition at the time of quenching; minimal changes occur during the quenching process. Here we report the discovery of tholeiitic basalt glasses, recovered offshore of Kilauea volcano, that contain up to 15.0 wt% MgO. To our knowledge, these are the most magnesian glasses, and have the highest eruption temperatures (??? 1,316 ??C), yet found. The existence of these picritic (high-MgO) liquids provides constraints on the temperature structure of the upper mantle, magma transport and the material and thermal budgets of the Hawaiian volcanoes. Furthermore, picritic melts are affected little by magma-reservoir processes, and it is therefore relatively straightforward to extrapolate back to the composition of the primary melt and its volatile contents.

  20. Physical vapor deposition as a route to hidden amorphous states

    PubMed Central

    Dawson, Kevin J.; Kearns, Kenneth L.; Yu, Lian; Steffen, Werner; Ediger, M. D.

    2009-01-01

    Stable glasses of indomethacin (IMC) were prepared by using physical vapor deposition. Wide-angle X-ray scattering measurements were performed to characterize the average local structure. IMC glasses prepared at a substrate temperature of 0.84 Tg (where Tg is the glass transition temperature) and a deposition rate of 0.2 nm/s show a broad, high-intensity peak at low q values that is not present in the supercooled liquid or melt-quenched glasses. When annealed slightly above Tg, the new WAXS pattern transforms into the melt-quenched glass pattern, but only after very long annealing times. For a series of samples prepared at the lowest deposition rate, the new local packing arrangement is present only for deposition temperatures below Tg −20 K, suggesting an underlying first-order liquid-to-liquid phase transition. PMID:19666494

  1. Analysis of X-Ray Microradiographs of Al-Au Interface Quench Profile using Modeling of Solidification Including Double-Diffusion and Convection in the Melt

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William

    1999-01-01

    Experimental data on Al-0.8Au horizontal solidification of a 1 mm thick specimen in a BN crucible shows the effect of growth rate on the solidification interface shape. For translation rates below 0.5 micron/s the interface maintains a plain and flat shape. When the translation rate is 3 to 5 micron/s or more, the interface appearance changes to two planar zones, with the zone closer to the bottom having higher inclination. The interface shapes were measured by first quenching in place during growth. X-ray microscopy shows the interface shape within the quenched sample by viewing through the side of the specimen. In order to provide theoretical explanation of the phenomena, numerical modeling was undertaken using finite element code FIDAP. Double diffusion convection in Al-0.8Au melt and crystal-melt interface curvature during directional solidification was analyzed numerically. Actual thermophysical properties of Al-0.8Au including the binary Al-Au phase diagram were used. Although convection in the sample is weak, for the slower translation rate convection and diffusion is sufficient for the redistribution of initial compositional stratification caused by gravity. When translation rate is raised, neither convection nor diffusion can provide proper mixing so that solidification temperatures differ significantly near the bottom within the bulk of the sample. As a result, the solid-liquid interface appears to have two planar zones with different inclination.

  2. Microstructures define melting of molybdenum at high pressures

    NASA Astrophysics Data System (ADS)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  3. Microstructures define melting of molybdenum at high pressures

    PubMed Central

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-01-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature. PMID:28248309

  4. In situ determination of binary alloy melt compositions in the LHDAC by X- Radiography

    NASA Astrophysics Data System (ADS)

    Lord, O. T.; Walter, M. J.; Walker, D.; Clark, S. M.

    2008-12-01

    Constraining the light element in Earth's molten outer core requires an understanding of the melting phase relations in iron-light element binary systems. For example, it is critical to determine the composition of liquids at binary eutectics. Typically such measurements are carried out after the sample has been quenched in temperature and pressure. Such 'cook and look' methods possibly suffer from systematic errors introduced by exsolution of the light element from the melt on quench and error in the reintegration of the liquid composition [1]. Here, we present a novel method for the determination of melt compositions in iron-light element binary systems in situ in the LHDAC at simultaneous high-pressure, high-temperature conditions. Samples consist of a light element bearing compound, such as FeO, surrounded by a pure iron ring, forming a donut ~100 μm in diameter and ~15 μm thick. The donuts are loaded into stainless steel gaskets in the DAC, sandwiched between discs fabricated from sol-gel deposited nanocrystalline Al2O3 with similar dimensions to the donut. Pressure is monitored by ruby fluorescence during compression. The sample is heated at the boundary between the iron and light element compound using two 100 W IR lasers in a double-sided configuration at beamline 12.2.2 at the Advanced Light Source. Temperature is measured by spectroradiometry. Before, during and after melting, X-radiographic images of the sample are taken by shining a defocused beam of synchrotron X-rays through the sample and onto a CdWO4 phosphor. The visible light from the phosphor is then focused onto a high resolution CCD, where absorption contrast images are recorded. The absorption of the molten region is then determined, and it's composition calculated by linear interpolation between the absorption of the two solid end members. As a test of the reliability of the method we measured the Fe-FeS eutectic to 20 GPa and our results are in good agreement with previous studies that are based on various ex situ techniques. We measured the eutectic composition between Fe and Fe3C up to 44 GPa, and found that the carbon content of the eutectic drops rapidly above about 10 GPa, dropping to less that 1 wt% by 44 GPa. This result is generally consistent with the thermodynamic calculations of Wood [2]. Experiments on the Fe-FeSi eutectic yielded an increase in the Si content of the eutectic to 35 GPa, consistent with data from large volume press experiments [3] Notably, melting experiments at 35-43 GPa and ~2500 K on a boundary between Fe and FeO failed to yield evidence of a melt with a composition distinguishable from pure iron. However, an experiment at 12 GPa and 2700 K between Fe and FeO(OH) did yield a melt with a composition intermediate between the two end members. This suggests that O solubility in the Fe-O eutectic melt is low at mid-mantle pressures, but that H may dissolve into the melt by itself or in combination with O. [1] Walker, D., 2005. Core-Mantle chemical issues. Canad. Min., 43, 1553-1564 [2] Wood, B. J., 1993. Carbon in the core. Earth Planet Sci. Lett., 117, 593-607 [3] Kuwayama, Y. & Hirose, K., 2004. Phase relations in the system Fe-FeSi at 21 GPa. Am. Min., 89, 273-276.

  5. Consequences of magma eruption dynamics: Intraflow variations in petrography and mineral chemistry within a single eruptive unit from Whitewater Canyon, Oregon

    NASA Astrophysics Data System (ADS)

    Ustunisik, G. K.; Nielsen, R. L.

    2012-12-01

    Individual lava flows are sometimes characterized by progressive changes in petrography and mineral chemistry which have been attributed to progressive magma chamber evacuation. In the case of Whitewater Canyon flow, a glacially quenched andesite unit on the NW flank of Mt. Jefferson, significant changes have been observed in phenocryst content and mineral chemistry within a transect from the early erupted components (inferred by flow morphology to be quenched against glacial ice ~10000 ybp), to the top of the 30 m thick flow unit. With the increasing distance from the quenched interface, the matrix changes from glassy to microcrystalline. The matrix material is generally similar in composition to the glassy melt inclusions rhyolitic in composition yet relatively degassed (lower Cl, S). Based on their morphology, we have identified at least 4 populations of plagioclase phenocrysts within the single flow: (1) Relatively unzoned high An cores (>An80) with oscillatory overgrowth, (2) Lower An cores (An50-60), associated with dacitic melt inclusions, (3) Cellular low An cores (An50-60) with higher An overgrowths (~An65-75), and (4) Lath shaped, sometimes oscillatory zoned moderately high An phenocrysts (An65-75) -often associated with olivine:cpx:plagioclase glomerocrysts. Melt inclusions are present in orthopyroxene and plagioclase, but only in the earliest erupted samples (within 5-10 meters of the quenched interface). This mafic component, characterized by olivine, intermediate plagioclase (An60-75), clinopyroxene, orthopyroxene, and oxides, was present at a range of scales from glomerocrysts to 10 cm+ enclaves. Amphibole and quartz are present only in samples from the interior of the flow unit. The width of reaction rims on amphibole increase as one progress upwards towards the flow interior. Our initial conclusions are this eruptive unit represents the progressive evacuation of a shallow magma chamber where the upper parts of the chamber had already been partially degassed. This is supported by the absence of amphibole phenocrysts in the first erupted, quenched samples. However, the presence of volatiles in glassy melt inclusions and phenocrysts suggests that the system had not completely degassed prior to the eruption. Also, the petrographic heterogeneity of the unit demonstrates that complete overturn and mixing did not happen at Mt. Jefferson. Therefore, eruption may have been triggered by the injection of mafic material; however, the petrographic and field evidence suggests that overturn is not required as part of that triggering event.

  6. Superheat in magma oceans

    NASA Technical Reports Server (NTRS)

    Jakes, Petr

    1992-01-01

    The existence of 'totally molten' planets implies the existence of a superheat (excess of heat) in the magma reservoirs since the heat buffer (i.e., presence of crystals having high latent heat of fusion) does not exist in a large, completely molten reservoir. Any addition of impacting material results in increase of the temperature of the melt and under favorable circumstances heat is stored. The behavior of superheat melts is little understood; therefore, we experimentally examined properties and behavior of excess heat melts at atmospheric pressures and inert gas atmosphere. Highly siliceous melts (70 percent SiO2) were chosen for the experiments because of the possibility of quenching such melts into glasses, the slow rate of reaction in highly siliceous composition, and the fact that such melts are present in terrestrial impact craters and impact-generated glasses. Results from the investigation are presented.

  7. Synthesis and properties of silver nanoparticles in sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Patwari, D. Rajeshree; Eraiah, B.

    2018-04-01

    Rare earth doped Sodium Bismuth Borate glass samples with silver chloride were prepared by melt quenching method. X-Ray diffraction pattern was used to confirm the amorphous nature of the samples. UV-Visible Spectra was recorded to study the optical properties. Surface plasmon resonance (SPR) peak was observed due to the formation of silver nanoparticles before and after heat treatment and the presence of silver nanoparticles were confirmed by UV-Visible Spectral studies and transmission electron microscopy. The surface plasmon resonance band became wider and red shifted after longer heat treatment.

  8. Optical Properties of Bismuth Tellurite Based Glass

    PubMed Central

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi2O3)x (TeO2)100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases. PMID:22605999

  9. Enhanced thermal shock resistance of ceramics through biomimetically inspired nanofins.

    PubMed

    Song, Fan; Meng, Songhe; Xu, Xianghong; Shao, Yingfeng

    2010-03-26

    We propose here a new method to make ceramics insensitive to thermal shock up to their melting temperature. In this method the surface of ceramics was biomimetically roughened into nanofinned surface that creates a thin air layer enveloping the surface of the ceramics during quenching. This air layer increases the heat transfer resistance of the surface of the ceramics by about 10,000 times so that the strong thermal gradient and stresses produced by the steep temperature difference in thermal shock did not occur both on the actual surface and in the interior of the ceramics. This method effectively extends the applications of existing ceramics in the extreme thermal environments.

  10. Effect of different conventional melt quenching technique on purity of lithium niobate (LiNbO3) nano crystal phase formed in lithium borate glass

    NASA Astrophysics Data System (ADS)

    Kashif, Ismail; Soliman, Ashia A.; Sakr, Elham M.; Ratep, Asmaa

    2012-01-01

    The glass system (45Li2O + 45B2O3 + 10Nb2O5) was fabricated by the conventional melt quenching technique poured in water, at air, between two hot plates and droplets at the cooled surface. The glass and glass ceramics were studied by differential thermal analysis (DTA) and X-ray diffraction (XRD). The as quenched samples poured in water and between two hot plates were amorphous. The samples poured at air and on cooled surface were crystalline as established via X-ray powder diffraction (XRD) studies. Differential thermal analysis was measured. The glass transition temperature (Tg) and the crystallization temperatures were calculated. Lithium niobate (LiNbO3) was the main phase in glass ceramic poured at air, droplets at the cooled surface and the heat treated glass sample at 500, 540 and 580 °C in addition to traces from LiNb3O8. Crystallite size of the main phases determined from the X-ray diffraction peaks is in the range of <100 nm. The fraction of crystalline (LiNbO3) phase decreases with increase in the heat treatment temperature.

  11. A new potential for radiation studies of borosilicate glass

    NASA Astrophysics Data System (ADS)

    Alharbi, Amal F.; Jolley, Kenny; Smith, Roger; Archer, Andrew J.; Christie, Jamieson K.

    2017-02-01

    Borosilicate glass containing 70 mol% SiO2 and 30 mol% B2O3 is investigated theoretically using fixed charge potentials. An existing potential parameterisation for borosilicate glass is found to give good agreement for the bond angle and bond length distributions compared to experimental values but the optimal density is 30% higher than experiment. Therefore the potential parameters are refitted to give an optimal density of 2.1 g/cm3, in line with experiment. To determine the optimal density, a series of random initial structures are quenched at a rate of 5 × 1012 K/s using constant volume molecular dynamics. An average of 10 such quenches is carried out for each fixed volume. For each quenched structure, the bond angles, bond lengths, mechanical properties and melting points are determined. The new parameterisation is found to give the density, bond angles, bond lengths and Young's modulus comparable with experimental data, however, the melting points and Poisson's ratio are higher than the reported experimental values. The displacement energy thresholds are computed to be similar to those determined with the earlier parameterisation, which is lower than those for ionic crystalline materials.

  12. The structural properties of PbF2 by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Chergui, Y.; Nehaoua, N.; Telghemti, B.; Guemid, S.; Deraddji, N. E.; Belkhir, H.; Mekki, D. E.

    2010-08-01

    This work presents the use of molecular dynamics (MD) and the code of Dl_Poly, in order to study the structure of fluoride glass after melting and quenching. We are realized the processing phase liquid-phase, simulating rapid quenching at different speeds to see the effect of quenching rate on the operation of the devitrification. This technique of simulation has become a powerful tool for investigating the microscopic behaviour of matter as well as for calculating macroscopic observable quantities. As basic results, we calculated the interatomic distance, angles and statistics, which help us to know the geometric form and the structure of PbF2. These results are in experimental agreement to those reported in literature.

  13. Correlation Functions and Glass Structure

    NASA Astrophysics Data System (ADS)

    Chergui, Y.; Nehaoua, N.; Telghemti, B.; Guemid, S.; Deraddji, N. E.; Belkhir, H.; Mekki, D. E.

    2011-04-01

    This work presents the use of molecular dynamics (MD) and the code of Dl Poly, in order to study the structure of fluoride glass after melting and quenching. We are realized the processing phase liquid-phase, simulating rapid quenching at different speeds to see the effect of quenching rate on the operation of the devitrification. This technique of simulation has become a powerful tool for investigating the microscopic behaviour of matter as well as for calculating macroscopic observable quantities. As basic results, we calculated the interatomic distance, angles and statistics, which help us to know the geometric form and the structure of PbF2. These results are in experimental agreement to those reported in literature.

  14. The influence of containerless undercooling and rapid solid-state quenching on the superconductive and magnetic properties of some clustering alloy systems

    NASA Technical Reports Server (NTRS)

    Collings, E. W.

    1984-01-01

    The properties of clustering alloy systems and the manner in which they are influenced by rapid quenching from a containerless undercooled melt are discussed. It was postulated that rapid quenching under such conditions would result in highly disordered metastable alloys, and furthermore, that alloys in such conditions would possess physical properties characteristically different from those of alloys in the annealed equilibrium state. The scope of the program is essentially to gauge the influence of containerless undercooling on the submicrostructure of clustering-type alloys, using certain physical properties as diagnostic tools. Microstructures and macrostructures were to be examined using optical- and scanning-electron microscopy.

  15. Insights into Silicate and Oxide Melt Structure from Amorphous, Non-Glass-Forming Materials

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2015-12-01

    Many silicate and oxide liquids of interest in the Earth sciences and in technology cannot readily be quenched to glasses, either because of low silica contents (and hence low viscosity at the melting point and accompanying liquid 'fragility') or because of liquid-liquid unmixing at high temperature. Although in-situ, high temperature structural tools have been in use for decades and are rapidly developing, many methods are still most informative for glass samples quenched to ambient pressure and temperature, e.g. high-resolution solid-state NMR. Amorphous oxides, including alumina and silicate compositions, have widespread technological applications. These are generally deposited by a variety of high-energy sputtering methods, as films of thicknesses of 10's to 100's of nm. Using Al-27, Si-29, and O-17 NMR, we have recently shown that for such films, very similar short-range structure is seen in materials made by very different kinetic pathways, such as sol-gel synthesis vs. ion-beam sputtering. This path-independent structure suggests that these materials pass through transient equilibrium states during their formation, probably that of deeply supercooled liquids just above glass transition temperatures. In the HfO2-SiO2 and ZrO2-SiO2 systems, for example, samples have well-resolved O-17 NMR spectra, allowing quantitation of O sites with only Hf(Zr) neighbors (so-called "free" oxide ions), with mixed Hf(Zr) and Si neighbors, and Si only. The observed oxygen speciation agrees well with a simple thermodynamic model of one of the most fundamental equilibria in silicate systems, namely the reaction of bridging (Si-O-Si) and "free" (e.g. OHf3 and OHf4) oxide ions to produce "non-bridging" oxygens (e.g. Si-OHf2). This new approach to sampling such structural equilibria in compositions far outside the range of normal glass-forming liquids may provide new insights into more geological compositions as well, as well as in more general models of silicate melt chemistry.

  16. Melting and Vaporization of the 1223 Phase in the System (Tl-Pb-Ba-Sr-Ca-Cu-O)

    PubMed Central

    Cook, L. P.; Wong-Ng, W.; Paranthaman, P.

    1996-01-01

    The melting and vaporization of the 1223 [(Tl,Pb):(Ba,Sr):Ca:Cu] oxide phase in the system (Tl-Pb-Ba-Sr-Ca-Cu-O) have been investigated using a combination of dynamic methods (differential thermal analysis, thermogravimetry, effusion) and post-quenching characterization techniques (powder x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectrometry). Vaporization rates, thermal events, and melt compositions were followed as a function of thallia loss from a 1223 stoichiometry. Melting and vaporization equilibria of the 1223 phase are complex, with as many as seven phases participating simultaneously. At a total pressure of 0.1 MPa the 1223 phase was found to melt completely at (980 ± 5) °C in oxygen, at a thallia partial pressure (pTl2O) of (4.6 ± 0.5) kPa, where the quoted uncertainties are standard uncertainties, i.e., 1 estimated standard deviation. The melting reaction involves five other solids and a liquid, nominally as follows: 1223→1212+(Ca,Sr)2CuO3+(Sr,Ca)CuO2+BaPbO3+(Ca,Sr)O+Liquid Stoichiometries of the participating phases have been determined from microchemical analysis, and substantial elemental substitution on the 1212 and 1223 crystallographic sites is indicated. The 1223 phase occurs in equilibrium with liquids from its melting point down to at least 935 °C. The composition of the lowest melting liquid detected for the bulk compositions of this study has been measured using microchemical analysis. Applications to the processing of superconducting wires and tapes are discussed. PMID:27805086

  17. Drilling into Rhyolitic Magma at Shallow depth at Krafla Volcanic Complex, NE-Iceland

    NASA Astrophysics Data System (ADS)

    Mortensen, A. K.; Markússon, S. H.; Gudmundsson, Á.; Pálsson, B.

    2017-12-01

    Krafla volcanic complex in NE-Iceland is an active volcano but the latest eruption was the Krafla Fires in 1975-1984. Though recent volcanic activity has consisted of basaltic fissure eruptions, then it is rhyolitic magma that has been intercepted on at least two occasions while drilling geothermal production wells in the geothermal field suggesting a layered magma plumbing system beneath the Krafla volcanic complex. In 2008 quenched rhyolitic glass was retrieved from the bottom of well KJ-39, which is 2865 m deep ( 2571 m true vertical depth). In 2009 magma was again encountered at an even shallower depth and in more than 2,5 km distance from the bottom of well KJ-39, but in 2009 well IDDP-1 was drilled into magma three times just below 2100 m depth. Only on the last occasion was quenched glass retrieved to confirm that magma had been encountered. In well KJ-39 the quenched glass was rhyolitic in composition. The glass contained resorbed minerals of plagioclase, clinopyroxene and titanomagnetite, but the composition of the glass resembles magma that has formed by partial melting of hydrated basalt. The melt was encountered among cuttings from impermeable, coarse basaltic intrusives at a depth, where the well was anticipated to penetrate the Hólseldar volcanic fissure. In IDDP-1 the quenched glass was also rhyolitic in composition. The glass contained less than 5% of phenocrysts, but the phenocryst assemblage included andesine plagioclase, augite, pigeonite, and titanomagnetite. At IDDP-1 the melt was encountered below a permeable zone composed of fine to coarse grained felsite and granophyre. The disclosure of magma in two wells at Krafla volcanic complex verify that rhyolitic magma can be encountered at shallow depth across a larger area within the caldera. The encounter of magma at shallow depth conforms with that superheated conditions have been found at >2000 m depth in large parts of Krafla geothermal field.

  18. Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications

    NASA Astrophysics Data System (ADS)

    Han, Raehee; Hirose, Takehiro; Jeong, Gi Young; Ando, Jun-ichi; Mukoyoshi, Hideki

    2014-08-01

    Clayey gouges are common in fault slip zones at shallow depths. Thus, the fault zone processes and frictional behaviors of the gouges are critical to understanding seismic slip at these depths. We conducted rotary shear tests on clayey gouge (~41 wt % clay minerals) at a seismic slip rate of 1.3 m/s. Here we report that the gouge was melted at 5 MPa of normal stress and room humidity conditions. The initial local melting was followed by melt layer formation. Clay minerals (e.g., smectite and illite) and plagioclase were melted and quenched to glass with numerous vesicles. Both flash heating and bulk temperature increases appear to be responsible for the melting. This observation of clayey gouge melting is comparable to that of natural faults (e.g., Chelungpu fault, Taiwan). Due to heterogeneous fault zone properties (e.g., permeability), frictional melting may be one of the important processes in clayey slip zones at shallow depths.

  19. Martian regolith in Elephant Moraine 79001 shock melts? Evidence from major element composition and sulfur speciation

    NASA Astrophysics Data System (ADS)

    Walton, E. L.; Jugo, P. J.; Herd, C. D. K.; Wilke, M.

    2010-08-01

    Shock veins and melt pockets in Lithology A of Martian meteorite Elephant Moraine (EETA) 79001 have been investigated using electron microprobe (EM) analysis, petrography and X-ray Absorption Near Edge Structure (XANES) spectroscopy to determine elemental abundances and sulfur speciation (S 2- versus S 6+). The results constrain the materials that melted to form the shock glasses and identify the source of their high sulfur abundances. The XANES spectra for EETA79001 glasses show a sharp peak at 2.471 keV characteristic of crystalline sulfides and a broad peak centered at 2.477 keV similar to that obtained for sulfide-saturated glass standards analyzed in this study. Sulfate peaks at 2.482 keV were not observed. Bulk compositions of EETA79001 shock melts were estimated by averaging defocused EM analyses. Vein and melt pocket glasses are enriched in Al, Ca, Na and S, and depleted in Fe, Mg and Cr compared to the whole rock. Petrographic observations show preferential melting and mobilization of plagioclase and pyrrhotite associated with melt pocket and vein margins, contributing to the enrichments. Estimates of shock melt bulk compositions obtained from glass analyses are biased towards Fe- and Mg- depletions because, in general, basaltic melts produced from groundmass minerals (plagioclase and clinopyroxene) will quench to a glass, whereas ultramafic melts produced from olivine and low-Ca pyroxene megacrysts crystallize during the quench. We also note that the bulk composition of the shock melt pocket cannot be determined from the average composition of the glass but must also include the crystals that grew from the melt - pyroxene (En 72-75Fs 20-21Wo 5-7) and olivine (Fo 75-80). Reconstruction of glass + crystal analyses gives a bulk composition for the melt pocket that approaches that of lithology A of the meteorite, reflecting bulk melting of everything except xenolith chromite. Our results show that EETA79001 shock veins and melt pockets represent local mineral melts formed by shock impedance contrasts, which can account for the observed compositional anomalies compared to the whole rock sample. The observation that melts produced during shock commonly deviate from the bulk composition of the host rock has been well documented from chondrites, rocks from terrestrial impact structures and other Martian meteorites. The bulk composition of shock melts reflects the proportions of minerals melted; large melt pockets encompass more minerals and approach the whole rock whereas small melt pockets and thin veins reflect local mineralogy. In the latter, the modal abundance of sulfide globules may reach up to 15 vol%. We conclude the shock melt pockets in EETA79001 lithology A contain no significant proportion of Martian regolith.

  20. Frictional melt generated by the 2008 Mw 7.9 Wenchuan earthquake and its faulting mechanisms

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Si, J.; Sun, Z.; Zhang, L.; He, X.

    2017-12-01

    Fault-related pseudotachylytes are considered as fossil earthquakes, conveying significant information that provide improved insight into fault behaviors and their mechanical properties. The WFSD project was carried out right after the 2008 Wenchuan earthquake, detailed research was conducted in the drilling cores. 2 mm rigid black layer with fresh slickenlines was observed at 732.6 m in WFSD-1 cores drilled at the southern Yingxiu-Beichuan fault (YBF). Evidence of optical microscopy, FESEM and FIB-TEM show it's frictional melt (pseudotachylyte). In the northern part of YBF, 4 mm fresh melt was found at 1084 m with similar structures in WFSD-4S cores. The melts contain numerous microcracks. Considering that (1) the highly unstable property of the frictional melt (easily be altered or devitrified) under geological conditions; (2) the unfilled microcracks; (3) fresh slickenlines and (4) recent large earthquake in this area, we believe that 2-4 mm melt was produced by the 2008 Wenchuan earthquake. This is the first report of fresh pseudotachylyte with slickenlines in natural fault that generated by modern earthquake. Geochemical analyses show that fault rocks at 732.6 m are enriched in CaO, Fe2O3, FeO, H2O+ and LOI, whereas depleted in SiO2. XRF results show that Ca and Fe are enriched obviously in the 2.5 cm fine-grained fault rocks and Ba enriched in the slip surface. The melt has a higher magnetic susceptibility value, which may due to neoformed magnetite and metallic iron formed in fault frictional melt. Frictional melt visible in both southern and northern part of YBF reveals that frictional melt lubrication played a major role in the Wenchuan earthquake. Instead of vesicles and microlites, numerous randomly oriented microcracks in the melt, exhibiting a quenching texture. The quenching texture suggests the frictional melt was generated under rapid heat-dissipation condition, implying vigorous fluid circulation during the earthquake. We surmise that during earthquakes vigorous fluid influx within fault zone, likely dissipating the frictional heat and resulting in rapid temperature drop, may facilitate the solidification of melt and hamper the aftermost fault slip. Meanwhlie, the high temperature fluid-rock interaction may play an important role in the chemical elements migrating in fault zones.

  1. Kinetics and pathways for crystallization of amorphous mullite and YAG

    NASA Astrophysics Data System (ADS)

    Johnson, Bradley Richard

    The crystallization behavior of quenched mullite (3Al2O 3•2SiO2) and YAG (Y3Al5O 12) composition glasses (made using containerless methods) were characterized with the ultimate goal of producing single crystal, structural, ceramic oxide fibers from these materials. The kinetics for crystallization were determined from thermal analysis experiments. From the results, time-temperature-transformation (TTT) curves were calculated. The crystallization pathways were determined by examining the crystal structure, microstructure, and chemical composition of heat treated specimens using x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A machine was also designed and built to facilitate controlled crystallization of amorphous fibers. Quenched, Y3Al5O12 composition beads crystallized at temperatures as low as 840°C. The as-received specimens contained a few, small YAG crystals, in addition to a mixture of different amorphous phases. The coexistence of two different amorphous phases of the same composition, but having different densities is termed polyamorphism, and this has been reported to occur in Y3Al5O12 composition quenched melts. Although various crystallization pathways have been reported for chemically synthesized YAG precursors, these specimens crystallized directly into YAG, which was the only phase formed. Quenched, 3Al2O3•2SiO2 composition mullite beads and fibers crystallized at temperatures as low as 920°C. Due to phase separation in the quenched melts, multiple phases with slightly different compositions and different crystallization activation energies crystallized. These phases were not equilibrium, 3:2 mullite, but metastable, alumina-rich, pseudotetragonal mullite. The residual, amorphous, silica-rich phase existed as numerous, 7--10 nm sized inclusions embedded within pseudotetragonal mullite. A large amount of internal strain was detected in pseudotetragonal mullite, and the source of this strain was suggested to be the embedded, silica-rich inclusions. Pseudotetragonal mullite gradually converted to equilibrium, orthorhombic, 3:2 mullite between 1000--1400°C. This was characterized by assimilation of the embedded, silica-rich inclusions and the elimination of internal strain. Additionally, recrystallization of numerous, small, strain- and inclusion-free, 3:2 mullite grains was observed to occur as the process proceeded to completion.

  2. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variationsmore » among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  3. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.

    We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  4. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE PAGES

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; ...

    2016-05-18

    We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  5. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    NASA Astrophysics Data System (ADS)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.

    2016-05-01

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  6. Melting of Fe-Si-O alloys: the Fate of Coexisting Si and O in the Core

    NASA Astrophysics Data System (ADS)

    Arveson, S. M.; Lee, K. K. M.

    2017-12-01

    The light element budget of Earth's core plays an integral role in sustaining outer core convection, which powers the geodynamo. Many experiments have been performed on binary iron compounds, but the results do not robustly agree with seismological observations and geochemical constraints. Earth's core is almost certainly made up of multiple light elements, so the future of core composition studies lies in ternary (or higher order) systems in order to examine interactions between light elements. We perform melting experiments on Fe-Si-O alloys in a laser-heated diamond-anvil cell to 80 GPa and 4000 K. Using 2D multi- wavelength imaging radiometry together with textural and chemical analysis of quenched samples, we measure the high-pressure melting curves and determine partitioning of light elements between the melt and the coexisting solid. Quenched samples are analyzed both in map view and in cross section using scanning electron microscopy (SEM) and electron microprobe analysis (EPMA) to examine the 3D melt structure and composition. Partitioning of light elements between molten and solid alloys dictates (1) the density contrast at the ICB, which drives compositional convection in the outer core and (2) the temperature of the CMB, an integral parameter for understanding the deep Earth. Our experiments suggest silicon and oxygen do not simply coexist in the melt and instead show complex solubility based on temperature. Additionally, we do not find evidence of crystallization of SiO2 at low oxygen content as was recently reported.11 Hirose, K., et al., Crystallization of silicon dioxide and compositional evolution of the Earth's core. Nature, 2017. 543(7643): p. 99-102.

  7. Microstructures in rapidly solidified Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.; Hemker, K. J.; Glasgow, T. K.

    1985-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by Chill Block Melt Spinning in vacuum and were examined by optical metallography, X-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  8. Fused Bead Analysis of Diogenite Meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D.W.; Beck, B.W.; McSween, H.Y.; Lee, C.T. A.

    2009-01-01

    Bulk rock chemistry is an essential dataset in meteoritics and planetary science [1]. A common method used to obtain the bulk chemistry of meteorites is ICP-MS. While the accuracy, precision and low detection limits of this process are advantageous [2], the sample size used for analysis (approx.70 mg) can be a problem in a field where small and finite samples are the norm. Fused bead analysis is another bulk rock analytical technique that has been used in meteoritics [3]. This technique involves forming a glass bead from 10 mg of sample and measuring its chemistry using a defocused beam on a microprobe. Though the ICP-MS has lower detection limits than the microprobe, the fused bead method destroys a much smaller sample of the meteorite. Fused bead analysis was initially designed for samples with near-eutectic compositions and low viscosities. Melts generated of this type homogenize at relatively low temperatures and produce primary melts near the sample s bulk composition [3]. The application of fused bead analysis to samples with noneutectic melt compositions has not been validated. The purpose of this study is to test if fused bead analysis can accurately determine the bulk rock chemistry of non-eutectic melt composition meteorites. To determine this, we conduct two examinations of the fused bead. First, we compare ICP-MS and fused bead results of the same samples using statistical analysis. Secondly, we inspect the beads for the presence of crystals and chemical heterogeneity. The presence of either of these would indicate incomplete melting and quenching of the bead.

  9. Compositional dependent partial molar volume and compressibility of CO2 in rhyolite, phonolite and basalt glasses

    NASA Astrophysics Data System (ADS)

    Lerch, P.; Seifert, R.; Malfait, W. J.; Sanchez-Valle, C.

    2012-12-01

    Carbon dioxide is the second most abundant volatile in magmatic systems and plays an important role in many magmatic processes, e.g. partial melting, volatile saturation, outgassing. Despite this relevance, the volumetric properties of carbon-bearing silicates at relevant pressure and temperature conditions remain largely unknown because of considerable experimental difficulties associated with in situ measurements. Density and elasticity measurements on quenched glasses can provide an alternative source of information. For dissolved water, such measurements indicate that the partial molar volume is independent of compositions at ambient pressure [1], but the partial molar compressibility is not [2, 3]. Thus the partial molar volume of water may depend on melt composition at elevated pressure. For dissolved CO2, no such data is available. In order to constrain the effect of magma composition on the partial molar volume and compressibility of dissolved carbon, we determined the density and elasticity for three series of carbon-bearing basalt, phonolite and rhyolite glasses, quenched from 3.5 GPa and relaxed at ambient pressure. The CO2 content varies between 0 to 3.90 wt% depending on the glass composition. Glass densities were determined using the sink/float method in a diiodomethane (CH2I2) - acetone mixture. Brillouin measurements were conducted on relaxed and unrelaxed silicate glasses in platelet geometry to determine the compressional (VP) and shear (VS) wave velocities and elastic moduli. The partial molar volume of CO2 in rhyolite, phonolite and basalt glasses is 25.4 ± 0.9, 22.1 ± 0.6 and 26.6 ±1.8 cm3/mol, respectively. Thus, unlike for dissolved water, the partial molar volume of CO2 displays a resolvable compositional effect. Although the composition and CO2/carbonate speciation of the phonolite glasses is intermediate between that of the rhyolite and basalt glasses, the molar volume is not. Similar to dissolved water, the partial molar bulk modulus of CO2 displays a strong compositional effect. If these compositional dependencies persist in the analogue melts, the partial molar volume of dissolved CO2 will depend on melt composition, both at low and elevated pressure. Thus, for CO2-bearing melts, a full quantitative understanding of density dependent magmatic processes, such as crystal fractionation, magma mixing and melt extraction will require in situ measurements for a range of melt compositions. [1] Richet, P. et al., 2000, Contrib Mineral Petrol, 138, 337-347. [2] Malfait et al. 2011, Am. Mineral. 96, 1402-1409. [3] Whittington et al., 2012, Am. Mineral. 97, 455-467.

  10. Application of the Billet Casting Method to Determine the Onset of Incipient Melting of 319 Al Alloy Engine Blocks

    NASA Astrophysics Data System (ADS)

    Lombardi, A.; Ravindran, C.; MacKay, R.

    2015-06-01

    The increased use of Al for automotive applications has resulted from the need to improve vehicle fuel efficiency. Aluminum alloy engine blocks fulfil the need of lightweighting. However, there are many challenges associated with thermo-mechanical mismatch between Al and the gray cast iron cylinder liners, which result in large tensile residual stress along the cylinder bores. This requires improced mechanical properties in this region to prevent premature engine failure. In this study, replicating billet castings were used to simulate the engine block solution heat treatment process and determine the onset of incipient melting. Microstructural changes during heat treatment were assessed with SEM and EDX, while thermal analysis was carried out using differential scanning calorimetry. The results suggest that solution heat treatment at 500 °C was effective in dissolving secondary phase particles, while solutionizing at 515 or 530 °C caused incipient melting of Al2Cu and Al5Mg8Cu2Si6. Incipient melting caused the formation ultra-fine eutectic clusters consisting of Al, Al2Cu, and Al5Mg8Cu2Si6 on quenching. In addition, DSC analysis found that incipient melting initiated at 507 °C for all billets, although the quantity of local melting reduced with microstructural refinement as evidenced by smaller endothermic peaks and energy absorption. The results from this study will assist in improving engine block casting integrity and process efficiency.

  11. Melting temperatures of MgO under high pressure by micro-texture analysis

    PubMed Central

    Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.

    2017-01-01

    Periclase (MgO) is the second most abundant mineral after bridgmanite in the Earth's lower mantle, and its melting behaviour under pressure is important to constrain rheological properties and melting behaviours of the lower mantle materials. Significant discrepancies exist between the melting temperatures of MgO determined by laser-heated diamond anvil cell (LHDAC) and those based on dynamic compressions and theoretical predictions. Here we show the melting temperatures in earlier LHDAC experiments are underestimated due to misjudgment of melting, based on micro-texture observations of the quenched samples. The high melting temperatures of MgO suggest that the subducted cold slabs should have higher viscosities than previously thought, suggesting that the inter-connecting textural feature of MgO would not play important roles for the slab stagnation in the lower mantle. The present results also predict that the ultra-deep magmas produced in the lower mantle are peridotitic, which are stabilized near the core–mantle boundary. PMID:28580945

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmowski, W.; Gierlotka, S.; Wang, Z.

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids,more » but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.« less

  13. ALHA 81011 -- an eucritic impact melt breccia formed 350 m.y. ago

    NASA Astrophysics Data System (ADS)

    Metzler, K.; Bobe, K. D.; Kunz, J.; Palme, H.; Spettel, B.; Stoeffler, D.

    1994-07-01

    The ALHA 81011 meteorite has been described as a eucritic breccia consisting of mineral and lithic clasts embedded in a vesicular, dark glassy matrix. Lithic clasts are equilibrated and dominated by subophitic and granulitic texture, frequently with gradual textural transitions in a given clast. Both mineral and lithic clasts were shocked in excess of approximately 30 GPa, transforming plagioclase into maskelynite, followed by thermally induced recrystallization. The observation that plagioclase fragments are 'swirled' into the dark matrix leaving pyroxene fragments unaffected, indicates that the plagioclase fragments were transformed into maskelynite prior to admixing as well. Scanning Electron Microscopy (SEM) investigations revealed that the dark matrix represents a quenched melt with eutectic fabric consisting of parallel intergrowths of pyroxene and plagioclase crystals, interspersed with small vesicles and larger subangular cavities up to 0.6 cm. One basalt clast with a partly granulitic texture and a portion of the dark crystallized matrix were separated and analyzed by Instrumental Neutron Activation Analysis (INAA). We performed age determinations on the separated lithologies by applying the Ar-40/AR-39 method. ALHA 81011 represents a clast-rich eucritic impact melt breccia not older than 350 Ma. It was either part of a rapidly cooled larger impact melt formation or represents a melt 'bomb' that originates from a suevitic ejecta blanket formed by a large-scale impact on the Howardite Eucritic and Diogenite (HED) parent body surface.

  14. Effect of equilibration on primitive path analyses of entangled polymers.

    PubMed

    Hoy, Robert S; Robbins, Mark O

    2005-12-01

    We use recently developed primitive path analysis (PPA) methods to study the effect of equilibration on entanglement density in model polymeric systems. Values of Ne for two commonly used equilibration methods differ by a factor of 2-4 even though the methods produce similar large-scale chain statistics. We find that local chain stretching in poorly equilibrated samples increases entanglement density. The evolution of Ne with time shows that many entanglements are lost through fast processes such as chain retraction as the local stretching relaxes. Quenching a melt state into a glass has little effect on Ne. Equilibration-dependent differences in short-scale structure affect the craze extension ratio much less than expected from the differences in PPA values of Ne.

  15. Effect of PbO on optical properties of tellurite glass

    NASA Astrophysics Data System (ADS)

    Elazoumi, S. H.; Sidek, H. A. A.; Rammah, Y. S.; El-Mallawany, R.; Halimah, M. K.; Matori, K. A.; Zaid, M. H. M.

    2018-03-01

    Binary (1 - x)(TeO2) - x(PbO), x = 0, 0.10, 0.15, 0.20, 0.25, 0.30 mol% glass system was fabricated using melt quenching method. X-ray diffraction (XRD) technique was employed to confirm the amorphous nature. The microanalysis of the major components was performed using energy dispersive EDX and X-ray spectrometry. Both the molar volume and the density were measured. FTIR and UV spectra were recorded at 400-4000 cm-1 and 220-800 nm, respectively. The optical band gap (Eopt), Urbach's energy (Eu), index of refraction (n) were calculated using absorption spectrum fitting (ASF) and derivation of absorption spectrum fitting (DASF) methods. Molar refraction Rm and molecular polarizability αm have been calculated according to (ASF) method.

  16. Optical band gap of thermally deposited Ge-S-Ga thin films

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Heera, Pawan; Singh, Bhanu Pratap; Sharma, Raman

    2018-05-01

    Thin films of Ge20S80-xGax glassy alloy, obtained from melt quenching technique, were deposited on the glass substrate by thermal evaporation technique under a high vacuum conditions (˜ 10-5 Torr). Absorption spectrum fitting method (ASF) is employed to obtain the optical band gap from absorption spectra. This method requires only the measurement of the absorption spectrum of the sample. The width of the band tail was also determined. Optical band gap computed from absorption spectra is found to decrease with an increase in Ga content. The evaluated optical band gap (Eg) is in well agreement with the theoretically predicted Eg and obtained from transmission spectra.

  17. Method and apparatus for altering material

    DOEpatents

    Stinnett, Regan W.; Greenly, John B.

    2002-01-01

    Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.

  18. Method and apparatus for altering material

    DOEpatents

    Stinnett, Regan W.; Greenly, John B.

    1995-01-01

    Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.

  19. Method and apparatus for altering material

    DOEpatents

    Stinnett, Regan W.; Greenly, John B.

    2002-02-05

    Methods and apparatus for thermally altering the near surface characteristics of a material are described. In particular, a repetitively pulsed ion beam system comprising a high energy pulsed power source and an ion beam generator are described which are capable of producing single species high voltage ion beams (0.25-2.5 MeV) at 1-1000 kW average power and over extended operating cycles (10.sup.8). Irradiating materials with such high energy, repetitively pulsed ion beams can yield surface treatments including localized high temperature anneals to melting, both followed by rapid thermal quenching to ambient temperatures to achieve both novel and heretofore commercially unachievable physical characteristics in a near surface layer of material.

  20. Carbonate-silicate liquid immiscibility upon impact melting, Ries Crater, Germany

    NASA Astrophysics Data System (ADS)

    Graup, Guenther

    1999-05-01

    The 24-km-diameter Ries impact crater in southern Germany is one of the most studied impact structures on Earth. The Ries impactor struck a Triassic to Upper Jurassic sedimentary sequence overlying Hercynian crystalline basement. At the time of impact (14.87 +/- 0.36 Ma; Storzer et al., 1995), the 350 m thick Malm limestone was present only to the S and E of the impact site. To the N and W, the Malm had been eroded away, exposing the underlying Dogger and Lias. The largest proportion of shocked target material is in the impact melt-bearing breccia suevite. The suevite had been believed to be derived entirely from the crystalline basement. Calcite in the suevite has been interpreted as a post-impact hydrothermal deposit. From optical inspection of 540 thin sections of suevite from 32 sites, I find that calcite in the suevite shows textural evidence of liquid immiscibility with the silicate impact melt. Textural evidence of liquid immiscibility between silicate and carbonate melt in the Ries suevite includes: carbonate globules within silicate glass, silicate globules embedded in carbonate, deformable and coalescing carbonate spheres within silicate glass, sharp menisci or cusps and budding between silicate and carbonate melt, fluidal textures and gas vesicles in carbonate schlieren, a quench crystallization sequence of the carbonate, spinifex textured quenched carbonate, separate carbonate spherules in the suevite mineral-fragment-matrix, and inclusions of mineral fragments suspended in carbonate blebs. Given this evidence of liquid immiscibility, the carbonate in the suevite has, therefore, like the silicate melt a primary origin by impact shock melting. Evidence of carbonate-silicate liquid immiscibility is abundant in the suevites to the SW to E of the Ries crater. The rarer suevites to the W to NE of the crater are nearly devoid of carbonate melts. This correspondence between the occurrence of outcropping limestones at the target surface and the formation of carbonate melt, indicates that the Malm limestones are the source rocks of the carbonate impact melt. This correspondence shows that the suevites preserve a compositional memory of their source rocks. From the regional distribution of suevites with or without immiscible carbonate melts, it is inferred that the Ries impactor hit the steep Albtrauf escarpment at its toe, in an oblique impact from the north.

  1. Energy transfer upconversion in Er3+-Tm3+ codoped sodium silicate glass

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Pandey, Anurag; Ntwaeaborwa, O. M.; Swart, H. C.

    2018-04-01

    Er3+/Tm3+ doped and codoped Na2O-SiO2-ZnO (NSZO) glasses were prepared by the conventional melt-quenching method. The amorphous nature of the prepared glasses was confirmed by the X-ray diffraction analysis. The optical absorption spectrum displayed several peaks, which correspond to Er3+ and Tm3+ dopant ions embedded into the NSZO glass. Both dopants experienced upconversion emission under 980 nm excitation. Efficient energy transfer from Er3+ to Tm3+ was observed in the co-doped samples to enhance the near infrared emission of the Tm3+ ions.

  2. Morphology and Magnetic Properties of Ferriferous Two-Phase Sodium Borosilicate Glasses

    PubMed Central

    Naberezhnov, Alexander; Porechnaya, Nadezda; Nizhankovskii, Viktor; Filimonov, Alexey; Nacke, Bernard

    2014-01-01

    This contribution is devoted to the study of morphology and magnetic properties of sodium borosilicate glasses with different concentrations (15, 20, and 25 wt.%) of α-Fe2O3 in an initial furnace charge. These glasses were prepared by a melt-quenching method. For all glasses a coexistence of drop-like and two-phase interpenetrative structures is observed. The most part of a drop structure is formed by self-assembling iron oxides particles. All types of glasses demonstrate the magnetic properties and can be used for preparation of porous magnetic matrices with nanometer through dendrite channel structure. PMID:25162045

  3. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    NASA Astrophysics Data System (ADS)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  4. A comparative study of volatile contents of primitive arc bubble-bearing melt inclusions determined by Raman-spectroscopy and mass-balance versus experimental homogenization methods

    NASA Astrophysics Data System (ADS)

    Moore, L.; Mironov, N.; Portnyagin, M.; Gazel, E.; Bodnar, R. J.

    2016-12-01

    Primitive olivine-hosted melt inclusions (MI) are a useful means to estimate the pre-eruptive volatile contents of a volcanic melts but post-entrapment processes complicate this approach. In particular, crystallization of the host phase along the wall of the MI and diffusion of H+ through the host cause CO2 and potentially S or other volatiles to exsolve from the melt to a separate fluid bubble. Recently, experimental rehydration and Raman spectroscopy have become potential methods for restoring the volatile contents of MI by rehomogenization or through mass balance calculations respectively. In order to compare these two approaches, we have studied MI from a single suite of samples from Klyuchevsky volcano (Kamchatka Arc) that have been treated with both experimental rehydration and analyzed using Raman spectroscopy. The maximum MI CO2 contents are in agreement ( 4000 ppm) regardless of the method used to account for CO2 in the bubble, but there is significantly more scatter to lower values using the Raman method which can be attributed to uncertainty related to mass balance calculations and carbonate daughter minerals that have formed at the glass-bubble interface. The presence of S- and C-bearing daughter minerals on the surface of the bubble in unheated melt inclusions indicates that to obtain more confident results with Raman spectroscopy, naturally quenched MIs should be also shortly reheated to dissolve most or all the crystals at the glass-bubble interface. Concerning H2O, MI from the unheated tephra samples contain less H2O than rehydrated MI in lavas. Determining the original H2O content of rehydrated MI is difficult because the H2O concentration in the glass is controlled by the conditions during the rehydration experiment. Thus reconciling the initial H2O content in primitive arc MIs (and degree of H2O loss) still remains a challenging task.

  5. Preparation, testing and analysis of zinc diffusion samples, NASA Skylab experiment M-558

    NASA Technical Reports Server (NTRS)

    Braski, D. N.; Kobisk, E. H.; Odonnell, F. R.

    1974-01-01

    Transport mechanisms of zinc atoms in molten zinc were investigated by radiotracer techniques in unit and in near-zero gravity environments. Each melt in the Skylab flight experiments was maintained in a thermal gradient of 420 C to 790 C. Similar tests were performed in a unit gravity environment for comparison. After melting in the gradient furnace followed by a thermal soak period (the latter was used for flight samples only), the samples were cooled and analyzed for Zn-65 distribution. All samples melted in a unit gravity environment were found to have uniform Zn-65 distribution - no concentration gradient was observed even when the sample was brought rapidly to melting and then quenched. Space-melted samples, however, showed textbook distributions, obviously the result of diffusion. It was evident that convection phenomena were the dominant factors influencing zinc transport in unit gravity experiments, while diffusion was the dominant factor in near-zero gravity experiments.

  6. Impact melting of carbonates from the Chicxulub crater

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Claeys, P.; Heuschkel, S.

    We have recently interpreted distinctive feathery-textured spinifex carbonate in the upper part of the Chicxulub suevite breccia as quenched carbonate melts (Jones et al. 1998); these distinctive fragments make up to 10 vol% of the breccia. Carbonate clasts and spherules occurring in the ejecta-rich basal part of the coarse clastic sequence, which marks the K/T boundary all around the Gulf of Mexico, may represent distal quenched droplets of carbonate liquids. In seeking to explain this widespread carbonate impact-melting phenomenon, we have re-examined the available experimental evidence. The important decarbonation reaction for calcite CaCO3=CaO+CO2 is inhibited by very small pressures up to temperatures >2000 K. We conclude that massive decarbonation by direct shock pressure is unlikely without attainment of temperatures >4000 K. Therefore, decarbonation generally can only occur during post-shock cooling for carbonates at low pressure (< 10 bars). We assume that post-shock cooling is quasi-thermodynamic, and provide a general P-T model for carbonate spanning 11 orders of magnitude in pressure (atmosphere to core). Subtle differences in sample preconditioning can probably explain the wildly divergent experimental shock data. A major planetary implication for the formation of the Earth's early atmosphere is that impacts on limestone would be less likely to have contributed substantial CO2 than has previously been assumed. Lastly, we note that carbonate melts at high pressures serve as excellent catalysts for diamond growth, and may have contributed to the widespread formation of some impact diamond.

  7. Processing Issues for Preliminary Melts of the Intermetallic Compound 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Thomas, Fransua; DellaCorte, Christopher

    2012-01-01

    The effect of various high temperature heat treatments and cooling rates on the hardness of cast 60-NITINOL (60wt%Ni- 40wt%Ti) was studied. The hardness ranged from approximately 33 HRC for annealed specimens to 63 HRC for water quenched specimens. Aging did not have a further effect on the hardness of the heat-treated and quenched material. The issue of material contamination and its possible effect on quench cracking during heat treatment above 1000 C was explored. The Charpy impact energy of the material was found to be relatively low (ranging from 0.4 to 1.0 J) and comparable to that of cast magnesium. Selection of service environments and applications for this material based on these findings should consider the processing route by which it was produced.

  8. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and transition width delta T(sub c)(10 to 90 percent) of approx. 2 K.

  9. Preparation of 110K (Bi, Pb)-Sr-Ca-Cu-O superconductor from glass precursor

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The Bi1.5Pb0.5Sr2Ca2Cu3O(x) glass, prepared by rapid quenching of the melt, showed T(sub g) of 383 C, crystallization temperature of approx. 446 C, melting temperature of approx. 855 C, and bulk density of 5.69 g/cu. cm. in air. The as-quenched glass was oxygen deficient. On heating in O2, it showed a slow, irreversible, and continuous weight gain starting at approx. 530 C. The influence of annealing conditions on the formation of various phases was investigated by XRD and electrical resistivity measurements. The 110K-T(sub c) phase did not form below 840 C. The amount of this phase increased with the sintering time at 840 C. A sample annealed at 840 C for 243 h in air and furnace cooled showed the highest T(sub c) (R=0) of 107.2 K and transition width delta T(sub c) (10 to 90 percent) of approx. 2 K.

  10. Effect of heat treatment procedure on magnetic and magnetocaloric properties of Ni43Mn46In11 melt spun ribbons

    NASA Astrophysics Data System (ADS)

    Kaya, M.; Elerman, Y.; Dincer, I.

    2018-07-01

    The effect of heat treatment on the structural, magnetic and magnetocaloric properties of Ni43Mn46In11 melt-spun ribbons was systematically investigated using X-ray powder diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), magnetic force microscope (MFM) and magnetic measurements. From the XRD studies, tetragonal and cubic phases were detected at room temperature for as-spun, quenched and slow-cooled ribbons. Furthermore, it was observed, upon annealing martensite transition temperatures increased when compared to the as-spun ribbon. To avoid magnetic hysteresis losses in the vicinity of the structural transition region, the magnetic entropy changes-ΔS m of the investigated ribbons were evaluated from temperature-dependent magnetisation-M(T) curves on cooling for different applied magnetic fields. The maximum ΔS m value was found to be 6.79 J kg-1 K-1 for the quenched ribbon in the vicinity of structural transition region for a magnetic field change of 50 kOe.

  11. Spectroscopic studies on the interaction of sodium benzoate, a food preservative, with calf thymus DNA.

    PubMed

    Zhang, Guowen; Ma, Yadi

    2013-11-01

    The interaction between sodium benzoate (SB) and calf thymus DNA in simulated physiological buffer (pH 7.4) using acridine orange (AO) dye as a fluorescence probe, was investigated by UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopy along with DNA melting studies and viscosity measurements. An expanded UV-Vis spectral data matrix was resolved by multivariate curve resolution-alternating least squares (MCR-ALS) approach. The equilibrium concentration profiles and the pure spectra for SB, DNA and DNA-SB complex from the high overlapping composite response were simultaneously obtained. The results indicated that SB could bind to DNA, and hydrophobic interactions and hydrogen bonds played a vital role in the binding process. Moreover, SB was able to quench the fluorescence of DNA-AO complex through a static procedure. The quenching observed was indicative of an intercalative mode of interaction between SB and DNA, which was supported by melting studies, viscosity measurements and CD analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Measurements and tests of HTS bulk material in resistive fault current limiters

    NASA Astrophysics Data System (ADS)

    Noe, M.; Juengst, K.-P.; Werfel, F. N.; Elschner, S.; Bock, J.; Wolf, A.; Breuer, F.

    2002-08-01

    The application of superconducting fault current limiters (SCFCL) depends highly on their technical and economical benefits. Therefore it is obvious that the main requirements on the SCFCL are a reliable, fail-safe and rapid current limitation, low losses, and an inexpensive production. As a potential candidate material we have investigated HTS bulk material in resistive fault current limiters. Our report focuses on the E- j-curves, the AC-losses and the quench behaviour of melt cast processed-BSCCO 2212 and melt textured polycrystalline-YBCO 123. Within a temperature range from 64 to 80 K E- j-curves and AC losses of HTS elements were measured. The measurement results show that HTS bulk material meets the SCFCL specifications. In order to avoid hot spots during limitation and to improve mechanical stability a metallic bypass is needed. First test results of the quench behaviour of HTS bulk material with metallic bypass demonstrate safe limitation up to the specified electrical field of 100 V/m.

  13. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices.

    PubMed

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-25

    Crystal-amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier-lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13-0.6 MA cm(-2)) compared with the melt-quench strategy (∼50 MA cm(-2)). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation.

  14. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices

    PubMed Central

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-01

    Crystal–amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier–lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13–0.6 MA cm−2) compared with the melt-quench strategy (∼50 MA cm−2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation. PMID:26805748

  15. Heterogeneous mineral assemblages in martian meteorite Tissint as a result of a recent small impact event on Mars

    NASA Astrophysics Data System (ADS)

    Walton, E. L.; Sharp, T. G.; Hu, J.; Filiberto, J.

    2014-09-01

    The microtexture and mineralogy of shock melts in the Tissint martian meteorite were investigated using scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and synchrotron micro X-ray diffraction to understand shock conditions and duration. Distinct mineral assemblages occur within and adjacent to the shock melts as a function of the thickness and hence cooling history. The matrix of thin veins and pockets of shock melt consists of clinopyroxene + ringwoodite ± stishovite embedded in glass with minor Fe-sulfide. The margins of host rock olivine in contact with the melt, as well as entrained olivine fragments, are now amorphosed silicate perovskite + magnesiowüstite or clinopyroxene + magnesiowüstite. The pressure stabilities of these mineral assemblages are ∼15 GPa and >19 GPa, respectively. The ∼200-μm-wide margin of a thicker, mm-size (up to 1.4 mm) shock melt vein contains clinopyroxene + olivine, with central regions comprising glass + vesicles + Fe-sulfide spheres. Fragments of host rock within the melt are polycrystalline olivine (after olivine) and tissintite + glass (after plagioclase). From these mineral assemblages the crystallization pressure at the vein edge was as high as 14 GPa. The interior crystallized at ambient pressure. The shock melts in Tissint quench-crystallized during and after release from the peak shock pressure; crystallization pressures and those determined from olivine dissociation therefore represent the minimum shock loading. Shock deformation in host rock minerals and complete transformation of plagioclase to maskelynite suggest the peak shock pressure experienced by Tissint ⩾ 29-30 GPa. These pressure estimates support our assessment that the peak shock pressure in Tissint was significantly higher than the minimum 19 GPa required to transform olivine to silicate perovskite plus magnesiowüstite. Small volumes of shock melt (<100 μm) quench rapidly (0.01 s), whereas thermal equilibration will occur within 1.2 s in larger volumes of melt (1 mm2). The apparent variation in shock pressure recorded by variable mineral assemblages within and around shock melts in Tissint is consistent with a shock pulse on the order of 10-20 ms combined with a longer duration of post-shock cooling and complex thermal history. This implies that the impact on Mars that shocked and ejected Tissint at ∼1 Ma was not exceptionally large.

  16. High-Pressure Minerals in Meteorites: Constraints on Shock Conditions and Duration

    NASA Technical Reports Server (NTRS)

    Sharp, Thomas G.

    2004-01-01

    The objective of this research was to better understand the conditions and duration of shock metamorphism in meteorites through microstructural and microanalytical characterization of high-pressure minerals. A) Continue to investigate the mineralogy and microstructures of melt-veins in a suite of chondritic samples ranging from shock grades S3 through S6 to determine how the mineral assemblages that crystallize at high-pressure and are related to shock grade. B) Investigate the chemical, mineralogical, and microstructural heterogeneities that occur across melt veins to interpret crystallization histories. C) Use static high-pressure experiments to simulate crystallization of melt veins for mineralogical and textural comparisons with the melt veins of naturally shocked samples. D) Characterize the compositions and defect microstructures of polycrystalline ringwoodite, wadsleyite, majorite, (Mg,Fe)Si03-ilmenite and (Mg,Fe)SiO3-perovskite in S6 samples to understand the mechanisms of phase transformations that occur during shock. These results will combined with kinetic data to constrain the time scales of kinetic processes. E) Investigate the transformations of metastable high-pressure minerals back to low- pressure forms to constrain post-shock temperatures and estimates of the peak shock pressure. Of these objectives, we have obtained publishable data on A, B and D. I am currently doing difficult high-pressure melting and quench experiments on an L chondrite known as Mbale. These experiments will provide additional constraints on the mineral assemblages that are produced during rapid quench of an L chondrite at pressures of 16 to 25 GPa. Results from published or nearly published research is presented below. Lists of theses, dissertations and publications are given below.

  17. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavallo, Dario, E-mail: Dario.cavallo@unige.it; Portale, Giuseppe; Androsch, René

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process ismore » followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.« less

  18. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  19. Effect of Heat Treatment on the Hardness and Wear of Grinding Balls

    NASA Astrophysics Data System (ADS)

    Aissat, Sahraoui; Sadeddine, Abdelhamid; Bradai, Mohand Amokrane; Younes, Rassim; Bilek, Ali; Benabbas, Abderrahim

    2017-09-01

    The effect quenching and tempering by different regimes on Rockwell hardness and wear processes of grinding balls 50 and 70 mm in diameter made of two melts of chromium-molybdenum cast iron is studied. The heating temperature for quenching is 850, 950, and 1050°C; the tempering temperature is 250, 400, and 600°C. Iron is analyzed in an electron microscope. Diffraction patterns are obtained. A model of cast iron wear is suggested and compared to the Davis model and to experimental results. An optimum heat treatment regime is proposed.

  20. Delocalization Drives Free Charge Generation in Conjugated Polymer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry

    We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less

  1. Delocalization Drives Free Charge Generation in Conjugated Polymer Films

    DOE PAGES

    Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry

    2018-02-19

    We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less

  2. Temperature-controlled down-conversion luminescence behavior of Eu3+ -doped transparent MF2 (M = Ba, Ca, Sr) glass ceramics.

    PubMed

    Zhou, B; E, C Q; Bu, Y Y; Meng, L; Yan, X H; Wang, X F

    2017-03-01

    Eu 3 + -doped transparent glass ceramics containing MF 2 (M = Ba, Ca, Sr) nanocrystals were fabricated using a melt-quenching method, and the resulting structures were studied using X-ray diffraction. Levels 5 D 1 and 5 D 0 of Eu 3 + ions were verified as thermally coupled levels using the fluorescence intensity ratio method. The fluorescence intensity ratios, optical temperature sensitivity and thermal quenching ratios of the transparent glass ceramics were studied as a function of temperature. With an increase in temperature, the relative sensitivity (S R ) decreased sharply at first, then slowly increased, before finally decreasing. The minimum S R values of GCBaF 2 (GCB), GCCaF 2 (GCC) and GCSrF 2 (GCS) were 2.8 × 10 -4 , 0.8 × 10 -4 and 1.9 × 10 - 4  K -1 at 360, 269 and 319 K, respectively. Glass ceramics with an intense emission intensity can be used to convert the measured spectrum into temperature and may have an important role in temperature detectors. Copyright © 2016 John Wiley & Sons, Ltd.

  3. First principles prediction of amorphous phases using evolutionary algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahas, Suhas, E-mail: shsnhs@iitk.ac.in; Gaur, Anshu, E-mail: agaur@iitk.ac.in; Bhowmick, Somnath, E-mail: bsomnath@iitk.ac.in

    2016-07-07

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bondmore » angle are within ∼2% of those reported by ab initio MD calculations and experimental studies.« less

  4. Crystallization kinetics and Avrami index of Sb-doped Se-Te-Sn chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Dwivedi, D. K.; Rao, Vandita; Mehta, N.; Chandel, N.

    2018-05-01

    Bulk amorphous samples of Sb-substituted Se78-xTe20Sn2Sbx (0 < x < 6) have been prepared using melt quench technique. The structure of Se78-xTe20Sn2Sbx (x = 0, 2, 4, 6) glassy alloys has been investigated using X-ray diffraction technique. Calorimetric studies of the prepared samples have been performed under non-isothermal conditions using differential scanning calorimetry (DSC) and glass transition temperature as well as crystallization temperature has been evaluated using DSC scans. The activation energy of crystallization kinetics (Ec) has been determined using model-free approaches such as Kissinger, Ozawa, Tang and Starink methods. The Avrami index (n) and frequency factor (Ko) have been calculated by Matusita and Augis-Benett method.

  5. The effect of processing on the surface physical stability of amorphous solid dispersions.

    PubMed

    Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Moffat, Jonathan; Craig, Duncan; Qi, Sheng

    2014-11-01

    The focus of this study was to investigate the effect of processing on the surface crystallization of amorphous molecular dispersions and gain insight into the mechanisms underpinning this effect. The model systems, amorphous molecular dispersions of felodipine-EUDRAGIT® E PO, were processed both using spin coating (an ultra-fast solvent evaporation based method) and hot melt extrusion (HME) (a melting based method). Amorphous solid dispersions with drug loadings of 10-90% (w/w) were obtained by both processing methods. Samples were stored under 75% RH/room temperatures for up to 10months. Surface crystallization was observed shortly after preparation for the HME samples with high drug loadings (50-90%). Surface crystallization was characterized by powder X-ray diffraction (PXRD), ATR-FTIR spectroscopy and imaging techniques (SEM, AFM and localized thermal analysis). Spin coated molecular dispersions showed significantly higher surface physical stability than hot melt extruded samples. For both systems, the progress of the surface crystal growth followed zero order kinetics on aging. Drug enrichment at the surfaces of HME samples on aging was observed, which may contribute to surface crystallization of amorphous molecular dispersions. In conclusion it was found the amorphous molecular dispersions prepared by spin coating had a significantly higher surface physical stability than the corresponding HME samples, which may be attributed to the increased process-related apparent drug-polymer solubility and reduced molecular mobility due to the quenching effect caused by the rapid solvent evaporation in spin coating. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Investigation of C-O-H-S fluids directly exsolved from melts associated with the Mt. Somma-Vesuvius magmas

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Esposito, R.; Lamadrid, H. M.; Redi, D.; Steele-MacInnis, M. J.; Bodnar, R. J.; De Vivo, B.; Cannatelli, C.; Lima, A.

    2016-12-01

    Undegassed deep melts can be trapped as melt inclusions (MI) hosted in phenocrysts growing in magma reservoirs. The host crystal acts as a pressure capsule, ideally preventing the melt from degassing. Sometimes, MI often contain a vapor bubble when observed at ambient conditions. Bubble-bearing MI represent a natural sample with which to investigate magmatic fluids that directly exsolve from a silicate melt. Some recent studies reported that most of the CO2 in bubble-bearing MI hosted in mafic minerals is stored in the vapor bubble. However, despite the detection of CO2 in bubbles, the expected accompanying H2O has not been found in mafic MI hosted in olivine. In this presentation, we describe the discovery of H2O in MI hosted in olivine associated with the Mt. Somma-Vesuvius (Italy) magmas. We reheated crystallized (or partially crystallized) olivine-hosted MI from various eruptions at Mt. Somma-Vesuvius. We quenched bubble-bearing MI from high T (1143-1238°C) to produce a bubble-bearing glass at room T. Using Raman spectroscopy, we detected liquid H2O at room T, vapor H2O at 150°C in the vapor bubbles of reheated MI, and native S and gypsum, in addition to CO2. In most MI, the H2O is hosted in sub-micron scale hydrous phases at the interface between the bubble and the glass and would not be detected during routine analysis. During MI heating experiments, the H2O is redissolved into the melt and then exsolves from the melt into the vapor bubble, where it remains after quenching, at least on the relatively short time scales of our observations. Our results suggest that a significant amount of H2O may be stored in vapor bubbles of bubble-bearing MI, especially for MI with (1) relatively low H2O content in the originally trapped melt, (2) relatively high proportion of H2O in the exsolved fluid, (3) relatively large volume % vapor bubble. In addition, we calculated that the composition of magmatic fluids directly exsolving from mafic melts associated with Mt. Somma-Vesuvius may contain up to 47 mole% H2O and up to 60 mole% S.

  7. Nano powders, components and coatings by plasma technique

    DOEpatents

    McKechnie, Timothy N [Brownsboro, AL; Antony, Leo V. M. [Huntsville, AL; O'Dell, Scott [Arab, AL; Power, Chris [Guntersville, AL; Tabor, Terry [Huntsville, AL

    2009-11-10

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  8. Transport properties of lithium ions doped vanado-bismuth-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Keshavamurthy, K.; Eraiah, B.

    2016-05-01

    The glasses of composition (65-x)V2O5-xLi2O-20TeO2-15Bi2O3 (x = 15 and 25 mol%) were prepared by conventional melt quenching method and their electrical conductivity and dielectric measurements have been carried out in the frequency range 40Hz to 6MHz over a temperature 373 to 473 K. The conductivity values increased with both Li2O concentration and temperature. Interestingly, the dielectric response showed the existence of a negative capacitance effect in the present glass system and concluded that this effect arose from the presence of external inductive reactance.

  9. The use of Ni-Cr-Si-Be filler metals for brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Fedotov, V.; Suchkov, A.; Penyaz, M.; Fedotov, I.; Tarasov, B.

    2016-04-01

    Nanocrystalline ribbon filler metal-alloys of system Ni-Cr-Si-Be are produced by the rapidly quenching of the melt method. By these filler metals carried out hight temperature vacuum brazing of austenitic steels (12Kh18N10T and Kh18N8G2) and austenitic-ferritic class EI-811 (12Kh21N5T). The basic laws of structure-phase state foundation of brazed joints are determined, features of the interaction of the molten filler metal to the brazed materials are identified, the optimal temperature and time parameters of the brazing process are determined.

  10. Nano powders, components and coatings by plasma technique

    NASA Technical Reports Server (NTRS)

    McKechnie, Timothy N. (Inventor); Antony, Leo V. M. (Inventor); O'Dell, Scott (Inventor); Power, Chris (Inventor); Tabor, Terry (Inventor)

    2009-01-01

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  11. Experimental and theoretical approach on the optical properties of zinc borotellurite glass doped with dysprosium oxide

    NASA Astrophysics Data System (ADS)

    Halimah, M. K.; Ami Hazlin, M. N.; Muhammad, F. D.

    2018-04-01

    A series of glass samples with chemical formula {[(TeO2)0.7(B2O3)0.3]0.7(ZnO)0.3}1 - x(Dy2O3)x where x = 0.01, 0.02, 0.03, 0.04 and 0.05 M fraction were synthesized through conventional melt-quenching method. The most common way to fabricate a glass material is by fusion of two or more component oxides followed by their quenching. This technique is known as melt-quenching technique. Kaur et al. (2016) [1] highlighted that the melt-quenching method able to enhance the mechanical properties like hardness and flexural strength of the material. The nature of the glass systems is proven to be amorphous based on the XRD pattern. The FTIR spectra of the glass systems confirm the existence of five bands which are assigned for the BO4, BO3, TeO4 and TeO3 vibrational groups. The density of the glass systems is increased with the addition of Dy2O3 while the molar volume is found to be inversely proportional to the density of the proposed glass. The optical properties of the glasses are determined through the absorption spectra obtained from the UV-VIS spectrophotometer. From the absorption spectra, the indirect and direct optical band gaps and the Urbach energy are found to be inversely proportional to each other. As the molar fraction of the Dy2O3 increased, the optical band gaps are observed to increase as opposed to the Urbach energy. For this glass system, the values of refractive index, electronic polarizability, oxide ion polarizability and the optical basicity are found to decrease as the addition of the dysprosium oxide is increased. From the emission spectra, two intense blue and yellow emission bands are observed, which correspond to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3 + ions respectively. The CIE chromaticity coordinates of the zinc borotellurite glass systems are found to be located in the white light region. Generation of white light The generation of the white light can be achieved by using two emission bands which comprise of the yellow and blue emission. The white light emission of the glass systems is confirmed by using the Commission International de I'Eclairage 1931 (CIE 1931) chromaticity diagram. The colour coordinate of the zinc borotellurite glass systems doped Dy2O3 is tabulated in Table 3 while Fig. 10 represents the colour chromaticity diagram of Dy2O3 doped zinc borotellurite glass systems. Based on the result obtained, the CIE coordinate for the zinc borotellurite glass doped with dysprosium oxide lies closed to the standard white light point which located at x = 0.333 and y = 0.333 [63,64]. This suggests that the zinc borotellurite glass doped with Dy2O3 may be useful for the solid state lighting application.

  12. Interface shapes during vertical Bridgman growth of (Pb, Sn)Te crystals

    NASA Technical Reports Server (NTRS)

    Huang, YU; Debnam, William J.; Fripp, Archibald L.

    1990-01-01

    Melt-solid interfaces obtained during vertical Bridgman growth of (Pb, Sn)Te crystals were investigated with a quenching technique. The shapes of these interfaces, revealed by etching longitudinally cut sections, were correlated with the composition variations determined by EMPA. These experiments demonstrated that the interface shape can be changed from concave to convex by moving its location from the edge of the cold zone into the hot zone. The metallography and microsegregation near the melt-solid interface were analyzed in detail. A sharp change in composition above the interface indicated the existence of a diffusion boundary layer 40-90 microns thick. This small diffusion boundary layer is consistent with strong convective mixing in the (Pb, Sn)Te melt.

  13. Hybrid glasses from strong and fragile metal-organic framework liquids

    PubMed Central

    Bennett, Thomas D.; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J.; Yeung, Hamish H. -M.; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K.; Greaves, G. Neville

    2015-01-01

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density ‘perfect' glass, similar to those formed in ice, silicon and disaccharides. This order–order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order–disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of ‘melt-casting' MOF glasses. PMID:26314784

  14. Hybrid glasses from strong and fragile metal-organic framework liquids.

    PubMed

    Bennett, Thomas D; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J; Yeung, Hamish H-M; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K; Greaves, G Neville

    2015-08-28

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density 'perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of 'melt-casting' MOF glasses.

  15. Metallurgical characterization of melt-spun ribbons of U-5.4 wt%Nb alloy

    NASA Astrophysics Data System (ADS)

    Ma, Rong; Ren, Zhiyong; Tang, Qingfu; Chen, Dong; Liu, Tingyi; Su, Bin; Wang, Zhenhong; Luo, Chao

    2018-06-01

    The microstructures and micro-mechanical properties of the melt-spun ribbons of U-5.4 wt%Nb alloy were characterized using optical microscopy, scanning electron microscopy, X-ray diffraction and nanoindentation. Observed variations in microstructures and properties are related to the changes in ribbon thicknesses and cooling rates. The microstructures of the melt-spun ribbon consist of fine-scale columnar grains (∼1 μm) adjacent to the chill surface and coarse cellular grains in the remainder of the ribbon. In addition, the formation of inclusions in the ribbon is suppressed kinetically due to the high cooling rate during melt spinning. Compared with the water-quenched specimen prepared by traditional gravity casting and solution heat treatment, the elastic modulus values of the U-5.4 wt%Nb alloy were examined to vary with grain size and exhibited diverse energy dissipation capacities.

  16. Undercooled and rapidly quenched Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at % Mo. Although the microstructures observed by undercooling and melt spinning were similar the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  17. Multimodal emissions from Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, A.; Yadav, R.S.; Yadav, R.V.

    This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} andmore » Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. • The Tb{sup 3+}/Yb{sup 3+} co-doped glass gives QC emissions upon 266 and 355 nm excitations. • The Tb{sup 3+}/Yb{sup 3+} co-doped glass also emits intense green color on excitation with 976 nm. • The quantum cutting efficiency is larger for 355 nm excitation (137%). • The Tb{sup 3+}/Yb{sup 3+} co-doped glass may be used in solar cell and display devices.« less

  18. Transition from single-jump type to highly cooperative diffusion during structural relaxation of a metallic glass

    NASA Astrophysics Data System (ADS)

    Rätzke, K.; Hüppe, P. W.; Faupel, F.

    1992-04-01

    The isotope effect E=(Dα/Dβ-1)/[(mβ/mα)1/2-1] of cobalt diffusion has been measured in melt-spun amorphous Co76.7Fe2Nb14.3B7 ribbon at different stages of structural relaxation. A drastic drop of the isotope effect from E>0.5 in the as-quenched glass to E=0.1 in the relaxed state wass observed. While the latter value relflects highly cooperative diffusion, the large isotope effect in the as-quenched ribbon points to the prevalence of single-atom jumps and vacancylike holes of excess volume.

  19. Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass

    NASA Astrophysics Data System (ADS)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Samarium substituted tellurium lanthanum lead borate glass is prepared using melt quenching technique. Luminescence spectra have been recorded upon excitation with 402 nm various transitions from 4G5/2 level, for samarium doped tellurite glasses are studied and also lifetime for all the samples exhibit single exponential behaviour of decay curve. Luminescence spectra of present glasses show quenching effect due to cross-relation channels of samarium ions. The lifetime of glass samples decrease as the tellurite concentration is decreased. So, it evidences that to attain longer lifetime for lasing material one can tune the host by selecting concentration of tellurite.

  20. Melting temperatures of MgO under high pressure determined by micro-texture observation

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.

    2016-12-01

    Periclase (MgO) is the second abundant mineral after bridgmanite in the Earth's lower mantle, and its melting temperature (Tm) under pressure is important to constrain the chemical composition of ultra-deep magma formed near the mantle-core boundary. However, the melting behavior is highly controversial among previous studies: a laser-heated diamond anvil cell (LHDAC) study reported a melting curve with a dTm/dP of 30 K/GPa at zero pressure [1], while several theoretical computations gave substantially higher dTm/dP of 90 100 K/GPa [2,3]. We performed a series of LHDAC experiments for measurements of Tm of MgO under high pressure, using single crystal MgO as the starting material. The melting was detected by using micro-texture observations of the quenched samples. We found that the laser-heated area of the sample quenched from the Tm in previous LHDAC experiments [1] showed randomly aggregated granular crystals, which was not caused by melting, but by plastic deformation of the sample. This suggests that the Tms of their study were substantially underestimated. On the other hand, the sample recovered from the temperature higher by 1500-1700 K than the Tms in previous LHDAC experiments showed a characteristic internal texture comparable to the solidification texture typically shown in metal casting. We determined the Tms based on the observation of this texture up to 32 GPa. Fitting our Tms to the Simon equation yields dTm/dP of 82 K/GPa at zero pressure, which is consistent with those of the theoretical predictions (90 100 K/GPa) [2,3]. Extrapolation of the present melting curve of MgO to the pressure of the CMB (135 GPa) gives a melting temperature of 8900 K. The present steep melting slope offers the eutectic composition close to peridotite (in terms of Mg/Si ratio) throughout the lower mantle conditions. According to the model for sink/float relationship between the solid mantle and the magma [4], a considerable amount of iron (Fe/(Mg+Fe) > 0.24) is expected for the peridotitic partial melt so that it is gravitationally stable to form the ULVZs at the bottom of the lower mantle. Reference 1 A. Zerr and R. Boehler, Nature 371, 506 (1994). 2 D. Alfe, Phys. Rev. Lett. 94, 235701 (2005). 3 N. de Koker and L. Stixrude, Geophys. J. Int. 178, 162 (2009). 4 Funamori, and N. Sato, Earth Planet. Sci. Lett. 295, 435 (2010).

  1. Vesicle Size Distribution as a Novel Nuclear Forensics Tool

    DOE PAGES

    Donohue, Patrick H.; Simonetti, Antonio

    2016-09-22

    The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40'38.28"N, 106°28'31.44"W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. In this study, we report the first quantitative textural analysis of vesicles in Trinitite to constrain theirmore » physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Finally, defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment.« less

  2. Pseudotachylyte increases the post-slip strength of faults

    USGS Publications Warehouse

    Proctor, Brooks; Lockner, David A.

    2016-01-01

    Solidified frictional melts, or pseudotachylytes, are observed in exhumed faults from across the seismogenic zone. These unique fault rocks, and many experimental studies, suggest that frictional melting can be an important process during earthquakes. However, it remains unknown how melting affects the post-slip strength of the fault and why many exhumed faults do not contain pseudotachylyte. Analyses of triaxial stick-slip events on Westerly Granite (Rhode Island, USA) sawcuts at confining pressures from 50 to 400 MPa show evidence for frictional heating, including some events energetic enough to generate surface melt. Total and partial stress drops were observed with slip as high as 6.5 mm. We find that in dry samples following melt-producing stick slip, the shear failure strength increased as much as 50 MPa, while wet samples had <10 MPa strengthening. Microstructural analysis indicates that the strengthening is caused by welding of the slip surface during melt quenching, suggesting that natural pseudotachylytes may also strengthen faults after earthquakes. These results predict that natural pseudotachylyte will inhibit slip reactivation and possibly generate stress heterogeneities along faults. Wet samples do not exhibit melt welding, possibly because of thermal pressurization of water reducing frictional heating during slip.

  3. Evolution of short- and medium-range order in the melt-quenching amorphization of Ge 2 Sb 2 Te 5

    DOE PAGES

    Qiao, Chong; Guo, Y. R.; Dong, F.; ...

    2018-01-01

    Five structures (a tetrahedron and 3-, 4-, 5- and 6-fold octahedrons) are shown in the upper panel of the figure. Figures in the lower panel show the fractions of the five structures in Ge- and Sb-centered clusters with temperature.

  4. Spiral crack patterns observed for melt-grown spherulites of poly(L-lactic acid) upon quenching.

    PubMed

    Matsuda, Futoshi; Sobajima, Takamasa; Irie, Satoshi; Sasaki, Takashi

    2016-04-01

    In this paper, we demonstrate the characteristic spiral cracking that appears on the surface of melt-grown poly(L-lactic acid) (PLLA) spherulites with relatively large sizes (greater than 0.4mm in diameter). The crack occurs via thermal shrinkage upon quenching after crystallization. Although concentric cracks on polymer spherulites have been found to occur in quite a few studies, spiral crack patterns have never been reported so far. The present spiral crack was observed for thick spherulites (> 10 μm), whereas the concentric crack pattern was frequently observed for thin spherulites (typically 5 μm). The present PLLA spherulites exhibited a non-banded structure with no apparent structural periodicity at least on the scale of the spiral pitch, and thus no direct correlation between the crack pattern and the spherulitic structure was suggested. The spiral was revealed to be largely Archimedean of which the spiral pitch increases with an increase in the thickness of the spherulite. This may be interpreted in terms of a classical mechanical model for a thin layer with no delamination from the substrate.

  5. Glass ceramics for incinerator ash immobilization

    NASA Astrophysics Data System (ADS)

    Malinina, G. A.; Stefanovsky, O. I.; Stefanovsky, S. V.

    2011-09-01

    Calcined solid radioactive waste (incinerator slag) surrogate and either Na 2Si 2O 5 or Na 2B 4O 7 (borax) at various mass ratios were melted in silicon carbide crucibles in a resistive furnace at temperatures of up to 1775 K (slag without additives). Portions of the melts were poured onto a metal plate; the residues were slowly cooled in turned-off furnace. Both quenched and slowly cooled materials were composed of the same phases. At high slag contents in silicate-based materials nepheline and britholite were found to be major phases. Britholite formed at higher slag content (85 wt.%) became major phase in the vitrified slag. In the system with borax at low slag contents (25 and 50 wt.%) material are composed of predominant vitreous and minor calcium silicate larnite type phase Ca 2SiO 4 where Ca 2+ ions are replaced by different cations. The materials containing slag in amount of 75 wt.% and more are chemically durable. The changes in the structure of anionic motif of quenched samples depending on slag loading were studied by IR spectroscopy.

  6. The Solubility of Aluminum in Cryolite-Based Electrolyte-Containing KF

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Yu, Jiangyu; Gao, Bingliang; Liu, Yibai; Hu, Xianwei; Shi, Zhongning; Wang, Zhaowen

    2016-04-01

    The solubility of aluminum in NaF-AlF3-CaF2-KF-A12O3 electrolyte system at 1253 K (980 °C) has been measured by the analysis of quenched samples saturated with aluminum. The content of the dissolved metal in the quenched melt was determined by collecting the volume of hydrogen gas when a finely crushed sample is treated with HCl. Addition of 0 to 5 pct KF has no obvious effect on the solubility of aluminum in cryolite-based melts with molar ratio of NaF/AlF3 (cryolite ratio) ranging from 2.2 to 3.0. The solubility of aluminum increases from 0.015 to 0.026 wt pct with cryolite ratio increases from 2.2 to 4.0 in the NaF-AlF3-5 wt pct CaF2-3 wt pct A12O3 electrolyte at 1253 K (980 °C). Aluminum solubility was affected by both chemical replacement reaction of Al + 3NaF = AlF3 + 3Na and physical dissolution.

  7. The ternary system K2SO4MgSO4CaSO4

    USGS Publications Warehouse

    Rowe, J.J.; Morey, G.W.; Silber, C.C.

    1967-01-01

    Melting and subsolidus relations in the system K2SO4MgSO4CaSO4 were studied using heating-cooling curves, differential thermal analysis, optics, X-ray diffraction at room and high temperatures and by quenching techniques. Previous investigators were unable to study the binary MgSO4CaSO4 system and the adjacent area in the ternary system because of the decomposition of MgSO4 and CaSO4 at high temperatures. This problem was partly overcome by a novel sealed-tube quenching method, by hydrothermal synthesis, and by long-time heating in the solidus. As a result of this study, we found: (1) a new compound, CaSO4??3MgSO4 (m.p. 1201??C) with a field extending into the ternary system; (2) a high temperature form of MgSO4 with a sluggishly reversible inversion. An X-ray diffraction pattern for this polymorphic form is given; (3) the inversion of ??-CaSO4 (anhydrite) to ??-CaSO4 at 1195??C, in agreement with grahmann; (1) (4) the melting point of MgSO4 is 1136??C and that of CaSO4 is 1462??C (using sealed tube methods to prevent decomposition of the sulphates); (5) calcium langbeinite (K2SO4??2CaSO4) is the only compound in the K2SO4CaSO4 binary system. This resolved discrepancies in the results of previous investigators; (6) a continuous solid solution series between congruently melting K2SOP4??2MgSO4 (langbeinite) and incongruently melting K2SO4??2CaSO4 (calcium langbeinite); (7) the liquidus in the ternary system consists of primary phase fields of K2SO4, MgSO4, CaSO4, langbeinite-calcium langbeinite solid solution, and CaSO4??3MgSO4. The CaSO4 field extends over a large portion of the system. Previously reported fields for the compounds (K2SO4??MgSO4??nCaSO4), K2SO4??3CaSO4 and K2SO4??CaSO4 were not found; (8) a minimum in the ternary system at: 740??C, 25% MgSO4, 6% CaSO4, 69% K2SO4; and ternary eutectics at 882??C, 49% MgSO4, 19% CaSO4, 32% K2SO4; and 880??, 67??5% MgSO4, 5% CaSO4, 27??5% K2SO4. ?? 1967.

  8. Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses.

    PubMed

    Li, Ailing; Qiu, Dong

    2011-12-01

    The possibility of using phytic acid as a precursor to synthesize CaO-P(2)O(5)-SiO(2) glasses by sol-gel method has been explored and the pseudo ternary phase diagram has been established. It was shown that gel-glasses over a broader range of compositions could be prepared compared to other phosphorus precursors or melt-quenching method. Furthermore, phytic acid was found to assist calcium being incorporated into glass networks. In vitro tests in simulated body fluid (SBF) were performed on the above gel-glasses and it was found that they were bioactive over a much broader compositional range especially at high phosphate content, thus enabling one to design bioactive materials with various degradation rates by adjusting the phosphate content.

  9. Direct conversion of h-BN into c-BN and formation of epitaxial c-BN/diamond heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, Jagdish, E-mail: narayan@ncsu.edu; Bhaumik, Anagh; Xu, Weizong

    2016-05-14

    We have created a new state of BN (named Q-BN) through rapid melting and super undercooling and quenching by using nanosecond laser pulses. Phase pure c-BN is formed either by direct quenching of super undercooled liquid or by nucleation and growth from Q-BN. Thus, a direct conversion of hexagonal boron nitride (h-BN) into phase-pure cubic boron nitride (c-BN) is achieved by nanosecond pulsed laser melting at ambient temperatures and atmospheric pressure in air. According to the P-T phase diagram, the transformation from h-BN into c-BN under equilibrium processing can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triplemore » point is at 3500 K/9.5 GPa or 3700 K/7.0 GPa with a recent theoretical refinement. Using nonequilibrium nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to the formation of a new phase, named as Q-BN. We present detailed characterization of Q-BN and c-BN layers by using Raman spectroscopy, high-resolution scanning electron microscopy, electron-back-scatter diffraction, high-resolution TEM, and electron energy loss spectroscopy, and discuss the mechanism of formation of nanodots, nanoneedles, microneedles, and single-crystal c-BN on sapphire substrate. We have also deposited diamond by pulsed laser deposition of carbon on c-BN and created c-BN/diamond heterostructures, where c-BN acts as a template for epitaxial diamond growth. We discuss the mechanism of epitaxial c-BN and diamond growth on lattice matching c-BN template under pulsed laser evaporation of amorphous carbon, and the impact of this discovery on a variety of applications.« less

  10. Experiments on Suppression of Thermocapillary Oscillations in Sodium Nitrate Floating Half-Zones by High-frequency End-wall Vibrations

    NASA Technical Reports Server (NTRS)

    Anilkumar, A.; Grugel, R. N.; Bhowmick, J.; Wang, T.

    2004-01-01

    Experiments to suppress thermocapillary oscillations using high-frequency vibrations were carried out in sodium nitrate floating half-zones. Such a half-zone is formed by melting one end of a vertically held sodium nitrate crystal rod in contact with a hot surface at the top. Thermocapillary convection occurs in the melt because of the temperature gradient at the free surface of the melt. In the experiments, when thermocapillary oscillations occurred, the bottom end of the crystal rod was vibrated at a high frequency to generate a streaming flow in a direction opposite to that of the thermocapillary convection. It is observed that, by generating a sufficiently strong streaming flow, the thermocapillary flow can be offset enough such that the associated thermocapillary oscillations can be quenched.

  11. Experimental Constraints on Fe Isotope Fractionation in Carbonatite Melt Systems

    NASA Astrophysics Data System (ADS)

    Stuff, M.; Schuessler, J. A.; Wilke, M.

    2015-12-01

    Iron isotope data from carbonatite rocks show the largest variability found in igneous rocks to date [1]. Thus, stable Fe isotopes are promising tracers for the interaction of carbonate and silicate magmas in the mantle, particularly because their fractionation is controlled by oxidation state and bonding environment. The interpretation of Fe isotope data from carbonatite rocks remains hampered, since Fe isotope fractionation factors between silicate and carbonate melts are unknown and inter-mineral fractionation can currently only be assessed by theoretical calculations [1;2]. We present results from equilibration experiments in three natrocarbonatite systems between immiscible silicate and carbonate melts, performed at 1200°C and 0.7 GPa in an internally heated gas pressure vessel at intrinsic redox conditions. The Fe isotope compositions of the silicate melt (sil.m.), quenched to a glass, and the carbonate melt (carb.m.), forming fine-grained quench crystals, were analysed by solution MC-ICP-MS. Our first data indicate a remarkable fractionation of Δ56Fesil.m.‒carb.m.= 0.29 ±0.07 ‰ near equilibrium. At short run durations, even stronger fractionation up to Δ56Fesil.m.‒carb.m. = 0.41 ±0.07 ‰ occurs, due to kinetic effects. Additionally, Δ56Fesil.m.‒carb.m. changes with bulk chemical composition, likely reflecting considerable differences between the studied systems in terms of the Fe3+/Fe2+-ratios in the two immiscible liquids. Our findings provide experimental support for a carbonatite genesis model, in which extremely negative δ56Fe values in carbonatites result from differentiation processes, such as liquid immiscibility [1]. This effect can be enhanced by disequilibrium during fast ascent of carbonatite magmas. Their sensitivity to chemical and redox composition makes Fe isotopes a potential tool for constraining the original compositions of carbonatite magmas. [1] Johnson et al. (2010) Miner. Petrol. 98, 91-110. [2] Polyakov & Mineev (2000) Geochim. Cosmochim. Acta 64, 849-865.

  12. Carbon Solubility in Metallic Iron and Melting Relations in the Fe-C System at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fei, Y.

    2006-05-01

    Carbon has been proposed to be one of the light elements in the Earth's core. Knowledge of phase relations in the Fe-C system at high pressure and temperature is needed to understand the carbon content in the core and its effect on the physical properties and the temperature of the core. Experimental data in this system at high pressure and temperature are limited. In this study we report new experimental data on melting relations up to 25 GPa. The experiments were performed using piston-cylinder and multi-anvil devices at the Geophysical Laboratory. Mixtures of fine power of pure iron and graphite with different carbon content were prepared as starting materials. The starting materials were loaded into MgO capsules and then compressed to the desired pressures, using various high-pressure cell assemblies that have been calibrated at high pressure. High temperatures were achieved using either graphite heater (<6 GPa) or rhenium heater at higher pressures and measured with a tungsten-rhenium thermocouple. Melting relations were determined with a JEOL JXA-8900 electron microprobe, based on quench textures and chemical composition of the quenched phases. Powder X- ray diffraction technique was also used to identify phases and determine unit cell parameters. A positive slope between the solubility of carbon in metallic iron and pressure was found at elevated temperatures. The eutectic temperature increases with increasing pressure. The liquidus temperature determined in this study is significantly lower than the calculated value in previous study. Our study presents directly experimental measurements of the melting relations in the Fe-C system at high pressure and temperature, which provides better constraints on composition and temperature of the Earth's core.

  13. Preparation and Characterization of Niobium Doped Lead-Telluride Glass Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathish, M.; Eraiah, B.; Anavekar, R. V.

    2011-07-15

    Niobium-lead-telluride glass ceramics of composition xNb{sub 2}O{sub 5}-(20-x) pbO-80TeO{sub 2}(where x = 0.1 mol% to 0.5 mol%) were prepared by using conventional melt quenching method. The prepared glass samples were initially amorphous in nature after annealed at 400 deg. c all samples were crystallized. This was confined by X-ray diffraction and scanning electron microscopy. The particle size of these glass ceramics have been calculated by using Debye-Scherer formula and the particle size is in the order of 15 nm to 60 nm. The scanning electron microscopy (SEM) photograph shows the presence of needle-like crystals in these samples.

  14. Electrical properties of praseodymium oxide doped Boro-Tellurite glasses

    NASA Astrophysics Data System (ADS)

    Jagadeesha Gowda G., V.; Devaraja, C.; Eraiah, B.

    2016-05-01

    Glasses of the composition xPr6O11- (35-x)TeO2-65B2O3 (x=0, 0.1 to 0.5 mol %) have been prepared using the melt quenching method. The ac and dc conductivity of glass have been measured over a wide range of frequencies and temperatures. Experimental results indicate that the ac conductivity depend on temperature, frequency and Praseodymium content. The conductivity as a function of frequency exhibited two components: dc conductivity (σdc), and ac conductivity (σac). The activation energies are estimated and found to be decreases with composition. The impedance plot at each temperature appeared as a semicircle passes through the origin.

  15. An Investigation into the Polymorphism and Crystallization of Levetiracetam and the Stability of its Solid Form.

    PubMed

    Xu, Kailin; Xiong, Xinnuo; Guo, Liuqi; Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Wu, Di; Li, Hui

    2015-12-01

    Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Chemical projectile-target interaction and liquid immiscibility in impact glass from the Wabar craters, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hamann, Christopher; Hecht, Lutz; Ebert, Matthias; Wirth, Richard

    2013-11-01

    Impact glasses are usually strongly affected by secondary alteration and chemical weathering. Thus, in order to understand relevant formation processes, detailed petrographic studies on unweathered impact glasses are necessary as preserved heterogeneities in quenched impact glasses may serve as a tool to better understand their genesis. Here, we report on petrography and microchemistry of impact glasses from the Wabar impact craters (Saudi Arabia) that, with an age of ∼300 years, are among the youngest terrestrial impact craters. The fact that parts of the IIIAB iron meteorite have survived impact and subsequent weathering is granting Wabar a special role among the presently 184 confirmed terrestrial impact structures. Electron microprobe analysis (EMPA) and transmission electron microscopy (TEM) obtained on the black impact melt/glass variety at Wabar suggest that meteoritic Fe was selectively mixed with high-silica target melt at high temperatures due to selective oxidation, resulting in high Fe/Ni ratios for the black melt (37 on average, individual values range from 13 to 449) and low Fe/Ni ratios for projectile droplets ("FeNi spheres" with a Fe/Ni ratio of 3 on average; Fe/Ni ratio for the meteorite is ∼12). The black melt shows emulsion textures that are the result of silicate liquid immiscibility. Liquid-liquid phase-separation resulted in the formation of a poorly polymerized, ultrabasic melt (Lfe) rich in divalent cations like Fe2+, Ca2+, or Mg2+, that is dispersed in a highly polymerized, high-silica melt (Lsi) matrix. The typical Wabar black melt emulsion displays a spheres-in-a-matrix texture of ∼10-20% Lfe homogeneously dispersed in the form of two sets of spheres and droplets (10-30 nm and 0.1-0.4 μm in diameter) in ∼80-90% Lsi matrix, plus occasionally disseminated FeNi spheres. Around large (>10 μm) FeNi spheres, however, the typical emulsion texture changes to ∼21% Lsi dispersed in ∼79% Lfe. This change of texture is interpreted as evidence for the transfer of meteoritic Fe from the meteoritic FeNi spheres into the target melt due to selective oxidation of Fe over Ni and Co. Variations in the bulk composition of Wabar black melt largely depend on the volume ratios between immiscible ultrabasic Lfe, felsic Lsi, and remains of meteoritic FeNi spheres. Based on natural occurrences of phase-separated glasses (this work and literature) and quenching experiments (literature), there is growing evidence that liquid immiscibility is a major process in the formation of glassy impactites.

  17. Levitation of superconducting composites

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Turchinskaya, M.; Swartzendruber, L. J.; Shull, R. D.; Bennett, L. H.

    1991-01-01

    The inverse levitation of a high temperature superconductor polymer composite consisting of powdered quench melt growth Ba2YCu3O(7-delta) and cyanoacrylate is reported. Magnetic hysteresis loop measurements for the composite are compared to those measured for the bulk material prior to powdering. Differences in the flux pining capability between the two material forms are small but significant.

  18. Preparation of Bi-Sr-Ca-Cu-O superconductors from oxide-glass precursors

    DOEpatents

    Hinks, David G.; Capone, II, Donald W.

    1992-01-01

    A superconductor and precursor therefor from oxide mixtures of Ca, Sr, Bi and Cu. Glass precursors quenched to elevated temperatures result in glass free of crystalline precipitates having enhanced mechanical properties. Superconductors are formed from the glass precursors by heating in the presence of oxygen to a temperature below the melting point of the glass.

  19. Random pinning elucidates the nature of melting transition in two-dimensional core-softened potential system

    NASA Astrophysics Data System (ADS)

    Tsiok, E. N.; Fomin, Y. D.; Ryzhov, V. N.

    2018-01-01

    Despite about forty years of investigations, the nature of the melting transition in two dimensions is not completely clear. In the framework of the most popular Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young (BKTHNY) theory, 2D systems melt through two continuous Berezinskii-Kosterlitz-Thouless (BKT) transitions with intermediate hexatic phase. The conventional first-order transition is also possible. On the other hand, recently on the basis of computer simulations the new melting scenario was proposed with continuous BKT type solid-hexatic transition and first order hexatic-liquid transition. However, in the simulations the hexatic phase is extremely narrow that makes its study difficult. In the present paper, we propose to apply the random pinning to investigate the hexatic phase in more detail. The results of molecular dynamics simulations of two dimensional system having core-softened potentials with narrow repulsive step which is similar to the soft disk system are outlined. The system has a small fraction of pinned particles giving quenched disorder. Random pinning widens the hexatic phase without changing the melting scenario and gives the possibility to study the behavior of the diffusivity and order parameters in the vicinity of the melting transition and inside the hexatic phase.

  20. Redox equilibria and the structural role of iron in alumino-silicate melts

    NASA Astrophysics Data System (ADS)

    Dickenson, M. P.; Hess, P. C.

    1982-01-01

    The relationship between the redox ratio Fe+2/(Fe+2+Fe+3) and the K2O/(K2O + Al2O3) ratio (K2O*) were experimentally investigated in silicate melts with 78 mol% SiO2 in the system SiO2-Al2O3-K2O-FeO-Fe2O3, in air at 1,400° C. Quenched glass compositions were analyzed by electron microprobe and wet chemical microtitration techniques. Minimum values of the redox ratio were obtained at K2O*≈0.5. The redox ratio in peralkaline melts (K2O*>0.5) increases slightly with K2O* whereas this ratio increases dramatically in peraluminous melts (K2O*<0.5) as K2O is replaced by Al2O3. These data indicate that all Fe+3 (and Al+3) occur as tetrahedral species charge balanced with K+ in peralkaline melts. In peraluminous melts, Fe+3 (and Al+3) probably occur as both tetrahedral species using Fe+2 as a charge-balancing cation and as network-modifying cations associated with non-bridging oxygen.

  1. The Gao-Guenie impact melt breccia—Sampling a rapidly cooled impact melt dike on an H chondrite asteroid?

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Kring, David A.; Swindle, Timothy D.; Bond, Jade C.; Moore, Carleton B.

    2016-06-01

    The Gao-Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact-melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth-crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao-Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous-textured impact melt domain. Olivine is predominantly Fo80-82. The clast domain contains low-Ca pyroxene. Impact melt-grown pyroxene is commonly zoned from low-Ca pyroxene in cores to pigeonite and augite in rims. Metal-troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni-rich troilite. The metallography of metal-troilite droplets suggest a stage I cooling rate of order 10 °C s-1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao-Guenie impact melt breccia and the impact-melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000-40,000 °C yr-1. A simple model of conductive heat transfer shows that the Gao-Guenie impact melt breccia may have formed in a melt injection dike ~0.5-5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.

  2. Cellular Precipitates Of Iron Oxide in Olivine in a Stratospheric Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1996-01-01

    The petrology of a massive olivine-sulphide interplanetary dust particle shows melting of Fe,Ni-sulphide plus complete loss of sulphur and subsequent quenching to a mixture of iron-oxides and Fe,Ni-metal. Oxidation of the fayalite component in olivine produced maghemite discs and cellular intergrowths with olivine and rare andradite-rich garnet. Cellular reactions require no long-range solid-state diffusion and are kinetically favourable during pyrometamorphic oxidation. Local melting of the cellular intergrowths resulted in three dimensional symplectic textures. Dynamic pyrometamorphism of this asteroidal particle occurred at approx. 1100 C during atmospheric entry flash (5-15 s) heating.

  3. Melter Feed Reactions at T ≤ 700°C for Nuclear Waste Vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel R.; Rice, Jarrett A.

    2015-07-23

    Batch reactions and phase transitions in a nuclear waste feed heated at 5 K min-1 up to 600°C were investigated by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometer, and X-ray diffraction. Quenched samples were leached in deionized water at room temperature and 80°C to extract soluble salts and early glass-forming melt, respectively. To determine the content and composition of leachable phases, the leachates were analyzed by the inductively-coupled plasma spectroscopy. By ~400°C, gibbsite and borax lost water and converted to amorphous and intermediate crystalline phases. Between 400°C and 600°C, the sodium borate early glass-forming melt reacted withmore » amorphous aluminum oxide and calcium oxide to form intermediate products containing Al and Ca. At ~600°C, half Na and B converted to the early glass-forming melt, and quartz began to dissolve in the melt.« less

  4. Mn-Cr dating of Fe- and Ca-rich olivine from 'quenched' and 'plutonic' angrite meteorites using Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter

    2015-05-01

    Angrite meteorites are suitable for Mn-Cr relative dating (53Mn decays to 53Cr with a half life of 3.7 Myr) using Secondary Ion Mass Spectrometry (SIMS) because they contain olivine and kirschsteinite with very high 55Mn/52Cr ratios arising from very low Cr concentrations. Discrepant Mn-Cr and U-Pb time intervals between the extrusive or 'quenched' angrite D'Orbigny and some slowly cooled or 'plutonic' angrites suggests that some have been affected by secondary disturbances, but this seems to have occurred in quenched rather than in slow-cooled plutonic angrites, where such disturbance or delay of isotopic closure might be expected. Using SIMS, we investigate the Mn-Cr systematics of quenched angrites to higher precision than previously achieved by this method and extend our investigation to non-quenched (plutonic or sub-volcanic) angrites. High values of 3.54 (±0.18) × 10-6 and 3.40 (±0.19) × 10-6 (2-sigma) are found for the initial 53Mn/55Mn of the quenched angrites D'Orbigny and Sahara 99555, which are preserved by Cr-poor olivine and kirschsteinite. The previously reported initial 53Mn/55Mn value of D'Orbigny obtained from bulk-rock and mineral separates is slightly lower and was probably controlled by Cr-rich olivine. Results can be interpreted in terms of the diffusivity of Cr in this mineral. Very low Cr concentrations in Ca-rich olivine and kirschsteinite are probably charge balanced by Al; this substitutes for Si and likely diffuses at a very slow rate because Si is the slowest-diffusing cation in olivine. Diffusion in Cr-rich Mg-Fe olivine is probably controlled by cation vacancies because of deficiency in charge-balancing Al and is therefore more prone to disturbance. The higher initial 53Mn/55Mn found by SIMS for extrusive angrites is more likely to reflect closure of Cr in kirschsteinite at the time of crystallisation, simultaneous with closure of U-Pb and Hf-W isotope systematics for these meteorites obtained from pyroxenes. For the younger angrites Northwest Africa (NWA) 4590 and 4801 we have found initial 53Mn/55Mn values which are consistent with more precise work, at 0.90 (±0.4) × 10-6 and 0.13 (±1.1) × 10-6 respectively. Our work shows that SIMS can usefully constrain and distinguish the ages of angrites of different petrologic groups. In reviewing the petrology of angrites, we suggest that NWA 2999, 4590, and 4801 underwent a secondary partial melting and Cr (+/-Pb) disturbance event that the sub-volcanic Lewis Cliff 86010, and perhaps the plutonic Angra dos Reis, did not. With our higher initial 53Mn/55Mn for D'Orbigny and Sahara 99555 as well as previous data, a combined quenched angrite initial 53Mn/55Mn of 3.47 (±0.12) × 10-6 (2-sigma, MSWD 1.00) yields consistent Mn-Cr and U-Pb intervals between these angrites and Lewis Cliff 86010. Discrepant Mn-Cr timescales for other plutonic and sub-volcanic angrites represents resetting during the secondary partial melting event at ∼4557.2 Ma and indicates a relative order of disturbance of isotope systems: Mn-Cr in olivine before U-Pb in pyroxene, with Hf-W in pyroxene being the most resistant.

  5. H2O in rhyolitic glasses and melts: Measurement, speciation, solubility, and diffusion

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    1999-11-01

    Dissolved H2O in silicate melts and glasses plays a crucial role in volcanic eruptions on terrestrial planets and affects glass properties and magma evolution. In this paper, major progress on several aspects of the H2O-melt (or glass) system is reviewed, consistency among a variety of data is investigated, discrepancies are evaluated, and confusion is clarified. On the infrared measurement of total H2O and species concentrations, calibration for a variety of glasses has been carried out at room temperature. The measurements for H2O in rhyolitic glasses have undergone the most scrutiny, resulting in the realization that absorptivities for the near-infrared bands depend on total H2O content. Although the variation of the absorptivities does not seem to significantly affect the determination of total H2O, it does affect the determination of molecular H2O and OH species concentrations. Calibration of the infrared technique for H2O in rhyolitic glasses still needs much improvement, especially at high total H2O. Furthermore, it is now almost certain that the molar absorptivities also depend on the measurement temperature in in situ studies. Hence it will be necessary to carry out calibrations in situ at high temperatures. On H2O speciation, results from two experimental approaches, the quench technique and the in situ technique, are very different, leading to controversy in our understanding of true speciation. A solution is presented to reconcile this controversy. It is almost certain that the quench technique does not suffer from a quench problem, but interpretation of in situ results suffered from ignoring the dependence of the molar absorptivities on measurement temperature. Accurate calibration at high temperatures is necessary for the quantitative application of the in situ technique to H2O speciation in silicate melts and glasses. On H2O solubility in silicate melts, recent experimental work has significantly expanded the T-P range of solubility measurements, and recent solubility models fill a gap for predicting solubility for a wide range of melt compositions. I present a solubility model for rhyolitic and quasi-rhyolitic melts over a wide range of T and P (500°-1350°C, 0-8 kbar) by incorporating the role of speciation. The solubility model is able to recover the experimental solubility data and has extrapolative value, although the partial molar volume of H2O derived from the solubility model differs from that derived from density measurements. On H2O diffusion, recent studies on H2O diffusion in a quasi-rhyolitic melt at 800°-1200°C, 0.5-5 kbar, and up to 7% total H2O not only provide important new diffusion data, but are also challenging earlier understanding of H2O diffusion based on data in rhyolitic glasses at 400°-550°C, 1 bar, and 0.2-1.8% total H2O. A comparison between the earlier model and recent data is made. The recent high-temperature diffusivities at total H2O ≤ 2% can be predicted by the earlier model. However, at higher total H2O, the earlier model fails. New work is under way to understand the diffusion mechanisms at high H2O contents.

  6. The Construction and Validation of All-Atom Bulk-Phase Models of Amorphous Polymers Using the TIGER2/TIGER3 Empirical Sampling Method

    PubMed Central

    Li, Xianfeng; Murthy, Sanjeeva; Latour, Robert A.

    2011-01-01

    A new empirical sampling method termed “temperature intervals with global exchange of replicas and reduced radii” (TIGER3) is presented and demonstrated to efficiently equilibrate entangled long-chain molecular systems such as amorphous polymers. The TIGER3 algorithm is a replica exchange method in which simulations are run in parallel over a range of temperature levels at and above a designated baseline temperature. The replicas sampled at temperature levels above the baseline are run through a series of cycles with each cycle containing four stages – heating, sampling, quenching, and temperature level reassignment. The method allows chain segments to pass through one another at elevated temperature levels during the sampling stage by reducing the van der Waals radii of the atoms, thus eliminating chain entanglement problems. Atomic radii are then returned to their regular values and re-equilibrated at elevated temperature prior to quenching to the baseline temperature. Following quenching, replicas are compared using a Metropolis Monte Carlo exchange process for the construction of an approximate Boltzmann-weighted ensemble of states and then reassigned to the elevated temperature levels for additional sampling. Further system equilibration is performed by periodic implementation of the previously developed TIGER2 algorithm between cycles of TIGER3, which applies thermal cycling without radii reduction. When coupled with a coarse-grained modeling approach, the combined TIGER2/TIGER3 algorithm yields fast equilibration of bulk-phase models of amorphous polymer, even for polymers with complex, highly branched structures. The developed method was tested by modeling the polyethylene melt. The calculated properties of chain conformation and chain segment packing agreed well with published data. The method was also applied to generate equilibrated structural models of three increasingly complex amorphous polymer systems: poly(methyl methacrylate), poly(butyl methacrylate), and DTB-succinate copolymer. Calculated glass transition temperature (Tg) and structural parameter profile (S(q)) for each resulting polymer model were found to be in close agreement with experimental Tg values and structural measurements obtained by x-ray diffraction, thus validating that the developed methods provide realistic models of amorphous polymer structure. PMID:21769156

  7. Rapid detection of α-thalassaemia alleles of --(SEA)/, -α(3.7)/ and -α(4.2)/ using a dual labelling, self-quenching hybridization probe/melting curve analysis.

    PubMed

    Gao, Lan; Liu, Yanhui; Sun, Manna; Zhao, Ying; Xie, Rungui; He, Yi; Xu, Wanfang; Liu, Jianxin; Lin, Yangyang; Lou, Jiwu

    2015-12-01

    The aim of the study was to set up an alternative automatic molecular diagnostic method for deletional α-thalassaemia mutations without gel electrophoresis. Based on the sequence variation within the two Z boxes and melting curve analysis of dually labelled probes, a real-time PCR assay was developed and validated for the rapid detection of major α-genotypes (--(SEA)/αα, --(SEA)/-α(3.7), --(SEA)/-α(4.2), --(SEA)/--(SEA), -α(3.7)/-α(3.7) and -α(4.2)/-α(4.2)). Samples with the -α(3.7)/-α(3.7), -α(4.2)/-α(4.2), --(SEA)/αα, --(SEA)/-α(3.7), --(SEA)/-α(4.2), and --(SEA)/--(SEA) genotypes could be clearly distinguished. The accuracy of this technique for these samples was 100% sensitivity and specificity. This technique is rapid and reliable, demonstrating feasibility for use in large-scale population screening and prenatal diagnosis of deletional Hb H disease and Hb Bart's hydrops fetalis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Calcio-carbonatite melts and metasomatism in the mantle beneath Mt. Vulture (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Rosatelli, Gianluigi; Wall, Frances; Stoppa, Francesco

    2007-12-01

    At Mt. Vulture volcano (Basilicata, Italy) calcite globules (5-150 μm) are hosted by silicate glass pools or veins cross-cutting amphibole-bearing, or more common spinel-bearing mantle xenoliths and xenocrysts. The carbonate globules are rounded or elongated and are composed of a mosaic of 2-20 μm crystals, with varying optical orientation. These features are consistent with formation from a quenched calciocarbonatite melt. Where in contact with carbonate amphibole has reacted to form fassaitic pyroxene. Some of these globules contain liquid/gaseous CO 2 bubbles and sulphide inclusions, and are pierced by quench microphenocrysts of silicate phases. The carbonate composition varies from calcite to Mg-calcite (3.8-5.0 wt.% MgO) both within the carbonate globules and from globule to globule. Trace element contents of the carbonate, determined by LAICPMS, are similar to those of carbonatites worldwide including ΣREE up to 123 ppm. The Sr-Nd isotope ratios of the xenolith carbonate are similar to the extrusive carbonatite and silicate rocks of Mt. Vulture testifying to derivation from the same mantle source. Formation of immiscibile silicate-carbonatite liquids within mantle xenoliths occurred via disequilibrium immiscibility during their exhumation.

  9. Formation of Ag nanoparticles and enhancement of Tb3+ luminescence in Tb and Ag co-doped lithium-lanthanum-aluminosilicate glass

    NASA Astrophysics Data System (ADS)

    Piasecki, Patryk; Piasecki, Ashley; Pan, Zhengda; Mu, Richard; Morgan, Steven H.

    2010-12-01

    Tb3+ and Ag co-doped glass nano-composites were synthesized in a glass matrix Li2O-LaF3-Al2O3-SiO2 (LLAS) by a melt-quench technique. The growth of Ag nanoparticles (NPs) was controlled by a thermal annealing process. A broad absorption band peaking at about 420 nm was observed due to surface plasmon resonance (SPR) of Ag NPs. The intensity of this band grows with increasing annealing time. The transmission electron microscopic image (TEM) reveals the formation of Ag NPs in glass matrix. Photoluminescence (PL) emission and excitation spectra were measured for glass samples with different Ag concentrations and different annealing times. Plasmon enhanced Tb3+ luminescence was observed at certain excitation wavelength regions. Luminescence quenching was also observed for samples with high Ag concentration and longer annealing time. Our luminescence results suggest that there are two competitive effects, enhancement and quenching, acting on Tb3+ luminescence in the presence of Ag NPs. The enhancement of Tb3+ luminescence is mainly attributed to local field effects due to SPR. The quenching of luminescence suggests an energy transfer from Tb3+ ions to Ag NPs.

  10. Ni/S/Cl systematics and the origin of impact-melt glasses in Martian meteorite Elephant Moraine 79001

    NASA Astrophysics Data System (ADS)

    Schrader, Christian M.; Cohen, Barbara A.; Donovan, John J.; Vicenzi, Edward P.

    2016-04-01

    Martian meteorite Elephant Moraine A79001 (EET 79001) has received considerable attention for the unusual composition of its shock melt glass, particularly its enrichment in sulfur relative to the host shergottite. It has been hypothesized that Martian regolith was incorporated into the melt or, conversely, that the S-enrichment stems from preferential melting of sulfide minerals in the host rock during shock. We present results from an electron microprobe study of EET 79001 including robust measurements of major and trace elements in the shock melt glass (S, Cl, Ni, Co, V, and Sc) and minerals in the host rock (Ni, Co, and V). We find that both S and major element abundances can be reconciled with previous hypotheses of regolith incorporation and/or excess sulfide melt. However, trace element characteristics of the shock melt glass, particularly Ni and Cl abundances relative to S, cannot be explained either by the incorporation of regolith or sulfide minerals. We therefore propose an alternative hypothesis whereby, prior to shock melting, portions of EET 79001 experienced acid-sulfate leaching of the mesostasis, possibly groundmass feldspar, and olivine, producing Al-sulfates that were later incorporated into the shock melt, which then quenched to glass. Such activity in the Martian near-surface is supported by observations from the Mars Exploration Rovers and laboratory experiments. Our preimpact alteration model, accompanied by the preferential survival of olivine and excess melting of feldspar during impact, explains the measured trace element abundances better than either the regolith incorporation or excess sulfide melting hypothesis does.

  11. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    NASA Astrophysics Data System (ADS)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are reported relative to TMS. The 1H MAS NMR spectra show broad peaks covering a chemical shift range of 1 to 17 ppm, with peak maxima near 4 and 15 ppm for more Si-rich compositions and near 12 ppm for less Si-rich compositions. The 1H-29Si-1H and 23Na-1H cross-polarization (CP) MAS NMR spectra for all the hydrous Na silicate glasses suggest negligible NaOH species, which, if present, should show enhanced relative intensity with 23Na-1H CP and the opposite with 1H-29Si-1H CP. All the observed 1H NMR intensities can be attributed to SiOH species of a range of hydrogen-bonding distances, plus a small amount of molecular H2O for higher water-content samples that contribute to intensities around 6 ppm. In conclusion, our combined 1H MAS NMR and double-resonance (1H-29Si-1H and 23Na-1H CP) MAS NMR study on Na silicate glasses of a range of Na/Si ratios has confirmed that water dissolves predominantly as SiOH and molecular H2O species in Na silicate melts (glasses), consistent with the trend predicted from studies on the Ca-Mg silicate system [1,2]. References:[1] Xue, X. Y.; Kanzaki, M. J. Am. Ceram. Soc. 2009, 92, 2803-2830. [2] Xue, X. Y.; Kanzaki, M. Geochim. Cosmochim. Acta 2004, 68, 5027-5057.

  12. Metastable Phase Relations in the System Ca(sub O)-Al2(sub O)3-MgO-TiO(sub 2): Applications to Ca- And Al-Rich Inclusions

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Han, J.

    2017-01-01

    Introduction: High temperature phases such as corundum, hibonite, grossite, and perovskite are among the earliest phases that condensed in the early solar nebula. Recent work has shown that defect-structured phases occur in some ultrarefractory inclusions as metastable, possibly more kinetically-favored alternatives to the thermodynamically predicted stable phase assemblages [1-4]. For example, Han et al. have shown that non-stoichiometry in hibonite is accommodated by extra "spinel" blocks in the structure instead of the equilibrium assemblages hibonite+corundum or hibonite+spinel. To explore these relations, we have conducted a series of experiments in the system CaO-Al2O3- MgO-TiO2. Here we discuss the compositions and mineralogy of the experimental samples and how they relate to phases in refractory inclusions with a focus on perovskite and spinel. Methods: For the series of annealing studies, a CaO-Al2O3 eutectic melt is allowed to react with a pure alumina crucible at 1,530degC for either 4 hours or 5 days, followed by quenching in air. Later experiments were similar except that additions of 5 wt% MgO, and CaTiO(sub 3) were used to explore the effect of minor elements on the phase assemblages. The experimental conditions resulted in reaction zones approximately 100-300 ?m wide consisting of a hibonite layer immediately adjacent to the corundum, followed by a grossite layer, and finally krotite with residual quenched melt. For the experiments with Mg, spinel is distributed in all layers but is mainly concentrated in the krotite layer. In the Ti-bearing experiments, perovskite precipitated in association with the krotite and residual melt. In addition to the experiments, we also analyzed perovskite grains in the FUN inclusion SHAL [5] and a large compact type A CAI from Allende. The experiments and refractory inclusions were analyzed using a JEOL 7600F SEM and quantitative analyses were obtained using the JEOL 8530F field-emission electron microprobe.

  13. Transport properties of lithium- lead-vanadium-telluride glass and glass ceramics

    NASA Astrophysics Data System (ADS)

    Sathish, M.; Eraiah, B.

    2014-04-01

    Glasses with the chemical composition 35Li2O-(45-x)V2O5-20PbO-xTeO2 (where x = 2.5, 5, 7.5, 10, 15 mol %) have prepared by conventional melt quenching method. The electrical conductivity of Li+ ion conducting lead vanadium telluride glass samples has been carried out both as a function of temperature and frequency in the temperature range 503K-563K and over frequencies 40 Hz to 10 MHz. The electronic conduction has been observed in the present systems. When these samples annealed around 400°C for 2hour become the glass ceramic, which also shows increase tendency of conductivity. SEM confines glass and glass ceramic nature of the prepared samples.

  14. Effect of visible light on the optical properties of a-(Ge2Sb2Te5)90Ag10 thin film

    NASA Astrophysics Data System (ADS)

    Singh, Palwinder; Thakur, Anup

    2018-05-01

    (Ge2Sb2Te5)90Ag10 (GST-Ag) bulk alloy was prepared using melt quenching technique. GST-Ag thin film was deposited on glass substrate using thermal evaporation method. The prepared thin films were exposed to visible light (intensity of 105 Lux for 2, 8, 20 and 30 hours) using 25W LED lamp. Transmission spectra were taken using UV-vis-NIR spectrophotometer in the wavelength range 800-3200 nm. Optical band gap of as-deposited and light exposed thin films was determined using Tauc's plot. Optical band gap was found to be decreasing on light exposure upto 8 hours and after that no significant change was observed.

  15. Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions

    NASA Astrophysics Data System (ADS)

    Gao, Xinyu; Tian, Ying; Liu, Qunhuo; Yang, Shuai; Jing, Xufeng; Zhang, Junjie; Xu, Shiqing

    2018-06-01

    Fluorophosphate glass co-doped with Er3+ and Ho3+ ions has been synthesized by high temperature melting method. Using a commercially available 980 nm laser diode, intense about 2 μm emissions were successfully obtained in present Ho3+/Er3+ co-doped glasses without obvious quenching. To understand 2 μm fluorescence behaviors of the prepared glasses, 1.55 μm emission spectra, energy transfer mechanism and microparameters from different levels of Er3+ to Ho3+ ions have been obtained and discussed. As a result, the Er3+/Ho3+ co-doped fluorophosphate glass with excellent spectroscopic properties might be appropriate host material for 2 μm solid laser.

  16. Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses.

    PubMed

    Yang, Hucheng; Lakshminarayana, G; Zhou, Shifeng; Teng, Yu; Qiu, Jianrong

    2008-04-28

    Aluminum-lanthanum-silicate glasses with different Eu doping concentration have been synthesized by conventional melt-quenching method at 1680 degrees C in reductive atmosphere. Under 395nm excitation, samples with low Eu doping concentration show mainly the cyan broad emission at 460nm due to 4f(6)5d(1)-4f(7) transition of Eu(2+); and the samples with higher Eu doping concentration show mainly some narrow emissions with maximum at 616nm due to (5)D(0)-(7)F(j) (J=0, 1, 2, 3, 4) transitions of Eu(3+). Cyan-white-red tunable luminescence under 395nm excitation has been obtained by changing the Eu doping concentration.

  17. Preparation and evaluation of ageing effect of Cu-Al-Be-Mn shape memory alloys

    NASA Astrophysics Data System (ADS)

    Shivasiddaramaiah, A. G.; Mallik, U. S.; Mahato, Ranjit; Shashishekar, C.

    2018-04-01

    10-14 wt. % of aluminum, 0.3-0.6 wt. % of beryllium and 0.1-0.4 wt. % of manganese and remaining copper melted in the induction furnace through ingot metallurgy. The prepared SMAs are subjected to homogenization. It was observed that the samples exhibits β-phase at high temperature and shape memory effect after going through step quenching to a low temperature. Scanning Electron Microscope, DSC, bending test were performed on the samples to determine the microstructure, transformation temperatures and shape memory effect respectively. The alloy exhibit good shape memory effect, up to around 96% strain recovery by shape memory effect. The ageing is performed on the specimen prepared according to ASTM standard for testing micro-hardness and tensile test. Precipitation hardening method was employed to age the samples and they were aged at different temperature and at different times followed by quenching. Various forms of precipitates were formed. It was found that the formation rate and transformation temperature increased with ageing time, while the amount of precipitate had an inverse impact on strain recovery by shape memory effect. The result expected is to increase in mechanical properties of the material such as hardness.

  18. Direct and real time probe of photoinduced structure transition in colossal magnetoresistive material

    DOE PAGES

    Li, Junjie; Wang, Xuan; Zhou, Haidong; ...

    2016-07-29

    Here, we report a direct and real time measurement of photoinduced structure phase transition in single crystal La 0.84Sr 0.16MnO 3 using femtosecond electron diffraction. The melting of orthorhombic lattice ordering under femtosecond optical excitation is found involving two distinct processes with different time scales, an initial fast melting of orthorhombic phase in about 4 ps and a subsequent slower transformation in 90 ps and longer timescales. Furthermore, the fast process is designated as the initial melting of orthorhombic phase induced by the Mn-O bond change that is most likely driven by the quenching of the dynamic Jahn-Teller distortion followingmore » the photo-excitation. We attribute the slow process to the growing of newly formed structure domain from the photo-excited sites to the neighboring non-excited orthorhombic sites.« less

  19. The effect of real-time aging on the oxidation and wear of highly cross-linked UHMWPE acetabular liners.

    PubMed

    Wannomae, Keith K; Christensen, Steven D; Freiberg, Andrew A; Bhattacharyya, Shayan; Harris, William H; Muratoglu, Orhun Kamil

    2006-03-01

    Irradiation decreases the wear of ultra-high molecular weight polyethylene (UHMWPE) but generates residual free radicals, precursors to long-term oxidation. Melting or annealing is used in quenching free radicals. We hypothesized that irradiated and once-annealed UHMWPE would oxidize while irradiated and melted UHMWPE would not, and that the oxidation in the former would increase wear. Acetabular liners were real-time aged by immersion in an aqueous environment that closely mimicked the temperature and oxygen concentration of synovial fluid. After 95 weeks of real-time aging, once-annealed components were oxidized; the melted components were not. The wear rate of the real-time aged irradiated and once-annealed components was higher than the literature reported values of other contemporary highly cross-linked UHMWPEs. Single annealing after irradiation used with terminal gamma sterilization may adversely affect the long-term oxidative stability of UHMWPE components.

  20. Crystallization and characterization of Y2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Drummond, C. H., III; Lee, W. E.; Sanders, W. A.; Kiser, J. D.

    1988-01-01

    Glasses in the yttria-silica system with 20-40 mol pct Y2O3 have been subjected to recrystallization studies after melting at 1900-2100 C in W crucibles in 1 and 50 atm N2. The TEM and XRD results obtained indicate the presence of the delta, gamma, gamma-prime, and beta-Y2Si2O7 crystalline phases, depending on melting and quenching conditions. Heat-treatment in air at 1100-1600 C increased the amount of crystallization, and led to the formation of Y2SiO5, cristobalite, and polymorphs of Y2Si2O7. Also investigated were the effects of 5 and 10 wt pct zirconia additions.

  1. Overview of NASA's Microgravity Materials Research Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is not triggered from the wall and in which fluid flows in the sample can be controlled and manipulated. These conditions allow scientists ideal conditions for understanding the relative amounts and distribution of different phases that form in the solid. Finally, the Coarsening of Solid Liquid Melts hardware allows quenching of low temperature samples in the Microgravity Science Glovebox.

  2. Network cation coordination in aluminoborosilicate and Mg- aluminosilicate glasses: pressure effects in recovered structural changes and densification

    NASA Astrophysics Data System (ADS)

    Bista, S.; Stebbins, J. F.; Sisson, T. W.; Hankins, W. B.

    2015-12-01

    In this study, we compare the aluminum and boron coordination of glass samples recovered from piston-cylinder experiments carried out at 1 to 3 GPa and near to their ambient glass transition temperature (Tg), which we have found gives a more accurate picture of high pressure structural changes than experiments involving quenching from above the liquidus, as large pressure drops can occur in the latter. Aluminoborosilicate glasses with excess modifier (Ca, La and Y- aluminoborosilicate) quenched from melts at 1-3 GPa were studied with B-11 and Al-27 MAS NMR to assess relative effects on two different network cations. Structural changes in the Y-aluminoborosilicate are dramatic, going from mostly AlO4 at low pressure to mostly AlO5 and AlO6 at 3 GPa. Large increases in BO4 (vs. BO3) are also seen. Mg-aluminosilicate glasses, both tectosilicate (Mg2Al4Si6O20) and with excess modifier composition (Mg3Al2Si6O18) quenched from melts at 1-3 GPa pressure were studied with Al-27 MAS NMR. In contrast to our previous study (Bista et al., Am. Min., in press) of jadeite glass, where only 0.5% of fivefold aluminum was seen in glass recovered from 3 GPa, five and six fold aluminum species increase significantly with increasing pressure in both Mg aluminosilicate glass compositions studied here. We observe that the tectosilicate Mg aluminosilicate glass has more higher coordinated aluminum than the excess modifier containing composition in the pressure range in our study. In the previous study (Bista et al., in press) of jadeite and calcium aluminosilicate (Ca3Al2Si6O18) glasses, 6-8% densification was observed in glasses recovered from 3 GPa. In this study of Mg aluminosilicate glasses, we observe 12% densification in glasses recovered from 3 GPa. Both types of observation confirm that structural and density changes with pressure are enhanced by higher field strength modifier cations, and will be especially important in Mg- and Fe-rich mantle melts.

  3. In situ spectroscopy and spectroelectrochemistry of uranium in high-temperature alkali chloride molten salts.

    PubMed

    Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A

    2008-09-01

    Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.

  4. Posttest calculations of bundle quench test CORA-13 with ATHLET-CD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bestele, J.; Trambauer, K.; Schubert, J.D.

    Gesellschaft fuer Anlagen- und Reaktorsicherheit is developing, in cooperation with the Institut fuer Kernenergetik und Energiesysteme, Stuttgart, the system code Analysis of Thermalhydraulics of Leaks and Transients with Core Degradation (ATHLET-CD). The code consists of detailed models of the thermal hydraulics of the reactor coolant system. This thermo-fluid dynamics module is coupled with modules describing the early phase of the core degradation, like cladding deformation, oxidation and melt relocation, and the release and transport of fission products. The assessment of the code is being done by the analysis of separate effect tests, integral tests, and plant events. The code willmore » be applied to the verification of severe accident management procedures. The out-of-pile test CORA-13 was conducted by Forschungszentrum Karlsruhe in their CORA test facility. The test consisted of two phases, a heatup phase and a quench phase. At the beginning of the quench phase, a sharp peak in the hydrogen generation rate was observed. Both phases of the test have been calculated with the system code ATHLET-CD. Special efforts have been made to simulate the heat losses and the flow distribution in the test facility and the thermal hydraulics during the quench phase. In addition to previous calculations, the material relocation and the quench phase have been modeled. The temperature increase during the heatup phase, the starting time of the temperature escalation, and the maximum temperatures have been calculated correctly. At the beginning of the quench phase, an increased hydrogen generation rate has been calculated as measured in the experiment.« less

  5. The Structure and Properties of the Samples Produced by Selective Laser Melting of 410L Steel-based Metal Powder

    NASA Astrophysics Data System (ADS)

    Deev, Artem; Kuznetsov, Pavel; Zhukov, Anton; Bobyr, Vitaliy

    Additive technologies, which obtained the wide spreading in the last decade, allow producing items of any shape from metal materials practically without additional mechanical treatment. This approach based on the layer by layer melting of powder material accordingly to the premade 3D-CAD model, provides the geometrical accuracy which mostly depends on the size of the used material. In the present study, as material a 410 L steel powder was chosen, for which the basic dependencies between the selective laser melting (SLM) parameters and the mechanical properties were determined. Trial batches of standard samples for uniaxial tension and impact strength tests (according to the ASTM A370 and ASTM E8 M standards) were produced. It was shown that in the as build (after SLM) the fracture appeared to be brittle with the impact strength 3-5 J/cm2. The carried out heat treatment of quenching-tempering cycle and subsequent tests provide the viscous fracture and evaluation of impact strength up to 20-30 J/cm2. Presumably, this is due to a refinement of the grain structure and the inner stresses reduction of the samples, which also acknowledges the execution EBSD analysis, which points to the presence of quenched and tempered martensite. The presence of high inner stresses can be attributed to two α-γ-α transformations that were revealed by dilatometry investigation. In the range of cooling or heating rates from 1 to 500 °C/s temperatures of phase transformation are shifted.

  6. Constraining pre-eruptive volatile contents and degassing histories in submarine lavas

    NASA Astrophysics Data System (ADS)

    Jones, M.; Soule, S. A.; Liao, Y.; Le Roux, V.; Brodsky, H.; Kurz, M. D.

    2017-12-01

    Vesicle textures in submarine lavas have been used to calculate total (pre-eruption) volatile concentrations in mid-ocean ridge basalts (MORB), which provide constraints on upper mantle volatile contents and CO2 fluxes along the global MOR. In this study, we evaluate vesicle size distributions and volatile contents in a suite of 20 MORB samples, which span the range of typical vesicularities and bubble number densities observed in global MORB. We demonstrate that 2D imaging coupled with traditional stereological methods closely reproduces vesicle size distributions and vesicularities measured using 3D x-ray micro-computed tomography (μ-CT). We further demonstrate that x-ray μ-CT provides additional information about bubble deformation and clustering that are linked to bubble nucleation and lava emplacement dynamics. The validation of vesicularity measurements allows us to evaluate the methods for calculating total CO2 concentrations in MORB using dissolved volatile content (SIMS), vesicularity, vesicle gas density, and equations of state. We model bubble and melt contraction during lava quenching and show that the melt viscosity prevents bubbles from reaching equilibrium at the glass transition temperature. Thus, we suggest that higher temperatures should be used to calculate exsolved volatile concentrations based on observed vesicularities. Our revised method reconciles discrepancies between exsolved volatile contents measured by gas manometry and calculated from vesicularity. In addition, our revised method suggests that some previous studies may have overestimated MORB volatile concentrations by up to a factor of two, with the greatest differences in samples with the highest vesicularities (e.g., `popping rock' 2πD43). These new results have important implications for CO2/Nb of `undegassed' MORB and global ridge CO2 fluxes. Lastly, our revised method yields constant total CO2 concentrations in sample suites from individual MOR eruptions that experienced syn-eruptive degassing. These results imply closed-system degassing during magma ascent and emplacement following equilibration at the depth of melt storage in the crust.

  7. Pt, Au, Pd and Ru Partitioning Between Mineral and Silicate Melts: The Role of Metal Nanonuggets

    NASA Technical Reports Server (NTRS)

    Malavergne, V.; Charon, E.; Jones, J.; Agranier, A.; Campbell, A.

    2012-01-01

    The partition coefficients of Pt and other Pt Group Elements (PGE) between metal and silicate D(sub Metal-Silicate) and also between silicate minerals and silicate melts D(sub Metal-Silicate) are among the most challenging coefficients to obtain precisely. The PGE are highly siderophile elements (HSE) with D(sub Metal-Silicate) >10(exp 3) due to the fact that their concentrations in silicates are very low (ppb to ppt range). Therefore, the analytical difficulty is increased by the possible presence of HSE-rich-nuggets in reduced silicate melts during experiments). These tiny HSE nuggets complicate the interpretation of measured HSE concentrations. If the HSE micro-nuggets are just sample artifacts, then their contributions should be removed before calculations of the final concentration. On the other hand, if they are produced during the quench, then they should be included in the analysis. We still don't understand the mechanism of nugget formation well. Are they formed during the quench by precipitation from precursor species dissolved homogeneously in the melts, or are they precipitated in situ at high temperature due to oversaturation? As these elements are important tracers of early planetary processes such as core formation, it is important to take up this analytical and experimental challenge. In the case of the Earth for example, chondritic relative abundances of the HSE in some mantle xenoliths have led to the concept of the "late veneer" as a source of volatiles (such as water) and siderophiles in the silicate Earth. Silicate crystal/liquid fractionation is responsible for most, if not all, the HSE variation in the martian meteorite suites (SNC) and Pt is the element least affected by these fractionations. Therefore, in terms of reconstructing mantle HSE abundances for Mars, Pt becomes a very important player. In the present study, we have performed high temperature experiments under various redox conditions in order to determine the abundances of Pt, Au, Ru and Pd in minerals (olivine and diopside) and in silicate melts, but also to characterize the sizes, density and chemistry of HSE nuggets when present in the samples.

  8. New insights into seismic faulting during the 2008 Mw7.9 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, H.; Si, J.; Sun, Z.; Pei, J.; Lei, Z.; He, X.

    2017-12-01

    The WFSD project was implemented promptly after the 2008 Mw 7.9 Wenchuan earthquake. A series of research results on the seismogenic structure, fault deformation, sliding mechanism and fault healing have been obtained, which provide new insights into seismic faulting and mechanisms of the Wenchuan earthquake. The WFSD-1 and -2 drilling core profiles reveal that the Longmen Shan thrust belt is composed of multiple thrust sheets. The 2008 Wenchuan earthquake took place in such tectonic setting with strong horizontal shortening. The two ruptured faults have different deformation mechanisms. The Yingxiu-Beichuan fault (YBF) is a stick-slip fault characterized by fault gouge with high magnetic susceptibility, Guanxian-Anxian fault (GAF) with creeping features and characterized by fault gouge with low magnetic susceptibility. Two PSZs were found in WFSD-1 and -2 cores in the southern segment of YBF. The upper PSZ1 is a low-angle thrust fault characterized by coseisimc graphitization with an extremely low frictional coefficient. The lower PSZ2 is an oblique dextral-slip thrust fault characterized by frictional melt lubrication. In the northern segment of YBF, the PSZ in WFSD-4S cores shows a high-angle thrust feature with fresh melt as well. Therefore, the oblique dextral-slip thrust faulting with frictional melt lubrication is the main faulting of Wenchuan earthquake. Fresh melt with quenching texture was formed in Wenchuan earthquake implying vigorous fluid circulation occurred during the earthquake, which quenched high-temperature melt, hamper the aftermost fault slip and welding seismic fault. Therefore, fluids in the fault zone not only promotes fault weakening, but also suppress slipping in theWenchuan earthquake. The YBF has an extremely high hydraulic diffusivity (2.4×10-2 m2s-1), implying a vigorous fluid circulation in the Wenchuan fault zone. the permeability of YBF has reduced 70% after the shock, reflecting a rapid healing for the YBF. However, the water level has not changed in the WFSD-3 borehole drilled through GAF, indicating an unchanged permeability. These results are of great significance to understanding the seismogenic mechanisms and earthquake cycle for the Wenchuan earthquake.

  9. Solubility, Partitioning, and Speciation of Carbon in Shallow Magma Oceans of Terrestrial Planets Constrained by High P-T Experiments

    NASA Astrophysics Data System (ADS)

    Chi, H.; Dasgupta, R.; Shimizu, N.

    2011-12-01

    Deep planetary volatile cycles have a critical influence on planetary geodynamics, atmospheres, climate, and habitability. However, the initial conditions that prevailed in the early, largely molten Earth and other terrestrial planets, in terms of distribution of volatiles between various reservoirs - metals, silicates, and atmosphere - remains poorly constrained. Here we investigate the solubility, partitioning, and speciation of carbon-rich volatile species in a shallow magma ocean environment, i.e., in equilibrium with metallic and silicate melts. A series of high pressure-temperature experiments using a piston cylinder apparatus were performed at 1-3 GPa, 1500-1800 °C on synthetic basaltic mixtures + Fe-Ni metal powders contained in graphite capsules. All the experiments produced glassy silicate melt pool in equilibrium with quenched metal melt composed of dendrites of cohenite and kamacite. Major element compositions of the resulting phases and the carbon content of metallic melts were analyzed by EPMA at NASA-JSC. Carbon and hydrogen concentrations of basaltic glasses were determined using Cameca IMS 1280 SIMS at WHOI and speciation of dissolved volatiles was constrained using FTIR and Raman spectroscopy at Rice University. Based on the equilibria - FeO (silicate melt) = Fe (metal alloy melt) + 1/2O2, we estimate the oxygen fugacity of our experiments in the range of ΔIW of -1 to -2. FTIR analysis on doubly polished basaltic glass chips suggests that the concentrations of dissolved CO32- or molecular CO2 are negligible in graphite and metal saturated reduced conditions, whereas the presence of dissolved OH- is evident from the asymmetric peak at 3500 cm-1. Collected Raman spectra of basaltic glasses in the frequency range of 200-4200 cm-1 suggest that hydrogen is present both as dissolved OH- species (band at 3600 cm-1) and as molecular H2 (band near 4150 cm-1) for all of our experiments. Faint peaks near 2915 cm-1 and consistent peaks near 740 cm-1 suggest that possible carbon species in our reduced glasses are likely minor CH4 and Si-C, respectively and are consistent with the recent solubility studies at reduced conditions [1,2]. Carbon solubility (calibrated using 12C/30Si) at graphite saturation in our reduced basaltic glasses is only in the range 20-100 ppm C, with H2O contents in the range of 0.2-0.7 wt.%. In contrast to the low dissolved carbon concentration in the basaltic silicate melts, carbon solubility in quenched metallic melts vary in the range of 5-7 wt.%. Our preliminary work indicates that the solubility of carbon in reduced basaltic melts relevant for early magma conditions may be several orders of magnitude lower compared to the solubility of carbon in modern terrestrial basalts. This coupled with significant solubility of carbon in Fe-Ni metallic melt suggests that most of magma ocean carbon was likely partitioned into deep metallic melts. Further metal-silicate experiments with more depolymerized basaltic melts of variable compositions are underway and will be presented. [1] Kadik et al. JPetrol 45, 1297-1310, 2004; [2] Kadik et al. Geochem Int 44, 33-47, 2006.

  10. Lobate impact melt flows within the extended ejecta blanket of Pierazzo crater

    NASA Astrophysics Data System (ADS)

    Bray, Veronica J.; Atwood-Stone, Corwin; Neish, Catherine D.; Artemieva, Natalia A.; McEwen, Alfred S.; McElwaine, Jim N.

    2018-02-01

    Impact melt flows are observed within the continuous and discontinuous ejecta blanket of the 9 km lunar crater Pierazzo, from the crater rim to more than 40 km away from the center of the crater. Our mapping, fractal analysis, and thermal modeling suggest that melt can be emplaced ballistically and, upon landing, can become separated from solid ejecta to form the observed flow features. Our analysis is based on the identification of established melt morphology for these in-ejecta flows and supported by fractal analysis and thermal modeling. We computed the fractal dimension for the flow boundaries and found values of D = 1.05-1.17. These are consistent with terrestrial basaltic lava flows (D = 1.06-1.2) and established lunar impact melt flows (D = 1.06-1.18), but inconsistent with lunar dry granular flows (D = 1.31-1.34). Melt flows within discontinuous ejecta deposits are noted within just 1.5% of the mapping area, suggesting that the surface expression of impact melt in the extended ejecta around craters of this size is rare, most likely due to the efficient mixing of melts with solid ejecta and local target rocks. However, if the ejected fragments (both, molten and solid) are large enough, segregation of melt and its consequent flow is possible. As most of the flows mapped in this work occur on crater-facing slopes, the development of defined melt flows within ejecta deposits might be facilitated by high crater-facing topography restricting the flow of ejecta soon after it makes ground contact, limiting the quenching of molten ejecta through turbulent mixing with solid debris. Our study confirms the idea that impact melt can travel far beyond the continuous ejecta blanket, adding to the lunar regolith over an extensive area.

  11. The influence of Ge on optical and thermo- mechanical properties of S-Se chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Samudrala, Kavitha; Babu Devarasetty, Suresh

    2018-05-01

    S-Se-Ge glasses were prepared by melt quenching method to investigate the effect of Germanium on thermo-mechanical and optical properties of chalcogenide glasses. The glassy nature of the samples has been verified by x-ray diffraction and DSC studies that the samples are glassy in nature. The optical band gap of the samples was estimated by the absorption spectrum fitting method. The optical band gap increased from 1.61 ev for x = 0 sample to 1.90 ev for x = 40 sample and is explained in terms of cohesive energies. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network, as well as the modulus of Elasticity (E) have been calculated for prepared glasses.in present glasses. The variation in these parameters with Ge content correlated with heat of atomization of alloys.

  12. Experimental constraints on the origin of high-Mg andesites: the effect of H2O and silica activity on mantle melt compositions

    NASA Astrophysics Data System (ADS)

    Moore, G. M.; Roggensack, K.

    2009-12-01

    Understanding the role volatiles (H2O, CO2) play in the origin of mantle-related melts is an important part of arc magma petrogenesis, and has implications for our understanding of many aspects of subduction zone volcanism including mass fluxes, volcanic degassing, and eruptive style. Both the occurrence of high-Mg andesites (HMA) in particular tectonic settings and their association with high H2O contents make HMA a unique window into hydrous subduction-related mantle melting processes. A significant amount of experimental work at mantle conditions has shown that increasing H2O content in the melt will not only stabilize olivine with respect to orthopyroxene, but will also increase the SiO2 content of the melt to andesitic amounts (e.g. Gaetani and Grove, 1998; Tatsumi, 1981; Tatsumi, 2006), suggesting that HMA could be a primary mantle melt if enough H2O is present. This hypothesis is supported by the rare occurrence of mantle xenoliths in Mg-rich andesites (Blatter and Carmichael, 1998; Tanaka and Aoki, 1981) that often contain hydrous mineral phases. Reliable thermodynamic modelling of such hydrous silicate melts in equilibrium with the mantle has proven difficult because of the relatively small set of experiments that allow this type of analysis. There are also experimental and analytical difficulties in dealing with hydrous high P-T samples (e.g. quench to a glass, rapid melt-solid reaction on quench, electron beam sensitivity of resulting glass, volatile content determination, etc), and statistical difficulties in determining robust model parameters because of the large degree of co-variance in the data set (e.g. T and H2O melt content). With the goal of addressing these problems, we conducted a series of “sandwich” type experiments at 1.0 GPa and 1200 deg C that saturated various hydrous melt compositions with olivine and opx. Our previous results have shown that the silica activity coefficient correlates negatively with H2O content (Moore and Roggensack, 2007), consistent with the earlier experimental phase equilibria results and the modeling of Carmichael (2002). New results using a broader range of starting melt compositions are presented here, showing that there is a significant effect of initial alkali content on the amount of melting of the mineral assemblage. This has the net result that the experimental melt compositions converge to a narrow range at high H2O contents that do not reproduce the observed HMA compositions, implying that the experimental P-T conditions used are not correct for generating HMA magmas. Use of this new data to thermodynamically model the influence of P, T, and melt composition (including H2O content) is underway, and will constrain whether hydrous arc lavas, including HMA, can be attributed to a primitive mantle origin, or whether other magmatic processes are necessary to generate their observed bulk compositions. It will also quantify the amount of H2O necessary to generate such magmas, giving insight into the potential H2O content present in the sub-arc mantle source regions, and allowing a more precise estimate of volatile fluxes in volcanic arc settings.

  13. Stress-Driven Melt Segregation and Organization in Partially Molten Rocks III: Annealing Experiments and Surface Tension-Driven Redistribution of Melt

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.

    2004-12-01

    As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction-driven processes.

  14. On Heat-Treatable Copper-Chromium Alloy, 1

    NASA Technical Reports Server (NTRS)

    Koda, S.; Isono, E.

    1984-01-01

    A mother alloy of 10% Cr and 90% Cu was prepared by sintering. This was alloyed with the Cu melt and Cu-Cr alloys containing about 0.5% Cr was obtained. These alloys could be deformed easily in both the hot and cold states. By measuring the hardness change, age-hardening properties of cast alloys were studied, which were quenched from 950 deg and aged at 300 to 700 deg for 1 hour. The maximum hardness was obtained with the tempering temperature of 500 deg. For the temperature of solution-treatment, 950 deg was insufficient and that above 1000 deg necessary. For the tempering time, a treatment at 500 deg for 1 hr. or at 450 deg for 3 hrs. yielded the maximum hardness. As for the properties for electrical conductors, 3 kinds of wires (diam. 2 mm.) were made: (1) after cold-drawn to 2 mm., solution-treated, quenched, and then tempered (500 deg, 1 hr.); (2) after quenching, cold-drawn (75% reduction) to 2 mm. and tempered (500 deg, 1 hr.); and (3) after quenching, cold-drawn (81%) to intermediate diameter, tempered (500 deg, 1 hr.) and then cold-drawn (88%) again. Properties obtained for the 3 kinds, respectively, were as follows: conductivity 91, 90, and 86%. Tensile strength and strength for electrical conductivity are given.

  15. The Roles of Temperature and Composition in High-Pressure Structural Changes in Aluminosilicate Melts

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2009-12-01

    Extensive recent NMR studies show large effects of composition on the extent of structural change in aluminosilicate glasses quenched from melts at high pressure, which correlate with observed, recovered density increases. Although such results will eventually need to be complemented by quantitative, in situ spectroscopic and scattering measurements, they already provide important constraints on the types of models necessary to capture the complexity of structure-property relationships for multicomponent natural magmas. For example, smaller and/or higher charged network modifier/charge compensator cations (e.g. Mg2+ vs. Ca2+, Ca2+ vs. K+) generally promote greater densification as well as increased conversion of four-coordinated to five- and six-coordinated Al (Al-27 NMR), but such effects may be non-linear in mixed-cation systems. At the same time, simple calculations with estimates of changes in partial molar volumes suggest that much of the observed density increases must be due to compression of “soft” sites in the structure and to the accompanying narrowing of inter-tetrahedral network bond angles (e.g. Si-O-Si). These can in turn be detected as reductions in mean Na-O distances (Na-23 NMR) and shifts in Si-29 spectra. As the field strength of the modifier cation increases farther (e.g. from Ca2+ to La3+), this pattern shifts: such “intermediate” cations can react to pressure increases by increasing their own coordinations and M-O distances (La K-edge XAS), reducing effects on network cation coordination. An extreme example of this can be seen as the Al/Si ratio changes: only at low Al contents are increases in Si coordination large enough to be detected by Si-29 NMR. Numerous recent studies of high-pressure glasses by O-17 NMR (e.g. S.K. Lee et al.) have emphasized the role of non-bridging oxygens (NBO) in increases of Si and Al coordination with pressure, as well as the critical importance of this species to melt properties. It is likely that modifier cation field strength has an important effect on this process as well: it is now well-known from borosilicate analog systems that higher field-strength modifiers (e.g. Ca2+ vs. Na+) stabilize local concentrations of negative charge as on NBO. This competing effect may again complicate models of density vs. composition. At best, quenched and decompressed glasses sample the melt structure only at the high P glass transition temperature. Given that the solidus temperatures of greatest interest to geological processes generally increase with pressure, changes in melt structure with temperature become even more important. The still poorly-known effects of ambient T decompression on glass structure also need to be resolved by future studies of the kinetics of this process and key in-situ measurements. Simple estimates of density changes during quench from a high P/T melt and subsequent decompression suggest that there is not a great deal of “room” for inelastic structural relaxation in typical aluminosilicate glasses, unless the high pressure thermal expansivity has a much larger structural contribution (Si coordination shift with T?) than is known from ambient P.

  16. Electrical switching studies on Si15Te85-xCux bulk (1 ≤ x ≤ 5) glasses

    NASA Astrophysics Data System (ADS)

    Roy, Diptoshi; Nadig, Chinmayi H. S.; Krishnan, Aravindh; Karanam, Akshath; Abhilash, R.; Jagannatha K., B.; Das, Chandasree

    2018-05-01

    Bulk ingots of Si15Te85-xCux (1 ≤ x ≤ 5) glasses are concocted by typical melt quenching technique. XRD validate the non-crystalline feature of the prepared quenched sample. The samples are found to display threshold type of electrical switching behavior. The switching behavior on all the samples is noticed without any disturbances. Compositional dependence of threshold voltage of Si15Te85-xCux (1 ≤ x ≤ 5) glasses has been studied and it has been found that VT increases as the atomic percentage of dopant (copper) increases in the host matrix. The distinguished behavior has been envisaged and correlated to the improvement in network connectivity and rigidity with the addition of Cu.

  17. Eu3 + amidst ionic copper in glass: Enhancement through energy transfer from Cu+, or quenching by Cu2 +?

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.

    2017-02-01

    A barium-phosphate glass system doped with europium(III) and containing a high concentration of copper(I) together with a copper(II) remnant has been studied spectroscopically. The main object is to elucidate whether the orange-red emission of Eu3 + ions succeeds through sensitization via luminescent Cu+ ions or else is preferentially quenched by non-radiative transfer to Cu2 +. A characterization of the melt-quenched glass was first performed by UV/Vis optical absorption, 31P nuclear magnetic resonance and infrared absorption spectroscopy. A photoluminescence (PL) spectroscopy and emission decay dynamics assessment was subsequently performed. Despite the concentration of Cu+ being estimated to be much higher than that of Cu2 +, the data shows that quenching of Eu3 + PL by Cu2 + dominates. The lifetime analysis of emitting centers Cu+ and Eu3 + points to the origin of the manifestation being that the Eu3 + → Cu2 + non-radiative transfer rate responsible for the quenching is almost two times higher than that for the Cu+ → Eu3 + transfer accountable for the enhancement. Finally, an effort was made for the determination of Cu2 + in the glass containing Cu+, Cu2 + and Eu3 + ions based on the Eu3 + (5D0) emission decay rates. It was found to be in excellent agreement with the UV/Vis spectrophotometric approach, thus supporting the utility of Eu3 + ions for optical sensing of copper(II) in the solid state.

  18. Temperature-Dependent Electrical Conductivity of GeTe-Based RF Switches

    DTIC Science & Technology

    2015-03-31

    Short, high temperature pulses result in a melt -quench cycle, amorphizing the GeTe and leaving the switch in the electrically insulating OFF state...Longer, lower temperature pulses result in the recrystallization of the GeTe, leaving the switch in the electrically conductive ON state. The...shown to vary only weakly with temperature. OFF-state S-parameters also exhibit slight temperature variation, with an inflection point of ~175

  19. Defining the chemical role of H2O in mantle melts: Effect of melt composition and H2O content on the activity of SiO2

    NASA Astrophysics Data System (ADS)

    Moore, G.; Roggensack, K.

    2007-12-01

    Quantifying the influence of volatiles (H2O, CO2) on the chemistry of mantle melts is a critical aspect of understanding the petrogenesis of arc magmas. A significant amount of experimental work done on the effect of H2O on the solidii of various mantle compositions, as well as on multiple saturation points of various primitive melts, has shown that H2O stabilizes olivine with respect to orthopyroxene. Or, in other words, at constant activity of SiO2, the presence of H2O decreases the activity coefficient of SiO2 in the melt, potentially leading to mantle melts that have suprisingly high SiO2 contents (Carmichael, 2002). Quantification and modelling of this behavior in hydrous silicate melts in equilibrium with the mantle have proven problematic, due mainly to a relatively small set of experiments that allow this type of thermodynamic analysis, and because of the experimental and analytical difficulties of dealing with hydrous high P-T samples (e.g. quench to a glass, rapid melt-solid reaction on quench, electron beam sensitivity of resulting glass, volatile content determination, etc). A further complication in the existing data includes co-variance of important experimental parameters (e.g. T and H2O content), making robust statistical regression analysis difficult and potentially misleading. We present here results of high P-T experiments conducted at a single pressure and temperature (1.0 GPa, 1200 deg C) that have the specific goal of quantifying the effect of H2O, as well as other melt components, on the activity coefficient of SiO2 in mantle melts. Using a "sandwich" type experiment, basaltic melts are saturated with an olivine plus orthopyroxene mineral assemblage with varying H2O and CO2 contents. The resulting samples have their bulk solid phase and glass compositions determined using EPMA, and the volatile content of the glass is determined by FTIR. The activity of SiO2 is then calculated using the olivine and orthopyroxene compositions. This value is then used, along with the mole fraction of SiO2 that is measured in the glass, to calculate an activity coefficient for SiO2 in that particular melt. The results show that for two starting compositions, H2O clearly has a strong negative effect on the activity coefficient of SiO2, consistent with some earlier intepretations. Further work is being conducted on differing starting compositions, as well as increasing the range of volatile contents, in order to better quantify their influence on this important chemical parameter of mantle melts. Ultimately, these experiments will help determine whether hydrous arc lavas, including high-Mg andesites, can be attributed to a primitive mantle origin, or whether other magmatic processes are necessary to generate their observed bulk compositions. It will also quantify the amount of H2O necessary to generate such magmas, giving insight into the potential H2O content present in the sub-arc mantle source regions, and allowing a more precise estimate of volatile fluxes in volcanic arc settings.

  20. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching

    DOE PAGES

    Doll, Charles G.; Wright, Cherylyn W.; Morley, Shannon M.; ...

    2017-02-01

    In this paper, a modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Finally, analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect.

  1. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Wright, Cherylyn W.; Morley, Shannon M.

    A modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect.

  2. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Wright, Cherylyn W.; Morley, Shannon M.

    In this paper, a modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Finally, analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect.

  3. Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator.

    PubMed

    Lee, Gyuhyon; Savage, Nicholas; Wagner, Brent; Zhang, Yuelan; Jacobs, Benjamin; Menkara, Hisham; Summers, Christopher; Kang, Zhitao

    2014-03-01

    Transparent glass-ceramic containing rare-earth doped halide nanocrystals exhibits enhanced luminescence performance. In this study, a glass-ceramic with Tb doped gadolinium fluoride nanocrystals embedded in an aluminosilicate glass matrix is investigated for X-ray imaging applications. The nanocrystalline glass-ceramic scintillator was prepared by a melt-quench method followed by an anneal. The GdF 3 :Tb nanocrystals precipitated within the oxide glass matrix during the processing and their luminescence and scintillation properties were investigated. In this nanocomposite scintillator system, the incorporation of high atomic number Gd compound into the glass matrix increases the X-ray stopping power of the glass scintillator, and effective energy transfer between Gd 3+ and Tb 3+ ions in the nanocrystals enhances the scintillation efficiency.

  4. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Wong-Ng, W.; Cook, L. P.; Freiman, S. W.; Hwang, N. M.; Vaudin, M.; Hill, M. D.; Shull, R. D.; Shapiro, A. J.; Swartzendruber, L. J.

    1991-01-01

    The bismuth based high T sub c superconductors can be processed via an amorphous Bi-Pb-Sr-Ca-Cu oxide. The amorphous oxides were prepared by melting the constituent powders in an alumina crucible at 1200 C in air followed by pouring the liquid onto an aluminum plate, and rapidly pressing with a second plate. In the amorphous state, no crystalline phase was identified in the powder x ray diffraction pattern of the quenched materials. After heat treatment at high temperature the amorphous materials crystallized into a glass ceramic containing a large fraction of the Bi2Sr2Ca2Cu3O(x) phase T sub c = 110 K. The processing method, crystallization, and results of dc electrical resistivity and ac magnetic susceptibility measurements are discussed.

  5. FTIR of binary lead borate glass: Structural investigation

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  6. Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator

    PubMed Central

    Lee, Gyuhyon; Savage, Nicholas; Wagner, Brent; Zhang, Yuelan; Jacobs, Benjamin; Menkara, Hisham; Summers, Christopher; Kang, Zhitao

    2014-01-01

    Transparent glass-ceramic containing rare-earth doped halide nanocrystals exhibits enhanced luminescence performance. In this study, a glass-ceramic with Tb doped gadolinium fluoride nanocrystals embedded in an aluminosilicate glass matrix is investigated for X-ray imaging applications. The nanocrystalline glass-ceramic scintillator was prepared by a melt-quench method followed by an anneal. The GdF3:Tb nanocrystals precipitated within the oxide glass matrix during the processing and their luminescence and scintillation properties were investigated. In this nanocomposite scintillator system, the incorporation of high atomic number Gd compound into the glass matrix increases the X-ray stopping power of the glass scintillator, and effective energy transfer between Gd3+ and Tb3+ ions in the nanocrystals enhances the scintillation efficiency. PMID:24610960

  7. Dual role of the six-coordinated molybdenum and lead ions in novel of photochromic properties of the molybdenum-lead-borate glasses.

    PubMed

    Rada, M; Maties, V; Culea, M; Rada, S; Culea, E

    2010-02-01

    Transparent glasses were prepared by conventional melting-quenching method in the xMoO(3).(100-x)[3B(2)O(3).PbO] system where 0

  8. A model that helps explain Sr-isotope disequilibrium between feldspar phenocrysts and melt in large-volume silicic magma systems

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1998-01-01

    Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a model by which either more- or less-radiogenic feldspar (or even both within a single eruptive unit) can originate. The model requires a magma body open to interaction with biotite- and feldspar-bearing wall rock. Magma is incrementally contaminated as wall rock melts incongruently. Biotite preferentially melts first, followed by feldspar. Such melting behavior, which is supported by both field and experimental studies, first contaminates magma with a relatively radiogenic addition, followed by a less-radiogenic addition. Feldspar phenocrysts lag behind melt (groundmass of volcanic rock) in incorporating the influx of contaminant, thus resulting in Sr-isotopic disequilibrium between the crystals and melt. The sense of disequilibrium recorded in a volcanic rock depends on when eruption quenches the contamination process. This model is testable by isotopic fingerprinting of individual feldspar crystals. For a given set of geologic boundary conditions, specific core-to-rim Sr-isotopic profiles are expectable. Moreover, phenocrysts that nucleate at different times during the contamination process should record different and predictable parts of the history. Initial results of Sr-isotopic fingerprinting of sanidine phenocrysts from the Taylor Creek Rhyolite are consistent with the model. More tests of the model are desirable.Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a model by which either more- or less-radiogenic feldspar (or even both within a single eruptive unit) can originate. The model requires a magma body open to interaction with biotite- and feldspar-bearing wall rock. Magma is incrementally contaminated as wall rock melts incongruently. Biotite preferentially melts first, followed by feldspar. Such melting behavior, which is supported by both field and experimental studies, first contaminates magma with a relatively radiogenic addition, followed by a less-radiogenic addition. Feldspar phenocrysts lag behind melt (groundmass of volcanic rock) in incorporating the influx of contaminant, thus resulting in Sr-isotopic disequilibrium between the crystals and melt. The sense of disequilibrium recorded in a volcanic rock depends on when eruption quenches the contamination process. This model is testable by isotopic fingerprinting of individual feldspar crystals. For a given set of geologic boundary conditions, specific core-to-rim Sr-isotopic profiles are expectable. Moreover, phenocrysts that nucleate at different times during the contamination process should record different and predictable parts of the history. Initial results of Sr-isotopic fingerprinting of sanidine phenocrysts from the Taylor Creek Rhyolite are consistent with the model. More tests of the model are desirable.

  9. GMR effect in CuCo annealed melt-spun ribbons.

    PubMed

    Murillo, N; Grande, H; Etxeberria, I; Del Val, J J; González, J; Arana, S; Gracia, F J

    2004-11-01

    A thorough microstructural and magnetic analysis has been performed on as-quenched and annealed (475 and 525 degrees C, 1 hour) melt-spun Cu100-xCox (x = 10 and 15) granular alloys, presenting a giant magnetoresistance (GMR) effect. The annealed samples are inhomogeneous with respect to the Co-particle sizes and interparticles distances and, therefore, these particles present superparamagnetic and ferromagnetic behaviours, which determine the GMR response. The samples x = 15, treated at 525 degrees C during 1 hour, presented the best GMR ratio (approximately 5% at room temperature to be the highest value approaching roughly to the saturation under an applied magnetic field of 15 KOe), with the coexistence of Co-particles with both kinds of magnetic behaviour.

  10. Crystal growth within a phase change memory cell.

    PubMed

    Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel

    2014-07-07

    In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

  11. Crystallization and characterization of Y2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Lee, William E.; Sanders, W. A.; Kiser, J. D.

    1991-01-01

    Glasses in the yttria-silica system with 20 to 40 mol pct Y2O3 were subjected to recrystallization studies after melting at 1900 to 2100 C in W crucibles in 1 and 50 atm N2. The TEM and XRD results obtained indicate the presence of the delta, gamma, gamma prime, and beta-Y2Si2O7 crystalline phases, depending on melting and quenching conditions. Heat treatment in air at 1100 to 1600 C increased the amount of crystallization, and led to the formation of Y2SiO5, cristabalite, and polymorphs of Y2Si2O7. Also investigated were the effects of 5 and 10 wt pct zirconia additions.

  12. Smoothing metallic glasses without introducing crystallization by gas cluster ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lin; Chen, Di; Myers, Michael

    2013-03-11

    We show that 30 keV Ar cluster ion bombardment of Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} metallic glass (MG) can remove surface mountain-like features and reduce the root mean square surface roughness from 12 nm to 0.7 nm. X-ray diffraction analysis reveals no crystallization after cluster ion irradiation. Molecular dynamics simulations show that, although damage cascades lead to local melting, the subsequent quenching rate is a few orders of magnitude higher than the critical cooling rate for MG formation, thus the melted zone retains its amorphous nature down to room temperature. These findings can be applied to obtain ultra-smooth MGsmore » without introducing crystallization.« less

  13. Cooling Rate Study of Nickel-Rich Material During Thermal Treatment and Quench

    NASA Technical Reports Server (NTRS)

    Thomas, Fransua; Murguia, Silvia Briseno (Editor)

    2016-01-01

    To investigate quench cracking that results from water quenching after heat treatment of binary and Ni-rich material, cooling rates of specimens were measured during quenching and hardness post-thermal treatment. For specific applications binary Ni-Ti is customarily thermally treated and quenched to attain desired mechanical properties and hardness. However, one problem emerging from this method is thermal cracking, either during the heat treatment process or during the specimen's application. This can result in material and equipment failure as well as financial losses. The objective of the study is to investigate the internal cooling rate of 60-NiTi during quenching and determine possible factors causing thermal cracking. Cubic (1 in.3) samples of both material were heat treated in air at 1000 deg C for 2 hrs and quenched in room temperature water using two methods: (1) dropped in the water and (2) agitated in the water. Hardness of the two fore-mentioned methods was measured post heat treatment. Results indicate that the quenching method had an effect on cooling rate during quenching but hardness was observed to be essentially the same through the thickness of the samples.

  14. Synthesis and Characterization of Quenched and Crystalline Phases: Q-Carbon, Q-BN, Diamond and Phase-Pure c-BN

    NASA Astrophysics Data System (ADS)

    Bhaumik, Anagh; Narayan, Jagdish

    2018-04-01

    We report the synthesis and characterization of quenched (Q-carbon and Q-BN) and crystalline (diamond and c-BN) phases using a non-equilibrium technique. These phases are formed as a result of the melting and subsequent quenching of amorphous carbon and nanocrystalline h-BN in a super undercooled state by using high-power nanosecond laser pulses. Pulsed laser annealing also leads to the formation of nanoneedles, microneedles and single-crystal thin films of diamond and c-BN. This formation is dependent on the nucleation and growth times, which are controlled by laser energy density and thermal conductivities of substrate and as-deposited thin film. The diamond nuclei present in the Q-carbon structure ( 80% sp 3) can also be grown to larger sizes using the equilibrium hot filament chemical vapor deposition process. The texture of diamond and c-BN crystals is <111> under epitaxial growth and <110> under rapid unseeded crystallization. Our nanosecond laser processing opens up a roadmap to the fabrication of novel phases on heat-sensitive substrates.

  15. Tb3+ and Eu3+ doped zinc phosphate glasses for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Jha, Kaushal; Vishwakarma, Amit K.; Jayasimhadri, M.; Haranath, D.; Jang, Kiwan

    2018-04-01

    Tb3+ and Eu3+ doped zinc phosphate (ZP) glasses were prepared by conventional melt-quenching technique and their photoluminescence properties were investigated in detail. For, Tb3+ doped glasses the intense emission was at 545 nm corresponding to 5D4→7F5 transition under 377 nm n-UV excitation. The optimized concentration for Tb3+ doped zinc phosphate glass was 3 mol% and above this concentration quenching takes place. The Eu3+ doped zinc phosphate glass revealed intense emission at 613 nm attributed to the 5D0→7F2 transition under intense 392 nm n-UV excitation. The concentration quenching phenomenon was not observed in the Eu3+ doped ZP glasses. The CIE chromaticity coordinates for 3 mol% Tb3+ and 5 mol% Eu3+ doped ZP glasses were found to (0.283, 0.615) and (0.652, 0.331) lying in the green and red regions, respectively. The above mentioned results indicate that the prepared glass are suitable for application in the field of lighting and display devices.

  16. Modification of growth interface of CdZnTe crystals in THM process by ACRT

    NASA Astrophysics Data System (ADS)

    Zhou, Boru; Jie, Wanqi; Wang, Tao; Yin, Liying; Yang, Fan; Zhang, Binbin; Xi, Shouzhi; Dong, Jiangpeng

    2018-02-01

    The accelerated crucible rotation technique (ACRT) was introduced in the traveling heater method (THM) growth process of detector-grade CdZnTe (CZT) crystals to regulate the convection in the melt and to modify the growth interface morphology. Several ingots with the diameter of 53 mm were grown by THM with/without ACRT. The ingots were quenched during the growth to show both macroscopic and microscopic morphologies of the growth interfaces. The results show that by using ACRT the growth interface can be changed from a concave one to the flat or even convex one depending on the ACRT parameters, which is favorable for reducing nucleation in the melt to get larger CZT grains. Meanwhile, by using ACRT in THM process, the microscopic interface was changed from a diffused one to cellular or even planar one (at suitable ACRT parameters), through which the trapped Te inclusions was decreased for one order. An ingot grown by THM with constant rotation rate of 40 rpm was also grown, which have also reduced the interface curvature in macro-scale and Te inclusions to some extent, but the effects are not as significant as ACRT with high crucible rotation rate.

  17. On the Composition and Temperature of the Terrestrial Planetary Core

    NASA Astrophysics Data System (ADS)

    Fei, Yingwei

    2013-06-01

    The existence of liquid cores of terrestrial planets such as the Earth, Mar, and Mercury has been supported by various observation. The liquid state of the core provides a unique opportunity for us to estimate the temperature of the core if we know the melting temperature of the core materials at core pressure. Dynamic compression by shock wave, laser-heating in diamond-anvil cell, and resistance-heating in the multi-anvil device can melt core materials over a wide pressure range. There have been significant advances in both dynamic and static experimental techniques and characterization tool. In this tal, I will review some of the recent advances and results relevant to the composition and thermal state of the terrestrial core. I will also present new development to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focused ion beam milling, high-resolution SEM imaging, and quantitative chemical analysi. With precision milling of the laser-heating spo, the melting point and element partitioning between solid and liquid can be precisely determined. It is also possible to re-construct 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures, providing better constraint on the temperature of the cor. The research is supported by NASA and NSF grants.

  18. Computer Simulation To Assess The Feasibility Of Coring Magma

    NASA Astrophysics Data System (ADS)

    Su, J.; Eichelberger, J. C.

    2017-12-01

    Lava lakes on Kilauea Volcano, Hawaii have been successfully cored many times, often with nearly complete recovery and at temperatures exceeding 1100oC. Water exiting nozzles on the diamond core bit face quenches melt to glass just ahead of the advancing bit. The bit readily cuts a clean annulus and the core, fully quenched lava, passes smoothly into the core barrel. The core remains intact after recovery, even when there are comparable amounts of glass and crystals with different coefficients of thermal expansion. The unique resulting data reveal the rate and sequence of crystal growth in cooling basaltic lava and the continuous liquid line of descent as a function of temperature from basalt to rhyolite. Now that magma bodies, rather than lava pooled at the surface, have been penetrated by geothermal drilling, the question arises as to whether similar coring could be conducted at depth, providing fundamentally new insights into behavior of magma. This situation is considerably more complex because the coring would be conducted at depths exceeding 2 km and drilling fluid pressures of 20 MPa or more. Criteria that must be satisfied include: 1) melt is quenched ahead of the bit and the core itself must be quenched before it enters the barrel; 2) circulating drilling fluid must keep the temperature of the coring assembling cooled to within operational limits; 3) the drilling fluid column must nowhere exceed the local boiling point. A fluid flow simulation was conducted to estimate the process parameters necessary to maintain workable temperatures during the coring operation. SolidWorks Flow Simulation was used to estimate the effect of process parameters on the temperature distribution of the magma immediately surrounding the borehole and of drilling fluid within the bottom-hole assembly (BHA). A solid model of the BHA was created in SolidWorks to capture the flow behavior around the BHA components. Process parameters used in the model include the fluid properties and temperature of magma, coolant flow rate, rotation speed, and rate of penetration (ROP). The modeling results indicate that there are combinations of process parameters that will provide sufficient cooling to enable the desired coring process in magma.

  19. Gallery of melt textures developed in Westerly Granite during high-pressure triaxial friction experiments

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2016-09-23

    IntroductionMelting occurred during stick-slip faulting of granite blocks sheared at room-dry, room-temperature conditions in a triaxial apparatus at 200–400 megapascals (MPa) confining pressure. Petrographic examinations of melt textures focused largely on the 400-MPa run products. This report presents an overview of the petrographic data collected on those samples, followed by brief descriptions of annotated versions of all the images.Scanning electron microscope (SEM) images of the starting materials and the three examined 400-MPa samples are presented in this report. Secondary-electron (SE) and backscattered-electron (BSE) imaging techniques were used on different samples. The SE images look down on the sawcut surfaces, yielding topographic and three-dimensional textural information. The BSE imaging was done on samples cut to provide cross-sectional views of the glass-filled shear band (or zone) that developed along the sawcut. Brightness in the BSE images increases with increasing mean atomic number of the material. Additional chemical information about the quenched melt and adjoining minerals was obtained using the energy dispersive system of the SEM during BSE examinations. However, the very narrow shear-band thicknesses and common occurrence of very fine lamellar compositional layering limited the usefulness of this technique for estimating melt chemistry.

  20. Ahrensite, γ-Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Tschauner, Oliver; Beckett, John R.; Liu, Yang; Rossman, George R.; Sinogeikin, Stanislav V.; Smith, Jesse S.; Taylor, Lawrence A.

    2016-07-01

    Ahrensite (IMA 2013-028), γ-Fe2SiO4, is the natural Fe-analog of the silicate-spinel ringwoodite (γ-Mg2SiO4). It occurs in the Tissint Martian meteorite, where it forms through the transformation of the fayalite-rich rims of olivine megacrysts or Fe-rich microphenocrysts in contact with shock melt pockets. The typical sequence of phase assemblages traversing across a Tissint melt pocket into olivine is: quenched melt or fayalite-pigeonite intergrowth ⇒ bridgmanite + wüstite ⇒ ahrensite and/or ringwoodite ⇒ highly-deformed olivine + nanocrystalline ringwoodite ⇒ deformed olivine. We report the first comprehensive set of crystallographic, spectroscopic, and quantitative chemical analysis of type ahrensite, and show that concentrations of ferric iron and inversion in the type material of this newly approved mineral are negligible. We also report the occurrence of nanocrystalline ringwoodite in strained olivine and establish correlations between grain size and distance from melt pockets. The ahrensite and ringwoodite crystals show no preferred orientation, consistent with random nucleation and incoherent growth within a highly strained matrix of olivine. Grain sizes of ahrensite immediately adjacent to melt pockets are consistent with growth during a shock of moderate duration (1-10 ms).

  1. Ahrensite, γ-Fe 2SiO 4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Chi; Tschauner, Oliver; Beckett, John R.

    Ahrensite (IMA 2013-028), gamma-Fe 2SiO 4, is the natural Fe-analog of the silicate-spinel ringwoodite (gamma-Mg 2SiO 4). It occurs in the Tissint Martian meteorite, where it forms through the transformation of the fayalite-rich rims of olivine megacrysts or Ferich microphenocrysts in contact with shock melt pockets. The typical sequence of phase assemblages traversing across a Tissint melt pocket into olivine is: quenched melt or fayalite-pigeonite intergrowth → bridgmanite + wustite → ahrensite and/or ringwoodite double right arrow highly-deformed olivine + nanocrystalline ringwoodite → deformed olivine. We report the first comprehensive set of crystallographic, spectroscopic, and quantitative chemical analysis of typemore » ahrensite, and show that concentrations of ferric iron and inversion in the type material of this newly approved mineral are negligible. We also report the occurrence of nanocrystalline ringwoodite in strained olivine and establish correlations between grain size and distance from melt pockets. The ahrensite and ringwoodite crystals show no preferred orientation, consistent with random nucleation and incoherent growth within a highly strained matrix of olivine. As a result, grain sizes of ahrensite immediately adjacent to melt pockets are consistent with growth during a shock of moderate duration (1-10 ms).« less

  2. Ahrensite, γ-Fe 2SiO 4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars

    DOE PAGES

    Ma, Chi; Tschauner, Oliver; Beckett, John R.; ...

    2016-04-27

    Ahrensite (IMA 2013-028), gamma-Fe 2SiO 4, is the natural Fe-analog of the silicate-spinel ringwoodite (gamma-Mg 2SiO 4). It occurs in the Tissint Martian meteorite, where it forms through the transformation of the fayalite-rich rims of olivine megacrysts or Ferich microphenocrysts in contact with shock melt pockets. The typical sequence of phase assemblages traversing across a Tissint melt pocket into olivine is: quenched melt or fayalite-pigeonite intergrowth → bridgmanite + wustite → ahrensite and/or ringwoodite double right arrow highly-deformed olivine + nanocrystalline ringwoodite → deformed olivine. We report the first comprehensive set of crystallographic, spectroscopic, and quantitative chemical analysis of typemore » ahrensite, and show that concentrations of ferric iron and inversion in the type material of this newly approved mineral are negligible. We also report the occurrence of nanocrystalline ringwoodite in strained olivine and establish correlations between grain size and distance from melt pockets. The ahrensite and ringwoodite crystals show no preferred orientation, consistent with random nucleation and incoherent growth within a highly strained matrix of olivine. As a result, grain sizes of ahrensite immediately adjacent to melt pockets are consistent with growth during a shock of moderate duration (1-10 ms).« less

  3. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching.

    PubMed

    Doll, Charles G; Wright, Cherylyn W; Morley, Shannon M; Wright, Bob W

    2017-04-01

    A modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect. Copyright © 2017. Published by Elsevier Ltd.

  4. The morphology of blends of linear and branched polyethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Alamo, R.G.

    1995-12-31

    The state of mixing in blends of high density (HD), low density (LD) and linear low density (LLD) polyethylenes (PE) in the melt and solid states has been examined by small-angle x-ray and neutron scattering (SAXS and SANS). In the melt, SANS results indicate that HDPE/LDPE mixtures (with 1-2 branches/100 C) form a single phase. HDPE/LLDPE blends are also homogeneous when the branch content is low, but phase separate as the branching increases. In the solid state, after slow-cooling from the melt, the HDPE/LDPE system segregates into domains {approximately}10{sup 2} in size. For high concentrations of linear polymer ({phi} {ge}more » 0.5), there are separate stacks of HDPE and LDPE lamellae, and the measured SANS cross section agrees closely with the theoretical calculation based on the assumption of complete phase separation of the components. For predominantly branched blends ({phi} < 0.5), the phase segregation is less complete, and the components are separated within the same lamellar stack. Moreover, the phases no longer consist of the pure components, and the HDPE lamellae contain up to 15% LDPE. The segregation of components in the solid state is a consequence of crystallization mechanisms and the blend morphology is a strong function of the cooling rate. Rapid quenching to -78{degrees}C produces only one lamellar stack and these blends show extensive cocrystallization. Samples quenched less rapidly (e.g., into water at 23{degrees}C) show a similar structure to slowly cooled samples. The solid state morphology also depends on the type of branching and differences between HDPE/LDPE and HDPE/LLDPE blends will be reviewed.« less

  5. Optical properties of Nd3+ doped bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Venkatramu, V.; Ravi Kanth Kumar, V. V.

    2014-03-01

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) - x Nd2O3 (where x = 0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to 4F3/2 to 4I9/2, 4I11/2 and 4I13/2 transitions in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd3+ exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process.

  6. Effect of AgCl NPs: Physical, thermal, absorption and luminescence properties

    NASA Astrophysics Data System (ADS)

    Nurhafizah, H.; Rohani, M. S.

    2017-06-01

    Silver nanoparticles (AgCl NPs) are embedded in Er3+/Nd3+ co-doped lithium niobate tellurite glasses of the form (68-x)TeO2-15Li2CO3-15Nb2O5-1Er2O3-1Nd2O3-(x)AgCl with x = 1,2 and 3 mol% via conventional melt-quenching technique. The physical properties such as density, ionic packing density, refractive index and electronic polarizability are computed utilizing the usual method. The existence of AgCl NPs with an average size of 3.7 nm is confirmed using TEM analysis. Moreover, the thermal stability and Hruby criterion of the glass decreases as the AgCl NPs content increases. The direct optical band gap are found decrease as the AgCl NPs content increase, but both indirect optical band gap and Urbach energy are found increases as AgCl NPs content increases. The luminescence spectra shows two strong emission which is the purple emission at 436 nm and red emission at 724 nm which also been observed has strong quenching due to the AgCl NPs, Er3+/Nd3+ dopant and modifier, lithium niobate which possessed magnetic penetration. These glass compositions may be potential for various applications such as solid state devices including laser.

  7. Optical properties of Nd3+ doped bismuth zinc borate glasses.

    PubMed

    Shanmugavelu, B; Venkatramu, V; Ravi Kanth Kumar, V V

    2014-03-25

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) -x Nd2O3 (where x=0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to (4)F3/2 to (4)I9/2, (4)I11/2 and (4)I13/2 transitions in the near infrared region. The emission intensity of the (4)F3/2 to (4)I11/2 transition increases with increase of Nd(3+) concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd(3+) concentration. The lifetimes for the (4)F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd(3+) exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Geothermometry of Kilauea Iki lava lake, Hawaii

    USGS Publications Warehouse

    Helz, R.T.; Thornber, C.R.

    1987-01-01

    Data on the variation of temperature with time and in space are essential to a complete understanding of the crystallization history of basaltic magma in Kilauea Iki lava lake. Methods used to determine temperatures in the lake have included direct, downhole thermocouple measurements and Fe-Ti oxide geothermometry. In addition, the temperature variations of MgO and CaO contents of glasses, as determined in melting experiments on appropriate Kilauean samples, have been calibrated for use as purely empirical geothermometers and are directly applicable to interstitial glasses in olivine-bearing core from Kilauea Iki. The uncertainty in inferred quenching temperatures is ??8-10?? C. Comparison of the three methods shows that (1) oxide and glass geothermometry give results that are consistent with each other and consistent with the petrography and relative position of samples, (2) downhole thermo-couple measurements are low in all but the earliest, shallowest holes because the deeper holes never completely recover to predrilling temperatures, (3) glass geothermometry provides the greatest detail on temperature profiles in the partially molten zone, much of which is otherwise inaccessible, and (4) all three methods are necessary to construct a complete temperature profile for any given drill hole. Application of glass-based geothermometry to partially molten drill core recovered in 1975-1981 reveals in great detail the variation of temperature, in both time and space, within the partially molten zone of Kilauea Iki lava lake. The geothermometers developed here are also potentially applicable to glassy samples from other Kilauea lava lakes and to rapidly quenched lava samples from eruptions of Kilauea and Mauna Loa. ?? 1987 Springer-Verlag.

  9. Geothermometry of Kilauea Iki lava lake, Hawaii

    NASA Astrophysics Data System (ADS)

    Helz, Rosalind Tuthill; Thornber, Carl R.

    1987-10-01

    Data on the variation of temperature with time and in space are essential to a complete understanding of the crystallization history of basaltic magma in Kilauea Iki lava lake. Methods used to determine temperatures in the lake have included direct, downhole thermocouple measurements and Fe-Ti oxide geothermometry. In addition, the temperature variations of MgO and CaO contents of glasses, as determined in melting experiments on appropriate Kilauean samples, have been calibrated for use as purely empirical geothermometers and are directly applicable to interstitial glasses in olivine-bearing core from Kilauea Iki. The uncertainty in inferred quenching temperatures is ±8-10° C. Comparison of the three methods shows that (1) oxide and glass geothermometry give results that are consistent with each other and consistent with the petrography and relative position of samples, (2) downhole thermo-couple measurements are low in all but the earliest, shallowest holes because the deeper holes never completely recover to predrilling temperatures, (3) glass geothermometry provides the greatest detail on temperature profiles in the partially molten zone, much of which is otherwise inaccessible, and (4) all three methods are necessary to construct a complete temperature profile for any given drill hole. Application of glass-based geothermometry to partially molten drill core recovered in 1975 1981 reveals in great detail the variation of temperature, in both time and space, within the partially molten zone of Kilauea Iki lava lake. The geothermometers developed here are also potentially applicable to glassy samples from other Kilauea lava lakes and to rapidly quenched lava samples from eruptions of Kilauea and Mauna Loa.

  10. Optical properties of (50-X)BaO-X(YF2)-50P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Narayanan, Manoj Kumar; Shashikala, H. D.

    2018-05-01

    Glasses with composition (50-X)BaO-X(YF2)-50P2O5 (Y - Ca, Ba, X = 0, 10, 20 mol%) were prepared using conventional melt-quenching technique. Optical parameters of prepared samples such as optical band gap energy increased, while Urbach energy and refractive index decreased with partial substitution of BaO with CaF2 or BaF2 in the glass batch.

  11. Zhamanshin meteor crater

    NASA Technical Reports Server (NTRS)

    Florenskiy, P. V.; Dabizha, A. I.

    1987-01-01

    A historical survey and geographic, geologic and geophysical characteristics, the results of many years of study of the Zhamanshin meteor crater in the Northern Aral region, are reported. From this data the likely initial configuration and cause of formation of the crater are reconstructed. Petrographic and mineralogical analyses are given of the brecciated and remelted rocks, of the zhamanshinites and irgizite tektites in particular. The impact melting, dispersion and quenching processes resulting in tektite formation are discussed.

  12. Solubility of tungsten in a haplobasaltic melt as a function of temperature and oxygen fugacity

    NASA Astrophysics Data System (ADS)

    Ertel, W.; O'Neill, H. St. C.; Dingwell, D. B.; Spettel, B.

    1996-04-01

    The solubility of tungsten (W) in a haplobasaltic melt has been determined as a function of oxygen fugacity in the temperature range 1300-1500°C using the mechanically assisted equilibrium technique of Dingwell et al. (1994), and at 1600-1700°C by the wire loop method. Quenched samples were analysed for W by using ICP-AES as well as INAA, and sample major element compositions were checked by electron microprobe. W concentrations ranged from 20 ppm to 17 wt%, and the solution of WO 2 in the melt may be described by Henry's Law up to remarkably high concentrations (e.g., 14 wt% at 1500°C). W dissolves in the melt with a quadrivalent (4+) formal oxidation state over the entire range of oxygen fugacity and temperature investigated. The solubility of W decreases strongly with increasing temperature at constant oxygen fugacity. The solubility data have been used to calculate trace distribution coefficients for W between Fe-rich metal and silicate melt, using literature values for the activity coefficient of W in liquid Fe. Comparison of our data with the distribution coefficients for Mo calculated from the analogous Mo solubility data of Holzheid et al. (1994) shows that the ratio of the metal-silicate distribution coefficient DMomet/sil/ DWmet/sil remains very high (~10 3) at all T-fO 2 conditions. However, in the Earth's mantle, Mo is relatively more depleted than W only by a factor of three. The relative abundances of W and Mo in the Earth's mantle cannot, therefore, be explained by core formation from a homogeneously accreted Earth whatever the temperature at which metal/silicate equilibrium may have ocurred might have been. Their abundances may be quantitatively accounted for by a heterogeneous accretion model such as that of O'Neill (1991).

  13. Effects of titanium nanoparticles on self-cleaning and structural features of zinc-magnesium-phosphate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, S.F.; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.

    Graphical abstract: Water contact angle for sample S2, S3, S4 and S5. The water contact angle increased with increased the titanium NPs content (mol%). - Highlights: • ZnO–MgO–P{sub 2}O{sub 5} embedded TiO{sub 2} NPs prepared by conventional melt-quenching method. • The amorphous nature is confirmed by X-ray diffraction spectroscopy. • The structural characteristics of glasses is investigated using FTIR and Raman. • Wettability of the glasses surface by water contact angle. - Abstract: The loss of glass transparency on surface pollutants contamination unless inhibited not only causes vision obscurity but also responsible for major aesthetic damages of cultural heritage. Itmore » is due to the sticking of fine dirt particles on wetting layers, a complex process with several possible ramifications still to be clarified. We report the influence of titanium dioxide or titania (TiO{sub 2}) nanoparticles (NPs) on the structural and self-cleaning properties of zinc–magnesium–phosphate glasses. Following melt-quenching method glass samples of optimized composition (42 − x)P{sub 2}O{sub 5}–8MgO–50ZnO–xTiO{sub 2} with x = 0, 1, 2, 3 and 4 mol% are prepared. XRD patterns verified their amorphous nature and TEM images revealed the nucleation of TiO{sub 2} NPs of average diameter ≈4.05 ± 0.01 nm. Fourier transform infrared (FTIR) spectra displayed four absorption band centred at 1618–3438 cm{sup −1}, 902– 931 cm{sup −1}, 757–762 cm{sup −1} and 531–560 cm{sup −1}. Raman spectra exhibited four peaks each accompanied by a blue-shift. Water contact angle is found to increase with the increase of titanium NPs concentration into the amorphous matrix. This knowledge can be used to set up strategies and selective treatments to preventing glass transparency loss via the modification of self-cleaning attributes.« less

  14. Techniques for optimizing nanotips derived from frozen taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the lasermore » to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.« less

  15. Melting relations and elemental distribution of portion of the system Fe-S-Si-O to 32 KB with planetary application

    NASA Technical Reports Server (NTRS)

    Huang, W. L.

    1980-01-01

    The melting relations and distribution of K and Cs in portions of the system was determined at high pressures. Ferrosilite is stable as a primary phase at high pressures because of the incongruent melting of ferrosilite to quartz plus liquid and the boundary between the one and two liquid fields on the joint Fe(1-x) O-FeS-SiO2 shifts away from silica with increasing pressures. Potassium K was found to have limited solubility in metal sulfide liquids at pressures up to 45 kb. The speculation that K may dissolve significantly in metal-metal sulfide liquids after undergoing first order isomorphic transition was tested by determining the distribution of Cs between sulfide and silicate liquids as an analogy to K. At 45 kb, 1400 C and 27 kb, 1300 C only limited amounts of Cs were detected in quench sulfide liquids even at pressures beyond the isomorphic transition of Cs.

  16. Bulk Formation of Metallic Glasses and Amorphous Silicon from the Melt

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1985-01-01

    By using metallic glass compositions with a high relative glass transition temperature, such as Pd40Ni40P20, homogeneous nucleation also becomes negligible. Large (5g) masses of this alloys were obtained using a molten B2O3 flux. Presently, bulk glass formation in iron based glasses is being investigated. It is expected that if an undercooling of about 250K can be achieved in a Ge or Si melt, formation of the amorphous semiconductor phase (rather than the crystal) may be kinetically favored. The volumetric behavior of undercooled liquid Ga droplet dispersion is investigated by dilatometry. A theoretical model (both analytical and numerical) was developed for transient nucleation in glass forming melts. The model, originally designed for isothermal conditions, was extended to continuous quenching. It is being applied to glass formation in various metallic and oxide systems. A further refinement will be the inclusion of diffusion controlled interfacial rearrangements governing the growth of the crystal embryos.

  17. Impact comminution of glasses: Implications for lunar regolith evolution

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Smith, Sheila; Hoerz, Friedrich

    1993-01-01

    Glasses are important parts of every lunar regolith sample, whether in the form of indigenous melts such as mesostasis or pyroclastics, or as quenched impact melts. The modal proportions of agglutinitic impact melts alone can exceed 50 percent for some mature regoliths, and glasses are commonly the most dominant single component of lunar soils. They therefore participate in and possibly affect all evolutionary processes to which regoliths are subjected, such as comminution and attendant chemical fractionation as a function of grain size, the retention of solar-wind products, the production of superparamagnetic iron, and others. Because they are such an integral part of lunar regoliths, a more complete understanding of regolith evolution must include the role played by these vitreous components. This contribution examines the comminution behavior of a variety of glasses and a fine-grained basalt under conditions of repetitive impact, and compares this behavior to those of crystalline components, such as lithic fragments and major rock-forming minerals.

  18. Impactite and pseudotachylite from Roter Kamm Crater, Namibia

    NASA Technical Reports Server (NTRS)

    Degenhardt, J. J., Jr.; Buchanan, P. C.; Reid, A. M.

    1992-01-01

    Pseudotachylite is known to occur in a variety of geologic settings including thrust belts (e.g., the Alps and the Himalayas) and impact craters such as Roter Kamm, Namibia. Controversy exists, however, as to whether pseudotachylite can be produced by shock brecciation as well as by tectonic frictional melting. Also open to debate is the question of whether pseudotachylites form by frictional fusion or by cataclasis. It was speculated that the pseudotachylite at Roter Kamm was formed by extensional settling and adjustment of basement blocks during 'late modification stage' of impact. The occurrence of pseudotachylite in association with rocks resembling quenched glass bombs and melt breccias in a relatively young crater of known impact origin offers a rare opportunity to compare features of these materials. Petrographic, x-ray diffraction, and electron microprobe analyses of the impactites and pseudotachylites are being employed to determine the modes of deformation and to assess the role of frictional melting and comminution of adjacent target rocks.

  19. The influence of Ag content and annealing time on structural and optical properties of SGS antimony-germanate glass doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Zmojda, J.; Kochanowicz, M.; Miluski, P.; Baranowska, A.; Basa, A.; Jadach, R.; Sitarz, M.; Dorosz, D.

    2018-05-01

    A series of erbium doped SGS antimony-germanate glass embedding silver (Ag0) nanoparticles have been synthesized by a one-step melt-quench thermochemical reduction technique. The effect of NPs concentration and annealing time on the structural and photoluminescent (PL) properties were investigated. The Raman spectra as a function of temperature measured in-situ allow to determine the structural changes in vicinity of Ag+ ions and confirmed thermochemical reduction of Ag+ ions by Sb3+ ions. The surface plasmon resonance absorption band was evidenced near 450 nm. The impact of local field effect generated by Ag0 nanoparticles (NPs) and energy transfer from surface of silver NPs to trivalent erbium ions on near-infrared and up-conversion luminescence was described in terms of enhancement and quench phenomena.

  20. Eutectic propeties of primitive Earth's magma ocean

    NASA Astrophysics Data System (ADS)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.

    2009-04-01

    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and/or (c) appearance of a broad band of diffuse X-ray scattering associated to the presence of silicate liquid. The pressure evolution of the eutectic temperature is found below the melting curve of pure MgSiO3 perovskite [7] for more than 500 K and also below the solidus curve of pyrolite [4] for 100-200 K at 60 GPa. References [1] B. T. Tonks, H. J. Melosh, Journal of Geophysical Research 98 5319 (1993). [2] Litasov, K., and Ohtani, E. Physics of The Earth and Planetary Interiors, 134(1-2), 105-127, (2002). [3] E. Ito, A. Kubo, T. Katsura et al., Phys. Earth Planet. Inter. 143-144 397 (2004). [4] A. Zerr, R. Boehler, Nature 506-508 (1994). [5] J. A. Akins, S. N. Luo, P. D. Asimov et al., Geophys. Res. Lett. 31 doi:10.1029/2004GL020237 (2004). [6] Schultz et al. International Journal of High Pressure Research. 25, 1, 71-83 (2005). [7] Zerr, A. and Boehler, R. Science, 262, 553-555 (1993).

  1. Quench Detection and Protection for High Temperature Superconducting Transformers by Using the Active Power Method

    NASA Astrophysics Data System (ADS)

    Nanato, N.; Kobayashi, Y.

    AC high temperature superconducting (HTS) coils have been developed for transformers, motors and so on. Quench detection and protection system are essential for safety operations of the AC HTS facilities. The balance voltage method is universally used for the quench detection and protection, however especially for AC operations, the method has risks in terms of high voltage sparks. Because the method needs a voltage tap soldered to a midpoint of the coil winding and the AC HTS facilities generally operate at high voltages and therefore high voltage sparks may occur at the midpoint with no insulation. We have proposed the active power method for the quench detection and protection. The method requires no voltage tap on the midpoint of the coil winding and therefore it has in-built effectiveness for the AC HTS facilities. In this paper, we show that the method can detect the quench in an HTS transformer and moreover our proposed quench protection circuits which consist of thyristors are simple and useful for the AC HTS facilities.

  2. System and method for quench protection of a superconductor

    DOEpatents

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  3. Thermal method for cleaning polymer quenching media

    NASA Astrophysics Data System (ADS)

    Sverdlin, A. V.; Blackwood, R.; Totten, G. E.

    1996-06-01

    Aqueous solutions of polymers are used for heat treatment, mainly for quenching steels. The most popular and universally used are quenching liquids of the UCON A, E, XT types based on various polyalkylene glycols. In the course of operation these liquids are contaminated by salts retained on the surface of the parts after their heating in salt baths, by ions of heavy metals present in the solution, etc. The paper is devoted to the most popular method for cleaning polymer quenching media, namely, the method of thermal separation.

  4. The partitioning of sulfur between multicomponent aqueous fluids and felsic melts

    NASA Astrophysics Data System (ADS)

    Binder, Bernd; Wenzel, Thomas; Keppler, Hans

    2018-02-01

    Sulfur partitioning between melt and fluid phase largely controls the environmental impact of volcanic eruptions. Fluid/melt partitioning data also provide the physical basis for interpreting changes in volcanic gas compositions that are used in eruption forecasts. To better constrain some variables that control the behavior of sulfur in felsic systems, in particular the interaction between different volatiles, we studied the partitioning of sulfur between aqueous fluids and haplogranitic melts at 200 MPa and 750-850 °C as a function of oxygen fugacity (Ni-NiO or Re-ReO2 buffer), melt composition (Al/(Na + K) ratio), and fluid composition (NaCl and CO2 content). The data confirm a first-order influence of oxygen fugacity on the partitioning of sulfur. Under "reducing conditions" (Ni-NiO buffer), D fluid/melt is nearly one order of magnitude larger (323 ± 14 for a metaluminous melt) than under "oxidizing conditions" (Re-ReO2 buffer; 74 ± 5 for a metaluminous melt). This effect is likely related to a major change in sulfur speciation in both melt and fluid. Raman spectra of the quenched fluids show the presence of H2S and HS- under reducing conditions and of SO4 2- and HSO4 - under oxidizing conditions, while SO2 is undetectable. The latter observation suggests that already at the Re-ReO2 buffer, sulfur in the fluid is almost completely in the S6+ state and, therefore, more oxidized than expected according to current models. CO2 in the fluid (up to x CO2 = 0.3) has no effect on the fluid/melt partitioning of sulfur, neither under oxidizing nor under reducing conditions. However, the effect of NaCl depends on redox state. While at oxidizing conditions, D fluid/melt is independent of x NaCl, the fluid/melt partition coefficient strongly decreases with NaCl content under reducing conditions, probably due to a change from H2S to NaSH as dominant sulfur species in the fluid. A decrease of D fluid/melt with alkali content in the melt is observed over the entire compositional range under reducing conditions, while it is prominent only between the peraluminous and metaluminous composition in oxidizing experiments. Overall, the experimental results suggest that for typical oxidized, silicic to intermediate subduction zone magmas, the degassing of sulfur is not influenced by the presence of other volatiles, while under reducing conditions, strong interactions with chlorine are observed. If the sulfur oxidation state is preserved during an explosive eruption, a large fraction of the sulfur released from oxidized magmas may be in the S6+ state and may remain undetected by conventional methods that only measure SO2. Accordingly, the sulfur yield and the possible climatic impact of some eruptions may be severely underestimated.

  5. Study of boro-tellurite glasses doped with neodymium oxide

    NASA Astrophysics Data System (ADS)

    Sanjay, Kishore, N.; Sheoran, M. S.; Devi, S.

    2018-05-01

    Borotellurite glasses doped with Nd2O3 [xB2O3(95-x)TeO25Nd2O3] have been prepared by the standard melt-quenching technique. Amorphous nature of the present system was estimated by XRD patterns. The thermal parameters like glass transition temperature (Tg), crystallization (Tc) and melting (Tm) temperatures have been estimated from differential scanning calorimetry (DSC) traces. Density and molar volume have been determined. It was found that Tg is increased due to increasing number of Te-O bonds were replaced by a number of stronger B-O bonds whereas density was decreased with an increase in B2O3 content is due to the higher degree of cross-bonding between the Boron and non-bridging oxygen ions resulting in a strengthening of glass network.

  6. Structural and thermal properties of vanadium tellurite glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Rajinder; Kaur, Ramandeep; Khanna, Atul; González, Fernando

    2018-04-01

    V2O5-TeO2 glasses containing 10 to 50 mol% V2O5 were prepared by melt quenching and characterized by X-ray diffraction (XRD), density, Differential Scanning Calorimetry (DSC) and Raman studies.XRD confirmed the amorphous nature of vanadium tellurite samples. The density of the glasses decreases and the molar volume increases on increasing the concentration of V2O5. The thermal properties, such as glass transition temperature Tg, crystallization temperature Tc, and the melting temperature Tm were measured. Tg decreases from a value of 288°C to 232°C. The changes in Tg were correlated with the number of bonds per unit volume, and the average stretching force constant. Raman spectra were used to elucidate the short-range structure of vanadium tellurite glasses.

  7. Viscous Particle Breakup within a Cooling Nuclear Fireball

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, J. T.; Knight, K. B.; Dai, Z.

    2016-10-04

    Following the surface detonation of a nuclear weapon, the Earth’s crust and immediate surroundings are drawn into the fireball and form melts. Fallout is formed as these melts incorporate radioactive material from the bomb vapor and cool rapidly. The resultant fallout plume and dispersion of radioactive contamination is a function of several factors including weather patterns and fallout particle shapes and size distributions. Accurate modeling of the size distributions of fallout forms an important data point for dispersion codes that calculate the aerial distribution of fallout. While morphological evidence for aggregation of molten droplets is well documented in fallout glassmore » populations, the breakup of these molten droplets has not been similarly studied. This study documents evidence that quenched fallout populations preserve evidence of molten breakup mechanisms.« less

  8. Design of Wear-Resistant Austenitic Steels for Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Lemke, J. N.; Casati, R.; Lecis, N.; Andrianopoli, C.; Varone, A.; Montanari, R.; Vedani, M.

    2018-03-01

    Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6.

  9. Comparative study on the roles of anisotropic epitaxial strain and chemical doping in inducing the antiferromagnetic insulator phase in manganite films

    NASA Astrophysics Data System (ADS)

    Jin, Feng; Feng, Qiyuan; Guo, Zhuang; Lan, Da; Wang, Lingfei; Gao, Guanyin; Xu, Haoran; Chen, Binbin; Chen, Feng; Lu, Qingyou; Wu, Wenbin

    2017-11-01

    Epitaxial strain and chemical doping are two different methods that are commonly used to tune the physical properties of epitaxial perovskite oxide films, but their cooperative effects are less addressed. Here we try to tune the phase separation (PS) in (La1-xP rx) 2 /3C a1 /3Mn O3 (0 ≤x ≤0.4 , LPCMO) films via cooperatively controlling the anisotropic epitaxial strain (AES) and the Pr doping. These films are grown simultaneously on NdGa O3(110 ) ,(LaAlO3) 0.3(SrAl0.5Ta0.5O3 ) 0.7(001 ) , and NdGa O3(001 ) substrates with progressively increased in-plane AES, and probed by x-ray diffraction, magnetotransport, and magnetic force microscopy (MFM) measurements. Although it is known that for x =0 the AES can enhance the orthorhombicity of the films yielding a phase diagram with the antiferromagnetic charge-ordered insulator (AF-COI) state induced, which is quite different from the bulk one, we illustrate that the Pr doping can further drive the films towards a more robust COI state. This cooperative effect is reflected by the increasing magnetic fields needed to melt the COI phase as a function of AES and the doping level. More strikingly, by directly imaging the phase competition morphology of the LPCMO /NdGa O3(001 ) films via MFM, we find that during COI melting the PS domain structure is subject to both AES and the quenched disorder. However, in the reverse process, as the magnetic field is decreased, the COI phase reappears and the AES dominates leaving a crystalline-orientation determined self-organized microstructure. This finding suggests that the PS states and the domain configurations can be selectively controlled by the AES and/or the quenched disorder, which may shed some light on the engineering of PS domains for device fabrications.

  10. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothikumar, N., E-mail: jin2@cdc.gov; Hill, Vincent R.

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forwardmore » or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource-limited environments.« less

  11. Thermal History and Crystallinity of Sheet Intrusions

    NASA Astrophysics Data System (ADS)

    Whittington, A. G.; Nabelek, P. I.; Hofmeister, A.

    2011-12-01

    Magma emplaced in a sheet intrusion has two potential fates: to crystallize, or quench to glass. Rapidly chilled sheet margins are typically glassy or microcrystalline, while interiors are coarser-grained. The actual textures result from a combination of thermal history and crystallization kinetics, which are related by various feedback mechanisms. The thermal history of cooling sheet intrusions is often approximated using the analytical solution for a semi-infinite half-space, which uses constant thermal properties such as heat capacity (CP), thermal diffusivity (D) and thermal conductivity (k = DρCP), where ρ is density. In reality, both CP and D are strongly T-dependent for glasses and crystals, and melts have higher CP and lower D than crystals or glasses. Another first-order feature ignored in the analytical solution is latent heat of crystallization (ΔHxt), which can be implemented numerically as extra heat capacity over the crystallization interval. For rhyolite melts, D is ~0.5 mm2s-1 and k is ~1.5 Wm-1K-1, which are similar to those of major crustal rock types and granitic protoliths at magmatic temperatures, suggesting that changes in thermal properties accompanying partial melting of the crust should be relatively minor. Numerical models of hot (~920°C liquidus for 0.5 wt.% H2O) shallow rhyolite intrusions indicate that the key difference in thermal history between bodies that quench to obsidian, and those that crystallize, results from the release of latent heat of crystallization, which enables bodies that crystallize to remain at high temperatures for much longer times. The time to solidification is similar in both cases, however, because solidification requires cooling through the glass transition (Tg ~620°C) in the first case, and cooling only to the solidus (~770°C) in the second. For basaltic melts, D is ~0.3 mm2s-1 and k is ~1.0 Wm-1K-1, compared to ~0.6 mm2s-1 and 2.5 Wm-1K-1 for crystalline basalt or peridotite at magmatic temperatures, suggesting that changes in thermal properties accompanying partial melting of the mantle or crystallization of basalt may be important. Numerical models of basaltic sheet intrusions indicate that they will almost always crystallize, even at sheet margins, because their emplacement temperature (~1220°C) is sufficiently high that the country rock adjacent to the sheet will be raised above the Tg of the melt (~650°C). The long period of time spent above Tg, combined with the rapid crystallization kinetics of basaltic melts, ensures that crystallization is near-complete, even if the crystal size is small, except where unusually rapid chilling occurs due to efficient convective or radiative losses (for example subaerial, subaqeous or subglacial lava flows).

  12. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    USGS Publications Warehouse

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea’s east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.

  13. Magma transport and olivine crystallization depths in Kīlauea's east rift zone inferred from experimentally rehomogenized melt inclusions

    NASA Astrophysics Data System (ADS)

    Tuohy, Robin M.; Wallace, Paul J.; Loewen, Matthew W.; Swanson, Donald A.; Kent, Adam J. R.

    2016-07-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2 concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai'i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n = 10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n = 38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea's summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea's east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.

  14. The structural behavior of ferric and ferrous iron in aluminosilicate glass near meta-aluminosilicate joins

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn O.

    2006-05-01

    Iron-57 resonant absorption Mössbauer spectroscopy was used to describe the redox relations and structural roles of Fe 3+ and Fe 2+ in meta-aluminosilicate glasses. Melts were formed at 1500 °C in equilibrium with air and quenched to glass in liquid H 2O with quenching rates exceeding 200 °C/s. The aluminosilicate compositions were NaAlSi 2O 6, Ca 0.5AlSi 2O 6, and Mg 0.5AlSi 2O 6. Iron oxide was added in the form of Fe 2O 3, NaFeO 2, CaFe 2O 4, and MgFe 2O 4 with total iron oxide content in the range ˜0.9 to ˜5.6 mol% as Fe 2O 3. The Mössbauer spectra, which were deconvoluted by assuming Gaussian distributions of the hyperfine field, are consistent with one absorption doublet of Fe 2+ and one of Fe 3+. From the area ratios of the Fe 2+ and Fe 3+ absorption doublets, with corrections for differences in recoil-fractions of Fe 3+ and Fe 2+, the Fe 3+/ΣFe is positively correlated with increasing total iron content and with decreasing ionization potential of the alkali and alkaline earth cation. There is a distribution of hyperfine parameters from the Mössbauer spectra of these glasses. The maximum in the isomer shift distribution function of Fe 3+, δFe 3+, ranges from about 0.25 to 0.49 mm/s (at 298 K relative to Fe metal) with the quadrupole splitting maximum, ΔFe 3+, ranging from ˜1.2 to ˜1.6 mm/s. Both δFe 3+ and δFe 2+ are negatively correlated with total iron oxide content and Fe 3+/ΣFe. The dominant oxygen coordination number Fe 3+ changes from 4 to 6 with decreasing Fe 3+/ΣFe. The distortion of the Fe 3+-O polyhedra of the quenched melts (glasses) decreases as the Fe 3+/ΣFe increases. These polyhedra do, however, coexist with lesser proportions of polyhedra with different oxygen coordination numbers. The δFe 2+ and ΔFe 2+ distribution maxima at 298 K range from ˜0.95 to 1.15 mm/s and 1.9 to 2.0 mm/s, respectively, and decrease with increasing Fe 3+/ΣFe. We suggest that these hyperfine parameter values for the most part are more consistent with Fe 2+ in a range of coordination states from 4- to 6-fold. The lower δFe 2+-values for the most oxidized melts are consistent with a larger proportion of Fe 2+ in 4-fold coordination compared with more reduced glasses and melts.

  15. Olivine-hosted melt inclusions as an archive of redox heterogeneity in magmatic systems

    NASA Astrophysics Data System (ADS)

    Hartley, Margaret E.; Shorttle, Oliver; Maclennan, John; Moussallam, Yves; Edmonds, Marie

    2017-12-01

    The redox state of volcanic products determines their leverage on the oxidation of Earth's oceans and atmosphere, providing a long-term feedback on oxygen accumulation at the planet's surface. An archive of redox conditions in volcanic plumbing systems from a magma's mantle source, through crustal storage, to eruption, is carried in pockets of melt trapped within crystals. While melt inclusions have long been exploited for their capacity to retain information on a magma's history, their permeability to fast-diffusing elements such as hydrogen is now well documented and their retention of initial oxygen fugacities (fO2) could be similarly diffusion-limited. To test this, we have measured Fe3+/ΣFe by micro-XANES spectroscopy in a suite of 65 olivine-hosted melt inclusions and 9 matrix glasses from the AD 1783 Laki eruption, Iceland. This eruption experienced pre-eruptive mixing of chemically diverse magmas, syn-eruptive degassing at the vent, and post-eruptive degassing during lava flow up to 60 km over land, providing an ideal test of whether changes in the fO2 of a magma may be communicated through to its cargo of crystal-hosted melt inclusions. Melt inclusions from rapidly quenched tephra samples have Fe3+/ΣFe of 0.206 ± 0.008 (ΔQFM of +0.7 ± 0.1), with no correlation between their fO2 and degree of trace element enrichment or differentiation. These inclusions preserve the redox conditions of the mixed pre-eruptive Laki magma. When corrected for fractional crystallisation to 10 wt.% MgO, these inclusions record a parental magma [Fe3+/ΣFe](10) of 0.18 (ΔQFM of +0.4), significantly more oxidised than the Fe3+/ΣFe of 0.10 that is often assumed for Icelandic basalt magmas. Melt inclusions from quenched lava selvages are more reduced than those from the tephra, having Fe3+/ΣFe between 0.133 and 0.177 (ΔQFM from -0.4 to +0.4). These inclusions have approached equilibrium with their carrier lava, which has been reduced by sulfur degassing. The progressive re-equilibration of fO2 between inclusions and carrier melts occurs on timescales of hours to days, causing a drop in the sulfur content at sulfide saturation (SCSS) and driving the exsolution of immiscible sulfide globules in the inclusions. Our data demonstrate the roles of magma mixing, progressive re-equilibration, and degassing in redox evolution within magmatic systems, and the open-system nature of melt inclusions to fO2 during these processes. Redox heterogeneity present at the time of inclusion trapping may be overprinted by rapid re-equilibration of melt inclusion fO2 with the external environment, both in the magma chamber and during slow cooling in lava at the surface. This can decouple the melt inclusion archives of fO2, major and trace element chemistry, and mask associations between fO2, magmatic differentiation and mantle source heterogeneity unless the assembly of diverse magmas is rapidly followed by eruption. Our tools for understanding the redox conditions of magmas are thus limited; however, careful reconstruction of pre- and post-eruptive magmatic history has enabled us to confirm the relatively oxidised nature of ocean island-type mantle compared to that of mid-ocean ridge mantle.

  16. Minimization of Residual Stress in an Al-Cu Alloy Forged Plate by Different Heat Treatments

    NASA Astrophysics Data System (ADS)

    Dong, Ya-Bo; Shao, Wen-Zhu; Jiang, Jian-Tang; Zhang, Bao-You; Zhen, Liang

    2015-06-01

    In order to improve the balance of mechanical properties and residual stress, various quenching and aging treatments were applied to Al-Cu alloy forged plate. Residual stresses determined by the x-ray diffraction method and slitting method were compared. The surface residual stress measured by x-ray diffraction method was consistent with that measured by slitting method. The residual stress distribution of samples quenched in water with different temperatures (20, 60, 80, and 100 °C) was measured, and the results showed that the boiling water quenching results in a 91.4% reduction in residual stress magnitudes compared with cold water quenching (20 °C), but the tensile properties of samples quenched in boiling water were unacceptably low. Quenching in 80 °C water results in 75% reduction of residual stress, and the reduction of yield strength is 12.7%. The residual stress and yield strength level are considerable for the dimensional stability of aluminum alloy. Quenching samples into 30% polyalkylene glycol quenchants produced 52.2% reduction in the maximum compressive residual stress, and the reduction in yield strength is 19.7%. Moreover, the effects of uphill quenching and thermal-cold cycling on the residual stress were also investigated. Uphill quenching and thermal-cold cycling produced approximately 25-40% reduction in residual stress, while the effect on tensile properties is quite slight.

  17. Structures and properties of materials recovered from high shock pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nellis, W.J.

    1994-03-01

    Shock compression produces high dynamic pressures, densities, temperatures, and their quench rates. Because of these extreme conditions, shock compression produces materials with novel crystal structures, microstructures, and physical properties. Using a 6.5-m-long two-stage gun, we perform experiments with specimens up to 10 mm in diameter and 0.001--1 mm thick. For example, oriented disks of melt-textured superconducting YBa{sub 2}Cu{sub 3}O{sub 7} were shocked to 7 GPa without macroscopic fracture. Lattice defects are deposited in the crystal, which improve magnetic hysteresis at {approximately}1 kOe. A computer code has been developed to simulate shock compaction of 100 powder particles. Computations will be comparedmore » with experiments with 15--20 {mu}m Cu powders. The method is applicable to other powders and dynamic conditions.« less

  18. Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yiming; Fu, Yuting; Shi, Yahui

    2016-02-15

    Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800more » nm was modulated by the phase transition of the surrounding crystal field.« less

  19. Quantitative Phase Analysis of Plasma-Treated High-Silica Materials

    NASA Astrophysics Data System (ADS)

    Kosmachev, P. V.; Abzaev, Yu. A.; Vlasov, V. A.

    2018-06-01

    The paper presents the X-ray diffraction (XRD) analysis of the crystal structure of SiO2 in two modifications, namely quartzite and quartz sand before and after plasma treatment. Plasma treatment enables the raw material to melt and evaporate after which the material quenches and condenses to form nanoparticles. The Rietveld refinement method is used to identify the lattice parameters of SiO2 phases. It is found that after plasma treatment SiO2 oxides are in the amorphous state, which are modeled within the microcanonical ensemble. Experiments show that amorphous phases are stable, and model X-ray reflection intensities approximate the experimental XRD patterns with fine precision. Within the modeling, full information is obtained for SiO2 crystalline and amorphous phases, which includes atom arrangement, structural parameters, atomic population of silicon and oxygen atoms in lattice sites.

  20. Study of temperature dependent electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses

    NASA Astrophysics Data System (ADS)

    Deepika, Singh, Hukum

    2018-05-01

    This paper reports the variation in electrical properties of Se80-xTe20Bix (x = 0, 3, 6) glasses studied at different temperatures. The amorphous samples were prepared using the melt quenching method and the electrical measurements were performed on Keithley Electrometer in the temperature ranging from 298-373 K. The I-V characteristics were noted at different temperatures and the data obtained was analysed to get dc electrical conductivity and activation energy of electrical conduction. Further, Mott's 3D VRH model has been applied to obtain density of states, hopping range and hopping energy at different temperatures. The obtained results show that dc electrical conductivity increases with increase in Bi composition in Se-Te system. These compositions also show close agreement to Mott's VRH model.

  1. Comparative evaluation of methods for the determination of heat transfer coefficients of liquid and gaseous quenching media

    NASA Astrophysics Data System (ADS)

    Shevchenko, Svetlana Yu.; Melnik, Yury A.; Smirnov, Andrey E.; Htet, Wai Yan Min

    2018-03-01

    Temperature dependences of heat transfer coefficients of liquid and gaseous quenching media were determined using a gradient probe and prismatic probe of more simple design. The probes of two different designs were tested in the same conditions. Analysis of heat transfer coefficients showed good agreement between the data obtained. The tests were carried out with liquid and gaseous quenching media: water, polymer quenchant, quenching oil and high-pressure nitrogen. Methods of mathematical modeling of steel samples quenching show the adequacy of the results.

  2. Local configurations and atomic intermixing in as-quenched and annealed Fe1-xCrx and Fe1-xMox ribbons

    NASA Astrophysics Data System (ADS)

    Stanciu, A. E.; Greculeasa, S. G.; Bartha, C.; Schinteie, G.; Palade, P.; Kuncser, A.; Leca, A.; Filoti, G.; Birsan, A.; Crisan, O.; Kuncser, V.

    2018-04-01

    Local atomic configuration, phase composition and atomic intermixing in Fe-rich Fe1-xCrx and Fe1-xMox ribbons (x = 0.05, 0.10, 0.15), of potential interest for high-temperature applications and nuclear devices, are investigated in this study in relation to specific processing and annealing routes. The Fe-based thin ribbons have been prepared by induction melting, followed by melt spinning and further annealed in He at temperatures up to 1250 °C. The complex structural, compositional and atomic configuration characterisation has been performed by means of X-ray diffraction (XRD), transmission Mössbauer spectroscopy and differential scanning calorimetry (TG-DSC). The XRD analysis indicates the formation of the desired solid solutions with body-centred cubic (bcc) structure in the as-quenched state. The Mössbauer spectroscopy results have been analysed in terms of the two-shell model. The distribution of Cr/Mo atoms in the first two coordination spheres is not homogeneous, especially after annealing, as supported by the short-range order parameters. In addition, high-temperature annealing treatments give rise to oxidation of Fe (to haematite, maghemite and magnetite) at the surface of the ribbons. Fe1-xCrx alloys are structurally more stable than the Mo counterpart under annealing at 700 °C. Annealing at 1250 °C in He enhances drastically the Cr clustering around Fe nuclei.

  3. Melting Experiments in the Fe-FeSi System at High Pressure

    NASA Astrophysics Data System (ADS)

    Ozawa, H.; Hirose, K.

    2013-12-01

    The principal light element in the Earth's core must reproduce the density jump at the inner core boundary (ICB). Silicon is thought to be a plausible light element in the core, and the melting phase relations in Fe-FeSi binary system at the ICB pressure are of great importance. Theoretical calculations on the Fe-FeSi binary system suggested that the difference in Si content between the outer core and the inner core would be too small to satisfy the observed density jump at the ICB [Alfè et al., 2002 EPSL], which requires other light elements in addition to silicon. Here we experimentally examined partitioning of silicon between liquid and solid iron up to 97 GPa. High pressure and temperature conditions were generated in a laser-heated diamond-anvil cell. Chemical compositions of co-existing quenched liquid and solid Fe-Si alloys were determined with a field-emission-type electron probe micro-analyzer. We used Fe-Si alloy containing 9 wt% Si as a starting material. Chemical analyses on the recovered samples from 39 and 49 GPa demonstrated the coexistence of quenched Si-depleted liquid and Si-enriched solid. In contrast, silicon partitions preferentially into liquid metal at 97 GPa, suggesting the starting composition (Fe-9wt% Si) lies on the iron-rich part of the eutectic. These results indicate the eutectic composition shifts toward FeSi between 49 and 97 GPa.

  4. Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications

    NASA Astrophysics Data System (ADS)

    Sreejesh, M.; Shenoy, Sulakshana; Sridharan, Kishore; Kufian, D.; Arof, A. K.; Nagaraja, H. S.

    2017-07-01

    Electrochemical sensors and lithium-ion batteries are two important topics in electrochemistry that have attracted much attention owing to their extensive applications in enzyme-free biosensors and portable electronic devices. Herein, we report a simple hydrothermal approach for synthesizing composites of melt quenched vanadium oxide embedded on graphene oxide of equal proportion (MVGO50) for the fabrication of electrodes for nonenzymatic amperometic dopamine sensor and lithium-ion battery applications. The sensing performance of MVGO50 electrodes through chronoamperometry studies in 0.1 M PBS solution (at pH 7) over a wide range of dopamine concentration exhibited a highest sensitivity of 25.02 μA mM-1 cm-2 with the lowest detection limit of 0.07 μM. In addition, the selective sensing capability of MVGO50 was also tested through chronoamperometry studies by the addition of a very small concentration of dopamine (10 μM) in the presence of a fairly higher concentration of uric acid (10 mM) as the interfering species. Furthermore, the reversible lithium cycling properties of MVGO50 are evaluated by galvanostatic charge-discharge cycling studies. MVGO50 electrodes exhibited enhanced rate capacity of up to 200 mAhg-1 at a current of 0.1C rate and remained stable during cycling. These results indicate that MVGO composites are potential candidates for electrochemical device applications.

  5. Vapor-Saturated Melting of Fertile Peridotite Revisited: A new Experimental Approach and Re-evaluation of the Hydrous Peridotite Solidus

    NASA Astrophysics Data System (ADS)

    Grove, T. L.

    2001-12-01

    The vapor-saturated melting relations of peridotite have been determined for a fertile mantle composition of Hart and Zindler (1986, Chem Geol 57: 247) over the pressure range of 1.2 to 2.4 GPa. For example, at 1.2 GPa melt is present at a temperature of 980° C and at 2.4 GPa melt is present at 920° C. These temperatures should be viewed as maximum values for the vapor-saturated solidus (although see below) because the initial melting temperature of multi-phase, multicomponent systems can often be difficult to detect. At 2.4 GPa the melt composition is highly silica-undersaturated and very aluminous ( ~ 21 wt. % Al2O3). Wet mantle melts are thought to be high in silica, but this is not the case for these hydrous melts. At 1.2 GPa, melt fractions are too small to allow reliable analysis. The experiments have been carried out in a piston cylinder apparatus using Au capsules. The starting material is an oxide mixture containing 14.5 wt. % H2O added as brucite. Free water present in the experiment after quenching indicates subsolidus conditions. The absence of fluid in experiments above the vapor-saturated solidus shows that all of the free H2O is dissolved in the melt. The high H2O content of the starting material moves the bulk composition close to the vapor-saturated melt composition, therefore increasing the amount of melt produced close to the solidus and making detection of low melt fraction possible. Studies of the hydrous peridotite solidus carried out between 1970 and 1975 by Mysen and Boettcher, Kushiro and others, Green and Millhollen and others at 2.0 GPa ranged from < 800 to ~ 1000° C, a variation of over 200 degrees. In a subduction zone environment a fluid-rich component released from the slab ascends into hotter overlying mantle and melting initiates at the vapor-saturated solidus. Melting would begin at a depth of ~ 75 km in the mantle wedge, for a realistic thermal structure. Melting would continue as these initial H2O-rich buoyant melts ascend into hotter, shallower mantle and re-equilibrate with their surroundings. The initiation of melting deep in the mantle wedge has implications for both chemical and mechanical processes in the subduction zone environment.

  6. Experimental simulation of the alkali-carbonate metasomatism

    NASA Astrophysics Data System (ADS)

    Gorbachev, Nikolay; Kostyuk, Anastasia

    2010-05-01

    Close association of alkaline and ultrabasic rocks, carbonatites, apatitic and sulfidic mineralization, features of structure testify about mantle a source and the important role alcalic-carbonaceous fluids in genesis of these rocks. Formation alkaline silicate, carbonaceous and sulfidic melts, phase relationship, behaviour of the ti-tan, phosphorus, sulphur and zircon has been experimentally studied at pressure 3.9 GPa, temperature 1250°С in system peridotit-basalt (eclogite)-alcalic-carbonaceous fluid with additives in quality acces-sory minerals, apatite, nickel-containing pyrrhotite, ilmenite, zircon. Experiments were carried out using of apparatus high pressure (piston cilinder and anvil with hole) by a quenching technique. It was used two ampoules (platinum and peridotite, content basalt powder) method. Duration of experiments was 6-8 hours. Products of experiments were studied on electronic scanning microscope Tescan VEGA TS 5130MM with YAG detector of secondary and reflected elec-tron and energy-dispersive the x-ray microanalyzer with semi-conductor Si (Li) detector INCA Energy 350. The morphology, structure and relationship of glass, inclusions of carbonatic and sulfidic globules specify in existence in the conditions of experiment immiscibility silicate, carbonate and sulfidic melts. The composition of silicate melt answered phonolite, carbonaceous melts it is essential calciferous composition with an impurity of alkaline metals and silicate components. Solubility of zircon in silicate melts reached 0.8 wt.% ZrO2, in co-existing carbonaceous melt - 1.5 wt.%. Concentration TiO2 and Р2О5 in silicate melt reached 2 wt.%, in carbonaceous melt - 1.7 wt.% TiO2 and up to 14 wt.% Р2О5. Concentration of sulphur in these melts did not exceed 0.2 мас. %. From minerals of liqudus the main concentrators of the titan and phosphorus were the X-phase and phlogopite - up to 8 wt.% TiO2 and up to 3 wt.% Р2О5 in the X-phase, up to 6 wt. % TiO2 and to 2.5 wt. % Р2О5 in phlogopite. Absence ilmenite and apatite in experimental samples under the studied conditions is obviously caused by their high solubility in co-existing phases. The composition of X-phase is similar to composition of Cpx, but X-phase enrich in TiO2 and de-plete in SiO2 . The partition coefficient of oxides some elements between silicate and carbonaceous melts Dka/si increasing from SiO2 (D<1) to CaO (D>10). Reduction of solubility of apatite in alkaline silicate melt at pressure decline promotes silicate-phosphate stratification and formation of apatite mineralization at introduction of mantle magmas into the earth crust. Supported by grant RFBR № 09-05-01131, ONZ th. 2

  7. A novel method to produce solid lipid nanoparticles using n-butanol as an additional co-surfactant according to the o/w microemulsion quenching technique.

    PubMed

    Mojahedian, Mohammad M; Daneshamouz, Saeid; Samani, Soliman Mohammadi; Zargaran, Arman

    2013-09-01

    Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) are novel medicinal carriers for controlled drug release and drug targeting in different roots of administration such as parenteral, oral, ophthalmic and topical. These carriers have some benefits such as increased drug stability, high drug payload, the incorporation of lipophilic and hydrophilic drugs, and no biotoxicity. Therefore, due to the cost-efficient, proportionally increasable, and reproducible preparation of SLN/NLC and the avoidance of organic solvents used, the warm microemulsion quenching method was selected from among several preparation methods for development in this research. To prepare the warm O/W microemulsion, lipids (distearin, stearic acid, beeswax, triolein alone or in combination with others) were melted at a temperature of 65°C. After that, different ratios of Tween60 (10-22.5%) and glyceryl monostearate (surfactant and co-surfactant) and water were added, and the combination was stirred. Then, 1-butanol (co-surfactant) was added dropwise until a clear microemulsion was formed and titration continued to achieve cloudiness (to obtain the microemulsion zone). The warm o/w microemulsions were added dropwise into 4°C water (1:5 volume ratio) while being stirred at 400 or 600 rpm. Lipid nanosuspensions were created upon the addition of the warm o/w microemulsion to the cold water. The SLN were obtained over a range of concentrations of co-surfactants and lipids and observed for microemulsion stability (clearness). For selected preparations, characterization involved also determination of mean particle size, polydispersity and shape. According to the aim of this study, the optimum formulations requiring the minimum amounts of 1-butanol (1.2%) and lower temperatures for creation were selected. Mono-disperse lipid nanoparticles were prepared in the size range 77 ± 1 nm to 124 ± 21 nm according to a laser diffraction particle size analyzer and transmission electron microscopy. This method for preparing lipid nanoparticles by warm o/w microemulsion quenching was found to be more cost efficient and proportionally increasable in comparison with other preparation methods such as high pressure homogenization. These lipid nanoparticles, due to the combination of hard lipids with soft and/or liquid lipids, become good candidates for a wide range of medicaments as carriers for pharmaceutical and medicinal purposes. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Novel Spectrofluorimetric Method for the Determination of Perindopril Erbumine Based on Fluorescence Quenching of Rhodamine B.

    PubMed

    Fael, Hanan; Sakur, Amir Al-Haj

    2015-11-01

    A novel, simple and specific spectrofluorimetric method was developed and validated for the determination of perindopril erbumine (PDE). The method is based on the fluorescence quenching of Rhodamine B upon adding perindopril erbumine. The quenched fluorescence was monitored at 578 nm after excitation at 500 nm. The optimization of the reaction conditions such as the solvent, reagent concentration, and reaction time were investigated. Under the optimum conditions, the fluorescence quenching was linear over a concentration range of 1.0-6.0 μg/mL. The proposed method was fully validated and successfully applied to the analysis of perindopril erbumine in pure form and tablets. Statistical comparison of the results obtained by the developed and reference methods revealed no significant differences between the methods compared in terms of accuracy and precision. The method was shown to be highly specific in the presence of indapamide, a diuretic that is commonly combined with perindopril erbumine. The mechanism of rhodamine B quenching was also discussed.

  9. Controlled motion of domain walls in submicron amorphous wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ţibu, Mihai; Lostun, Mihaela; Rotărescu, Cristian

    Results on the control of the domain wall displacement in cylindrical Fe{sub 77.5}Si{sub 7.5}B{sub 15} amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the firstmore » time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.« less

  10. Physical and Optical Studies of Bi3+-Modified Erbium Doped Tellurite Glasses

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Ega Fausta, Devara

    2018-03-01

    Er3+-doped tellurite glasses with various compositions (in mole%): 54TeO2-(41-x)ZnO-xBi2O3-2Na2O-3Er2O3 (x = 1, 2, 3, 4, and 5) were prepared with melt quenching method. Studies was aimed at investigating the effect of Bi3+ ion content on the physical and optical properties of the glasses. The density, refractive index, optical absorption, and optical energy band gap measurements were carried out at room temperature using pycnometer, Brewster angle method, and UV-VIS-NIR spectrophotometer, respectively. From the experiment, it was shown that the density and refractive index of the glasses increased with the increase of Bi3+ ions concentration. The absorption band intensity of electronic transition from 4I15/2 to 4H11/2 exhibited an increase as the Bi3+ ions concentration increase suggesting that incorporating Bi3+ ions into this glasses might improve the pumping efficiency.

  11. Physical and optical studies of BaO-TeO2-TiO2-B2O3 glasses containing Cu2+ transition metal ion

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Kumar, R. Vijaya; Hameed, Abdul; Sagar, D. Karuna; Chary, M. Narasimha; Shareefuddin, Md.

    2018-05-01

    Glasses with the composition xBaO-(30-x) TeO2-10TiO2-59B2O3-1CuO (where x = 10, 15, 20 and 25 mole %) were prepared by melt quenching technique. The XRD studies were made on these glass samples at room temperature. The amorphous nature of the glass samples was confirmed from the XRD patterns. The physical parameters such as density (ρ), molar volume (Vm), average boron-boron separation (dB-B) and oxygen packing density (OPD) were calculated. The change in density and molar volume has been investigated in terms of the variation of BaO in the glass composition. The optical absorption spectra have been recorded at room temperature. The values of optical band gap have been estimated from the ASF and Tauc's methods. Both Tauc's and ASF methods have been showing progressively increasing indirect optical band gap values with the increase of BaO concentrations.

  12. High Pressure Dehydration of Antigorite in Nature: Embrittlement and melt formation?

    NASA Astrophysics Data System (ADS)

    Evans, B. W.; Cowan, D. S.

    2011-12-01

    Trommsdorff and others in 1998 provided field evidence from the Cerro del Almirez ultramafic complex, S. Spain, for the only known example of the high-pressure terminal breakdown reaction of antigorite: Atg = Ol + Opx + Chl + H2O. Pressure-temperature conditions for this reaction have since been refined to around 1.8 GPa and 650-700C. Associated mafic rocks are eclogites. Reaction products were a mixture of more-or-less granoblastic chlorite meta-harzburgite and rock of the same composition with a spinifex-like texture comprising up to 10 cm long needles of olivine and interstitial bundles of enstatite prisms. This texture was interpreted as metamorphic in origin (jackstraw olivine), and this view has apparently generally been accepted. Two earlier studies interpreted the spinifex-like rocks as quenched ultramafic liquid, analogous to komatiites. Given the release of ca. 6-7 wt.% H2O by this reaction, one must surely contemplate the possibility of dehydration embrittlement and frictional slip in shear zones, as many have suggested for antigorite breakdown in subduction zones. The depth and location of earthquake hypocenters have been shown to correlate well with the P-T trace of the experimentally determined antigorite breakdown reaction. A temperature rise of only 300C is needed at 1.8 GPa to initiate partial melting of hydrous peridotite, and another 350C to render it fully molten. These kinds of increase in temperature have been described from pseudotachylytes. We are therefore inclined to interpret the spinifex rocks at Cerro del Almirez as products of quench crystallization of ultramafic pseudotachylyte melt. This view is supported by the curved, branching, and sub-parallel nature of some of the olivine needles. Curved needles (up to 30 degrees) are not a feature of metamorphic jackstraw olivine, although otherwise the textures are very similar. Our view is also supported by the high contents of Cr and Ti (now exsolved into chromite and ilmenite) in the Almirez spinifex olivines, and the presence in them of crystal-rich "fluid" inclusions. Thus, this complex provides not only a unique field example of the high-pressure breakdown reaction of antigorite, but possibly also of dehydration embrittlement and local melt formation.

  13. Scanning electron microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates

    USGS Publications Warehouse

    Stern, L.A.; Kirby, S.H.; Circone, S.; Durham, W.B.

    2004-01-01

    Scanning electron microscopy (SEM) was used to investigate grain texture and pore structure development within various compositions of pure sI and sII gas hydrates synthesized in the laboratory, as well as in natural samples retrieved from marine (Gulf of Mexico) and permafrost (NW Canada) settings. Several samples of methane hydrate were also quenched after various extents of partial reaction for assessment of mid-synthesis textural progression. All laboratory-synthesized hydrates were grown under relatively high-temperature and high-pressure conditions from rounded ice grains with geometrically simple pore shapes, yet all resulting samples displayed extensive recrystallization with complex pore geometry. Growth fronts of mesoporous methane hydrate advancing into dense ice reactant were prevalent in those samples quenched after limited reaction below and at the ice point. As temperatures transgress the ice point, grain surfaces continue to develop a discrete "rind" of hydrate, typically 5 to 30 ??m thick. The cores then commonly melt, with rind microfracturing allowing migration of the melt to adjacent grain boundaries where it also forms hydrate. As the reaction continues under progressively warmer conditions, the hydrate product anneals to form dense and relatively pore-free regions of hydrate grains, in which grain size is typically several tens of micrometers. The prevalence of hollow, spheroidal shells of hydrate, coupled with extensive redistribution of reactant and product phases throughout reaction, implies that a diffusion-controlled shrinking-core model is an inappropriate description of sustained hydrate growth from melting ice. Completion of reaction at peak synthesis conditions then produces exceptional faceting and euhedral crystal growth along exposed pore walls. Further recrystallization or regrowth can then accompany even short-term exposure of synthetic hydrates to natural ocean-floor conditions, such that the final textures may closely mimic those observed in natural samples of marine origin. Of particular note, both the mesoporous and highly faceted textures seen at different stages during synthetic hydrate growth were notably absent from all examined hydrates recovered from a natural marine-environment setting.

  14. Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach

    NASA Astrophysics Data System (ADS)

    Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu

    2015-12-01

    Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential influence of volatiles and melt films on electrical conductivity of partially molten rocks is discussed.

  15. Origin and evolution of primitive melts from the Debunscha Maar, Cameroon: Consequences for mantle source heterogeneity within the Cameroon Volcanic Line

    NASA Astrophysics Data System (ADS)

    Ngwa, Caroline N.; Hansteen, Thor H.; Devey, Colin W.; van der Zwan, Froukje M.; Suh, Cheo E.

    2017-09-01

    Debunscha Maar is a monogenetic volcano forming part of the Mt. Cameroon volcanic field, located within the Cameroon Volcanic Line (CVL). Partly glassy cauliflower bombs have primitive basanite-picrobasalt compositions and contain abundant normally and reversely zoned olivine (Fo 77-87) and clinopyroxene phenocrysts. Naturally quenched melt inclusions in the most primitive olivine phenocrysts show compositions which, when corrected for post-entrapment modification, cover a wide range from basanite to alkali basalt (MgO 6.9-11.7 wt%), and are generally more primitive than the matrix glasses (MgO 5.0-5.5 wt%) and only partly fall on a common liquid line of descent with the bulk rock samples and matrix glasses. Melt inclusion trace element compositions lie on two distinct geochemical trends: one (towards high Ba/Nb) is thought to represent the effect of various proportions of anhydrous lherzolite and amphibole-bearing peridotite in the source, while the other (for example, high La/Y) reflects variable degrees of partial melting. Comparatively low fractionation-corrected CaO in the melt inclusions with the highest La/Y suggests minor involvement of a pyroxenite source component that is only visible at low degrees of melting. Most of the samples show elevated Gd/Yb, indicating up to 8% garnet in the source. The range of major and trace elements represented by the melt inclusions covers the complete geochemical range given by basalts from different volcanoes of the Cameroon volcanic line, indicating that geochemical signatures that were previously thought to be volcano-specific in fact are probably present under all volcanoes. Clinopyroxene-melt barometry strongly indicates repeated mixing of compositionally diverse melts within the upper mantle at 830 ± 170 MPa prior to eruption. Mantle potential temperatures estimated for the primitive melt inclusions suggest that the thermal influence of a mantle plume is not required to explain the magma petrogenesis.

  16. In-situ determination of the oxidation state of iron in Fe-bearing silicate melts

    NASA Astrophysics Data System (ADS)

    Courtial, P.; Wilke, M.; Potuzak, M.; Dingwell, D. B.

    2005-12-01

    Terrestrial lavas commonly contain up to 10 wt% of iron. Furthermore, rocks returned from the Moon indicate lunar lava containing up to 25 wt% of iron and planetary scientists estimated that the martian mantle has about 18 wt% of iron. An experimental challenge in dealing with Fe-bearing silicate melts is that the oxidation state, controlling the proportions of ferric and ferrous iron, is a function of composition, oxygen fugacity and temperature and may vary significantly. Further complications concerning iron originate from its potential to be either four-, six- or even five-fold coordinated in both valence states. Therefore, the oxidation state of iron was determined in air for various Fe-bearing silicate melts. Investigated samples were Na-disilicate (NS), one atmosphere anorthite-diopside eutectic (AD) and haplogranitic (HPG8) melts containing up to 20, 20 and 10 wt% of iron, respectively. XANES spectra at the Fe K-edge were collected for all the melts at beamline A1, HASYLAB, Hamburg, using a Si(111) 4-crystal monochromator. Spectra were collected for temperatures up to 1573 K using a Pt-Rh loop as heating device. The Fe oxidation state was determined from the centroid position of the pre-edge feature using the calibration of Wilke et al. (2004). XANES results suggest that oxidation state of iron does not change within error for NS melts with addition of Fe, while AD and HPG8 melts become more oxidised with increasing iron content. Furthermore, NS melts are well more oxidised than AD and HPG8 melts that exhibit relatively similar oxidation states for identical iron contents. The oxidation state of iron for NS melts appears to be slightly temperature-dependent within the temperature range investigated (1073-1573 K). However, this trend is stronger for AD and HPG8 melts. Assuming that glass reflects a picture of the homogeneous equilibria of the melt, the present in-situ Fe-oxidation states determined for these melts were compared to those obtained on quenched glasses from different temperatures, when possible, using wet-chemical analysis (i.e., K-dichromate potentiometry). Both datasets agree reasonably well (within 10 %). References: Wilke et al. (2004) Chemical Geology, 213, 71-87.

  17. Crystallization of tholeiitic basalt in Alae Lava Lake, Hawaii

    USGS Publications Warehouse

    Peck, D.L.; Wright, T.L.; Moore, J.G.

    1966-01-01

    The eruption of Kilauea Volcano August 21-23, 1963, left 600,000 cubic meters of basaltic lava in a lava lake as much as 15 meters deep in Alae pit crater. Field studies of the lake began August 27 and include repeated core drilling, measurements of temperature in the crust and melt, and precise level surveys of the lake surface. The last interstitial melt in the lake solidified late in September 1964; by mid August 1965 the maximum temperature was 690??C at a depth of 11.5 meters. Pumice air-quenched from about 1140??C contains only 5 percent crystals - clinopyroxene, cuhedral olivine (Fo 80), and a trace of plagioclase, (An 70). Drill cores taken from the zone of crystallization in the lake show that olivine continued crystallizing to about 1070??C; below that it reacts with the melt, becoming corroded and mantled by pyroxene and plagioclase. Below 1070??C, pyroxene and plagioclase crystallized at a constant ratio. Ilmenite first appeared at about 1070??C and was joined by magnetite at about 1050??C; both increased rapidly in abundance to 1000??C. Apatite first appeared as minute needles in interstitial glass at 1000??C. Both the abundance and index of refraction of glass quenched from melt decreased nearly linearly with falling temperature. At 1070??C the quenched lava contains about 65 percent dark-brown glass with an index of 1.61; at 980??C it contains about 8 percent colorless glass with an index of 1.49. Below 980??C, the percentage of glass remained constant. Progressive crystallization forced exsolution of gases from the melt fraction; these formed vesicles and angular pores, causing expansion of the crystallizing lava and lifting the surface of the central part of the lake an average of 19.5 cm. The solidified basalt underwent pneumatolitic alteration, including deposition of cristobalite at 800??C, reddish alteration of olivine at 700??C, tarnishing of ilmenite at 550??C, deposition of anhydrite at 250??C, and deposition of native sulfur at 100??C. Ferric-ferrous ratios suggest that oxidation with maximum intensity between 550??C and 610??C moved downward in the crust as it cooled; this was followed by reduction at a temperature of about 100??C. The crystallized basalt is a homogeneous fine-grained rock containing on the average 48.3 percent by volume intergranular pyroxene (augite > pigeonite), 34.2 percent plagioclase laths (An60 70), 7.9 percent interstitial glass, 6.9 percent opaques (ilmenite > magnetite), 2.7 percent olivine (Fo70 80), and a trace of apatite. Chemical analyses of 18 samples, ranging from initially quenched pumice to lava cored more than a year after the eruption from the center and from near the base of the lake, show little variation from silica-saturated tholeiitic basalt containing 50.4 percent SiO2, 2.4 percent Na2O, and 0.54 percent K2O. Apparently there was no significant crystal settling and no appreciable vapor-phase transport of these components during the year of crystallization. However, seven samples of interstitial liquid that had been filter-pressed into gash fractures and drill holes from partly crystalline mush near the base of the crust show large differences from the bulk composition of the solidified crust-lower MgO, CaO, and Al2O3; and higher total iron, TiO2, Na2O, K2O, P2O5, and F, and, in most samples, SiO2. The minor elements Ba, Ga, Li, Y, and Yb and possibly Cu tend to be enriched in the filter-pressed liquids, and Cr and possibly Ni tend to be depleted. ?? 1966 Stabilimento Tipografico Francesco Giannini & Figli.

  18. Sodium aluminum-iron phosphate glass-ceramics for immobilization of lanthanide oxide wastes from pyrochemical reprocessing of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.

    2018-03-01

    Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.

  19. Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harde, G. B.; Department of Physics, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India-444602; Muley, G. G., E-mail: gajananggm@yahoo.co.in

    2016-05-06

    Borate glasses of the system xNd{sub 2}O{sub 3}-(1-x) La{sub 2}O{sub 3}-SrCO{sub 3}-10H{sub 3}BO{sub 3} (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition {sup 4}I{sub 9/2} → {sup 4}G{sub 5/2} + {sup 2}G{sub 7/2} has found more prominent than the other transitions. Optical band gap energies of glasses havemore » been determined and found less for Nd doped glass.« less

  20. Morphology of blends of linear and long-chain-branched polyethylenes in the solid state: A study by SANS, SAXS, and DSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Lin, J.S.

    1995-04-24

    Differential scanning calorimetry (DSC), small-angle neutron scattering (SANS), and X-ray scattering (SAXS) have been used to investigate the solid-state morphology of blends of linear (high density) and long-chain-branched (low-density) polyethylenes (HDPE/LDPE). The blends are homogeneous in the melt, as previously demonstrated by SANS using the contrast obtained by deuterating the linear polymer. However, due to the structural and melting point differences ({approximately} 20 C) between HDPE and LDPE, the components may phase segregate on slow cooling (0.75 C/min). For high concentrations ({phi} {ge} 0.5) of HDPE, relatively high rates of crystallization of the linear component lead to the formation ofmore » separate stacks of HDPE and LDPE lamellae, as indicated by two-peak SAXS curves. For predominantly branched blends, the difference in crystallization rate of the components becomes smaller and only one SAXS peak is observed, indicating that the two species are in the same lamellar stack. Moreover, the phases no longer consist of the pure component and the HDPE lamellae contain up to 15--20% LDPE (and vice versa). Rapid quenching into dry ice/2-propanol ({minus}78 C) produces only one SAXS peak (and hence one lamellar stack) over the whole concentration range. The blends show extensive cocrystallization, along with a tendency for the branched material to be preferentially located in the amorphous interlamellar regions. For high concentrations ({phi} > 0.5) of HDPE-D, the overall scattering length density (SLD) is high and the excess concentration of LDPE between the lamellae enhances the SLD contrast between the crystalline and amorphous phases. Thus, the interlamellar spacing (long period) is clearly visible in the SANS pattern. The blend morphology is a strong function of the quenching rate, and samples quenched less rapidly (e.g., into water at 23 C) are similar to slowly cooled blends.« less

  1. Structural and Luminescent property of Holmium doped Borate Glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-02-01

    Holmium doped Lithium Lead Borate glasses of different compositions were prepared by melt quenching technique. Fourier transform infrared investigations on lithium lead borate glasses have been made to study the local order and vibrations of atoms in the glass network and it contains mainly BO3 and BO4 structural units. Photoluminescence techniques were employed to investigate the luminescent property of these glasses excited at 451nm. Blue emission have been observed from the transition 495 (5F3 → 5I8).

  2. A Two-Step Approach for Producing an Ultrafine-Grain Structure in Cu-30Zn Brass (Postprint)

    DTIC Science & Technology

    2015-08-13

    crystallization anneal at 400 °C (0.55Tm, where Tm is the melting point ) for times ranging from 1 min to 10 hours, followed by water quenching; an additional...200 words) A two-step approach involving cryogenic rolling and subsequent recrystallization annealing was developed to produce an ultrafine-grain...b s t r a c t A two-step approach involving cryogenic rolling and subsequent recrystallization annealing was devel- oped to produce an ultrafine

  3. Thermal property of holmium doped lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-04-01

    The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.

  4. Crystallization kinetics of orthorhombic paracetamol from supercooled melts studied by non-isothermal DSC.

    PubMed

    Nikolakakis, Ioannis; Kachrimanis, Kyriakos

    2017-02-01

    A simple and highly reproducible procedure was established for the study of orthorhombic paracetamol crystallization kinetics, comprising melting, quench-cooling of the melt and scanning the formed glass by DSC at different heating rates. Results were analyzed on the basis of the mean as well as local values of the Avrami exponent, n, the energy of activation, as well as the Šesták-Berggren two-parameter autocatalytic kinetic model. The mean value of the Avrami kinetic exponent, n, ranged between 3 and 5, indicating deviation from the nucleation and growth mechanism underlying the Johnson-Mehl, Avrami-Kolmogorov (JMAK) model. To verify the extent of the deviation, local values of the Avrami exponent as a function of the volume fraction transformed were calculated. Inspection of the local exponent values indicates that the crystallization mechanism changes over time, possibly reflecting the uncertainty of crystallization onset, instability of nucleation due to an autocatalytic effect of the crystalline phase, and growth anisotropy due to impingement of spherulites in the last stages of crystallization. The apparent energy of activation, E a , has a rather low mean value, close to 81 kJ/mol, which is in agreement with the observed instability of glassy-state paracetamol. Isoconversional methods revealed that E a tends to decrease with the volume fraction transformed, possibly because of the different energy demands of nucleation and growth. The exponents of the Šesták-Berggren two-parameter model showed that the crystallized fraction influences the process, confirming the complexity of the crystallization mechanism.

  5. Realistic inversion of diffraction data for an amorphous solid: The case of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Pandey, Anup; Biswas, Parthapratim; Bhattarai, Bishal; Drabold, D. A.

    2016-12-01

    We apply a method called "force-enhanced atomic refinement" (FEAR) to create a computer model of amorphous silicon (a -Si) based upon the highly precise x-ray diffraction experiments of Laaziri et al. [Phys. Rev. Lett. 82, 3460 (1999), 10.1103/PhysRevLett.82.3460]. The logic underlying our calculation is to estimate the structure of a real sample a -Si using experimental data and chemical information included in a nonbiased way, starting from random coordinates. The model is in close agreement with experiment and also sits at a suitable energy minimum according to density-functional calculations. In agreement with experiments, we find a small concentration of coordination defects that we discuss, including their electronic consequences. The gap states in the FEAR model are delocalized compared to a continuous random network model. The method is more efficient and accurate, in the sense of fitting the diffraction data, than conventional melt-quench methods. We compute the vibrational density of states and the specific heat, and we find that both compare favorably to experiments.

  6. Experimentally Determined Phase Diagram for the Barium Sulfide-Copper(I) Sulfide System Above 873 K (600 °C)

    NASA Astrophysics Data System (ADS)

    Stinn, Caspar; Nose, Katsuhiro; Okabe, Toru; Allanore, Antoine

    2017-12-01

    The phase diagram of the barium sulfide-copper(I) sulfide system was investigated above 873 K (600 °C) using a custom-built differential thermal analysis (DTA) apparatus. The melting point of barium sulfide was determined utilizing a floating zone furnace. Four new compounds, Ba2Cu14S9, Ba2Cu2S3, Ba5Cu4S7, and Ba9Cu2S10, were identified through quench experiments analyzed with wavelength dispersive X-ray spectroscopy (WDS) and energy dispersive X-ray analysis (EDS). A miscibility gap was observed between 72 and 92 mol pct BaS using both DTA experiments and in situ melts observation in a floating zone furnace. A monotectic was observed at 94.5 mol pct BaS and 1288 K (1015 °C).

  7. Origin of a rhyolite that intruded a geothermal well while drilling at the Krafla volcano, Iceland

    USGS Publications Warehouse

    Elders, W.A.; Fridleifsson, G.O.; Zierenberg, R.A.; Pope, E.C.; Mortensen, A.K.; Gudmundsson, A.; Lowenstern, J. B.; Marks, N.E.; Owens, L.; Bird, D.K.; Reed, M.; Olsen, N.J.; Schiffman, P.

    2011-01-01

    Magma flowed into an exploratory geothermal well at 2.1 km depth being drilled in the Krafla central volcano in Iceland, creating a unique opportunity to study rhyolite magma in situ in a basaltic environment. The quenched magma is a partly vesicular, sparsely phyric, glass containing ~1.8% of dissolved volatiles. Based on calculated H2O-CO2 saturation pressures, it degassed at a pressure intermediate between hydrostatic and lithostatic, and geothermometry indicates that the crystals in the melt formed at ~900 ??C. The glass shows no signs of hydrothermal alteration, but its hydrogen and oxygen isotopic ratios are much lower than those of typical mantle-derived magmas, indicating that this rhyolite originated by anhydrous mantle-derived magma assimilating partially melted hydrothermally altered basalts. ?? 2011 Geological Society of America.

  8. Rotating disk atomization of Gd and Gd-Y for hydrogen liquefaction via magnetocaloric cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slinger, Tyler

    2016-12-17

    In order to enable liquid hydrogen fuel cell technologies for vehicles the cost of hydrogen liquefaction should be lowered. The current method of hydrogen liquefaction is the Claude cycle that has a figure of merit (FOM) of 0.3-0.35. New magnetocaloric hydrogen liquefaction devices have been proposed with a FOM>0.5, which is a significant improvement. A significant hurdle to realizing these devices is the synthesis of spherical rare earth based alloy powders of 200μm in diameter. In this study a centrifugal atomization method that used a rotating disk with a rotating oil quench bath was developed to make gadolinium and gadolinium-yttriummore » spheres. The composition of the spherical powders included pure Gd and Gd 0.91Y 0.09. The effect of atomization parameters, such as superheat, melt properties, disk shape, disk speed, and melt system materials and design, were investigated on the size distribution and morphology of the resulting spheres. The carbon, nitrogen, and oxygen impurity levels also were analyzed and compared with the magnetic performance of the alloys. The magnetic properties of the charge material as well as the resulting powders were measured using a vibrating sample magnetometer. The saturation magnetization and Curie temperature were the target properties for the resulting spheres. These values were compared with measurements taken on the charge material in order to investigate the effect of atomization processing on the alloys.« less

  9. Structural and optical study of γ –BIMEVOX; ME: Ba{sup 2+} and Sr{sup 2+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Sakshi, E-mail: Sakshi.gupta@thapar.edu; Singh, K., E-mail: kusingh@thapar.edu

    2015-05-15

    Bismuth oxide based compounds, such as Bi{sub 4}V{sub 2}O{sub 11-δ} (BIVOX), exhibit Aurivillus type of interleaving arrangement of (Bi{sub 2}O{sub 2}){sup 2+} and (VO{sub 3}□{sub 0.5}){sup 2-} (□: oxygen vacancies). Bi{sub 4}V{sub 2}O{sub 11-δ,} is known to have three kinds of temperature dependent interconvertible polymorphs α (monoclinic), β (orthorhombic) and γ (tetragonal). Out of all the three phases, the γ – phase is highly disordered and hence, is the most conductive one which can be stabilized by proper lower valence cation (ME) doping at V site. Bi{sub 4}V{sub 1.90}ME{sub 0.20}O{sub 11-δ} (ME: Ba{sup 2+} and Sr{sup 2+}) were prepared viamore » splat quenching technique. The required compositions were melted at 1250 °C in an electric furnace. The as quenched samples were sintered at 800 °C for 12 hours (h). The formed phases were analyzed using X-ray diffraction on quenched and sintered samples, the peak at 32{sup °} is found to be singlet in all the samples which confirms the presence of γ-phase. Hence, the stabilization of γ-phase with tetragonal structure was found to have taken place with doping and quenching. These samples are also studied by FT-IR and UV/vis spectroscopy to investigate the effect of dopants on structure and band gaps respectively.« less

  10. First finding of impact melt in the IIE Netschaëvo meteorite

    NASA Astrophysics Data System (ADS)

    Roosbroek, N.; Pittarello, L.; Greshake, A.; Debaille, V.; Claeys, P.

    2016-02-01

    About half of the IIE nonmagmatic iron meteorites contain silicate inclusions with a primitive to differentiated nature. The presence of preserved chondrules has been reported for two IIE meteorites so far, Netschaëvo and Mont Dieu, which represent the most primitive silicate material within this group. In this study, silicate inclusions from two samples of Netschaëvo were examined. Both silicate inclusions are characterized by a porphyritic texture dominated by clusters of coarse-grained olivine and pyroxene, set in a fine-grained groundmass that consists of new crystals of olivine and a glassy appearing matrix. This texture does not correspond to the description of the previously examined pieces of Netschaëvo, which consist of primitive chondrule-bearing angular clasts. Detailed petrographic observations and geochemical analyses suggest that the investigated samples of Netschaëvo consist of quenched impact melt. This implies that Netschaëvo is a breccia containing metamorphosed and impact-melt rock (IMR) clasts and that collisions played a major role in the formation of the IIE group.

  11. Redox-dependent solubility of technetium in low activity waste glass

    NASA Astrophysics Data System (ADS)

    Soderquist, Chuck Z.; Schweiger, Michael J.; Kim, Dong-Sang; Lukens, Wayne W.; McCloy, John S.

    2014-06-01

    The solubility of technetium was measured in a Hanford low activity waste (LAW) glass simulant, to investigate the extent that technetium solubility controls the incorporation of technetium into LAW glass. A series of LAW glass samples, spiked with 500-6000 ppm of Tc as potassium pertechnetate, were melted at 1000 °C in sealed fused quartz ampoules. Technetium solubility was determined in the quenched bulk glass to be 2000-2800 ppm, with slightly reducing conditions due to choice of milling media resulting in reductant contamination and higher solubility. The chemical form of technetium obtained by X-ray absorption near edge spectroscopy is mainly isolated, octahedrally-coordinated Tc(IV), with a minority of Tc(VII) in some glasses and TcO2 in two glasses. The concentration and speciation of technetium depends on glass redox and amount of technetium added. Salts formed at the top of higher technetium loaded glasses during the melt. The results of this study show that technetium solubility should not be a factor in technetium retention during melting of Hanford LAW glass.

  12. Volatile and light lithophile elements in high-anorthite plagioclase-hosted melt inclusions from Iceland

    NASA Astrophysics Data System (ADS)

    Neave, David A.; Hartley, Margaret E.; Maclennan, John; Edmonds, Marie; Thordarson, Thorvaldur

    2017-05-01

    Melt inclusions formed during the early stages of magmatic evolution trap primitive melt compositions and enable the volatile contents of primary melts and the mantle to be estimated. However, the syn- and post-entrapment behaviour of volatiles in primitive high-anorthite plagioclase-hosted melt inclusions from oceanic basalts remains poorly constrained. To address this deficit, we present volatile and light lithophile element analyses from a well-characterised suite of nine matrix glasses and 102 melt inclusions from the 10 ka Grímsvötn tephra series (i.e., Saksunarvatn ash) of Iceland's Eastern Volcanic Zone (EVZ). High matrix glass H2O and S contents indicate that eruption-related exsolution was arrested by quenching in a phreatomagmatic setting; Li, B, F and Cl did not exsolve during eruption. The almost uniformly low CO2 content of plagioclase-hosted melt inclusions cannot be explained by either shallow entrapment or the sequestration of CO2 into shrinkage bubbles, suggesting that inclusion CO2 contents were controlled by decrepitation instead. High H2O/Ce values in primitive plagioclase-hosted inclusions (182-823) generally exceed values expected for EVZ primary melts (∼ 180), and can be accounted for by diffusive H2O gain following the entrainment of primitive macrocrysts into evolved and H2O-rich melts a few days before eruption. A strong positive correlation between H2O and Li in plagioclase-hosted inclusions suggests that diffusive Li gain may also have occurred. Extreme F enrichments in primitive plagioclase-hosted inclusions (F/Nd = 51-216 versus ∼15 in matrix glasses) possibly reflect the entrapment of inclusions from high-Al/(Al + Si) melt pools formed by dissolution-crystallisation processes (as indicated by HFSE depletions in some inclusions), and into which F was concentrated by uphill diffusion since F is highly soluble in Al-rich melts. The high S/Dy of primitive inclusions (∼300) indicates that primary melts were S-rich in comparison with most oceanic basalts. Cl and B are unfractionated from similarly compatible trace elements, and preserve records of primary melt heterogeneity. Although primitive plagioclase-hosted melt inclusions from the 10 ka Grímsvötn tephra series record few primary signals in their volatile contents, they nevertheless record information about crustal magma processing that is not captured in olivine-hosted melt inclusions suites.

  13. Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass.

    PubMed

    Ravagli, Andrea; Craig, Christopher; Alzaidy, Ghada A; Bastock, Paul; Hewak, Daniel W

    2017-07-01

    Gallium lanthanum sulfide glass (GLS) has been widely studied in the last 40 years for middle-infrared applications. In this work, the results of the substitution of selenium for sulphur in GLS glass are described. The samples are prepared via melt-quench method in an argon-purged atmosphere. A wide range of compositional substitutions are studied to define the glass-forming region of the modified material. The complete substitution of Ga 2 S 3 by Ga 2 Se 3 is achieved by involving new higher quenching rate techniques compared to those containing only sulfides. The samples exhibiting glassy characteristics are further characterized. In particular, the optical and thermal properties of the sample are investigated in order to understand the role of selenium in the formation of the glass. The addition of selenium to GLS glass generally results in a lower glass transition temperature and an extended transmission window. Particularly, the IR edge is found to be extended from about 9 µm for GLS glass to about 15 µm for Se-added GLS glass defined by the 50% transmission point. Furthermore, the addition of selenium does not affect the UV edge dramatically. The role of selenium is hypothesized in the glass formation to explain these changes. © 2017 University of Southampton. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Analysis of emission spectra of Ho{sup 3+}:LFBCd glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naresh, V., E-mail: varna.naresh@gmail.com; Buddhudu, S., E-mail: varna.naresh@gmail.com

    2014-04-24

    In the present paper, we report on the absorption and emission properties of (0.1-1.5 mol %) Ho{sup 3+} doped LFBCd (Li{sub 2}O{sub −}LiF{sub −}B{sub 2}O{sub 3−}CdO) glasses prepared via melt quenching method. On exciting these glasses at (λ{sub exci}) = 452 nm, two emissions at 556 nm ({sup 5}S{sub 2}→{sup 5}I{sub 8}; Green), 655 nm ({sup 5}F{sub 5}→{sup 5}I{sub 8}; Red) have been obtained. Upon exciting these glasses with a 980 nm diode laser, NIR emissions at 1195 nm ({sup 5}I{sub 6}→{sup 5}I{sub 8}), 1951 nm ({sup 5}I{sub 7}→{sup 5}I{sub 8}) have been measured for 1 mol % Ho{sup 3+}:LFBCdmore » glass. For higher concentration beyond 1.0 mol %, emission quenching of Ho{sup 3+} glass has been noticed and which has successfully been explained in terms of an energy level diagram. From absorption cross-section data, stimulated emission cross-section has been evaluated by applying McCumber's theory and further cross-sectional gain has also been computed for the emissions at 1195 nm (∼1.20 μm) and 1951 nm (∼2.0 μm) of 1 mol % Ho{sup 3+}:LFBCd glass.« less

  15. Nd3+-doped lanthanum lead boro-tellurite glass for lasing and amplification applications

    NASA Astrophysics Data System (ADS)

    Madhu, A.; Eraiah, B.; Manasa, P.; Srinatha, N.

    2018-01-01

    Nd3+-doped lanthanum lead boro-tellurite glass samples were prepared by conventional melt quenching method and their structural, thermal, fluorescence, and decay times of the glasses were investigated. Prepared glass samples exhibits amorphous nature and shows good thermal stability in the temperature range of 100-800 °C. Judd-Ofelt (JO) analysis was carried out and the intensity parameters (Ωλ = 2, 4, 6) also spontaneous radiative probability and stimulated-.emission cross-sections were estimated. The magnitude of Ωλ confirms the covalency nature. The near infrared emission spectra were measured by 808 nm excitation in which the emission intensity is found to be high at 1060 nm for the 4F3/2 → 4F11/2 transition. The stimulated cross section, effective band width and branching ratios are found to be 8.910 × 10-20 cm2, 21.57 nm and 53.72 % respectively, for 4F3/2 → 4F11/2 transition. The derived gain bandwidth, figure of merit, threshold and saturation intensity found to be comparable to some of the glass systems. Furthermore, the time decay rate found to decrease from 100 μs to 27 μs when the concentration increased from 0.1 to 3.0 mol% of Nd3+ ions and also all follow the single exponential behaviour which is attributed to the self quenching effect due to the cross-relaxation channels.

  16. Phase-Pure and Multiphase Ceramic Waste Forms: Microstructure Evolution and Cesium Immobilization

    NASA Astrophysics Data System (ADS)

    Tumurugoti, Priyatham

    Efforts of this thesis are directed towards developing ceramic waste forms as a potential replacement for the conventional glass waste forms for the safe immobilization and disposal of nuclear wastes from the legacy weapons programs as well as commercial power production. The body of this work consists of two equal parts with first focused on multiphase waste form containing hollandite as major phase and the later, on single-phase hollandites for Cs incorporation. Part I: Multiphase waste forms:. Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by X-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirm hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of select elements observed by wavelength dispersive spectroscopy (WDS) maps indicate that Cs forms a secondary phase during SPS processing, which is considered undesirable. On the other hand Cs partitioned into hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition, by selected area electron diffraction (SAED), reveals ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice. Following the microstructural analysis, the crystallization behavior of the multiphase composition during melt-processing was studied. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, in-situ XRD, and scanning electron microscopy (SEM). Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500°C and heat-treated at crystallization temperatures of 1285°C and 1325°C corresponding to exothermic events identified from differential scanning calorimetry (DSC) measurements. Results indicate that the selected multiphase composition partially melts at 1500°C with hollandite coexisting as crystalline phase. Perovskite and zirconolite phases crystallized from the residual melt at temperatures below 1350°C. Depending on their respective thermal histories, different quenched samples were found to have different phase assemblages including phases such as perovskite, zirconolite and TiO2. Part II: Single phase waste forms. Hollandites with compositions Ba1.15-xCs2xCr 2.3Ti5.7O16 have been identified as promising lattices to host Cs. Series of compositions with 0 ≤ x ≤ 1.15 were prepared by sol-gel synthesis, characterized, and analyzed for Cs retention properties. Phase-pure hollandites adopting monoclinic symmetry (I2/m) were observed to form in the compositional range 0 ≤ x ≤ 0.4. Structural models for the compositions: x = 0, 0.15, and 0.25, were developed from Rietveld analysis of powder XRD and neutron diffraction data. Refined anisotropic displacement parameters (beta ij) for Ba and Cs ions in the hollandite tunnels indicate local disorder of Ba/Cs along the tunnel direction. In addition, weak super lattice reflections have also been observed in XRD patterns. Our data suggests the presence of supercell structures with ordered tunnel cations for the phase-pure hollandites studied. Finally, the performance of phase-pure hollandites have been evaluated qualitatively by chemical durability testing and ion-irradiation experiments. Elemental analysis of the leachants after 7-day leach tests show that Cs and Cr were extracted from the lattice together. No direct correlation between structural parameters or Cs content was observed. The simulated light-ion (He2+) and heavy-ion (Kr3+) irradiation experiments reveal that all the hollandite compositions studied undergo amorphization during alpha-decay events, and the extent of it increases with the Cs content. In summary, the present work validates melt-processing as an effective method to prepare multiphase waste forms with the desired phase assemblage. Ba1.15-xCs2xCr2.3Ti5.7O16 hollandite has been identified as an effective ceramic host for Cs immobilization and appropriate structural models for hollandites with different Cs levels have been developed. The structural information may be used to study or simulate the lattice-environment interaction.

  17. P-T phase diagram and structural transformations of molten P2O5 under pressure

    NASA Astrophysics Data System (ADS)

    Brazhkin, V. V.; Katayama, Y.; Lyapin, A. G.; Saitoh, H.

    2014-03-01

    The P2O5 compound is an archetypical glass-forming oxide with a record high hygroscopicity, which makes its study extremely difficult. We present the in situ x-ray diffraction study of the pressure-temperature phase diagram of P2O5 and, particularly, of the liquid P2O5 structure under high pressure up to 10 GPa. Additionally, quenching from the melt has been used to extend the melting curve up to 15 GPa. We found that structural transformation in the liquid P2O5 under pressure is unique and includes three stages: first, the disappearance of the intermediate range order of the melt together with a slow increase in the average first-coordination number (P-O and O-P neighbors) up to 4 GPa; second, the "normal" compression almost without structural modification at higher pressures up to 8-9 GPa; and, finally, the abrupt change of the short-range order structure of the liquid with the jumplike increase at 9-10 GPa. The last stage correlates with the melting curve maximum (≈1250 °C) at ≈10 GPa and can be interpreted as a transformation to the liquid phase with entirely fivefold-coordinated phosphorus and twofold-coordinated oxygen atoms.

  18. Morphology and composition of spinel in Pu'u 'O'o lava (1996-1998), Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Roeder, P.L.; Thornber, C.; Poustovetov, Alexei; Grant, A.

    2003-01-01

    The morphology and composition of spinel in rapidly quenched Pu'u 'O'o vent and lava tube samples are described. These samples contain glass, olivine phenocrysts (3-5 vol.%) and microphenocrysts of spinel (~0.05 vol.%). The spinel surrounded by glass occurs as idiomorphic octahedra 5-50 μm in diameter and as chains of octahedra that are oriented with respect to each other. Spinel enclosed by olivine phenocrysts is sometimes rounded and does not generally form chains. The temperature before quenching was calculated from the MgO content of the glass and ranges from 1150oC to 1180oC. The oxygen fugacity before quenching was calculated by two independent methods and the log f O2 ranged from -9.2 to -9.9 (delta QFM=-1). The spinel in the Pu'u'O'o samples has a narrow range in composition with Cr/(Cr+Al)=0.61 to 0.73 and Fe2+/(Fe2++Mg) =0.46 to 0.56. The lower the calculated temperature for the samples, the higher the average Fe2+/(Fe2++Mg), Fe3+ and Ti in the spinel. Most zoned spinel crystals decrease in Cr/(Cr+Al) from core to rim and, in the chains, the Cr/(Cr+Al) is greater in the core of larger crystals than in the core of smaller crystals. The occurrence of chains and hopper crystals and the presence of Cr/(Cr+Al) zoning from core to rim of the spinel suggest diffusion-controlled growth of the crystals. Some of the spinel crystals may have grown rapidly under the turbulent conditions of the summit reservoir and in the flowing lava, and the crystals may have remained in suspension for a considerable period. The rapid growth may have caused very local (μm) gradients of Cr in the melt ahead of the spinel crystal faces. The crystals seem to have retained the Cr/(Cr+Al) ratio that developed during the original growth of the crystal, but the Fe2+/(Fe2++Mg) ratio may have equilibrated fairly rapidly with the changing melt composition due to olivine crystallization. Six of the samples were collected on the same day at various locations along a 10-km lava tube and the calculated pre-collection temperatures of the samples show a 5oC drop with distance from the vent. The average Fe2+/(Fe2++Mg) of the spinel in these samples shows a weak positive correlation with decreasing MgO in the glass of these samples. The range in Cr2O3 (0.041-0.045 wt.%) of the glass for these six samples is too small to distinguish a consistent change along the lava tube. The spinel in the Pu'u 'O'o samples shows a zoning trend in a Cr-Al-Fe3+ diagram almost directly away from the Cr apex. This compares with a zoning trend in rapidly quenched MORB samples away from Cr coupled with decreasing Fe3+. The trend away from Cr displayed by spinel in rapidly quenched samples is in marked contrast to the trend of increasing Fe3+ shown by spinel in slowly cooled lava. 

  19. Role of valence state of vanadium ions on structural and spectroscopic properties of sodium lead bismuth silicate glass ceramics

    NASA Astrophysics Data System (ADS)

    Rao, M. V. Sambasiva; Tirupataiah, Ch.; Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, D. Krishna

    2018-04-01

    Glass ceramics with composition 10Na2O- 30PbO-10Bi2O3-(50-x)SiO2: xV2O5 (0 ≤ x ≤ 5) were synthesized by melt quenching and heat treatment method. XRD and SEM studies have indicated that the samples contain well defined and randomly distributed grains of different crystalline phases. Optical absorption spectra of these samples exhibited two absorption bands at 629 and 835 nm which are the characteristics of V4+ ions. The EPR spectra of these samples have exhibited well resolved hyperfine structure consisting of sixteen-eight parallel and eight perpendicular lines with a raise in their intensity with an increase in the content of V2O5 up to 3 mol% indicates the increase of redox ratio V4+/V5+ in the glass ceramic matrix.

  20. Influence of the selenium content on thermo-mechanical and optical properties of Ge-Ga-Sb-S chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Ye, Bin; Dai, Shixun; Wang, Rongping; Tao, Guangming; Zhang, Peiqing; Wang, Xunsi; Shen, Xiang

    2016-07-01

    A number of Ge17Ga4Sb10S69-xSex (x = 0, 15, 30, 45, 60, and 69) chalcogenide glasses have been synthesized by a melt-quenching method to investigate the effect of the Se content on thermo-mechanical and optical properties of these glasses. While it was found that the glass transition temperature (Tg) decreases from 261 to 174 °C with increasing Se contents, crystallization temperature (Tc) peak only be observed in glasses with Se content of x = 45. It was evident from the measurements of structural and physical properties that changes of the glass network bring an apparent impact on the glass properties. Also, the substitution of Se for S in Ge-Ga-Sb glasses can significantly improve the thermal stability against crystallization and broaden the infrared transmission region.

  1. Optically stimulated luminescence of borate glasses containing magnesia, quicklime, lithium and potassium carbonates

    NASA Astrophysics Data System (ADS)

    Valença, J. V. B.; Silveira, I. S.; Silva, A. C. A.; Dantas, N. O.; Antonio, P. L.; Caldas, L. V. E.; d'Errico, F.; Souza, S. O.

    2017-11-01

    The OSL characteristics of three different borate glass matrices containing magnesia (LMB), quicklime (LCB) or potassium carbonate (LKB) were examined. Five different formulations for each composition were produced using a melt-quenching method and analyzed in terms of both dose-response curves and OSL shape decay. The samples were irradiated using a 90Sr/90Y beta source with doses up to 30 Gy. Dose-response curves were plotted using the initial OSL intensity as the chosen parameter. The OSL analysis showed that LKB glasses are the most sensitive to beta irradiation. For the most sensitive LKB composition, the irradiation process was also done using a 60Co gamma source in a dose range from 200 to 800 Gy. In all cases, no saturation was observed. A fitting process using a three-term exponential function was performed for the most sensitive formulations of each composition, which suggested a similar behavior in the OSL decay.

  2. Effect of Fe2O3 on the physical and structural properties of bismuth silicate glasses

    NASA Astrophysics Data System (ADS)

    Parmar, Rajesh; Kundu, R. S.; Punia, R.; Aghamkar, P.; Kishore, N.

    2013-06-01

    Iron containing bismuth silicate glasses with compositions 70SiO2ṡ(100-x)Bi2O3ṡxFe2O3 have been prepared using conventional melt-quenching method and their amorphous nature has been investigated using XRD. Density has been measured using Archimedes' principle and molar volume (Vm) have also been estimated. With increase in Fe2O3 content, there is a decrease in density and molar volume of the glass samples. The glass transition temperature (Tg) have been determined using Differential Scanning Calorimetry (DSC) and are observed to increase with increase in Fe2O3 content. In the present glass system bismuth and iron plays the role of network modifier and the symmetry of silicate network goes on increasing with Fe2O3 content and it modifies the physical and structural properties of these glasses.

  3. Vestigial nematicity from spin and/or charge order in the cuprates

    DOE PAGES

    Nie, Laimei; Maharaj, Akash V.; Fradkin, Eduardo; ...

    2017-08-01

    Nematic order has manifested itself in a variety of materials in the cuprate family. We propose an effective field theory of a layered system with incommensurate, intertwined spin- and charge-density wave (SDW and CDW) orders, each of which consists of two components related by C4 rotations. Using a variational method (which is exact in a large N limit), we study the development of nematicity from partially melting those density waves by either increasing temperature or adding quenched disorder. As temperature decreases we first find a transition to a nematic phase, but depending on the range of parameters (e.g. doping concentration)more » the strongest fluctuations associated with this phase reflect either proximate SDW or CDW order. We also discuss the changes in parameters that can account for the differences in the SDW-CDW interplay between the (214) family and the other hole-doped cuprates.« less

  4. Spectroscopy and visible frequency upconversion in Er3+-Yb3+: TeO2-ZnO glass.

    PubMed

    Mohanty, Deepak Kumar; Rai, Vineet Kumar

    2014-01-01

    The UV-Vis-NIR absorption studies of the Er(3+)/Er(3+)-Yb(3+) doped/codoped TeO2-ZnO (TZO) glasses fabricated by the melting and quenching method has been performed. The spectroscopic radiative parameters viz. radiative transition probabilities, branching ratios and lifetimes have been determined from the absorption spectrum by using Judd-Ofelt theory. The near infrared (NIR) to visible frequency upconversion (UC) have been monitored by using an excitation of 976 nm wavelength radiation from a CW diode laser. The effect of codoping with Yb(3+) ions on the intensity of the UC emission bands from the Er(3+) ions throughout visible region has been studied. The mechanism responsible for the observed upconversion emissions in the prepared samples have been explained on the basis of excited state absorption and efficient energy transfer processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Structure of TeO2 - LiNbO3 glasses

    NASA Astrophysics Data System (ADS)

    Shinde, A. B.; Krishna, P. S. R.; Rao, Rekha

    2017-05-01

    Tellurite based lithium niobate glasses with composition (100-x)TeO2-xLiNbO3 (x=0.1,0.2 & 0.3) were prepared by conventional melt quenching method. The microscopic structural investigation of these glasses is carried out by means of neutron diffraction and Raman scattering measurements. It is found that the basic structural units in these glasses are TeO4 trigonal bipyramids(TBP), TeO3 trigonal pyramids(TP) and NbO6 Octahedra depending on the composition. It is evident from Raman studies that TBPs decreases, TPs increases and NbO6 Octahedra increases with increasing x. From Neutron diffraction studies it is found that network is comprised of TBPs and TPs along with TeO3+1 structural units. Distorted NbO6 octahedral units are present and also increase with the increase in x.

  6. Effects of the iodine incorporation on the structure and physical properties of Ge-Sb-Se chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Wang, Yaling; Xu, Junfeng; Cheng, Hu; Chang, Fang'e.; Jian, Zengyun

    2018-01-01

    (100-x)(Ge23Se67Sb10)-xI (x = 0, 3, 5, 7, 10 wt%) chalcohalide glasses were prepared by the traditional melt-quenched method. The structure and physical properties were analyzed by using XRD, TMA, FTIR and Vickers hardness tester. It was found that the glass structure trends to crystallization with increase of iodine content. The values of infrared transmittance decrease from 62% to 35% in the range of 2.5-16 μm with increasing iodine content. The density decreases from 4.62 ± 0.3 g cm-3 to 4.31 ± 0.3 g cm-3, the hardness decreases from 164.9 ± 0.5 kg mm-2 to 154.6 ± 0.5 kg mm-2. The glass transition point Tg decreases from 267 °C to 205 °C, while the thermal expansion coefficient increases with iodine content.

  7. Optical absorption of Er3+ doped lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-05-01

    A new glass system Lithium lead borate doped with erbium trioxide were perpared using conventional melt quenching method. The amorphous nature of the glass samples were confirmed by XRD spectrum. The density of these glass were measured using Archmides principle, the values lie in the range from 4.27 to 4.76 g/cm-3. The corresponding molar volumes are calculated and the values are in the range of 23.81 to 26.17 cm-3. Absorption spectra were recorded in the wavelength range of 200nm to 1100nm, for the prepared glass samples. The optical direct and indirect energy band gaps were measured, the values are in the range of 2.875 to 3.254 eV and 2.25 to 2.81 eV respectively. Photoluminescence technique was employed to study the luminescent property of the prepared glasses excited at 380nm, emission spectra were recorded and analyzed.

  8. Hybridization-based biosensor containing hairpin probes and use thereof

    DOEpatents

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2010-10-12

    A sensor chip that includes: a fluorescence quenching surface; a nucleic acid probe that contains first and second ends with the first end bound to the fluorescence quenching surface, and is characterized by being able to self-anneal into a hairpin conformation; and a first fluorophore bound to the second end of the first nucleic acid molecule. When the first nucleic acid molecule is in the hairpin conformation, the fluorescence quenching surface substantially quenches fluorescent emissions by the first fluorophore; and when the first nucleic acid molecule is in a non-hairpin conformation, fluorescent emissions by the fluorophore are substantially free of quenching by the fluorescence quenching surface. Various nucleic acid probes, methods of making the sensor chip, biological sensor devices that contain the sensor chip, and their methods of use are also disclosed.

  9. A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass using surface sensitive shallow angle X-ray diffraction.

    PubMed

    Martin, R A; Twyman, H; Qiu, D; Knowles, J C; Newport, R J

    2009-04-01

    Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass((R)) [(CaO)(26.9)(Na(2)O)(24.4)(SiO(2))(46.1)(P(2)O(5))(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass((R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass((R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass((R)) is dominated by a broad amorphous feature around 2.2 A(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass((R)) in SBF a second broad amorphous feature evolves ~1.6 A(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass((R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

  10. Superconducting Bi1.5Pb0.5Sr2Ca2Cu3O(x) ceramics by rapid melt quenching and glass crystallization

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1989-01-01

    A glass of nominal Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) composition, prepared by rapid quenching of the melt, showed a glass transition temperature of 383 C, crystallization temperature of 446 C, melting temperature of 855 C, and bulk density of 5.69 g/cu cm in air. The activation energy for crystallization of the glass was estimated to be 292kJ/mol from non-isothermal DSC. On heating in oxygen, the glass showed a slow and continuous weight gain starting at approximately 530 C which reached a plateau at approximately 820 C. The weight gained during heating was retained on cooling to ambient conditions indicating an irreversible oxidation step. The influence of annealing conditions on the formation of various phases in the glass has been investigated. The Bi(2)Sr(2)Ca(0)Cu(1)O(6) phase crystallized out first followed by formation of other phases at higher temperatures. The high-T(sub c) phase, isostructural with Bi(2)Sr(2)Ca(2)Cu(3)O(10) was not detected below 840 C, but its fraction increased with the annealing time at 840 C. A sample annealed at 840 C for 243h in air and furnace cooled showed the highest T(sub c)(R=0) of 107.2K and a narrow transition width, delta T(sub c)(10 to 90 percent), of approximately 2 K. The high T(sub c) phase does not seem to crystallize out directly from the glass but is rather produced at high temperature by reaction between the phases formed at lower temperatures. The kinetics of 110K phase formation was sluggish. It appears that the presence of lead helps in the formation and/or stabilization of the 110 K phase.

  11. Optimization of Quenching Parameters for the Reduction of Titaniferous Magnetite Ore by Lean Grade Coal Using the Taguchi Method and Its Isothermal Kinetic Study

    NASA Astrophysics Data System (ADS)

    Sarkar, Bitan Kumar; Kumar, Nikhil; Dey, Rajib; Das, Gopes Chandra

    2018-06-01

    In the present study, a unique method is adopted to achieve higher reducibility of titaniferous magnetite lump ore (TMO). In this method, TMO is initially heated followed by water quenching. The quenching process generates cracks due to thermal shock in the dense TMO lumps, which, in turn, increases the extent of reduction (EOR) using the lean grade coal as a reductant. The optimum combination of parameters found by using Taguchi's L27 orthogonal array (OA) (five factors, three levels) is - 8 + 4 mm of particle size (PS1), 1423 K of quenching temperature (Qtemp2), 15 minutes of quenching time (Qtime3), 3 times the number of quenching {(No. of Q)3}, and 120 minutes of reduction time (Rtime3) at fixed reduction temperature of 1473 K. At optimized levels of the parameters, 92.39 pct reduction is achieved. Isothermal reduction kinetics of the quenched TMO lumps at the optimized condition reveals mixed controlled mechanisms [initially contracting geometry (CG3) followed by diffusion (D3)]. Activation energies calculated are 69.895 KJ/mole for CG3 and 39.084 KJ/mole for D3.

  12. Carbonates in mantle xenoliths from French Massif Central: inference for carbonatite-related metasomatism.

    NASA Astrophysics Data System (ADS)

    Wagner, Christiane; Deloule, Etienne

    2016-04-01

    Mantle xenoliths from the sub-continental lithospheric mantle (SCLM) frequently display evidence of metasomatism by melts or fluids of variable composition, e.g. alkali-basaltic, alkali-carbonate or carbonate melts. Carbonate-bearing mantle xenoliths are particularly interesting as highly mobile carbonate melts are likely prominent metasomatic agents of the mantle. This study presents detailed petrographic descriptions and major and trace element compositions of minerals in protogranular spinel lherzolites from the Mont Coupet occurrence (Devès province, French Massif Central), with focus on the carbonate phases to discuss their possible link to carbonatite melt. Two representative samples are described here. MC9 shows no evidence for infiltration of the host basanitic magma. Carbonates occur (1) as large (100 μm - 200 μm) anhedral crystals in interstitial pockets at triple point of primary olivine grains, (2) in a few cross-cutting veins (up to 200 μm width), (3) along grain boundaries and (4) in composite carbonate-silicate pockets from well-developed reaction zones, in which carbonates fill globular vesicles. The reaction zone contains secondary subhedral to euhedral phases: Al- and Ti-rich clinopyroxene, Ca-rich olivine, Cr-rich spinel and quenched plagioclase and relict sieved-textured primary spinel. MC2 shows carbonate-bearing thin (< 50 μm width) interconnected veinlets and only a few poorly-developed reaction zones around primary spinel. Large carbonate crystals (1), as in sample MC9, occur associated with (2) fibrous carbonate with a well-formed meniscus at the boundary between the two carbonate types. In some reaction zones the carbonate patches (3) show well-developed concentric carbonate structures, similar to those observed in the globular vesicles from the host basanite. In sample MC9, the carbonate is an alkali-free Mg-poor calcite (XCa = 0.95 - 0.98; with 0.5 - 1.8 wt. % MgO) whatever the occurrence. In sample MC2, carbonates are Mg-richer, particularly the type 2 and 3 carbonates (XCa = 0.88 - 0.91; 3 - 5 wt. % MgO), a composition similar to that of the carbonates from the vesicles in the basanite (XCa = 0.86 - 0.88; 4 - 5 wt. % MgO). In both xenoliths, the carbonates have low REE abundances (mostly below the detection limit except La and Ce), similar to those reported for carbonates from mantle xenoliths. Moreover, the carbonate globules in the basanite have the same REE composition. Although the presence of rounded vesicles of calcite was originally interpreted as an evidence for silicate-carbonate liquid immiscibility, experimental studies have shown that alkali-free immiscible carbonates cannot be almost pure calcite. Textural features and composition (high XCa, low alkali contents and low REE abundances) of carbonates rule out their origin as quenched carbonatitic melts or immiscible carbonate liquids and favor, thus, an origin as crystal cumulates from mantle-derived carbonate-rich melts (e.g. alkali-carbonate melts). A possible scenario is the injection of small amounts of a carbonate-rich melt at mantle level shortly before the eruption to preserve the calcite crystals. Carbonate-rich melt or emanated fluids may have permeated the xenoliths (MC2) during the ascent and precipitated calcite crystals in the xenolith as well as in the entraining basanitic magma.

  13. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus.

    PubMed

    Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying

    2014-04-01

    This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage.

  14. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus *

    PubMed Central

    Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying

    2014-01-01

    This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage. PMID:24711354

  15. Phase equilibrium and preparation, crystallization and viscous sintering of glass in the alumina-silica-lanthanum phosphate system

    NASA Astrophysics Data System (ADS)

    He, Feng

    The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single phase and heterogeneous diphasic mullite gels from same starting chemicals. Amorphous powders were obtained after optimized calcinations. Their different crystallization routes and sintering behavior were investigated and correlated with the different homogeneities of precursor gels. Structurally stable open, porous ceramics (up to 80% porosity) were produced from the single-phase gel derived powder, where gases exsolved during calcination caused foaming coincident with sintering. Translucent, dense glass ceramic was made from the calcined diphasic gel by hot-pressing.

  16. Porous materials produced from incineration ash using thermal plasma technology.

    PubMed

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. FORMATION MECHANISM FOR THE NANOSCALE AMORPHOUS INTERFACE IN PULSE-WELDED AL/FE BIMETALLIC SYSTEM

    DOE PAGES

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; ...

    2016-05-20

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the resulted recrystallization occurred on the aluminum side of the interface.« less

  18. Final case for a stainless steel diagnostic first wall on ITER

    NASA Astrophysics Data System (ADS)

    Pitts, R. A.; Bazylev, B.; Linke, J.; Landman, I.; Lehnen, M.; Loesser, D.; Loewenhoff, Th.; Merola, M.; Roccella, R.; Saibene, G.; Smith, M.; Udintsev, V. S.

    2015-08-01

    In 2010 the ITER Organization (IO) proposed to eliminate the beryllium armour on the plasma-facing surface of the diagnostic port plugs and instead to use bare stainless steel (SS), simplifying the design and providing significant cost reduction. Transport simulations at the IO confirmed that charge-exchange sputtering of the SS surfaces would not affect burning plasma operation through core impurity contamination, but a second key issue is the potential melt damage/material loss inflicted by the intense photon radiation flashes expected at the thermal quench of disruptions mitigated by massive gas injection. This paper addresses this second issue through a combination of ITER relevant experimental heat load tests and qualitative theoretical arguments of melt layer stability. It demonstrates that SS can be employed as material for the port plug plasma-facing surface and this has now been adopted into the ITER baseline.

  19. FORMATION MECHANISM FOR THE NANOSCALE AMORPHOUS INTERFACE IN PULSE-WELDED AL/FE BIMETALLIC SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the resulted recrystallization occurred on the aluminum side of the interface.« less

  20. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed inmore » the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.« less

  1. Analysis of the Glass-Forming Ability of Fe-Er Alloys, Based on Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Arutyunyan, N. A.; Zaitsev, A. I.; Dunaev, S. F.; Kalmykov, K. B.; El'nyakov, D. D.; Shaposhnikov, N. G.

    2018-05-01

    The Fe-Er phase diagram and thermodynamic properties of all its phases are assessed by means of self-consistent analysis. To refine the data on phase equilibria in the Fe-Er system, an investigation is performed in the 10-40 at % range of Er concentrations. The temperature-concentration dependences of the thermodynamic properties of a melt are presented using the model of ideal associated solutions. Thermodynamic parameters of each phase are obtained, and the calculated results are in agreement with available experimental data. The correlation between the thermodynamic properties of liquid Fe-Er alloys and their tendency toward amorphization are studied. It is shown that compositions of amorphous alloys prepared by melt quenching coincide with the ranges of concentration with the predominance of Fe3Er and FeEr2 associative groups that have large negative entropies of formation.

  2. Sulfur in vacuum - Sublimation effects on frozen melts, and applications to Io's surface and torus

    NASA Astrophysics Data System (ADS)

    Nash, D. B.

    1987-10-01

    The author has found from laboratory experiments that vacuum sublimation has a profound effect on the molecular composition, microtexture, bulk density (porosity), and the UV/visible spectral reflectance of the surface of solid sulfur samples, both when the sulfur is in the form of frozen or quenched melts and as laboratory-grade sulfur powder. These sublimation effects produce a unique surface material, the understanding of which may have important implications for deciphering the many enigmatic optical and textural properties of the surface of Jupiter's satellite Io. This planetary body is thought to have a surface greatly enriched in volcanically produced elemental sulfur and sulfur compounds and to have a surface atmospheric pressure with an upper limit of ≡10-7atm, comparable to a good laboratory vacuum, and surface hotspots at temperatures of about 300K covering about 0.3% of its global surface.

  3. Microstructure and mechanical properties of selective laser melted Ti6Al4V alloy

    NASA Astrophysics Data System (ADS)

    Losertová, M.; Kubeš, V.

    2017-11-01

    The present work was focused on the properties of porous Ti6Al4V specimens processed by selective laser melting (SLM) and tested in tension and compression before and after heat treatment. The SLM samples were annealed at 955 °C, water quenched and aged at 600 °C with following air cooling. The values of the mechanical tests showed that the samples exhibited high mechanical properties. The anisotropy of tensile and compressive strength was observed, which was related to the occurrence of voids. The plastic properties of specimens were improved by means of the heat treatment that led to the transformation of martensitic to lamellar structure composed of α + β phases. The microstructure of SLM samples were evaluated before and after the heat treatment. The brittle nature of failures of non-heat treated samples can be explained by synergy of martensite presence, microcracks and residual stresses produced by SLM.

  4. Solidification and Re-melting Phenomena During Slurry Preparation Using the RheoMetal™ Process

    NASA Astrophysics Data System (ADS)

    Payandeh, M.; Sabzevar, Mohsen Haddad; Jarfors, A. E. W.; Wessén, M.

    2017-12-01

    The melting sequence of the enthalpy exchange material (EEM) and formation of a slurry in the RheoMetal™ process was investigated. The EEM was extracted and quenched, together with a portion of the slurry at different processing times before complete melting. The EEM initially increased in size/diameter due to melt freezing onto its surface, forming a freeze- on layer. The initial growth of this layer was followed by a period of a constant diameter of the EEM with subsequent melting and decrease of diameter. Microstructural characterization of the size and morphology of different phases in the EEM and in the freeze-on layer was made. Dendritic equiaxed grains and eutectic regions containing Si particles and Cu-bearing particles and Fe-rich particles were observed in the as-cast EEM. The freeze-on layer consisted of dendritic aluminum tilted by about 30 deg in the upstream direction, caused by the rotation of the EEM. Energy dispersion spectroscopy analysis showed that the freeze-on layer had a composition corresponding to an alloy with higher melting point than the EEM and thus shielding the EEM from the surrounding melt. Microstructural changes in the EEM showed that temperature rapidly increased to 768 K (495 °C), indicated by incipient melting of the lowest temperature melting eutectic in triple junction grain boundary regions with Al2Cu and Al5Mg8Si6Cu2 phases present. As the EEM temperature increased further the binary Al-Si eutectic started to melt to form a region of a fully developed coherent mushy state. Experimental results and a thermal model indicated that as the dendrites spheroidized near to the interface at the EEM/freeze-on layer reached a mushy state with 25 pct solid fraction, coherency was lost and disintegration of the freeze-on layer took place. Subsequently, in the absence of the shielding effect from the freeze-on Layer, the EEM continued to disintegrate with a coherency limit of a solid fraction estimated to be 50 pct.

  5. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    An investigation of the plastic fracture process to improve tensile strength in high strength steels is presented. Two generic types of steels are considered: a quenched and tempered grade and a maraging grade, in order to compare two different matrix microstructures. Each type of steel was studied in commercial grade purity and in special melted high purity form, low in residual and impurity elements. The specific alloys dealt with include AISI 4340 and 18 Ni, 200 grade maraging steel, both heat treated to the same yield strength level of approximately 200 ksi.

  6. First principles simulation of amorphous InSb

    NASA Astrophysics Data System (ADS)

    Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco

    2013-05-01

    Ab initio molecular dynamics simulations based on density functional theory have been performed to generate a model of amorphous InSb by quenching from the melt. The resulting network is mostly tetrahedral with a minor fraction (10%) of atoms in a fivefold coordination. The structural properties are in good agreement with available x-ray diffraction and extended x-ray-absorption fine structure data and confirm the proposed presence of a sizable fraction of homopolar In-In and Sb-Sb bonds whose concentration in our model amounts to about 20% of the total number of bonds.

  7. Study of a splat cooled Cu-Zr-noncrystalline phase.

    NASA Technical Reports Server (NTRS)

    Revcolevschi, A.; Grant, N. J.

    1972-01-01

    By rapid quenching from the melt, using the splat forming gun technique, a noncrystalline phase has been obtained in a Cu-Zr alloy containing 60 at. % Cu. Upon heating, rapid crystallization of the samples takes place at 477 C with a heat release of about 700 cal per mol. The variation of the electrical resistivity of the samples with temperature confirms the transformation. Very high resolution electron microscopy studies of the structural changes of the samples upon heating are presented and show the gradual crystallization of the amorphous structure.

  8. The microstructural evolution, crystallography, and thermal processing of ultrahigh carbon Fe-1.85 pct C melt-spun ribbon

    NASA Technical Reports Server (NTRS)

    Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.

    1993-01-01

    A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.

  9. Ultra-soft magnetic Co-Fe-B-Si-Nb amorphous alloys for high frequency power applications

    NASA Astrophysics Data System (ADS)

    Ackland, Karl; Masood, Ansar; Kulkarni, Santosh; Stamenov, Plamen

    2018-05-01

    With the continuous shrinkage of the footprint of inductors and transformers in modern power supplies, higher flux, while still low-loss metallic replacements of traditional ferrite materials are becoming an intriguing alternative. One candidate replacement strategy is based on amorphous CoFeBSi soft-magnetic alloys, in their metallic glass form. Here the structural and magnetic properties of two different families of CoFeBSi-based soft magnetic alloys, prepared by arc-melting and subsequent melt spinning (rapid quenching) are presented, targeting potential applications at effective frequencies of 100 kHz and beyond. The nominal alloy compositions are Co67Fe4B11Si16Mo2 representing commercial Vitrovac and Co72-xFexB28-y (where B includes non-magnetic elements such as Boron, Silicon etc. x varies between 4 and 5 % and y is varied from 0 to 2 %) denoted Alloy #1 and prepared as a possible higher performance alternative, i.e. lower power loss and lower coercivity, to commercial Vitrovac. Room temperature magnetization measurements of the arc-melted alloys reveal that compared to Vitrovac, Alloy #1 already presents a ten-fold decrease in coercivity, with Hc ˜ 1.4 Am-1 and highest figure of merit of (Ms/Hc > 96). Upon melt-spinning the alloys into thin (< 30 μm) ribbons, the alloys are essentially amorphous when analyzed by XRD. Magnetization measurements of the melt-spun ribbons demonstrate that Alloy #1 possesses a coercivity of just 2 Am-1, which represents a significant improvement compared to melt-spun ribbons of Vitrovac (17 Am-1). A set of prototype transformers of approximately 10 turns of Alloy #1 ribbon exhibits systematically Hc < 10 Am-1 at 100 kHz, without a noticeable decrease in coupled flux and saturation.

  10. Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe

    NASA Astrophysics Data System (ADS)

    Ripley, Edward M.; Brophy, James G.; Li, Chusi

    2002-09-01

    The solubility of copper in a sulfur-saturated basaltic melt has been determined at 1245°C as a function of fO 2 and fS 2. Copper solubilities at log fO 2 values between -8 and -11 fall into two distinct populations as a function of fS 2. At log fS 2 values < -1.65, sulfide liquid that coexists with the basaltic glass quenches to sulfur-poor bornite solid solution. At log fS 2 values in excess of -1.65, the sulfide liquid quenches to a complex intergrowth of sulfur-rich bornite and intermediate solid solution. Copper solubilities in the low-fS 2 population range from 594 to 1550 ppm, whereas those in the high-fS 2 population range from 80 to 768 ppm. Sulfide liquid/silicate liquid partition coefficients (D) for Cu and Fe range from 480 to 1303 and 0.7 to 13.6, respectively. Metal-sulfur complexing in the silicate liquid is shown to be insignificant relative to metal-oxide complexing for Fe but permissible for Cu at high fS 2 values. On log D Fe (sulfide-silicate) and log D Cu (sulfide-silicate) vs. 1/2 (log fS 2 - log fO 2) diagrams, both fS 2 populations show distinct but parallel trends. The observation of two D values for any fS 2/fO 2 ratio indicates nonideal mixing of species involved in the exchange reaction. The two distinct trends observed for both Cu and Fe are thought to be due to variations in activity coefficient ratios (e.g., γ FeO/γ FeS and γ CuO 0.5/γ CuS 0.5). Results of the experiments suggest that accurate assessments of fS 2/fO 2 ratios are required for the successful numerical modeling of processes such as the partial melting of sulfide-bearing mantle and the crystallization of sulfide-bearing magmas, as well as the interpretation of sulfide mineralogical zoning. In addition, the experiments provide evidence for oxide or oxy-sulfide complexing for Cu in silicate magmas and suggest that the introduction of externally derived sulfur to mafic magma may be an important process for the formation of Cu-rich disseminated magmatic sulfide ore deposits.

  11. Commissioning Cornell OSTs for SRF cavity testing at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremeev, Grigory

    2011-07-01

    Understanding the current quench limitations in SRF cavities is a topic essential for any SRF accelerator that requires high fields. This understanding crucially depends on correct and precise quench identification. Second sound quench detection in superfluid liquid helium with oscillating superleak transducers is a technique recently applied at Cornell University as a fast and versatile method for quench identification in SRF cavities. Having adopted Cornell design, we report in this contribution on our experience with OST for quench identification in different cavities at JLab.

  12. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al.

    PubMed

    Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang

    2015-09-21

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.

  13. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhong-Li, E-mail: zl.liu@163.com; Zhang, Xiu-Lu; Cai, Ling-Cang

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curvemore » of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.« less

  14. Quenching Combustible Dust Mixtures Using Electric Particulate Suspensions (EPS): A New Testing Method For Microgravity

    NASA Technical Reports Server (NTRS)

    Colver, Gerald M.; Greene, Nathanael; Shoemaker, David; Xu, Hua

    2003-01-01

    The Electric Particulate Suspension (EPS) is a combustion ignition system being developed at Iowa State University for evaluating quenching effects of powders in microgravity (quenching distance, ignition energy, flammability limits). Because of the high cloud uniformity possible and its simplicity, the EPS method has potential for "benchmark" design of quenching flames that would provide NASA and the scientific community with a new fire standard. Microgravity is expected to increase suspension uniformity even further and extend combustion testing to higher concentrations (rich fuel limit) than is possible at normal gravity. Two new combustion parameters are being investigated with this new method: (1) the particle velocity distribution and (2) particle-oxidant slip velocity. Both walls and (inert) particles can be tested as quenching media. The EPS method supports combustion modeling by providing accurate measurement of flame-quenching distance as a parameter in laminar flame theory as it closely relates to characteristic flame thickness and flame structure. Because of its design simplicity, EPS is suitable for testing on the International Space Station (ISS). Laser scans showing stratification effects at 1-g have been studied for different materials, aluminum, glass, and copper. PTV/PIV and a leak hole sampling rig give particle velocity distribution with particle slip velocity evaluated using LDA. Sample quenching and ignition energy curves are given for aluminum powder. Testing is planned for the KC-135 and NASA s two second drop tower. Only 1-g ground-based data have been reported to date.

  15. Judd-Ofelt analysis and spectral properties of Dy3+ ions doped niobium containing tellurium calcium zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Ravi, O.; Reddy, C. Madhukar; Reddy, B. Sudhakar; Deva Prasad Raju, B.

    2014-02-01

    Niobium containing tellurium calcium zinc borate (TCZNB) glasses doped with different concentrations of Dy3+ ions were prepared by the melt quenching method and their optical properties have been studied. The Judd-Ofelt (J-O) intensity parameters Ωt (t=2, 4 and 6) were calculated using the least square fit method. Based on the magnitude of Ω2 parameter the hypersensitivity of 6H15/2→6F11/2 has also been discussed. From the evaluated J-O intensity parameters as well as from the emission and lifetime measurements, radiative transition properties such as radiative transition probability rates and branching ratios were calculated for 4F9/2 excited level. It is found that for Dy3+ ion, the transition 4F9/2→6H13/2 shows highest emission cross-section at 1.0 mol% TCZNB glass matrix. From the visible luminescence spectra, yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The TCZNB glasses exhibit good luminescence properties and are suitable for generation of white light.

  16. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  17. Preparation and properties of Ge4Se96 glass

    NASA Astrophysics Data System (ADS)

    Xu, Junfeng; Sun, Guozhen; Liu, Zhenting; Wang, Yaling; Jian, Zengyun

    2018-03-01

    The chalcogenide glass Ge4Se96 was prepared by melt-quenched method. The characteristic temperatures (the strain point, annealing point, glass transition point, yielding point and soften point) were determined by thermal analysis. The result shows that the glass transition point is 52 °C; the average thermal expansion coefficient is ΔL/L0 = (0.0557∗T-1.7576)/1000. The specific heat of Ge4Se96 glass was measured by stepwise method. The difference in specific heat between amorphous structure and undercooled liquid was determined as ΔCp = 0.1812-5.20 × 10-4T-4.92 × 10-7T2 JK-1 g-1. Based on the result of ΔCp, the Gibbs energy and the entropy curves were calculated, and the Kauzmann temperature was determined as Tk = 233.5 K, which is between that for pure Se glass (216 K) and that for Ge7.4Se92.6 glass (250 K). It indicates that for Ge-Se glass with low Ge content, the Kauzmann temperature increases with increasing the content of Ge.

  18. Sm-Nd Age and Nd- and Sr- Isotopic Evidence for the Petrogenesis of Dhofar 378

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Ikeda, Y.; Shih, C.-Y.; Reese, Y. D.; Nakamura, N.; Takeda, H.

    2006-01-01

    Dhofar 378 (hereafter Dho 378) is one of the most ferroan lithologies among martian meteorites, resembling the Los Angeles basaltic shergottite in lithology and mineral chemistry, although it is more highly shocked than Los Angeles. All plagioclase (Pl) grains in the original lithology were melted by an intense shock in the range 55-75 GPa. Clinopyroxenes (Cpx) sometimes show mosaic extinction under a microscope showing that they, too, experienced intense shock. Nevertheless, they zone from magnesian cores to ferroan rims, reflecting the original lithology. Cpx grains also often contain exsolution lamellae, showing that the original lithology cooled slowly enough for the lamellae to form. Because all plagioclase grains were melted by the intense shock and subsequently quenched, the main plagioclase component is glass (Pl-glass) rather than maskelynite. Like Los Angeles, but unlike most basaltic shergottites, Dho 378 contains approximately equal modal abundances of Cpx and Pl-glass. The grain sizes of the original minerals were comparatively large (approximately 1 mm). The original plagioclase zoning has been severely modified. Following shock melting, the plagioclase melts crystallized from the outside inward, first forming outer rims of Cpx-Pl intergrowths (approximately 10 micrometers) followed by inner rims (10's to 100 micrometers) of An(sub 40-50) feldspar, and finally Pl-gl cores of compositions An(sub 33-50) with orthoclase compositions up to Or(sub 12).

  19. 3-D Modeling of Double-Diffusive Convection During Directional Solidification of a Non-Dilute Alloy with Application to the HgCdTe Growth Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    A numerical calculation for a non-dilute alloy solidification was performed using the FIDAP finite element code. For low growth velocities plane front solidification occurs. The location and the shape of the interface was determined using melting temperatures from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion with temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors dimensional rather then non-dimensional modeling was performed. Estimates of convection contributions for various gravity conditions was performed parametrically. For gravity levels higher then 1 0 -7 of earth's gravity it was found that the maximum convection velocity is extremely sensitive to gravity vector orientation and can be reduced at least by factor of 50% for precise orientation of the ampoule in the microgravity environment. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D modeling are compared with previous 2-D finding. A video film featuring melt convection will be presented.

  20. Studies on Se75Te25-x In x chalcogenide glasses; a material for phase change memory

    NASA Astrophysics Data System (ADS)

    Srivastava, Archana; Tiwari, S. N.; Alvi, M. A.; Khan, Shamshad A.

    2018-01-01

    This research paper describes the non-isothermal crystallization during phase transformation in Se75Te25-x In x glasses synthesized by melt quenching method. For crystallization studies in these glasses, non-isothermal differential scanning calorimetry (DSC) measurements was done at constant heating rates of 5, 10, 15, 20 and 25 K min-1 in air atmosphere. The glass transition temperature (T g), on-set crystallization temperature (T c), peak crystallization temperature (T p) and melting temperatures (T m) were derived by DSC thermograms. Using various thermal parameters the activation energy of glass transition and crystallization were determined by using Kissinger, Moynihan and Ozawa approaches and found to be in good agreement. The value of the activation energy of glass transition (ΔE t) was found to be minimum for Se75Te19In6 alloys confirming its maximum probability of transition in a metastable state. Thermal stability parameters of Se75Te25-x In x were determined and found to be increased with indium content. High resolution x-ray diffraction and field emission scanning electron microscopy studies were employed for the study of phase transformation in Se75Te25-x In x glasses. The outcome of these studies shows that the investigated materials may be suitable for phase change memory devices.

  1. Alternative Gas Mixtures in Arc Spraying: A Chance to Improve Coating Properties and Residual Stress States

    NASA Astrophysics Data System (ADS)

    Hauer, Michél; Henkel, Knuth Michael; Krebs, Sebastian; Kroemmer, Werner

    2018-01-01

    The highly cavitation erosion-resistant propeller alloys CuAl9Ni5Fe4Mn (Ni-Al-Bronze) and CuMn13Al8Fe3Ni2 (Mn-Al-Bronze) were arc-sprayed using a mixture of nitrogen and 2% of hydrogen as atomizing gas and different traverse speeds. The objective was to identify the influences of the different spraying conditions, such as temperature regime and melting loss, on the resulting residual stress states and coating properties. Residual stresses were measured by the incremental hole-drilling method using ESPI. Temperature measurements were carried out by thermographic imaging. Microstructural, chemical and mechanical analyses were realized to examine adhesive and cohesive properties. Additionally, the cavitation erosion behavior was investigated to analyze cohesive coating properties. The spraying process itself was improved, which was apparent by mainly enhanced deposition efficiency and reduced surface temperatures. The amount of oxides and pores as well as the melting loss of alloying elements were reduced. Moreover, an increased cavitation erosion resistance and thus coating cohesion as well as less residual stresses were identified. The change in atomizing gas diminished the impact of the quenching stresses on the coating properties. In contrast, the adhesive strength, Young's moduli and partially the hardness were slightly reduced. With regard to materials, Ni-Al-Bronze revealed superior coating properties in comparison with Mn-Al-Bronze.

  2. Experimental Determination of the Phase Diagram of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 System

    NASA Astrophysics Data System (ADS)

    Shi, Junjie; Sun, Lifeng; Zhang, Bo; Liu, Xuqiang; Qiu, Jiyu; Wang, Zhaoyun; Jiang, Maofa

    2016-02-01

    Ti-bearing CaO-SiO2-MgO-Al2O3-TiO2 slags are important for the smelting of vanadium-titanium bearing magnetite. In the current study, the pseudo-melting temperatures were determined by the single-hot thermocouple technique for the specified content of 5 to 25 pct TiO2 in the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 phase diagram system. The 1573 K to 1773 K (1300 °C to 1500 °C) liquidus lines were first calculated based on the pseudo-melting temperatures according to thermodynamic equations in the specific primary crystal field. The phase equilibria at 1573 K (1300 °C) were determined experimentally using the high-temperature equilibrium and quench method followed by X-ray fluorescence, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray spectroscope analysis; the liquid phase, melilite solid solution phase (C2MS2,C2AS)ss, and perovskite phase of CaO·TiO2 were found. Therefore, the phase diagram was constructed for the specified region of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 system.

  3. Cellular Metabolomics for Exposure and Toxicity Assessment

    EPA Science Inventory

    We have developed NMR automation and cell quench methods for cell culture-based metabolomics to study chemical exposure and toxicity. Our flow automation method is robust and free of cross contamination. The direct cell quench method is rapid and effective. Cell culture-based met...

  4. Containerless processing of glass forming melts: D-1, MEA/A-2 experiment 81F01 conducted on STS-61A flight, October 1985

    NASA Technical Reports Server (NTRS)

    Day, D. E.; Ray, C. S.

    1986-01-01

    Results of experiment 81F01, which was conducted in the Material Experiment Assembly MEA/A-2 on the D-1 Spacelab Mission (STS-61A), are presented. The general plan of the experiment was to heat, melt, and quench six spherical samples of different glass forming compositions while they were levitated in a single axis acoustic levitator furnace (SAAL). In addition, two non-melting sintered alumina samples were used to check the operational characteristics of the SAAL under reduced gravity conditions. Three of the eight samples were levitated between 1250 and 1500 C before the lack of coolant created an over-temperature condition that caused the SAAL to shut down prematurely. Two of the three samples processed were calcia-gallia-silica and soda-lime-silica glass forming compositions. Evidence of a two to three times increase in the tendency for glass formation was obtained for the calcia-gallia-silica. The final glass appeared reasonably homogeneous even though it was made from hot pressed powders containing deliberate heterogeneities. A photographic record was obtained of the microgravity sample processing sequences.

  5. Metastable phase formation in undercooled Fe-Co melts under terrestrial and parabolic flight conditions

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Löser, W.; Lindenkreuz, H. G.; Yang-Bitterlich, W.; Mickel, Ch.; Diefenbach, A.; Schneider, S.; Dreier, W.

    2007-12-01

    Soft magnetic Fe-Co alloys display primary fcc phase solidification for>19,5 at% Co in conventional near-equilibrium solidification processes. Undercooled Fe-Co melt drops within the composition range of 30 to 50 at% Co have been investigated with the electromagnetic levitation technique. The solidification kinetics was measured in situ using a high-resolution Siphotodiode. Melt drops were undercooled up to 263 K below the liquidus temperature and subsequently quenched onto a chill substrate in order to characterize the solidification sequence and microstructure. The transition from stable fcc phase to metastable bcc primary phase solidification has been observed after reaching a critical undercooling level. The critical undercooling increases with rising Co content. The growth velocity drops obviously after transition to metastable bcc phase formation. Parabolic flight experiments were performed in order to study the phase selection under reduced gravity conditions. Under microgravity conditions, a much smaller critical undercooling and an increased life time of the metastable bcc phase were obtained. This result was validated with TEM investigations. The appearance of Fe-O particles gives an indirect hint for an intermediate fcc phase formation from the metastable bcc phase at elevated temperature.

  6. 40 CFR 63.7325 - What test methods and other procedures must I use to demonstrate initial compliance with the TDS...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... applied to the coke (e.g., from the header that feeds water to the quench tower reservoirs). Conduct... sample of the quench water as applied to the coke (e.g., from the header that feeds water to the quench...

  7. 40 CFR 63.7325 - What test methods and other procedures must I use to demonstrate initial compliance with the TDS...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... applied to the coke (e.g., from the header that feeds water to the quench tower reservoirs). Conduct... sample of the quench water as applied to the coke (e.g., from the header that feeds water to the quench...

  8. 40 CFR 63.7325 - What test methods and other procedures must I use to demonstrate initial compliance with the TDS...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... applied to the coke (e.g., from the header that feeds water to the quench tower reservoirs). Conduct... sample of the quench water as applied to the coke (e.g., from the header that feeds water to the quench...

  9. 40 CFR 63.7325 - What test methods and other procedures must I use to demonstrate initial compliance with the TDS...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... applied to the coke (e.g., from the header that feeds water to the quench tower reservoirs). Conduct... sample of the quench water as applied to the coke (e.g., from the header that feeds water to the quench...

  10. Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Liu, Xingcheng; Xiong, Xiaolin; Audétat, Andreas; Li, Yuan; Song, Maoshuang; Li, Li; Sun, Weidong; Ding, Xing

    2014-01-01

    Previously published Cu partition coefficients (DCu) between silicate minerals and melts cover a wide range and have resulted in large uncertainties in model calculations of Cu behavior during mantle melting. In order to obtain true DCumineral/melt values, this study used Pt95Cu05 alloy capsules as the source of Cu to experimentally determine the DCu between olivine (ol), orthopyroxene (opx), clinopyroxene (cpx), spinel (spl), garnet (grt) and hydrous silicate melts at upper mantle conditions. Three synthetic silicate compositions, a Komatiite, a MORB and a Di70An30, were used to produce these minerals and melts. The experiments were conducted in piston cylinder presses at 1.0-3.5 GPa, 1150-1300 °C and oxygen fugacities (fO2) of from ∼2 log units below to ∼5 log units above fayalite-magnetite-quartz (FMQ). The compositions of minerals and quenched melts in the run products were measured with EMP and LA-ICP-MS. Attainment of equilibrium is verified by reproducible DCu values obtained at similar experimental conditions but different durations. The results show that DCu for ol/, opx/, spl/ and possibly cpx/melt increase with increasing fO2 when fO2 > FMQ + 1.2, while DCu for cpx/ and spl/melt also increase with increasing Na2O in cpx and Fe2O3 in spinel, respectively. In the investigated P-T-fO2 conditions, the DCumineral/melt values are 0.04-0.14 for ol, 0.04-0.09 for opx, 0.02-0.23 for cpx, 0.19-0.77 for spl and 0.03-0.05 for grt. These results confirm that Cu is highly incompatible (DCu < ∼0.2) in all the silicate minerals and oxides of the upper mantle with the exception of the high-Fe spinel, in which Cu is moderately incompatible (DCu = 0.4-0.8) and thus Cu will be enriched in the derived melts during mantle partial melting and magmatic differentiation if sulfide is absent. These experimental DCu values are used to assess the controls on Cu behavior during mantle melting. The model results suggest that MORBs and most arc basalts must form by sulfide-present melting at relatively reduced conditions, while high Cu (>70 ppm) arc basalts may form at oxidized, sulfide-absent conditions, which is consistent with the possibility of some high fO2 regions present in the arc mantle.

  11. Experimental Constraints on Alkali Volatilization during Chondrule Formation: Implications for Early Solar System Heterogeneity

    NASA Astrophysics Data System (ADS)

    Ustunisik, G. K.; Ebel, D. S.; Nekvasil, H.

    2014-12-01

    The chemical variability of chondrule volatile element contents provide a wealth of information on the processes that shaped the early solar system and its compositional heterogeneity. An essential observation is that chondrule melts contain very low alkalies and other volatile elements (e.g., Cl). The reason for this depletion is the combined effects of cooling rates (10 to 1000K/h), the small size of chondrules, and their high melting temperatures (~1700 to 2100 K) resulting in extensive loss of volatiles at canonical pressures (e.g., 10-4bar). However, we observe some chondrules with significant concentrations of volatiles (Na, Cl), that differ markedly from chondrules dominated by refractory elements. Could such heterogeneity arise from loss of alkalis and Cl to a gas phase that itself later condenses, thereby yielding variations in volatile enrichments in chondrules? Does Cl enhance volatility of the alkalis to varying extents? Experiments on Cl-bearing and Cl-free melts of equivalent composition for 10 min, 4 h, and 6 h reveal systematic effects of Cl on alkali volatility. Cl-bearing melts lose 48% of initial Na2O, 66% of K2O, 96% of Cl within the first 10 minutes of degassing. Then the amount of alkali loss decreases due to the absence of Cl. Cl-free melts loses only 15% of initial Na2O and 33% K2O. After 4 hours, melts lose 1/3 of initial Na2O and 1/2 of K2O. For both systems, Na2O is more compatible in the melt relative to K2O. Therefore, the vapor given off has a K/Na ratio higher than the melt through time in spite of the much higher initial Na abundance in the melt. Enhanced vaporization of alkalis from Cl-bearing melt suggests that Na and K evaporate more readily as volatile chlorides than as monatomic gases. Cl-free initial melts with normative plagioclase of An50Ab44Or6 evolved into slightly normal zoned ones (An49Ab50Or1) while Cl-bearing initial melts normative to albitic plagioclase (An46Ab50Or4) evolved to reverse zoned ones (An54Ab45Or1). The vapor phase over Cl-bearing chondrule melts may have a bimodal character over time. The heteregeneous volatile contents of chondrules may result from quenching of melt droplets at different stages of repeated heating, chondrule fragment recycling, and recondensation of exsolved volatiles.

  12. (Talk) Investigating The Star Formation Quenching Across Cosmic Time - A Methodology To Select Galaxies Just After The Quenching Of Star Formation

    NASA Astrophysics Data System (ADS)

    Citro, Annalisa; Pozzetti, Lucia; Quai, Salvatore; Moresco, Michele; Vallini, Livia; Cimatti, Andrea

    2017-06-01

    We propose a method aimed at identifing galaxies in the short evolutionary phase in which they quench their star-formation (SF). We rely on high- to low-ionization emission line ratios, which rapidly disappear after the SF halt due to the softening of the UV ionizing radiation. In particular, we focus on [O III] 5007/Halpha and [Ne III] 3869/[O II] 3727, simulating their time evolution by means of the CLOUDY photoionization code. We find that these two emission line ratios are able to trace the quenching on very short time-scales (i.e. 10-80 Myr), depending on if a sharp or a smoother SF quenching is assumed. We adopt the [N II] 6584/[O II] 3727 ratio as metallicity diagnostic to mitigate the metallicity degeneracy which affects our method. Using a Sloan Digital Sky Survey galaxy sample, we identify 11 examples of extreme quenching candidates within the [O III] 5007/Halpha vs. [N II] 6584/[O II] 3727 plane, characterized by faint [Ne III] 3869, blue dust-corrected spectra and blue (u-r) colours, as expected if the quenching occurred in the recent past. Our results also suggest that the observed fractions of quenching candidates can be used to constrain the quenching mechanism at work and its time-scales.

  13. Silicon-Induced UV Transparency in Phosphate Glasses and Its Application to the Enhancement of the UV Type B Emission of Gd3.

    PubMed

    Jiménez, José A

    2017-05-10

    The silicon route to improve the ultraviolet (UV) transparency in phosphate glasses is investigated and further exploited to enhance the UV type B (280-320 nm) emission of gadolinium(III) relevant for biomedical applications. The glasses were synthesized with a barium phosphate composition by melt-quenching in ambient atmosphere and the optical properties investigated by optical absorption and photoluminescence (PL) spectroscopy including emission decay kinetics. An improvement in the UV transparency was gradually developed for the glasses melted merely with increasing amounts of Si powder. A particular PL in the visible was also exhibited for such glasses under excitation at 275 nm, consistent with the presence of Si-induced defects. For Si-Gd codoped glasses, the UV transparency was likewise manifested, while the UV emission from Gd 3+ around 312 nm was enhanced with the increase in Si concentration (up to ∼6.7 times). Moreover, along with the Gd 3+ PL intensity enhancement, a linear correlation was revealed between the increase in decay times for the Gd 3+6 P 7/2 -emitting state and the amount of silicon. It is then suggested that the improved PL properties of gadolinium(III) originate from the increased UV transparency of the host and the consequent precluding of a nonradiative energy transfer from Gd 3+ to the matrix. Accordingly, a role of Si as PL quenching inhibitor is supported. The demonstrated efficacy of the Si-Gd codoping concept realized by a facile glass synthesis procedure may appeal to the application of the UV-emitting glasses for phototherapy lamps.

  14. Quench degradation limit of multifilamentary AgBi 2Sr 2CaCu 2O x round wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Liyang; Li, Pei; Shen, Tengming

    Understanding safe operating limits of composite superconducting wires is important for the design of superconducting magnets. Here we report measurements of quench-induced critical current density Jc degradation in commercial Ag/Bi 2Sr 2CaCu 2O x (Bi-2212) round wires using heater-induced quenches at 4.2 K in self magnetic field that reveal a general degradation behavior. J c degradation strongly depends on the local hot spot temperature T max, and is nearly independent of operating current, the temperature gradient along the conductor dT max/dx, and the temperature rising rate dT max/dt. Both J c and n value (where n is an index ofmore » the sharpness of the superconductor-to-normal transition) exhibit small but irreversible degradation when T max exceeds 400-450 K, and large degradation occurs when Tmax exceeds 550 K. This behavior was consistently found for a series of Bi-2212 wires with widely variable wire architectures and porosity levels in the Bi-2212 filaments, including a wire processed using a standard partial melt processing and in which Bi-2212 filaments are porous, an overpressure processed wire in which Bi-2212 filaments are nearly porosity-free and that has a J c(4.2 K, self field) exceeding 8000 A/mm 2, and a wire that has nearly no filament to filament bridges after reaction. Microstructural observations of degraded wires reveal cracks in the Bi-2212 filaments perpendicular to the wire axis, indicating that the quench-induced I c degradation is primarily driven by strain. These results further suggest that the quench degradation temperature limit depends on the strain state of Bi-2212 filaments and this dependence shall be carefully considered when engineering a high-field Bi-2212 magnet.« less

  15. Quench degradation limit of multifilamentary AgBi 2Sr 2CaCu 2O x round wires

    DOE PAGES

    Ye, Liyang; Li, Pei; Shen, Tengming; ...

    2016-02-02

    Understanding safe operating limits of composite superconducting wires is important for the design of superconducting magnets. Here we report measurements of quench-induced critical current density Jc degradation in commercial Ag/Bi 2Sr 2CaCu 2O x (Bi-2212) round wires using heater-induced quenches at 4.2 K in self magnetic field that reveal a general degradation behavior. J c degradation strongly depends on the local hot spot temperature T max, and is nearly independent of operating current, the temperature gradient along the conductor dT max/dx, and the temperature rising rate dT max/dt. Both J c and n value (where n is an index ofmore » the sharpness of the superconductor-to-normal transition) exhibit small but irreversible degradation when T max exceeds 400-450 K, and large degradation occurs when Tmax exceeds 550 K. This behavior was consistently found for a series of Bi-2212 wires with widely variable wire architectures and porosity levels in the Bi-2212 filaments, including a wire processed using a standard partial melt processing and in which Bi-2212 filaments are porous, an overpressure processed wire in which Bi-2212 filaments are nearly porosity-free and that has a J c(4.2 K, self field) exceeding 8000 A/mm 2, and a wire that has nearly no filament to filament bridges after reaction. Microstructural observations of degraded wires reveal cracks in the Bi-2212 filaments perpendicular to the wire axis, indicating that the quench-induced I c degradation is primarily driven by strain. These results further suggest that the quench degradation temperature limit depends on the strain state of Bi-2212 filaments and this dependence shall be carefully considered when engineering a high-field Bi-2212 magnet.« less

  16. Method for the substantial reduction of quenching effects in luminescence spectrometry

    DOEpatents

    Demas, James N.; Jones, Wesley M.; Keller, Richard A.

    1989-01-01

    Method for reducing quenching effects in analytical luminescence measurements. Two embodiments of the present invention are described which relate to a form of time resolution based on the amplitudes and phase shifts of modulated emission signals. In the first embodiment, the measured modulated emission signal is substantially independent of sample quenching at sufficiently high frequenices. In the second embodiment, the modulated amplitude and the phase shift between the emission signal and the excitation source are simultaneously measured. Using either method, the observed modulated amplitude may reduced to tis unquenched value.

  17. A versatile approach to vacuum injection casting for materials research and development.

    PubMed

    Xu, Donghua; Xu, Yifan

    2017-03-01

    Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.

  18. A versatile approach to vacuum injection casting for materials research and development

    NASA Astrophysics Data System (ADS)

    Xu, Donghua; Xu, Yifan

    2017-03-01

    Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.

  19. Rhenium-osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites

    NASA Astrophysics Data System (ADS)

    Riches, Amy J. V.; Day, James M. D.; Walker, Richard J.; Simonetti, Antonio; Liu, Yang; Neal, Clive R.; Taylor, Lawrence A.

    2012-11-01

    Coupled 187Os/188Os compositions and highly-siderophile-element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for eight angrite achondrite meteorites that include quenched- and slowly-cooled textural types. These data are combined with new major- and trace-element concentrations determined for bulk-rock powder fractions and constituent mineral phases, to assess angrite petrogenesis. Angrite meteorites span a wide-range of HSE abundances from <0.005 ppb Os (e.g., Northwest Africa [NWA] 1296; Angra dos Reis) to >100 ppb Os (NWA 4931). Chondritic to supra-chondritic 187Os/188Os (0.1201-0.2127) measured for Angra dos Reis and quenched-angrites correspond to inter- and intra-sample heterogeneities in Re/Os and HSE abundances. Quenched-angrites have chondritic-relative rare-earth-element (REE) abundances at 10-15×CI-chondrite, and their Os-isotope and HSE abundance variations represent mixtures of pristine uncontaminated crustal materials that experienced addition (<0.8%) of exogenous chondritic materials during or after crystallization. Slowly-cooled angrites (NWA 4590 and NWA 4801) have fractionated REE-patterns, chondritic to sub-chondritic 187Os/188Os (0.1056-0.1195), as well as low-Re/Os (0.03-0.13), Pd/Os (0.071-0.946), and relatively low-Pt/Os (0.792-2.640). Sub-chondritic 187Os/188Os compositions in NWA 4590 and NWA 4801 are unusual amongst planetary basalts, and their HSE and REE characteristics may be linked to melting of mantle sources that witnessed prior basaltic melt depletion. Angrite HSE-Yb systematics suggest that the HSE behaved moderately-incompatibly during angrite magma crystallization, implying the presence of metal in the crystallizing assemblage. The new HSE abundance and 187Os/188Os compositions indicate that the silicate mantle of the angrite parent body(ies) (APB) had HSE abundances in chondritic-relative proportions but at variable abundances at the time of angrite crystallization. The HSE systematics of angrites are consistent with protracted post-core formation accretion of materials with chondritic-relative abundances of HSE to the APB, and these accreted materials were rapidly, yet inefficiently, mixed into angrite magma source regions early in Solar System history.

  20. A Study of Melt Inclusions in Tin-Mineralized Granites From Zinnwald, Germany

    NASA Astrophysics Data System (ADS)

    Sookdeo, C. A.; Webster, J. D.; Eschen, M. L.; Tappen, C. M.

    2001-12-01

    We have analyzed silicate melt inclusions from drill core samples from the eastern Erzgebirge region, Germany, to investigate magmatic-hydrothermal and mineralizing processes in compositionally evolved, tin-bearing granitic magmas. Silicate melt inclusions are small blebs of glass that are trapped or locked within phenocrysts and may contain high concentrations of volatiles that usually leave magma via degassing. Quartz phenocrysts were carefully hand picked from crushed samples of albite-, zinnwaldite- +/- lepidolite-bearing granitic dikes from Zinnwald and soaked in cold dilute HF to remove any attached groundmass. The cleaned phenocrysts were loaded into precious metal capsules with several drops of immersion oil to create a reducing environment at high temperature. The quartz-bearing capsules were inserted into quartz glass tubes, loaded into a furnace for heating at temperatures of 1025\\deg and 1050\\deg C (1atm) for periods of 20 to 30 hours, and subsequently the inclusions were quenched to glass. The inclusions were analyzed for major and minor elements (including F, Cl, and P) by electron microprobe and for H2O, trace elements, and ore elements by ion microprobe. The melt inclusion compositions are similar to that of the whole-rock sample from which the quartz separates were extracted. The average melt inclusion and whole-rock compositions are peraluminous, high in silica and rare alkalis, and low in MgO, CaO, FeO, MnO, and P2O5. Unlike the whole-rock sample, the melt inclusions contain from 0.5 to more than 4 wt.% F. The Cl contents of the inclusions are variable and range from hundreds of ppm to several thousand ppm. The variable and strong enrichments in F of the melt inclusions may correlate with (Na2O/Na2O+K2O) in the inclusions which is consistent with crystal fractionation of feldspars which drives the residual melt to increasing Na contents. Overall, the compositions of these melt inclusions are different from melt inclusions extracted from the highly peraluminous, tin-mineralized granites of the western Erzgebirge region. The latter represent extreme compositional evolution of P- and F-rich magmas. The inclusions from the albite-, zinnwaldite-, +/- lepidolite-bearing granitic dikes of Zinnwald are more similar, compositionally, to those in tin-mineralized rhyolites of Mexico and New Mexico; the Erzgebirge dike melt inclusions container comparatively greater abundances of Li, Sn, and F, however.

  1. The impact of dissolved fluorine on bubble nucleation in hydrous rhyolite melts

    NASA Astrophysics Data System (ADS)

    Gardner, James E.; Hajimirza, Sahand; Webster, James D.; Gonnermann, Helge M.

    2018-04-01

    Surface tension of hydrous rhyolitic melt is high enough that large degrees of supersaturation are needed to homogeneously nucleate H2O bubbles during eruptive magma ascent. This study examines whether dissolved fluorine lowers surface tension of hydrous rhyolite, and thus lowers the supersaturation required for bubble nucleation. Fluorine was targeted because it, like H2O, changes melt properties and is highly soluble, unlike all other common magmatic volatiles. Rhyolite melts were saturated at Ps = 245 MPa with H2O fluid that contained F, generating rhyolite with 6.7 ± 0.4 wt.% H2O and 1.1-1.3 wt.% F. When these melts were decompressed rapidly to Pf = 149-202 MPa and quenched after 60 s, bubbles nucleated at supersaturations of ΔP = Ps - Pf ≥52 MPa, and reached bubble number densities of NB = 1012-13 m-3 at ΔP = 78-101 MPa. In comparison, rhyolite saturated with 6.34 ± 0.09 wt.% H2O, but only 0.25 wt.% F, did not nucleate bubbles until ΔP ≥ 100-116 MPa, and even then, at significantly lower NB (<1010 m-3). Numerical modeling of bubble nucleation and growth was used to estimate the values of surface tension required to generate the observed values of NB. Slight differences in melt compositions (i.e., alkalinity and H2O content), H2O diffusivity, or melt viscosity cannot explain the observed differences in NB. Instead, surface tension of F-rich rhyolite must be lower by approximately 4% than that of F-poor rhyolite. This difference in surface tension is significant and, for example, exceeds that found between hydrous basaltic andesite and hydrous rhyolite. These results suggest that is likely that surface tension for F-rich magmas, such as topaz rhyolite, is significantly lower than for F-poor magmas.

  2. THE USE OF QUENCHING IN A LIQUID SCINTILLATION COUNTER FOR QUANTITATIVE ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, G.V.

    1963-01-01

    Quenching was used to quantitatively determine the amonnt of quenching agent present. A sealed promethium147 source was prepared to be used for the count rate determinations. Two methods to determine the amount of quenching agent present in a sample were developed. One method related the count rate of a sample containing a quenching agent to the amount of quenching agent present. Calibration curves were plotted using both color and chemical quenchers. The quenching agents used were: F.D.C. Orange No. 2, F.D.C. Yellow No. 3, F.D.C. Yellow No. 4, Scarlet Red, acetone, benzaldehyde, and carbon tetrachloride. the color quenchers gave amore » linear-relationship, while the chemical quenchers gave a non-linear relationship. Quantities of the color quenchers between about 0.008 mg and 0.100 mg can be determined with an error less than 5%. The calibration curves were found to be usable over a long period of time. The other method related the change in the ratio of the count rates in two voltage windows to the amount of quenching agent present. The quenchers mentioned above were used. Calibration curves were plotted for both the color and chemical quenchers. The relationships of ratio versus amount of quencher were non-linear in each case. It was shown that the reproducibility of the count rate and the ratio was independent of the amount of quencher present but was dependent on the count rate. At count rates above 10,000 counts per minute the reproducibility was better than 1%. (TCO)« less

  3. Nonlinear partitioning of OH between Ca-rich plagioclase and arc basaltic melt

    NASA Astrophysics Data System (ADS)

    Hamada, M.; Ushioda, M.; Takahashi, E.

    2011-12-01

    The hydrogen in nominally anhydrous minerals (NAMs) is becoming a new proxy for dissolved H2O in silicate melts. Plagioclase is one of the NAMs which accommodates hydrogen as OH. Here, we report experimental results on the partitioning of OH between Ca-rich plagioclase and arc basaltic melt. We carried out hydrous melting experiments of arc basaltic magma at 350 MPa using an internally-heated pressure vessel. Starting material was hydrous glass (0.8 wt.%≦H2O≦4.5 wt.%) of an undifferentiated rock from Miyakejima volcano, a frontal-arc volcano in Izu-arc (MTL rock: 50.5% SiO2, 18.1% Al2O3, 4.9% MgO). A grain of Ca-rich plagioclase (≈ 1 mg, about An95, FeOt ≈ 0.5 wt.%) and ≈ 10 mg of powdered glasses were sealed in Au80Pd20 alloy capsule and kept at around the liquidus temperature. Liquidus phase of MTL rock at 350 MPa is always plagioclase with 0 to 4.5 wt.% H2O in melt, and therefore, a grain of plagioclase and hydrous melt are nearly in equilibrium. Oxygen fugacity during the melting experiments was not controlled; the estimated oxygen fugacity was 3 log unit above Ni-NiO buffer. Experiments were quenched after 24-48 hours. Concentrations of H2O in melt and concentration of OH in plagioclase were analyzed by infrared spectroscopy. Obtained correlation between H2O concentration in melt and OH concentration in plagioclase is nonlinear; partition coefficient in molar basis is ≈ 0.01 with low H2O in melt (≤ 1 wt.%), while it decreases down to ≈ 0.005 with increasing H2O in melt (Fig.1). The OH concentration of Ca-rich plagioclase (about An90) from the 1986 summit eruption of Izu-Oshima volcano, also a frontal-arc volcano in Izu arc, shows variation ranging from <50 ppm H2O through 300 ppm H2O as a result of polybaric degassing (Hamada et al. 2011, EPSL 308, 259-266). Melting experiments of hydrous basalts constrained that An90 plagioclase crystallizes form H2O-rich melt (up to 6 wt.% H2O). In consistent with previous studies, our experiments demonstrate that plagioclase with 300 ppm of OH can be in equilibrium with H2O-rich melt dissolving 5-6 wt.% H2O (Fig.1). Plagioclase from the 1986 summit eruption of Izu-Oshima volcano records polybaric degassing history of magma from 5-6 wt.% H2O in melt (300 ppm of OH in plagioclase) to almost dry melt (50 ppm of OH in plagioclase).

  4. Segregation control in vertical Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Kou, S.

    1996-11-01

    To help the crystal grow at a constant dopant concentration in vertical Bridgman crystal growth, the dopant concentration of the growth melt, i.e. the melt from which the crystal grows, was kept constant. To achieve this, three different methods were used to replenish the growth melt at a controlled rate and suppress dopant diffusion between the growth melt and the replenishing melt. In method one, a replenishing crucible having a long melt passageway was immersed in the growth melt. In method two, a replenishing crucible having an independent feed-rate control mechanism was held above the growth melt. In method three, a submerged diffusion baffle was used to form a long melt passageway between the growth melt and the replenishing melt. NaNO 3 was used as a model material for crystal growth. Single crystals were grown by these three methods with effective segregation control. Method two was applied to InSb and single crystals were also grown with effective segregation control.

  5. The Effect of fO2 on Partition Coefficients of U and Th between Garnet and Silicate Melt

    NASA Astrophysics Data System (ADS)

    Huang, F.; He, Z.; Schmidt, M. W.; Li, Q.

    2014-12-01

    Garnet is one of the most important minerals controlling partitioning of U and Th in the upper mantle. U is redox sensitive, while Th is tetra-valent at redox conditions of the silicate Earth. U-series disequilibria have provided a unique tool to constrain the time-scales and processes of magmatism at convergent margins. Variation of garnet/meltDU/Th with fO2 is critical to understand U-series disequilibria in arc lavas. However, there is still no systematic experimental study about the effect of fO2 on partitioning of U and Th between garnet and melt. Here we present experiments on partitioning of U, Th, Zr, Hf, Nb, Ta, and REE between garnet and silicate melts at various fO2. The starting material was hydrous haplo-basalt. The piston cylinder experiments were performed with Pt double capsules with C-CO, MnO-Mn3O4 (MM), and hematite-magnetite (HM) buffers at 3 GPa and 1185-1230 oC. The experiments produced garnets with diameters > 50μm and quenched melt. Major elements were measured by EMPA at ETH Zurich. Trace elements were determined using LA-ICP-MS at Northwestern University (Xi'an, China) and SIMS (Cameca1280 at the Institute of Geology and Geophysics, Beijing, China), producing consistent partition coefficient data for U and Th. With fO2 increasing from CCO to MM and HM, garnet/meltDU decreases from 0.041 to 0.005, while garnet/meltDTh ranges from 0.003 to 0.007 without correlation with fO2. Notably, garnet/meltDTh/U increases from 0.136 at CCO to 0.41 at HM. Our results indicate that U is still more compatible than Th in garnet even at the highest fO2 considered for the subarc mantle wedge (~NNO). Therefore, we predict that if garnet is the dominant phase controlling U-Th partitioning during melting of the mantle wedge, melts would still have 230Th excess over 238U. This explains why most young continental arc lavas have 230Th excess. If clinopyroxene is the dominant residual phase during mantle melting, U could be more incompatible than Th at high fO2 because increasing fO2 can increase clinopyroxene/meltDTh/U by more than two magnitudes (Lundstrom et al. 1994). In this case, in-growth melting of the mantle can produce 238U excess over 230Th observed in the oceanic arc lavas.

  6. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism.

    PubMed

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-12-09

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  7. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    PubMed Central

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-01-01

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications. PMID:26690176

  8. Design and operation of the quench protection system for the Fermilab Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.S.

    1986-05-01

    A method is required to protect the magnets of a superconducting accelerator from possible overheating or overvoltage conditions in the event that some magnets quench, that is, are elevated in temperature such that they are no longer superconducting. A brief discussion of the basic properties of superconductors and the phenomenon of quench propagation is given, followed by the configuration of a quench protection system for the Fermilab Tevatron. (LEW)

  9. Photophysical Characterization of Enhanced 6-Methylisoxanthopterin Fluorescence in Duplex DNA.

    PubMed

    Moreno, Andrew; Knee, J L; Mukerji, Ishita

    2016-12-08

    The structure and dynamic motions of bases in DNA duplexes and other constructs are important for understanding mechanisms of selectivity and recognition of DNA-binding proteins. The fluorescent guanine analogue, 6-methylisoxanthopterin 6-MI, is well suited to this purpose as it exhibits an unexpected 3- to 4-fold increase in relative quantum yield upon duplex formation when incorporated into the following sequences: ATFAA, AAFTA, or ATFTA (where F represents 6-MI). To better understand some of the factors leading to the 6-MI fluorescence increase upon duplex formation, we characterized the effect of local sequence and structural perturbations on 6-MI photophysics through temperature melts, quantum yield measurements, fluorescence quenching assays, and fluorescence lifetime measurements. By examining 21 sequences we have determined that the duplex-enhanced fluorescence (DEF) depends on the composition of bases adjacent to 6-MI and the presence of adenines at locations n ± 2 from the probe. Investigation of duplex stability and local solvent accessibility measurements support a model in which the DEF arises from a constrained geometry of 6-MI in the duplex, which remains H-bonded to cytosine, stacked with adjacent bases and inaccessible to quenchers. Perturbation of DNA structure through the introduction of an unpaired base 3' to 6-MI or a mismatched basepair increases 6-MI dynamic motion leading to fluorescence quenching and a reduction in quantum yield. Molecular dynamics simulations suggest the enhanced fluorescence results from a greater degree of twist at the X-F step relative to the quenched duplexes examined. These results point to a model where adenine residues located at n ± 2 from 6-MI induce a structural geometry with greater twist in the duplex that hinders local motion reducing dynamic quenching and producing an increase in 6-MI fluorescence.

  10. Structure, microstructure and microhardness of rapidly solidified Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) thermoelectric compounds

    NASA Astrophysics Data System (ADS)

    Artini, C.; Castellero, A.; Baricco, M.; Buscaglia, M. T.; Carlini, R.

    2018-05-01

    Skutterudites are interesting compounds for thermoelectric applications. The main drawback in the synthesis of skutterudites by solidification of the melt is the occurrence of two peritectic reactions requiring long annealing times to form a single phase. Aim of this work is to investigate an alternative route for synthesis, based on rapid solidification by planar flow casting. The effect of cooling rate on phases formation and composition, as well as on structure, microstructure and mechanical properties of the filled Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) skutterudites was studied. Conversely to slowly cooled ingots, rapidly quenched ribbons show skutterudite as the main phase, suggesting that deep undercooling of the liquid prevents the nucleation of high temperature phases, such as (Fe,Ni)Sb and (Fe,Ni)Sb2. In as-quenched samples, a slightly out of equilibrium Sm content is revealed, which does not alter the position of the p/n boundary; nevertheless, it exerts an influence on crystallographic properties, such as the cell parameter and the shape of the Sb4 rings in the structure. As-quenched ribbons show a fine microstructure of the skutterudite phase (grain size of 2-20 μm), which only moderately coarsens after annealing at 873 K for 4 days. Vickers microhardness values (350-400 HV) of the skutterudite phase in as-quenched ribbons are affected by the presence of softer phases (i.e. Sb), which are homogeneously and finely dispersed within the sample. The skutterudite hardens after annealing as a consequence of a moderate grain growth, which limits the matrix effect due to the presence of additional phases.

  11. SU-F-T-164: Investigation of PRESAGE Formulation On Signal Quenching in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, M; Alqathami, M; Ibbott, G

    2016-06-15

    Purpose: The radiochromic polyurethane PRESAGE by Heuris Pharma has had limited applications with protons because of a dose response dependence on LET resulting in signal quenching in the Bragg peak. This is due to the radical initiator, a halocarbon, radically recombining in high-LET irradiations. This study investigated the use of alternative halocarbons at various chemical concentrations to determine their significance in signal quenching. Methods: PRESAGE was manufactured in-house and cast in small volume cuvettes (1×1×4cm^3). Several compositions were evaluated to determine the influence of the radical initiator component. Mixtures contained one of two halocarbons, chloroform or bromoform, at concentrations ofmore » 5%/10%/15%(w/w). A large volume, cylindrical PRESAGE dosimeter made following the mixture described by Heuris Pharma, 4cm(D)×8.5cm(H), was irradiated with 200-MeV protons to study regions of low- and high-LET along a 10cm spread out Bragg peak isodose profile. Depths corresponding to regions of low quenching (<3%) and high quenching (>20%) were determined. These depths were used for cuvette placement in a solid water phantom. Samples of each formulation were placed at each depth and irradiated to doses between 0 and 10Gy. Results: The cuvettes indicated different levels of quenching for different radical initiator types, concentrations, and total doses. Chloroform formulations showed reduced quenching from 29%(5%-w/w) to 21%(15%-w/w) while bromoform reduced quenching from 27%(5%-w/w) to 17%(15%-w/w). The reduction in quenching was found to be non-linear with concentration of radical initiator. A quenching dose-dependency was also found that changed with formulation. In all cases, quenching was relatively consistent from 0–5Gy but increased at 10Gy. The quenching decreased as concentrations of radical initiator increased. Conclusion: The radical initiator component in PRESAGE is correlated with the signal quenching observed in proton irradiations and formulation adjustments show promise as a method of reducing this quenching. Future work will further investigate concentration limits and optimize the formulation. Grant number 5RO1CA100835.« less

  12. Quantum quenches in two spatial dimensions using chain array matrix product states

    DOE PAGES

    A. J. A. James; Konik, R.

    2015-10-15

    We describe a method for simulating the real time evolution of extended quantum systems in two dimensions (2D). The method combines the benefits of integrability and matrix product states in one dimension to avoid several issues that hinder other applications of tensor based methods in 2D. In particular, it can be extended to infinitely long cylinders. As an example application we present results for quantum quenches in the 2D quantum [(2+1)-dimensional] Ising model. As a result, in quenches that cross a phase boundary we find that the return probability shows nonanalyticities in time.

  13. Method for the substantial reduction of quenching effects in luminescence spectrometry

    DOEpatents

    Demas, J.N.; Jones, W.M.; Keller, R.A.

    1987-06-26

    Method for reducing quenching effects in analytical luminescence measurements. Two embodiments of the present invention are described which relate to a form of time resolution based on the amplitudes and phase shifts of modulated emission signals. In the first embodiment, the measured modulated emission signal is substantially independent of sample quenching at sufficiently high frequencies. In the second embodiment, the modulated amplitude and the phase shift between the emission signal and the excitation source are simultaneously measured. Using either method, the observed modulated amplitude may be reduced to its unquenched value. 3 figs.

  14. Study of physical properties of strontium based alumino-borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Kaur, Gurbinder; Kumar, V.

    2018-05-01

    In the present study, an attempt has been made to study the influence of CaO/Mgo ratio (R) on different physical properties of (10+x)CaO-(10-x)-MgO-10SrO-10B2O3-20Al2O3-40SiO2 glasses. The novel glass series has been synthesized by melt quenching technique. The parameters like reflection loss and dielectric constant have been determined. Also, molar refraction, molar electronic polarizability and oxygen packing density have been calculated on the basis of measured values of density, molar volume and refractive index of the glasses.

  15. Textural evolution of partially-molten planetary materials in microgravity

    NASA Technical Reports Server (NTRS)

    Watson, E. B.

    1987-01-01

    Recent Earth-based experiments examining the textural evolution of partially-molten rocks have revealed two important ways in which surface energy considerations affect magma. An initial experimental program addressing surface-energy effects on partially-molten materials in microgravity would involve simple, isothermal treatment of natural samples (meteorites, perioditic komatiite) at preselected temperatures in the melting range. Textural evolution would be assessed by time studies in which the only experiment variable would be run duration. Textural characterization of each sample would be done by quenching, recover, and sectioning for generally later, computer-aided interpretation of features.

  16. Crystallization and photoluminescence properties of α-RE2(WO4)3 (RE: Gd, Eu) in rare-earth tungsten borate glasses

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Honma, Tsuyoshi; Komatsu, Takayuki

    2013-03-01

    Glasses with the compositions of 22.5RE2O3-47.5WO3-30B2O3 (mol%) (RE: Gd, Eu) were prepared by a conventional melt quenching method, and α-Gd2(WO4)3 and α-Eu2(WO4)3 crystals were synthesized through their crystallization. The two types of WO4 tetrahedra present in α-RE2(WO4)3 provide the Raman bands at 931-934 cm-1 for WIIO4 tetrahrdra with much distortions and at 946-950 cm-1 for WIO4 tetrahedra with a near regular symmetry. The crystallized samples containing α-Eu2(WO4)3 exhibit strong red emissions under the excitation at 396 and 467 nm, although the base glass has no photoluminescence emission. α-Gd2(WO4)3 and α-Eu2(WO4)3 crystals were patterned on the glass surface by irradiations of a continuous wave Yb:YVO4 fiber laser (wavelength: 1080 nm).

  17. IR Li2Ga2GeS6 nanocrystallized GeS2-Ga2S3-Li2S electroconductive chalcogenide glass with good nonlinearity

    PubMed Central

    Liu, Qiming; Zhang, Peng

    2014-01-01

    GeS2-Ga2S3-Li2S electroconductive glasses were prepared by the conventional melt-quenching method through carefully controlling the heating rate. Comparing with the reference of glass-forming region, our investigated GeS2-Ga2S3-Li2S system was extended to the cation ratio of 0–20% Li with around 40% Ga. GeS2-Ga2S3-Li2S glass-ceramics containing IR Li2Ga2GeS6 nonlinear nanocrystals were obtained by the more carefully controlled heating rate. Its optical nonlinearity was investigated by the Maker fringe measurements, the maximum second harmonic intensity was observed to be 0.35 of the reference Z-cut quartz. IR Li2Ga2GeS6 nonlinear crystals were directly obtained at the composition of 40GeS2-30GaS1.5-30LiS0.5. PMID:25030713

  18. Mid-infrared emission and Judd-Ofelt analysis of Dy3+-doped infrared Ga-Sb-S and Ga-Sb-S-PbI2 chalcohalide glasses

    NASA Astrophysics Data System (ADS)

    Guo, Jixiao; Jiao, Qing; He, Xiaolong; Guo, Hansong; Tong, Jianghao; Zhang, Zhihang; Jiang, Fuchao; Wang, Guoxiang

    2018-03-01

    Dy3+-doped Ga-Sb-S and Ga-Sb-S-PbI2 chalcohalide glasses were prepared by traditional melt quenching method. The effect of halide PbI2 on the physical and optical properties of Dy3+ ions was investigated. The density and ionic concentration of the host sample increased with the introduction of PbI2 halides, whereas the refractive index at 1.55 μm decreased. The Judd-Ofelt parameters showed that Ω2 increased in PbI2-modified glass, whereas the Ω6 value showed the opposite tendency. Infrared emission spectrum also showed that the intensity increased with PbI2 addition, and considerable enhancement at 2.8 μm was observed in the mid-infrared region. The halide PbI2 promoted the reduction of phonon energy of the host and the improvement of the laser pump efficiency, which led to the construction of optimized infrared glass materials for optical applications.

  19. Red luminescence from Eu3+-doped TeO2-WO3-GeO2 glasses for solid state lasers

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, Tallam; Gopal, Kotalo Rama; Suvarna, Reniguntla Padma; Jamalaiah, Bungala Chinna

    2018-05-01

    Eu3+-doped oxyfluoro tellurite (TWGEu) glasses were prepared by conventional melt quenching method. The optical band gap energy and covalence between Eu3+ and O2-/F- ions were determined from optical absorption spectra. Using the 5D0 → 7F1,2,4 emission transitions, the Ω2 and Ω4 intensity parameters were determined. These intensity parameters were used to evaluate the radiative parameters such as emission probability rate (AR), luminescence branching ratio (βR) and radiative life time (τR) of 5D0 → 7FJ transitions. The laser characteristic parameters such as stimulated emission cross-section, gain bandwidth and quantum efficiency were determined. The luminescence decay profiles of 5D0 emission level were well fitted to single exponential function for all the concentrations. The experimental results show that the 0.5 mol% of Eu3+-doped TWGEu glass could be the best choice to design red laser sources.

  20. Study of visible luminescence spectra from Nd3+ doped TPO glass upon 808 nm excitation

    NASA Astrophysics Data System (ADS)

    Azam, Mohd; Rai, Vineet Kumar

    2018-05-01

    The Nd3+ doped TPO glasses have been prepared by melting and quenching method using the high temperature electric furnace. The upconversion (UC) spectra of Nd3+ doped TPO glasses at different concentration of rare ions have been recorded in the 400-700 nm wavelength range upon 808 nm laser excitation source. In the UC emission process, there are four bands centered at ˜495 nm, 546 nm, 602 nm and 653 nm respectively in the visible range were observed. But the green and red bands centered at˜546 nm and ˜653 nm corresponding to the 4G7/2 → 4I9/2 and 4G7/2 → 4I13/2 transitions respectively have been observed as the strong bands. The UC emission mechanism was observed as two photon process. The material can be used as a good NIR to visible upconverter and non-colour tunable display.

  1. Observation of the Mott insulator to superfluid crossover of a driven-dissipative Bose-Hubbard system

    PubMed Central

    Tomita, Takafumi; Nakajima, Shuta; Danshita, Ippei; Takasu, Yosuke; Takahashi, Yoshiro

    2017-01-01

    Dissipation is ubiquitous in nature and plays a crucial role in quantum systems such as causing decoherence of quantum states. Recently, much attention has been paid to an intriguing possibility of dissipation as an efficient tool for the preparation and manipulation of quantum states. We report the realization of successful demonstration of a novel role of dissipation in a quantum phase transition using cold atoms. We realize an engineered dissipative Bose-Hubbard system by introducing a controllable strength of two-body inelastic collision via photoassociation for ultracold bosons in a three-dimensional optical lattice. In the dynamics subjected to a slow ramp-down of the optical lattice, we find that strong on-site dissipation favors the Mott insulating state: The melting of the Mott insulator is delayed, and the growth of the phase coherence is suppressed. The controllability of the dissipation is highlighted by quenching the dissipation, providing a novel method for investigating a quantum many-body state and its nonequilibrium dynamics. PMID:29291246

  2. Photosensitivity study of GeS2 chalcogenide glass under femtosecond laser pulses irradiation

    NASA Astrophysics Data System (ADS)

    Ayiriveetil, Arunbabu; Sabapathy, Tamilarasan; Kar, Ajoy K.; Asokan, Sundarrajan

    2015-07-01

    The present study discusses the photosensitivity of GeS2 chalcogenide glass in response to irradiation with femtosecond pulses at 1047 nm. Bulk GeS2 glasses are prepared by conventional melt quenching technique and the amorphous nature of the glass is confirmed using X-ray diffraction. Ultrafast laser inscription technique is used to fabricate the straight channel waveguides in the glass. Single scan and multi scan waveguides are inscribed in GeS2 glasses of length 0.65 cm using a master oscillator power amplifier Yb doped fiber laser (IMRA μjewel D400) with different pulse energy and translation speed. Diameters of the inscribed waveguides are measured and its dependence on the inscription parameters such as translation speed and pulse energy is studied. Butt coupling method is used to characterize the loss measurement of the inscribed optical waveguides. The mode field image of the waveguides is captured using CCD camera and compared with the mode field image of a standard SMF-28 fibers.

  3. Preparation of ruby red glasses from gold nanoparticles: Influence of stannic oxide

    NASA Astrophysics Data System (ADS)

    Ruangtaweep, Y.; A-nupan, P.; Kaewkhao, J.

    2014-03-01

    In this work, effects of stannic oxide concentration to red glass prepared from gold nanoparticle (AuNPs) have been investigated. The glasses were fabricated by conventional melt quench method using SiO2, CaO, K2CO3, Na2CO3, SeO2, AuNPs and vary stannic oxide concentration by 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 % by weight. The result found that, the red colors of glasses were obtained from gold nanoparticles at 0.1, 0.2 and 0.5 % of stannic oxide. At 0.0, 0.3 and 0.4 % are show purple-blue colors. The results reflecting that the particle size of gold particle in glass matrices at 0.1, 0.2 and 0.5 % of stannic oxide are smaller than 0.3 and 0.4 %. The color of glasses were confirmed by uv-visible spectrophotometer and color coordinate in CIEL*a*b*.

  4. Synthesis and optical property of holmium doped Lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2017-05-01

    The new glass system 60B2O3-30PbO-(10-x)Li2O-xHo2O3 (where x =0, 0.1, 0.3 and 0.5 mol%) were prepared by conventional melt quenching method. The XRD spectrum confirms the amorphous nature of the sample. The density of these glasses is measured by using Archimedes principle, the values range from 4.23 g/cm-3 to 4.34 g/cm-3 and the corresponding molar volumes are calculated. The optical absorbance studies were carried out on these glasses in the wavelength range of 200nm to 1100nm. The measured optical direct band gap energies were in the range of 3.072eV to 3.259eV and the optical indirect band gap energies in the range of 2.658eV to 2.846eV. The refractive indices of these glasses were measured by using Abbe refractometer and the corresponding polarizabilities of oxide ions are calculated by using Lorentz-Lorentz relations.

  5. Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses

    NASA Astrophysics Data System (ADS)

    Samanta, Buddhadev; Dutta, Dibakar; Ghosh, Subhankar

    2017-06-01

    A series of Gd2O3 doped sodium zinc tellurite [xGd2O3-(0.8-x) TeO2-0.1Na2O-0.1ZnO] glasses are prepared by the conventional melt quenching method and their optical properties have been studied. UV-vis spectrophotometric studies within the wavelength range from 230 nm-800 nm are carried out in the integrating sphere mode to study the effect of Gd2O3 doping on the optical band gap (Eg), refractive index (n), dielectric constant (εr) and susceptibility (χ). Other physical properties like molar volume, molar refraction, polarizability, metallization criterion, number density of rare-earth ions (N), polaron radius (rp), inter ionic distance (ri), molar cation polarizability (∑αi), number of oxide ions in chemical composition (NO2-), optical band gap based electronic oxide ion polarizability (αO2-) and optical basicity (Λ) of glass samples have been studied on the basis of UV-vis spectra and density profile of the different glasses.

  6. Linear and nonlinear optical characteristics of Te nanoparticles-doped germanate glasses

    NASA Astrophysics Data System (ADS)

    Xu, Zhousu; Guo, Qiangbing; Liu, Chang; Ma, Zhijun; Liu, Xiaofeng; Qiu, Jianrong

    2016-10-01

    Te nanoparticles (NPs)-doped GeO2-MgO-B2O3-Al2O3-TeO2 glasses were prepared by the conventional melt-quenching method. Based on X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscope observation, the coloration of the glass at high TeO2 concentration is ascribed to the precipitation of elemental Te NPs with a size of 5-10 nm in the germanate glass. Optical absorption spectra and nonlinear optical (NLO) properties of the glass samples were analyzed by UV-3600 spectrophotometry and Z-scan technique, respectively. The nonlinear absorption coefficient ( β) and the imaginary part of the third-order NLO susceptibility (Im χ (3)) were estimated to be 1.74 cm/GW and 1.142 × 10-12 esu for laser power of 95 μW, respectively. Due to the excellent NLO properties, the Te NPs-doped germanate glasses may have potential applications for ultrafast optical switch and photonics.

  7. Photoluminescence properties of LiF bismuth silicate glass

    NASA Astrophysics Data System (ADS)

    Krishnan, M. Laya; Kumar, V. V. Ravi Kanth

    2018-04-01

    The sample (60-X) Bi2O3-30SiO2-XLiF where X=10, 15, 25 were prepared by conventional melt quenching method. X-ray diffraction pattern conformed the amorphous nature of the prepared sample and a broad peak at 2θ=30°. The Raman spectra confirmed that the Bi can exist both network former (BiO3 pyramidal) and network modifier (BiO6 octahedral)in the glass matrix. The samples showing broad absorption at 470nm is due to the presence of Bi2+ ions, because of increasing optical basicity the absorption edge of the sample is blue shifted. The photoluminescence spectra of the glass under 350nm excitation are showing two main peaks at 430nm and 630 nm due to Bi3+ and Bi2+ respectively and 25 LBS glass showing yellow, 15LBS showing near bluish white and 10LBS showing blue luminescence. The color purity and correlated color temperature are also calculated.

  8. Synthesis and characterization of a BaGdF5:Tb glass ceramic as a nanocomposite scintillator for x-ray imaging.

    PubMed

    Lee, Gyuhyon; Struebing, Christian; Wagner, Brent; Summers, Christopher; Ding, Yong; Bryant, Alex; Thadhani, Naresh; Shedlock, Daniel; Star-Lack, Josh; Kang, Zhitao

    2016-05-20

    Transparent glass ceramics with embedded light-emitting nanocrystals show great potential as low-cost nanocomposite scintillators in comparison to single crystal and transparent ceramic scintillators. In this study, cubic structure BaGdF5:Tb nanocrystals embedded in an aluminosilicate glass matrix are reported for potential high performance MeV imaging applications. Scintillator samples with systematically varied compositions were prepared by a simple conventional melt-quenching method followed by annealing. Optical, structural and scintillation properties were characterized to guide the design and optimization of selected material systems, aiming at the development of a system with higher crystal volume and larger crystal size for improved luminosity. It is observed that enhanced scintillation performance was achieved by tuning the glass matrix composition and using GdF3 in the raw materials, which served as a nucleation agent. A 26% improvement in light output was observed from a BaGdF5:Tb glass ceramic with addition of GdF3.

  9. Structure and transport investigations on lithium-iron-phosphate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banday, Azeem; Sharma, Monika; Murugavel, Sevi, E-mail: murug@physics.du.ac.in

    2016-05-23

    Cathode materials for Lithium Ion Batteries (LIB’s) are being constantly studied and reviewed especially in the past few decades. LiFePO{sub 4} (LFP) is one of the most potential candidates in the pedigree of cathode materials and has been under extensive study ever since. In this work, we report the synthesis of amorphous analogs of crystallite LFP by conventional melt quenching method. Thermal study by using differential scanning calorimetry (DSC) was used to determine the glass transition T{sub g} and crystallization T{sub c} temperatures on the obtained glass sample Fourier transform infrared (FTIR) absorption spectroscopy is being used to investigate themore » structural properties of the glass sample. The intrinsic electrical conductivity measurements were done using broad-band impedance spectroscopy with wide different temperature ranges. The conduction mechanism is described by non-adiabatic small polaron hopping between nearest neighbors. Based on the obtained results, we suggest that the glassy LFP is more suitable cathode material as compared to its crystalline counterpart.« less

  10. Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system

    NASA Astrophysics Data System (ADS)

    Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.

    2018-05-01

    Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.

  11. Synthesis and studies on microhardness of alkali zinc borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subhashini,, E-mail: subhashini.p.p@gmail.com; Bhattacharya, Soumalya, E-mail: subhashini.p.p@gmail.com; Shashikala, H. D., E-mail: subhashini.p.p@gmail.com

    2014-04-24

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi{sub 2}O+yNa{sub 2}O+80B{sub 2}O{sub 3} (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li{sub 2}O and Na{sub 2}O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributedmore » to the conversion of tetrahedral boron (BO{sub 4/2}){sup −} into (BO{sub 3/2}){sup −}. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.« less

  12. Interaction of Human Hemoglobin with Methotrexate

    NASA Astrophysics Data System (ADS)

    Zaharia, M.; Gradinaru, R.

    2015-05-01

    This study focuses on the interaction between methotrexate and human hemoglobin using steady-state ultraviolet-visible and fluorescence quenching methods. Fluorescence quenching was found to be valuable in assessing drug binding to hemoglobin. The quenching of methotrexate is slightly smaller than the quenching observed with related analogs (dihydrofolate and tetrahydrofolate). The quenching studies were performed at four different temperatures and various pH values. The number of binding sites for tryptophan is ~1. Parameter-dependent assays revealed that electrostatic forces play an essential role in the methotrexate-hemoglobin interaction. Furthermore, the complex was easily eluted using gel filtration chromatography.

  13. The Effect of Various Quenchants on the Hardness and Microstructure of 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Thomas, Fransua

    2015-01-01

    The effect of various quenching media on the hardness and microstructure of 60 NITINOL (60 NiTi) were evaluated. Specimens of 60 NiTi were heat treated in air at 1000 degC for 30 min or 2 hr, then quench cooled by one of seven different methods. The microstructure and hardness of this material was examined post heat treatment. The results indicated that the quench method had little effect on the resulting hardness and microstructure of 60 NiTi.

  14. Experimental determination of CO2 content at graphite saturation along a natural basalt-peridotite melt join: Implications for the fate of carbon in terrestrial magma oceans

    NASA Astrophysics Data System (ADS)

    Duncan, Megan S.; Dasgupta, Rajdeep; Tsuno, Kyusei

    2017-05-01

    Knowledge of the carbon carrying capacity of peridotite melt at reducing conditions is critical to constrain the mantle budget and planet-scale distribution of carbon set at early stage of differentiation. Yet, neither measurements of CO2 content in reduced peridotite melt nor a reliable model to extrapolate the known solubility of CO2 in basaltic (mafic) melt to solubility in peridotitic (ultramafic) melt exist. There are several reasons for this gap; one reason is due to the unknown relative contributions of individual network modifying cations, such as Ca2+ versus Mg2+, on carbonate dissolution particularly at reducing conditions. Here we conducted high pressure, temperature experiments to estimate the CO2 contents in silicate melts at graphite saturation over a compositional range from natural basalts toward peridotite at a fixed pressure (P) of 1.0 GPa, temperature (T) of 1600 °C, and oxygen fugacity (log ⁡ fO2 ∼ IW + 1.6). We also conducted experiments to determine the relative effects of variable Ca and Mg contents in mafic compositions on the dissolution of carbonate. Carbon in quenched glasses was measured and characterized using Fourier transform infrared spectroscopy (FTIR) and Raman Spectroscopy and was found to be dissolved as carbonate (CO32-). The FTIR spectra showed CO32- doublets that shifted systematically with the MgO and CaO content of silicate melts. Using our data and previous work we constructed a new composition-based model to determine the CO2 content of ultramafic (peridotitic) melt representative of an early Earth, magma ocean composition at graphite saturation. Our data and model suggest that the dissolved CO2 content of reduced, peridotite melt is significantly higher than that of basaltic melt at shallow magma ocean conditions; however, the difference in C content between the basaltic and peridotitic melts may diminish with depth as the more depolymerized peridotite melt is more compressible. Using our model of CO2 content at graphite saturation as a function of P-T-fO2-melt composition, we predict that a superliquidus shallow magma ocean should degas CO2. Whereas if the increase of fO2 with depth is weak, a magma ocean may ingas a modest amount of carbon during crystallization. Further, using the carbon content of peridotite melt at log ⁡ fO2 of IW and the knowledge of C content of Fe-rich alloy melt, we also consider the core-mantle partitioning of carbon, showing that DCmetal/peridotite of a shallow magma ocean is generally higher than previously estimated.

  15. Melts and fluids: An overview of recent advances

    NASA Astrophysics Data System (ADS)

    Brenan, James M.

    1995-07-01

    Owing to their capacity to transport mass and heat melts and low viscosity fluids profoundly influence such global processes as planetary heat loss, large and small-scale planetary differentiation as well as affecting the evolution of oceans and atmospheres. As such, these materials play a key role in the physical and chemical volution of Earth, the terrestrial planets and the meteorite parent bodies. In this context, a review chapter that deals exclusively with recent advances in our understanding of the composition, properties, origin and volution of melts and fluids is clearly relevant.1 Since 1991, a host of research advances has provided earth and planetary scientists with new and unique perspectives for understanding natural melts and low viscosity fluids. New instrumentation has provided the basis for several advances, and perhaps most notable is the development and application of reaction cells that allow measurement of melt or fluid properties in situ. Such devices have allowed workers to monitor properties at high pressure and temperature that are typically not preserved when samples are quenched to ambient conditions. In addition to the development of new machines, tried and true experimental and analytical technologies have also yielded significant new results on melts and fluids, largely as a result of their clever application to the solution of what had been longstanding problems in geochemistry and petrology. Although laboratory-based measurements have provided the basis for many recent advances, it is also clear that the Earth still yields provocative samples for our study, and new insights have also been gained concerning the behavior of melts and fluids in natural processes based on recent documentation of previously unobserved melt and fluid compositions. Along with new technologies, clever experiments and unique samples, it is also notable that strides have been made in certain research areas enjoying a resurgence of activity following new and provocative developments. Provoked by controversial theoretical results, perhaps the most notable example of this has been an increased experimental effort aimed at evaluating whether equilibrium core segregation can account for the siderophile element abundances in Earth's upper mantle.

  16. Thermal diffusivity of rhyolitic glasses and melts: effects of temperature, crystals and dissolved water

    NASA Astrophysics Data System (ADS)

    Romine, William L.; Whittington, Alan G.; Nabelek, Peter I.; Hofmeister, Anne M.

    2012-12-01

    Thermal diffusivity ( D) was measured using laser-flash analysis on pristine and remelted obsidian samples from Mono Craters, California. These high-silica rhyolites contain between 0.013 and 1.10 wt% H2O and 0 to 2 vol% crystallites. At room temperature, D glass varies from 0.63 to 0.68 mm2 s-1, with more crystalline samples having higher D. As T increases, D glass decreases, approaching a constant value of ˜0.55 mm2 s-1 near 700 K. The glass data are fit with a simple model as an exponential function of temperature and a linear function of crystallinity. Dissolved water contents up to 1.1 wt% have no statistically significant effect on the thermal diffusivity of the glass. Upon crossing the glass transition, D decreases rapidly near ˜1,000 K for the hydrous melts and ˜1,200 K for anhydrous melts. Rhyolitic melts have a D melt of ˜0.51 mm2 s-1. Thermal conductivity ( k = D· ρ· C P) of rhyolitic glass and melt increases slightly with T because heat capacity ( C P) increases with T more strongly than density ( ρ) and D decrease. The thermal conductivity of rhyolitic melts is ˜1.5 W m-1 K-1, and should vary little over the likely range of magmatic temperatures and water contents. These values of D and k are similar to those of major crustal rock types and granitic protoliths at magmatic temperatures, suggesting that changes in thermal properties accompanying partial melting of the crust should be relatively minor. Numerical models of shallow rhyolite intrusions indicate that the key difference in thermal history between bodies that quench to obsidian, and those that crystallize, results from the release of latent heat of crystallization. Latent heat release enables bodies that crystallize to remain at high temperatures for much longer times and cool more slowly than glassy bodies. The time to solidification is similar in both cases, however, because solidification requires cooling through the glass transition in the first case, and cooling only to the solidus in the second.

  17. Evidence for a homogeneous primary magma at Piton de la Fournaise (La Réunion): A geochemical study of matrix glass, melt inclusions and Pélé's hairs of the 1998-2008 eruptive activity

    NASA Astrophysics Data System (ADS)

    Villemant, B.; Salaün, A.; Staudacher, T.

    2009-07-01

    Magmas erupted at Piton de la Fournaise volcano since 0.5 Ma, display a large petrological and chemical range (picrites, 2 types of transitional basalts and differentiated magmas) and low amplitude isotopic heterogeneities. The recent activity (1998-2008) includes all magma types except evolved magmas. Matrix glass compositions from quenched lavas and Pélé's hairs of the whole 1998-2008 period define a single differentiation trend from a common basaltic melt (MgO ~ 9%) for the first time identified in the 2007 magmas. More primitive melt compositions (MgO ~ 12.5%) are only evidenced by olivine crystals with high Fo contents (Fo 85-88.4). Evolutions of major and trace element of glass and mineral compositions are consistently modelled by a unique low pressure crystal fractionation process. The composition range of olivine melt inclusions is distinct from that of matrix glass and Pélé's hair and corresponds to equilibrium crystallisation in closed system of melts trapped from the main differentiation series at high temperature. The range of basaltic types at Piton de la Fournaise is the result of large variations in the differentiation degree (10 to 35% crystallisation) of a single primary basaltic melt and the addition in highly variable amounts (up to 50% in picrites) of co-genetic olivine or gabbroic cumulates. These cumulates may represent the shallow and dense bodies identified by seismic tomography and have likely been produced by the repetitive intrusion and differentiation of basalts along Piton de la Fournaise history. Depending on the shallow transfer paths, ascending magmas may disaggregate and incorporate various types of cumulates, explaining all particular features of basaltic magmas and picrites. These results emphasize the exceptional chemical homogeneity of the primary basaltic melt and of the differentiation process involved in volcanic activity of La Réunion hotspot since 0.5 Ma and the increasingly recognised role of melt-wall rock interactions in compositional and petrological diversity of erupted magmas.

  18. Mass transfer in the Earth's interior: fluid-melt interaction in aluminosilicate-C-O-H-N systems at high pressure and temperature under oxidizing conditions

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn

    2018-12-01

    Understanding what governs the speciation in the C-O-H-N system aids our knowledge of how volatiles affect mass transfer processes in the Earth's interior. Experiments with aluminosilicate melt + C-O-H-N volatiles were, therefore, carried out with Raman and infrared spectroscopy to 800 °C and near 700 MPa in situ in hydrothermal diamond anvil cells. The measurements were conducted in situ with the samples at the desired temperatures and pressures in order to avoid possible structural and compositional changes resulting from quenching to ambient conditions prior to analysis. Experiments were conducted without any reducing agent and with volatiles added as H2O, CO2, and N2 because both carbon and nitrogen can occur in different oxidation states. Volatiles dissolved in melt comprise H2O, CO3 2-, HCO3 -, and molecular N2, whereas in the coexisting fluid, the species are H2O, CO2, CO3 2-, and N2. The HCO3 -/CO3 2- equilibrium in melts shift toward CO3 2- groups with increasing temperature with ΔH = 114 ± 22 kJ/mol. In fluids, the CO2 abundance is essentially invariant with temperature and pressure. For fluid/melt partitioning, those of H2O and N2 are greater than 1 with temperature-dependence that yields ΔH values of - 6.5 ± 1.5 and - 19.6 ± 3.7 kJ/mol, respectively. Carbonate groups, CO3 2- are favored by melt over fluid. Where redox conditions in the Earth's interior exceed that near the QFM oxygen buffer (between NNO and MW buffers), N2 is the stable nitrogen species and as such acts as a diluent of both fluids and melts. For fluids, this lower silicate solubility, in turn, enhances alkalinity. This means that in such environments, the transport of components such as high field strength cations, will be enhanced. Effects of dissolved N2 on melt structure are considerably less than on fluid structure.[Figure not available: see fulltext.

  19. Melt Inclusions Record Extreme Compositional Variability in Primitive Magmas at Mauna Loa Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Kamenetsky, V. S.; Norman, M. D.; Garcia, M. O.

    2002-12-01

    Melt inclusions carry potentially unique information about magmatic processes and the compositional evolution of erupted lavas. Major element compositions of olivine-hosted melt inclusions in submarine tholeiitic picrites from the southwest rift zone of Mauna Loa volcano have been studied to examine the compositional variability of primitive magmas feeding the world's largest volcano. Approximately 600 naturally quenched inclusions were examined from 8 samples with 3-25 vol% olivine phenocrysts and 9-22 wt% MgO. Olivine compositions ranged from Fo91-Fo82. The inclusions show a continuous variation in FeO contents from near-magmatic values (9 to 11 wt%) in the most evolved olivines to extremely low values (3.5 to 7.0 wt%) in the most primitive olivines. This appears to reflect a complex magmatic history for these crystals involving extensive re-equlibration of melts trapped by early formed phenocrysts with their host olivine. Extreme compositional variability also characterizes incompatible elements that would not be affected by equilibration with the host olivine. Inclusions trapped in relatively primitive olivines (Fo88-91) show a large range of K2O contents (0.1 to 2.1 wt%), whereas inclusions in more evolved olivines converge on whole rock compositions with 0.3 to 0.4 wt% K2O. Similarly, TiO2/K2O, Na2O/K2O, and K2O/P2O5 ratios of inclusions in primitive olivines span a much larger range than do inclusions hosted by more evolved olivines, with TiO2/K2O ratios extending from enriched to depleted compositions (1.2 to 24.7) in primitive olivines, and converging on whole rock compositions (TiO2/K2O = 6-9) in more evolved host olivine. This points toward extreme compositional variability in melts feeding Mauna Loa, and effective mixing of these melt parcels in the shallower summit reservoir to produce the restricted range of whole rock compositions sampled by erupted lavas. Whole rock compositions, therefore provide an integrated view of melting and high-level mixing processes, whereas melt inclusions provide more detailed information about source characteristics.

  20. Improvement of Quench Factor Analysis in Phase and Hardness Prediction of a Quenched Steel

    NASA Astrophysics Data System (ADS)

    Kianezhad, M.; Sajjadi, S. A.

    2013-05-01

    The accurate prediction of alloys' properties introduced by heat treatment has been considered by many researchers. The advantages of such predictions are reduction of test trails and materials' consumption as well as time and energy saving. One of the most important methods to predict hardness in quenched steel parts is Quench Factor Analysis (QFA). Classical QFA is based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. In this study, a modified form of the QFA based on the work by Rometsch et al. is compared with the classical QFA, and they are applied to prediction of hardness of steels. For this purpose, samples of CK60 steel were utilized as raw material. They were austenitized at 1103 K (830 °C). After quenching in different environments, they were cut and their hardness was determined. In addition, the hardness values of the samples were fitted using the classical and modified equations for the quench factor analysis and the results were compared. Results showed a significant improvement in fitted values of the hardness and proved the higher efficiency of the new method.

  1. The diffusion of water in haploanesite

    NASA Astrophysics Data System (ADS)

    Ni, H.; Zhang, Y.

    2008-12-01

    Diffusive transport of water in silicate melts is a key process in magma dynamics and volcanic eruptions, including bubble growth. Previous studies demonstrate that in additional to temperature, water content and pressure, melt composition also plays an important role in determining water diffusivity. We carried out high temperature (1311-1512°C) diffusion-couple experiments and intermediate temperature (470- 600°C) dehydration experiments to investigate H2O diffusion in a melt of haploandesitic composition. The diffusion couple is composed of an anhydrous (with <0.1 wt.% H2O) and a hydrous (with 2 wt.% H2O) haploandesitic glass. A platinum capsule is used to contain the couple and then it is welded shut. Diffusion runs are carried out in a 12.7-mm piston-cylinder apparatus at 1 GPa and superliquidus temperatures of 1584-1785 K. Infrared microscopy is applied on quenched glass to measure the profile of total H2O concentration (H2Ot). The profile shape is best fit by an error function, indicating an H2O diffusivity virtually independent of H2O concentration, consistent with the results of Behrens et al. (2004) on an Fe-bearing andesite. Dehydration experiments are performed at 743-873 K in a rapid-quench cold-seal vessel, with a heated hydrous glass losing water to 0.1 GPa Ar atmosphere. Measured diffusion profiles, however, show that water diffusivity is dependent on water content. Experimental data can be explained by H2Om being the dominating diffusant or a total H2O diffusivity proportional to total H2O content. The distinction between the high-temperature experiments where H2Ot diffusivity is apparently independent of H2Ot content, and the intermediate-temperature experiments where H2Ot diffusivity depends on H2Ot can be rationalized if OH diffusion has a higher activation energy than molecular H2O diffusion, and their comparable diffusivities at high T gradually diverge as temperature is lowered. At below 1 wt.% H2O, water diffusivity increases from rhyolite to dacite to andesite at >1300°C, and this sequence is reversed at <600°C.

  2. Spectroscopic and thermal properties of Sm3+ doped iron lead bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Narwal, P.; Yadav, A.; Dahiya, M. S.; Vishal, Rohit, Agarwal, A.; Khasa, S.

    2018-05-01

    The results of the structural, physical, thermal and electrical properties of the glass compositions xFe2O3•(100-x)(3Bi2O3•PbO)• Sm2O3(1 mol%) where x=0, 1, 5, 10, 12, 15 mol% prepared via melt quench technique were studied. The synthesized compositions were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis (DTA). The IR study reveals that present system is build up with lead in tetrahedral coordination and bismuth in trigonal as well as octahedral coordination. Density and molar volume have been calculated using Archimedes principle, and the variation in their values has been correlated with structural changes in the glass matrix based on the IR study. The variation in the characteristic temperatures (glass transition temperature Tg, crystallization temperature Tp and melting temperature Tm) with different heating rate and change in the composition of iron oxide were analyzed and reported in the present study.

  3. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet

    PubMed Central

    Yallop, Marian L; Anesio, Alexandre M; Perkins, Rupert G; Cook, Joseph; Telling, Jon; Fagan, Daniel; MacFarlane, James; Stibal, Marek; Barker, Gary; Bellas, Chris; Hodson, Andy; Tranter, Martyn; Wadham, Jemma; Roberts, Nicholas W

    2012-01-01

    Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet. PMID:23018772

  4. Effect of melter feed foaming on heat flux to the cold cap

    NASA Astrophysics Data System (ADS)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.

  5. Prospects and progress of high Tc superconductivity for space applications

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Sokoloski, Marty M.

    1991-01-01

    Current research in the area of high temperature superconductivity is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAlO3 produced far superior RF characteristics when compared to metallic films on the same substrate. The achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high-Q filters. Melt texturing and melt-quenched techniques are being used to produce bulk material with optimized magnetic properties. These yttrium-enriched materials possess enhanced flux pinning characteristics and could lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies were conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magnetoplasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar, and Mars mission applications.

  6. Thermal collapse and hierarchy of polymorphs in a faujasite-type zeolite and its analogous melt-quenched glass

    NASA Astrophysics Data System (ADS)

    Palenta, Theresia; Fuhrmann, Sindy; Greaves, G. Neville; Schwieger, Wilhelm; Wondraczek, Lothar

    2015-02-01

    We examine the route of structural collapse and re-crystallization of faujasite-type (Na,K)-LSX zeolite. As the first step, a rather stable amorphous high density phase HDAcollapse is generated through an order-disorder transition from the original zeolite via a low density phase LDAcollapse, at around 790 °C. We find that the overall amorphization is driven by an increase in the bond angle distribution within T-O-T and a change in ring statistics to 6-membered TO4 (T = Si4+, Al3+) rings at the expense of 4-membered rings. The HDAamorph transforms into crystalline nepheline, though, through an intermediate metastable carnegieite phase. In comparison, the melt-derived glass of similar composition, HDAMQ, crystallizes directly into the nepheline phase without the occurrence of intermediate carnegieite. This is attributed to the higher structural order of the faujasite-derived HDAcollapse which prefers the re-crystallization into the highly symmetric carnegieite phase before transformation into nepheline with lower symmetry.

  7. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet.

    PubMed

    Yallop, Marian L; Anesio, Alexandre M; Perkins, Rupert G; Cook, Joseph; Telling, Jon; Fagan, Daniel; MacFarlane, James; Stibal, Marek; Barker, Gary; Bellas, Chris; Hodson, Andy; Tranter, Martyn; Wadham, Jemma; Roberts, Nicholas W

    2012-12-01

    Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet.

  8. Characterization of water based nanofluid for quench medium

    NASA Astrophysics Data System (ADS)

    Kresnodrianto; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Mahiswara, E. P.

    2018-04-01

    Quenching has been a valuable method in steel hardening method especially in industrial scale. The hardenability of the metal alloys, the thickness of the component, and the geometry is some factors that can affect the choice of quench medium. Improper quench media can cause the material to become too brittle, suffers some geometric distortion, and undesirable residual stress that will cause some effect on the mechanical property and fracture mechanism of a component. Recently, nanofluid as a quench medium has been used for better quenching performance and has been studied using several different fluids and nanoparticles. Some of frequently used solvents include polymers, vegetable oils, and mineral oil, and nanoparticles frequently used include CuO, ZnO, and Alumina. In this research, laboratory-grade carbon powder were used as nanoparticle. Water was used as the fluid base in this research as the main observation focus. Carbon particles were obtain using a top-down method, whereas planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. Nanofluid was created by mixing percentage of carbon nanoparticles with water using ultrasonic vibration for 280s. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which austenized at 1000°C. Hardness testing and metallography observation were then conducted to further check the effect of different quench medium in steel samples. Preliminary characterizations showed that carbon particles dimension after milling was still in sub-micron stage, hundreds of nanometres to be precise. Therefore, the milling process parameters are needed to be optimized further.

  9. A Direct Cell Quenching Method for Cell-Culture Based Metabolomics

    EPA Science Inventory

    A crucial step in metabolomic analysis of cellular extracts is the cell quenching process. The conventional method first uses trypsin to detach cells from their growth surface. This inevitably changes the profile of cellular metabolites since the detachment of cells from the extr...

  10. Color quench correction for low level Cherenkov counting.

    PubMed

    Tsroya, S; Pelled, O; German, U; Marco, R; Katorza, E; Alfassi, Z B

    2009-05-01

    The Cherenkov counting efficiency varies strongly with color quenching, thus correction curves must be used to obtain correct results. The external (152)Eu source of a Quantulus 1220 liquid scintillation counting (LSC) system was used to obtain a quench indicative parameter based on spectra area ratio. A color quench correction curve for aqueous samples containing (90)Sr/(90)Y was prepared. The main advantage of this method over the common spectra indicators is its usefulness also for low level Cherenkov counting.

  11. A IAB-Complex Iron Meteorite Containing Low-Ca Clinopyroxene: Northwest Africa 468 and its Relationship to Iodranites and Formation by Impact Melting

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Kallemeyn, Gregory W.; Wasson, John T.

    2002-01-01

    Northwest Africa 468 (NWA 468) is a new ungrouped, silicate-rich member of the IAB complex of nonmagmatic iron meteorites. The silicates contain relatively coarse (approximately 300 micron-size) grains of low-Ca clinopyroxene with polysynthetic twinning and inclined extinction. Low-Ca clinopyroxene is indicative of quenching from high temperatures (either from protoenstatite in a few seconds or high-temperature clinoenstatite in a few hours). It seems likely that NWA 468 formed by impact melting followed by rapid cooling to less than or equal to 660 C. After the loss of a metal-sulfide melt from the silicates, sulfide was reintroduced, either from impact-mobilized FeS or as an S2 vapor that combined with metallic Fe to produce FeS. The O-isotopic composition (delta O-17 = -1.39 %) indicates that the precursor material of NWA 468 was a metal-rich (e.g., CR) carbonaceous chondrite. Lodranites are similar in bulk chemical and O-isotopic composition to the silicates in NWA 468; the MAC 88177 lodranite (which also contains low-Ca clinopyroxene) is close in bulk chemical composition. Both NWA 468 and MAC 88177 have relatively low abundances of REE (rare earth elements) and plagiophile elements. Siderophiles in the metal-rich areas of NWA 468 are similar to those in the MAC 88177 whole rock; both samples contain low Ir and relatively high Fe, Cu and Se. Most unweathered lodranites contain approximately 20 - 38 wt. % metallic Fe-Ni. These rocks may have formed in an analogous manner to NWA 468 (i.e., by impact melting of metal-rich carbonaceous-chondrite precursors) but with less separation of metal-rich melts from silicates.

  12. In Situ Optical Observation of High-Temperature Geological Processes With the Moissanite Cell

    NASA Astrophysics Data System (ADS)

    Walte, N.; Keppler, H.

    2005-12-01

    A major drawback of existing techniques in experimental earth and material sciences is the inability to observe ongoing high-temperature processes in situ during an experiment. Examples for important time-dependent processes include the textural development of rocks and oxide systems during melting and crystallization, solid-state and melt-present recrystallization and Ostwald ripening, and bubble nucleation and growth during degassing of glasses and melts. The investigation of these processes by post-mortem analysis of a quenched microstructure is time consuming and often unsatisfactory. Here, we introduce the moissanite cell that allows optical in situ observation of long-term experiments at high temperatures. Moissanite is a transparent gem-quality type of SiC that is characterized by its hardness and superior chemical and thermal resistance. Two moissanite windows with a thickness and diameter of several millimeters are placed into sockets of fired pyrophyllite and fixed onto two opposite metal plates. The sockets are wrapped with heating wire and each window is connected to a thermocouple for temperature control. The sample is placed directly between the moissanite windows and the cell is assembled similarly to a large diamond anvil cell. In situ observation of the sample is done with a microscope through observation windows and movies are recorded with an attached digital camera. Our experiments with the new cell show that temperatures above 1200°C can be maintained and observed in a sample for several days without damaging the cell nor the windows. Time-lapse movies of melting and crystallizing natural and synthetic rocks and of degassing glasses and melts will be presented to show the potential of the new technique for experimental earth and material science.

  13. Strength and deformation mechanisms of rhyolitic glass at lower seismogenic zone conditions

    NASA Astrophysics Data System (ADS)

    Proctor, B.; Lockner, D. A.; Lowenstern, J. B.; Beeler, N. M.

    2017-12-01

    Although its relevance to coseismic earthquake source properties is still debated, frictional melting and the production of quenched glass called pseudotachylyte is a recurring process in some earthquake source regions. To investigate how glassy materials affect the post- and interseismic- strength and stability of faults, rhyolitic obsidian gouges were sheared under dry and wet conditions from 200 °C to 300 °C at effective normal stresses up to 200 MPa. Velocity-stepping and slide-hold slide tests were performed for up to three days. Dry glass gouges exhibited a brittle rheology at all conditions tested, exhibiting friction values and microstructures consistent with siliciclastic materials. Likewise, wet glass gouges at 200 °C exhibited a brittle rheology. In contrast, wet gouges at 300 °C transitioned from brittle sliding to linear-viscous (Newtonian) flow at strain rates < 3x10-4 s-1, indicating melt-like behavior well below the equilibrium melting temperature. The melt ranged from 2.1x1011 to 2.6x1012 Pa-s. The molten gouges transitioned back to glass when strain rates were increased, which, in some cases, promoted extreme strengthening. The molten gouges were fully welded with rod-shaped microlites rotated and boudinaged into the flow direction. There was very little evidence for nucleation of new phases within the glass or metasomatic alteration. Fourier transform infrared spectroscopy along with electron backscatter imaging demonstrate that hydration of the glass by diffusion of pore water was the dominant process reducing the viscosity and promoting melt flow. As much as 5 wt% water diffused into the nominally anhydrous glass. These results may provide insight into postseismic-slip behaviors and challenge some interpretations of fault kinematics which assume pseudotachylyte formation and flow is solely coseismic.

  14. The isotope mass effect on chlorine diffusion in dacite melt, with implications for fractionation during bubble growth

    NASA Astrophysics Data System (ADS)

    Fortin, Marc-Antoine; Watson, E. Bruce; Stern, Richard

    2017-12-01

    Previous experimental studies have revealed that the difference in diffusivity of two isotopes can be significant in some media and can lead to an observable fractionation effect in silicate melts based on isotope mass. Here, we report the first characterization of the difference in diffusivities of stable isotopes of Cl (35Cl and 37Cl). Using a piston-cylinder apparatus, we generated quenched melts of dacitic composition enriched in Cl; from these we fabricated diffusion couples in which Cl atoms were induced to diffuse in a chemical gradient at 1200 to 1350 °C and 1 GPa. We analyzed the run products by secondary ion mass spectrometry (SIMS) for their isotopic compositions along the diffusion profiles, and we report a diffusivity ratio for 37Cl/35Cl of 0.995 ± 0.001 (β = 0.09 ± 0.02). No significant effect of temperature on the diffusivity ratio was discernable over the 150 °C range covered by our experiments. The observed 0.5% difference in diffusivity of the two isotopes could affect our interpretation of isotopic measurements of Cl isotopes in bubble-bearing or degassed magmas, because bubble growth is regulated in part by the diffusive supply of volatiles to the bubble from the surrounding melt. Through numerical simulations, we constrain the extent of Cl isotopic fractionation between bubble and host melt during this process. Bubble growth rates vary widely in nature-which implies a substantial range in the expected magnitude of isotopic fractionation-but plausible growth scenarios lead to Cl isotopic fractionations up to about 5‰ enrichment of 35Cl relative to 37Cl in the bubble. This effect should be considered when interpreting Cl isotopic measurements of systems that have experienced vapor exsolution.

  15. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites.

    PubMed

    Reubi, Olivier; Blundy, Jon

    2009-10-29

    Andesites represent a large proportion of the magmas erupted at continental arc volcanoes and are regarded as a major component in the formation of continental crust. Andesite petrogenesis is therefore fundamental in terms of both volcanic hazard and differentiation of the Earth. Andesites typically contain a significant proportion of crystals showing disequilibrium petrographic characteristics indicative of mixing or mingling between silicic and mafic magmas, which fuels a long-standing debate regarding the significance of these processes in andesite petrogenesis and ultimately questions the abundance of true liquids with andesitic composition. Central to this debate is the distinction between liquids (or melts) and magmas, mixtures of liquids with crystals, which may or may not be co-genetic. With this distinction comes the realization that bulk-rock chemical analyses of petrologically complex andesites can lead to a blurred picture of the fundamental processes behind arc magmatism. Here we present an alternative view of andesite petrogenesis, based on a review of quenched glassy melt inclusions trapped in phenocrysts, whole-rock chemistry, and high-pressure and high-temperature experiments. We argue that true liquids of intermediate composition (59 to 66 wt% SiO(2)) are far less common in the sub-volcanic reservoirs of arc volcanoes than is suggested by the abundance of erupted magma within this compositional range. Effective mingling within upper crustal magmatic reservoirs obscures a compositional bimodality of melts ascending from the lower crust, and masks the fundamental role of silicic melts (>/=66 wt% SiO(2)) beneath intermediate arc volcanoes. This alternative view resolves several puzzling aspects of arc volcanism and provides important clues to the integration of plutonic and volcanic records.

  16. Carbon-saturated monosulfide melting in the shallow mantle: solubility and effect on solidus

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; Lentsch, Nathan; Hirschmann, Marc M.

    2015-12-01

    We present high-pressure experiments from 0.8 to 7.95 GPa to determine the effect of carbon on the solidus of mantle monosulfide. The graphite-saturated solidus of monosulfide (Fe0.69Ni0.23Cu0.01S1.00) is described by a Simon and Glatzel (Z Anorg Allg Chem 178:309-316, 1929) equation T (°C) = 969.0[ P (GPa)/5.92 + 1]0.39 (1 ≤ P ≤ 8) and is 80 ± 25 °C below the melting temperature found for carbon-free conditions. A series of comparison experiments using different capsule configurations and preparations document that the observed solidus-lowering is owing to graphite saturation and not an artifact of different capsules or hydrogen contamination. Concentrations of carbon in quenched graphite-saturated monosulfide melt measured by electron microprobe are 0.1-0.3 wt% in monosulfide melt and below the detection limit (<0.2 wt%) in crystalline monosulfide solid solution. Although there is only a small amount of carbon dissolved in monosulfide melts, the substantial effect on monosulfide solidus temperature means that the carbon-saturated monosulfide (Fe0.69Ni0.23Cu0.01S1.00) solidus intersects continental mantle geotherms inferred from diamond inclusion geobarometry at 6-7 GPa ( 200 km), whereas carbon-free monosulfide (Fe0.69Ni0.23Cu0.01S1.00) solidus does not. The composition investigated (Fe0.69Ni0.23Cu0.01S1.00) has a comparatively low metal/sulfur (M/S) ratio and low Ni/(Fe + Ni), but sulfides with higher (M/S) and with greater Ni/(Fe + Ni) should melt at lower temperatures and these should have a broader melt stability field in the diamond formation environment and in the continental lithosphere. Low carbon solubility in monosulfide melt excludes the possibility that diamonds are crystallized from sulfide melt. Although monosulfide melt can store no more than 2 ppm C in a bulk mantle with 225 ppm S, melts with higher M/S could be a primary host of carbon in the deeper part of the upper mantle. For example, the storage capacity of C in sulfide melts in the deep upper mantle ( 400 km) for a depleted mantle domain (MORB source, 120 ± 30 ppm S) is estimated to be 57 ±_{30}^{63} ppm, and so all the C could be in a sulfide melt. In an enriched (OIB source, 225 ± 25 ppm S) mantle domain, the C stored in sulfide melt in the deep upper mantle is estimated to be 86 ±_{44}^{92} ppm, which would amount to about half the available carbon.

  17. Quench in a conduction-cooled Nb3Sn SMES magnet

    NASA Astrophysics Data System (ADS)

    Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto; Perälä, Raine

    2003-11-01

    Due to the rapid development of cryocoolers, conduction-cooled Nb3Sn devices are nowadays enabled. A 0.2 MJ conduction-cooled Nb3Sn SMES system has been designed and constructed. The nominal current of the coil was 275 A at 10 K. The quench tests have been performed and in this paper the experimental data are compared to the computational one. Due to a slow normal zone propagation, Nb3Sn magnets are not necessarily self-protective. In conduction-cooled coils, a thermal interface provides a protection method known as a quench back. The temperature rise in the coil during a quench was measured with a sensor located on the inner radius of the coil. The current decay was also monitored. The measured temperature increased for approximately 15 s after the current had already decayed. This temperature rise is due to the heat conduction from the hot spot. Thus, the measured temperature does not represent the hot-spot temperature. A computational quench model which takes into account quench back and heat conduction after the current decay was developed in order to understand the measured temperatures. According to the results, a quench back due to the eddy current induced heating of the thermal interface of an LTS coil was an adequate protection method.

  18. An EPR study on tea: Identification of paramagnetic species, effect of heat and sweeteners

    NASA Astrophysics Data System (ADS)

    Bıyık, Recep; Tapramaz, Recep

    2009-10-01

    Tea ( Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn 2+ and Fe 3+ centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 °C and the semiquinone radical lives up to 140 °C while Mn 2+ sextet disappears just above 100 °C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn 2+ and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe 3+ line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.

  19. An EPR study on tea: identification of paramagnetic species, effect of heat and sweeteners.

    PubMed

    Biyik, Recep; Tapramaz, Recep

    2009-10-15

    Tea (Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn(2+) and Fe(3+) centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 degrees C and the semiquinone radical lives up to 140 degrees C while Mn(2+) sextet disappears just above 100 degrees C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn(2+) and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe(3+) line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.

  20. Phase separation and crystallization process of amorphous Fe{sub 78}B{sub 12}Si{sub 9}Ni{sub 1} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhgalin, V. V.; Lad’yanov, V. I.

    2015-08-17

    The influence of the melt heat treatment on the structure and crystallization process of the rapidly quenched amorphous Fe{sub 78}B{sub 12}Si{sub 9}Ni{sub 1} alloys have been investigated by means of x-ray diffraction, DSC and TEM. Amorphous phase separation has been observed in the alloys quenched after the preliminary high temperature heat treatment of the liquid alloy (heating above 1400°C). Comparative analysis of the pair distribution functions demonstrates that this phase separation accompanied by a changes in the local atomic arrangement. It has been found that crystallization process at heating is strongly dependent on the initial amorphous phase structure - homogeneousmore » or phase separated. In the last case crystallization goes through the formation of a new metastable hexagonal phase [a=12.2849(9) Ǻ, c=7.6657(8) Ǻ]. At the same time the activation energy for crystallization (Ea) reduces from 555 to 475 kJ mole{sup −1}.« less

  1. Devitrification and recrystallization of nanoparticle-containing glycerol and PEG-600 solutions.

    PubMed

    Lv, Fukou; Liu, Baolin; Li, Weijie; Jaganathan, Ganesh K

    2014-02-01

    Nanoparticles in solution offer unique electrical, mechanical and thermal properties due to their physical presence and interaction with the state of dispersion. This work is aimed to study the effects of hydroxyapatite (HA) nanoparticles on the devitrification and recrystallization events of two important cryoprotective solutions used in cell and tissue preservation namely glycerol (60%w/w) and PEG-600 (50%w/w). HA nanoparticles (20, 40 or 60 nm) were incorporated into solutions at the content of 0.1% or 0.5%(w/w), and were studied by differential scanning calorimeter (DSC) and cryomicroscopy. The presence of nanoparticles does not change the glass transition temperatures and melting temperatures of quenched solutions, but significantly affects the behavior of devitrification and recrystallization upon warming. Cryomicroscopic investigation showed the complex interactions among solution type, nanoparticle size and nanoparticle content, which apparently influence ice crystal growth or recrystallization in the quenched dispersions. These findings have significant implications for biomaterial cryopreservation, cryosurgery, and food manufacturing. The complexity of ice crystal growth kinetics in nanoparticle-containing dispersions remains to be poorly understood at the moment. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  3. Conversion of Wet Glass to Melt at Lower Seismogenic Zone Conditions: Implications for Pseudotachylyte Creep

    NASA Astrophysics Data System (ADS)

    Proctor, B. P.; Lockner, D. A.; Lowenstern, J. B.; Beeler, N. M.

    2017-10-01

    Coseismic frictional melting and the production of quenched glass called pseudotachylyte is a recurring process during earthquakes. To investigate how glassy materials affect the postseismic strength and stability of faults, obsidian gouges were sheared under dry and wet conditions from 200°C to 300°C at 150 MPa effective normal stress. Dry glass exhibited a brittle rheology at all conditions tested, exhibiting friction values and microstructures consistent with siliciclastic materials. Likewise, wet glass at 200°C exhibited a brittle rheology. In contrast, wet gouges at 300°C transitioned from brittle sliding to linear-viscous (Newtonian) flow at strain rates <3 × 10-4 s-1, indicating melt-like behavior. The viscosity ranged from 2 × 1011 to 7.8 × 1011 Pa-s. Microstructures show that viscous gouges were fully welded with rod-shaped microlites rotated into the flow direction. Fourier transform infrared spectroscopy along with electron backscatter imaging demonstrate that hydration of the glass by diffusion of pore water was the dominant process reducing the viscosity and promoting viscous flow. As much as 5 wt % water diffused into the glass. These results may provide insight into postseismic-slip behaviors and challenge some interpretations of fault kinematics based on studies assuming that pseudotachylyte formation and flow is solely coseismic.

  4. Simulation of possible regolith optical alteration effects on carbonaceous chondrite meteorites

    NASA Technical Reports Server (NTRS)

    Clark, Beth E.; Fanale, Fraser P.; Robinson, Mark S.

    1993-01-01

    As the spectral reflectance search continues for links between meteorites and their parent body asteroids, the effects of optical surface alteration processes need to be considered. We present the results of an experimental simulation of the melting and recrystallization that occurs to a carbonaceous chondrite meteorite regolith powder upon heating. As done for the ordinary chondrite meteorites, we show the effects of possible parent-body regolith alteration processes on reflectance spectra of carbonaceous chondrites (CC's). For this study, six CC's of different mineralogical classes were obtained from the Antarctic Meteorite Collection: two CM meteorites, two CO meteorites, one CK, and one CV. Each sample was ground with a ceramic mortar and pestle to powders with maximum grain sizes of 180 and 90 microns. The reflectance spectra of these powders were measured at RELAB (Brown University) from 0.3 to 2.5 microns. Following comminution, the 90 micron grain size was melted in a nitrogen controlled-atmosphere fusion furnace at an approximate temperature of 1700 C. The fused sample was immediately held above a flow of nitrogen at 0 C for quenching. Following melting and recrystallization, the samples were reground to powders, and the reflectance spectra were remeasured. The effects on spectral reflectance for a sample of the CM carbonaceous chondrite called Murchison are shown.

  5. Polymeric Systems for Amorphous Δ9-Tetrahydrocannabinol Produced by a Hot-Melt Method. Part II: Effect of Oxidation Mechanisms and Chemical Interactions on Stability

    PubMed Central

    MUNJAL, MANISH; ELSOHLY, MAHMOUD A.; REPKA, MICHAEL A.

    2010-01-01

    The objectives of the present research investigations were to (i) elucidate the mechanism for the oxidative degradation of Δ9-tetrahydrocannabinol (THC) in polymer matrix systems prepared by a hot-melt fabrication procedure, and (ii) study the potential for controlling these mechanisms to reduce the degradation of THC in solid dosage formulations. Various factors considered and applied included drug-excipient compatibility, use of antioxidants, cross-linking in polymeric matrices, microenvironment pH, and moisture effect. Instability of THC in polyethylene oxide (PEO)-vitamin E succinate (VES) patches was determined to be due to chemical interaction between the drug and the vitamin as well as with the atmospheric oxygen. Of the different classes and mechanisms of antioxidants studied, quenching of oxygen by reducing agents, namely, ascorbic acid was the most effective in stabilizing THC in PEO-VES matrices. Only 5.8% of the drug degraded in the ascorbic acid-containing patch as compared to the control (31.6%) after 2 months of storage at 40°C. This coupled with the cross-linking extent and adjustment of the pH microenvironment, which seemed to have an impact on the THC degradation, might be effectively utilized towards stabilization of the drug in these polymeric matrices and other pharmaceutical dosage forms. These studies are relevant to the development of a stable transmucosal matrix system for the therapeutic delivery of amorphous THC. PMID:16886199

  6. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3

    NASA Astrophysics Data System (ADS)

    El Shabrawy, Samha; Bocker, Christian; Rüssel, Christian

    2016-10-01

    Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560-700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25-35 nm) was observed.

  7. Determination of torasemide by fluorescence quenching method with some dihalogenated fluorescein dyes as probes

    NASA Astrophysics Data System (ADS)

    Cui, Zhiping; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Hu, Xiaoli; Tian, Jing

    2013-10-01

    A novel fluorescence quenching method for the determination of torasemide (TOR) with some dihalogenated fluorescein dyes as fluorescence probes was developed. In acidulous medium, TOR could interact with some dihalogenated fluorescein dyes such as dichlorofluorescein (DCF), dibromofluorescein (DBF) and diiodofluorescein (DIF) to form binary complexes, which could lead to fluorescence quenching of above dihalogenated fluorescein dyes. The maximum fluorescence emission wavelengths were located at 532 nm (TOR-DCF), 535 nm (TOR-DBF) and 554 nm (TOR-DIF). The relative fluorescence intensities (ΔF = F0 - F) were proportional to the concentration of TOR in certain ranges. The detection limits were 4.8 ng mL-1 for TOR-DCF system, 9.8 ng mL-1 for TOR-DBF system and 35.1 ng mL-1 for TOR-DIF system. The optimum reaction conditions, influencing factors were studied; and the effect of coexisting substances was investigated owing to the highest sensitivity of TOR-DCF system. In addition, the reaction mechanism, composition and structure of the complex were discussed by quantum chemical calculation and Job's method. The fluorescence quenching of dihalogenated fluorescein dyes by TOR was a static quenching process judging from the effect of temperature and the Stern-Volmer plots. The method was satisfactorily applied to the determination of TOR in tablets and human urine samples.

  8. Fabrication of Glassy and Crystalline Ferroelectric Oxide by Containerless Processing

    NASA Astrophysics Data System (ADS)

    Yoda, Shinichi

    1. Instruction Much effort has been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic effects. However, they require a higher cooling rate than glass formed by conventional techniques. Therefore, only amorphous thin-films have been formed, using rapid quenching with a cooling rate >105 K/s. The containerless processing is an attractive synthesis technique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable phase and glassy material. Recently a new ferroelectric materiel, monoclinic BaTi2 O5 , with Currie temperature as 747 K was reported. In this study, we fabricated a bulk BaTi2 O5 glass from melt using containerless processing to study the phase relations and ferroelectric properties of BaTi2 O5 . To our knowledge, this was the first time that a bulk glass of ferroelectric material was fabricated from melt without adding any network-forming oxide. 2. Experiments BaTi2 O5 sphere glass with 2mm diameter was fabricated using containerless processing in an Aerodynamic Levitation Furnace (ALF). The containerless processing allowed the melt to achieve deep undercooling for glass forming. High purity commercial BaTiO3 and TiO2 powders were mixed with a mole ratio of 1:1 and compressed into rods and then sintered at 1427 K for 10 h. Bulk samples with a mass of about 20 mg were cut from the rod, levitated with the ALF, and then melted by a CO2 laser beam. After quenching with a cooling rate of about 1000 K/s, 2 mm diameter sphere glass could be obtained. To analyze the glass structure, a high-energy x-ray diffraction experiment was performed using an incident photon energy of 113.5 keV at the high-energy x-ray diffraction beamline BL04B2 of SPring-8, with a two-axis diffractometer for the disordered materials. The glass-transition behavior was studied by Differential Scanning Calorimetry (DSC) with a heating rate of 10 K/min from room temperature to 1600 K. The structure changes during heating were characterized by powder x-ray diffraction in the temperature range from room temperature to 1100 K. For electrical property measurements, we cut and ground the samples into disks of 0.3 to 0.4 mm thickness and measured the dielectric constant and impedance from room temperature to 1123 K at a heating rate of 3 K/s using Ag electrodes. 3. Results Above the glass transition temperature (972 K), three successive phase transitions, from glass to a metastable α-phase at 972 K, then to a metastable β-phase at 1038 K, and finally to a stable monoclinic γ-phase above 1100 K, were observed. At the crystallization temperature of α-phase, the permittivity jumped instantaneously by more than one order of magnitude, reaching a peak of 1.4 x 107 . This interesting phenomenon, occurring near the crystallization temperature, has important technical implications for obtaining an excellent dielectric glassceramics through controlled crystallization of BaTi2 O5 glass 504b030414000600080000002100828abc13fa0000001c020000130000005b436f6e74656e745f54797065735d2e78

  9. Methods for the evaluation of quench temperature profiles and their application for LHC superconducting short dipole magnets

    NASA Astrophysics Data System (ADS)

    Sanfilippo, S.; Siemko, A.

    2000-08-01

    This paper presents a study of the thermal effects on quench performance for several large Hadron collider (LHC) single aperture short dipole models. The analysis is based on the temperature profile in a superconducting magnet evaluated after a quench. Peak temperatures and temperature gradients in the magnet coil are estimated for different thicknesses of insulation layer between the quench heaters and the coil and different powering and protection parameters. The results show clear correlation between the thermo-mechanical response of the magnet and quench performance. They also display that the optimisation of the position of quench heaters can reduce the decrease of training performance caused by the coexistence of a mechanical weak region and of a local temperature rise.

  10. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer, E-mail: chandraveer.singh@utoronto.ca

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties ofmore » equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.« less

  11. Inclusions of Sulphide Immiscible Melts in Primitive Olivine Phenocrysts from Mantle-Derived Magmas; Preliminary Results

    NASA Astrophysics Data System (ADS)

    Danyushevsky, L.; Ryan, C.; Kamenetsky, V.; Crawford, A.

    2001-12-01

    Sulphide inclusions have been identified in olivine phenocrysts (and in one case in a spinel phenocryst) in primitive volcanic rocks from mid- ocean ridges, subduction-related island arcs and backarc basins. These inclusions represent droplets of an immiscible sulphide melt and are trapped by olivine crystals growing from silicate melts. Sulphide melt is usually trapped as separate inclusions, however combined inclusions of sulphide and silicate melts have also been observed. Sulphide inclusions have rounded shapes and vary in size from several up to 100 microns in diameter. At room temperature sulphide inclusions consist of several phases. These phases are formed as a result of crystallisation of the sulphide melt after it was trapped. Crystallisation occurs due to decreasing temperature in the magma chamber after trapping and/or when magma ascents from the magma chamber during eruptions. In all studied sulphides three different phases can be identified: a high- Fe, low-Ni, low-Cu phase; a high-Fe, high-Ni, low-Cu phase; and high-Fe, low-Ni, high-Cu phase. Low-Cu phases appear to be monomineralic, whereas the high-Cu phase is usually composed of a fine intergrowth of high- and low-Cu phases, resembling the quench 'spinifex' structure. Fe, Ni and Cu are the major elements in all sulphides studied. The amount of Ni decreases with decreasing forsterite content of the host olivine phenocryst, which is an index of the degree of silicate magma fractionation. Since Ni content of the silicate magma is decreasing during fractionation, this indicates either that the immiscible sulfide melt remains in equilibrium with the silicate melt continuously changing its composition during fractionation, or that the sulfide melt is continuously separated from the silicate melt during fractionation, with later formed droplets having lower Ni content due to the lower Ni content of the evolved, stronger fractionated silicate melt. Trace element contents of the sulfide inclusions have been analysed on the proton microprobe at CSIRO in Sydney. The main trace elements in the sulfide inclusions are Zn, Pb, Ag, and Se. Other trace elements are below detection limits, which are normally at a level of several ppm. Zn concentrations (120 +/- 40 ppm) in sulphides are similar to those in silicate melts. This indicates that separation of the sulfide melt does not affect Zn contents of silicate melts. On the contrary, Ag (30 +/- 10 ppm) and Pb (40 +/- 10 ppm) contents in sulphides are at least in order of magnitude higher than in the silicate melt, and thus separation of the immiscible sulfide melt can significantly decrease Pb and Ag contents of the silicate magma. The widespread occurrence of sulfide inclusions, which were also described in olivine phenocrysts from ocean island basalts, indicates common saturation at low pressure of mantle-derived magmas with reduced sulfur.

  12. A seismogenic zone in the deep crust indicated by pseudotachylytes and ultramylonites in granulite-facies rocks of Calabria (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Altenberger, U.; Prosser, G.; Grande, A.; Günter, C.; Langone, A.

    2013-10-01

    Pseudotachylyte veins frequently associated with mylonites and ultramylonites occur within migmatitic paragneisses, metamonzodiorites, as well as felsic and mafic granulites at the base of the section of the Hercynian lower crust exposed in Calabria (Southern Italy). The crustal section is tectonically superposed on lower grade units. Ultramylonites and pseudotachylytes are particularly well developed in migmatitic paragneisses, whereas sparse fault-related pseudotachylytes and thin mylonite/ultramylonite bands occur in granulite-facies rocks. The presence of sillimanite and clinopyroxene in ultramylonites and mylonites indicates that relatively high-temperature conditions preceded the formation of pseudotachylytes. We have analysed pseudotachylytes from different rock types to ascertain their deep crustal origin and to better understand the relationships between brittle and ductile processes during deformation of the deeper crust. Different protoliths were selected to test how lithology controls pseudotachylyte composition and textures. In migmatites and felsic granulites, euhedral or cauliflower-shaped garnets directly crystallized from pseudotachylyte melts of near andesitic composition. This indicates that pseudotachylytes originated at deep crustal conditions (>0.75 GPa). In mafic protoliths, quenched needle-to-feather-shaped high-alumina orthopyroxene occurs in contact with newly crystallized plagioclase. The pyroxene crystallizes in garnet-free and garnet-bearing veins. The simultaneous growth of orthopyroxene and plagioclase as well as almandine, suggests lower crustal origin, with pressures in excess of 0.85 GPa. The existence of melts of different composition in the same vein indicates the stepwise, non-equilibrium conditions of frictional melting. Melt formed and intruded into pre-existing anisotropies. In mafic granulites, brittle faulting is localized in a previously formed thin high-temperature mylonite bands. migmatitic gneisses are deformed into ultramylonite domains characterized by s-c fabric. Small grain size and fluids lowered the effective stress on the c planes favouring a seismic event and the consequent melt generation. Microstructures and ductile deformation of pseudotachylytes suggest continuous ductile flow punctuated by episodes of high-strain rate, leading to seismic events and melting.

  13. Nitrogen partitioning during core-mantle differentiation

    NASA Astrophysics Data System (ADS)

    Speelmanns, I. M.; Schmidt, M. W.; Liebske, C.

    2016-12-01

    This study investiagtes nitrogen partitioing between metal and silicate melts as relevant for core segregation during the accretion of planetesimals into the Earth. On present day Earth, N belongs to the most important elements, as it is one of the key constituents of our atmosphere and forms the basis of life. However, the geochemistry of N, i.e. its distribution and isotopic fractionation between Earth's deep reservoirs is not well constrained. In order to determine the partitioning behaviour of N, a centrifuging piston cylinder was used to euqilibrate and then gravitationally separate metal-silicate melt pairs at 1250 °C, 1 GPa over the range of oxygen fugacities thought to have prevailied druing core segreagtion (IW-4 to IW). Complete segregation of the two melts was reached within 3 hours at 1000 g, the interface showing a nice meniscus The applied double capsule technique, using an outer metallic and inner non-metallic (mostly graphite) capsule, minimizes volatile loss over the course of the experiment compared to single non-metallic capsules. The two quenched melts were cut apart, cleaned at the outside and N concentrations of the melts were analysed on bulk samples by an elemental analyser. Nevertheless, the low amount of sample material and the N yield in the high pressure experiments required the developement of new analytical routines. Despite these experimental and analytical difficulties, we were able to determine a DNmetal/silicateof 13±0.25 at IW-1, N partitioning into the core froming metal. The few availible literature data [1],[2] suggest that N changes its compatibility favoring the silicate melt or magma ocean at around IW-2.5. In order to asses how much N may effectively be contained in the core and the silicate Earth, experiments characterizing N behaviour over the entire range of core formation condtitions are well under way. [1] Kadik et al., (2011) Geochemistry International 49.5: 429-438. [2] Roskosz et al., (2013) GCA 121: 15-28.

  14. An experimental study of ^{{{{Fe}}^{2 + } {-}{{Mg}}}} K_{{D}} between orthopyroxene and rhyolite: a strong dependence on H2O in the melt

    NASA Astrophysics Data System (ADS)

    Waters, Laura E.; Lange, Rebecca A.

    2017-06-01

    The effect of temperature, pressure, and dissolved H2O in the melt on the Fe2+-Mg exchange coefficient between orthopyroxene and rhyolite melt was investigated with a series of H2O fluid-saturated phase-equilibrium experiments. Experiments were conducted in a rapid-quench cold-seal pressure vessel over a temperature and pressure range of 785-850 °C and 80-185 MPa, respectively. Oxygen fugacity was buffered with the solid Ni-NiO assemblage in a double-capsule assembly. These experiments, when combined with H2O-undersaturated experiments in the literature, show that ^{{{{Fe}}^{2 + } {-}{{Mg}}}} K_{{D}} between orthopyroxene and rhyolite liquid increases strongly (from 0.23 to 0.54) as a function of dissolved water in the melt (from 2.7 to 5.6 wt%). There is no detectable effect of temperature or pressure over an interval of 65 °C and 100 MPa, respectively, on the Fe2+-Mg exchange coefficient values. The data show that Fe-rich orthopyroxene is favored at high water contents, whereas Mg-rich orthopyroxene crystallizes at low water contents. It is proposed that the effect of dissolved water in the melt on the composition of orthopyroxene is analogous to its effect on the composition of plagioclase. In the latter case, dissolved hydroxyl groups preferentially complex with Na+ relative to Ca2+, which reduces the activity of the albite component, leading to a more anorthite-rich (calcic) plagioclase. Similarly, it is proposed that dissolved hydroxyl groups preferentially complex with Mg2+ relative to Fe2+, thus lowering the activity of the enstatite component, leading to a more Fe-rich orthopyroxene at high water contents in the melt. The experimental results presented in this study show that reversely zoned pyroxene (i.e., Mg-rich rims) in silicic magmas may be a result of H2O degassing and not necessarily the result of mixing with a more mafic magma.

  15. Short- and medium-range structure of multicomponent bioactive glasses and melts: An assessment of the performances of shell-model and rigid-ion potentials.

    PubMed

    Tilocca, Antonio

    2008-08-28

    Classical and ab initio molecular dynamics (MD) simulations have been carried out to investigate the effect of a different treatment of interatomic forces in modeling the structural properties of multicomponent glasses and melts. The simulated system is a soda-lime phosphosilicate composition with bioactive properties. Because the bioactivity of these materials depends on their medium-range structural features, such as the network connectivity and the Q(n) distribution (where Q(n) is a tetrahedral species bonded to n bridging oxygens) of silicon and phosphorus network formers, it is essential to assess whether, and up to what extent, classical potentials can reproduce these properties. The results indicate that the inclusion of the oxide ion polarization through a shell-model (SM) approach provides a more accurate representation of the medium-range structure compared to rigid-ion (RI) potentials. Insight into the causes of these improvements has been obtained by comparing the melt-and-quench transformation of a small sample of the same system, modeled using Car-Parrinello MD (CPMD), to the classical MD runs with SM and RI potentials. Both classical potentials show some limitations in reproducing the highly distorted structure of the melt denoted by the CPMD runs; however, the inclusion of polarization in the SM potential results in a better and qualitatively correct dynamical balance between the interconversion of Q(n) species during the cooling of the melt. This effect seems to reflect the slower decay of the fraction of structural defects during the cooling with the SM potential. Because these transient defects have a central role in mediating the Q(n) transformations, as previously proposed and confirmed by the current simulations, their presence in the melt is essential to produce an accurate final distribution of Q(n) species in the glass.

  16. The effects of small amounts of H2O on partial melting of model spinel lherzolite in the system CMAS

    NASA Astrophysics Data System (ADS)

    Liu, X.; St. C. Oneill, H.

    2003-04-01

    Water (H_2O) is so effective at lowering the solidus temperatures of silicate systems that even small amounts of H_2O are suspected to be important in the genesis of basaltic magmas. The realization that petrologically significant amounts of H_2O can be stored in nominally anhydrous mantle minerals (olivine and pyroxenes) has fundamental implications for the understanding of partial melting in the mantle, for it implies that the role that H_2O plays in mantle melting may not be appropriately described by models in which the melting is controlled by hydrous phases such as amphibole. Although the effect of water in suppressing the liquidus during crystallization is quite well understood, such observations do not provide direct quantitative information on the solidus. This is because liquidus crystallization occurs at constant major-element composition of the system, but at unbuffered component activities (high thermodynamic variance). By contrast, for partial melting at the solidus the major-element component activities are buffered by the coexisting crystalline phases (low variance), but the major-element composition of the melt can change as a function of added H_2O. Accordingly we have determined both the solidus temperature and the melt composition in the system CMAS with small additions of H_2O, to 4 wt%, in equilibrium with the four-phase lherzolite assemblage of fo+opx+cpx+sp. Experiments were conducted at 1.1 GPa and temperatures from 1473 K to the dry solidus at 1593 K in a piston-cylinder apparatus. Starting materials were pre-synthesised assemblage of fo+opx+cpx+sp, plus an oxide/hydroxide mix of approximately the anticipated melt composition. H_2O was added as either Mg(OH)_2 or Al(OH)_3. The crystalline assemblage and melt starting mix were added as separate layers inside sealed Pt capsules, to ensure large volumes of crystal-free melt. After the run doubly polished sections were prepared in order to analyse the quenched melt by FTIR spectroscopy, to quantify the amounts of H_2O. This is necessary, as Pt capsules are to some extent open to H_2 diffusion. All melts were found to contain CO_2 (<0.7 wt%), which appears to come mainly from the hydroxide starting materials but also by C diffusion through the Pt capsule. Since CO_2 is experimentally correlated with H_2O, its presence significantly effects the interpretation of the results. Ignoring this complication, we find that 1 wt% H_2O decreases the solidus by ˜40 K; melt compositions do not change greatly, the main effect being a small decrease in MgO.

  17. Role of crystallizational differention in the origin of island-arc andesitic melts: evidence from data on melt inclusions and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. P.; Portnyagin, M.; Bindeman, I. N.; Bazanova, L. I.

    2012-12-01

    Several recent studies of melt inclusions in island-arc rocks revealed a strong bimodality of the melt compositions at the predominance of basic and silicic melts and the scarcity of intermediate melts with SiO2=59-66 wt% (e.g. [1]). These observations were used to interpret the origin of island-arc andesites by magma mingling, crustal assimilation and crystal accumulation rather than by fractional crystallization of basaltic magmas. In this work we addressed the question about the scarcity of andesitic melts in island-arc setting by systematic study of bulk compositions, melt inclusions and oxygen isotopes in minerals from Avachinskiy volcano in Kamchatka. We studied ~500 melt inclusions in 6 different mineral phases (Ol, Cpx, Opx, Pl, Amph, Mt), and concentrated on rapidly-quenched tephra samples from 40 Holocene eruptions of andesites and basaltic andesites. The melt inclusions span a large range of compositions from basalts to rhyolites. In comparison with host bulk tephra samples, melt inclusions tend to have more silicic compositions (up to 10 wt% of SiO2), and this disparity tend to increase with increasing SiO2 content in the host rocks. Both melt inclusion and host rock compositions form trends along the line dividing low- and middle-K island-arc series, and variations of major elements are continuous, without apparent bimodality, which is observed in data set from [1]. The MI statistical distribution is rather three-modal with maxima at ~56-58, ~66 and 74 wt% of SiO2. Much of the major element variability in MI can be explained by fractional crystallization from parental basaltic melts using numerical modeling of crystallization path. Magnetite crystallization starts at ~58 wt% of SiO2 and affects significantly on the evolutional path of melts. Abundant crystallization of magnetite lead to formation of more silica rich coexistent melts and change of crystallizing assemblage occurred at ~60 wt% of SiO2, when Opx replaced Ol, and Amph and Ap become stable. Paragenesis of OPx, CPx, Amph, Pl, Mt, Ilm and Ap dominated the following evolution of melts toward strongly acid compositions with 78-80 wt% SiO2. Individual Pl and Amph crystals are in magmatic isotopic equilibrium, have heavy δ18O values increasing from 6.3 ‰ in basaltic andesites to 7.1 ‰ in andesites, suggesting that magmatic evolution started from primary high-d18O basalt likely related to the abundant high-d18O sources described for Kamchatkan primitive magmas. The oxygen isotopic data support the conclusion that island-arc andesitic melts of Avachinsky Volcano generate predominantly due to the processes of fractional crystallization of high-d18O. The new data on composition of melt inclusions allowed us to reconstruct the entire spectrum of parental melts for Avacha volcano. Melt inclusions in different minerals form coherent trends of major elements, which can be well explained by fractional crystallization. Unlike some other island-arc volcanoes, Avachinskiy melts do not display clear bimodality of SiO2 content. Melts of intermediate compositions are relatively abundant and found in minerals from basaltic andesites. [1] Reuby & Blundy (2009) Nature, 461(7268), 1269-1273.

  18. Effect of alkaline earth modifier on the optical and structural properties of Cu2+ doped phosphate glasses as a bandpass filter

    NASA Astrophysics Data System (ADS)

    Farouk, M.; Samir, A.; El Okr, M.

    2018-02-01

    Glasses of composition [16RO-3Al2O3sbnd 6CuOsbnd 20Na2Osbnd 55P2O5], where R is the alkaline earth (R = Mg, Ca, Sr and Ba mol. %), were prepared by conventional melt quenching technique. The glass samples were characterized by X-ray diffraction, infrared spectroscopy, and spectrophotometer. XRD patterns show no sharp peaks indicating the non-crystalline nature of the prepared glasses. The density and molar volume of the glass systems were determined in order to study their structures. These results revealed that addition of alkaline earth elements leads to the formation of non-bridging oxygens (NBOs) and expands (opens up) the structure. The infrared spectra were analyzed to quantify the present phosphate groups. The optical absorption spectra of Cu2+ ions show the characteristic broadband single of Cu2+ ions in octahedral symmetry. The band gap was estimated following two methodologies. The first method considers the band edge of the transmission, while the second approach relays on the estimated values of the optical constants. A decent agreement for the band gap values using the two methods was obtained.

  19. The effect of UV exposure and heat treatment on crystallization behavior of photosensitive glasses

    NASA Astrophysics Data System (ADS)

    Kıbrıslı, Orhan; Ersundu, Ali Erçin

    2018-05-01

    In this study, photosensitive glasses in the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, silver, tin, antimony) and halogenides (NaF and KBr) were synthesized through a conventional melt-quenching technique. The crystallization mechanism was investigated for solely heat-treated and UV-exposed + heat-treated samples using differential thermal analysis (DTA), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) techniques to understand the effect of UV exposure on crystallization behavior of photosensitive glasses. Accordingly, non-isothermal DTA measurements were performed at different heating rates to determine crystallization peak, T p, and onset, T c, temperatures. For solely heat-treated samples, the kinetic parameters such as the Avrami constant, n, and morphology index, m, were calculated as 1 from the Ozawa method indicating surface crystallization and the value of crystallization activation energy was calculated as 944 kJ/mol using modified Kissinger method. On the contrary, bulk crystallization was found to be predominant for UV exposed + heat-treated samples revealing that UV exposure is the primary cause of bulk crystallization in photosensitive glasses.

  20. Quench dynamics in SRF cavities: can we locate the quench origin with 2nd sound?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maximenko, Yulia; /Moscow, MIPT; Segatskov, Dmitri A.

    2011-03-01

    A newly developed method of locating quenches in SRF cavities by detecting second-sound waves has been gaining popularity in SRF laboratories. The technique is based on measurements of time delays between the quench as determined by the RF system and arrival of the second-sound wave to the multiple detectors placed around the cavity in superfluid helium. Unlike multi-channel temperature mapping, this approach requires only a few sensors and simple readout electronics; it can be used with SRF cavities of almost arbitrary shape. One of its drawbacks is that being an indirect method it requires one to solve an inverse problemmore » to find the location of a quench. We tried to solve this inverse problem by using a parametric forward model. By analyzing the data we found that the approximation where the second-sound emitter is a near-singular source does not describe the physical system well enough. A time-dependent analysis of the quench process can help us to put forward a more adequate model. We present here our current algorithm to solve the inverse problem and discuss the experimental results.« less

  1. Quenching histories of galaxies and the role of AGN feedback

    NASA Astrophysics Data System (ADS)

    Smethurst, Rebecca Jane; Lintott, Chris; Simmons, Brooke; Galaxy Zoo Team

    2016-01-01

    Two open issues in modern astrophysics are: (i) how do galaxies fully quench their star formation and (ii) how is this affected - or not - by AGN feedback? I present the results of a new Bayesian-MCMC analysis of the star formation histories of over 126,000 galaxies across the colour magnitude diagram showing that diverse quenching mechanisms are instrumental in the formation of the present day red sequence. Using classifications from Galaxy Zoo we show that the rate at which quenching can occur is morphologically dependent in each of the blue cloud, green valley and red sequence. We discuss the nature of these possible quenching mechanisms, considering the influence of secular evolution, galaxy interactions and mergers, both with and without black hole activity. We focus particularly on the relationship between these quenched star formation histories and the presence of an AGN by using this new Bayesian method to show a population of type 2 AGN host galaxies have recently (within 2 Gyr) undergone a rapid (τ < 1 Gyr) drop in their star formation rate. With this result we therefore present the first statistically supported observational evidence that AGN feedback is an important mechanism for the cessation of star formation in this population of galaxies. The diversity of this new method also highlights that such rapid quenching histories cannot account fully for all the quenching across the current AGN host population. We demonstrate that slower (τ > 2 Gyr) quenching rates dominate for high stellar mass (log10[M*/M⊙] > 10.75) hosts of AGN with both early- and late-type morphology. We discuss how these results show that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes across the entirety of the colour magnitude diagram.

  2. Fabrication of transparent lead-free KNN glass ceramics by incorporation method

    PubMed Central

    2012-01-01

    The incorporation method was employed to produce potassium sodium niobate [KNN] (K0.5Na0.5NbO3) glass ceramics from the KNN-SiO2 system. This incorporation method combines a simple mixed-oxide technique for producing KNN powder and a conventional melt-quenching technique to form the resulting glass. KNN was calcined at 800°C and subsequently mixed with SiO2 in the KNN:SiO2 ratio of 75:25 (mol%). The successfully produced optically transparent glass was then subjected to a heat treatment schedule at temperatures ranging from 525°C -575°C for crystallization. All glass ceramics of more than 40% transmittance crystallized into KNN nanocrystals that were rectangular in shape and dispersed well throughout the glass matrix. The crystal size and crystallinity were found to increase with increasing heat treatment temperature, which in turn plays an important role in controlling the properties of the glass ceramics, including physical, optical, and dielectric properties. The transparency of the glass samples decreased with increasing crystal size. The maximum room temperature dielectric constant (εr) was as high as 474 at 10 kHz with an acceptable low loss (tanδ) around 0.02 at 10 kHz. PMID:22340426

  3. Quench simulations for superconducting elements in the LHC accelerator

    NASA Astrophysics Data System (ADS)

    Sonnemann, F.; Schmidt, R.

    2000-08-01

    The design of the protection system for the superconducting elements in an accelerator such as the large Hadron collider (LHC), now under construction at CERN, requires a detailed understanding of the thermo-hydraulic and electrodynamic processes during a quench. A numerical program (SPQR - simulation program for quench research) has been developed to evaluate temperature and voltage distributions during a quench as a function of space and time. The quench process is simulated by approximating the heat balance equation with the finite difference method in presence of variable cooling and powering conditions. The simulation predicts quench propagation along a superconducting cable, forced quenching with heaters, impact of eddy currents induced by a magnetic field change, and heat transfer through an insulation layer into helium, an adjacent conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequate dimensioning and protection of the highly stabilised superconducting cables for connecting magnets (busbars), optimising the quench heater strip layout for the main magnets, and studying quench back by induced eddy currents in the superconductor. After the introduction of the theoretical approach, some applications of the simulation model for the LHC dipole and corrector magnets are presented and the outcome of the studies is compared with experimental data.

  4. Satellite quenching time-scales in clusters from projected phase space measurements matched to simulated orbits

    NASA Astrophysics Data System (ADS)

    Oman, Kyle A.; Hudson, Michael J.

    2016-12-01

    We measure the star formation quenching efficiency and time-scale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed Sloan Digital Sky Survey galaxies in and around clusters based on their position and velocity offsets from their host cluster. We study the relationship between their star formation rates and their likely orbital histories via a simple model in which star formation is quenched once a delay time after infall has elapsed. Our orbit library method is designed to isolate the environmental effect on the star formation rate due to a galaxy's present-day host cluster from `pre-processing' in previous group hosts. We find that quenching of satellite galaxies of all stellar masses in our sample (109-10^{11.5}M_{⊙}) by massive (> 10^{13} M_{⊙}) clusters is essentially 100 per cent efficient. Our fits show that all galaxies quench on their first infall, approximately at or within a Gyr of their first pericentric passage. There is little variation in the onset of quenching from galaxy-to-galaxy: the spread in this time is at most ˜2 Gyr at fixed M*. Higher mass satellites quench earlier, with very little dependence on host cluster mass in the range probed by our sample.

  5. Effect of lithium on thermal and structural properties of zinc vanadate tellurite glass

    NASA Astrophysics Data System (ADS)

    Rani, Sunita; Kundu, R. S.; Ahlawat, Neetu; Rani, Suman; Sangwan, Kanta Maan; Ahlawat, Navneet

    2018-04-01

    Glasses having composition 60TeO2-15V2O5-(25-x) ZnO-xLi2O where x= 0, 5, 10 mol% were prepared by standard melt quench technique. The glass transition temperature is measured by DSC technique using TA instrument and found to decrease with increase in Li2O signifies that glass formation tendency, thermal stability and compactness of glass structure decreases. The deconvolution of FTIR spectra evidenced the existence of TeO4, TeO3 and TeO6 structural units in glass network and vanadium exists as VO4 and VO5 structural units.

  6. Dielectric relaxation studies in Se{sub 90}Cd{sub 8}Sb{sub 2} glassy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Nitesh; Rao, Vandita; Dwivedi, D. K.

    2016-05-06

    Se{sub 90}Cd{sub 8}Sb{sub 2} chalcogenide semiconducting alloy was prepared by melt quench technique. The prepared glassy alloy has been characterized by techniques such as scanning electron microscopy (SEM) and energy dispersive X-ray (EDAX).Dielectric properties of Se{sub 90}Cd{sub 8}Sb{sub 2} chalcogenide semiconductor have been studied using impedance spectroscopic technique in the frequency range 5×10{sup 2}Hz - 1×10{sup 5}Hz and in temperature range 303-318K. It is found that dielectric constant ε′ and dielectric loss factor ε″ are dependent on frequency and temperature.

  7. Effect of Sb content on the physical properties of Ge-Se-Te chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Vashist, Priyanka; Anjali, Patial, Balbir Singh; Thakur, Nagesh

    2018-05-01

    In the present study, the bulk as-(Se80Te20)94-xGe6Sbx (x = 0, 1, 2, 4, 6, 8) glasses were synthesized using melt quenching technique. The physical properties viz coordination number, lone pair of electrons, number of constraints, glass transition temperature, mean bond energy, cohesive energy, electro-negativity and average heat of atomization of the investigated composition are reported and discussed. It is inferred that on increasing Sb content; average coordination number, average number of constraints, mean bond energy, cohesive energy and glass transition temperature increases but lone pair of electrons, average heat of atomization and deviation of stoichiometry decreases.

  8. Superconducting glass-ceramics in the Bi-Sr-Ca-Cu-O system

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kim, Cheol J.; Bausal, Narottam P.

    1990-01-01

    Differential thermal analysis, XRD, SEM, and resistivity measurements, have been used to study the recrystallization during various heat treatments of a Bi1.5SrCaCu2O(z) glass obtained by rapid quenching from the melt. Heating at 450 C formed the Bi(2+x)Sr(2-x)-CuO(z) solid solution designated 'R'. Between 765 and 845 C, R reacts slowly with the glass to form the 80 K superconductor Bi2(Sr,Ca)3Cu2O(z), together with CuO. Heating for 7 days at the higher temperature, followed by slow cooling, raised the temperature of zero resistance to 77 K.

  9. Melting and Crystallization at Core Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Fiquet, G.; Pradhan, G. K.; Siebert, J.; Auzende, A. L.; Morard, G.; Antonangeli, D.; Garbarino, G.

    2015-12-01

    Early crystallization of magma oceans may generate original compositional heterogeneities in the mantle. Dense basal melts may also be trapped in the lowermost mantle and explain mantle regions with ultralow seismic velocities (ULVZs) near the core-mantle boundary [1]. To test this hypothesis, we first constructed the solidus curve of a natural peridotite between 36 and 140 gigapascals using laser-heated diamond anvil cells. In our experiments, melting at core-mantle boundary pressures occurs around 4100 ± 150 K, which is a value that can match estimated mantle geotherms. Similar results were found for a chondritic mantle [2] whereas much lower pyrolitic melting temperatures were recently proposed from textural and chemical characterizations of quenched samples [3]. We also investigated the melting properties of natural mid ocean ridge basalt (MORB) up to core-mantle boundary (CMB) pressures. At CMB pressure (135 GPa), we obtain a MORB solidus temperature of 3950 ±150 K. If our solidus temperatures are in good agreement with recent results proposed for a similar composition [4], the textural and chemical characterizations of our recovered samples made by analytical transmission electron microscope indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition is enriched in FeO, which suggests that such partial melts could be gravitationnally stable at the core mantle boundary. Our observations are tested against calculations made using a self-consistent thermodynamic database for the MgO-FeO-SiO2 system from 20 GPa to 140 GPa [5]. These observations and calculations provide a first step towards a consistent thermodynamic modelling of the crystallization sequence of the magma ocean, which shows that the existence of a dense iron rich and fusible layer above the CMB at the end of the crystallization is plausible [5], which is in contradiction with the conclusions drawn in [4]. [1] Williams & Garnero (1996) Science 273, 1528. [2] Andrault et al. (2011), EPSL 304, 251. [3] Nomura et al. (2014) Science 343, 522. [4] Andrault et al. (2014) Science 344, 892. [5] Boukaré et al (2015) J.Geophys. Res, in press.

  10. Improved stability, magnetic field preservation and recovery speed in (RE)Ba2Cu3O x -based no-insulation magnets via a graded-resistance approach

    NASA Astrophysics Data System (ADS)

    Kan Chan, Wan; Schwartz, Justin

    2017-07-01

    The no-insulation (NI) approach to winding (RE)Ba2Cu3O x (REBCO) high temperature superconductor solenoids has shown significant promise for maximizing the efficient usage of conductor while providing self-protecting operation. Self-protection in a NI coil, however, does not diminish the likelihood that a recoverable quench occurs. During a disturbance resulting in a recoverable quench, owing to the low turn-to-turn contact resistance, transport current bypasses the normal zone by flowing directly from the current input lead to the output lead, leading to a near total loss of the azimuthal current responsible for magnetic field generation. The consequences are twofold. First, a long recovery process is needed to recharge the coil to full operational functionality. Second, a fast magnetic field transient is created due to the sudden drop in magnetic field in the quenching coil. The latter could induce a global inductive quench propagation in other coils of a multi-coil NI magnet, increasing the likelihood of quenching and accelerating the depletion of useful current in other coils, lengthening the post-quench recovery process. Here a novel graded-resistance method is proposed to tackle the mentioned problems while maintaining the superior thermal stability and self-protecting capability of NI magnets. Through computational modeling and analysis on a hybrid multiphysics model, patterned resistive-conductive layers are inserted between selected turn-to-turn contacts to contain hot-spot heat propagation while maintaining the turn-wise current sharing required for self-protection, resulting in faster post-quench recovery and reduced magnetic field transient. Effectiveness of the method is studied at 4.2 and 77 K. Through the proposed method, REBCO magnets with high current density, high thermal stability, low likelihood of quenching, and rapid, passive recovery emerge with high operational reliability and availability.

  11. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  12. Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein.

    PubMed

    Epps, D E; Raub, T J; Caiolfa, V; Chiari, A; Zamai, M

    1999-01-01

    Binding of new chemical entities to serum proteins is an issue confronting pharmaceutical companies during development of potential therapeutic agents. Most drugs bind to the most abundant plasma protein, human serum albumin (HSA), at two major binding sites. Excepting fluorescence spectroscopy, existing methods for assaying drug binding to serum albumin are insensitive to higher-affinity compounds and can be labour-intensive, time-consuming, and usually require compound-specific assays. This led us to examine alternative ways to measure drug-albumin interaction. One method described here uses fluorescence quenching of the single tryptophan (Trp) residue in HSA excited at 295 nm to measure drug-binding affinity. Unfortunately, many compounds absorb, fluoresce, or both, in this UV wavelength region of the spectrum. Several types of binding phenomenon and spectral interference were identified by use of six structurally unrelated compounds and the equations necessary to make corrections mathematically were derived and applied to calculate binding constants accurately. The general cases were: direct quenching of Trp fluorescence by optically transparent ligands with low or high affinities; binding of optically transparent, non-fluorescent ligands to two specific sites where both sites or only one site result in Trp fluorescence quenching; and chromophores whose absorption either overlaps the Trp emission and quenches by energy transfer or absorbs light at the Trp fluorescence excitation wavelength producing absorptive screening as well as fluorescence quenching. Unless identification of the site specificity of drug binding to serum albumin is desired, quenching of the Trp fluorescence of albumin by titration with ligand is a rapid and facile method for determining the binding affinities of drugs for serum albumin.

  13. Melt migration modeling in partially molten upper mantle

    NASA Astrophysics Data System (ADS)

    Ghods, Abdolreza

    The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region beneath the observed neo-volcanic zone. My models consist of three parts; lithosphere, asthenosphere and a melt extraction region. It is shown that melt migrates vertically within the asthenosphere, and forms a high melt fraction layer beneath the sloping base of the impermeable lithosphere. Within the sloping high melt fraction layer, melt migrates laterally towards the ridge. In order to simulate melt migration via crustal fractures and cracks, melt is extracted from a melt extraction region extending to the base of the crust. Performance of the melt focusing mechanism is not significantly sensitive to the size of melt extraction region, melt extraction threshold and spreading rate. In all of the models, about half of the total melt production freezes beneath the cooling base of the lithosphere, and the rest is effectively focused towards the ridge and forms the crust. To meet the computational demand for a precise tracing of the deforming upwelling plume and including the chemical buoyancy of the partially molten zone in my models, a new numerical method is developed to solve the related pure advection equations. The numerical method is based on Second Moment numerical method of Egan and Mahoney [1972] which is improved to maintain a high numerical accuracy in shear and rotational flow fields. In comparison with previous numerical methods, my numerical method is a cost-effective, non-diffusive and shape preserving method, and it can also be used to trace a deforming body in compressible flow fields.

  14. Thermal stability analysis of a superconducting magnet considering heat flow between magnet surface and liquid helium

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Hwang, Y. J.; Ahn, M. C.; Choi, Y. S.

    2018-07-01

    This paper represents a numerical calculation method that enables highly-accurate simulations on temperature analysis of superconducting magnets considering the heat flow between the magnet and liquid helium during a quench. A three-dimensional (3D) superconducting magnet space was divided into many cells and the finite-difference method (FDM) was adopted to calculate the superconducting magnet temperatures governed by the heat transfer and joule heating of the each cell during a quench. To enhance the accuracy of the temperature calculations during a quench, the heat flow between the superconducting magnet surface and liquid helium, which lowers the magnet temperatures, was considered in this work. The electrical equation coupled with the governing thermal equation was also applied to calculate the change of the decay of the magnet current related to the joule heating. The proposed FDM method for temperatures calculation of a superconducting magnet during a quench process achieved results that were in good agreement with those obtained from an experiment.

  15. Crystal Phases Formed in a CaO-Fe2O3 System Under a High Cooling Rate in Air

    NASA Astrophysics Data System (ADS)

    Kashiwaya, Yoshiaki

    2017-12-01

    A CaO-Fe2O3 system is a fundamental binary system for the iron ore sintering process. Although the basic reactions have been investigated since the 1960s, melting and solidification caused by the combustion of coke results in an unstable state owing to extreme temperature variations. In this study, using a hot thermocouple method, samples of 10 pct CaO-90 pct Fe2O3 and 20 pct CaO-80 pct Fe2O3 were melted on a thermocouple and quenched with several techniques. The obtained samples were precisely examined by XRD. It was found that the sample containing 10 pct CaO-90 pct Fe2O3 changed to 10 pct CaO-13 pct FeO-77 pct Fe2O3 under an oxygen partial pressure ( P_{{{O}2 }} ) of 0.21 during melting. For the 10 pct CaO sample, the crystal phases found at a low cooling rate (509 K/s) were WFss, C4WF8 (C: CaO, W: FeO, F: Fe2O3), and C2W4F9. When the sample composition was 20 pct CaO, the precipitated crystal phases were C4WF4, C4F7, and C4WF8. On the other hand, the crystal phases for high cooling rates (1590 and 7900 K/s) with 10 pct CaO were WFss (solid solution of WF and F), F, and C2W4F9. The formation of the equilibrium phases WFss, F, C4WF4, and C4WF8 can be understood by examining the isothermal section of the phase diagrams, while the unstable phases C2W4F9 and C4F7 are discussed on the basis of the reactions under an equilibrium state.

  16. Method-Unifying View of Loop-Formation Kinetics in Peptide and Protein Folding.

    PubMed

    Jacob, Maik H; D'Souza, Roy N; Schwarzlose, Thomas; Wang, Xiaojuan; Huang, Fang; Haas, Elisha; Nau, Werner M

    2018-04-26

    Protein folding can be described as a probabilistic succession of events in which the peptide chain forms loops closed by specific amino acid residue contacts, herein referred to as loop nodes. To measure loop rates, several photophysical methods have been introduced where a pair of optically active probes is incorporated at selected chain positions and the excited probe undergoes contact quenching (CQ) upon collision with the second probe. The quenching mechanisms involved triplet-triplet energy transfer, photoinduced electron transfer, and collision-induced fluorescence quenching, where the fluorescence of Dbo, an asparagine residue conjugated to 2,3-diazabicyclo[2.2.2]octane, is quenched by tryptophan. The discrepancy between the loop rates afforded from these three CQ techniques has, however, remained unresolved. In analyzing this discrepancy, we now report two short-distance FRET methods where Dbo acts as an energy acceptor in combination with tryptophan and naphtylalanine, two donors with largely different fluorescence lifetimes of 1.3 and 33 ns, respectively. Despite the different quenching mechanisms, the rates from FRET and CQ methods were, surprisingly, of comparable magnitude. This combination of FRET and CQ data led to a unifying physical model and to the conclusion that the rate of loop formation in folding reactions varies not only with the kind and number of residues that constitute the chain but also in particular with the size and properties of the residues that constitute the loop node.

  17. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles.

    PubMed

    Zhang, Xiaodong; Chen, Xiaokai; Kai, Siqi; Wang, Hong-Yin; Yang, Jingjing; Wu, Fu-Gen; Chen, Zhan

    2015-03-17

    A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.

  18. Sulfate Fining Chemistry in Oxidized and Reduced Soda-Lime-Silica Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Hrma, Pavel R.

    2005-05-13

    Various reducing agents were used and their additions were varied to (1) increase glass quality through eliminating defects from silica scum, (2) decrease SOx emissions through changing the kind and quantity of reducing agents, and (3) improve production efficiency through increased flexibility of glass redox control during continuous processing. The work included measuring silica sand dissolution and sulfate decomposition in melts from glass batches. Glass batches were heated at a temperature-increase rate deemed similar to that experienced in the melting furnace. The sulfate decomposition kinetics was investigated with thermogravimetric analysis-differential thermal analysis and evolved gas analysis. Sulfur concentrations in glassesmore » quenched at different temperatures were determined using X-ray fluorescence spectroscopy. The distribution of residual sand (that which was not dissolved during the initial batch reactions) in the glass was obtained as a function of temperature with optical microscopy in thin-sections of melts. The fraction of undissolved sand was measured with X-ray diffraction. The results of the present study helped Visteon Inc. reduce the energy consumption and establish the batch containing 0.118 mass% of graphite as the best candidate for Visteon glass production. The improved glass batch has a lower potential for silica scum formation and for brown fault occurrence in the final glass product. It was established that bubbles trapped in the melt even at 1450 C have a high probability to be refined when reaching the hot zone in the glass furnace. Furthermore, silica sand does not accumulate at the glass surface and dissolves faster in the batch with graphite than in the batch with carbocite.« less

  19. Melt fracturing and healing: A mechanism for degassing and origin of silicic obsidian

    USGS Publications Warehouse

    Cabrera, A.; Weinberg, R.F.; Wright, H.M.N.; Zlotnik, S.; Cas, Ray A.F.

    2011-01-01

    We present water content transects across a healed fault in pyroclastic obsidian from Lami pumice cone, Lipari, Italy, using synchrotron Fourier transform infrared spectroscopy. Results indicate that rhyolite melt degassed through the fault surface. Transects define a trough of low water content coincident with the fault trace, surrounded on either side by high-water-content plateaus. Plateaus indicate that obsidian on either side of the fault equilibrated at different pressure-temperature (P-T) conditions before being juxtaposed. The curves into the troughs indicate disequilibrium and water loss through diffusion. If we assume constant T, melt equilibrated at pressures differing by 0.74 MPa before juxtaposition, and the fault acted as a low-P permeable path for H2O that diffused from the glass within time scales of 10 and 30 min. Assuming constant P instead, melt on either side could have equilibrated at temperatures differing by as much as 100 ??C, before being brought together. Water content on the fault trace is particularly sensitive to post-healing diffusion. Its preserved value indicates either higher temperature or lower pressure than the surroundings, indicative of shear heating and dynamic decompression. Our results reveal that water contents of obsidian on either side of the faults equilibrated under different P-T conditions and were out of equilibrium with each other when they were juxtaposed due to faulting immediately before the system was quenched. Degassing due to faulting could be linked to cyclical seismic activity and general degassing during silicic volcanic activity, and could be an efficient mechanism of producing low-water-content obsidian. ?? 2011 Geological Society of America.

  20. Origins of igneous microgranular enclaves in granites: the example of Central Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.; Elburg, M. A.; Harris, C.

    2017-10-01

    To investigate their genesis and relations with their host rocks, we study igneous microgranular enclaves (IMEs) in the c. 370 Ma, post-orogenic, high-level, felsic plutons and volcanic rocks of Central Victoria, Australia. The IMEs are thermally quenched magma globules but are not autoliths, and they do not form mixing series with their host magmas. These IMEs generally represent hybrids between mantle-derived magmas and very high- T crust-derived melts, modified by fractionation, ingestion of host-derived crystals and, to a lesser extent, by chemical interactions with their hosts. Isotopic and elemental evidence suggests that their likely mafic progenitors formed by partial melting of subcontinental mantle, but that the IME suites from different felsic host bodies did not share a common initial composition. We infer that melts of heterogeneous mantle underwent high- T hybridisation with melts from a variety of crustal rocks, which led to a high degree of primary variability in the IME magmas. Our model for the formation of the Central Victorian IMEs is likely to be applicable to other occurrences, especially in suites of postorogenic granitic magmas emplaced in the shallow crust. However, there are many different origins for the mingled magma globules that we call IMEs, and different phenomena seem to occur in differing tectonic settings. The complexity of IME formation means that it is difficult to unravel the petrogenesis of these products of chaotic magma processes. Nevertheless, the survival of fine-grained, non-equilibrium mineralogy and texture in the IMEs suggests that their tenure in the host magmas must have been geologically brief.

Top