Science.gov

Sample records for melt-extracted amorphous yag

  1. Diameter Dependence of Giant Magneto-Impedance Effect in Co-BASED Melt Extracted Amorphous Wires

    NASA Astrophysics Data System (ADS)

    Zhang, Shuling; Xing, Dawei; Sun, Jianfei

    2011-06-01

    Naked Co68.25Fe4.5Si12.25B15 amorphous wires of 67μm, 56μm, 52μm, 47μm and 31μm in diameter are produced by melt extraction method. Their giant magneto impedance (GMI) effect is investigated at frequencies from 0.1MHz to13MHz. Significant diameter dependence of GMI effect is studied. Thicker wires exhibit strong GMI effect and have clear characteristic frequencies at which their impedance ratio ΔZ/Z are largest. Largest impedance response is obtained in 67μm wires with the ΔZ/Z of 442% and field sensitivity of 71.5%/Oe. Wires of 31μm in diameter show increasing ΔZ/Z as frequency and have a steady field sensitivity of 30.7-33.6%/Oe in a wide frequency range from 3MHz to 13MHz. The different frequency dependence of GMI effect is discussed in the light of the skin effect. These amorphous wires are suitable for applications in high performance field sensors and can fit different demand.

  2. Fluorine Penetration into Amorphous SiO2 Glass at SF6 Atmosphere Using Q-Switched Nd:YAG and Excimer Laser Irradiations

    NASA Astrophysics Data System (ADS)

    Hamid Reza Dehghanpour,; Parviz Parvin,

    2010-07-01

    At low pressures up to 0.1 mbar, the evidence of simultaneous SF6 gas decomposition and the morphology alteration on amorphous SiO2 glass have been investigated using various laser irradiations at typical wavelengths, i.e., ultraviolet (UV; 193 nm), visible (532 nm), and near infrared (NIR; 1064 nm). The instrumental micro-analysis of the surface were carried out by a number of instruments such as laser breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), Rutherford back scattered spectroscopy (RBS), wavelength dispersive X-ray (WDX) mapping, energy dispersive X-ray (EDX) microanalysis and photo-spectrometry accordingly. It was shown that the excimer laser at shorter wavelengths induces microstructuring on glass mainly due to the surface UV photoablation and the subsequent collisional SF6 decomposition. Conversely, at the longer wavelengths such as the fundamental and second harmonic generation of a Q-switched Nd:YAG laser, the treatment of the target is done based on the micro-plasma induced ablation and the following electron-impact SF6 decomposition.

  3. Enhanced High-Frequency Magnetoresistance Responses of Melt-Extracted Co-Rich Soft Ferromagnetic Microwires

    NASA Astrophysics Data System (ADS)

    Lam, D. S.; Devkota, J.; Huong, N. T.; Srikanth, H.; Phan, M. H.

    2016-05-01

    We present the relationships between the structure, magnetic properties and high-frequency magnetoresistance (MR) effect in melt-extracted Co68.2Fe4.3B15Si12.5 microwires subject to thermal annealing. In order to release residual stresses to improve the magnetic softness while retaining the good mechanical property of an amorphous material, microwire samples were annealed at different temperatures of 100°C, 200°C, 350°C, 400°C, and 450°C for 15 min. We have shown that relative to an as-cast amorphous microwire, annealing microwires at T a = 100°C, 200°C, and 350°C improved both the magnetic softness and the MR effect, while an opposite trend was observed for the microwires annealed at T a = 400°C and 450°C. We have observed a distinct difference in the frequency dependence of MR response ( ξ) for dc applied magnetic fields below and above the effective anisotropy field of the microwires. While the microwire annealed at 200°C shows the largest MR ratio (~580%) at 100 MHz, the highest value of ξ (~34%/Oe) has been achieved at 400 MHz for the microwire annealed at 350°C. These results indicate that the optimally annealed Co68.2Fe4.3B15Si12.5 microwires are attractive candidates for high-frequency sensor applications.

  4. The importance of melt extraction for tracing mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Stracke, Andreas; Bourdon, Bernard

    2009-01-01

    Numerous isotope and trace element studies of mantle rocks and oceanic basalts show that the Earth's mantle is heterogeneous. The isotopic variability in oceanic basalts indicates that most mantle sources consist of complex assemblages of two or more components with isolated long-term chemical evolution, on both global and local scales. The range in isotope and highly incompatible element ratios observed in oceanic basalts is commonly assumed to directly reflect that of their mantle sources. Accordingly, the end-points of isotope arrays are taken to represent the isotopic composition of the different components in the underlying mantle, which is then used to deduce the origin of mantle heterogeneity. Here, a melting model for heterogeneous mantle sources is presented that investigates how and to what extent isotope and trace element signatures are conveyed from source to melt. We model melting of a pyroxenite-bearing peridotite using recent experimental constrains for melting and partitioning of pyroxenite and peridotite. Identification of specific pyroxenite melting signatures allows finger-printing of pyroxenite melts and confirm the importance of lithological heterogeneity in the Earth's mantle. The model results and the comparison of the calculated and observed trace element-isotope systematics in selected MORB and OIB suites (e.g. from the East Pacific Rise, Iceland, Tristan da Cunha, Gough and St.Helena) further show that factors such as the relative abundance of different source components, their difference in solidus temperature, and especially the extent, style and depth range of melt aggregation fundamentally influence the relationship between key trace element and isotope ratios (e.g. Ba/Th, La/Nb, Sr/Nd, La/Sm, Sm/Yb, 143Nd/ 144Nd). The reason for this is that any heterogeneity present in the mantle is averaged or, depending on the effectiveness of the melt mixing process, even homogenized during melting and melt extraction. Hence to what degree mantle

  5. The importance of melt extraction for tracing mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Stracke, Andreas; Bourdon, Bernard

    2009-01-01

    Numerous isotope and trace element studies of mantle rocks and oceanic basalts show that the Earth's mantle is heterogeneous. The isotopic variability in oceanic basalts indicates that most mantle sources consist of complex assemblages of two or more components with isolated long-term chemical evolution, on both global and local scales. The range in isotope and highly incompatible element ratios observed in oceanic basalts is commonly assumed to directly reflect that of their mantle sources. Accordingly, the end-points of isotope arrays are taken to represent the isotopic composition of the different components in the underlying mantle, which is then used to deduce the origin of mantle heterogeneity. Here, a melting model for heterogeneous mantle sources is presented that investigates how and to what extent isotope and trace element signatures are conveyed from source to melt. We model melting of a pyroxenite-bearing peridotite using recent experimental constrains for melting and partitioning of pyroxenite and peridotite. Identification of specific pyroxenite melting signatures allows finger-printing of pyroxenite melts and confirm the importance of lithological heterogeneity in the Earth's mantle. The model results and the comparison of the calculated and observed trace element-isotope systematics in selected MORB and OIB suites (e.g. from the East Pacific Rise, Iceland, Tristan da Cunha, Gough and St.Helena) further show that factors such as the relative abundance of different source components, their difference in solidus temperature, and especially the extent, style and depth range of melt aggregation fundamentally influence the relationship between key trace element and isotope ratios (e.g. Ba/Th, La/Nb, Sr/Nd, La/Sm, Sm/Yb, 143Nd/ 144Nd). The reason for this is that any heterogeneity present in the mantle is averaged or, depending on the effectiveness of the melt mixing process, even homogenized during melting and melt extraction. Hence to what degree mantle

  6. Density Effects of Melt Extraction from a Mantle Plum Pudding

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, G.; Phipps Morgan, J.

    2006-12-01

    Both ocean island (plume) and mid ocean ridge melting are thought to tap a lithologically heterogeneous source with both peridotites and `eclogite' recycled basaltic material. We explore how melting of both components effect the density of the upwelling and melting assemblage. Using the thermodynamic modeling program Perplex, two potential mantle sources are put through adiabatic batch and fractional melting to determine variations in density. For fertile peridotite compositions, the results show two continuous zones of melting. At pressures greater than ~1.5 GPa(~50km) melt removal increases residue density. At pressures below ~1.5GPa the melt includes high density phases with a corresponding reduction in the density of the residue. This melting behavior conflicts with conventional wisdom - so we also examine the density consequences of `conventional' deep melting behavior of peridotite. Deep melting of an eclogite phase poses a challenge for the current parameterization used in Perplex. Therefore, we also calculate melt compositions from a non-thermodynamic formulation and use Perplex to determine the evolving density of solid residues to melt extraction. In general for a heterogeneous mantle assemblage, the average density differs from that assuming a single homogenous mantle lithology even if the average composition is the same. We will discuss the implications of these calculations for the `stability' of a plume-fed asthenosphere.

  7. Melt extraction in the Earth's mantle: Constraints from U Th Pa Ra studies in oceanic basalts

    NASA Astrophysics Data System (ADS)

    Stracke, Andreas; Bourdon, Bernard; McKenzie, Dan

    2006-04-01

    U-series studies in oceanic basalts are critical for understanding melting and melt extraction in the Earth's mantle. The combined results of a detailed geochemical study of melting and melt extraction at Theistareykir, northern Iceland, provide a strong case for melt extraction via channeled melt flow at an active spreading ridge. It has often been argued, however, that widely used melting and melt extraction models, which simulate channeled melt extraction (i.e. fractional and/or dynamic melting), can only partially explain the global U-series systematics in oceanic basalts. As a consequence, more complicated models have been invoked, which suggest different styles of melt extraction at different depths/pressures in the mantle, so-called "two-porosity models". Alternatively, diffusion-controlled mechanisms have been proposed. Here we show that U-Th-Pa-Ra systematics in oceanic basalts can indeed be explained by models where melt transport occurs without chemical equilibrium between melt and solid when variations in all three critical melting parameters (residual porosity, upwelling rate of the solid mantle and melt velocity) are taken into account. Melting at ridges requires systematic variation of at least two critical melting parameters, most likely upwelling and melt extraction rate. Melts generated with increasing lateral distance to the ridge axis are generated with slower upwelling rates and are extracted with lower velocities than melts created closer to the ridge axis. Melting at ocean islands, on the other hand, can successfully be explained by variations in upwelling rate only. Global U-series systematics in OIB originate from superimposed global variations in upwelling velocity due to different buoyancy fluxes and from local variation in upwelling velocity as a function of radial distance to the plume center. The model proposed here is consistent with other geochemical data for oceanic basalts and strongly supports melt extraction via high

  8. Excimer and Nd:YAG laser-induced SF6 decomposition at the vicinity of amorphous SiO2 glass

    NASA Astrophysics Data System (ADS)

    Dehghanpour, H. R.; Parvin, P.

    2010-11-01

    In this work, the evidence of SF6 gas decomposition at the vicinity of SiO2 glass has been investigated using various laser wavelengths: at 193, 248, 532 and 1064 nm. It was shown that SiF4 gas and S2F10 clusters were simultaneously created during ArF excimer laser irradiation, while no by-products were seen in the irradiation cell using Q-switched Nd:YAG laser. The gas content analysis was carried out using laser breakdown spectroscopy (LIBS) and Fourier transform IR spectroscopy (FTIR). Moreover, the fluorine penetration into the glass surface was studied by energy dispersive X-ray (EDX) microanalysis and wavelength dispersive X-ray (WDX) mapping to support the suggested mechanisms.

  9. Superelasticity of Cu-Ni-Al shape-memory fibers prepared by melt extraction technique

    NASA Astrophysics Data System (ADS)

    Li, Dong-yue; Zhang, Shu-ling; Liao, Wei-bing; Geng, Gui-hong; Zhang, Yong

    2016-08-01

    In the paper, a melt extraction method was used to fabricate Cu-4Ni-14Al (wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy (SEM) and a dynamic mechanical analyzer (DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.

  10. Numerical models of mantle lithosphere weakening, erosion and delamination induced by melt extraction and emplacement

    NASA Astrophysics Data System (ADS)

    Wallner, Herbert; Schmeling, Harro

    2016-09-01

    Continental rifting caused by extension and heating from below affects the lithosphere or cratons in various ways. Volcanism and melt intrusions often occur along with thinning, weakening and even breaking lithosphere. Although mechanical necking models of the lithosphere are often applied, the aspects of melting and the implications due to melt transport and emplacement at shallower depths are not well understood. A two-phase flow approach employing melt extraction and shallow emplacement associated with thermal weakening is developed and compared with observations. The results of this comparison indicate the importance of partial melts and an asthenospheric magma source for increasing the rising rate of the lithosphere-asthenosphere boundary during extension. Thermo-mechanical physics of visco-plastic flow is approximated using the Finite Difference method with Eulerian formulation in 2D. The conservation of mass, momentum and energy equations are solved for a multi-component (crust-mantle) and two-phase (melt-matrix) system. Rheology is temperature- and stress-dependent. In consideration of depletion and enrichment melting and solidification are controlled by a simplified linear binary solid solution model. Melt is extracted and emplaced in predefined depth regions (emplacement zones) in the lithospheric mantle and crust. The Compaction Boussinesq Approximation was applied; its validity was tested against the Full Compaction formulation and found fully satisfactory for the case of sublithospheric melting models. A simple model guided by the geodynamic situation of the Rwenzori region typically results in updoming asthenosphere with melt-assisted erosion of the lithosphere's base. Even with a conservative approach for a temperature anomaly melting alone doubles the lithospheric erosion rate in comparison with a model without melting. With melt extraction and intrusion lithospheric erosion and upwelling of the lithosphere-asthenosphere boundary speeds up by a

  11. Can compaction, caused by melt extraction and intrusion, generate tectonically effective stresses in the lithosphere?

    NASA Astrophysics Data System (ADS)

    Wallner, Herbert; Schmeling, Harro

    2016-04-01

    Aim of our study is to deepen understanding the role of melt processes while the lithospheric evolution by means of numerical modeling. In the sense of plate tectonics, on the one hand, stresses are transferred by stiff lithospheric plates, on the other, lithosphere is deformed, broken, or modified in various ways. Melting often plays an important role but is not easy to model numerically due to all the interactions of physics, phase changes, non-linearities, time scales, petrology, heterogeneities and chemical reactions. Here we restrict on a thermo-mechanical model of visco-plastic two phase flow with partial melting. Viscosity is temperature-, stress- and depth-dependent. Freezing and melting are determined by a simplified linear binary solid solution model. The fast melt transport through and into the lithosphere, acting on a short time scale, is replaced by melt extraction and intrusion in a given emplacement level. Numerical approximation is done in 2D with Finite Differences with markers in an Eulerian formulation. A scenario of continental rifting serves for a model of lithosphere above asthenosphere under extensional conditions. An anomaly of increased temperature at the bottom produces a low fraction of melt initially in the asthenosphere. Above a porosity limit melt is extracted and leads to compaction at its origin which induces under-pressure attracting ambient melt and contracting the depleted matrix. In a higher, colder lithospheric level the emplaced melt extends the matrix, immediately freezes; an increase of enrichment and heating takes place. The dilatation of the rock matrix generates relative high compaction pressures if it's viscosity is high as in the uppermost mantle lithosphere. Local and temporary varying stresses provide deviatoric components which sometimes may be the origin of tectonic activity in nature. Divergence terms of the full compaction formulation, responsible for viscous stress, are tested and reviewed. Quality and stability

  12. Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data.

    PubMed

    Lizarralde, Daniel; Gaherty, James B; Collins, John A; Hirth, Greg; Kim, Sangmyung D

    2004-12-01

    A variety of observations indicate that mid-ocean ridges produce less crust at spreading rates below 20 mm yr(-1) (refs 1-3), reflecting changes in fundamental ridge processes with decreasing spreading rate. The nature of these changes, however, remains uncertain, with end-member explanations being decreasing shallow melting or incomplete melt extraction, each due to the influence of a thicker thermal lid. Here we present results of a seismic refraction experiment designed to study mid-ocean ridge processes by imaging residual mantle structure. Our results reveal an abrupt lateral change in bulk mantle seismic properties associated with a change from slow to ultraslow palaeo-spreading rate. Changes in mantle velocity gradient, basement topography and crustal thickness all correlate with this spreading-rate change. These observations can be explained by variations in melt extraction at the ridge, with a gabbroic phase preferentially retained in the mantle at slower spreading rates. The estimated volume of retained melt balances the approximately 1.5-km difference in crustal thickness, suggesting that changes in spreading rate affect melt-extraction processes rather than total melting. PMID:15592410

  13. Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data.

    PubMed

    Lizarralde, Daniel; Gaherty, James B; Collins, John A; Hirth, Greg; Kim, Sangmyung D

    2004-12-01

    A variety of observations indicate that mid-ocean ridges produce less crust at spreading rates below 20 mm yr(-1) (refs 1-3), reflecting changes in fundamental ridge processes with decreasing spreading rate. The nature of these changes, however, remains uncertain, with end-member explanations being decreasing shallow melting or incomplete melt extraction, each due to the influence of a thicker thermal lid. Here we present results of a seismic refraction experiment designed to study mid-ocean ridge processes by imaging residual mantle structure. Our results reveal an abrupt lateral change in bulk mantle seismic properties associated with a change from slow to ultraslow palaeo-spreading rate. Changes in mantle velocity gradient, basement topography and crustal thickness all correlate with this spreading-rate change. These observations can be explained by variations in melt extraction at the ridge, with a gabbroic phase preferentially retained in the mantle at slower spreading rates. The estimated volume of retained melt balances the approximately 1.5-km difference in crustal thickness, suggesting that changes in spreading rate affect melt-extraction processes rather than total melting.

  14. Selective laser sintering of amorphous metal powder

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Blatter, A.; Romano, V.; Weber, H. P.

    2005-02-01

    For the first time, selective sintering of amorphous PtCuNiP powder with a pulsed Nd:YAG laser has been studied. Upon pulsed interaction, the grains melt only superficially to build necks between the grains. Depending on the laser parameters, the sintered material can be crystallized or retained amorphous. By contrast with crystalline powder, laser sintering of amorphous powder is achieved at substantially lower pulse energies due to its low melting point. The obtained results are compared with previous results from selective laser sintering of titanium powder.

  15. Lithological, Chemical and Chronological Constraints on Melt Extraction from the Mantle Section of the ~492 Ma Shetland Ophiolite Complex, Scotland

    NASA Astrophysics Data System (ADS)

    O'Driscoll, B.; Walker, R. J.; Clay, P. L.; Day, J. M.; Ash, R. D.; Daly, J. S.

    2015-12-01

    The mantle sections of ophiolites offer a means of studying the composition and structure of the oceanic mantle. In particular, the relations between different lithologies can be established in the field, permitting an assessment of the relative timing of processes such as melt extraction and melt-rock reaction. The Shetland Ophiolite Complex (SOC) contains a well-preserved mantle section that is dominated by harzburgite (≥70 vol.%), with dominantly chondritic present-day 187Os/188Os compositions1. Melt extraction and melt-rock reaction is evident in the form of dunite and chromitite layers and lenses, with thicknesses ranging from millimetres-to-metres. These lithologies are characteristic of supra-subduction zone processing and are considered to relate to closure of the Iapetus Ocean at ~492 Ma1. However, evidence of much earlier melt extraction has been suggested for some SOC harzburgites, which have relatively unradiogenic 187Os/188Os compositions that yield TRD model ages as old as ~1.4 Ga1. In order to assess the scales at which such compositional heterogeneities are preserved in the mantle, a small (45 m2) area of the SOC mantle section was selected for detailed lithological mapping and sampling. A selection of harzburgites (n=8), dunites (n=6) and pyroxenites (n=2) from this area has been analysed for their Os isotope and highly-siderophile element (HSE) compositions. Six of the harzburgites and four of the dunites have relative HSE abundances and gOs values that are approximately chondritic, with gOs ranging only from -0.6 to +2.7 (n=10). Two dunites have more radiogenic gOs (up to +7.5), that is correlated with enhanced concentrations of accessory base-metal sulphides, suggesting formation via melt percolation and melt-rock reaction. The two remaining harzburgites have less radiogenic gOs (-3.5 and -4), yielding Mesoproterozoic TRD ages. The new data indicate that a comparable range of Os isotope compositions to that previously measured across the

  16. Melt extraction in mush zones: The case of crystal-rich enclaves at the Sabatini Volcanic District (central Italy)

    NASA Astrophysics Data System (ADS)

    Masotta, M.; Mollo, S.; Gaeta, M.; Freda, C.

    2016-04-01

    A peculiar feature of the Sabatini Volcanic District (SVD, central Italy) is the occurrence of crystal-poor pumices and crystal-rich enclaves within the same eruptive host-deposit. The stratigraphic sequence of pumices and enclaves indicates the tapping of a stratified magma chamber, where a crystal-poor phonolitic magma lay on top of a more primitive crystal-rich magma. The crystal-rich enclaves are genetically related to the pumices and record the evolution of a solidification front, in which a more differentiated melt was produced, extracted and eventually erupted. We collected and analyzed crystal-rich enclaves from one of the largest phonolitic eruptions at the SVD and used their petrological and geochemical features to reconstruct magma differentiation and crystal-melt separation in the solidification front. On this basis, three groups of enclaves have been identified: porphyritic enclaves, holocrystalline enclaves and sanidinites. The mineralogical variability faithfully reproduces the spatial and temporal evolution expected of a solidification front, from early-to-intermediate crystallization conditions (porphyritic and holocrystalline type) to the late stage of solidification (sanidinites), in which the percolation of a more differentiated melt through the crystal mush triggered the instability of the solidification front. Results from numerical models indicate that gravitational instability is the most efficient mechanism to explain melt extraction in mush zones of medium-sized (~ 10 km3), short-lived (~ 104 years) magma chambers.

  17. Transparent Nd doped YAG ceramics

    NASA Astrophysics Data System (ADS)

    Stanciu, Catalina-Andreea; Dascalu, Traian; Stanciu, George; Pavel, Nicolaie

    2016-08-01

    The reasearch main objective is to obtain ceramic laser materials based on pure YAG (Y3Al5O12) and Nd doped YAG (Y3-xNdxAl5O12, with × = 0.5 and 1.0 at. %), by conventional solid state reaction method. Stoichiometric compositions of Y3Al5O12 (YAG), Y2.985Nd0.015Al5O12 (0.5 at.% Nd:YAG) and Y2.97Nd0.03Al5O12 (1.0 at.% Nd:YAG) were prepared using high purity Y2O3 (99.999%), Al2O3 (99.999%) and Nd2O3 (99.999%) nanopowders. Green bodies were sintered at 1750 °C for 16 h under vacuum (1.0 × 10-3 Pa) and then annealed at 1450 °C for 10 h in the air.

  18. Effect of Er:YAG laser energy on the morphology of enamel/adhesive system interface

    NASA Astrophysics Data System (ADS)

    Delfino, Carina Sinclér; Souza-Zaroni, Wanessa Christine; Corona, Silmara Aparecida Milori; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka

    2006-10-01

    The aim of this study was to evaluate in vitro the influence of Er:YAG laser energy variation to cavity preparation on the morphology of enamel/adhesive system interface, using SEM. Eighteen molars were used and the buccal surfaces were flattened without dentine exposure. The specimens were randomly assigned to two groups, according to the adhesive system (conventional total-etching or self-etching), and each group was divided into three subgroups (bur carbide in turbine of high rotation, Er:YAG laser 250 mJ/4 Hz and Er:YAG laser 300 mJ/4 Hz) containing six teeth each. The enamel/adhesive system interface was serially sectioned and prepared for SEM. The Er:YAG laser, in general, produced a more irregular adhesive interface than the control group. For Er:YAG laser 250 mJ there was formation of a more regular hybrid layer with good tag formation, mainly in the total-etching system. However, Er:YAG laser 300 mJ showed a more irregular interface with amorphous enamel and fused areas, for both adhesive systems. It was concluded that cavity preparation with Er:YAG laser influenced on the morphology of enamel/adhesive system interface and the tissual alterations were more evident when the energy was increased.

  19. Extensive partial melting and melt extraction in pelitic metasediments: An example from the Chiwaukum schist (Washington Cascades)

    NASA Astrophysics Data System (ADS)

    Austin, N.; Kelemen, P.

    2006-12-01

    Partial melting of crustal sediments plays an important role in both the production of anatectic granites (eg. Brown, 1994; Harris et al., 1995; Johnson et al., 2003), and modification of mantle derived melts via assimiation (eg. McBirney et al., 1987; Grove et al., 1982). These processes rely heavily on segregation of anatectic melts from their sedimentary source (Brown, 1994; Sawyer, 1994; Brown et al., 1995). Here, we investigate the extent of melting and melt extraction in the pelitic Chiwaukum schist (central Washington St.), within the contact aureole of the Big Jim intrusive complex. The Big Jim complex, part of the regionally extensive Mt. Stuart Batholith, intruded the pelitic Chiwaukum schist at ~96 Ma (Tabor et al., 1982, 1987; Matzel, 2004). It is concentrically zoned, with an ultramafic core and intermediate to felsic rim (Kelemen & Ghiorso, 1986). Peak metamorphic grades in the schist reach pyroxene hornfels, and textures indicative of partial melting of the schist are apparent; the pelitic schists, and their migmatized counterparts form a continuum from un-migmatized metasediments to structureless, biotite free hornfels, containing leucosome lenses. With increasing grade, there is a continuous decrease in Th and light REE's, elements that are mobile in melts and are largely immobile in hydrothermal fluids; REE and trace element patterns show no evidence of contamination of the partially molten schist by the intruding pluton. There is a sharp decrease in K2O in the schist with increasing grade, which correlates with the breakdown of biotite, while there is a sharp concomitant increase in CaO content. By assuming that CaO is immobile, minimum melt losses are estimated to be between 0 and 80%. Samples that have experienced greater melt loss are characterized by a decrease in Th, K#, and alumina saturation index, while they show increased Ca# and Mg#. This probably results from removal of a peraluminuos, K rich melt, with Na2O>>CaO and Fe

  20. Zircon Record of the Plutonic-Volcanic Connection and Protracted Rhyolite Melt Extraction at Turkey Creek Caldera, Arizona

    NASA Astrophysics Data System (ADS)

    Deering, C. D.; Schoene, B.; Keller, C. B.; Bachmann, O.; Beane, R. J.; Ovtcharova, M.

    2014-12-01

    The Turkey Creek caldera of Southeastern Arizona formed as the result of the catastrophic eruption of more than 500 km3 of high-silica rhyolite (Rhyolite Canyon Tuff). This event occurred ~27 Ma and was coincident with the early phases of Basin and Range extension. The emplacement of the ignimbrite was immediately followed by a resurgent intrusion of dacite/monzonite porphyry (DPI), some of which reached the surface as crystal-rich dacite lavas (DPL) along the ring fault. Due to uplift and erosion, the intracaldera and outflow facies of the Rhyolite Canyon Tuff (RCT) and resurgent intrusion are well-exposed, which renders this an ideal laboratory for examining the plutonic-volcanic connection in a mid- to upper-crustal environment. We examined the potential petrogenetic link between the crystal-poor rhyolite and the crystal-rich intermediate intrusion and lavas through zircon CA-TIMS geochronology and ICP-MS trace element analyses. CA-TIMS U-Pb dates indicate that the RCT and DPI/DPL were coeval, forming over a protracted period of time (>300 kyrs.) prior to the catastrophic event. The trace element data (e.g. Lu/Sc, Y/Hf, Dy/Y) for the individual zircons in the dacitic/monzonitic units and erupted rhyolite record a continuous trend that is interpreted to reflect crystal fractionation. The combination of zircon U-Pb dating and trace element analyses also allows us to trace the apparent timing and duration of the rhyolite melt extraction from the intermediate mush, as the trace element ratios for the rhyolite diverge from those of the DPI approx. 100-150 kyrs. before eruption. This protracted timescale for building an intermediate mush large enough to hold 500 km3 of rhyolite is consistent with that observed for other large ignimbrites in arc settings.

  1. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise

    NASA Astrophysics Data System (ADS)

    Gao, Changgui; Dick, Henry J. B.; Liu, Yang; Zhou, Huaiyang

    2016-03-01

    This paper works on the trace and major element compositions of spatially associated basalts and peridotites from the Dragon Bone amagmatic ridge segment at the eastern flank of the Marion Platform on the ultraslow spreading Southwest Indian Ridge. The rare earth element compositions of basalts do not match the pre-alteration Dragon Bone peridotite compositions, but can be modeled by about 5 to 10% non-modal batch equilibrium melting from a DMM source. The Dragon Bone peridotites are clinopyroxene-poor harzburgite with average spinel Cr# ~ 27.7. The spinel Cr# indicates a moderate degree of melting. However, CaO and Al2O3 of the peridotites are lower than other abyssal peridotites at the same Mg# and extent of melting. This requires a pyroxene-poor initial mantle source composition compared to either hypothetical primitive upper mantle or depleted MORB mantle sources. We suggest a hydrous melting of the initial Dragon Bone mantle source, as wet melting depletes pyroxene faster than dry. According to the rare earth element patterns, the Dragon Bone peridotites are divided into two groups. Heavy REE in Group 1 are extremely fractionated from middle REE, which can be modeled by ~ 7% fractional melting in the garnet stability field and another ~ 12.5 to 13.5% in the spinel stability field from depleted and primitive upper mantle sources, respectively. Heavy REE in Group 2 are slightly fractionated from middle REE, which can be modeled by ~ 15 to 20% fractional melting in the spinel stability field from a depleted mantle source. Both groups show similar melting degree to other abyssal peridotites. If all the melt extraction occurred at the middle oceanic ridge where the peridotites were dredged, a normal ~ 6 km thick oceanic crust is expected at the Dragon Bone segment. However, the Dragon Bone peridotites are exposed in an amagmatic ridge segment where only scattered pillow basalts lie on a partially serpentinized mantle pavement. Thus their depletion requires an

  2. Melt extraction and metasomatism recorded in basal peridotites above the metamorphic sole of the northern Fizh massif, Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Masako; Python, Marie; Tamura, Akihiro; Arai, Shoji; Takazawa, Eiichi; Shibata, Tomoyuki; Ueda, Akira; Sato, Tsutomu

    2015-05-01

    The Oman ophiolite is one of the best preserved sections of oceanic crust and upper mantle worldwide, and consists of multiple massifs that lie along more than 400 km of the Arabian coast. In the northernmost massifs, the oceanic crust preserves a record of polygenetic magmatism from mid-ocean ridge to subduction-related stages. The lherzolites and clinopyroxene (Cpx)-rich harzburgites of the Fizh block are located a few tens to a hundred meters above the metamorphic sole of the ophiolite and the geochemistry of these Cpx-rich peridotites provides evidence of a genetic link between oceanic crust and mantle. These Cpx-rich peridotites contain olivine with a restricted range of forsterite contents (90-91), but variable Cr-spinel Cr# (Cr/(Cr + Al) atomic ratio) values (0.12-0.33), suggesting that these Cpx-rich peridotites have undergone variable degrees of melt extraction. Cpxs within the Cpx-rich peridotites have chondrite-normalised trace element variation patterns that slope either gently or steeply between the heavy rare earth elements (REEs) and the middle REEs ((Sm/Yb)N = 0.08-0.55, where N chondrite-normalised) and are enriched in highly incompatible elements such as Rb, Ba and Nb. This Cpx chemistry can be explained by a polygenetic evolution whereby an initial 4-12% of melt was extracted from the depleted mantle source before this mantle was metasomatised by interaction with fluids derived from dehydration of the metamorphic sole during subduction initiation and obduction. A comparison between 143Nd/144Nd versus 147Sm/144Nd for Cpx in the Fizh basal Cpx-rich peridotites and a mineral-whole rock Sm-Nd isochron for a gabbro from the same massif suggests a genetic link between crustal and mantle rocks in this area. In addition, Cpxs within the basal Cpx-rich peridotites have highly variable Sr isotopic compositions that are indicative of a significant contribution of seawater from the metamorphic sole, originally derived from subducted oceanic crustal material.

  3. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  4. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  5. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG.

    PubMed

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-08-18

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm.

  6. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG.

    PubMed

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-01-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577

  7. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG

    PubMed Central

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-01-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577

  8. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-08-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm.

  9. Diode-pumped tape casting planar waveguide YAG/Nd:YAG/YAG ceramic laser.

    PubMed

    Lin, Haifeng; Tang, Fei; Chen, Weidong; Guo, Wang; Huang, Qiufeng; Wang, Ning; Guan, Lunhui; Cao, Yongge; Zhang, Ge

    2015-03-23

    We demonstrated the efficient guided laser action in a diode-pumped YAG/Nd:YAG/YAG ceramic planar waveguide produced by tape casting and vacuum sintering technology for the first time to the best of our knowledge. In the regime of continuous wave operation, a maximum output power of 840 mW corresponding to the slope efficiency of 65% was achieved. During passively Q-switched operation, by replacing the dichroic mirror with graphene-oxide based output coupler, we obtained the stable pulse trains with the shortest pulse duration of 179 ns at a pulse repetition rate of 930 kHz which resulted in the single pulse energy of 221 nJ.

  10. Partial melting of garnet lherzolite with water and carbon dioxide at 3 GPa using a new melt extraction technique: implications for intraplate magmatism

    NASA Astrophysics Data System (ADS)

    Baasner, Amrei; Médard, Etienne; Laporte, Didier; Hoffer, Géraldine

    2016-05-01

    The origin and source rocks of alkali-rich and SiO2-undersatured magmas in the Earth's upper mantle are still under debate. The garnet signature in rare earth element patterns of such magmas suggests a garnet-bearing source rock, which could be garnet lherzolite or garnet pyroxenite. Partial melting experiments were performed at 2.8 GPa and 1345-1445 °C in a piston-cylinder using mixtures of natural lherzolite with either 0.4 wt% H2O and 0.4 wt% CO2 or 0.7 wt% H2O and 0.7 wt% CO2. Different designs of AuPd capsules were used for melt extraction. The most successful design included a pentagonally shaped disc placed in the top part of the capsule for sufficient melt extraction. The degrees of partial melting range from 0.2 to 0.04 and decrease with decreasing temperature and volatile content. All samples contain olivine and orthopyroxene. The amounts of garnet and clinopyroxene decrease with increasing degree of partial melting until both minerals disappear from the residue. Depending on the capsule design, the melts quenched to a mixture of quench crystals and residual glass or to glass, allowing measurement of the volatile concentrations by Raman spectroscopy. The compositions of the partial melts range from basalts through picrobasalts to foidites. Compared to literature data for melting of dry lherzolites, the presence of H2O and CO2 reduces the SiO2 concentration and increases the MgO concentration of partial melts, but it has no observable effect on the enrichment of Na2O in the partial melts. The partial melts have compositions similar to natural melilitites from intraplate settings, which shows that SiO2-undersaturated intraplate magmas can be generated by melting of garnet lherzolite in the Earth's upper mantle in the presence of H2O and CO2.

  11. Optical refrigeration of Yb3+:YAG nanocrystals

    NASA Astrophysics Data System (ADS)

    Nemova, Galina; Kashyap, Raman

    2015-03-01

    We have theoretically investigated the laser cooling process in Yb3+:YAG nanocrystals. We have developed an approach, which permits not only estimate the cooling process in Yb3+:YAG nanocrystals but compare this process with the laser cooling of the Yb3+:YAG bulk samples. The temperature dependences of all parameters of the system are taken into account. The cooperative effects such as re-absorption, the energy migration and cooperative luminescence have been considered.

  12. Comparison of urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Lee, Ho; Teichman, Joel H.; Welch, A. J.

    2005-04-01

    We compared urinary calculus fragmentation with long pulsed Ho:YAG (λ= 2.12 μm) versus Er:YAG (λ = 2.94 μm) lasers. We measured the ablation width, depth, volume and efficiency as a function of pulse energy from calculus threshold energy to clinical energy typically used for Ho:YAG laser lithotripsy. Ablation effects were evaluated for three types of urinary calculi (calcium oxalate monohydrate, cystine, and uric acid), for single and multiple pulses applied at various optical energy levels. By means of comparing laser-induced crater topography and ablation volume for each stone type, the feasibility of Er:YAG laser lithotripsy was appraised. The Er:YAG laser pulse energy generated deeper and narrower crater shapes with relatively smooth contours whereas the Ho:YAG laser produced shallower and wider craters with irregular shapes. In terms of multiple pulses ablation, the Er:YAG produced larger ablation volume than Ho:YAG. The deeper crater induced by the Er:YAG was attributed to the higher absorption coefficient of stones at the 2.94 μm wavelength, and widening of crater by Ho:YAG was perhaps caused by lateral expansion of ablated material. Comparing the ablation efficiency, Er:YAG was superior to Ho:YAG for both single and five-pulses.

  13. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  14. Amorphous Computing

    NASA Astrophysics Data System (ADS)

    Sussman, Gerald

    2002-03-01

    agents constructed by engineered cells, but we have few ideas for programming them effectively: How can one engineer prespecified, coherent behavior from the cooperation of immense numbers of unreliable parts that are interconnected in unknown, irregular, and time-varying ways? This is the challenge of Amorphous Computing.

  15. Environmentally benign processing of YAG transparent wafers

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Wu, Yiquan

    2015-12-01

    Transparent yttrium aluminum garnet (YAG) wafers were successfully produced via aqueous tape casting and vacuum sintering techniques using a new environmentally friendly binder, a copolymer of isobutylene and maleic anhydride with the commercial name ISOBAM (noted as ISOBAM). Aqueous YAG slurries were mixed by ball-milling, which was followed by de-gassing and tape casting of wafers. The final YAG green tapes were homogenous and flexible, and could be bent freely without cracking. After the drying and sintering processes, transparent YAG wafers were achieved. The microstructures of both the green tape and vacuum-sintered YAG ceramic were observed by scanning electronic microscopy (SEM). Phase compositions were examined by X-ray diffraction (XRD). Optical transmittance was measured in UV-VIS regions with the result that the transmittance is 82.6% at a wavelength of 800 nm.

  16. Fabrication and photoluminescence properties of Cr:YAG and Yb,Cr:YAG transparent ceramic

    NASA Astrophysics Data System (ADS)

    Chen, Xingtao; Lu, Tiecheng; Wei, Nian; Lu, Zhongwen; Chen, Lijia; Zhang, Qinghua; Cheng, Gang; Qi, Jianqi

    2015-11-01

    Cr:YAG and Yb/Cr:YAG transparent ceramics containing Ca as charge counter element were fabricated by vacuum sintering technique using the co-precipitation synthesis of raw powders. Their spectral and luminescence properties as well as the influence of Cr3+ concentration on the optical properties of Yb,Cr:YAG ceramic were investigated. Results show the transmittance of 10 at.% Yb, 0.25 at.% Cr:YAG and 0.25 at.% Cr:YAG reaches 83% at 1200 nm and 81% at 1400 nm, respectively. And the Yb,Cr:YAG ceramics exhibit a pore free structure with an average grain size of about 5 μm. After annealing, most of Cr3+ ions transform into Cr4+. In the case of excitation wavelength of 440 nm, a sharp emission peak of 694 nm appeared in the Yb,Cr:YAG ceramic before annealing and the band enhanced with the increase of the Cr3+ concentration, which is attributed to the 4T2g-4A2g fluorescence transition. The emission spectrums and fluorescence decays manifest that both the luminescent intensity and the lifetimes of Yb,Cr:YAG are lower than Yb:YAG ceramic and the lifetimes of Yb,Cr:YAG and Yb:YAG are 0.93 and 2.38 ms, respectively. This results demonstrate the existence of the ground state absorption of Cr4+ in the Yb,Cr:YAG ceramic. Experimental evidence proved that Yb,Cr:YAG transparent ceramics could be a potential material for passive self-Q-switched solid-state laser.

  17. Healing of bone in the rat following surgery with the erbium-YAG laser

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark R.; Devlin, Hugh; El Montaser, Monsour A.; Sloan, Philip

    1996-12-01

    Background and objectives: the aim of this study was to examine the pattern of healing in rat calvarial defects prepared with the erbium-YAG laser, using the 'guided tissue regeneration' technique. Materials and method: PTFE membranes were placed over lased skull defects, and the skin wounds sutured. Rats were killed humanely at intervals after surgery, and the skulls processed for paraffin wax histology. A further group of mature rats were also killed humanely and the calvariae removed. Slots were prepared using the erbium-YAG laser and immediately examined under the environmental scanning electron microscope (ESEM) in hydrated conditions, which avoided drying artifacts. Results: An amorphous, mineral-rich carbon layer surrounds the lased bone defect, which in the in vivo experiments was seen as a basophilic zone which was resistant to resorption.

  18. Stromal corneal scar following YAG capsulotomy.

    PubMed

    Bailey, L; Donzis, P B; Kastl, P R

    1988-05-01

    The case of a 70-year-old patient who suffered inadvertant YAG laser burns to the central corneal stroma is presented. Although focal stromal scarring resulted, no endothelial damage or corneal decompensation was noted, and the patient was asymptomatic.

  19. Laser properties of yag: Nd, Cr, Ce

    NASA Astrophysics Data System (ADS)

    Kvapil, J.; Kvapil, Jos; Perner, B.; Kubelka, J.; Mánek, B.; Kubeček, V.

    1984-06-01

    Transient absorption of a long lifetime (≧ 20 s) of YAG: Nd is typical of pure material. It is the main reason of thermal deformation of the laser rods accompanied with power decreases at higher CW input. It may be prevented by an admixture of Fe, Ti or Cr. Using a small admixture (≦ 10-3 wt.%) of Ti or Cr the energy transfer among Nd ions and the gain coefficient may be increased. Cr in a higher concentration absorbs the pumping light and serves as earlier described coactivator (sensitizer) only. Fe impurity fully prevents any increase of the gain of YAG: Nd containing Ti or Cr and causes slow but irreversible degradation of the active parameters. Ce favourably modifies properties of YAG: Nd, Cr. YAG: Nd, Cr, Ce free of iron impurity is advisable active material for powerfull CW lasers.

  20. Study of structural and optical properties of YAG and Nd:YAG single crystals

    SciTech Connect

    Kostić, S.; Lazarević, Z.Ž.; Radojević, V.; Milutinović, A.; Romčević, M.; Romčević, N.Ž.; Valčić, A.

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.

  1. Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics

    NASA Astrophysics Data System (ADS)

    Ge, Lin; Li, Jiang; Qu, Haiyun; Wang, Juntao; Liu, Jiao; Dai, Jiawei; Zhou, Zhiwei; Liu, Binglong; Kou, Huamin; Shi, Yun; Wang, Zheng; Pan, Yubai; Gao, Qingsong; Guo, Jingkun

    2016-10-01

    The sintering behavior and doping concentration profile of the planar waveguide YAG/Nd:YAG/YAG ceramics by the tape casting and solid-state reaction method were investigated on the basis of densification trajectory, microstructure evolution, and Nd3+ ions diffusion. The porosity of the green body by tape casting and cold isostatic pressing is about 38.6%. And the green bodies were consolidated from 1100 °C to 1800 °C for 0.5-20 h to study the densification and the doping diffusion behaviors. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. With the increase of temperature, two sintering stages occur, corresponding to remarkable densification and significant grain growth, respectively. The mechanism controlling densification at 1550 °C is grain boundary diffusion. The diffusion of Nd3+ ions is more sensitive to temperature than the sintering time, and the minimum temperature required for the obvious diffusion of Nd3+ ions is higher than 1700 °C. Finally, planar waveguide YAG/1.5 at.%Nd:YAG/YAG transparent ceramics with in-line transmittance of 84.8% at 1064 nm were obtained by vacuum-sintering at 1780 °C for 30 h. The fluorescence lifetime of 4F3/2 state of Nd3+ in the specimen is about 259 μs. The prepared ceramic waveguide was tested in a laser amplifier and the laser pulse was amplificated from 87 mJ to 238 mJ, with the pump energy of 680 mJ.

  2. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  3. Tunable single-longitudinal-mode operation of a sandwich-type YAG/Ho:YAG/YAG ceramic laser

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Ju, Lin; Yao, Baoquan; Li, Jiang; Ge, Lin; Zhang, Zhenguo; Zhang, Ye; Xu, Liwei; Dai, Tongyu; Ju, Youlun

    2016-09-01

    We present a 2.09 μm single-longitudinal-mode sandwich-type YAG/Ho:YAG/YAG ceramic laser pumped by a Tm-doped fiber laser for the first time. A pair of F-P etalons was used to achieve tunable single-longitudinal-mode operation. The maximum single-longitudinal-mode output power of 530 mW at 2091.4 nm was obtained with an absorbed pump power of 8.06 W, corresponding to an optical conversion efficiency of 6.6% and a slope efficiency of 12.7%. Wavelength tunable was achieved by tuning the angle of etalons and the wavelength could be tuned from 2091.1 nm to 2092.1 nm, corresponding to a tuning frequency of 68 GHz. The M2 factor was measured to be 1.23.

  4. Laser properties of YAG:Nd, Ti

    NASA Astrophysics Data System (ADS)

    Kvapil, J.; Kvapil, J.; Kubelka, K. J.; Perner, B.

    1982-07-01

    YAG:Nd containing about 0.001 wt percent Ti showed slightly increased losses at 1.064 micron but a substantially increased gain coefficient if compared with a material containing no Ti. The increased losses may be attributed to the increased absorption near 1.064 nm and the increased gain to the better energy coupling among Nd(3+) ions occupying nonequivalent sites due to the presence of Ti(3+) ions. YAG:Nd, Ti may be used as a high performance pulsed laser.

  5. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  6. Trehalose amorphization and recrystallization.

    PubMed

    Sussich, Fabiana; Cesàro, Attilio

    2008-10-13

    The stability of the amorphous trehalose prepared by using several procedures is presented and discussed. Amorphization is shown to occur by melting (T(m)=215 degrees C) or milling (room temperature) the crystalline anhydrous form TRE-beta. Fast dehydration of the di-hydrate crystalline polymorph, TRE-h, also produces an amorphous phase. Other dehydration procedures of TRE-h, such as microwave treatment, supercritical extraction or gentle heating at low scan rates, give variable fractions of the polymorph TRE-alpha, that undergo amorphization upon melting (at lower temperature, T(m)=130 degrees C). Additional procedures for amorphization, such as freeze-drying, spray-drying or evaporation of trehalose solutions, are discussed. All these procedures are classified depending on the capability of the undercooled liquid phase to undergo cold crystallization upon heating the glassy state at temperatures above the glass transition temperature (T(g)=120 degrees C). The recrystallizable amorphous phase is invariably obtained by the melt of the polymorph TRE-alpha, while other procedures always give an amorphous phase that is unable to crystallize above T(g). The existence of two different categories is analyzed in terms of the transformation paths and the hypothesis that the systems may exhibit different molecular mobilities.

  7. Amorphous diamond films

    DOEpatents

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  8. In vitro inactivation of endodontic pathogens with Nd:YAG and Er:YAG lasers.

    PubMed

    Meire, Maarten A; Coenye, Tom; Nelis, Hans J; De Moor, Roeland J G

    2012-07-01

    Both Nd:YAG and Er:YAG lasers have been suggested as root canal disinfection aids. The aim of this in vitro study is to compare both wavelengths in terms of irradiation dose required for microbial inactivation, to quantify these irradiation doses and to investigate the influence of certain (laser) parameters on the antimicrobial efficacy. Agar plates containing a uniform layer of Enterococcus faecalis, Candida albicans or Propionibacterium acnes were mounted perpendicularly underneath the laser handpieces (5 mm spot). The Er:YAG laser was operated in single-pulse mode. Pulse energies of 40-400 mJ and pulse lengths of 100, 300, 600, and 1,000 μs were tested. After incubation at 37°C for 48 h, growth on the plates was scored. The pulse energy yielding complete absence of growth over the entire spot area was taken as the total inhibition threshold (TIT). TITs were determined for every species and pulse length. The Nd:YAG laser was operated with pulse trains because single pulses were ineffective. Output power was 15 W and frequency was 100 Hz. Spots were irradiated for 5-120 s. After incubation, the diameters of the inhibition zones were measured. For the Er:YAG laser, TITs varied between 100 and 210 mJ, and differed significantly between species and pulse lengths. Using Nd:YAG irradiation, TITs were around 5,300 J/cm(2) for C. albicans and 7,100 J/cm(2) for P. acnes. No inhibition was observed for E. faecalis. Er:YAG irradiation was superior to Nd:YAG in inactivating microorganisms on agar surfaces.

  9. Microchip laser based on Yb:YAG/V:YAG monolith crystal

    NASA Astrophysics Data System (ADS)

    Nejezchleb, Karel; Šulc, Jan; Jelínková, Helena; Škoda, Václav

    2016-03-01

    V:YAG crystal was investigated as a passive Q-switch of longitudinally diode-pumped microchip laser, emitting radiation at wavelength 1030.5 nm. This laser was based on diffusion bonded monolith crystal (diameter 3 mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3 mm long) and saturable absorber (V:YAG crystal, 2 mm long, initial transmission 86 % @ 1031 nm). The microchip resonator consisted of dielectric mirrors directly deposited on the monolith surfaces (pump mirror HT @ 968 nm and HR @ 1031 nm on Yb:YAG part, output coupler with reflection 55 % @ 1031 nm on the V:YAG part). For longitudinal CW pumping of Yb:YAG part, a fibre coupled (core diameter 100 μm, NA = 0.22, emission @ 968 nm) laser diode was used. The laser threshold was 3.8W. The laser slope efficiency for output mean in respect to incident pumping was 16 %. The linearly polarized generated transversal intensity beam profile was close to the fundamental Gaussian mode. The generated pulse length, stable and mostly independent on pumping power, was equal to 1.3 ns (FWHM). The single pulse energy was increasing with the pumping power and for the maximum pumping 9.7W it was 78 μJ which corresponds to the pulse peak-power 56 kW. The maximum Yb:YAG/V:YAG microchip laser mean output power of 1W was reached without observable thermal roll-over. The corresponding Q-switched pulses repetition rate was 13.1 kHz.

  10. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  11. Nd:YAG laser beam diagnostics

    NASA Astrophysics Data System (ADS)

    Pope, L. E.; McDonald, T. G.

    1981-11-01

    A program to develop diagnostic techniques for pulsed Nd:YAG lasers for welding is described, and problems encountered when deviations from ideal optical collimation of a laser beam is defined, the diagnostic system is described, and the SNLA welding system is discussed.

  12. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  13. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  14. A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films.

    PubMed

    Revaux, Amelie; Dantelle, Geraldine; George, Nathan; Seshadri, Ram; Gacoin, Thierry; Boilot, Jean-Pierre

    2011-05-01

    A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 ± 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing. PMID:21384045

  15. 1064-nm Nd:YAG laser nucleotomy

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Pergadia, Vani R.; Shi, Wei-Qiang; Snyder, Wendy J.; Fishbein, Michael C.; Grundfest, Warren S.

    1993-07-01

    The high incidence of patients with clinical and neurological symptoms of lumbar disc herniation has spurred the development of less invasive and more cost efficient methods to treat patients. In this study we evaluated pulsed and continuous wave (cw) 1064 nm Nd:YAG laser ablation and induced thermal damage in sheep intervertebral disc. We used the Heraeus LaserSonics Hercules 5040 (Nd:YAG) laser system and 400 micrometers bare and 600 micrometers ball-tipped fibers in cw and pulsed mode. For the laser parameters and fibers used in this study, ablation of the intervertebral disc was successful and thermal damage did not exceed 0.5 mm. Varying beam diameters and focusing abilities (i.e., bare and ball) did not produce any difference in the coagulation thermal effect.

  16. Holmium:YAG laser stapedotomy: preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Stubig, Ingrid M.; Reder, Paul A.; Facer, G. W.; Rylander, Henry G.; Welch, Ashley J.

    1993-07-01

    This study investigated the use of a pulsed Holmium:YAG ((lambda) equals 2.09 micrometers ) laser- fiber microsurgical system for laser stapedotomy. This system ablates human stapes bones effectively with minimal thermal damage. The study was designed to determine the effectiveness of the Ho:YAG laser (Schwartz Electro Optics, Inc., Orlando, FL) for stapedotomy and to evaluate temperature changes within the cochlea during the ablation process. Human cadaveric temporal bones were obtained and the stapes portion of the ossicular chain was removed. A 200 micrometers diameter low OH quartz fiber was used to irradiate these stapes bones in an air environment. The laser was pulsed at 2 Hz, 250 microsecond(s) ec pulse width and an irradiance range of 100 - 240 J/cm2 was used to ablate holes in the stapes footplate. The resultant stapedotomies created had smooth 300 micrometers diameter holes with a minimum of circumferential charring. Animal studies in-vivo were carried out in chinchillas to determine the caloric spread within the cochlea. A 0.075 mm Type T thermocouple was placed in the round window. Average temperature change during irradiation of the stapes footplate recorded in the round window was 3.6 degree(s)C. The data suggest that stapedotomy using the Ho:YAG laser can result in a controlled ablation of the stapes footplate with minimal thermal damage to the surrounding stapes. Optical coupling using fiberoptic silica fibers is an ideal method for delivering laser energy to the stapes during stapedotomy.

  17. Use of the holmium:YAG (Ho:YAG) laser for treatment of superficial bladder carcinoma.

    PubMed

    Johnson, D E

    1994-01-01

    This is the first North American report describing the use of the holmium:YAG (Ho:YAG) laser to treat patients with superficial bladder carcinoma. Fifteen patients, with a total of 52 recurrent superficial bladder tumors, underwent endoscopic laser photoablation of their lesions. No intraoperative or delayed complications occurred. At follow-up cystoscopy performed 3 months after lasing, four patients (27%) were without disease; eight patients (53%) had out-of-field recurrences; and three patients (20%) were classified as having in-field recurrences. We conclude that using the Ho:YAG for endoscopic treatment of patients with superficial bladder tumors is both feasible and clinically useful and that the lack of perceived pain or discomfort during lasing, as well as the lack of need for an in-dwelling urethral catheter, makes it advantageous for selected patients over conventional electroresection techniques.

  18. Cervical microleakage in root canals treated with Er:YAG and Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Sponchiado, Emilio C., Jr.; Azevedo, Lidiany K.; Marchesan, Melissa; Brugnera, Aldo, Jr.; Silva-Sousa, Yara T.; Alfredo, Edson; Sousa Neto, Manoel D.

    2005-03-01

    Cervical microleakage was evaluated in sealed root canals previously treated with Er:YAG and Nd:YAG lasers. Ninety-two single-rooted maxillary human canines were prepared with the crown-down technique and irrigated with distilled and deionized water. The samples were distributed randomly into 9 groups of 10 teeth each. One tooth was used as a positive control and one as a negative control. In group I, 1.2 ml of EDTAC was applied during 5 min. In groups II to V, radicular dentine was irradiated with Er:YAG laser (Opus 20, Opus Dent, Israel) at the following parameters: 200 mJ and 8 Hz, 200 mJ and 16 Hz, 400 mJ and 8 Hz, or 400 mJ and 16Hz, respectively, for 60 s. In groups VI to IX, radicular dentine was irradiated with Nd:YAG laser (Fotona Medical Lasers, Slovenia) at 10 Hz and 1 W, 10 Hz and 2 W, 15 Hz and 1 W, or 15 Hz and 2 W, respectively, for 60 s. The canals were then sealed by the lateral condensation technique with an epoxy resin-based sealer. The roots were immersed in India ink for 15 days and then cleared to visualize the level of cervical microleakage with a measurement microscope. The results were evaluated by the Kruskal-Wallis test, which showed no statistical significance (p>0.01) for parameter variations of the Er:YAG laser when compared to the control group. However, the increase in frequency and potency for Nd:YAG laser decreased the microleakage when compared to the control group.

  19. Effects of the holmium:YAG and erbium:YAG lasers on endotracheal tubes.

    PubMed

    Kautzky, M; Fitzgerald, R; Dechtyar, I; Schenk, P

    1993-01-01

    Endotracheal tube (ET) fire is the most frequent complication arising with laser surgery in the upper aerodigestive tract. No data are available about the safety of commonly used ETs when used with recently developed high-energy pulsed lasers, working with only a minimal thermal component but mainly photoablative. A comparative in vitro study was performed with three types of endotracheal tubes to assess their resistance to wall and cuff damage by the laser beams of two pulsed infrared solid-state lasers. ET perforation was attempted with the erbium:YAG (lambda = 2,930 nm) and holmium:YAG (lambda = 2,120 nm) lasers. For all experiments, a repetition rate of 5 Hz was used. The 2.5-microseconds holmium:YAG pulses were coupled into a nylon fibre of 400 microns diameter. The 2.0-microseconds erbium:YAG laser pulses were applied to ETs through a lens system providing a spot size diameter of 200 microns. Polyvinyl chloride and silicon ET segments were exposed to laser pulse energies from 97 to 500 mJ in the presence of different anaesthetic gas mixtures. The time from the onset of exposure to tube perforation was recorded. Thermal gradients following laser application were measured. Laser exposure was continued for up to 90 s, unless tube ignition occurred. At all energy levels tested, the photo-ablative mechanism of laser-tube interaction, with few thermal components, led to laser-induced tube ignition if an FiO2 > 21% for the holmium:YAG and 34% for the erbium:YAG laser was established. With increasing pulse energies, ET segments ignited sooner. MLT tubes performed best in the present safety test. PMID:8446385

  20. Effects of the holmium:YAG and erbium:YAG lasers on endotracheal tubes.

    PubMed

    Kautzky, M; Fitzgerald, R; Dechtyar, I; Schenk, P

    1993-01-01

    Endotracheal tube (ET) fire is the most frequent complication arising with laser surgery in the upper aerodigestive tract. No data are available about the safety of commonly used ETs when used with recently developed high-energy pulsed lasers, working with only a minimal thermal component but mainly photoablative. A comparative in vitro study was performed with three types of endotracheal tubes to assess their resistance to wall and cuff damage by the laser beams of two pulsed infrared solid-state lasers. ET perforation was attempted with the erbium:YAG (lambda = 2,930 nm) and holmium:YAG (lambda = 2,120 nm) lasers. For all experiments, a repetition rate of 5 Hz was used. The 2.5-microseconds holmium:YAG pulses were coupled into a nylon fibre of 400 microns diameter. The 2.0-microseconds erbium:YAG laser pulses were applied to ETs through a lens system providing a spot size diameter of 200 microns. Polyvinyl chloride and silicon ET segments were exposed to laser pulse energies from 97 to 500 mJ in the presence of different anaesthetic gas mixtures. The time from the onset of exposure to tube perforation was recorded. Thermal gradients following laser application were measured. Laser exposure was continued for up to 90 s, unless tube ignition occurred. At all energy levels tested, the photo-ablative mechanism of laser-tube interaction, with few thermal components, led to laser-induced tube ignition if an FiO2 > 21% for the holmium:YAG and 34% for the erbium:YAG laser was established. With increasing pulse energies, ET segments ignited sooner. MLT tubes performed best in the present safety test.

  1. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  2. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  3. Improvement of thermal management in the composite Yb:YAG/YAG thin-disk laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. I.; Mukhin, I. B.; Palashov, O. V.

    2016-04-01

    To improve the thermal management in the composite Yb:YAG/YAG thin-disk laser a new design of laser head is developed. Thermal-induced phase distortions, small signal gain and lasing in the upgraded laser head are investigated and compared with previously published results. A substantial decrease of the thermal lens optical power and phase aberrations and increase of the laser slope efficiency are observed. A continuous-wave laser with 440 W average power and 44% slope efficiency is constructed.

  4. Efficient, low threshold, cryogenic Ho:YAG laser.

    PubMed

    Ganija, Miftar; Simakov, Nikita; Hemming, Alexander; Haub, John; Veitch, Peter; Munch, Jesper

    2016-05-30

    We report the development of an efficient, liquid-nitrogen conduction cooled Ho:YAG slab laser with good beam quality. Detailed measurements resolving the structure of the 1900-1911 nm absorption band in Ho:YAG at 77 K are presented. Stress-free conduction cooled mounting of the Ho:YAG slab was demonstrated and the resulting laser operated with a large mode volume of 42 mm3, a slope efficiency of 75% and a threshold of 0.84 W. To our knowledge this corresponds to the lowest reported threshold intensity for a Ho:YAG laser. PMID:27410084

  5. Laboratory and clinical experience with neodymium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Since 1991, we have undertaken extensive laboratory and clinical studies of the Neodymium:YAG (Nd:YAG) laser for surgical treatment of bladder outlet obstruction due to prostatic enlargement or benign prostatic hyperplasia (BPH). Side-firing optical fibers which emit a divergent, relatively low energy density Nd:YAG laser beam produce coagulation necrosis of obstructing periurethral prostate tissue, followed by gradual dissolution and slough in the urinary stream. Laser-tissue interactions and Nd:YAG laser dosimetry for prostatectomy have been studied in canine and human prostate model systems, enhancing clinical application. Ongoing studies examine comparative Nd:YAG laser dosimetry for various beam configurations produced by available side-firing optical fibers and continue to refine operative technique. We have documented clinical outcomes of Nd:YAG laser prostatectomy in 230 consecutive patients treated with the UrolaseTM side-firing optical fiber. Nd:YAG laser coagulation the prostate produces a remarkably low acute morbidity profile, with no significant bleeding or fluid absorption. No postoperative incontinence has been produced. Serial assessments of voiding outcomes over more than 3 years of followup show objective and symptomatic improvement following Nd:YAG laser prostatectomy which is comparable to older but more morbid electrosurgical approaches. Nd:YAG laser prostatectomy is a safe, efficacious, durable and cost-effective treatment for BPH.

  6. Potential applications of the erbium:YAG laser in endourology.

    PubMed

    Fried, N M

    2001-11-01

    The holmium:YAG laser has become the laser of choice in endourology because of its multiple applications in the fragmentation of kidney stones, incision of strictures, and coagulation of tumors. This paper describes the potential use of a new laser, the erbium:YAG laser, for applications in endourology. Recent studies suggest that the Er:YAG laser may be superior to the Ho:YAG laser for precise ablation of strictures with minimal peripheral thermal damage and for more efficient laser lithotripsy. The Er:YAG laser cuts urethral and ureteral tissues more precisely than does the Ho:YAG laser, leaving a residual peripheral thermal damage zone of 30 +/- 10 microm compared with 290 +/- 30 microm for the Ho:YAG laser. This result may be important in the treatment of strictures, where residual thermal damage may induce scarring and result in stricture recurrence. The Er:YAG laser may represent an alternative to the cold knife and Ho:YAG laser in applications where minimal mechanical and thermal insult to tissue is required.

  7. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  8. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  9. Nanosecond cryogenic Yb:YAG disk laser

    SciTech Connect

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Vadimova, O L; Palashov, O V

    2014-05-30

    A cryogenic Yb:YAG disk laser is modernised to increase its average and peak power. The master oscillator unit of the laser is considerably modified so that the pulse duration decreases to several nanoseconds with the same pulse energy. A cryogenic disk laser head with a flow-through cooling system is developed. Based on two such laser heads, a new main amplifier is assembled according to an active multipass cell scheme. The total small-signal gain of cryogenic cascades is ∼10{sup 8}. (lasers)

  10. Femtosecond, Cr{sup 4+}:YAG laser

    SciTech Connect

    Nathel, H.; Sennaroglu, A.; Pollock, C.R.

    1994-08-01

    Results from both a regeneratively-initiated and self-initiated, mode-locked CR.YAG laser which is tunable from 1.51 to 1.53 {mu}m are reported. One hundred and twenty femtsosecond, nearly transform-limited pulses have been generated with peak output powers of 45 kW. The stable, high peak power pulses and room temperature operation of this laser make it a very suitable alternative to the cumbersome, cryogenic mode-locked NaCl laser commonly used in both narrow bandgap semiconductor and optical communications research.

  11. Amorphous to amorphous transition in particle rafts

    NASA Astrophysics Data System (ADS)

    Varshney, Atul; Sane, A.; Ghosh, Shankar; Bhattacharya, S.

    2012-09-01

    Space-filling assemblies of athermal hydrophobic particles floating at an air-water interface, called particle rafts, are shown to undergo an unusual phase transition between two amorphous states, i.e., a low density “less-rigid” state and a high density “more-rigid” state, as a function of particulate number density (Φ). The former is shown to be a capillary bridged solid and the latter is shown to be a frictionally coupled one. Simultaneous studies involving direct imaging as well as measuring its mechanical response to longitudinal and shear stresses show that the transition is marked by a subtle structural anomaly and a weakening of the shear response. The structural anomaly is identified from the variation of the mean coordination number, mean area of the Voronoi cells, and spatial profile of the displacement field with Φ. The weakened shear response is related to local plastic instabilities caused by the depinning of the contact line of the underlying fluid on the rough surfaces of the particles.

  12. Amorphous to amorphous transition in particle rafts.

    PubMed

    Varshney, Atul; Sane, A; Ghosh, Shankar; Bhattacharya, S

    2012-09-01

    Space-filling assemblies of athermal hydrophobic particles floating at an air-water interface, called particle rafts, are shown to undergo an unusual phase transition between two amorphous states, i.e., a low density "less-rigid" state and a high density "more-rigid" state, as a function of particulate number density (Φ). The former is shown to be a capillary bridged solid and the latter is shown to be a frictionally coupled one. Simultaneous studies involving direct imaging as well as measuring its mechanical response to longitudinal and shear stresses show that the transition is marked by a subtle structural anomaly and a weakening of the shear response. The structural anomaly is identified from the variation of the mean coordination number, mean area of the Voronoi cells, and spatial profile of the displacement field with Φ. The weakened shear response is related to local plastic instabilities caused by the depinning of the contact line of the underlying fluid on the rough surfaces of the particles.

  13. Nd: YAG photodisruptors. American Academy of Ophthalmology

    SciTech Connect

    Not Available

    1989-09-01

    Nd: YAG laser surgery can cut lens capsule, vitreous and capsular membranes, strands, and adhesions, and the iris within the surgically unopened eye, thereby avoiding infection, wound leaks, and other complications of conventional intraocular surgery. The technique has found its most widespread use in performing posterior capsulotomies after extracapsular cataract surgery. It has an extremely low complication rate when used in the anterior segment and is a preferred alternative to surgical discission. The uncertainties regarding its safety in creating iridotomies in phakic eyes have lessened with its extensive use in patients with pupillary-block glaucoma. However, caution is urged in other applications in phakic eyes. Following each Nd: YAG laser procedure, the eye should be monitored for elevation of intraocular pressure during the first two hours, and for retinal tears, retinal detachment, or cystoid macular edema during the first month after the procedure. Uncertainties persist regarding the circumstances under which the laser in its current configuration should be used in the vitreous cavity.

  14. Diode pumped Nd:YAG laser development

    NASA Technical Reports Server (NTRS)

    Reno, C. W.; Herzog, D. G.

    1976-01-01

    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

  15. Bond strength of an adhesive system irradiated with Nd:YAG laser in dentin treated with Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Malta, D. A. M. P.; Costa, M. M.; Pelino, J. E. P.; de Andrade, M. F.; Lizarelli, R. F. Z.

    2008-02-01

    The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm2. The adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm2. Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser.

  16. Evaluation of Er:YAG, CO2, and Nd:YAG lasers on apical dentine permeability after apicoectomies

    NASA Astrophysics Data System (ADS)

    Careli de Castro, Fabiana; Gariba Silva, Ricardo; Marchesan, Melissa A.; Zanin, Fatima; Brugnera, Aldo, Jr.; Pecora, Jesus D.

    2004-05-01

    Apicoectomy is a surgical procedure that consists of radicular apex resection, eliminating periapical lesion. This study evaluated the effect of CO2 and Nd:YAG lasers on root dentine permeability after apicoectomy with Er:YAG laser. Forty-four single-rooted teeth, obtained from the Endodontic Laboratory stock from the Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo, were used. The teeth were instrumented with the step-back technique, irrigated with 1.0% sodium hypochlorite and sealed with Sealer 26 (Dentsply, Brazil; lateral condensation. The samples were divided into four groups of 11 teeth each that had the root sectioned 2mm from the apex: G1 - roots were sectioned with a 4138 diamond bur with cooling; G2 - roots were sectioned with pulsed Er:YAG laser at the following parameters: 15 Hz and 250 mJ; G3 - roots were sectioned with pulsed Er:YAG laser and Nd:YAG laser (10 Hz, 100 mJ, and 1 W) was app0lied on the sectioned surface; G4 - roots were sectioned with pulsed Er:YAG laser and CO2 laser (5 W, 10 seconds ON and 20 seconds OFF) was applied to the sectioned surface. The teeth were then impermeabilized with cyanoacrylate and placed in 0.5% methylene blue for 7 days. The proximal surface of the samples was removed for exposure of the sealed root canal and dye penetration was measured by means of microscopic evaluation. The results showed a statistically significant difference at the level of 1%. We conclude that all treatments presented microleakage and can placed in increasing order: Er:YAG (G2), Bur (G1), Er:YAG + Nd:YAG (G3); Er:YAG laser presented the lowest microleakage values, showing its viability for clinical use in apicoectomies.

  17. A tunable corner-pumped Nd:YAG/YAG composite slab CW laser

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Gong, Ma-Li

    2012-10-01

    A corner-pumped Nd:YAG/YAG composite slab continuous-wave laser operating at 1064 nm, 1074 nm, 1112 nm, 1116 nm, and 1123 nm simultaneously and a laser that is tunable at these wavelengths are reported for the first time. The maximum output power of the five-wavelength laser is 5.66 W with an optical-to-optical conversion efficiency of 11.3%. After a birefringent filter is inserted in the cavity, the five wavelengths can be separated successfully by rotating the filter. The maximum output powers of the 1064 nm, 1074 nm, 1112 nm, 1116 nm, and 1123 nm lasers are 1.51 W, 1.3 W, 1.27 W, 0.86 W, and 0.72 W, respectively.

  18. Histologic comparison of needle, holmium:YAG, and erbium:YAG endoscopic goniotomy

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Shen, Jin-Hui; Rivera, Brian K.; Hernandez, Eleut; Shetlar, Debra J.

    1995-05-01

    An endoscope allows visualization of the anterior chamber angle in porcine eyes despite the presence of cloudy corneas. The pectinate ligaments in the anterior chamber angle are a surgical model for primary infantile glaucoma. This study investigated the histologic results, one month after treating the anterior chamber angle with a goniotomy needle, the holmium:YAG laser, or the erbium:YAG laser coupled to a small endoscope. The anterior chambers were deepened with a viscoelastic material in one-month-old anesthetized pigs. An Olympus 0.8 mm diameter flexible endoscope was externally coupled to a 23 gauge needle or a 300 micron diameter fiber. The angle was treated for 120 degrees by one of the three methods, and the probe was removed. During the acute study, all three methods cut the pectinate ligaments. The histologic findings one month after healing demonstrated minimal surrounding tissue damage following goniotomy with a needle and the most surrounding tissue damage following treatment with the holmium:YAG laser.

  19. Ion diffusion at the bonding interface of undoped YAG/Yb:YAG composite ceramics

    NASA Astrophysics Data System (ADS)

    Fujioka, Kana; Sugiyama, Akira; Fujimoto, Yasushi; Kawanaka, Junji; Miyanaga, Noriaki

    2015-08-01

    Cation diffusion across a boundary between ytterbium (Yb)-doped and undoped yttrium aluminum garnet (YAG) ceramics was examined by electron microprobe analysis (EPMA). Polished Yb:YAG and undoped YAG ceramics were bonded by surface treatment with argon fast atom beam, and then heat-treated at 1400 or 1600 °C for 50 h or at 1400 °C for 10 h under vacuum. We obtained EPMA mapping images of the bonded samples that clearly showed the bulk and grain-boundary diffusion of Y and Yb ions. The number density profiles showed that the total diffusion distances of Yb and Y ions were almost equal and approximately 2 and 15 μm at 1400 and 1600 °C, respectively, and the dependence of diffusion distance on heating time was weak. The diffusion curves were well modeled by Harrison type B kinetics including bulk and grain-boundary diffusion. In addition, it was found that Si ions added to the samples as a sintering aid might be segregated at the grain boundary by heat treatment, and diffused only along grain boundaries.

  20. Thermally induced birefringence in Nd:YAG slab lasers

    SciTech Connect

    Ostermeyer, Martin; Mudge, Damien; Veitch, Peter J.; Munch, Jesper

    2006-07-20

    We study thermally induced birefringence in crystalline Nd:YAG zigzag slab lasers and the associated depolarization losses. The optimum crystallographic orientation of the zigzag slab within the Nd:YAG boule and photoelastic effects in crystalline Nd:YAG slabs are briefly discussed. The depolarization is evaluated using the temperature and stress distributions, calculated using a finite element model, for realistically pumped and cooled slabs of finite dimensions. Jones matrices are then used to calculate the depolarization of the zigzag laser mode. We compare the predictions with measurements of depolarization, and suggest useful criteria for the design of the gain media for such lasers.

  1. Stimulated Raman adiabatic passage in Tm{sup 3+}:YAG

    SciTech Connect

    Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.

    2008-10-01

    We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm{sup 3+}:YAG crystal. Tm{sup 3+}:YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm{sup 3+}:YAG system are presented along with the corresponding experimental results.

  2. Demining with Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Rothacher, Thomas; Lüthy, Willy; Weber, Heinz P.

    2004-04-01

    Laser neutralization of antipersonnel (AP) mines offers the enormous advantage to work from a safe distance. In this article the interaction of Nd:YAG laser radiation and four different types of blast AP mines is investigated. For this purpose, a very compact laser system for mine neutralization is developed. The incident power on the mine surfaces is varied from 20 to 70 W. Neutralization of all mines is achieved from a safe distance up to 50 m. The mines burn and finally detonate after an irradiation time of a few minutes. Detonation of the irradiated burning mines is considerably weaker compared to fully functional mines. Therefore, expected damage in the surrounding area is significantly reduced.

  3. Crystallography of Alumina-YAG-Eutectic

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  4. Pulsed Nd-YAG laser in endodontics

    NASA Astrophysics Data System (ADS)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  5. Er:YAG and Nd:YAG laser irradiation effect on dental root cut: a SEM analysis

    NASA Astrophysics Data System (ADS)

    Mello, Guilherme P. S.; Paradella, Thais C.; Munin, Egberto; Mello, Jose B.; Pacheco, Marcos T. T.; Neto, Sizenando P.

    2000-11-01

    The root end cut, also called apicoectomy, consists on the surgical removal of the root's end, as one of the last alternatives for teeth preservation. This procedure may be done with conventional diamond burs, as well as Er:YAG laser only, or in association with Nd:YAG laser. In this paper, the quality of the root end cut for the different mentioned procedures, was compared for a better analysis of these techniques, regarding surface finishing. The Er:YAG laser dosimetry applied during the experiment was of 400 mJ/10 Hz, using a laser beam with a 0.8 mm diameter. The Nd:YAG laser was irradiated at 1.5 W/10 Hz, being the samples submitted to a scanning electron microscope. On the Er:YAG laser irradiated samples, there was absence of smear layer, as well as the presence of some open dentinal tubules, presenting the surface a smooth texture. On the roots cut with the Er:YAG laser, in association with the Nd:YAG laser, below the ablative regime, there was the presence of a melted dentin surface, with an appearance which suggests a non-crystalline structure, closing the tubules. Regarding the conventional apicoectomy, the samples presented a plain surface, with the dentinal tubules being closed by the smear layer.

  6. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  7. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  8. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  9. Er:YAG laser radiation etching of enamel

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1996-12-01

    This study compares the effects of acid treatment and Er:YAG laser radiation on the enamel. The permanent human molars were used. Oval cavities in the buccal surface were prepared and the edges of cavities were irradiated by Er:YAG radiation. The energy of laser was 105 mJ and repetition rate 1 Hz. The radiation was focused by CaF2 lens and the sample was placed in the focus. Ten samples were etched by 35 percent phosphoric acid during 60 s. Than cavities were filled with composite resin following manufacturers directions. By laser etching the structure enamel in section was rougher. The optimal connection between the enamel and composite resin was achieved in 75 percent by acid etching and in 79.2 percent by Er:YAG laser etching. Er:YAG laser etching could be alternative method for etching of enamel.

  10. NdYag Laser for Acne Keloidalis Nuchae

    ClinicalTrials.gov

    2013-03-27

    Acne Keloidalis Nuchae; NdYag Laser; AKN; Acne Keloidalis; AK; Dermatitis Papillaris Capillitii; Folliculitis Keloidalis Nuchae; Sycosis Nuchae; Acne Keloid; Keloidal Folliculitis; Lichen Keloidalis Nuchae; Folliculitis Nuchae Scleroticans; Sycosis Framboesiformis

  11. Neodymium-YAG laser vitreolysis in sickle cell retinopathy

    SciTech Connect

    Hrisomalos, N.F.; Jampol, L.M.; Moriarty, B.J.; Serjeant, G.; Acheson, R.; Goldberg, M.F.

    1987-08-01

    Six patients with proliferative sickle cell retinopathy and vitreous bands were treated with the neodymium-YAG (Nd-YAG) laser to accomplish lysis of avascular traction bands or to clear the media in front of the macula. Transection of bands was possible in five of the six cases but in two of these the effect was only partial. Three cases were satisfactorily treated with the Nd-YAG laser application alone, two eventually required conventional vitreoretinal surgery, and one patient's condition stabilized despite failure of the treatment. Complications from the treatment occurred in three cases and included subretinal (choroidal) hemorrhage, preretinal hemorrhage, microperforation of a retinal vein, and focal areas of damage to the retinal pigment epithelium. Neodymium-YAG vitreolysis may be a useful modality in carefully selected patients with proliferative sickle cell retinopathy, but potentially sight-threatening complications may occur.

  12. Bulk amorphous materials

    SciTech Connect

    Schwarz, R.B.; Archuleta, J.I.; Sickafus, K.E.

    1998-12-01

    This is the final report for a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work was to develop the competency for the synthesis of novel bulk amorphous alloys. The authors researched their synthesis methods and alloy properties, including thermal stability, mechanical, and transport properties. The project also addressed the development of vanadium-spinel alloys for structural applications in hostile environments, the measurement of elastic constants and thermal expansion in single-crystal TiAl from 300 to 750 K, the measurement of elastic constants in gallium nitride, and a study of the shock-induced martensitic transformations in NiTi alloys.

  13. Treatment of patients with OSAS using Nd-YAG laser

    NASA Astrophysics Data System (ADS)

    Kukwa, Andrzej; Tulibacki, Marek P.; Zajac, Andrzej; Dudziec, Katarzyna

    2000-06-01

    The authors present their clinical experience regarding the possibilities of application of Nd:YAG and Ho:YAG lasers for the treatment of disorders in the are of the upper respiratory tract. The patients with symptoms of Obstructive Sleep Aphnoe Syndrom need a various operations techniques. Lasers techniques makes it possible to perform a number of procedures in local anesthesia which considerably improves the economic effectiveness of the treatment. The surgeries performed using laser beam enabled very good effect of treatment.

  14. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  15. Polarisation dynamics of a Nd:YAG ceramic laser

    SciTech Connect

    Khandokhin, Pavel A; Ievlev, Ivan V; Lebedeva, Yu S; Mukhin, I B; Palashov, O V; Khazanov, Efim A

    2011-02-28

    We report an experimental study of the polarisation dynamics of a dual-polarisation microchip Nd:YAG ceramic laser. Our results demonstrate dual-polarisation operation of the polycrystalline Nd:YAG laser. The low-frequency dynamics in this regime involves three types of relaxation oscillations, two of which are responsible for antiphase dynamics of the intensities of orthogonally polarised modes. Linearly polarised pump light induces gain anisotropy in the Nd:YAG ceramic, as in Nd:YAG single-crystal lasers. We present a comparative analysis of the behaviour of orthogonally polarised modes in Nd:YAG single-crystal lasers and the Nd:YAG ceramic laser, with a random orientation of the crystallographic axes in each grain (microcrystal), describe a technique for evaluating the total cavity loss from the relaxation oscillation spectrum and compare single-crystal and ceramic active elements. Experimental evidence is presented for gain anisotropy, loss anisotropy and phase anisotropy in ceramic and single-crystal microchip lasers. (lasers)

  16. Photoluminescence properties of thermographic phosphors YAG:Dy and YAG:Dy, Er doped with boron and nitrogen

    NASA Astrophysics Data System (ADS)

    Chepyga, Liudmyla M.; Jovicic, Gordana; Vetter, Andreas; Osvet, Andres; Brabec, Christoph J.; Batentschuk, Miroslaw

    2016-08-01

    This paper investigates Dy3+-doped and Dy3+, Er3+-co-doped yttrium aluminum garnets (YAG) with the admixture of boron nitride with the aim of using them as efficient thermographic phosphors at high temperatures. The phosphors were synthesized using a conventional high-temperature solid-state method. The influence of two fluxes, B2O3 and LiF/NH4F, and the effect of activator and coactivator concentrations were investigated. Additionally, the effect of B3+ and N3- substituting for Al3+ and O2- ions, respectively, in the YAG:Dy3+ co-doped with Er3+ was studied for the first time. The changes in the host lattice led to a much stronger photoluminescence compared with the samples without B3+ and N3- substitution. The admixture of BN also improves the thermal sensitivity of the YAG:Dy and YAG:Dy, Er thermographic phosphors.

  17. Effect of surface morphology on laser-induced crystallization of amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jin, Jing; Wang, Guohua; Shi, Weimin; Yang, Weiguang; Yuan, Zhijun; Cao, Zechun; Zhou, Jun; Lou, Qihong; Liu, Jin; Wei, Guangpu

    2013-12-01

    The effect of surface morphology on laser-induced crystallization of hydrogenated intrinsic amorphous silicon (a-Si:H) thin films deposited by PECVD is studied in this paper. The thin films are irritated by a frequency-doubled (λ=532 nm) Nd:YAG pulsed nanosecond laser. An effective melting model is built to identify the variation of melting regime influenced by laser crystallization. Based on the experimental results, the established correlation between the grain growth characterized by AFM and the crystalline fraction (Xc) obtained from Raman spectroscopy suggests that the crystallized process form amorphous phase to polycrystalline phase. Therefore, the highest crystalline fraction (Xc) is obtained by a optimized laser energy density.

  18. Processing of amorphous PEEK and amorphous PEEK based composites

    SciTech Connect

    Kenny, J.; D'amore, A.; Nicolais, L.; Iannone, M.; Scatteia, B.; Aeritalia, S.p.A., Naples )

    1989-08-01

    An analysis of the crystallization behavior of amorphous PEEK, its carbon fiber composite, and its relationships with dynamic-mechanical properties of the system measured during and after processing is presented. The effect of the processing conditions, time and temperature, on the quality and on the amount of the crystallinity developed during cold crystallization has been investigated in order to evaluate the processability window of amorphous PEEK and amorphous PEEK based composite above the glass transition temperature and below the melting point. Also, the anomalous behavior of the amorphous matrix, crystallized at low temperatures, has been studied. Multiple melting peaks and changes of the glass transition during crystallization are explained in terms of crystalline morphology and molecular mobility. 20 refs.

  19. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    PubMed

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization. PMID:27460160

  20. Cr4+ : YAG chirped-pulse oscillator

    PubMed Central

    Sorokin, Evgeni; Kalashnikov, Vladimir L; Mandon, Julien; Guelachvili, Guy; Picqué, Nathalie; Sorokina, Irina T

    2010-01-01

    We demonstrate chirped-pulse operation of a Cr : YAG passively mode-locked laser. Different operation regimes of the laser are extensively investigated in the vicinity of zero dispersion both experimentally and numerically. It is shown that for a given laser configuration, transition to the positive dispersion regime allows a 5-fold increase in the output pulse energy, which is otherwise limited by the onset of the multipulsing or ‘chaotic’ mode-locking. The output pulses have 1.4 ps duration and are compressible down to 120 fs in a 3 m piece of silica fiber, enabling supercontinuum generation in a nonlinear fiber. The spectrum shape and operation stability of the chirped-pulse regime depend strongly on the amount and shape of the intracavity dispersion. The numerical model predicts the existence of the minimum amount of the positive dispersion, above which the chirped-pulse regime can be realized. Once located, the chirped-pulse regime can be reliably reproduced and is sufficiently stable for applications. PMID:21151831

  1. Sulcular debridement with pulsed Nd:YAG

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Gregg, Robert H., II; McCarthy, Delwin K.; Colby, Leigh E.; Tilt, Lloyd V.

    2002-06-01

    We present data supporting the efficacy of the procedure, laser sulcular debridement (laser curettage), as an important component in the treatment of inflammatory periodontal disease. Laser Assisted New Attachment Procedure (LANAP) is a detailed protocol for the private practice treatment of gum disease that incorporates use of the PerioLase pulsed Nd:YAG Dental Laser for laser curettage. Laser curettage is the removal of diseased or inflamed soft tissue from the periodontal pocket with a surgical dental laser. The clinical trial conducted at The University of Texas HSC at San Antonio, Texas, evaluated laser curettage as an adjunct to scaling and root planing. They measured traditional periodontal clinical indices and used a questionnaire to evaluate patient comfort and acceptance. The Texas data (N=10 patients) are compared with pocket depth changes following LANAP. LANAP data were obtained from a retrospective review of patient records at three private practices (N=65). No significant differences in post treatment probe depth changes were found among the four centers indicating that the procedure produced consistent, favorable outcomes, and that results from controlled scientific clinical trials can be replicated in private practices. Reduction in pocket depths following laser treatment compare well with results obtained with scalpel surgery. The use of the laser offers additional benefits. We also present quantitative evidence from digitized radiographs of increased bone density in affected areas following LANAP.

  2. Nd:YAG breech mounted laser igniter

    NASA Astrophysics Data System (ADS)

    Hardy, Christopher R.; Myers, Michael J.; Myers, John D.; Gadson, Robert L.; Leone, Joseph; Fay, Josiah W.; Boyd, Kevin

    2005-09-01

    Nd:YAG lasers have been successfully used to demonstrate laser ignition of howitzer propellant charges including bag, stick, and the Modular Artillery Charge System (MACS). Breech Mount Laser Ignition Systems (BMLIS) have been designed, installed and tested on many artillery systems, including the US Army's M109A6 Paladin, M198, M777 Light Weight, Crusader, and Non-Line-of-Sight Cannon (NLOS-C). The NLOS-C incorporates advanced weapon technologies, to include a BMLIS. United Defense's Armament Systems Division has recently designed and built a NLOS-C System Demonstrator that uses a BMLIS that incorporates Kigre's patented square pulse technology. NLOS-C is one of the weapon systems being developed for use with the US Army's "systems of systems" Future Combat System (FCS), Manned Ground Vehicles (MGV) program, and is currently undergoing development testing at Yuma Proving Grounds. In this paper we discuss many technical aspects of an artillery laser ignition system and present BMLIS test data obtained from actual gun firings conducted with a number of different US Army howitzer platforms.

  3. Fabrication of amorphous diamond films

    DOEpatents

    Falabella, S.

    1995-12-12

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  4. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  5. Lamp pumped Nd:YAG laser. Space-qualifiable Nd:YAG laser for optical communications

    NASA Technical Reports Server (NTRS)

    Ward, K. B.

    1973-01-01

    Results are given of a program concerned with the design, fabrication, and evaluation of alkali pump lamps for eventual use in a space qualified Nd:YAG laser system. The study included evaluation of 2mm through 6mm bore devices. Primary emphasis was placed upon the optimization of the 4mm bore lamp and later on the 6mm bore lamp. As part of this effort, reference was made to the Sylvania work concerned with the theoretical modeling of the Nd:YAG laser. With the knowledge gained, a projection of laser performance was made based upon realistic lamp parameters which should easily be achieved during following developmental efforts. Measurements were made on the lamp performance both in and out of the cavity configuration. One significant observation was that for a constant vapor pressure device, the spectral and fluorescent output did not vary for vacuum or argon environment. Therefore, the laser can be operated in an inert environment (eg. argon) with no degradation in output. Laser output of 3.26 watts at 430 watts input was obtained for an optimized 4mm bore lamp.

  6. Er:YAG laser debonding of porcelain veneers

    NASA Astrophysics Data System (ADS)

    Buu, Natalie; Morford, Cynthia; Finzen, Frederick; Sharma, Arun; Rechmann, Peter

    2010-02-01

    The removal of porcelain veneers using Er:YAG lasers has not been previously described in the scientific literature. This study was designed to systematically investigate the efficacy of an Er:YAG laser on veneer debonding without damaging the underlying tooth structure, as well as preserving a new or misplaced veneer. Initially, Fourier Transform Infrared Spectroscopy (FTIR) was used on flat porcelain veneer samples (IPS Empress Esthetic; Ivoclar Vivadent, Amherst, NY) to assess which infrared laser wavelengths are transmitted through the veneer. Additionally, FTIR spectra from a veneer bonding cement (RelyX Veneer Cement A1; 3M ESPE, St. Paul, MN) were obtained. While the veneer material showed no characteristic water absorption bands in the FTIR, the bonding cement has a broad H2O/OH absorption band coinciding with the ER:YAG laser emission wavelength. Consequently Er:YAG laser energy transmission through different veneer thicknesses was measured. The porcelain veneers transmitted 11 - 18 % of the incident Er:YAG laser energy depending on their thicknesses (Er:YAG laser: LiteTouch by Syneron; wavelength 2,940 nm, 10 Hz repetition rate, pulse duration 100 μs at 133 mJ/pulse; straight sapphire tip 1,100 μm diameter; Syneron, Yokneam, Israel). Initial signs of cement ablation occurred at approximately 1.8 - 4.0 J/cm2. This can be achieved by irradiating through the veneer with the fiber tip positioned at a distance of 3-6 mm from the veneer surface, and operating the Er:YAG laser with 133 mJ output energy. All eleven veneers bonded on extracted anterior incisor teeth were easily removed using the Er:YAG laser. The removal occurred without damaging underlying tooth structure as verified by light microscopic investigation (Incident Light Microscope Olympus B 50, Micropublisher RTV 3.3 MP, Image Pro software, Olympus). The debonding mainly occurred at the cement/veneer interface. When the samples were stored in saline solution for 5 days and/or an air-waterspray was

  7. Clinical application of erbium:YAG laser in periodontology.

    PubMed

    Ishikawa, Isao; Aoki, Akira; Takasaki, Aristeo Atsushi

    2008-01-01

    Various lasers have been introduced for the treatment of oral diseases and their applications in dental clinics have become a topic of much interest among practitioners. Technological advances and improvements have increased the choices of the available laser systems for oral use. Among them, a recently developed erbium-doped:yttrium aluminum garnet (Er:YAG) laser system possesses suitable characteristics for oral soft and hard tissue ablation. Due to its high absorption in water, an effective ablation with a very thin surface interaction occurs on the irradiated tissues without any major thermal damage to the irradiated and surrounding tissues. In the field of periodontics, the application of Er:YAG laser for periodontal hard tissue has begun with studies from Japanese and German researchers. Several in vitro and clinical studies have already demonstrated an effective application of the Er:YAG laser for calculus removal and decontamination of the diseased root surface in periodontal non-surgical and surgical procedures. However, further studies are required to better understand the various effects of Er:YAG laser irradiation on biological tissues for its safe and effective application during periodontal and implant therapy. Randomized controlled clinical trials and more basic studies have to be encouraged and performed to confirm the status of Er:YAG laser treatment as an adjunct or alternative to conventional mechanical periodontal therapy. In this paper, the advantages and current clinical applications of this laser in periodontics and implant dentistry are summarized based on current scientific evidence.

  8. Er:YAG laser metal and ceramic bracket debonding

    NASA Astrophysics Data System (ADS)

    Dostálová, Tat'jana; Remeš, Marek; Jelínková, Helena; Å ulc, Jan; Němec, Michal; Vyhlídal, David

    2016-02-01

    The goal of the study was investigation of Er:YAG radiation (wavelength 2.94 μm) interaction with various metal and ceramic brackets and adhesive materials. The source of radiation was a free-running Er: YAG laser generating pulses with energy 280 mJ, 250 μs long and repetition rate 6 Hz (mean power 1.7 W). During the treatment lasting 140 s, water cooling was implemented and only the brackets were irradiated. It has been observed that the brackets were removed easily after the Er:YAG laser irradiation, and temperature rise was limited also for metal brackets. SEM investigation has confirmed less damage of enamel in comparison with non-irradiated samples.

  9. Q-Switched Nd: YAG Laser Micro-Machining System

    SciTech Connect

    Messaoud, S.; Allam, A.; Siserir, F.; Bouceta, Y.; Kerdja, T.; Ouadjaout, D.

    2008-09-23

    In this paper, we present the design of a low cost Q-switched Nd: YAG laser micro-machining system for photo masks fabrication. It consists of: Nd:YAG laser source, beam delivery system, X-Y table, PC, The CCD camera and TV monitor. The synchronization between the laser source and the X-Y table is realised by NI PCI-7342, the two axis MID-7602 and LabVIEW based program. The first step of this work consists of engraving continuous and discontinuous lines on a thin film metal with a 100 {mu}m resolution by using the YG 980 Quantel Q-switched Nd:YAG laser.

  10. Erbium:YAG laser resurfacing using a novel portable device.

    PubMed

    Gordon, James; Khan, Misbah H; Khatri, Khalil A

    2007-05-01

    Laser resurfacing of facial rhytids has become a popular treatment for many patients who have wrinkles, photodamage, and acne scarring. Erbium:YAG laser resurfacing has emerged as one of the safer, more effective methods of facial rejuvenation and its increasing popularity has led to its widespread use for resurfacing. However, size and high initial and maintenance cost are among the problems with currently available laser devices. The LightPod portable Erbium:YAG laser from Aerolase offers a new paradigm for more cost effective means of performing ablative resurfacing with reduced initial and maintenance cost and the ease of portability with significantly reduced size and weight. The objective of this pilot study was to analyze the efficacy of The LightPod Erbium:YAG laser in different skin types for various indications.

  11. Growth of single-crystal YAG fiber optics.

    PubMed

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  12. Yb:YAG Lasers for Space Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ewing, J.J.; Fan, T. Y.

    1998-01-01

    Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.

  13. Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG passively Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Li, Chao-yu; Dong, Jun

    2016-08-01

    The incident pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG composite crystal passively Q-switched microchip laser has been investigated experimentally and theoretically by moving the Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction. Highest pulse energy of 0.4 mJ has been generated when the Nd:YAG/Cr4+:YAG composite crystal is moved about 6 mm away from the focused pump beam waist. Laser pulses with pulse width of 1.7 ns and peak power of over 235 kW have been achieved. The theoretically calculated effective laser beam area at different positions of Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction is in good agreement with the experimental results. The highest peak power can be generated by adjusting the pump beam waist incident on the Nd:YAG/Cr4+:YAG composite crystal to optimize the effective laser beam area in passively Q-switched microchip laser.

  14. Use of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Johnson, Douglas E.; Cromeens, Douglas M.; Price, Roger E.

    1992-06-01

    The Holmium:YAG (Ho:YAG) laser operating at a wavelength of 2.1 micrometers with a maximum power of 15 watts (W) and 10 different pulse-energy settings was systematically evaluated on kidney, bladder, prostate, ureteral, and vasal tissue, and was used to perform various urologic surgical procedures (partial nephrectomy, transurethral laser incision of the prostate, and laser-assisted vasovasostomy) in the dog. By using the SurgiTomeTM 3- inch straight delivery system with an energy-pulse setting of 0.5 joules (J) at 20 Hz (10 W), partial nephrectomies required slightly longer operating times (15 minutes) than when similar procedures were performed using the Neodymium:YAG (Nd:YAG) laser and a free GI fiber at 59 to 83 W (4 - 7 minutes); however, the total energy required was considerably less. Hemostasis was excellent and no sutures were required to control bleeding. Transurethral incisions of the prostate using TV monitoring were made at the 4 and 8 o'clock positions extending from the colliculus seminalis through the vesical neck with an energy/pulse setting of 1.0 J at 15 Hz (15 W). Attempts at laser-assisted vasovasostomies were unsuccessful due to excessive thermal affect. The LaparoTomeTM Delivery System proved helpful in performing laparoscopic pelvic lymphadenectomy in the pig. Our investigations showed that the Ho:YAG laser possesses both excellent cutting and adequate hemostatic abilities even in a fluid medium. Although these results are preliminary, we believe that the Ho:YAG laser is well suited for urologic surgery and may well become the 'urologist's laser of the future.'

  15. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The...

  16. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The...

  17. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The...

  18. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The...

  19. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The...

  20. Holmium:YAG laser coronary angioplasty in acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Topaz, On; Luxenberg, Michael; Schumacher, Audrey

    1994-07-01

    Patients who sustain complicated acute myocardial infarction in whom thrombolytic agents either fail or are contraindicated often need mechanical revascularization other than PTCA. In 24 patients with acute infarction complicated by continuous chest pain and ischemia who either received lytics or with contraindication to lytics, a holmium:YAG laser (Eclipse Surgical Technologies, Palo Alto, CA) was utilized for thrombolysis and plaque ablation. Clinical success was achieved in 23/24 patients, with 23 patients (94%) surviving the acute infarction. Holmium:YAG laser is very effective and safe in thrombolysis and revascularization in this complicated clinical setting.

  1. Transient absorption and laser output of YAG : Nd

    NASA Astrophysics Data System (ADS)

    Kvapil, Jiří; Kvapil, Jos; Kubelka, J.; Kubeček, V.

    1981-06-01

    YAG : Nd grown under 98% Ar 2% H2 protective atmosphere free of nitrogen or hydrocarbons showed after UV irradiation broad absorption peaked at ˜1·9×104 cm-1 which disappeared relatively slowly at room temperature. It was more intensive in oxygen treated samples than in those annealed in hydrogsn. Transient absorption suppresses laser output by the increase of absorption at 0·94×104 cm-1 (1064 nm) and, particularly in CW mode, by the anomalous rod deformation. YAG : Nd containing Fe ions (≲2·10-4 wt%) showed no transient absorption.

  2. Perendoscopic Nd:YAG laser therapy of colorectal neoplasms

    NASA Astrophysics Data System (ADS)

    Norberto, Lorenzo; Ranzato, Riccardo; Marino, Saverio; Erroi, F.; Angriman, Imerio; Donadi, Michele; Paratore, S.; Scuderi, G.; D'Amico, D. F.

    1996-01-01

    The range of application of Nd:YAG laser is now wide and of particular interest in the treatment of neoplastic lesions of the large bowel, both benign and malignant, which, besides the debilitating of vegetative lesions, may also provide a good hemostasis of the bleeding ones. Yag laser treatment of malignancies is indicated in patients not suitable for surgery due to the extent of the disease or to the high anesthesiologic/surgical risk. The treatment of choice for benign neoplasms is represented by endoscopic polypectomy, being Yag laser therapy reserved to patients with very large polyps and with a high anesthesiologic risk. Yag laser therapy is also recommended in teleangiectasies with active or previous bleeding, since it allows the complete ablation of such lesions with subsequent outstanding hemostasis. Furthermore this treatment may be advantageously associated to other operative endoscopic procedures, such as diatermotherapy, dilatation and injection therapy. It is also to be outlined that Yag laser therapy is currently used to cure benign diseases and for the palliation of advanced cancer in inoperable patients. Our laser instrument is an Nd:Yag laser MBB Medilas 2 with maximum power of 100 watts at the tip, with 'non-contact' laser fibers. We use flexible optic fiberendoscopes of several sizes, according to the type of lesion to be treated. Moreover we have employed both Savary dilators of progressive caliber from 5 to 15 mm and Rigiflex pneumatic balloons. Adequate bowel preparation by means of isosmotic solution was achieved in patients with non stenotic neoplasm, or evacuative enemas and fluid diet in patients with bowel neoplastic stenoses. The patients were premedicated with benzodiazepines. Stenotic malignant lesions have been treated with endoscopic dilatation before laser treatment. At each session 4,000 - 8,000 joules of energy were administered; all patients received an average of 5 - 6 laser sessions. Followup laser sessions have then been

  3. THC:YAG, Ultrasonic, And Electrohydraulic Gallstone Lithotriptors

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey P.; Oz, Mehmet C.; Treat, Michael R.; Chuck, Roy S. H.; Trokel, Stephen L.

    1989-09-01

    There is considerable interest in methods of dealing with gallstones that would be less invasive than traditional gallbladder surgery. Our group has been especially interested in percutaneous endoscopic or transcatheter methods for performing biliary lithotripsy. We performed an in vitro comparison of three methods for lithotripsy, the thulium-holmium-chromium:YAG laser (THC:YAG), the ultrasonic lithotriptor (UL) and the electrohydraulic lithotriptor (EHL). We concluded that no one modality is clearly superior to the others, but rather that these methods are complementary with each modality having a preferred role.

  4. Neodymium-YAG transscleral cyclophotocoagulation. The role of pigmentation

    SciTech Connect

    Cantor, L.B.; Nichols, D.A.; Katz, L.J.; Moster, M.R.; Poryzees, E.; Shields, J.A.; Spaeth, G.L. )

    1989-08-01

    Using a rabbit model we investigated the role of pigmentation of the ciliary body in obtaining ciliodestruction by neodymium-YAG transscleral cyclophotocoagulation. There was marked destruction of the ciliary body in pigmented rabbit eyes, but no histologic effect was observed in albino rabbit eyes. These findings suggest that pigmentation of the ciliary body is important for obtaining the desired response from neodymium-YAG transscleral cyclophotocoagulation in rabbit eyes by our technique. Further study is necessary to define the role of pigmentation in human eyes in this treatment modality.

  5. Nonlinear optical responses of erbium-doped YAG ceramics

    NASA Astrophysics Data System (ADS)

    Sun, Wangliang; Yi, Jun; Miao, Lili; Li, Jiang; Xie, Tengfei; Zhao, Chujun; Pan, Yubai; Wen, Shuangchun

    2016-07-01

    By performing the Z-scan measurements with ultrafast femtosecond laser centered at 800 nm wavelength, we can unambiguously distinguish the real and imaginary part of the third-order optical nonlinearity of the erbium-doped YAG ceramics. The reverse saturable absorption of the erbium-doped YAG ceramics has been observed experimentally, and the nonlinear refractive index of the ceramics is estimated to be about 10-21 m2/W. The experimental results may provide design guidelines for the high power laser design and its applications.

  6. Nanostructures having crystalline and amorphous phases

    DOEpatents

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  7. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  8. Annealing studies of amorphous alloys

    SciTech Connect

    Wiley, J.D.; Perepezko, J.H.; Nordman, J.E.

    1983-04-01

    Amorphous films of the alloys Ni-Nb, Ni-Mo, Mo-Si, and W-Si were sputter deposited on single-crystal semiconductor substrates. One-hour crystallization temperatures of the films were determined to within +-25/sup 0/C by annealing and x-ray diffraction measurements. Interdiffusion between Au or Cu overlayers and the amorphous films were studied by annealing combined with Auger Electron Spectroscopy (AES) profiling, and by Rutherford Backscatter (RBS) analysis. Supplementary measurements used to study structural relaxation and crystallization included resistivity as a function of temperature; DTA and DSC; and electron microscopy.

  9. Histological study of frequency-doubled Nd:YAG laser trabeculoplasty on monkey eyes

    NASA Astrophysics Data System (ADS)

    Yu, Zi-kui; Wang, Kang-sun; Shi, Hai-yun

    1998-11-01

    Two eyes of a rhesus monkey subject to frequency-doubled Nd:YAG laser LTP were examined by light and electron microscopy twenty-four hours and four weeks postoperatively. Light microscopy demonstrated trabecular meshwork edema, acute inflammatory changes such as the presence of polymorphonuclears and amorphous eosinphilous substance of the Schlemm's canal in the specimen 24 hours after surgery, otherwise, membrane-like extension over the surface of uveal meshwork was found in the tissue four weeks after surgery. Scanning electron microscopy of the specimens excited at earlier stage after irradiation revealed evidences of disruption, coalescence of the trabecular beams and the exudation of deformed erythrocytes among intertrabecular spaces; the specimens excited at later stage showed partial or total occlusion of intertrabecular spaces at laser burn site by a membrane like layer which probably originate from so called trabecular stem cell near the Schwalbe's line. Transmission electron microscopy of the tissue excited at 24 hours post laser showed necrosis of the trabecular cells, collagen fibrils edema, as well a macrophages and pigment cells among intertrabecular spaces; the tissues excited at 4 weeks post laser showed degenerated collagen fibrils and denuded collagen core without superficial trabecular cells.

  10. Tunable, diode side-pumped Er:YAG laser

    DOEpatents

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  11. Tunable, diode side-pumped Er: YAG laser

    DOEpatents

    Hamilton, Charles E.; Furu, Laurence H.

    1997-01-01

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 .mu.m, and is tunable over a 6 nm range near about 2.936 .mu.m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 .mu.m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 .mu.m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems.

  12. Er:YAG laser dentistry in special needs patients

    PubMed Central

    Fornaini, Carlo; Clini, Fabio; Fontana, Matteo; Cella, Luigi; Oppici, Aldo

    2015-01-01

    Objective: Between a quarter and a third of adults with intellectual disability is estimated to have dental anxiety. Unpleasant stimuli, such as the injection of local anaesthesia or the noise and vibration of rotary instruments, may provoke anxiety and subsequent low compliance until the opposition to the treatment. The use of Er:YAG laser in conservative dentistry had a great development in these last years thank to new devices and also to their advantages when compared to the conventional instruments. The aim of this clinical study was to show the advantages of the Er:YAG laser in the conservative treatment of Special Care patients. Methods: Four cases are here described to show the Er:YAG laser use in our Unit on special needs patients. Results and conclusions: Based on the experience gained on conservative laser-assisted treatments performed in a time of 5 years at our Dentistry, Special Needs and Maxillo-Facial Surgery Unit we may affirm that Er:YAG laser may be considered as a good way to improve the cooperation, to reduce anxiety related to rotating instruments and to reach better results with equal or shorter operating times. PMID:26557733

  13. Treatment of bladder cancer with Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Shi, Hong-Min; Zhu, Jing; Zhang, Hui-Guo; Zhang, Mei-Jue; Xu, Jian; Dai, Shen-guo; Wu, Jia-Jun; Jiang, Yu

    1998-11-01

    Among tumors of urinary system, the morbidity of bladder cancer is the first one. It is multiple, also has high risk of regeneration. The paper reports that 679 bladder tumors in 108 patients had treated for 284 times by pulsed HO:YAG laser from July 1994-June 1997.

  14. Performance of Ho:YAG as a function of temperature

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Gettemy, Donald J.

    1990-01-01

    The performance of two multiply doped Ho:YAG lasers has been characterized as a function of the laser rod temperature. From the experimental results, the dependence of the slope efficiency and threshold on temperature has been extracted. Threshold can be correlated with the occupation of the lower laser level. Implications on the optimum operating temperature are discussed.

  15. Holmium:YAG laser in the treatment of ureteral strictures

    NASA Astrophysics Data System (ADS)

    Singal, Rajiv K.; Razvi, Hassan A.; Chun, Samuel S.; Denstedt, John D.; Sales, Jack L.

    1996-05-01

    Endourologic intervention has become widely considered the initial procedure of choice for short segment ureteral strictures. Techniques employed in conjunction with endourologic access to manage the strictured area have included balloon dilation, cold knife and electrosurgical incision. More recently laser incision with the potassium titanyl phosphate (KTP) laser has been employed. The holmium:YAG laser with a wavelength of 2100 nm has recently become available for urologic use. This wavelength is able to precisely vaporize and incise tissue. In this presentation we describe our results with holmium:YAG laser incision of ureteral strictures. Seventeen patients were treated including 12 patients with distal ureteral strictures, 4 patients with ureteroileal anastomotic strictures and 1 patient with a stricture in the ureter of a transplanted kidney. The holmium:YAG laser was employed using a 400 (mu) end-firing quartz fiber placed in contact with the tissue. Clinical and radiologic follow-up of at least 3 months post-surgery (range 3 - 21 months) is available in 14 patients. At last follow-up in these patients, 10/14 (71%) of strictures have remained open. While the ultimate success of endourological techniques of stricture management are determined by the inherent nature of the stricture rather than the technique employed, the holmium:YAG laser for endoureterotomy demonstrates short term efficacy and safety comparable to that reported for other minimally- invasive techniques of stricture management.

  16. Nd:YAG laser therapy of an oral verrucous leukoplakia.

    PubMed

    Landthaler, M; Brunner, R; Haina, D

    1989-01-01

    A 75-year-old female patient afflicted with an extensive verrucous oral leukoplakia is reported. With treatment by the Nd:YAG laser under local anesthesia on an outpatient basis, the disease could be kept under control for 4 years.

  17. Minimally invasive scoliosis treatment with a Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Rumpf, Christian G.; Lang, Robert D.; Goetz, Marcus H.

    2000-11-01

    Today most surgical treatment of spinal deformations is concentrated on invasive mechanical techniques with long operation times and major effects on the patient's mobility. The proposed minimally invasive technique using laser light for tissue ablation offers a possibility of gentle scoliosis treatment. It is thought that an early removal of the epiphysial growth zone on the convex side over several vertebrae results in a straightening of the spine. In a first evaluation, four different laser systems including argon ion, Nd:YAG (Q-switched), Nd:YAG (cw), and Ho:YAG laser were compared with respect to thermal damage to adjacent tissue, ablation rates, efficiency and laser handling. For in-vivo investigation, fresh lamb spine was used. Comparison showed that the Ho:YAG laser is the most appropriate laser for the given goal, providing efficient photoablation with moderate thermal effects on the adjacent tissue. In a second step the proposed minimally invasive operation technique was performed in in-vivo experiments on young foxhounds using 3D- thoracoscopic operation techniques. During these operations temperature mapping was done using fiber-optic fluorescent probes. After 12 months of normal growth the animals were sacrificed and x-ray as well as MRI was performed on the spine. First results show a positive effect of scoliotic growth in two cases. Being able to produce a scoliosis by hemiepiphysiodesis on the vertebra, It is thought that this technique is successful for a straightening of the spine on patients with scoliosis.

  18. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  19. Imprinting bulk amorphous alloy at room temperature.

    PubMed

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T; Lograsso, Thomas A; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  20. Imprinting bulk amorphous alloy at room temperature

    NASA Astrophysics Data System (ADS)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  1. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  2. Contact versus non-contact ablation of the artificial enamel caries by Er:YAG and CTH:YAG laser radiation

    NASA Astrophysics Data System (ADS)

    Dostálová, Tat'jana; Jelínková, Helena; Å ulc, Jan; Němec, Michal; Bučková, Michaela; Kašparová, Magdalena; Miyagi, Mitsunobu

    The aim of study is to compare the ablation effect of contact and non-contact interaction of Er:YAG and CTH:YAG laser radiation with artificial enamel caries lesion. The artificial caries was prepared in intact teeth to simulate demineralized surface and the laser radiation was applied. Contact and non-contact ablation was compared. Two laser systems Er:YAG 2.94 μm and CTH:YAG 2.1 μm were used. The enamel artificial caries were gently removed by laser radiation and flow Sonic fill composite resin was inserted. Scanning electron microscope was use to evaluate the enamel surface.

  3. Effect of Er: YAG or Nd:YAG Laser Exposure on Fluorosed and Non-Fluorosed Root Surfaces: An In Vitro Study

    PubMed Central

    Ghosh, Saubhik; Dhingra, Kunaal; Patil, Roopa

    2015-01-01

    Background and aims: Fluorosis affects tooth mineralization. The therapeutic benefit provided by lasers on fluorosed and non fluorosed cementum requires studying and comparing. The aim of this study was to evaluate and compare the root surface changes following Er:YAG or Nd:YAG laser irradiation on periodontally healthy fluorosed versus non-fluorosed teeth by scanning electron microscopy (SEM). Materials and methods: A total of 76 periodontally healthy fluorosed (FH) and non-fluorosed (NFH) teeth specimens were included in this study. In one group, the experimental root specimens were irradiated using Er:YAG or with Nd:YAG laser in the other. A SEM evaluation was performed to assess the laser induced ultra structural changes in the root surface followed by statistical analysis using Fisher's exact test. Results: It was observed that both FH and NFH groups were similarly affected by Nd:YAG or Er:YAG laser. However, the former caused more surface changes than the latter on melting of surface (p=0.12 for FH and p=0.08 for NFH), and Er:YAG laser caused more smear layer formation (p=0.51 for FH and p=0.16 for NFH). Conclusion: Results suggest that undesirable morphological changes were observed almost similarly in FH and NFH groups using Er:YAG or Nd:YAG laser. Hence further in-vitro studies at lower energy settings followed by clinical trials are required in this aspect. PMID:26246689

  4. Amorphous rare earth magnet powders

    SciTech Connect

    Sellers, C.H.; Branagan, D.J.; Hyde, T.A.; Lewis, L.H.; Panchanathan, V.

    1996-08-01

    Gas atomization (GA) processing does not generally have a high enough cooling rate to produce the initial amorphous microstructure needed to obtain optimal magnetic properties in RE{sub 2}Fe{sub 14}B alloys. Phase separation and an underquenched microstructure result from detrimental {alpha}-Fe precipitation, and the resulting magnetic domain structure is very coarse. Additionally, there is a dramatic dependence of the magnetic properties on the cooling rate (and therefore the particle size) and the powders can be sensitive to environmental degradation. Alloy compositions designed just for GA (as opposed to melt spinning) are necessary to produce an amorphous structure that can be crystallized to result in a fine structure with magnetic properties which are independent of particle size. The addition of titanium and carbon to the melt has been found to change the solidification process sufficiently to result in an ``overquenched`` state in which most of the powder size fractions have an amorphous component. Crystallization with a brief heat treatment produces a structure which has improved magnetic properties, in part due to the ability to use compositions with higher Fe contents without {alpha}-Fe precipitation. Results from magnetometry, magnetic force microscopy, and x-ray analyses will be used to contrast the microstructure, domain structure, and magnetic properties of this new generation of amorphous powders with their multiphase predecessors.

  5. Amorphous titanium-oxide supercapacitors

    PubMed Central

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-01-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system. PMID:27767103

  6. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  7. Tissue damage by laser radiation: an in vitro comparison between Tm:YAG and Ho:YAG laser on a porcine kidney model.

    PubMed

    Huusmann, Stephan; Wolters, Mathias; Kramer, Mario W; Bach, Thorsten; Teichmann, Heinrich-Otto; Eing, Andreas; Bardosi, Sebastian; Herrmann, Thomas R W

    2016-01-01

    The understanding of tissue damage by laser radiation is very important for the safety in the application of surgical lasers. The objective of this study is to evaluate cutting, vaporization and coagulation properties of the 2 µm Tm:YAG laser (LISA Laser Products OHG, GER) in comparison to the 2.1 µm Ho:YAG laser (Coherent Medical Group, USA) at different laser power settings in an in vitro model of freshly harvested porcine kidneys. Laser radiation of both laser generators was delivered by using a laser fiber with an optical core diameter of 550 µm (RigiFib, LISA Laser GER). Freshly harvested porcine kidneys were used as tissue model. Experiments were either performed in ambient air or in aqueous saline. The Tm:YAG laser was adjusted to 5 W for low and 120 W for the high power setting. The Ho:YAG laser was adjusted to 0.5 J and 10 Hz (5 W average power) for low power setting and to 2.0 J and 40 Hz (80 W average power) for high power setting, accordingly. The specimens of the cutting experiments were fixed in 4 % formalin, embedded in paraffin and stained with Toluidin blue. The laser damage zone was measured under microscope as the main evaluation criteria. Laser damage zone consists of an outer coagulation zone plus a further necrotic zone. In the ambient air experiments the laser damage zone for the low power setting was 745 ± 119 µm for the Tm:YAG and 614 ± 187 µm for the Ho:YAG laser. On the high power setting, the damage zone was 760 ± 167 µm for Tm:YAG and 715 ± 142 µm for Ho:YAG. The incision depth in ambient air on the low power setting was 346 ± 199 µm for Tm:YAG, 118 ± 119 µm for Ho:YAG. On the high power setting incision depth was 5083 ± 144 µm (Tm:YAG) and 1126 ± 383 µm (Ho:YAG) respectively. In the saline solution experiments, the laser damage zone was 550 ± 137 µm (Tm:YAG) versus 447 ± 65 µm (Ho:YAG), on the low power setting and 653 ± 137 µm (Tm:YAG) versus 677 ± 134 µm (Ho:YAG

  8. Tissue damage by laser radiation: an in vitro comparison between Tm:YAG and Ho:YAG laser on a porcine kidney model.

    PubMed

    Huusmann, Stephan; Wolters, Mathias; Kramer, Mario W; Bach, Thorsten; Teichmann, Heinrich-Otto; Eing, Andreas; Bardosi, Sebastian; Herrmann, Thomas R W

    2016-01-01

    The understanding of tissue damage by laser radiation is very important for the safety in the application of surgical lasers. The objective of this study is to evaluate cutting, vaporization and coagulation properties of the 2 µm Tm:YAG laser (LISA Laser Products OHG, GER) in comparison to the 2.1 µm Ho:YAG laser (Coherent Medical Group, USA) at different laser power settings in an in vitro model of freshly harvested porcine kidneys. Laser radiation of both laser generators was delivered by using a laser fiber with an optical core diameter of 550 µm (RigiFib, LISA Laser GER). Freshly harvested porcine kidneys were used as tissue model. Experiments were either performed in ambient air or in aqueous saline. The Tm:YAG laser was adjusted to 5 W for low and 120 W for the high power setting. The Ho:YAG laser was adjusted to 0.5 J and 10 Hz (5 W average power) for low power setting and to 2.0 J and 40 Hz (80 W average power) for high power setting, accordingly. The specimens of the cutting experiments were fixed in 4 % formalin, embedded in paraffin and stained with Toluidin blue. The laser damage zone was measured under microscope as the main evaluation criteria. Laser damage zone consists of an outer coagulation zone plus a further necrotic zone. In the ambient air experiments the laser damage zone for the low power setting was 745 ± 119 µm for the Tm:YAG and 614 ± 187 µm for the Ho:YAG laser. On the high power setting, the damage zone was 760 ± 167 µm for Tm:YAG and 715 ± 142 µm for Ho:YAG. The incision depth in ambient air on the low power setting was 346 ± 199 µm for Tm:YAG, 118 ± 119 µm for Ho:YAG. On the high power setting incision depth was 5083 ± 144 µm (Tm:YAG) and 1126 ± 383 µm (Ho:YAG) respectively. In the saline solution experiments, the laser damage zone was 550 ± 137 µm (Tm:YAG) versus 447 ± 65 µm (Ho:YAG), on the low power setting and 653 ± 137 µm (Tm:YAG) versus 677 ± 134 µm (Ho:YAG

  9. Generation of 1.6 ns Q-switched pulses based on Yb:YAG/Cr:YAG microchip laser

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2015-05-01

    The highly-stable Q-switched longitudinally diode-pumped microchip laser, emitting radiation at wavelength 1031 nm, was designed and realized. This laser was based on monolith crystal which combines in one piece an active laser part (YAG crystal doped with Yb3+ ions, 10 at.% Yb/Y, 3mm long) and saturable absorber (YAG crystal doped with Cr3+ ions, 1.36mm long). The diameter of the diffusion bonded monolith was 3 mm. The initial transmission of the Cr:YAG part was 90% @ 1031 nm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith surfaces. The pump mirror (HT for pump radiation, HR for generated radiation) was placed on the Yb:YAG part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr3+-doped part. Q-switched microchip laser was tested under CW diode pumping. For longitudinal pumping of Yb:YAG part, a fibre coupled (core diameter 100 μm, NA= 0.22) laser diode, operating at wavelength 968 nm, was used. The laser threshold was 3.3W. The laser slope efficiency calculated for output mean power in respect to incident CW pumping was 17%. The wavelength of linearly polarized laser emission was fixed to 1031 nm. The generated transversal intensity beam profile was close to the fundamental Gaussian mode. The generated pulse length was equal to 1.6 ns (FWHM). This value was mostly stable and independent on investigated pumping powers in the range from the threshold up to 9.3W. The single pulse energy was linearly increasing with the pumping power. Close to the laser threshold the generated pulse energy was 45 μJ. For maximum investigated CW pumping 9.3W the pulse energy was stabilized to 74 μJ which corresponds to the Q-switched pulse peak power 46 kW. The corresponding Q-switched pulses repetition rate was 13.6 kHz. The maximum Yb:YAG/Cr:YAG microchip laser mean output power of 1W was reached without observable thermal roll-over.

  10. Effects of Er:YAG and Nd:YAG laser irradiation on the permeability of instrumented root canal walls

    NASA Astrophysics Data System (ADS)

    Brugnera, Aldo, Jr.; Zanin, Fatima A. A.; Barbin, Eduardo L.; Emboava Spano, Julio C.; Santana da Silva, Reginaldo; Pecora, Jesus D.

    2002-06-01

    The aim of this study was to evaluate the effect of Er:YAG and Nd:YAG laser on radicular dentine permeability when using distilled and deionized water and 1% sodium hypochlorite as irrigating solutions. Thirty human maxillary canines obtained from laboratory stock and conserved in 0.1% thymol until use were divided randomly into six groups of five teeth each. The root canals were instrumented with K files and the step-back technique. The surgical diameter was achieved 4 files above the original anatomical diameter. Group I, the teeth were irrigated with distilled and deionized water; Group II, the teeth were irrigated with 1% sodium hypochlorite, Group II the teeth were irrigated with distilled and deionized water and then Er:YAG laser was applied with 140mJ, 15Hz, 300 pulses and 42J; group 4 the teeth were irrigated with 1% sodium hypochlorite and Er:YAG laser was applied in the same parameters as Group III, Group V, the teeth received irrigation with distilled and deionized water and Nd:YAG laser application with 150mJ, 15Hz, 2,25W and Group VI the teeth were irrigated with 1% sodium hypochlorite and Nd:YAG laser was applied with the same parameters as Group V. During laser application the teeth were always filled with irrigating solution. The fiber optic tip was introduced until the apex and the laser was activated. The tip was withdrawn gently with helicoidally movement from the apex until the pulp chamber. After preparation the teeth were immersed in 10% copper sulfate for 30 minutes, in vacuum for the first 5 minutes. The teeth were then placed in a 1% rubianic acid alcohol solution for the same periodsin solution and in vacuum as above. Upon completion of this reaction the teeth were sectioned transversally, in 150micrometers slices, and sanded, washed, dehydrated, cleared and mounted on glass slides for microscopic examination. The quantification of the penetration of copper ions was done by morphmetric analysis with a 400-point grid. The data was submitted

  11. Fe-Based Amorphous Coatings on AISI 4130 Structural Steel for Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana; Santhanakrishnan, S.; Dahotre, Narendra B.

    2012-06-01

    The current study focuses on synthesizing a novel functional coating for corrosion resistance applications, via laser surface alloying. The iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder is used for laser surface alloying on AISI 4130 steel substrate, with a continuous wave ytterbium Nd-YAG fiber laser. The corrosion resistance of the coatings is evaluated for different processing conditions. The microstructural evolution and the response of the microstructure to the corrosive environment is studied using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Microstructural studies indicate the presence of face-centered cubic Fe-based dendrites intermixed within an amorphous matrix along with fine crystalline precipitates. The corrosion resistance of the coatings decrease with an increase in laser energy density, which is attributed to the precipitation and growth of chromium carbide. The enhanced corrosion resistance of the coatings processed with low energy density is attributed to the self-healing mechanism of this amorphous system.

  12. Uranium incorporation into amorphous silica.

    PubMed

    Massey, Michael S; Lezama-Pacheco, Juan S; Nelson, Joey M; Fendorf, Scott; Maher, Kate

    2014-01-01

    High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination. PMID:24984107

  13. Stability study of amorphous valdecoxib.

    PubMed

    Ambike, Anshuman A; Mahadik, K R; Paradkar, Anant

    2004-09-10

    Formulation of poorly water-soluble drugs in the most stable dosage form for oral delivery perhaps presents the greatest challenge to pharmaceutical industry. Physical transformation of drug substance into its more soluble but metastable amorphous form is one of the approaches for improving dissolution rate of such drugs. The present study utilizes technique of spray drying for preparation of solid dispersions (SDs) and includes stability study of the same. Valdecoxib (VLD), a prototype of poorly water-soluble drugs, has been the drug of choice. The hydrophilic carriers selected were polyvinylpyrrolidone K30 (PVP) and hydroxypropylcellulose (HPC). SDs and pure VLD in the form of spray dried powder (SDVLD) in comparison with pure drug and corresponding physical mixtures (PMs) were initially characterized and then subjected to stability testing at ambient temperature and relative humidity up to 3 months. During initial characterization, increase in saturation solubility and dissolution rate was observed in all samples. DSC and XRPD studies of SDVLD and SDs suggested generation of amorphous form of drug. IR spectroscopy revealed presence of hydrogen bonding in SDs. During stability testing, there was gradual decrease in saturation solubility and dissolution rate of SDs, over the period of 3 months. While, saturation solubility of SDVLD dropped drastically within 15 days and was almost comparable with pure VLD. SD PVP retained the amorphous form of drug throughout stability period, whereas SD HPC and SDVLD presented incidence of crystallinity after 1 month and 15 days, respectively. This was justified by enthalpy relaxation studies in which, amorphous VLD showed considerable relaxation of enthalpy at Tg, while it was totally suppressed in SD PVP and partly in SD HPC. The study thus definitely reveals tremendous potential of solid dispersions of valdecoxib with PVP, from stability point of view.

  14. [The Er:YAG laser in dentoalveolar surgery].

    PubMed

    Stübinger, Stefan; Seitz, Oliver; Landes, Constantin; Bornand, Christoph; Robert, Sader; Zeilhofer, Hans-Florian

    2007-01-01

    In contrast to many currently employed osteotomy techniques like saws or drills the use of short-pulsed laser light offers the possibility of non-contact and vibration-free bone cutting. With a wavelength of 2.94 microm the Er:YAG laser displays a consummate absorption in water and thus is particularly suitable for bone ablation. To examine the benefits of laser osteotomy in oral surgery a short-pulsed Er:YAG laser was used for different surgical procedures in 30 patients. Preliminary clinical findings revealed satisfactory cut efficiency and no carbonisation. No serious complications were encountered in the postoperative wound healing process. However, the surgical procedures were time-consuming. PMID:18072464

  15. Er:YAG and adhesion in conservative dentistry : clinical overview

    PubMed Central

    Fornaini, Carlo

    2013-01-01

    The notion of utilizing laser technology in conservative dentistry was proposed in 1990 by Hibst and Keller, who introduced the possibility of using an Er:YAG laser as alternative to conventional instruments such as the turbine and micro-motor. In subsequent years a continuing effort has been made by clinicians, researchers and commercial companies to improve the technology. The aim of this clinical study is to demonstrate, by the description of different clinical cases, the possibilities and the advantages of using Er:YAG lasers in conservative dentistry and to show that better results may be achieved in terms of stronger adhesion, less invasiveness, reduced pain as well as greater comfort and satisfaction of patients. PMID:24155547

  16. [The YAG laser in children's conservative dentistry. Preliminary report].

    PubMed

    Ricbourg, B; Manne, J; Thevenot, A

    1988-01-01

    The authors give a preliminary report of the use of a high-power (60 W) pulsed Yag laser in conservative odontology. A purely experimental phase involving laser shots to 164 freshly extracted teeth preceded the clinical evaluation. Sterilization was obtained in all cases. Histopathological sections showed that there was destruction of caries with carbonization, and melting of the superficial layer despite complete preservation of the pulp. The clinical study which followed involved 28 milk teeth. In 9 cases local anesthesia was of no value. In all cases there was vaporization of the pathological dentition and vitrification of the superficial dentin layer. Pulp vitality tested before and sometime after the procedure was preserved in all cases. These are the results reported here with a review of the probable future possibilities of the Yag laser.

  17. Endobronchial occlusive disease: Nd:YAG or PDT?

    NASA Astrophysics Data System (ADS)

    Regal, Anne-Marie; Takita, Hiroshi

    1991-06-01

    Patients with endobronchial occlusion commonly experience dyspnea, cough, hemoptysis, pneumonitis, and atelectasis. If luminal patency is not re-established, obstructive symptoms may progress to sepsis and death. Although the overall survival of patients with lung cancer may not be altered by relief of airway obstruction, the prognosis for this subset of patients may be improved by eliminating the septic complications of bronchial occlusion. Techniques to treat occluded bronchi include electro-fulguration, cryotherapy, brachytherapy, laser (CO2, Nd-YAG) therapy, and photodynamic therapy (PDT). These represent local forms of treatment and are intended to be palliative. Nd-YAG and PDT are the modalities more frequently utilized in this setting. Comparison of the two treatment forms may furnish insight regarding the appropriate role for each as individual therapies and as part of the armamentarium of cancer therapies.

  18. High power Nd:YAG spinning disk laser.

    PubMed

    Ongstad, Andrew P; Guy, Matthew; Chavez, Joeseph R

    2016-01-11

    We report on a high power Nd:YAG spinning disk laser. The eight cm diameter disk generated 200 W CW output with 323 W of absorbed pump in a near diffraction-limited beam. The power conversion efficiency was 64%. The pulsed result, 5 ms pulses at 10 Hz PRF, was nearly identical to the CW result indicating good thermal management. Rotated at 1200-1800 RPM with He impingement cooling the disk temperature increased by only 17 °C reaching a maximum temperature of ~31 °C. The thermal dissipation per unit of output power was 0.61 watt of heat generated per watt of laser output, which is below the typical range of 0.8-1.1 for 808 nm diode pumped Nd:YAG lasers. PMID:26832242

  19. Nd:YAG development for spaceborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Harper, L. L.; Logan, K. E.; Williams, R. H.; Stevens, D. A.

    1979-01-01

    The results of the development of a unique modelocked laser device to be utilized in future NASA space-based, ultraprecision laser ranger systems are summarized. The engineering breadboard constructed proved the feasibility of the pump-pulsed, actively modelocked, PTM Q-switched Nd:YAG laser concept for the generation of subnanosecond pulses suitable for ultra-precision ranging. The laser breadboard also included a double-pass Nd:YAG amplifier and provision for a Type II KD*P frequency doubler. The specific technical accomplishment was the generation of single 150 psec, 20-mJ pulses at 10 pps at a wavelength of 1.064 micrometers with 25 dB suppression of pre-and post-pulses.

  20. Continuous two-wave lasing in microchip Nd : YAG lasers

    SciTech Connect

    Ievlev, Ivan V; Koryukin, Igor' V; Lebedeva, Yu S; Khandokhin, Pavel A

    2011-08-31

    Simultaneous two-wave lasing was obtained in microchip end-pumped Nd:YAG lasers at the wavelengths of 1061.5 and 1064.17 nm at room temperature. Laser wave intensities were studied as functions of crystal temperature and pump power. The ranges of parameters were determined in which the two-wave lasing occurs and the reasons for such lasing were established. A model is suggested, which adequately describes the experimental results obtained. (control of radiation parameters)

  1. [Use of the Nd:YAG laser in otorhinolaryngology].

    PubMed

    Werner, J A; Rudert, H

    1992-07-01

    The Nd:YAG laser is suitable for the treatment of various otorhinolaryngological clinical disorders. These include the palliative reduction of tumor size in sites with difficult access, treatment of hemangiomas and reduction of hyperplastic turbinates. Within certain limits, other indications are treatment of recurrent epistaxis and recurrent polyposis. Palliative reduction of malignancies in the nasopharynx, esophagus, and bronchial system (laser power density: 1500-8000 W/cm2) must sometimes be carried out in several sessions in order to avoid complications due to the laser (i.e., perforation of the bronchial or esophageal wall, lesions of adjacent vessels or nerves). Nd:YAG laser treatment of hemangiomas (500-3000 W/cm2) can lead to excellent results. To avoid excessive thermal lesions, vascular tissue is cooled with ice cubes or with an ice-cold Ringer's solution. The laser process is continued until the onset of tissue blanching. Carbonizations of the tissue are to be avoided. In Nd:YAG laser therapy of hyperplastic lower nasal conchae (approx. 1000 W/cm2), results are based on submucous scarring in which the covering epithelium is maintained. The objective of Nd:YAG laser treatment of recurrent epistaxis in patients with Osler's disease (500 W/cm2) is to reduce the incidence of hemorrhage. Use of the laser in recurrent polyposis is best confined to patients who refuse conventional surgical revision operations. Laser light (500-3500 W/cm2) should only be applied for a short period of time (0.5 s) to avoid creating a rarefying osteitis. PMID:1500302

  2. Nd:YAG Laser Damage of Graphene-Nickel Interfaces

    NASA Astrophysics Data System (ADS)

    Zuppella, Paola; Gerlin, Francesca; Corso, Alain Jody; Nardello, Marco; Tessarolo, Enrico; Bacco, Davide; Scarpa, Daniele; Andrighetto, Alberto; Pelizzo, Maria G.

    2016-06-01

    In this work we investigate the damage induced on a graphene-nickel interface after the exposure to Nd:YAG infrared laser radiation. The damage threshold has been experimentally determined. We observe that once the fluence exceeds the threshold value, both the morphology and the physical-chemical properties of the samples change. This has been verified by scanning probe microscopes measurements and near edge x-ray absorption fine structure spectroscopy analysis.

  3. Smart Ho:YAG laser lithotriptor using optical correlation

    NASA Astrophysics Data System (ADS)

    Kokaj, Jahja O.; Marafi, Mustafa A.; Makdisi, Yacob; Bhatia, Kuldip S.; Mathew, K. J.; Caka, Nebi; Hasani, Rexhep

    1998-03-01

    Ultra fast imaging and destruction of the gall bladder stone is performed using Ho:YAG laser. A laser guided approach for lithotropsy is proposed. The correlation output peak is introduced as a feedback signal for firing the laser pulse for stone destruction and 'discrimination' of the tissue image so that the risk of damaging and perforation of the tissue is reduced. A system constituted by correlation of ballistic images and fluorescent signals is proposed.

  4. Neodymium YAG Lasers. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Carrigan, B.

    1980-07-01

    Federally funded research reports on lasing of neodymium doped yttrium aluminum garnet are cited. Studies on design, fabrication, quantum efficiency, light pulses, stabilization, and testing are covered. Optical pumping, mode locking, frequency conversion, and modulation of these lasers are discussed. Laser applications such as optical communication, range finding, and tracking are included. Safety hazards and radiation damage related to neodymium YAG lasers are also covered. This updated bibliography contains 181 citations, 15 of which are new entries to the previous edition.

  5. Holographic cinematography with the help of a pulse YAG laser

    NASA Astrophysics Data System (ADS)

    Smigielski, P.; Fagot, H.; Albe, F.

    1984-07-01

    Employing the rules of classical cinematography, holographic movies were produced on 35 mm films with the aid of a YAG laser which send pulses of 20 nsec with an energy of 30 mJ at a rate of repetition of 24 Hz. The experimental arrangements are given. The volume of the recording scene is 1 cu m. The coherence length of the laser is 1 m. Images of moving objects are given.

  6. Visual Observations of the Amorphous-Amorphous Transition in H2O Under Pressure.

    PubMed

    Mishima, O; Takemura, K; Aoki, K

    1991-10-18

    The vapor-deposited low-density amorphous phase of H(2)O was directly compressed at 77 kelvin with a diamond-anvil cell, and the boundary between the low-density amorphous phase and the high-density amorphous phase was observed while the sample was warmed under compression. The transition from the low-density amorphous phase to the high-density amorphous phase was distinct and reversible in an apparently narrow pressure range at approximately 130 to approximately 150 kelvin, which provided experimental evidence for polymorphism in amorphous H(2)O. PMID:17742228

  7. Ce, Gd codoped YAG nanopowder for white light emitting device.

    PubMed

    Schiopu, Vasilica; Matei, Alina; Dinescu, Adrian; Danila, Mihai; Cernica, Ileana

    2012-11-01

    In the last years white light emitting devices have received increased attention and have been used in a wide range of applications due to their long lifetime, high luminescence efficiency, low power consumption and environment friendliness, compared to conventional light sources. The discovery and improvement of inorganic phosphors that can be excited by a GaN chip in the wavelength range 370-470 nm is essential for the efficiency and quality of the emitted light. In the white light emitting device technology, the phosphor preparation step is the most important and it's quality defines the "whiteness". The tunable yellow emission property of YAG:Ce phosphor may be improved by the incorporation of an additional codoping element. Ce, Gd codoped YAG phosphor nanopowder with an average grain size of 40 nm has been synthesized by a sol-gel method. Well-crystallized fine nanoparticles and the formation of the garnet phase have been obtained at 1000 degrees C. The chemical structure and morphology of YAG:Ce, Gd was studied. PMID:23421297

  8. Holmium:YAG laser in dentistry: photoconditioning of dentinal surfaces

    NASA Astrophysics Data System (ADS)

    Holt, Raleigh A.; Nordquist, Robert E.

    1994-09-01

    This in vitro study was undertaken to determine energy levels necessary to produce tubule closure and surface smoothing on dentinal surfaces of human teeth and their resultant temperature increases within the pulpal canals with the Holmium:YAG laser. An optimal working spot size and even absorption pattern were produced by defocusing the laser beam and evaluated by images produced on light exposed and developed photographic paper. The surface effects on dentin were examined by scanning electron microscopy. A thermocouple was positioned in the canals of fresh dissected dog jaws and attached to a recorder which produced a graph of the temperature changes. The in vitro research model for intrapulpal temperatures changes was verified by comparing premortem and postmortem temperature readings. The same protocol was used to evaluate temperature changes in fresh human extracted teeth. In vivo histological studies were conducted to evaluate the effects of HO:YAG laser energy on pulpal tissues. The results of these studies indicate the HO:YAG laser at a wavelength of 2.12 microns can be safely and effectively used for photoconditioning of the dentinal surfaces of teeth in clinical conditions.

  9. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    NASA Astrophysics Data System (ADS)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  10. Microwave sintering of Yb:YAG transparent laser ceramics

    NASA Astrophysics Data System (ADS)

    Esposito, Laura; Piancastelli, Andreana; Bykov, Yury; Egorov, Sergei; Eremeev, Anatolii

    2013-02-01

    Reactive sintering of YAG based ceramics is generally performed under high vacuum in graphite-free furnaces in order to guarantee the elimination of pores and absence of any contamination. An alternative densification technique is the field assisted process such as spark plasma sintering and microwave sintering. Both of these methods are characterized by very fast heating rates, low sintering temperatures and short sintering times. The microwave sintering process is different from electric resistance heating since heat is generated in the bulk of the powder compact through electromagnetic radiation absorption and creates within its body uniform temperature distribution. Microwave sintering of laser ceramics is advantageously distinguished by the absence of any elements having high temperature such as electric heaters or dies which materials can contaminate the sintered parts. In addition, the inverse temperature distribution that exists within the body under volumetric microwave heating is favorable for elimination of porosity. Microwave sintering of Yb:YAG samples were tested and the obtained results are presented. The samples were sintered on a gyrotron-based system operating at a frequency of 24 GHz with microwave power up to 6 kW. Reactive sintering of YAG doped with 1.0, 5.0, and 9.8 at.% Yb2O3 was performed in different temperature-time regimes. The microstructure and the optical transmittance of the obtained samples were compared to those of samples obtained by conventional high vacuum sintering.

  11. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Theodorakos, I.; Zergioti, I.; Vamvakas, V.; Tsoukalas, D.; Raptis, Y. S.

    2014-01-01

    In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.

  12. Tissue Heating With A Pulsed Nd-YAG Laser

    NASA Astrophysics Data System (ADS)

    Grossweiner, Leonard I.; Al-Karmi, Anan M.

    1988-06-01

    Neodymium-yttrium aluminum garnet (Nd-YAG) lasers are finding increasing appli-cations in laser surgery of vascular tissues because of their good hemostatic properties. Heat penetration is deeper than the carbon dioxide laser, because the 1064 nm Nd-YAG emission is located in a "window" between the strong absorptions of oxyhemoglobin and tissue water. The basic physics of laser-tissue interactions suggests that damage to peripheral tissues can be confined by using sufficiently short pulses. In continuous mode (CW) operation, heat flow driven by temperature gradients leads to tissue heating external to the optical absorption profile. When the energy is delivered in pulses, however, conductive heat flow is minimized if the pulse duration (tn) is shorter than the thermal relaxation time constant (t ). Pulsed operation should be especially useful for the Nd-YAG laser, where the 1/e optical penetration depth (5) at 1064 nm is the order of 0.3 to 0.5 cm. Taking t" =2/2a, where a is the thermal diffusivity (the order of 0.001 cm2/s for tissues), typical values of t* for heat conduction are the order of 1-2 min. Heat removal by blood flow augments thermal conduction in vascularized tissues. The rate of this process is characterized by 1/Q, where Q is the volume blood perfusion rate. Values 1/Q range from the order of 15 s for human kidney and thyroid to more than 15 min for muscle.1 Accordingly, heat removal by conduction and blood flow during the pulse duration can be neglected for many tissues exposed to Nd-YAG laser pulses. This paper describes an analytical solution to the two dimensional laser bioheat equation applicable to pulsed operation. The theory was applied to measur-ements on potato tuber heated by low-power pulses from a clinical Nd-YAG laser. The initial temperature elevations are in satisfactory agreement with the analysis, but thermal relaxation was faster than predicted. The suggested explanation for the discrepancy involves evaporative heat transfer to

  13. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  14. Amalgam Surface Treatment by Different Output Powers of Er:YAG Laser:SEM Evaluation

    PubMed Central

    Hosseini, Mohammad Hashem; Hassanpour, Mehdi; Etemadi, Ardavan; Ranjbar Omrani, Ladan; Darvishpour, Hojat; Chiniforush, Nasim

    2015-01-01

    Introduction: The purpose of this study was to evaluate amalgam surfaces treated by different output powers of erbium-doped yttrium aluminum garnet (Er:YAG) laser by scanning electron microscope (SEM). Methods: Twenty-one amalgam blocks (8 mm × 8 mm, 3 mm thickness) were prepared by condensing silver amalgam (into putty impression material. After keeping them for 24 hours in distilled water, they were divided into 7 groups as follow: G1: Er:YAG laser (1 W, 50 mJ), G2: Er:YAG laser (2 W, 100 mJ), G3: Er:YAG laser (3 W, 150 mJ), G4: Sandblast, G5: Sandblast + Er:YAG laser (1 W, 50 mJ), G6: Sandblast +Er:YAG laser (2 W, 100 mJ) and G7: Sandblast +Er:YAG laser (3 W, 150 mJ). Then after preparation of all samples, they were examined by SEM. Results: The SEM results of amalgam surfaces treated by different output powers of Er:YAG laser showed some pitting areas with non-homogenous irregularities Conclusion: It seems that the application of sandblasting accompanied by Er:YAG laser irradiation can provide proper surface for bonding of orthodontic brackets. PMID:26705463

  15. Amorphous silicon solar cell allowing infrared transmission

    DOEpatents

    Carlson, David E.

    1979-01-01

    An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

  16. Association of Er:YAG and Nd:YAG irradiation for apicoectomy and retrofilling cavity preparation compared to conventional technique: a permeability study

    NASA Astrophysics Data System (ADS)

    Camargo, Selma C. C.; Gavini, Giulio; Eduardo, Carlos d. P.; Aun, Carlos E.; Ribeiro, Luciano W.; Coil, Jeffrey M.

    1999-05-01

    The aim of this research was to evaluate dentin permeability effects at the apical cut surface prepared with Er:YAG laser and irradiated with Nd:YAG laser compared to conventional techniques. 62 extracted human teeth were divided into four groups of 7 teeth each. For Group 1 apicoectomy was performed using high speed handpiece and diamond burs. Group 2 was prepared as group 1 and lased with Nd:YAG (1W,15Hz of energy before retrograde cavity filling). For group 3 Er:YAG* laser irradiation (wavelength of 2.94μm, pulse width of 250-500μs)was used in 400mJ of energy, frequency of 6Hz, on focus mode under distilled water refrigeration and group 4 was performed as group 3 and lased with Nd:YAG (1W, 15Hz of energy before retrograde cavity filling). Permeability was evaluated by the extent of methylene blue dye penetration into the tubules. There were statistically significant differences in permeability between groups. Nd:YAG laser irradiation significantly reduced apical dentin permeability when compared to unlased groups. Er:YAG laser by itself showed higher percentage of dye penetration.

  17. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  18. Is Mg-stabilized amorphous calcium carbonate a homogeneous mixture of amorphous magnesium carbonate and amorphous calcium carbonate?

    PubMed

    Yang, Sheng-Yu; Chang, Hsun-Hui; Lin, Cang-Jie; Huang, Shing-Jong; Chan, Jerry C C

    2016-10-01

    We find two types of carbonate ions in Mg stabilized amorphous calcium carbonate (Mg-ACC), whose short-range orders are identical to those of ACC and amorphous magnesium carbonate (AMC). Mg-ACC comprises a homogeneous mixture of the nano-clusters of ACC and AMC. Their relative amount varies systematically at different pH. PMID:27524162

  19. New bulk amorphous magnetic materials

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Lupu, N.

    2001-06-01

    The relationship between structure and magnetic properties of the melt-spun ribbons with thicknesses up to 200 μm and rods having up to 3 mm diameter prepared by mould casting and suction casting techniques, of nominal compositions Fe 56Co 7Ni 7Zr 6M 1.5Nb 2.5B 20 (M=Zr, Ti, Ta or Mo) and Nd 50Fe 40Si 10- xAl x was investigated. Saturation magnetisations up to 1.1 T, coercive fields of about 5 A/m, magnetic permeabilities of 25 000-30 000 in the as-cast state were measured for the Fe-based amorphous alloys. The large values over 200 kA/m of the intrinsic coercive field at room temperature and over 600 kA/m at 200 K measured in low magnetic fields for the Nd-Fe-based “X-ray amorphous” alloys, and its dependence on temperature and cooling rate are ascribed to the existence of very small ferromagnetic clusters embedded in an Nd-rich matrix. The thermal treatments applied to the amorphous samples below the crystallisation temperature cause an improvement in the magnetic properties as a consequence of structural relaxation.

  20. Laser surface treatment of amorphous metals

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  1. Comparative evaluation of root surface after manual instrumentation with and without Er:YAG laser as an auxiliary therapy: in-vitro study

    NASA Astrophysics Data System (ADS)

    Lizarelli, Rosane F. Z.; Ferreira, Zulene A.; Torquato, Tatiana M.; Sampaio, Jose E. C.; Bagnato, Vanderlei S.

    2000-03-01

    One of the most important difficulty in the periodontal disease treatment resides in the impossibility of decontamination of roots just affected by the periodontal disease through mechanical tools. Manual dental scaling results in the amorphous material without continuity solution due to the dental cut, denominated smear layer. The main purpose of the present study was to evaluate the structure of the radicular surface using two methods for periodontal treatments: manual and mechanical associated to the irrigation with water and with EDTA (ethylene diamine tetracycline acid), followed by the application of the Er:YAG laser or the same without laser. Thirty teeth were selected with periodontal involvement. The radicular surface was scraped with ultrasound and planed vigorously, with manual instrumentation. The teeth were divided ramdomically in several groups: GI -- control, just manual instrumentation and water irrigation; GII -- manual instrumentation, EDTA irrigation; GIII -- manual instrumentation, EDTA irrigation, Er:YAG laser irradiation; GIV -- manual instrumentation, laser irradiation; and, GV -- manual instrumentation, laser irradiation and EDTA. Kruskall Wallis statistical test was applied and shows that there was not significance difference at the level of 5% among the five groups, however, when the groups were compared in pairs, GII X GIV and GII X GV shows difference in 5%, and GI X GII, difference at 1% level. The results show equivalence around the used methodology.

  2. Nanostructuring of GeTiO amorphous films by pulsed laser irradiation.

    PubMed

    Teodorescu, Valentin Serban; Ghica, Cornel; Maraloiu, Adrian Valentin; Vlaicu, Mihai; Kuncser, Andrei; Ciurea, Magdalena Lidia; Stavarache, Ionel; Lepadatu, Ana M; Scarisoreanu, Nicu Doinel; Andrei, Andreea; Ion, Valentin; Dinescu, Maria

    2015-01-01

    Laser pulse processing of surfaces and thin films is a useful tool for amorphous thin films crystallization, surface nanostructuring, phase transformation and modification of physical properties of thin films. Here we show the effects of nanostructuring produced at the surface and under the surface of amorphous GeTiO films through laser pulses using fluences of 10-30 mJ/cm(2). The GeTiO films were obtained by RF magnetron sputtering with 50:50 initial atomic ratio of Ge:TiO2. Laser irradiation was performed by using the fourth harmonic (266 nm) of a Nd:YAG laser. The laser-induced nanostructuring results in two effects, the first one is the appearance of a wave-like topography at the film surface, with a periodicity of 200 nm and the second one is the structure modification of a layer under the film surface, at a depth that is related to the absorption length of the laser radiation. The periodicity of the wave-like relief is smaller than the laser wavelength. In the modified layer, the Ge atoms are segregated in spherical amorphous nanoparticles as a result of the fast diffusion of Ge atoms in the amorphous GeTiO matrix. The temperature estimation of the film surface during the laser pulses shows a maximum of about 500 °C, which is much lower than the melting temperature of the GeTiO matrix. GeO gas is formed at laser fluences higher than 20 mJ/cm(2) and produces nanovoids in the laser-modified layer at the film surface. A glass transition at low temperatures could happen in the amorphous GeTiO film, which explains the formation of the wave-like topography. The very high Ge diffusivity during the laser pulse action, which is characteristic for liquids, cannot be reached in a viscous matrix. Our experiments show that the diffusivity of atomic and molecular species such as Ge and GeO is very much enhanced in the presence of the laser pulse field. Consequently, the fast diffusion drives the formation of amorphous Ge nanoparticles through the segregation of Ge atoms

  3. Nanostructuring of GeTiO amorphous films by pulsed laser irradiation.

    PubMed

    Teodorescu, Valentin Serban; Ghica, Cornel; Maraloiu, Adrian Valentin; Vlaicu, Mihai; Kuncser, Andrei; Ciurea, Magdalena Lidia; Stavarache, Ionel; Lepadatu, Ana M; Scarisoreanu, Nicu Doinel; Andrei, Andreea; Ion, Valentin; Dinescu, Maria

    2015-01-01

    Laser pulse processing of surfaces and thin films is a useful tool for amorphous thin films crystallization, surface nanostructuring, phase transformation and modification of physical properties of thin films. Here we show the effects of nanostructuring produced at the surface and under the surface of amorphous GeTiO films through laser pulses using fluences of 10-30 mJ/cm(2). The GeTiO films were obtained by RF magnetron sputtering with 50:50 initial atomic ratio of Ge:TiO2. Laser irradiation was performed by using the fourth harmonic (266 nm) of a Nd:YAG laser. The laser-induced nanostructuring results in two effects, the first one is the appearance of a wave-like topography at the film surface, with a periodicity of 200 nm and the second one is the structure modification of a layer under the film surface, at a depth that is related to the absorption length of the laser radiation. The periodicity of the wave-like relief is smaller than the laser wavelength. In the modified layer, the Ge atoms are segregated in spherical amorphous nanoparticles as a result of the fast diffusion of Ge atoms in the amorphous GeTiO matrix. The temperature estimation of the film surface during the laser pulses shows a maximum of about 500 °C, which is much lower than the melting temperature of the GeTiO matrix. GeO gas is formed at laser fluences higher than 20 mJ/cm(2) and produces nanovoids in the laser-modified layer at the film surface. A glass transition at low temperatures could happen in the amorphous GeTiO film, which explains the formation of the wave-like topography. The very high Ge diffusivity during the laser pulse action, which is characteristic for liquids, cannot be reached in a viscous matrix. Our experiments show that the diffusivity of atomic and molecular species such as Ge and GeO is very much enhanced in the presence of the laser pulse field. Consequently, the fast diffusion drives the formation of amorphous Ge nanoparticles through the segregation of Ge atoms

  4. Holmium:YAG laser: effects on dentin demineralization

    NASA Astrophysics Data System (ADS)

    Holt, Raleigh A.; Nordquist, Robert E.

    1995-05-01

    The Holmium:YAG laser at 2.12 microns wavelength was used to compare the changes in resistance to demineralization of the dentinal root surfaces of human extracted teeth in vitro. Three protocols were used: Group #1, and application of nonfilled resin/NaF (4%) solution followed by exposure with the Holmium:YAG laser beam; Group #2, an application of an aqueous solution of NaF (4%) only; and Group #3, irradiation with the laser beam only. The teeth were exposed on the root surfaces with untreated control and experimental sites on opposite sides of the teeth. A 3 mm spot size covered an area of 3 X 5 mm with 0.450 (+/- .05) joules at a fluence of 2.66 - 3.3 J/cm2. All teeth were decalcified in a 10% Formic acid solution for a timed period. Samples were prepared for staining by sectioning the teeth at the dentoenamel junction and 3 mm apically to produce a cross-section of each tooth root surface. Each sample was placed in toluidine blue dye to observe the depth of dye penetration into the dentin of treated and control sites. Toluidine blue dye showed a consistent greater depth of dye penetration into the dentinal areas of the untreated control sites versus the resin/NaF-lased group. The topical fluoride only group did not appear different than the untreated control sites of the teeth. The lased only group showed areas of dye penetration similar to the untreated control sides with other areas of little or no dye penetration. The finding that HO:YAG laser energy/chemical agent produced increased resistance to demineralization of dentinal surfaces in vitro suggested potential clinical applications of this combined modality.

  5. Intracorporeal lithotripsy with the holmium:YAG laser

    NASA Astrophysics Data System (ADS)

    Denstedt, John D.; Razvi, Hassan A.; Chun, Samuel S.; Sales, Jack L.

    1995-05-01

    A variety of devices are currently available for intracorporeal stone fragmentation. Recently a new wavelength of laser, the Holmium:YAG, has demonstrated a variety of potential urologic applications including ablation of soft tissue lesions as well as stone fragmentation. This laser has a wavelength of 2100 nm and operates in a pulsed mode. Energy is delivered through a 400 um quartz end-firing fiber. In this presentation we review our clinical experience with the Holmium:YAG laser for the treatment of renal and ureteral calculi. Over a 23 month period, 63 patients underwent 67 procedures. Seven procedures consisted of percutaneous nephrolithotripsy for large or staghorn renal calculi. Sixty procedures were performed for ureteral stones. Procedures for proximal ureteral stones (6) employed a retrograde approach using flexible ureteroscopes (8.5 or 9.8). Stones in the mid ureter (12) and distal ureter (42) were approached transurethrally using a 6.9 rigid ureteroscope. Complete stone fragmentation without the need for additional procedures was achieved in 82% of cases. Treatment failures included 1 stone migration into the renal pelvis during laser activation, 6 patients who had incomplete fragmentation and 3 patients in which laser malfunction precluded complete fragmentation. Stone analysis available in 23 patients revealed calcium oxalate monohydrate (15), calcium oxalate dihydrate (2), cystine (2), uric acid (3) and calcium phosphate (1). A single complication of ureteral perforation occurred when the laser was fired without direct visual guidance. Radiographic follow-up at an average of 16 weeks is available in 22 patients and has identified 2 patients with ureteral strictures that are not believed to be related to laser lithotripsy. In summary, we have found the Holmium:YAG laser to be a reliable and versatile device for intracorporeal lithotripsy. Its safety and efficacy make it a suitable alternative for performing intracorporeal lithotripsy of urinary

  6. New technique for prostatectomy using Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Daidoh, Yuichiro; Arai, Tsunenori; Murai, Masaru; Nakajima, Akio; Tsuji, Akira; Odajima, Kunio; Nakajima, Fumio; Kikuchi, Makoto; Nakamura, Hiroshi

    1994-05-01

    To develop a new transperineal laser prostatectomy through a biopsy needle, we determined the efficiency of a pulsed Nd:YAG laser irradiation for canine prostate. The Ho:YAG laser ((lambda) equals 2.1 micrometers ) may induced stress-wave to destroy the small vessels in prostate. After the exposure of the canine prostate, it was punctured by the needle. A quartz fiber of which core-diameter was 200 or 400 micrometers was inserted into the 18 G needle. The irradiation fluence was set to 150 - 600 J/cm2 and repetition rate was kept at 2 Hz. The cross-section of the irradiated portion of the prostate extracted immediately after the irradiation showed dark-colored hemorrhage layer around the ablation tract with 1 - 2 mm thickness. Some hemorrhage was histologically seen in stoma and gland in the irradiated prostate. In the case of 150 - 175 J/cm2 in the irradiation fluence, the irradiated portion of the prostate was found in the wedge-shaped area with brown color at one week after the irradiation. The lymphocytes infiltrating into the wedge-shaped zone were found. The wedge- shaped zone spread over the prostate and the change of urethral mucosa was minimum at one month after the irradiation. In the case of 500 - 600 J/cm2 irradiation, the paraurethral cavity was made at one month after the irradiation. The histological examination showed that the hemorrhage and subsequent histological changes may be caused by the laser induced stress-wave rather than thermal effect. Our results suggest that transperineal irradiation of pulsed Ho:YAG might offer an effective treatment for benign prostatic hyperplasia with the minimal damage to the urethral mucosa.

  7. Optical and laser characterization of Nd:YAG ceramics elements

    NASA Astrophysics Data System (ADS)

    Librant, Zdzisław; Węglarz, Helena; Wajler, Anna; Tomaszewski, Henryk; Łukasiewicz, Tadeusz; Jabczyński, Jan K.; Zendzian, Waldemar; Kwiatkowski, Jacek

    2008-12-01

    The Nd:YAG ceramics of nominal 1% and 2% Nd dopant were produced by a solid-state reaction of high-purity (4N) nanometric oxides powders i.e. Al2O3, Y2O3 and Nd2O3. Yttrium oxide nanopowder (XRD crystallite size of 79 nm) was produced by precipitation from water solution of high-purity hydrated nitrate, by means of ammonia hydro-carbonate. The cold isostatic pressing method was applied to densify granulated powder. Further the sintering and annealing processes were deployed to produce the final Nd:YAG ceramic samples. Mean grain sizes of about 20 µm and grain boundaries less than 10 nm of elaborated Nd:YAG ceramic samples were evaluated in SEM and TEM measurements. Thus, in microscale the quality of obtained ceramic was quite satisfactory. However, in macroscale, the samples had unacceptable level of voids and pores observed in visual inspection, which resulted in low 76% transmission, corresponding to extinction coefficient of 0.32 cm-1 at 1064-nm wavelength. The sizes of defects, pores and inclusions were of several dozens of micrometer. The active elements of rod and slab shape were fabricated and characterized in two diode pumping laser set ups. In end pumping configuration as a pump source 20-W fiber coupled laser diode was deployed. For the low duty cycle pumping (1 ms/20 Hz) above 30% slope efficiency was achieved. In the best case, 3.7 W of output power for 18 W of pump power, with M2 <1.4 were demonstrated for uncoated ceramics rod of φ4x3mm size. We have used uncoated elements, thus we can expect increase in laser parameters for optimized pumping conditions and samples with anti-reflective coatings. The parameters of elaborated ceramic material at this stage of work are unsatisfactory for laser application. However, the results of TEM measurements and laser characterizations seems to be quite promising..

  8. Urological applications of Ho/Nd:Yag laser

    NASA Astrophysics Data System (ADS)

    Grifoni, Riccardo; Pierangeli, Tiziana; Gioacchini, Andrea; Muraro, Giovanni B.

    2001-10-01

    The introduction of Ho:Yag laser has brought many advantages in urology. By this work we want show you our experience with this technology. Between April 1998 and May 2000 we treated 137 patients. Of these 28 had urinary lithiasis (18 bladder and 10 ureteral stones 3 in the upper, 2 in the middle and 5 in the distal tract), 40 were affected by enlargement of prostatic gland: 32 had B.P.H., 8 P.C.; 36 had T.C.C. and 33 strictures of urethra (27) or bladder neck (6). For ureteral lithiasis we used 200 micrometer fiber, energy of 0.5 - 1.4 J with 10 Hz of frequency. In case of bladder stones a 550 or 1000 micrometer using a power of 80 W. The prostatic gland were resected by a 550 micrometer fiber, 2.2 - 2.8 J, 25 - 30 Hz and 70 -80 W. The superficial bladder tumors were removed by 1.4 J with 10 - 15 Hz and 10 - 14 W. In the large tumors we completed the procedure by Nd:YAG at the base of the tumor. Urethra and bladder neck strictures were treated by 1.2 - 1.8 J and 10 - 30 Hz. We successful treated 26 patients with urinary lithiasis obtained the complete vaporization of the stones, 2 had endoscopic ancillary procedures. Out of 32 patients with B.P.H. 41% had the complete resection of the gland the others the resection of the 3d lobe. We removed 114 superficial bladder tumors and only 4 patients had a local recurrence. Of the patients with the strictures 4 had more than one treatment and about 87% had good result. From our experience the use of Holmium:Yag laser has been very efficacy to treat different urological diseases, also in patients with important comorbid disorders and its use reduce the stay in hospital and so the costs.

  9. Vitreous humor rheology after Nd:YAG laser photo disruption.

    PubMed

    Abdelkawi, Salwa A; Abdel-Salam, Ahmed M; Ghoniem, Dina F; Ghaly, Sally K

    2014-03-01

    This work aimed to consider the hazardous side effect of eye floaters treatment with Q-switched Nd:YAG laser on the protein and viscoelastic properties of the vitreous humor, and evaluate the protective role of vitamin C against laser photo disruption. Five groups of New Zealand rabbits were divided as follows: control group for (n = 3) without any treatment, the second group (n = 9) treated with Q-switched Nd:YAG laser energy of 5 mJ × 100 pulse delivered to the anterior, middle, and posterior vitreous, respectively (n = 3 for each). The third group (n = 9) received a daily dose of 25 mg/kg body weight vitamin C for 2 weeks, and then treated with laser as the previous group. The fourth group (n = 9) treated with 10 mJ 9 50 pulse delivered to the anterior, middle, and posterior vitreous, respectively (n = 3 rabbits each). The fifth group (n = 9) received a daily dose of 25 mg/kg body weight vitamin C for 2 weeks, and then treated with laser as the previous group. After 2 weeks of laser treatment, the protein content, refractive index (RI), and the rheological properties of vitreous humor, such as consistency, shear stress, and viscosity, were determined. The results showed that, the anterior vitreous group exposed to of 5 mJ × 100 pulse and/or supplemented with vitamin C, showed no obvious change. Furthermore, all other treated groups especially for mid-vitreous and posterior vitreous humor showed increase in the protein content, RI and the viscosity of vitreous humor. The flow index remained below unity indicating the non-Newtonian behavior of the vitreous humor. Application of Q-switched Nd:YAG laser should be restricted to the anterior vitreous humor to prevent the deleterious effect of laser on the gel state of the vitreous humor. PMID:23797611

  10. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  11. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  12. Method of making amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1982-01-01

    The process comprises placing an amorphous metal in particulate form and a low molecular weight (e.g., 1000-5000) thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  13. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  14. Electron beam recrystallization of amorphous semiconductor materials

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  15. Imprinting bulk amorphous alloy at room temperature

    DOE PAGESBeta

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  16. Possibilities of Nd: YAG laser utilization in medicine

    NASA Astrophysics Data System (ADS)

    Frank, Frank

    The thermic effect caused by the shrinkage and the drying of the tissues is used for cutting, denaturation, and coagulation of tissues with simultaneous filling of the blood and lymphatic vessels. The surgical Nd:YAG lasers, whose utilization is based on photothermic effects, have 120 W power and are used in neurosurgery, dermatology, gastroenterology, gynecology, urology, lung sickness, and jaw and vessel surgery. The treatment of tumors is particularly interesting because of the total destruction of the ill tissue, the homogeneity of the necrose and the obturation of the blood and lymphatic vessels. In all cases, the laser is a better solution for the patients and allows a shorter stay in hospital.

  17. A portable lidar using a diode-pumped YAG laser

    NASA Technical Reports Server (NTRS)

    Takeuchi, N.; Okumura, H.; Sugita, T.; Matsumoto, H.; Yamaguchi, S.

    1992-01-01

    A Mie lidar system is technically established and is used for monitoring air pollution, stratospheric and boundary layer aerosol distribution, plume dispersion, visibility, and the study of atmospheric structure and cloud physics. However, a lidar system is not widely used because of its cumbersome handling and unwieldy portability. Although the author developed a laser diode lidar system based on RM-CW technique, it has a limit of measurement distance. Here we report the development of an all solid Mie lidar system using a diode-pumped Nd:YAG laser and a Si-APD detector. This was constructed as a prototype of a handy lidar system.

  18. Neodymium YAG laser for treatment of oral cavernous hemangiomas

    NASA Astrophysics Data System (ADS)

    Bradley, Paul F.

    1999-02-01

    Oral cavernous haemangiomas are common lesions which may require treatment due to episodes of bleeding when bitten or deformity particularly when involving the lips and/or cheeks. Surgery can be hazardous due to haemorrhage while cryosurgery tends to be tedious for large lesions and be accompanied by major oedema. Sclerosants produce hard bulky masses. Embolization is seldom helpful due to lack of arterial feeders. The Nd:YAG laser is proving a useful modality in the oro-facial region and appeared worth investigating for these lesions in a laboratory animal model, by thermography and in the clinical situation.

  19. Irradiation Of Prostatic Carcinoma By Neodymium-YAG-Laser

    NASA Astrophysics Data System (ADS)

    Bowering, R.; Hofstetter, A.; Keiditsch, E.; Frank, F.

    1980-05-01

    Human Cadaver prostate tumors and canine prostate glands in vivo were irradiated by Nd:YAG laser with different power levels and pulse durations. Temperature measurements were carried out by an arrangement of micro thermo couple, digital volt meter and computer in different layers of the prostate and the rectum. The temporal and spatial temperature measurements showed a good correlation with the histological findings. Endoscopic laser irradiation of prostatic carcinoma in man was performed after TUR. There was a large penetration depth resulting a deep necrosis, but no perforation and no changes in the rectum were to be found also after high power laser irradiation.

  20. Er:YAG lasers in dentistry: an overview

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas

    1998-04-01

    Aim of this presentation is to review the role of the Er:YAG laser in dentistry and to give a general overview on the work done with it up to date. A look at the development and evolution of this system is given as well as a brief introduction into the basic principles of ablation at the characteristic wavelength 2.94 micrometer. The more important research reports of the different groups all over the world are summarized and the large field of applications such as cavity preparation, caries ablation, periodontology and bacterial reduction is considered.

  1. Nd:YAG holographic interferometer for aerodynamic research

    NASA Technical Reports Server (NTRS)

    Craig, J. E.; Lee, G.; Bachalo, W. D.

    1983-01-01

    A holographic interferometer system has been installed in the NASA Ames 2- by 2-Foot Transonic Wind Tunnel. The system incorporates a modern 10 pps, Nd:YAG pulsed laser which provides reliable operation and is easy to align. The spatial filtering requirements of the unstable resonator beam are described, as well as the integration of the system into the existing schlieren system. A two-plate holographic interferometer is used to reconstruct flow field data. For static wind tunnel models, the single exposure holograms are recorded in the usual manner; however, for dynamic models such as oscillating airfoils, synchronous laser hologram recording is used.

  2. Simulation of transport processes during Czochralski growth of YAG crystals

    NASA Astrophysics Data System (ADS)

    Banerjee, Jyotirmay; Muralidhar, K.

    2006-01-01

    Numerical simulation of transport phenomena in the solid, liquid and gaseous phases of a Czochralski process is reported. The Czochralski domain comprises a YAG melt, crystal and gas within the enclosure. The mathematical model is axisymmetric in space and unsteady in time. The governing equations are those of conservation of mass, momentum and energy. The simulation includes a bulk radiation model to account for the semi-transparency of the YAG melt and the growing crystal. Results have been obtained for thermal boundary conditions that do not change with time, a constant diameter growing crystal for which the pull velocity changes with time. Buoyant convection in the melt is seen to produce a melt-crystal interface that is convex into the melt. When the crystal is given rotation, centrifugal forces drive a clockwise roll that counteracts the thermally driven motion. At a specific rotation rate, the interface shape changes from convex to concave. The critical rotation rate for interface inversion has been obtained in the study as a function of the radius ratio and the aspect ratio. Marangoni convection has an effect of strengthening buoyancy-driven flow. Unsteadiness in the YAG melt is observed at high Grashof numbers. The introduction of crystal rotation at high Grashof numbers is found to change the periodic oscillations to aperiodic high amplitude fluctuations. Simulation that includes the crystal and the gas phases along with the melt reveals the possibility of superheating of the crystal beyond its melting point. Similarly, the possibility of subcooling of the melt near the crystal edge below the melting point of YAG is indicated for a certain range of parameters. The internal absorption of radiation in the crystal increases thermal losses from the melt, steepens temperature gradients and is found to create deeply convex melt-crystal interface towards the melt. Additionally, the bulk of the melt is found to become cooler. Scattering is found to have an

  3. Thulium YAG laser operation at 2.01 microns

    NASA Technical Reports Server (NTRS)

    Storm, Mark E.; Gettemy, Donald J.; Barnes, Norman P.; Cross, Patricia L.; Kokta, Milan R.

    1989-01-01

    Variable temperature laser experiments were performed with two compositions of Tm:Cr:YAG (5.0:1.0 and 1.5:2.0 percent substitutions), with special attention given to the spectroscopic details of energy transfer and quasi-3 level lasing. Differences in laser threshold and flashlamp degradation were found in lasing the two compositions, and it is suggested that the difference is due to the 1.5:2.0 rod having much less efficient energy transfer than the 5.0:1.0 Tm:Cr crystals. To first order, the thermal occupation factor is found to dominate laser threshold determination at temperatures betwen 120 and 240 K.

  4. Numerical control system of battery welding with pulsed YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Guoshun; Yang, Zhaoxia; Zhang, Taishi; Wei, Zhigang; Li, Chaoyang

    1999-09-01

    This article briefly introduces the pulse YAG laser welding system, a new research achievement of my section. This system can weld the electric pole, the holly board and other aluminum parts of lithium battery, and the process of loading, unloading, compressing and welding can be completed automatically. Moreover, the software proprietary of the system is very good, and its interface is friendly too. In order to achieve optimum welding effect, we have designed special laser discharging waveform. Its rise delay time, fall delay time, and width are all designed specially. With this special technology, the welding spot we get is smooth like mirror, and the welding intensity can be controlled conveniently.

  5. Dichroic mirror for high power Nd:YAG laser

    SciTech Connect

    Dinca, A.; Lupei, V.; Miclea, P.T.; Dinca, M.P.

    1996-12-31

    The paper presents the design of a dichroic mirror used in a Nd:YAG high power laser to reflect the 1.44 {micro}m radiation and to transmit the 1.064 {micro}m one. In order to obtain a wide transmission band, all the solutions for matching basic stack with the substrate, consisting in a number of periods less or equal than three, were investigated and the best was selected. The solutions were obtained by analytical inversion of the equations for the three layer equivalent system.

  6. Lasing characteristics of Ho:YAG single crystal fiber.

    PubMed

    Li, Yuan; Miller, Keith; Johnson, Eric G; Nie, Craig D; Bera, Subhabrata; Harrington, James A; Shori, Ramesh

    2016-05-01

    Lasing was demonstrated for the first time at 2.09 μm in 0.5% Holmium (Ho) doped YAG single crystal fiber (SCF) fabricated using the Laser Heated Pedestal Growth (LHPG) method. Output power of 23.5 W with 67.5% optical-to-optical slope efficiency is, to the best of our knowledge, the highest output power achieved at 2 µm from a SCF fabricated using LHPG. With continued improvement in the quality of the SCF and better thermal management, output power of few 100s W and higher, especially in the 2 µm spectral region, is realizable in the very near future.

  7. Lasing characteristics of Ho:YAG single crystal fiber.

    PubMed

    Li, Yuan; Miller, Keith; Johnson, Eric G; Nie, Craig D; Bera, Subhabrata; Harrington, James A; Shori, Ramesh

    2016-05-01

    Lasing was demonstrated for the first time at 2.09 μm in 0.5% Holmium (Ho) doped YAG single crystal fiber (SCF) fabricated using the Laser Heated Pedestal Growth (LHPG) method. Output power of 23.5 W with 67.5% optical-to-optical slope efficiency is, to the best of our knowledge, the highest output power achieved at 2 µm from a SCF fabricated using LHPG. With continued improvement in the quality of the SCF and better thermal management, output power of few 100s W and higher, especially in the 2 µm spectral region, is realizable in the very near future. PMID:27137589

  8. Two-Pass, Diode-Pumped Nd:YAG Slab Laser Head

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry

    1992-01-01

    Neodymium/yttrium aluminum garnet (Nd:YAG) ring-laser head designed for compactness, simplicity, and increased efficiency for side pumping by diode lasers. Laser head includes two linear arrays of diode lasers, two fused-silica collimating rods, and Nd:YAG slab. Slab mounted on finned copper block, providing good thermal dissipation.

  9. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    PubMed

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs. PMID:26831972

  10. Efficient 2122  nm Ho:YAG laser intra-cavity pumped by a narrowband-diode-pumped Tm:YAG laser.

    PubMed

    Huang, Haizhou; Huang, Jianhong; Liu, Huagang; Li, Jinhui; Dai, Shutao; Weng, Wen; Lin, Wenxiong

    2016-09-01

    We first demonstrate an efficient Ho:YAG laser intra-cavity pumped by a narrowband-diode-pumped Tm:YAG laser. The pump wavelength of the laser diode was selected according to the excitation peak which is also one of the absorption peaks of a 3.5 at. % Tm:YAG crystal and was locked by volume Bragg gratings. In the Tm laser experiment, a maximum output power of 11.12 W, corresponding to a slope efficiency of 51.6%, was obtained. In the Ho laser experiment, a maximum output power of 8.03 W at 2122 nm with a slope efficiency of 38% was obtained for 24.96 W of diode pump power incident on the Tm:YAG rod. PMID:27607945

  11. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    PubMed

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.

  12. Efficient 2122  nm Ho:YAG laser intra-cavity pumped by a narrowband-diode-pumped Tm:YAG laser.

    PubMed

    Huang, Haizhou; Huang, Jianhong; Liu, Huagang; Li, Jinhui; Dai, Shutao; Weng, Wen; Lin, Wenxiong

    2016-09-01

    We first demonstrate an efficient Ho:YAG laser intra-cavity pumped by a narrowband-diode-pumped Tm:YAG laser. The pump wavelength of the laser diode was selected according to the excitation peak which is also one of the absorption peaks of a 3.5 at. % Tm:YAG crystal and was locked by volume Bragg gratings. In the Tm laser experiment, a maximum output power of 11.12 W, corresponding to a slope efficiency of 51.6%, was obtained. In the Ho laser experiment, a maximum output power of 8.03 W at 2122 nm with a slope efficiency of 38% was obtained for 24.96 W of diode pump power incident on the Tm:YAG rod.

  13. Influence of the Ce:YAG Amount on Structure and Optical Properties of Ce:YAG-PMMA Composites for White LED

    NASA Astrophysics Data System (ADS)

    Armetta, Francesco; Sibeko, Motshabi A.; Luyt, Adriaan S.; Chillura Martino, Delia F.; Spinella, Alberto; Saladino, Maria Luisa

    2016-09-01

    Ce:YAG-poly(methyl methacrylate) (PMMA) composites were prepared by using a melt compounding method, adding several amounts of Ce:YAG in the range 0.1-5 wt. %. The optical properties of the obtained composites and of the composites combined with a blue LED were measured to investigate the effect of the amount of Ce:YAG on the resulting emitted light in view of possible application in white LED manufacture. An increase in Ce:YAG amount caused an increase in the emission and a shift of 15 nm, influencing the white LED performance. The structure and morphology of the composites were studied. The results show that the interaction between the two components, observed by using solid state NMR experiments, are the responsible for the observed shift.

  14. Compensated amorphous-silicon solar cell

    DOEpatents

    Devaud, G.

    1982-06-21

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

  15. Structure, thermodynamics, and crystallization of amorphous hafnia

    SciTech Connect

    Luo, Xuhui; Demkov, Alexander A.

    2015-09-28

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO{sub 2}. The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia.

  16. Solid-state diffusion in amorphous zirconolite

    SciTech Connect

    Yang, C.; Dove, M. T.; Trachenko, K.; Zarkadoula, E.; Todorov, I. T.; Geisler, T.; Brazhkin, V. V.

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  17. Solid-state diffusion in amorphous zirconolite

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zarkadoula, E.; Dove, M. T.; Todorov, I. T.; Geisler, T.; Brazhkin, V. V.; Trachenko, K.

    2014-11-01

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  18. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  19. Effect of CO2, Nd:YAG and Er:YAG Lasers on Microtensile Bond Strength of Composite to Bleached-Enamel

    PubMed Central

    Basir, Mahshid Mohammadi; Rezvani, Mohammad Bagher; Chiniforush, Nasim; Moradi, Zohreh

    2016-01-01

    Background: Tooth restoration immediately after bleaching is challenging due to the potential problems in achieving adequate bond strength. Objective: The aim of this study was to evaluate the effect of surface treatment with ER:YAG, ND:YAG, CO2 lasers and 10% sodium ascorbate solution on immediate microtensile bond strength of composite resin to recently bleached enamel. Materials & Methods: Ninety sound molar teeth were randomly divided into three main groups (n:30) : NB (without bleaching), HB (bleached with 38% carbamide peroxide) and OB (bleached with Heydent bleaching gel assisted by diode laser). Each group was divided into five subgroups (n:6) : Si (without surface treatment), Er (Er:YAG laser), CO2 (CO2 laser), Nd (Nd:YAG laser) and As (Immersion in 10% sodium ascorbate solution). The bonding system was then applied and composite build-ups were constructed. The teeth were sectioned by low speed saw to obtain enamel- resin sticks and submitted to microtensile bond testing. Statistical analyses were done using two- way ANOVA, Tukey and Tamhane tests. Results: µTBS of bleached teeth irradiated with ND:YAG laser was not significantly different from NB-Nd group. Microtensile bond strength of OB-Er group was higher than NB-Er and HB-Er groups. The mean µTBS of HB-CO2 group was higher than NB-CO2 group; the average µTBS of HB-As and OB-As groups was also higher than NB-As group. Conclusion: Use of Nd:YAG, CO2 lasers and 10% sodium ascorbate solution could improve the bond strength in home-bleached specimens. Application of ND:YAG laser on nonbleached specimens and Er:YAG laser on office-bleached specimens led to the highest µTBS in comparison to other surface treatments in each main group. PMID:27385998

  20. One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.

  1. Cryogenic disk Yb : YAG laser with 120-mJ energy at 500-Hz pulse repetition rate

    SciTech Connect

    Perevezentsev, E A; Mukhin, I B; Kuznetsov, I I; Palashov, O V; Khazanov, Efim A

    2013-03-31

    A repetitively pulsed laser system based on cryogenically cooled Yb : YAG disks is developed. The creation of Yb : YAG/YAG composites and the use of an active liquid nitrogen cooling system made it possible to significantly decrease the effect of amplified spontaneous emission. The average output power of the system is 60 W. (extreme light fields and their applications)

  2. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  3. Biologically formed amorphous calcium carbonate.

    PubMed

    Weiner, Steve; Levi-Kalisman, Yael; Raz, Sefi; Addadi, Lia

    2003-01-01

    Many organisms from a wide variety of taxa produce amorphous calcium carbonate (ACC), despite the fact that it is inherently unstable and relatively soluble in its pure state. These properties also make it difficult to detect and characterize ACC. Raman spectroscopy is a particularly useful method for investigating ACC because the sample can be examined wet, and extended X-ray absorption fine structure (EXAFS) analysis can provide detailed information on the short-range order. Other methods for characterizing ACC include infrared spectroscopy, thermogravimetric analysis and differential thermal analysis (TGA and DTA), transmission electron microscopy (TEM), and electron and X-ray diffraction. Because of the difficulties involved, we suspect that ACC is far more widely distributed than is presently known, and a comparison of EXAFS spectra shows that different biogenic ACC phases have different short-range order structures. We also suspect that ACC fulfils many different functions, including as a transient precursor phase during the formation of crystalline calcium carbonate.

  4. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2014-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  5. [Morphologic evaluation of the bonding between adhesive/composite resin and dentin irradiated with Er:YAG and Nd:YAG lasers: comparative study using scanning microscopy].

    PubMed

    Oda, M; Oliveira, D C; Liberti, E A

    2001-01-01

    Since bonding systems were introduced in the restorative procedures carried out with esthetic materials, the treatment of dentin surfaces has been widely studied in order to establish the ideal technique. The application of 37% phosphoric acid on dentin is still the best known method. However, alternative methods for treating the dentin surface have been discussed in the literature, including the utilization of some kinds of laser irradiation. The purpose of this research was to morphologically evaluate the bond between adhesive materials and the dentin treated with Er:YAG and Nd:YAG lasers, in a comparative study by means of scanning electron microscopy (SEM). Irradiation either substituted acid etching, or was associated to it. Recently extracted bovine incisors were utilized. They received class V cavity preparations and were restored with a bonding system and a light-cured composite resin. Meanwhile, some of the teeth underwent irradiation with Er:YAG laser or Nd:YAG laser before the application of the bonding agent and the composite resin. The samples were selected, prepared for SEM and submitted to morphological analysis. Data were registered in photomicrographs. Based on the microscopic observations, we concluded that only in the dentin surfaces submitted to irradiation with Er:YAG laser and to acid conditioning there was penetration of resin into the dentine. With the Nd:YAG laser treatment, there was only visual superposition of resin over the dentin surface, which suggests that there was only occlusion of the tubules, with characteristics of fusion in the superficial dentine.

  6. Er:YAG and CTH:YAG laser radiation: contact versus non-contact enamel ablation and sonic-activated bulk composite placement

    NASA Astrophysics Data System (ADS)

    Buckova, M.; Kasparova, M.; Dostalova, T.; Jelinkova, H.; Sulc, J.; Nemec, M.; Fibrich, M.; Bradna, P.; Miyagi, M.

    2013-05-01

    Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel.

  7. Containment-enhanced Ho:YAG photofragmentation of soft tissues

    NASA Astrophysics Data System (ADS)

    Christens-Barry, William A.; Guarnieri, Michael; Carson, Benjamin S.

    1998-01-01

    Laser surgery of soft tissue can exploit the power of brief, intense pulses of light to cause localized disruption of tissue with minimal effect upon surrounding tissue. In particular, studies of Ho:YAG laser surgery have shown that the effects of cavitation upon tissues and bone depend upon the physical composition of structures in the vicinity of the surgical site. For photofragmentation of occluding structures within catheters and other implant devices, it is possible to exploit the particular geometry of the catheter to amplify the effects of photofragmentation beyond those seen in bulk tissue. A Ho:YAG laser was used to photofragment occlusive material (tissue and tissue analogs) contained in glass capillary tubing and catheter tubing of the kind used in ventricular shunt implants for the management of hydrocephalus. Occluded catheters obtained from patient explants were also employed. Selection of operational parameters used in photoablation and photofragmentation of soft tissue must consider the physical composition and geometry of the treatment site. In the present case, containment of the soft tissue within relatively inelastic catheters dramatically alters the extent of photofragmentation relative to bulk (unconstrained) material. Our results indicate that the disruptive effect of cavitation bubbles is increased in catheters, due to the rapid displacement of material by cavitation bubbles comparable in size to the inner diameter of the catheter. The cylindrical geometry of the catheter lumen may additionally influence the propagation of acoustic shock waves that result from the collapse of the condensing cavitation bubbles.

  8. Neutralisation of antipersonnel mines with an Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Luethy, Willy A.; Rothacher, Thomas

    2004-12-01

    We report on the possibility to use lasers as a demining tool to dispose mines from a safe distance. Most anti personnel (AP) mines consist of 10 g to 500 g of an explosive, a fuse and a plastic case which makes them very difficult to detect. In 90% of all AP mines trinitrotoluene (TNT) or a combination of TNT and other explosives is used. The interaction of laser radiation with TNT and possible mine wrapping materials is investigated based on spectroscopy and practical considerations. With a CW Nd:YAG laser the desired burning of the explosive is achieved. The interaction is rather based on the absorption of the mine case than on the weak absorption of the explosive. A portable CW Nd:YAG laser is described and experiments with real AP mines are performed. We have investigated the behavior of four different representative blast AP mines under laser irradiation at Bofors test centre in Sweden. Disposal of all available mines from a safe distance up to 50 meters is achieved. Laser incident power was in the range from 20 W to 60 W. Due to partial burning of the explosive charge the resulting detonation of mines is considerably reduced.

  9. Efficient 750-nm LED-pumped Nd:YAG laser.

    PubMed

    Huang, Kuan-Yan; Su, Cheng-Kuo; Lin, Meng-Wei; Chiu, Yu-Chung; Huang, Yen-Chieh

    2016-05-30

    We report an Nd:YAG laser pumped by light emission diodes (LEDs) at 750 nm. With 1% output coupling from a linear cavity containing a 2-cm long Nd:YAG crystal, the laser generated 37.5 μJ pulse energy at 1064 nm with M2 = 1.1 when pumped by 2.73-mJ LED energy in a 1-ms pulse at a 10 Hz rate. The measured optical and slope efficiencies for this linear-cavity laser are 1.36, and 9%, respectively. With 1 and 5% output couplings from a Z-cavity containing the same laser crystal, the lasers generated 346 and 288 μJ pulse energy with an optical efficiency of 3.4 and 2.8% and slope efficiency of 6.6 and 14%, respectively, for the same 1-ms pump pulse repeating at a 10 Hz rate. At the highest output from the Z-cavity, the measured M2 for the beam is 3.6. PMID:27410125

  10. Vapor bubble formation during erbium:YAG laser vitrectomy

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Donitzky, Christof; Riedel, Peter; Wenig, Micaela; Reindl, Max; Seiler, Theo

    1999-06-01

    Background: The formation of evaporation bubbles and pressure waves during Erbium:YAG laser vitrectomy might cause intraocular damages. Methods: In water, the formation of the evaporation bubbles was observed by high-speed photography. The output energy of the quartz tip ranges from 5 to 50 mJ and the laser pulse duration from 50 μsec to 300 μsec. The dynamic of the evaporation bubbles were investigated for different diameters, various angles and radii of the quartz fiber tip. Furthermore, the spread out of the evaporation bubbles was observed for various geometries of the microsurgery probe. The induced stress waves were measured with a PVDF-hydrophone. Results: The evaporation bubble size increases semi-logarithmic with the pulse energy and reduces with the increase of the pulse duration. The diameter of the tip has no significant influence in the vapor bubble size. The expansion of the vapor bubble can be controlled by the geometry of the tip. The spread out of the vapor bubble can reduced by a slit geometry of the aspiration hole. The maximum pressure amplitude as found to be < 2 MPa. Conclusions: The evolution of evaporation bubbles and the induced pressure amplitudes from the microsurgery probe can be minimized for Erbium:YAG laser vitrectomy.

  11. Characterization of a Nd:YAG doubled pulsed laser system

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie A.; Barnes, James C.; Barnes, Norman P.; Lockard, George; Little, Alan; Banziger, Curtis; Marsh, Waverly; Nichols, Charles

    1992-01-01

    A description of a frequency doubled, double pulsed Nd:YAG laser that is to be used to pump an injection locked Ti:Sapphire power oscillator is presented. These two lasers make up the transmitter portion of the Lidar Atmospheric Sensing Experiment (LAWSE) instrument. LASE is a Lidar/DIAL experiment that is to measure water vapor in the troposphere. By utilizing the twin concept, both pulses can be produced with a single laser system, thereby minimizing cost, size, and weight. Alignment problems associated with having two separate lasers each produce one of the twin pulses are also alleviated. The LASE transmitter consists of a doubled pulsed Nd:YAG laser that will pump a Ti:Sapphire power oscillator that will be injection-locked by a diode laser. The wavelength of the Ti:Sapphire output will be tunable from 813 to 818 nm. A performance summary of the pump laser is given. The data verify that the pump laser can meet the performance requirements to pump the Ti:Sapphire power oscillator.

  12. Preliminary investigation of CTH:YAG laser for cochlear implantation

    NASA Astrophysics Data System (ADS)

    Shah, Udayan K.; Pawel, Bruce R.; Potsic, William P.

    2000-05-01

    Cochlear implantation is a treatment for deafness that requires the surgical placement of electrodes within the cochlea, using a high-speed drill. While the drill is effective, the tip of the drill or the drill shaft may damage critical adjacent structures, such as the facial nerve. In addition, the narrow working spaces involved in this surgery make the drill a relatively cumbersome tool for such delicate work. The use of a flexible fiber to deliver the laser energy may make the surgery easier by allowing a more maneuverable instrument to access the region, while reducing the risk of injuring adjacent structures. We report our preliminary investigation of fiber delivery of CTH:YAG energy ((lambda) equals 2091 nm) for the purpose of bony ablation. A 550 micron diameter low-OH silica fiber was used to drill through up to 2.5 mm thick human temporal bone specimens. An average of 14 pulses was required for 1 mm thick bones, and an average of 33 pulses required to ablate 2 mm of bone. The holes drilled were precise, and showed limited adjacent tissue effect by gross and histopathologic evaluation. This work demonstrates the effective fiberoptic delivery of CTH:YAG energy for bone ablation. Further work is warranted to explore the clinical possibilities offered by this technique for precise bony ablation with limited adjacent tissue effect.

  13. Holmium:YAG laser angioplasty: treatment of acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Topaz, On

    1993-06-01

    We report our clinical experience with a group of 14 patients who presented with acute myocardial infarction. A holmium:YAG laser was applied to the infarct-related artery. This laser emits 250 - 600 mJ per pulse, with a pulse length of 250 microseconds and repetition rate of 5 Hz. Potential benefits of acute thrombolysis by lasers include the absence of systemic lytic state; a shortened thrombus clearing time relative to using thrombolytics; safe removal of the intracoronary thrombus and facilitation of adjunct balloon angioplasty. Potential clinical difficulties include targeting the obstructive clot and plaque, creation of debris and distal emboli and laser-tissue damage. It is conceivable that holmium:YAG laser can be a successful thrombolytic device as its wave length (2.1 microns) coincides with strong water absorption peaks. Since it is common to find an atherosclerotic plaque located under or distal to the thrombotic occlusion, this laser can also be applied for plaque ablation, and the patient presenting with acute myocardial infarction can clearly benefit from the combined function of this laser system.

  14. Hollow waveguide for giant Er:YAG laser pulses transfer

    NASA Astrophysics Data System (ADS)

    Nemec, Michal; Jelinkova, Helena; Koranda, Petr; Cech, Miroslav; Sulc, Jan; Miyagi, Mitsunobu; Shi, Yi-Wei; Matsuura, Yuji

    2004-06-01

    Short Er:YAG laser pulses were delivered by a cyclic olefin polymer coated silver hollow glass (COP/Ag) waveguide specially designed for a high power radiation. Er:YAG laser was Q-switched by an electro-optic shutter - LiNbO3 Pockels cell with Brewster angle cut input/output faces. The maximum energy output obtained from this system was 29 mJ with the length of pulse 69 ns corresponding to 420 kW output peak power. The system was working with the repetition rate of 1.5 Hz. A delivery system composed of a lens (f = 40 mm), protector and waveguide with the 700/850 μm diameter and 50 cm or 1 m length. The measured maximum delivered intensity was 86 MW/cm2 what corresponds to the transmission of 78.6 % for whole delivery system. Using of a sealed cap, this delivery system gives a possibility of the contact surgical treatment in many medicine branches, for example ophthalmology, urology or dentistry.

  15. Nd:YAG laser in the treatment of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Horak, Ladislav; Dvorak, K.; Fanta, J.

    1996-01-01

    Nd:YAG laser has been used in the treatment of colorectal cancer since the 80s. Since January of 1988 our clinic uses laser in therapeutic program. In clinical treatments laser with the wavelength of 1064 micrometer and power of 40 - 50 W is used. Only in rare cases do we use power over 50 W. the ratio of energy for one treatment depends only on clinical effect, there are no other limits. In the first period of our clinical practice, from 1988 to 1991, all the laser treatments were held under short-term anesthesia. Our patients were hospitalized for 2 or 3 days. For the actual treatments, we used the rigid endoscopic technique and also the flexible technique (coloscop). We preferred the flexible technique definitely. Since January of 1991 we practice almost all treatments in ambulant schedule without general anesthesia. Only in the cases where treatments reach under linea dentata, we choose short-term inhale anesthesia. The patients are hospitalized for one day. In the actual treatments we take advantage of Nd:YAG laser. We try to vaporize most of the tumor masses during great hemostasis. The hemostasis is defined by the zone of coagulation.

  16. Quantification of surface amorphous content using dispersive surface energy: the concept of effective amorphous surface area.

    PubMed

    Brum, Jeffrey; Burnett, Daniel

    2011-09-01

    We investigate the use of dispersive surface energy in quantifying surface amorphous content, and the concept of effective amorphous surface area is introduced. An equation is introduced employing the linear combination of surface area normalized square root dispersive surface energy terms. This equation is effective in generating calibration curves when crystalline and amorphous references are used. Inverse gas chromatography is used to generate dispersive surface energy values. Two systems are investigated, and in both cases surface energy data collected for physical mixture samples comprised of amorphous and crystalline references fits the predicted response with good accuracy. Surface amorphous content of processed lactose samples is quantified using the calibration curve, and interpreted within the context of effective amorphous surface area. Data for bulk amorphous content is also utilized to generate a thorough picture of how disorder is distributed throughout the particle. An approach to quantifying surface amorphous content using dispersive surface energy is presented. Quantification is achieved by equating results to an effective amorphous surface area based on reference crystalline, and amorphous materials. PMID:21725707

  17. Observation of a rapid amorphization reaction

    SciTech Connect

    Hufnagel, T.C. ); Brennan, S. ); Payne, A.P.; Clemens, B.M. )

    1992-08-01

    We have observed a rapid amorphization reaction at ambient temperature in the Gd/Co system by employing grazing incidence x-ray scattering. We find that a 135 A crystalline Gd film is amporhized in less than 30 min by deposition of Co. We postulate that the rapidity of the reaction is due to surface diffusion of Co atoms after deposition to fast diffusion sites such as grain boundaries in the Gd film. Once the interfacial region has been amorphized these fast diffusion paths are sealed off from the surface, rapid diffusion of Co into the Gd crystalline layer is prevented, and the amorphization reaction stops.

  18. Pressure induced crystallization in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Pandey, K. K.; Garg, Nandini; Shanavas, K. V.; Sharma, Surinder M.; Sikka, S. K.

    2011-06-01

    We have investigated the high pressure behavior of amorphous silicon (a-Si) using x-ray diffraction and Raman scattering techniques. Our experiments show that a-Si undergoes a polyamorphous transition from the low density amorphous to the high density amorphous phase, followed by pressure induced crystallization to the primitive hexagonal (ph) phase. On the release path, the sequence of observed phase transitions depends on whether the pressure is reduced slowly or rapidly. Using the results of our first principles calculations, pressure induced preferential crystallization to the ph phase is explained in terms of a thermodynamic model based on phenomenological random nucleation and the growth process.

  19. Method of producing hydrogenated amorphous silicon film

    DOEpatents

    Wiesmann, Harold J.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silane (SiH.sub.4) or other gases comprising H and Si, from a tungsten or carbon foil heated to a temperature of about 1400.degree.-1600.degree. C., in a vacuum of about 10.sup.-6 to 19.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseos mixture onto a substrate independent of and outside said source of thermal decomposition, to form hydrogenated amorphous silicon. The presence of an ammonia atmosphere in the vacuum chamber enhances the photoconductivity of the hydrogenated amorphous silicon film.

  20. Crystallization of amorphous solid films

    NASA Astrophysics Data System (ADS)

    Safarik, Douglas Joseph

    2003-06-01

    Below ˜130 K, H2O can exist for prolonged periods in a thermodynamically unstable, non-crystalline solid form known as amorphous solid water (ASW). When warmed to above 135 K, ASW crystallizes to the thermodynamically favored state, cubic ice I, on a laboratory time scale. Despite the relevance of ASW crystallization to a variety of scientific problems ranging from astrophysical phenomena to cryopreservation, the kinetics of this transformation are largely uncharacterized, and its mechanism is not fully understood. In the present work, the crystallization kinetics of vapor-deposited, nonporous ASW films less than one micron thick are investigated experimentally near 140 K. The amorphous to crystalline transition is characterized using a probe molecule, chlorodifluoromethane (CHF2Cl), whose adsorbed states and hence desorption kinetics are sensitive to the crystallinity of solid water surfaces. The transformation kinetics of very thick ASW films are found to be both independent of specimen size and consistent with simultaneous homogeneous nucleation and isotropic growth of crystalline ice grains. As the ASW film thickness is reduced from 385 nm to 55 nm, however, the rate of surface crystallization decelerates, in apparent conflict with a homogeneous nucleation and growth mechanism. In an attempt to explain this behavior, a geometrical model of phase transition kinetics at the surface of solids, with special consideration of finite specimen size in one dimension, is constructed. For materials in which nucleation occurs spatially randomly, phase change is predicted to decelerate when film thickness is reduced below the mean crystal grain size. This phenomenon originates from a reduction in the number of crystallites available to transform the surface as the sample becomes thinner. Good quantitative agreement between this simple model and the experimental data is attained using a minimum of kinetic parameters, suggesting it captures the essential physics of ASW

  1. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  2. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  3. Development of YAG:Dy Thermographic Phosphor Coatings for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Jenkins, T. P.; Allison, S. W.; Wolfe, D. E.; Jordan, E. H.

    2012-01-01

    The selection and development of thermographic phosphor coatings were pursued to meet the objective of demonstrating luminescence-decay-based temperature measurements up to 1300C on the surface of a vane in an operating demonstrator turbine engine. To meet this objective, YAG:Dy was selected based on the desirable luminescence performance observed for YAG:Dy powder: (1) excellent temperature sensitivity and intensity at operating turbine engine temperatures, (2) an emission peak at the relatively short wavelength of 456 nm, where the interference from background blackbody radiation is fairly low, and (3) its nearly single exponential decay which makes for a simple, reliable temperature calibration. However, implementation of YAG:Dy for surface temperature measurements required application of YAG:Dy as a coating onto the surface of a superalloy component with a preexisting yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC). An inherent dilemma in producing a YAG:Dy coating is that coating processing is constrained to be performed at temperatures below (less than 1200C) what is considered safe for the superalloy component, much lower than temperatures used to produce the high quality crystalline powder. Therefore, YAG:Dy coatings tend to exhibit lower luminescence performance compared to well prepared YAG:Dy powder, and the luminescence performance of the coating will depend on the method of coating deposition. In this presentation, the luminescence performance of YAG:Dy coatings prepared by the different methods of (1) application of a binder-based YAG:Dy-containing paint, (2) solution precursor plasma spray (SPPS), and (3) electron-beam physical vapor deposition (EB-PVD) and the effect of post-deposition heat treatments will be discussed.

  4. Amorphization of silicon carbide by carbon displacement

    NASA Astrophysics Data System (ADS)

    Devanathan, R.; Gao, F.; Weber, W. J.

    2004-05-01

    We have used molecular dynamics simulations to examine the possibility of amorphizing silicon carbide (SiC) by exclusively displacing C atoms. At a defect generation corresponding to 0.2 displacements per atom, the enthalpy surpasses the level of melt-quenched SiC, the density decreases by about 15%, and the radial distribution function shows a lack of long-range order. Prior to amorphization, the surviving defects are mainly C Frenkel pairs (67%), but Si Frenkel pairs (18%) and antisite defects (15%) are also present. The results indicate that SiC can be amorphized by C sublattice displacements. Chemical short-range disorder, arising mainly from Frenkel pair production, plays a significant role in the amorphization.

  5. Amorphous Semiconductor Thin Films, an Introduction

    SciTech Connect

    Martin, Peter M.

    2003-12-01

    The field of amorphous semiconductors is so large that I cannot do it justice, but I hope this short column gives you some insight into the properties and materials available, and the issues involved.

  6. Fracture in Bulk Amorphous Alloys

    SciTech Connect

    Horton, J.A.; Wright, J.L.

    1998-11-30

    The fracture behavior of a Zr-based bulk amorphous alloy, Zr-10 AI-5 Ti-17.9 Cu-14.6 Ni, was examined by transmission electron microscopy (TEM) and x-ray diffraction for any evidence of crystallization preceding crack propagation. No evidence for crystallization was found in shear bands in compression specimens or at the fracture surface in tensile specimens. In- situ TEM deformation experiments were performed to more closely examine actual crack tip regions. During the in-situ deformation experiment controlled crack growth occurred to the point where the specimen was approximately 20 {micro}m thick at which point uncontrolled crack growth occurred. No evidence of any crystallization was found at the crack tips or the crack flanks. Subsequent scanning microscope examination showed that the uncontrolled crack growth region exhibited ridges and veins that appeared to have resulted from melting. Performing the deformations, both bulk and in-situ TEM, at liquid nitrogen temperatures (LN{sub 2}) resulted in an increase in the amount of controlled crack growth. The surface roughness of the bulk regions fractured at LN{sub 2} temperatures corresponded with the roughness of the crack propagation observed during the in-situ TEM experiment, suggesting that the smooth-appearing room temperature fracture sur-faces may also be a result of localized melting.

  7. Ductile crystalline–amorphous nanolaminates

    PubMed Central

    Wang, Yinmin; Li, Ju; Hamza, Alex V.; Barbee, Troy W.

    2007-01-01

    It is known that the room-temperature plastic deformation of bulk metallic glasses is compromised by strain softening and shear localization, resulting in near-zero tensile ductility. The incorporation of metallic glasses into engineering materials, therefore, is often accompanied by complete brittleness or an apparent loss of useful tensile ductility. Here we report the observation of an exceptional tensile ductility in crystalline copper/copper–zirconium glass nanolaminates. These nanocrystalline–amorphous nanolaminates exhibit a high flow stress of 1.09 ± 0.02 GPa, a nearly elastic-perfectly plastic behavior without necking, and a tensile elongation to failure of 13.8 ± 1.7%, which is six to eight times higher than that typically observed in conventional crystalline–crystalline nanolaminates (<2%) and most other nanocrystalline materials. Transmission electron microscopy and atomistic simulations demonstrate that shear banding instability no longer afflicts the 5- to 10-nm-thick nanolaminate glassy layers during tensile deformation, which also act as high-capacity sinks for dislocations, enabling absorption of free volume and free energy transported by the dislocations; the amorphous–crystal interfaces exhibit unique inelastic shear (slip) transfer characteristics, fundamentally different from those of grain boundaries. Nanoscale metallic glass layers therefore may offer great benefits in engineering the plasticity of crystalline materials and opening new avenues for improving their strength and ductility. PMID:17592136

  8. Ion-beam amorphization of semiconductors: A physical model based on the amorphous pocket population

    SciTech Connect

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Barbolla, J.; Srinivasan, M.P.

    2005-08-15

    We introduce a model for damage accumulation up to amorphization, based on the ion-implant damage structures commonly known as amorphous pockets. The model is able to reproduce the silicon amorphous-crystalline transition temperature for C, Si, and Ge ion implants. Its use as an analysis tool reveals an unexpected bimodal distribution of the defect population around a characteristic size, which is larger for heavier ions. The defect population is split in both size and composition, with small, pure interstitial and vacancy clusters below the characteristic size, and amorphous pockets with a balanced mixture of interstitials and vacancies beyond that size.

  9. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made

  10. A Magnetic Sensor with Amorphous Wire

    PubMed Central

    He, Dongfeng; Shiwa, Mitsuharu

    2014-01-01

    Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/√Hz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor. PMID:24940865

  11. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  12. YAG:Ce3+ Nanophosphor Synthesized with the Salted Sol-Gel Method

    SciTech Connect

    D. Jia; C. V. Shaffer; J. E. Weyant; A. Goonewardene; X. Guo; Y. Wang; X. Z. Guo; K. K. Li; Y. K. Zou; W. Jia

    2006-05-01

    Nano-phosphors of Y3Al5O12:Ce3+ (YAG:Ce) were synthesized with a novel salted sol-gel method, in which aqueous solution of inorganic salts (yttrium/cerium nitrates) were used along with the metal alkoxide precursor, aluminum sec-butoxide, Al(OC4H9)3. YAG single phase was formed at temperature as low as 800 C. Luminescence of YAG:Ce reached the maximum intensity when calcined above 1350C. The SEM image reveals that the grain sizes of the nano-phosphors calcined at 1100 C are in a range of 50-150 nm.

  13. Improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-qing; Zhu, Jing; Shi, Hong-Min

    2005-07-01

    Objective: To observe and study the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser and evaluate the effective rate. Methods: 60 patients of internal hemorrhoids were treated with Nd:YAG laser (10-15mw) irradiating on the mucosa of the lesions. Results: Among 60 patients, 57 patients were primarily cured with one treatment, 3 patients were primarily cured with two treatments. The effective rate was 95% with one treatment, and it reached to 100% with two treatments. Conclusions: the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser is effective and easy to operate.

  14. LED pumped Nd:YAG laser development program

    NASA Technical Reports Server (NTRS)

    Farmer, G. I.; Kiang, Y. C.; Lynch, R. J.

    1973-01-01

    The results of a development program for light emitting diode (LED) pumped Nd:YAG lasers are described. An index matching method to increase the coupling efficiency of the laser is described. A solid glass half-cylinder of 5.0 by 5.6 centimeters was used for index matching and also as a pumping cavity reflector. The laser rods were 1.5 by 56 millimeters with dielectric coatings on both end surfaces. The interfaces between the diode array, glass cylinder, and laser rod were filled with viscous fluid of refractive index n = 1.55. Experiments performed with both the glass cylinder and a gold coated stainless steel reflector of the same dimensions under the same operating conditions indicate that the index matching cylinder gave 159 to 200 percent improvement of coupling efficiency over the metal reflector at various operating temperatures.

  15. Amalgam ablation with the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1995-04-01

    Any laser that will be used by dentist to replace the dental drill (handpiece) must remove dental hard tissues safely. These lasers must also have the ability to ablate the restorative dental materials which are present in the teeth being treated. Prior to any laser being used to treat humans a thorough knowledge of the effects of the laser treatment on dental materials must be understood. Cores of dental amalgam were created and sliced into thin wafers for this experiment. Ablation efficiency and thermal changes were evaluated with and without water. It appears as if the Er:YAG laser can effectively ablate amalgam dental material with and without water. The water prevents the temperature from increasing much above baseline and does not reduce efficiency of ablation.

  16. Adiabatic passage with spin locking in Tm3+:YAG

    NASA Astrophysics Data System (ADS)

    Pascual-Winter, M. F.; Tongning, R. C.; Lauro, R.; Louchet-Chauvet, A.; Chanelière, T.; Le Gouët, J.-L.

    2012-08-01

    In low-concentration Tm3+:YAG, we observe efficient adiabatic rapid passage (ARP) of thulium nuclear spin over flipping times much longer than T2. Efficient ARP with long flipping time has been observed in monoatomic solids for decades and has been analyzed in terms of spin temperature and of the thermodynamic equilibrium of a coupled spin ensemble. In low-concentration impurity-doped crystals the spin temperature concept may be questioned. A single spin model should be preferred since the impurity ions are weakly coupled together but interact with the numerous off-resonant matrix ions that originate the spin-spin relaxation. The experiment takes place in the context of quantum information investigation, involving impurity-doped crystals, spin hyperpolarization by optical pumping, and optical detection of the spin evolution.

  17. A new contact neodymium: YAG laser for cyclophotocoagulation

    SciTech Connect

    Iwach, A.G.; Drake, M.V.; Hoskins, H.D. Jr.; Schuster, B.L.; Vassiliadis, A.; Crawford, J.B.; Hennings, D.R. )

    1991-06-01

    A newly developed compact (40 kg), self-contained contact Neodymium:YAG laser produces high-peak, high-energy (800 mJ/pulse), short (1.0 millisecond) pulses with 1 to 3 pulses/exposure. Energy is delivered via a 320-microns cleaved quartz fiber optic probe. Cyclophotocoagulation was performed in five eyes of three medium-sized Dutch-pigmented rabbits. The eyes received exposures of 1 to 3 pulses/exposure. Energy delivered ranged from 100 to 800 mJ/pulse. Histopathology revealed ciliary body disruption and hemorrhage with no damage to overlying sclera. When used for transscleral cyclodiathermy in the rabbit, the laser created significant ciliary body disruption with minimal scleral injury.

  18. Clinical evaluation of Er:YAG laser caries treatment

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Kucerova, Hana; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1997-05-01

    To prepare the enamel, the energy used was mainly 345 mJ and repetition rate 2 Hz, for dentine the optimal energy of Er:YAG drilling machine was 200 mJ and repetition rate from 1 to 2 Hz, depending on cavity depth. Subject of treatment were caries of enamel and dentine and it was possible to remove the old insufficient fillings. The average number of pulses was 111.22, ranging from 16 to 489. During preparation, vibrations of microexplosions were felt by 8 patients, however, neither pain or unpleasant sensations were experienced. The filling materials used were composite resins and glassionomer cements. Their clinical evaluation 6 months post insertion was similar to that of the classical drilling system.

  19. Experimental features affecting the transparency of YAG ceramics

    NASA Astrophysics Data System (ADS)

    Esposito, Laura; Piancastelli, Andreana; Costa, Anna Luisa; Serantoni, Marina; Toci, Guido; Vannini, Matteo

    2011-01-01

    This article focuses on the importance of the ceramic production process for the final transparency and overall optical quality of materials to be used as laser hosts. YAG-based ceramics are prepared starting from commercial powders. The materials are prepared by reactive sintering in a clean atmosphere and under high vacuum. Nd or Yb are selected as active elements as the more appropriate for high energy and high peak power lasers. The powder type and treatment and the solvent removal technique are described in detail as well as the experimental conditions adopted during shaping. The influence of the pre-sintering and sintering cycles on the reaction among the involved oxides and on the microstructure after sintering is shown. The optical characterization is also reported.

  20. Er:YAG laser for endodontics: efficiency and safety

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Stock, Karl; Gall, Robert; Keller, Ulrich

    1997-12-01

    Recently it has been shown that bacterias can be sterilized by Er:YAG laser irradiation. By optical fiber transmission the bactericidal effect can also be used in endodontics. In order to explore potential laser parameters, we further investigated sterilization of caries and measured temperatures in models simulating endodontic treatment. It was found out that the bactericidal effect is cumulative, with single pulses being active. This offers to choose all laser parameters except pulse energy (radiant exposure) from technical, practical or safety considerations. For clinical studies the following parameter set is proposed for efficient and safe application (teeth with a root wall thickness > 1 mm, and prepared up to ISO 50): pulse energy: 50 mJ, repetition rate: 15 Hz, fiber withdrawal velocity: 2 mm/s. With these settings 4 passes must be performed to accumulate the total dose for sterilization.

  1. Ho:YAG laser arthroscopy of the knee

    NASA Astrophysics Data System (ADS)

    Sisto, Domenick J.; Blazina, Martin E.; Hirsh, Linda C.

    1994-09-01

    The HO:YAG laser is a near-contact laser with a capacity to ablate or cut tissues. The ablation function allows the surgeon to remove meniscal tissue, lyse and resect adhesions, melt loose bodies, and dissolve inflamed synovium. The cutting function of the laser is utilized to perform a lateral release or resect torn menisci. The laser can also be utilized to drill holes in Grade IV chondromalacic lesions to initiate a healing response. The laser has been embraced by orthopaedic surgeons because of its shape and versatility. The tip is only 2 mm wide and can be delivered into the tight posterior compartments of the knee with no damaging contact with the articular surfaces. The laser coagulates as it works and bleeding is minimized. The laser can function both as a cutting and ablating tool. The laser can also drill holes into subchondral bone to, hopefully, initiate a healing response.

  2. Single, composite, and ceramic Nd:YAG 946-nm lasers

    NASA Astrophysics Data System (ADS)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  3. Use of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Mattioli, Stefano

    1997-12-01

    The Holmium-YAG is a versatile laser with multiple soft- tissue applications including tissue incision and vaporization, and pulsed-laser applications such as lithotripsy. At 2140 nanometers, the wavelength is highly absorbed by tissue water. Further, like CO2 laser, the Holmium produces immediate tissue vaporization while minimizing deep thermal damage to surrounding tissues. It is an excellent instrument for endopyelotomy, internal urethrotomy, bladder neck incisions and it can be used to resect the prostate. The Holmium creates an acute TUR defect which gives immediate results like the TURP. More than 50 patients were treated from Jan. 1996 to Jan. 1997 for obstructive symptoms due to benign prostatic hyperplasia, bladder neck stricture, urethral stenosis, and superficial bladder tumors.

  4. Segmental irradiation of the bladder with neodymium YAG laser irradiation

    SciTech Connect

    McPhee, M.S.; Mador, D.R.; Tulip, J.; Ritchie, B.; Moore, R.; Lakey, W.H.

    1982-11-01

    The Neodymium YAG laser energy source can be readily adapted for cystoscopic use by some simple modifications of existing urologic equipment. Both the fiberoptic resectoscope and a deflecting cystourethroscope have been adapted for this purpose. Fixation of the fiber tip 1 cm. from the target and use of a divergent beam of 36 degrees allows the delivery of standardized dosage to a relatively large bladder tissue volume. Animal experiments involving 35 mongrel dogs established that repetitive overlapping doses of 200 joules ech can successfully treat a large area of bladder resulting in a full thickness bladder wall injury. This technique has been used in 4 high risk patients with infiltrating bladder cancer without adverse sequelae. The ability to reliably produce a full thickness lesion may give this modality a therapeutic advantage over conventional cautery techniques especially for the treatment of residual infiltrative carcinoma.

  5. Precise curvature measurement of Yb:YAG thin disk

    NASA Astrophysics Data System (ADS)

    Muzik, Jiri; Chyla, Michal; Nagisetty, Siva S.; Miura, Taisuke; Mann, Klaus; Endo, Akira; Mocek, Tomas

    2015-01-01

    We are developing an Yb:YAG thin disk regenerative amplifier operating at 1 kHz repetition rate which should deliver output of 100 W of average power which corresponds to the pulse energy of 100 mJ. In order to achieve such high output energy, large size mode matching on a thin-disk is required to avoid optical damage but on the other hand, larger mode area is more susceptible to the influence of optical phase distortions (OPD's) thus limits achievable pulse energy and beam quality. We developed a compact setup allowing precise measurement of the thin-disk deformations by implementation of a Hartmann-Shack wavefront sensor and a single mode probe laser diode. In comparison to the interferometric measurement methods, our approach brings a number of advantages like simplicity of alignment, compactness and robustness, at the same time keeping the high precision of measurement in a range of few nanometers.

  6. Diode - Pumped Nd:YAG Lidar for Airborne Cloud Measurements

    NASA Technical Reports Server (NTRS)

    Mehnert, A.; Halldorsson, TH.; Herrmann, H.; Haering, R.; Krichbaumer, W.; Streicher, J.; Werner, CH.

    1992-01-01

    This work is concerned with the experimental method used to separate scattering and to use it for the determination of cloud microphysical parameters. It is also the first airborne test of a lidar version related to the ATLID Program - ESA's scheduled spaceborne lidar. The already tested DLR microlidar was modified with the new diode-pumped laser and a faster data recording system was added. The system was used during the CLEOPATRA campaign in the DLR research aircraft Falcon 20 to measure cloud parameters. The diode pumped Nd:YAG laser we developed for the microlidar is a modification of the laser we introduced at the Lidar Congress at 'Laser 1991' in Munich. Various aspects of this work are discussed.

  7. Thermal transport in amorphous materials: a review

    NASA Astrophysics Data System (ADS)

    Wingert, Matthew C.; Zheng, Jianlin; Kwon, Soonshin; Chen, Renkun

    2016-11-01

    Thermal transport plays a crucial role in performance and reliability of semiconductor electronic devices, where heat is mainly carried by phonons. Phonon transport in crystalline semiconductor materials, such as Si, Ge, GaAs, GaN, etc, has been extensively studied over the past two decades. In fact, study of phonon physics in crystalline semiconductor materials in both bulk and nanostructure forms has been the cornerstone of the emerging field of ‘nanoscale heat transfer’. On the contrary, thermal properties of amorphous materials have been relatively less explored. Recently, however, a growing number of studies have re-examined the thermal properties of amorphous semiconductors, such as amorphous Si. These studies, which included both computational and experimental work, have revealed that phonon transport in amorphous materials is perhaps more complicated than previously thought. For instance, depending on the type of amorphous materials, thermal transport occurs via three types of vibrations: propagons, diffusons, and locons, corresponding to the propagating, diffusion, and localized modes, respectively. The relative contribution of each of these modes dictates the thermal conductivity of the material, including its magnitude and its dependence on sample size and temperature. In this article, we will review the fundamental principles and recent development regarding thermal transport in amorphous semiconductors.

  8. Amorphous boron nitride at high pressure

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  9. Wear Resistant Amorphous and Nanocomposite Steel Coatings

    SciTech Connect

    Branagan, Daniel James; Swank, William David; Haggard, Delon C; Fincke, James Russell; Sordelet, D.

    2001-10-01

    In this article, amorphous and nanocomposite thermally deposited steel coatings have been formed by using both plasma and high-velocity oxy-fuel (HVOF) spraying techniques. This was accomplished by developing a specialized iron-based composition with a low critical cooling rate (?104 K/s) for metallic glass formation, processing the alloy by inert gas atomization to form micron-sized amorphous spherical powders, and then spraying the classified powder to form coatings. A primarily amorphous structure was formed in the as-sprayed coatings, independent of coating thickness. After a heat treatment above the crystallization temperature (568°C), the structure of the coatings self-assembled (i.e., devitrified) into a multiphase nanocomposite microstructure with 75 to 125 nm grains containing a distribution of 20 nm second-phase grain-boundary precipitates. Vickers microhardness testing revealed that the amorphous coatings were very hard (10.2 to 10.7 GPa), with further increases in hardness after devitrification (11.4 to 12.8 GPa). The wear characteristics of the amorphous and nanocomposite coatings were determined using both two-body pin-on-disk and three-body rubber wheel wet-slurry sand tests. The results indicate that the amorphous and nanocomposite steel coatings are candidates for a wide variety of wear-resistant applications.

  10. SEM investigation of Er:YAG laser apical preparation

    NASA Astrophysics Data System (ADS)

    Bǎlǎbuc, Cosmin; Todea, Carmen; Locovei, Cosmin; RǎduÅ£ǎ, Aurel

    2016-03-01

    Endodontic surgery involves the incision and flap elevation, the access to the root tip, its resection, the cavity retrograde preparation and filling it with biocompatible material that provides a good seal of the apex[1]. Apicoectomy is compulsory in endodontic surgery. The final stage involves the root retropreparation and the carrying out of the retrograde obturation. In order to perform the retrograde preparation the endodontist can use various tools such as lowspeed conventional handpieces, sonic and ultrasonic equipment. The ideal depth of the preparation should be 3 mm, exceeding this value may affect the long-term success of the obturation [2]. Resection at the depth of 3 mm reduces apical ramifications by 98% and lateral root canals by 93%. The ultrasonic retropreparation has numerous advantages compared to the dental drill. Firstly, the cavity will be in the axis of the tooth which implies a minimum destruction of the root canal morphology. The preparations are precise, and the cutting pattern is perpendicular to the long axis of the root, the advantage being the reduction in the number of dentinal tubules exposed at the resected area [3]. Therefore, the retrograde filling is the procedure when an inert and non-toxic material is compacted in the apically created cavity.[4,5]. The Er:YAG laser is the most common wavelength indicated for dental hard tissue preparation. Its natural selectivity offers a significant advantage compared to the conventional hard tissue preparation [6-9].The purpose of this in vitro study was to investigate the quality of Er:YAG laser apical third preparation using Scanning Electron Microscopy (SEM), in comparison with the conventional ultrasonic method.

  11. High-average-power diode-pumped Yb: YAG lasers

    SciTech Connect

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-10-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M{sup 2} = 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M{sup 2} value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M{sup 2} < 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods.

  12. Study on LD-pumped Nd:YAG laser cutter

    NASA Astrophysics Data System (ADS)

    Cui, Jianfeng; Zhao, Jing; Fan, Zhongwei; Zhao, Cunhua; Bi, Yong; Zhang, Jing; Niu, Gang; Shi, Zhaohui; Pei, Bo; Zhang, Guoxin; Xue, Yan; Qi, Yan

    2005-12-01

    The theory of laser cutter and the technology neck is analyzed. We can conclude that it is almost impossible to deal with the waste thick silicon wafers which are yielded in producing silicon wafers by conventional eroding or diamond cutting, while it is also unperfected with ecumenical laser cutter without good beam quality or precise laser and optics system. It is represented that high average power and high repetition rate laser with good beam quality and precise laser and optics system are pivotal to obtain excellent cutting effect such as thick groove depth, rapid cutting speed, fine kerf section without considering the effect of technique. Considering laser medium thermal lens effect and thermal focal length changing with pumping power, using plano-convex high reflectivity mirror as the back cavity mirror to compensate the heat lens influence, aλ/4 waveplate to compensate heat-induced birefraction, utilize the Nd:YAG self-aperture effect, more than 50 W average power 1.064 um IR output is obtained with beam quality factor (M2) equals 3.19. Through the LD-Pumped Nd:YAG laser cutter we developed with short focus length negative spherical aberration focusing lens, double axis linear step motor positioning system, suitable beam expander multiplying factor, appropriate diameter of exit beam aperture, proper repetition rate, when the cutting velocity equals 400mm/min, 0.75mm thick silicon wafer can be penetrated; when the cutting velocity equals 100mm/min, double-layer 0.75mm thick silicon wafer can be penetrated. The cross section is fine and the groove is narrow, the cutting quality meets the expecting demand.

  13. Press formability YAG laser welded TRIP/DP tailored blanks

    NASA Astrophysics Data System (ADS)

    Nagasaka, A.; Sugimoto, K. I.; Kobayashi, M.; Makii, K.; Ikeda, S.

    2004-06-01

    In the present work, to improve the press formability of the combination of the TRIP steel and ferrite-martensite dual-phase (DP) steel, the mechanical properties and press formability (stretch-formability) of YAG laser welded TRIP/DP tailored blanks were investigated. An as-cold-rolled sheet steel with the chemical composition of (0.1 0.3)C 1.5Si 1.5Mn (mass%) was used in this study. For comparison, 0.14C 0.22Si 1.78Mn (mass%) DP steel was also prepared. The quenched DP steel is called MDP0, and the tempered MDP0 steel is called MDP4. For butt welding, the blank obtained after the heat treatment was cut using a fine cutter, and YAG laser processing equipment was used. The press formability was evaluated from the maximum stretch-height (Hmax). Tensile tests and stretch forming tests have been conducted for laser butt welded joints obtained from the combination of the different steel. The Hmax value of the MDP0 steel was not controlled at the strength level of the DP steel, and was not different from the Hmax value of the MDP4 steel. It is thought that this was assisted to TRIP of the TDP steel because the tensile strength of the TDP steel is consequentially lower than that of the MDP0 steel. High ductility and the high stretch-formability were able to be secured by the high strength TRIP/DP tailored blanks.

  14. Characterization and FDTD simulation analysis on light trapping structures of amorphous silicon thin films by laser irradiation

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jin, Jing; Yuan, Zhijun; Yang, Weiguang; Wang, Linjun; Shi, Weimin; Zhou, Jun; Lou, Qihong

    2016-05-01

    The effect of laser energy density on the light-trapping structures of amorphous silicon (α-Si) thin films is studied both theoretically and experimentally. The thin films are irradiated by a frequency-doubled (λ = 532 nm) Nd:YAG pulsed nanosecond laser. An effective finite difference time domain (FDTD) model is built to find the optimized laser energy density (EL) for the light trapping structures of α-Si. Based on the simulation analysis, it shows the variation of reflection spectra with laser energy density. The optimized reflection spectra at EL = 1000 mJ/cm2 measured by UV-visible spectroscopy confirms to agree well with that corresponding to the depth to diameter ratio (h/D) in the FDTD simulation. The surface morphology characterization by optical microscope (OM) and scanning electron microscope (SEM) accords fairly well to of light-trapping modeling in the simulation.

  15. Fabrication and thermal effects of highly transparent polycrystalline Nd:YAG ceramics

    NASA Astrophysics Data System (ADS)

    Fu, Yuelong; Li, Jiang; Liu, Yang; Wang, Zhe; Liu, Lei; Zhao, Hong; Pan, Yubai

    2015-11-01

    Highly transparent polycrystalline 2.0 at.% Nd:YAG ceramics were fabricated by a solid-state reactive sintering method using commercial α-Al2O3, Y2O3 and Nd2O3 powders as starting materials. The in-line transmittances of the Nd:YAG ceramics vacuum sintered at 1750 °C for 50 h with the thickness of 5.8 mm are 83.9% at 1064 nm and 82.5% at 400 nm. The thermal effects in the Nd:YAG ceramics were mainly investigated in detail. It is found that the thermal focal length decreases with the increase of pump power. The experimental results of thermal focal lengths are in accordance with the theoretical calculations. The observed depolarized beam patterns and depolarization phenomena illustrate the detailed change of thermally induced birefringence in Nd:YAG ceramics. The depolarization shows a obvious nonlinear change tendency at low pump power.

  16. Injection-seeded operation of a Q-switched Cr,Tm,Ho:YAG laser

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Hale, Charley P.; Magee, James R.

    1991-01-01

    Single-frequency Tm,Ho:YAG lasers operating near 2 microns are attractive sources for several applications including eye-safe laser radar (lidar) and pumping of AgGaSe2 parametric oscillators for efficient generation of longer wavelengths. As part of a program to develop a coherent lidar system using Tm,Ho:YAG lasers, a diode laser-pumped tunable CW single-longitudinal-mode (SLM) Cr:Tm:Ho:YAG laser and a flashlamp-pumped single-transverse-mode Q-switched Cr,Tm,Ho:YAG laser were developed. The CW laser was used to injection-seed the flashlamp-pumped laser, resulting in SLM Q-switched output. Operational characteristics of the CW and Q-switched lasers and injection-seeding results are reported.

  17. Charge transfer processes and ultraviolet induced absorption in Yb:YAG single crystal laser materials

    NASA Astrophysics Data System (ADS)

    Rydberg, S.; Engholm, M.

    2013-06-01

    Charge transfer (CT) transitions and UV induced color centers in Yb:YAG single crystals have been investigated. A simultaneous pair formation of a stable Yb2+ ion and a hole related (O-) color center (hole polaron) are observed through a CT-process. Slightly different types of hole related color centers are formed in Yb:YAG crystals containing small levels of iron impurities. Furthermore, excitation spectroscopy on the UV irradiated Yb:YAG samples could confirm an energy transfer process between Yb3+ and Yb2+ ions. The findings are important for an increased knowledge of the physical loss mechanisms observed in Yb-doped laser materials, such as the nonlinear decay process in Yb:YAG crystals as well as the photodarkening phenomenon in Yb-doped fiber lasers.

  18. Up Conversion Measurements in Er:YAG; Comparison with 1.6 Micrometer Laser Performance

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Walsh, Brian M.; Amzajerdian, Farzin; Reichle, Donald J.; Busch, George E.; Carrion, William A.

    2011-01-01

    Up conversion significantly affects Er:YAG lasers. Measurements performed here for low Er concentration are significantly different than reported high Er concentration. The results obtained here are used to predict laser performance and are compared with experimental results.

  19. Electrons and phonons in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Prasai, Kiran; Biswas, Parthapratim; Drabold, D. A.

    2016-07-01

    The coupling between lattice vibrations and electrons is one of the central concepts of condensed matter physics. The subject has been deeply studied for crystalline materials, but far less so for amorphous and glassy materials, which are among the most important for applications. In this paper, we explore the electron-lattice coupling using current tools of a first-principles computer simulation. We choose three materials to illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN). In each case, we show that there is a strong correlation between the localization of electron states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained from the density-functional theory (i.e. Kohn–Sham eigenvalues). We provide a heuristic theory to explain these observations. The case of a-GaN, a topologically disordered partly ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore the consequences of changing the charge state of a system as a proxy for tracking photo-induced structural changes in the materials. Where transport is concerned, we lend insight into the Meyer–Neldel compensation rule and discuss a thermally averaged Kubo–Greenwood formula as a means to estimate electrical conductivity and especially its temperature dependence. We close by showing how the optical gap of an amorphous semiconductor can be computationally engineered with the judicious use of Hellmann–Feynman forces (associated with a few defect states) using molecular dynamics simulations. These forces can be used to close or open an optical gap, and identify a structure with a prescribed gap. We use the approach with plane-wave density functional methods to identify a low-energy amorphous phase of silicon including several coordination defects, yet with a gap close to that of good quality a-Si models.

  20. Electrons and phonons in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Prasai, Kiran; Biswas, Parthapratim; Drabold, D. A.

    2016-07-01

    The coupling between lattice vibrations and electrons is one of the central concepts of condensed matter physics. The subject has been deeply studied for crystalline materials, but far less so for amorphous and glassy materials, which are among the most important for applications. In this paper, we explore the electron-lattice coupling using current tools of a first-principles computer simulation. We choose three materials to illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN). In each case, we show that there is a strong correlation between the localization of electron states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained from the density-functional theory (i.e. Kohn-Sham eigenvalues). We provide a heuristic theory to explain these observations. The case of a-GaN, a topologically disordered partly ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore the consequences of changing the charge state of a system as a proxy for tracking photo-induced structural changes in the materials. Where transport is concerned, we lend insight into the Meyer-Neldel compensation rule and discuss a thermally averaged Kubo-Greenwood formula as a means to estimate electrical conductivity and especially its temperature dependence. We close by showing how the optical gap of an amorphous semiconductor can be computationally engineered with the judicious use of Hellmann-Feynman forces (associated with a few defect states) using molecular dynamics simulations. These forces can be used to close or open an optical gap, and identify a structure with a prescribed gap. We use the approach with plane-wave density functional methods to identify a low-energy amorphous phase of silicon including several coordination defects, yet with a gap close to that of good quality a-Si models.

  1. Holmium:YAG laser-assisted otolaryngologic surgery: Lahey Clinic experience

    NASA Astrophysics Data System (ADS)

    Shapshay, Stanley M.; Rebeiz, Elie E.; Pankratov, Michail M.

    1993-07-01

    The Holmium:YAG laser was used to assist in 36 rhinologic procedures including surgery for chronic sinus disease, chronic dacryocystitis, recurrent choanal stenosis, and a sphenoid sinus mucocele. There were no laser related complications. The laser permitted controlled ablation of bone and soft tissue in all cases with satisfactory results. The Ho:YAG laser can be used in otolaryngology to assist in cases where surgical access is difficult or when controlled, precise bone and soft tissue ablation is necessary.

  2. Features of YAG crystal growth under Ar+CO reducing atmosphere

    NASA Astrophysics Data System (ADS)

    Arhipov, P.; Tkachenko, S.; Vasiukov, S.; Hubenko, K.; Gerasymov, Ia.; Baumer, V.; Puzan, A.; Mateychenko, P.; Lebbou, K.; Sidletskiy, O.

    2016-09-01

    The influence of the reducing Ar+CO atmosphere on the stages of starting raw material preparation, growth and post-growth annealing of yttrium aluminum garnet, Y3Al5O12 (YAG) crystals was studied. The chemical reactions involving CO atmosphere and its impact on the raw material, melt, and crystal composition are determined. Modification of YAG optical properties under the reducing annealing is discussed.

  3. The growth of Ho:YAG single crystals by Czochralski method and investigating the formed cores

    SciTech Connect

    Hasani Barbaran, J. Ghani Aragi, M. R.; Javaheri, I.; Baharvand, B.; Tabasi, M.; Layegh Ahan, R.; Jangjo, E.

    2015-12-15

    Ho:YAG single crystals were grown by Czochralski technique, and investigated by the X-ray diffraction (XRD) and optical methods. The crystals were cut and polished in order to observe and analyze their cores. It was found that the deviation of the cores formed in the Czochralski grown Ho:YAG single crystals are resulted from non-symmetrical status of thermal insulation around the Iridium crucible.

  4. Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    1989-01-01

    The performance of twin injection seeded Nd:YAG lasers is compared with the performance of an argon-ion laser for recording dual-reference-beam holograms in AGFA 8E56 emulsion. Optical heterodyning is used to measure interference, and the results are expressed in terms of heterodyning signal level and intensity signal-to-noise. The Nd:YAG laser system is to be used for optical inspections of structures for cracks, defects, gas leaks, and structural changes.

  5. Micro-machining workstation for a diode pumped Nd:YAG high-brightness laser system

    NASA Astrophysics Data System (ADS)

    Kleijhorst, R. A.; Offerhaus, H. L.; Bant, P.

    1998-05-01

    A Nd:YAG micro-machining workstation that allows cutting on a scale of a few microns has been developed and operated. The system incorporates a telescope viewing system that allows control during the work and a software interface to translate AutoCad files. Some examples of the performance are given. With this setup we demonstrate the possibility of machining within a few microns with a Nd:YAG laser.

  6. SOLACOS - A diode-pumped Nd:YAG laser breadboard for coherent space communication system verification

    NASA Astrophysics Data System (ADS)

    Pribil, K.; Johann, U.; Sontag, H.

    1991-05-01

    Germany's Solid State Laser Communications in Space, or 'SOLACOS' program has undertaken the terrestrial verification of coherent laser communications systems based on Nd:YAG lasers, giving attention to the evaluation and breadboarding of critical components and subsystems. These components encompass the pointing/acquisition/tracking subsystem breadboard, an optical Costas-loop receiver, and advanced Nd:YAG transmitter technology. Results are presented for subsystem components developed to date.

  7. Er:YAG laser for the surgical treatment of the carpal tunnel syndrome

    NASA Astrophysics Data System (ADS)

    Russ, Detlef; Ebinger, Thomas; Illich, Wolfgang; Steiner, Rudolf W.

    2003-10-01

    We developed a new surgical procedure to improve the recurrence rate using an Er:YAG laser as dissection tool for the carpal ligament with the objective to ablate a small amount of the carpal ligament and to denaturate its ends. The Er:YAG Laser was transmitted to the applicator via a GeO fiber. With this system we proceeded 10 carpal ligament dissections without any complications in the follow-up period. All patients were free of pain and recurrence.

  8. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  9. Laser-assisted hair transplantation: histologic comparison between holmium:YAG and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Chu, Eugene A.; Rabinov, C. Rose; Wong, Brian J.; Krugman, Mark E.

    1999-06-01

    The histological effects of flash-scanned CO2 (λ=10.6μm) and pulsed Holmium:YAG (Ho:YAG, λ=2.12μm) lasers were evaluated in human scalp following the creation of hair transplant recipient channels. Ho:YAG laser irradiation created larger zones of thermal injury adjacent to the laser channels than irradiation with the CO2 laser device. When the two lasers created recipient sites of nearly equal depth, the Holmium:YAG laser caused a larger region of lateral thermal damage (589.30μm) than the CO2 laser (118.07μm). In addition, Holmium:YAG irradiated specimens exhibited fractures or discontinuities beyond the region of clear thermal injury. This shearing effect is consistent with the photoacoustic mechanism of ablation associated with pulsed mid-IR laser irradiation. In contrast, channels created with the CO2 exhibited minimal epithelial disruption and significantly less lateral thermal damage. While the Holmium:YAG laser is a useful tool for ablation soft tissue with minimal char in select applications (sinus surgery, arthroscopic surgery), this study suggests that the use of the CO2 laser for the creation of transplantation recipient channels result in significantly less lateral thermal injury for the laser parameters employed.

  10. Comparison of spectroscopic properties of Tm and Ho in YAG and YLF crystals

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Buoncristiani, A. M.; Inge, A. T.; Di Bartolo, B.

    1991-01-01

    The paper compares the cross-relaxation, energy transfer and loss processes in Tm- and Ho-doped YAG and YLF as a function of temperature, Tm concentration, and excitation power. Significant differences in the behavior of Tm and Tm,Ho in YAG and YLF crystals were found. The cross-relaxation rates of Tm(6 pct) are faster in YLF (about 5 microsec) than YAG (about 10 microsec). The energy transfer rates between Tm and Ho are faster in YLF than YAG. The time it takes for the maximum intensity of 1.7-micron emission to drop 10 percent is 25 microsec for YLF:Tm(6 pct),Ho(0.6 pct) and 65 microsec YAG:Tm(6 pct),Ho(0.5 pct). The losses occurring with increasing pump power for 2.1-micron emission of the above samples are 30 percent less in YLF than YAG. These qualitative differences point to YLF as a valuable 2-micron laser host material.

  11. Er:YAG Laser Dental Treatment of Patients Affected by Epidermolysis Bullosa

    PubMed Central

    Galeotti, Angela; D'Antò, Vincenzo; Gentile, Tina; Giancristoforo, Simona; Romeo, Umberto

    2014-01-01

    Aim. The purpose of this study was to evaluate the efficacy of Er:YAG laser used for treating hard dental tissue in patients with epidermolysis bullosa (EB). Methods. We report two cases of EB in which an Er:YAG laser was used for conservative treatments. In the first case, the Er:YAG laser (2,940 μm, 265 mJ, 25 Hz) was used to treat caries on a deciduous maxillary canine in an 8-year-old male patient affected by dystrophic EB. In the second case, we treated a 26-year-old female patient, affected by junctional EB, with generalized enamel hypoplasia, and an Er:YAG laser (2,940 μm, 265 mJ, 25 Hz) was used to remove the damaged enamel on maxillary incisors. Results. The use of the Er:YAG laser, with the appropriate energy, was effective in the selective removal of carious tissue and enamel hypoplasia. During dental treatment with the Er:YAG laser, patients required only a few interruptions due to the absence of pain, vibration, and noise. Conclusions. Laser treatment of hard dental tissues is a valuable choice for patients affected by EB since it is less invasive compared to conventional treatment, resulting in improved patient compliance. PMID:25431688

  12. Er:YAG laser irradiation to control the progression of enamel erosion: an in situ study.

    PubMed

    Scatolin, R S; Colucci, V; Lepri, T P; Alexandria, A K; Maia, L C; Galo, R; Borsatto, M C; Corona, S A M

    2015-07-01

    This in situ study evaluated the effect of Er:YAG laser irradiation in controlling the progression of enamel erosion-like lesions. Fifty-six enamel slabs (330 KHN ± 10 %) with one fourth of the surface covered with resin composite (control area) were submitted to initial erosion-like lesion formation with citric acid. The slabs were divided into two groups: irradiated with Er:YAG laser and non-irradiated. Fourteen volunteers used an intraoral palatal appliance containing two slabs, in two phases of 5 days each. During the intraoral phase, in a crossed-over design, half of the volunteers immersed the appliance in citric acid while the other half used deionized water, both for 5 min, three times per day. Enamel wear was determined by an optical 3D profilometer. ANOVA revealed that when deionized water was used as immersion solution during the intraoral phase, lower values of wear were showed when compared with the groups that were eroded with citric acid, whether irradiated or non-irradiated with Er:YAG laser. When erosion with citric acid was performed, Er:YAG laser was not able to reduce enamel wear. Small changes on enamel surface were observed when it was irradiated with Er:YAG laser. It may be concluded that Er:YAG laser irradiation did not reduce the progression of erosive lesions on enamel submitted to in situ erosion with citric acid.

  13. About the luminescence properties of YAG:Nd, Ce and YAG:Nd single crystals and their relation to laser properties

    NASA Astrophysics Data System (ADS)

    Mares, Jiri A.; Kubelka, Jiri; Kvapil, Jiri

    1986-09-01

    Laser excited luminescence studies of various YAG:Nd, Ce and YAG:Nd (with an excess of yttrium) single crystals together with a testing of laser properties of rods made from the same crystals have been investigated in this paper. It was observed that laser pulse energies increase with increasing halfwidths of the luminescence spectral bands. This dependence and other observations indicate that local structure changes or Nd(3+) nonequivalent centers are present in the studied crystals. Various mechanisms leading to the formation of Nd(3+) nonequivalent centers are discussed and it seems that the more probable mechanism is oxygen segregation and diffusion.

  14. Amorphous Diamond MEMS and Sensors

    SciTech Connect

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater than

  15. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  16. Understanding Thermal Conductivity in Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Kommandur, Sampath; Yee, Shannon

    2014-03-01

    Current energy technologies such as thermoelectrics, photovoltaics, and LEDs make extensive use of amorphous materials and are limited by heat transfer. Device improvements necessitate a better understanding of the thermal conductivity in amorphous materials. While there are basic theories that capture the trends in thermal conductivity of a select set of amorphous materials, a general framework is needed to explain the fundamental transport of heat in all amorphous materials. One empirical theory that has been successful at describing the thermal conductivity in some materials is the k-min model, however, assumptions in that model limit its generalizability. Another theory defines the existence of propagons, diffusons, and locons, which constitute vibrational modes that carry heat. Our work first presents a summary of literature on the thermal conductivity in amorphous materials and then compares those theories to a breadth of experimental data. Based upon those results, a generic model is proposed that is widely applicable with the ultimate goal of this work being to describe the temperature dependent thermal conductivity of polymers. -/abstract- Sampath Kommandur and Shannon K. Yee 21.1.1: Thermoelectric Phenomena, Materials, Devices, and Applications (GER

  17. SURVIVAL OF AMORPHOUS WATER ICE ON CENTAURS

    SciTech Connect

    Guilbert-Lepoutre, Aurelie

    2012-10-01

    Centaurs are believed to be Kuiper Belt objects in transition between Jupiter and Neptune before possibly becoming Jupiter family comets. Some indirect observational evidence is consistent with the presence of amorphous water ice in Centaurs. Some of them also display a cometary activity, probably triggered by the crystallization of the amorphous water ice, as suggested by Jewitt and this work. Indeed, we investigate the survival of amorphous water ice against crystallization, using a fully three-dimensional thermal evolution model. Simulations are performed for varying heliocentric distances and obliquities. They suggest that crystallization can be triggered as far as 16 AU, though amorphous ice can survive beyond 10 AU. The phase transition is an efficient source of outgassing up to 10-12 AU, which is broadly consistent with the observations of the active Centaurs. The most extreme case is 167P/CINEOS, which barely crystallizes in our simulations. However, amorphous ice can be preserved inside Centaurs in many heliocentric distance-obliquity combinations, below a {approx}5-10 m crystallized crust. We also find that outgassing due to crystallization cannot be sustained for a time longer than 10{sup 4}-10{sup 4} years, leading to the hypothesis that active Centaurs might have recently suffered from orbital changes. This could be supported by both observations (although limited) and dynamical studies.

  18. Synthesis method for amorphous metallic foam

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Veazey, Chris; Demetriou, Marios D.; Johnson, William L.

    2004-12-01

    A synthesis method for the production of amorphous metallic foam is introduced. This method utilizes the thermodynamic stability and thermoplastic formability of the supercooled liquid state to produce low-density amorphous metallic foams in dimensions that are not limited to the critical casting thickness. The method consists of three stages: the prefoaming stage, in which a large number of small bubbles are created in the equilibrium liquid under pressure; the quenching stage, in which the liquid prefoam is quenched to its amorphous state; the foam expansion stage, in which the amorphous prefoam is reheated to the supercooled liquid region and is processed under pressures substantially lower than those applied in the prefoaming step. Results from a dynamic model suggest that the foam expansion process is feasible, as the kinetics of bubble expansion in the supercooled liquid region are faster than the kinetics of crystallization. Within the proposed synthesis method, bulk amorphous foam products characterized by bubble volume fractions of as high as 85% are successfully produced.

  19. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  20. Phase transitions in biogenic amorphous calcium carbonate.

    PubMed

    Gong, Yutao U T; Killian, Christopher E; Olson, Ian C; Appathurai, Narayana P; Amasino, Audra L; Martin, Michael C; Holt, Liam J; Wilt, Fred H; Gilbert, P U P A

    2012-04-17

    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro. PMID:22492931

  1. IUE observations of amorphous hot galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, S. A.; Hjellming, M. S.; Gallagher, J. S., III; Hunter, D. A.

    1985-01-01

    Blue amorphous galaxies are star-forming, irregularlike systems which lack the spatially distinct OB stellar groups that are characteristic of most late-type galaxies. In order to better understand the nature of star-formation processes in these unusual galaxies, short-wavelength IUE spectra of the amorphous galaxies NGC 1705 and NGC 1800 have been obtained. It is found that NGC 1705 contains a normal mix of OB stars, which is consistent with the nearly constant recent star-formation rate inferred from new optical data. NGC 1800 is likely to have similar properties, and blue galaxies with amorphous structures thus do not show evidence for anomalies in stellar populations. The UV spectra of these galaxies and a variety of other hot extragalactic stellar systems in fact have similar characteristics, which suggests OB stellar populations are often homogeneous in their properties.

  2. Synthesis and photocurrent of amorphous boron nanowires.

    PubMed

    Ge, Liehui; Lei, Sidong; Hart, Amelia H C; Gao, Guanhui; Jafry, Huma; Vajtai, Robert; Ajayan, Pulickel M

    2014-08-22

    Although theoretically feasible, synthesis of boron nanostructures is challenging due to the highly reactive nature, high melting and boiling points of boron. We have developed a thermal vapor transfer approach to synthesizing amorphous boron nanowire using a solid boron source. The amorphous nature and chemical composition of boron nanowires were characterized by high resolution transmission electron microscopy, selected area electron diffraction, and electron energy loss spectroscopy. Optical properties and photoconduction of boron nanowires have not yet been reported. In our investigation, the amorphous boron nanowire showed much better optical and electrical properties than previously reported photo-response of crystalline boron nanobelts. When excited by a blue LED, the photo/dark current ratio (I/I₀) is 1.5 and time constants in the order of tens of seconds. I/I₀ is 1.17 using a green light. PMID:25061013

  3. Superior radiation tolerant materials: Amorphous silicon oxycarbide

    NASA Astrophysics Data System (ADS)

    Nastasi, Michael; Su, Qing; Price, Lloyd; Colón Santana, Juan A.; Chen, Tianyi; Balerio, Robert; Shao, Lin

    2015-06-01

    We studied the radiation tolerance of amorphous silicon oxycarbide (SiOC) alloys by combining ion irradiation, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The amorphous SiOC alloys thin films were grown via co-sputtering from SiO2 and SiC (amorphous phase) targets either on a surface oxidized Si (100) substrate or on a sodium chloride substrate. By controlling the sputtering rate of each target, SiOC alloys with different compositions (1:2, 1:1, 2:1 ratios) were obtained. These alloys were irradiated by 100 keV He+ ions at both room temperature and 600 °C with damage levels ranging from 1 to 20 displacements per atom (dpa). TEM characterization shows no sign of crystallization, void formation or segregation in all irradiated samples. Our findings suggest that SiOC alloys are a class of promising radiation-tolerant materials.

  4. Enthalpy of crystallization of amorphous yttrium oxide

    SciTech Connect

    Reznitskii, L.A.

    1988-02-01

    Measurements have been made on the enthalpies of crystallization of amorphous Fe/sub 2/O/sub 3/ and Y/sub 3/Fe/sub 5/O/sub 12/ from amorphous Fe/sub 2/O/sub 3/ and Y/sub 2/O/sub 3/ as determined by the DSC method. The heat of crystallization for Y/sub 2/O/sub 3am/ does not make itself felt on the heating thermogram, in contrast to that for Fe/sub 2/O/sub 3/, evidently because it is spread out over a wide temperature range, so it is difficult to measure. One can combine thermochemical equations to calculate the enthalpy of crystallization for amorphous yttrium oxide as ..delta..H = -24.9 kJ/mole.

  5. Ho:YAG laser irradiation in blood vessel as a vasodilator: ex vivo study

    NASA Astrophysics Data System (ADS)

    Nakatani, E.; Iwasaki, T.; Kaneko, K.; Shimazaki, N.; Arai, T.

    2007-02-01

    We studied Ho:YAG laser irradiation in blood vessel as a vasodilator ex vivo. We thought that the Ho:YAG laser-induced bubble expansion might be able to dilate the vessel because we found the vessel wall expansion after the Ho:YAG laser irradiation, that is steady deformation, in the vessel ex vivo. There have been many reports regarding to the Ho:YAG laser irradiation in the vessel. Most of studies concentrated on the interaction between Ho:YAG laser irradiation and vessel wall to investigate side effect on Ho:YAG laser angioplasty. We proposed to use the Ho:YAG laser-induced bubble expansion as a vasodilator. We studied vasodilation effect of the Ho:YAG laser-induced bubble ex vivo. The flash lamp excited Ho:YAG laser surgical unit (IH102, NIIC, Japan) (λ=2.1μm) was used. The laser energy was delivered by a silica glass fiber (outer diameter: 1000μm, core diameter: 600μm). The laser-induced bubble was generated in the extracted fresh porcine carotid artery with the warmed saline perfusion. The laser energy at the fiber tip was ranging from 170-1300mJ per pulse. Number of the laser irradiation was ranged from 20pulses to 100pulses. The outer diameter of the vessel was observed. To examine the change in mechanical properties of the vessel wall, the stress-strain curve of the laser-irradiated vessel was measured. Birefringence observation and microscopic observation of staining specimen were performed. When the laser energy was set to 1300mJ per pulse, the outer diameter of the vessel after the laser irradiation was expanded by 1.4 times comparing with that of before the laser irradiation and the dilatation effect was kept even at 10minutes after the irradiation. The elasticity modulus of the artery by collagen was changed by the laser irradiation. In the polarized microscopic observation, the brightness of the intimal side of the vessel is increased comparing with that of the normal. We think this brightness increasing may be attributed to birefringence change

  6. The Phagocytosis and Toxicity of Amorphous Silica

    PubMed Central

    Costantini, Lindsey M.; Gilberti, Renée M.; Knecht, David A.

    2011-01-01

    Background Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Methodology/Principal Findings Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37°C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Conclusions/Significance Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both

  7. Cooling of hot electrons in amorphous silicon

    SciTech Connect

    Vanderhaghen, R.; Hulin, D.; Cuzeau, S.; White, J.O.

    1997-07-01

    Measurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

  8. Thermal conductivity of sputtered amorphous Ge films

    SciTech Connect

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka

    2014-02-15

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids.

  9. Production feature of soft magnetic amorphous alloys

    NASA Astrophysics Data System (ADS)

    Tyagunov, A. G.; Baryshev, E. E.; Shmakova, K. Yu

    2016-06-01

    Methods for making nanocrystalline alloys have been discussed. Temperature dependences of the surface tension (σ), electric resistivity (ρ), magnetic susceptibility (χ) and kinematic viscosity (ν) have been obtained. Comparison of the properties of amorphous ribbons obtained by the pilot and serial technologies has been conducted. Science-based technology of multi-component alloy smelting makes it possible to prepare equilibrium smelt, the structure of which has a significant effect on the properties of the amorphous ribbon before spinning and kinetics of its crystallization has been offered.

  10. Ion bombardment and disorder in amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Gaspari, F.; Zukotynski, S.

    1997-07-01

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects.

  11. Short range order in amorphous polycondensates

    SciTech Connect

    Lamers, C.; Richter, D.; Schweika, W.; Batoulis, J.; Sommer, K.; Cable, J.W.; Shapiro, S.M.

    1992-12-01

    The static coherent structure factors S(Q) of the polymer glass Bisphenol-A-Polycarbonate and its chemical variation Bisphenol-A- Polyctherkctone- both in differently deuterated versions- have been measured by spin polarized neutron scattering. The method of spin polarization analysis provided an experimental separation of coherent and incoherent scattering and a reliable intensity calibration. Results are compared to structure factors calculated for model structures which were obtained by ``amorphous cell`` computer simulations. In general reasonable agreement is found between experiment and simulation; however, certain discrepancies hint at an insufficient structural relaxation in the amorphous cell method. 15 refs, 1 fig, 1 tab.

  12. Amorphous Insulator Films With Controllable Properties

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Warner, Joseph D.; Liu, David C.; Pouch, John J.

    1987-01-01

    In experiments described in report, amorphous hydrogenated carbon films grown at room temperature by low-frequency plasma deposition, using methane or butane gas. Films have unique array of useful properties; (a) adhere to wide variety of materials; (b) contain only carbon and hydrogen; (c) smooth and free of pinholes; (d) resistant to attack by moisture and chemicals; and (e) have high electric-breakdown strength and electrical resistivity. Two of optical properties and hardness of this film controlled by deposition conditions. Amorphous a-C:H and BN films used for hermetic sealing and protection of optical, electronic, magnetic, or delicate mechanical systems, and for semiconductor field dielectrics.

  13. New Amorphous Silicon Alloy Systems

    NASA Astrophysics Data System (ADS)

    Kapur, Mridula N.

    1990-01-01

    The properties of hydrogenated amorphous silicon (a-Si:H) have been modified by alloying with Al, Ga and S respectively. The Al and Ga alloys are in effect quaternary alloys as they were fabricated in a carbon-rich discharge. The alloys were prepared by the plasma assisted chemical vapor deposition (PACVD) method. This method has several advantages, the major one being the relatively low defect densities of the resulting materials. The PACVD system used to grow the alloy films was designed and constructed in the laboratory. It was first tested with known (a-Si:H and a-Si:As:H) materials. Thus, it was established that device quality alloy films could be grown with the home-made PACVD setup. The chemical composition of the alloys was characterized by secondary ion mass spectrometry (SIMS), and electron probe microanalysis (EPMA). The homogeneous nature of hydrogen distribution in the alloys was established by SIMS depth profile analysis. A quantitative analysis of the bulk elemental content was carried out by EPMA. The analysis indicated that the alloying element was incorporated in the films more efficiently at low input gas concentrations than at the higher concentrations. A topological model was proposed to explain the observed behavior. The optical energy gap of the alloys could be varied in the 0.90 to 1.92 eV range. The Al and Ga alloys were low band gap materials, whereas alloying with S had the effect of widening the energy gap. It was observed that although the Si-Al and Si-Ga alloys contained significant amounts of C and H, the magnitude of the energy gap was determined by the metallic component. The various trends in optical properties could be related to the binding characteristics of the respective alloy systems. A quantitative explanation of the results was provided by White's tight binding model. The dark conductivity-temperature dependence of the alloys was examined. A linear dependence was observed for the Al and Ga systems. Electronic conduction in

  14. [Intracorporeal shockwave lithotripsy using the neodymium YAG laser].

    PubMed

    Schmeller, N T; Hofstetter, A; Kriegmair, M; Frank, F; Wondrazek, F

    1989-09-10

    The problem of suitable energy transfer and conversion for intraureteral lithotripsy has not yet been solved satisfactorily. Laser-induced shockwave lithotripsy (LISL) appears to be a very promising solution to this problem. We report on initial clinical experience using a Q-switched Nd:YAG laser generating a shockwave on the metallic surface of an optomechanic coupler. This leads to the fine fragmentation of a urinary calculus situated close to or in contact with the coupler. Only minimal side effects occur in biological tissue. Further development of the coupler resulted in considerable increase of its fragmentation capability with no increase in side-effects. As a result, application under fluoroscopic control alone became possible, which appears adequate in approximately half of the cases. In the other half visual inspection via ureteroscopy is required. Laser-induced lithotripsy is the only technique that uses a flexible transmission system, results in the fine fragmentation of calculi, and is free of serious side effects on tissue, i.e. does not lead to perforation of the wall of the ureter.

  15. Endoscopic goniotomy probe for holmium:YAG laser delivery

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Shen, Jin-Hui; Ren, Qiushi

    1994-06-01

    Goniotomy is an effective treatment for primary infantile glaucoma. Because a cloudy cornea may prevent a clear view of the anterior chamber angle through the operating microscope, we investigated whether an endoscope can be combined with a cutting laser to perform laser goniotomy in a surgical model of primary infantile glaucoma. The anterior chambers of cadaver procine eyes were deepened with a viscoelastic material. A 300-micron-diameter silica fiber coupled to an Olympus 0.8-mm-diameter flexible fiber optic endoscope entered the anterior chambers through 4-mm corneal incisions. The anterior chamber angles were clearly observed on a videoscreen as the endoscopic fiber optic laser scalpel approached the pectinate ligaments. With the guidance of a He-Ne aiming beam, the anterior chamber angle pectinate ligaments were cut over a 160 degree arc with a pulsed Ho:YAG laser (2.1 micrometers wavelength, 50 mJ, 5 Hz repetition). The specimens were fixed in glutaraldehyde and processed for scanning electron microscopy, or fixed in formalin and processed for light microscopy. The treated area demonstrated incision of the pectinate ligaments with opening of the underlying trabecular meshwork. The edoscopic fiber optic laser scalpel is capable of cutting the pectinate ligaments in a surgical model of primary infantile glaucoma. Therefore, it may be a useful instrument for performing goniotomy when a cloudy cornea in primary infantile glaucoma prevents visualization of the anterior chamber angle with a goniotomy lens.

  16. Holographic Cinematography With The Help Of A Pulse YAG Laser

    NASA Astrophysics Data System (ADS)

    Smigielski, P.; Fagot, H.; Albe, F.

    1985-02-01

    For many years opticists have tried to achieve 3D-cinematography with the help of holography. The term "cineholography" has been introduced in 1965. At that time the method consisted in superimposing on the same photographic plate various holograms recorded at different times. The image separation was achieved by rotating either the plate in its plane or the reference beam during both the recording and reconstructing processes. The number of views was limited by the principle itself, but a high repetition rate (100 kHz) has been obtained with a pulsed ruby laser. Then other experiments have been conducted by different authors, mainly in the Soviet Unions and in the United States of America, by using the principle of classical cinematography in which the image separation is obtained by translating the film. With this method we have recorded the first French holographic movies on 35 mm Agfa films with the help of a pulsed YAG laser built in our laboratory. This frequency doubled laser (X = 0.532 pm) delivers pulses of 20 ns with an energy of 30 HO at a repetition rate of 24 Hz. The experimental arrangements are described and some images of diffuse moving objects are presented. The volume of the recording scene is greater than one cubic meter. The coherence length of the laser is higher than one meter and remains steady during the recording process. Results are discussed and an outlook on the future is given with special respect to high repetition rate techniques.

  17. Nd:YAG laser therapy in bronchogenic tumors

    NASA Astrophysics Data System (ADS)

    Benov, Emil; Kostadinov, D.; Mitchev, K.; Vlasov, V.

    1993-03-01

    In 2 years 53 patients with tumors of the tracheobronchial tree have been treated by photocoagulation therapy. Forty cases of them were with different types of cancer and 13 cases with benign lesions of the trachea or bronchi. As a laser source we used an Nd:YAG laser, MBB, Germany. At first the tumor was irradiated with a power of 25 - 30 W, following power up to 90 W. The median energy dose was 3,500 J/sq cm for each patient. The treatment was executed under local anesthesia with a rigid or flexible bronchoscope. In all of the cases with benign tumors we obtained a stable positive effect. In 15 cases of carcinoma we attained a recanalization and restoration of the ventilation to the treated area -- 37.5%. The only complication due to the procedure was the death of one patient with a tracheal cancer and myasthenia gravis. Photocoagulation therapy is an effective method for benign tumors. In cases with carcinoma this therapy is used with palliative purpose -- recanalization of the bronchus. Laser endobronchial therapy shows an immediate positive effect in the treatment of airway obstruction.

  18. A multiple work mode YAG laser in derma surgery

    NASA Astrophysics Data System (ADS)

    Sa, Yu; Zhang, Guizhong; Ye, Zhisheng; Yu, Lin

    2006-06-01

    It has been very common that a pulse laser is used in derma surgery based on the theory of "Selective Photothermolysis". This method has also been accepted as the best way to treat the pigments by the medical textbook. A kind of double-pulsed laser which gets the name by two pulse output at one pumping process is developed for derma surgery lately, and this kind of laser has been proved more effective and safe than single-pulse laser. We also develop a multiple work mode YAG laser including two double-pulsed modes at 1064nm and 532nm, two single-pulsed modes at 1064nm and 532nm, and one free-running mode at 1064nm. Considering availability, security and reliability of the laser as a surgery machine, some important subsystems of the laser are optimized carefully, such as Q-switch driver, wavelength-switching system, power supply, and control system etc. At last we get a prototype laser which can run for longer than 30 minutes continuously, and output Max10 pulse per second (pps) with Max800mJ energy at 1064nm double Q-Switch mode, or Max400mJ at 532nm. Using double pulse mode of the laser we do some removal experiments of tattoos and other pigments, and obtain good effect.

  19. Template-Assisting Preparation of Luminescent YAG:Nd³⁺ Nanoparticles and Hollow Nano-Beads.

    PubMed

    Hu, Zhongliang; Ma, Zhijun; Pan, Xuanzhao; Qiu, Jianrong

    2016-01-01

    Nanostructured YAG:Nd³⁺ is an interesting material with a wide range of applications. In this paper, we report the fabrication of luminescent YAG:Nd³⁺ nanoparticles via a simple template-assisting nano-casting technique. By optimizing the synthetic parameters, bead-like hollow YAG:Nd³⁺ nanoparticles with nano-porous walls were successfully prepared. Their porous and hollow structures, and strong photoluminescence in the "Human Optical Window" make the YAG:Nd³⁺ nanoparticles promising candidates for in-vivo applications.

  20. Power scaling estimate of crystalline fiber waveguides with rare earth doped YAG cores

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Meissner, Stephanie K.; Meissner, Helmuth E.

    2016-03-01

    Power scaling analysis based on the model by Dawson et al. [1,2] for circular core fibers has been applied to estimating power scaling of crystalline fiber waveguides (CFWs) with RE3+ doped single crystalline or ceramic YAG (RE=rare earth: Yb, Er, Tm and Ho). Power scaling limits include stimulated Brillouin scattering, thermal lensing effect, and limits to coupling of pump light into CFWs. The CFW designs we have considered consist, in general, of a square doped RE3+:YAG core, an inner cladding of either undoped or laser-inactive-ion-doped YAG and an outer cladding of sapphire. The presented data have been developed for the structures fabricated using the Adhesive-Free Bonding (AFB®) technique, but the results should be essentially independent of fabrication technique, assuming perfect core/inner cladding/outer cladding interfaces. Hard power scaling limits exist for a specific CFW design and are strongly based on the physical constants of the material and its spectroscopic specifics. For example, power scaling limit was determined as ~16 kW for 2.5% ceramic Yb:YAG/YAG (core material/inner cladding material) at fiber length of 1.7 m and core diameter of 69 μm. Considering the present manufacturing limit for CFW length to be, e.g., 0.5 m, the actual maximum output power will be limited to ~4.4 kW for a Yb:YAG/YAG CFW. Power limit estimates have also been computed for Er3+, Tm3+ and Ho3+doped core based CFWs.

  1. Amorphization and nanocrystallization of silcon under shock compression

    SciTech Connect

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.

  2. Inverted amorphous silicon solar cell utilizing cermet layers

    DOEpatents

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  3. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  4. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  5. Excess specific heat in evaporated amorphous silicon.

    PubMed

    Queen, D R; Liu, X; Karel, J; Metcalf, T H; Hellman, F

    2013-03-29

    The specific heat C of e-beam evaporated amorphous silicon (a-Si) thin films prepared at various growth temperatures T(S) and thicknesses t was measured from 2 to 300 K, along with sound velocity v, shear modulus G, density n(Si), and Raman spectra. Increasing T(S) results in a more ordered amorphous network with increases in n(Si), v, G, and a decrease in bond angle disorder. Below 20 K, an excess C is seen in films with less than full density where it is typical of an amorphous solid, with both a linear term characteristic of two-level systems (TLS) and an additional (non-Debye) T3 contribution. The excess C is found to be independent of the elastic properties but to depend strongly on density. The density dependence suggests that low energy glassy excitations can form in a-Si but only in microvoids or low density regions and are not intrinsic to the amorphous silicon network. A correlation is found between the density of TLS n0 and the excess T3 specific heat c(ex) suggesting that they have a common origin.

  6. Metal electrode for amorphous silicon solar cells

    DOEpatents

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  7. Transient amorphous calcium phosphate in forming enamel.

    PubMed

    Beniash, Elia; Metzler, Rebecca A; Lam, Raymond S K; Gilbert, P U P A

    2009-05-01

    Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using X-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence of transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal. PMID:19217943

  8. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  9. 885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony

    2012-01-01

    The performance of a traditional diode pumped solid-state laser that is typically pumped with 808-nm laser diode array (LDA) and crystalline Nd:YAG was improved by using 885-nm LDAs and ceramic Nd:YAG. The advantage is lower quantum defect, which will improve the thermal loading on laser gain medium, resulting in a higher-performance laser. The use of ceramic Nd:YAG allows a higher Nd dopant level that will make up the lower absorption at the 885-nm wavelength on Nd:YAG. When compared to traditional 808-nm pump, 885-nm diodes will have 30% less thermal load (or wasted heat) and will thus see a similar percentage improvement in the overall laser efficiency. In order to provide a more efficient laser system for future flight missions that require the use of low-repetition- rate (YAG laser crystal. This pumping scheme has many potential advantages for improved reliability, efficiency, thermal management, contamination control, and mechanical flexibility. The advantages of using 885-nm pump diodes in Nd:YAG laser systems are numerous. The epitaxial structures of these 885-nm diodes are aluminum-free. There is a significant reduction in the thermal load generated from the Stokes shift or quantum defects. A Stokes shift is the energetic difference between the pump and laser photons. Pumping at a wavelength band closer to the lasing wavelength can reduce the thermal load by .30% compared to traditional pumping at 808 nm, and increase the optical- to-optical efficiency by the same factor. The slope efficiency is expected to increase with a reduction in the thermal load. The typical crystalline Nd:YAG can be difficult to produce with doping level >1% Nd. To make certain that the absorption at 885 nm is on the same par as the 808-nm diode, the Nd:YAG material needs to be doped with higher concentration of Nd. Ceramic Nd:YAG is the only material that can be tailored

  10. Amorphous silica-like carbon dioxide.

    PubMed

    Santoro, Mario; Gorelli, Federico A; Bini, Roberto; Ruocco, Giancarlo; Scandolo, Sandro; Crichton, Wilson A

    2006-06-15

    Among the group IV elements, only carbon forms stable double bonds with oxygen at ambient conditions. At variance with silica and germania, the non-molecular single-bonded crystalline form of carbon dioxide, phase V, only exists at high pressure. The amorphous forms of silica (a-SiO2) and germania (a-GeO2) are well known at ambient conditions; however, the amorphous, non-molecular form of CO2 has so far been described only as a result of first-principles simulations. Here we report the synthesis of an amorphous, silica-like form of carbon dioxide, a-CO2, which we call 'a-carbonia'. The compression of the molecular phase III of CO2 between 40 and 48 GPa at room temperature initiated the transformation to the non-molecular amorphous phase. Infrared spectra measured at temperatures up to 680 K show the progressive formation of C-O single bonds and the simultaneous disappearance of all molecular signatures. Furthermore, state-of-the-art Raman and synchrotron X-ray diffraction measurements on temperature-quenched samples confirm the amorphous character of the material. Comparison with vibrational and diffraction data for a-SiO2 and a-GeO2, as well as with the structure factor calculated for the a-CO2 sample obtained by first-principles molecular dynamics, shows that a-CO2 is structurally homologous to the other group IV dioxide glasses. We therefore conclude that the class of archetypal network-forming disordered systems, including a-SiO2, a-GeO2 and water, must be extended to include a-CO2. PMID:16778885

  11. Er:YAG Laser and Fractured Incisor Restorations: An In Vitro Study

    PubMed Central

    Fornaini, C.; Petruzzella, S.; Podda, R.; Merigo, E.; Nammour, S.; Vescovi, P.

    2012-01-01

    Introduction. The aim of this study was to analyse the effects of an Er:YAG laser on enamel and dentine in cases of dental restorations involving fractured teeth, utilizing the dental fragment. Materials and Methods. Seventy-two freshly extracted bovine incisors were fractured at the coronal level by using a hammer applied with a standardized method, and the fragment was reattached by using three different methods: Er:YAG laser, orthophosphoric acid, and laser plus acid. The different groups were evaluated by a test realized with the dynamometer to know the force required to successfully detach the reattached fragment and by a microinfiltration test by using a 0.5% methylene blue solution followed by the optic microscope observation. Results. The compression test showed only a slight difference between the three groups, without any statistical significance. The infiltration test used to evaluate the marginal seal between the fracture fragment and the tooth demonstrated that etching with Er:YAG laser alone or in combination with orthophosphoric acid gives better results than orthophosphoric acid alone, with a highly significant statistical result. Discussion. Reattaching a tooth fragment represents a clinically proven methodology, in terms of achieving resistance to detachment, and the aim of this work was to demonstrate the advantages of Er:YAG laser on this procedure. Conclusion. This “in vitro” study confirms that Er:YAG laser can be employed in dental traumatology to restore frontal teeth after coronal fracture. PMID:23091491

  12. Shear bond strength of self-etching adhesive systems to Er:YAG-laser-prepared dentin.

    PubMed

    Brulat, Nathalie; Rocca, Jean-Paul; Leforestier, Eric; Fiorucci, Gilbert; Nammour, Samir; Bertrand, Marie-France

    2009-01-01

    This study was conducted to compare the shear bond strengths of composite resin bonded to Er:YAG laser or bur-prepared dentin surfaces using three self-etching adhesive systems. The occlusal surfaces of 120 human third molars were ground flat to expose dentin. The dentin was prepared using either a carbide bur or an Er:YAG laser at 350 mJ/pulse and 10 Hz (fluence, 44.5 J/cm(2)). Three different self-etching adhesive systems were applied: iBond, Xeno III and Clearfil SE Bond. Rods of composite resin were bonded to dentin surfaces and shear bond tests were carried out. Both dentin surfaces after debonding and resin rods were observed using a scanning electron microscope. When the Xeno III was used, no difference was observed on shear bond strength values when bur and Er:YAG laser were compared. When using iBond and Clearfil SE Bond, bond strength values measured on Er:YAG-laser-prepared surfaces were lower than those observed on bur-prepared surfaces. The absence of smear layer formation during the preparation of the dentin by the Er:YAG laser did not improve the adhesion values of self-etching adhesive systems.

  13. Evaluation of six holmium:YAG optical fibers for ureteroscopy: What's new in 2009?

    NASA Astrophysics Data System (ADS)

    Knudsen, Bodo E.; Teichman, Joel M. H.

    2010-02-01

    The holmium:yttrium aluminum garnet (YAG) laser is the gold standard laser for intracorporeal lithotripsy.1 Optical fibers are utilized to transmit laser energy to the surface of a stone for fragmentation via a predominant photothermal mechanism.2 Previous work has demonstrated that performance characteristics of holmium:YAG optical fibers used for laser lithotripsy varies. Performance may difference not only between fibers made by different manufacturers but also between individual fibers produced by the same manufacturer.3,4 Fiber failure with bending, such as during lower pole ureterorenoscopy, can lead to catastrophic endoscope damage resulting in costly repair. Manufacturers continue to develop new holmium:YAG optical fibers. In this study we evaluate a series of newly commercially available fibers using a previously designed testing protocol. This study was designed to determine the performance and threshold for failure of six newly available holmium:YAG laser fibers from Cook Medical and Fibertech Gmbh. We hypothesize that fiber performance will continue to vary amongst different holmium:YAG optical fibers.

  14. Crystallization kinetics and densification of YAG nanoparticles from various chelating agents

    SciTech Connect

    Hou, J.G.; Kumar, R.V.; Qu, Y.F.; Krsmanovic, Dalibor

    2009-08-05

    Yttrium aluminium garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) nanoparticles were prepared using sonochemical sol-gel method with three different chelating agents and the effect of crystallization kinetics was investigated with differential scanning calorimetry-thermogravimetry (DSC-TG). The activation energy values of crystallization for the as-synthesized YAG nanoparticles using citric acid (CA), glycine (G) or a mixture of citric acid-glycine (CA-G), as chelating agents were found to be 160.5, 142.2 and 140.4 kJ mol{sup -1} and the corresponding Avarami constants were 2.2, 2.1 and 1.9, respectively. Samples produced with the mixed chelating agent under sonification, could be crystallized to single phase YAG nanoparticles (10-65 nm) after annealing at 1100 deg. C. Pellets made from the annealed YAG particles could be sintered to a relative density greater than 99% at 1500 deg. C with a grain size of 4.5 {mu}m, made up of secondary particles formed from primary nano-crystals within the grains. Grain size and relative density increased with different chelating agents from CA to G and CA-G in the increasing order when YAG samples were sintered. Grain growth and densification occurred at a relatively low temperature of 1500 deg. C as compared to over 1800 deg. C in solid-state reactions.

  15. Effect of XeCl laser irradiation on the defect structure of Nd:YAG crystals

    NASA Astrophysics Data System (ADS)

    Panahibakhsh, S.; Jelvani, S.; Maleki, M. H.; Mollabashi, M.; Abolhosseini, S.

    2014-09-01

    This paper presents the effect of XeCl laser irradiation on Nd:YAG single crystal samples with various number of pulses at different repetition rates and laser fluences. Effects of the irradiation on the optical and structural properties of the crystal are analyzed by UV-vis-NIR spectroscopy. Annihilation of some point defects of the crystal structure is observed following laser irradiation at a fluence of 100 mJ cm-2 with 100 and 500 pulses. Increasing the laser fluence and pulse numbers leads to saturation and new defects are found to be formed in the crystal. Additional absorption spectra of the irradiated samples show that oxygen vacancies in the Nd:YAG crystals are removed during the low-dose irradiation. The laser irradiation is compared to the thermal annealing process for Nd:YAG crystal modification. Additional absorption spectrum of an annealed sample reveals that induced negative absorption band at 236 nm is correlated with the annihilation of the oxygen vacancy center. Our results also demonstrate that XeCl laser treatment has several advantages upon annealing at high temperatures in the Nd:YAG crystal quality improvement. Thus, the present work can give a new approach to modify Nd:YAG crystals to be used in a wide variety of solid-state laser engineering.

  16. Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses

    PubMed Central

    Lou, H. B.; Fang, Y. K.; Zeng, Q. S.; Lu, Y. H.; Wang, X. D.; Cao, Q. P.; Yang, K.; Yu, X. H.; Zheng, L.; Zhao, Y. D.; Chu, W. S.; Hu, T. D.; Wu, Z. Y.; Ahuja, R.; Jiang, J. Z.

    2012-01-01

    Pressure-induced amorphous-to-amorphous configuration changes in Ca-Al metallic glasses (MGs) were studied by performing in-situ room-temperature high-pressure x-ray diffraction up to about 40 GPa. Changes in compressibility at about 18 GPa, 15.5 GPa and 7.5 GPa during compression are detected in Ca80Al20, Ca72.7Al27.3, and Ca66.4Al33.6 MGs, respectively, whereas no clear change has been detected in the Ca50Al50 MG. The transfer of s electrons into d orbitals under pressure, reported for the pressure-induced phase transformations in pure polycrystalline Ca, is suggested to explain the observation of an amorphous-to-amorphous configuration change in this Ca-Al MG system. Results presented here show that the pressure induced amorphous-to-amorphous configuration is not limited to f electron-containing MGs. PMID:22530094

  17. Er:YAG laser radiation applications in different medical branches

    NASA Astrophysics Data System (ADS)

    Jelínkova, Helena; Němec, Michal; Koranda, Petr; Šulc, Jan; Čech, Miroslav; Miyagi, Mitsunobu; Shi, Yi-Wei; Matsuura, Yuji

    2006-03-01

    For the purpose of biophotonics, free running and Q-switched Er:YAG lasers were constructed. As Q-switches the rotating mirror and Pockels cell were used. In the case of rotating mirror placed inside the resonator the maximum of generated laser energy was 210 mJ in a free-running mode regime when pulses up to 110 μs long (FWHM) were generated. The resulted parameters of the giant pulses were 30 mJ energy, and 250 ns pulse length. For the Pockels cell Q-switching, the laser was generating 325 mJ of energy in a 250 μs pulse, and 60 mJ of energy in a 60 ns pulse in the case of free running and Q-switched regime, respectively. This output properties together with the generating wavelength (2.94 μm), coinciding exactly with the absorption peak of water, giving us the possibility of using this radiation to the efficient interaction with biological tissue. The transport of the radiation to the interaction place was solved by the special cyclic olefin polymer coated silver hollow glass waveguides with the inner diameter of 700 μm and the length of 10 - 50 cm. For the contact treatment the sealed caps were used for preventing delivery system damage. The aim of this work was except of special laser systems development, the investigation ofthe effect differences between long (free running) and short (nanosecond) laser pulses on ophthalmic (cornea, sclera), urologic (ureter wall), or dental (enamel, dentine) tissue.

  18. Treatment of dentinal tubules by Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chmelíčkova, Hana; Zapletalova, Zdeňka; Peřina, Jan, Jr.; Novotný, Radko; Kubínek, Roman; Stranyánek, Martin

    2005-08-01

    Symptom of cervical dentine hypersensitivity attacks from 10% to 15% of population and causes an uncomfortable pain during contact with any matter. Sealing of open dentinal tubules is one of the methods to reach insensibility. Laser as a source of coherent radiation is used to melt dentine surface layers. Melted dentine turns to hard mass with a smooth, non-porous surface. Simulation of this therapy was made in vitro by means of LASAG Nd:YAG pulsed laser system KLS 246-102. Eighty human extracted teeth were cut horizontally to obtain samples from 2 mm to 3 mm thick. First experiments were done on cross section surfaces to find an optimal range of laser parameters. A wide range of energies from 30 mJ to 210 mJ embedded in 0,3 ms long pulse was tested. Motion in X and Y axes was ensured by a CNC driven table and the pulse frequency 15 Hz was chosen to have a suitable overlap of laser spots. Some color agents were examined with the aim to improve surface absorption. Scanning Electron Microscopy was used to evaluate all samples and provided optimal values of energies around 50 J.cm-2. Next experiments were done with the beam oriented perpendicularly to a root surface, close to the real situation. Optical fibers with the diameter of 0,6 mm and 0,2 mm were used to guide a laser beam to teeth surfaces. Laser processing heads with lens F = 100 mm and F = 50 mm were used. The best samples were investigated by means of the Atomic Force Microscopy.

  19. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOEpatents

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  20. Dynamic response of laser ablative shock waves from coated and uncoated amorphous Boron nanoparticles

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Chelikani, Leela; Pinnoju, Venkateshwarlu; Verma, Pankaj; Singh, Raja V.; Acrhem Collaboration; Hemrl Collaboration

    2015-06-01

    Nanoparticles (NP) improve the performance of solid rocket motors with increased burning rate and lower ignition threshold owing to their larger surface area. We present spatio-temporal evolution of laser ablative shock waves (LASWs) from compacted amorphous Boron (B) and Lithium Fluoride coated Boron (LiF-B) of 70-110nm sizes that were compacted to form pellets. Thickness of the LiF coating is 5.5 +/- 1 nm in LiF-B. Laser pulses from second harmonic of Nd:YAG laser (532 nm, 7 ns) are used to generate LASWs expanding in ambient air. The precise time of energy release from the pellets under extreme ablative pressures is studied using shadowgraphy with a temporal resolution of 1.5 ns. Different nature of the shock front (SF) following Sedov-Taylor theory, before and after detachment, indicated two specific time dependent stages of energy release. From the position of SF, velocity behind the SF, similar to that of exhaust velocity is measured. Specific impulse of 241 +/- 5 and 201 +/- 4 sec for LiF-B and B, respectively, at a delay of 0.8 μs from shock inducing laser pulse makes them potential candidates for laser based micro thruster applications. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.

  1. Defect-induced solid state amorphization of molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Carvajal, Teresa; Koslowski, Marisol

    2012-04-01

    We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.

  2. Blue microchip laser fabricated from Nd:YAG and KNbO{sub 3}

    SciTech Connect

    Matthews, D.G.; Conroy, R.S.; Sinclair, B.D.; MacKinnon, N.

    1996-02-01

    A Nd:YAG/KNbO{sub 3} composite-material microchip laser has generated blue radiation at 473 nm with output powers of 1 mW when diode laser pumped and 9 mW when Ti:sapphire laser pumped. The fundamental radiation generated by the quasi-three-level {sup 4}{ital F}{sub 3/2}{endash}{sup 4}{ital I}{sub 9/2} transition in Nd:YAG at 946 nm was frequency doubled in KNbO{sub 3} angle cut to be type I critically phase matched at 45{degree}C. Despite the normally isotropic nature of Nd:YAG, the fundamental is emitted linearly polarized and orthogonal to the linearly polarized blue radiation. {copyright} {ital 1996 Optical Society of America.}

  3. Composite phase ceramic phosphor of Al₂O₃-Ce:YAG for high efficiency light emitting.

    PubMed

    Tang, Yanru; Zhou, Shengming; Chen, Chong; Yi, Xuezhuan; Feng, Yue; Lin, Hui; Zhang, Shuai

    2015-07-13

    We present our achievement which is a ceramic plate phosphorable to produce white light when directly combined with commercially available blue light emitting diodes. The ceramic phase structure is that the Al₂O₃ particle is uniformly distributed in the Ce:YAG matrix. The Al₂O₃-Ce:YAG ceramic phosphor has a better luminous efficacy than the transparent Ce:YAG ceramic phosphor under the same test condition. The Al₂O₃ particle plays an important role in promoting the luminous efficacy. The Al₂O₃ particle changes the propagation of the light in ceramic, and it reduces the total internal reflection. That is why the composite phase ceramic phosphor improves extraction efficiency of light. PMID:26191852

  4. Prevention of lens capsule opacification with ARC neodymium:YAG laser photolysis after phacoemulsification.

    PubMed

    Wehner, Wolfram; Waring, George O; Mamalis, Nick; Walker, Rudolf; Thyzel, Reinhardt

    2010-06-01

    We describe a technique that uses a neodymium:YAG (Nd:YAG) laser photolysis system to prevent lens capsule opacification. The photolysis instrument consists of a 1064 nm Nd:YAG laser transmitted along a fiber-optic cable into a handpiece containing an angulated titanium plate that the laser beam strikes, creating plasma and a shockwave that exits the handpiece through an aperture. Under direct visualization, the shockwave is aimed at the inner surface of the anterior capsule, where it removes LECs and proteoglycan attachment molecules; the shockwave probably extends to the capsule fornix, destroying germinal epithelial cells. We report preliminary results in 12 eyes followed for approximately 2.5 years in which the treated nasal anterior capsule remained clear or with only slight opacity and the untreated temporal capsule developed moderate to severe opacification.

  5. In vitro investigation on Ho:YAG laser-assisted bone ablation underwater.

    PubMed

    Zhang, Xianzeng; Chen, Chuanguo; Chen, Faner; Zhan, Zhenlin; Xie, Shusen; Ye, Qing

    2016-07-01

    Liquid-assisted hard tissue ablation by infrared lasers has extensive clinical application. However, detailed studies are still needed to explore the underlying mechanism. In the present study, the dynamic process of bubble evolution induced by Ho:YAG laser under water without and with bone tissue at different thickness layer were studied, as well as its effects on hard tissue ablation. The results showed that the Ho:YAG laser was capable of ablating hard bone tissue effectively in underwater conditions. The penetration of Ho:YAG laser can be significantly increased up to about 4 mm with the assistance of bubble. The hydrokinetic forces associated with the bubble not only contributed to reducing the thermal injury to peripheral tissue, but also enhanced the ablation efficiency and improve the ablation crater morphology. The data also presented some clues to optimal selection of irradiation parameters and provided additional knowledge of the bubble-assisted hard tissue ablation mechanism.

  6. Properties of continuous-wave 1123 nm laser with diode-side-pumped Nd:YAG

    NASA Astrophysics Data System (ADS)

    Bai, F.; Wang, Q. P.; Liu, Z. J.; Zhang, X. Y.; Sun, W. J.

    2010-11-01

    Laser properties of diode-side-pumped Nd:YAG laser operating at 1123 nm are demonstrated. A 1.0 at % Nd-doped Nd:YAG rod with a size of Ø3 × 63 mm2 is used as the active medium. Both radial and tangential thermal focal lengths of this side-pumped Nd:YAG rod are determined under lasing condition. The results show that the bifocusing strength of 1123 nm laser is larger than that of 1164 nm laser, and 1123-nm thermal focal lengths are shorter than those of 1064-nm laser due to higher quantum defect. Laser output performances of 1123 nm in terms of stability, output power and beam quality influenced by pump power at different cavity lengths are also discussed with a convex-piano cavity.

  7. Optimizing treatment parameters for the vascular malformations using 1064-nm Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Lin, He; Xie, Shusen

    2010-02-01

    Near infrared Nd:YAG pulsed laser treatment had been proved to be an efficient method to treat large-sized vascular malformations like leg telangiectasia for deep penetrating depth into skin and uniform light distribution in vessel. However, optimal clinical outcome was achieved by various laser irradiation parameters and the key factor governing the treatment efficacy was still unclear. A mathematical model in combination with Monte Carlo algorithm and finite difference method was developed to estimate the light distribution, temperature profile and thermal damage in epidermis, dermis and vessel during and after 1064 nm pulsed Nd:YAG laser irradiation. Simulation results showed that epidermal protection could be achieved during 1064 nm Nd:YAG pulsed laser irradiation in conjunction with cryogen spray cooling. However, optimal vessel closure and blood coagulation depend on a compromise between laser spot size and pulse duration.

  8. Mechanisms of biliary stone fragmentation using the Ho:YAG laser.

    PubMed

    Schafer, S A; Durville, F M; Jassemnejad, B; Bartels, K E; Powell, R C

    1994-03-01

    We have investigated the fragmentation of gallstones using the pulsed Ho:YAG laser, comparing it to lithotripsy using the visible pulsed-dye laser. We find that the physical mechanisms of stone fragmentation appear to be quite different in the two cases. Using high-speed photography, measurement of acoustic transients, time-resolved optical emission spectroscopy, and direct microscopic observation, we have analyzed the interaction of the Ho:YAG laser with both water and gallstones. We propose a new model in which fragmentation begins with absorption of the laser light by the stone surface. This is followed by melting and ejection of stone material, which is then swept away by the vapor bubble formed by the absorption of the Ho:YAG laser light by water. This model is in excellent agreement with our experimental observations, and differs substantially from the model developed by Teng et al. for laser lithotripsy using the visible pulsed-dye laser.

  9. Removal of dental filling materials by Er:YAG laser radiation

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Keller, Ulrich

    1991-05-01

    In previous reports it could be shown that pulsed Er:YAG laser radiation is effective for the removal of dental enamel, dentin, and caries. Damage to the adjacent hard substances is minimal. Temperature measurements and animal studies revealed that thermal pulp damage can be avoided. The experimental results make the Er:YAG laser promising for the preparation of dental cavities. In many cases patients already have fillings which have to be removed. In the present work, investigation is made of the effect of Er:YAG laser radiation on various restorative filling materials. The experiments demonstrate that removal is possible for all tested cements, composites and amalgam. Ablation efficiency is comparable to that of enamel and dentin, and thus sufficient for practical applications. Morphology of crater walls indicates greater thermal side effects than for natural dental hard substances.

  10. Er:YAG Laser Applications on Marble and Limestone Sculptures with Polychrome and Patina Surfaces

    NASA Astrophysics Data System (ADS)

    deCruz, A.; Wolbarsht, M. L.; Palmer, R. A.; Pierce, S. E.; Adamkiewicz, E.

    The Er:YAG laser (2.94 µm) has been used safely and effectively to ablate contaminants from polychrome surfaces of marble and limestone sculptures. The pieces studied were 13th, 14th and 15th century polychromes and a patina surface of a Roman marble sculpture from the 2nd Century AD. The surface encrustations removed included calcite, gypsum, whewellite, soluble salts, atmospheric deposits, organic films, lichen and other fungal growths that cover the sculptures. The laser removal of organic deposits with the Er:YAG laser was especially effective. A microscopic study of the polychrome surfaces before and after removal of the encrustations showed preservation of the polychrome pigments. Infrared absorption and x-ray fluorescence spectral analyses of the ablated materials and of the surfaces before and after laser ablation were used for evaluation of the mechanism of the laser action and for comparison of the results of Er:YAG laser treatment with traditional conservation methods.

  11. High-gain multipassed Yb:YAG amplifier for ultrashort pulse laser

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.; Du, Detao

    2016-05-01

    We report on a Yb:YAG laser amplifier for ultrashort pulse applications at kW-class average power. The laser uses two large-aperture, disk-type gain elements fabricated from composite ceramic YAG material, and a multi-pass extraction architecture to obtain high gain in a chirped-pulse amplification system. The disks are edge-pumped, thus allowing for reduced doping of the host material with laser ions, which translates to lower lasing threshold and lower heat dissipation in the Yb:YAG material. The latter makes it possible to amplify a near diffraction-limited seed without significant thermo-optical distortions. This work presents results of testing the laser amplifier with relay optics and passive polarization switching configured for energy extraction with up to 40 passes through the disks. Applications for the ultrashort pulse laser amplifier include producing a laser-induced plasma channel, laser material ablation, and laser acceleration of atomic particles.

  12. Low-current-density LED-pumped Nd:YAG laser using a solid cylindrical reflector

    NASA Technical Reports Server (NTRS)

    Farmer, G. I.; Kiang, Y. C.

    1974-01-01

    The dynamic behavior of Nd:YAG lasers is theoretically analyzed. In experiments, an array of twenty GaAlAs diodes was used as the pumping light source for a Nd:YAG laser. An index-matching glass half-cylinder was used instead of the conventional hollow metal reflector. The refractive index of the half-cylinder was 1.8, which matched the refractive index of the Nd:YAG rod. A maximum CW output power of 27 mW at a current density of 207 A/sq cm was achieved using this glass half-cylinder, while 6.7 mW were obtained when a hollow metal reflector was used.

  13. Preliminary results of human scleral ablation in vitro with Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Pergadia, Vani R.; Vari, Sandor G.; Fishbein, Michael C.; Shi, Wei-Qiang; Grundfest, Warren S.

    1994-02-01

    This study evaluated the effect of the Ho:YAG laser operating at a wavelength of 2.1 micrometers and a repetition rate of 2 Hz on a human scleral tissue. The effects were assessed in terms of the ablation rate (micrometers /pulse) and the thermal damage (micrometers ) induced. The results were compared to those found from porcine scleral ablation. Data indicate that for the pulsed Ho:YAG laser, the ablation rate of scleral tissue increases linearly with laser fluence. The ablation rates are about 40% lower for the human scleral tissue than for the porcine scleral tissue at the same fluences. Data indicate that the mean Ho:YAG laser induced thermal damage is not significantly affected by varying the fluence.

  14. Cladding single crystal YAG fibers grown by laser heated pedestal growth

    NASA Astrophysics Data System (ADS)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Chick, Theresa; Chakrabarty, Ayan; Trembath-Reichert, Stephen; Chapman, James; Rand, Stephen C.

    2016-03-01

    Rare-earth doped single-crystal (SC) Yttrium Aluminum Garnet (YAG) fibers are excellent candidates for high power lasers. These SC fiber optics combine the favorable low Stimulated Brillouin Scattering (SBS) gain coefficient and excellent thermal properties to make them an attractive alternative to glass fiber lasers and amplifiers. Various rare-earth doped SC fibers have been grown using the laser heated pedestal growth (LHPG) technique. Several cladding methods, including in-situ and post-growth cladding techniques, are discussed in this paper. A rod-in-tube approach has been used by to grow a fiber with an Erbium doped SC YAG fiber core inserted in a SC YAG tube. The result is a radial gradient in the distribution of rare-earth ions. Post cladding methods include sol-gel deposited polycrystalline.

  15. Spectral and lasing characteristics of 1% Ho:YAG ceramics under intracavity pumping

    SciTech Connect

    Bagayev, S N; Vatnik, S M; Vedin, I A; Kurbatov, P F; Osipov, V V; Shitov, V A; Maksimov, R N; Luk'yashin, K E; Pavlyuk, A A

    2015-01-31

    High-transparency 1% Ho:YAG ceramics with the transmission coefficient of 82% in the IR range at the sample thickness of 1 mm are synthesised from a mixture of the Ho:Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} nanopowders obtained by the laser method. Results of investigations of spectral and lasing characteristics of 1 % Ho:YAG ceramics under intracavity pumping by radiation of a 5% Tm:KLuW disk element are presented. Based on spectral intensity analysis of generation in the 1.8 – 2.1 mm range and on cavity parameters, the estimated lasing slope efficiency for 1% Ho:YAG ceramics is about 40%. (lasers)

  16. [A Case of Holmium: YAG Laser Resection of Superficial Bladder Tumor (HoLRBT)].

    PubMed

    Sugita, Yoshiko; Shitara, Toshiya; Hirayama, Takahiro; Fujita, Tetsuo; Yoshida, Kazunari; Kubo, Seiichi; Iwamura, Masatsugu

    2015-10-01

    We present a case of holmium : YAG laser resection of superficial bladder tumor (HoLRBT). A 73-year-old male was referred to our hospital with elevated prostatic specific antigen. Due to difficulty of urination, holmium : YAG laser enucleation of the prostate was performed under the diagnosis of benign prostatic hyperplasia. During the surgery, superficial bladder tumor was incidentally identified, and HoLRBT was performed. After the operation, histopathological examination revealed urothelial carcinoma, G2 > G1, pTa. The patient has been subsequently followed up for 9 months, and there areno evidence of recurrence. Changing the holmium : YAG laser energy setting can potentially be effective and safe to approach a superficial bladder tumor.

  17. Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry

    PubMed Central

    Stübinger, Stefan

    2010-01-01

    The erbium-doped yttrium aluminium garnet (Er:YAG) laser has emerged as a possible alternative to conventional methods of bone ablation because of its wavelength of 2.94 μm, which coincides with the absorption peak of water. Over the last decades in several experimental and clinical studies, the widespread initial assumption that light amplification for stimulated emission of radiation (laser) osteotomy inevitably provokes profound tissue damage and delayed wound healing has been refuted. In addition, the supposed disadvantage of prolonged osteotomy times could be overcome by modern short-pulsed Er:YAG laser systems. Currently, the limiting factors for a routine application of lasers for bone ablation are mainly technical drawbacks such as missing depth control and a difficult and safe guidance of the laser beam. This article gives a short overview of the development process and current possibilities of noncontact Er:YAG laser osteotomy in oral and implant surgery. PMID:23662082

  18. Nd:YAG laser photocoagulation of benign oral vascular lesions: a case series.

    PubMed

    Medeiros, Rui; Silva, Igor Henrique; Carvalho, Alessandra Tavares; Leão, Jair Carneiro; Gueiros, Luiz Alcino

    2015-11-01

    Vascular anomalies of the head and neck are common lesions usually associated with functional and/or aesthetic limitations. The aim of the present paper was to report a case series of oral vascular malformations treated with Nd:YAG laser photocoagulation, highlighting the clinical evolution and post-surgical complications. Fifteen patients diagnosed with oral vascular malformations were treated with Nd:YAG laser followed by three sessions of biostimulation. None of the patients presented post-surgical pain, but 6 of 15 patients (40%) experienced minimal post-surgical complications. All cases presented complete resolution of the lesions after laser treatment. More importantly, 12 out of 15 (80%) resolved after a single session. Low morbidity, minimal patient discomfort, and satisfactory aesthetic results point Nd:YAG laser photocoagulation as a promising option for the management of benign oral vascular lesions.

  19. Fractured Anterior Chamber Intraocular Lens (ACIOL) Complicating Nd: YAG Laser for Peripheral Iridotomy

    PubMed Central

    Farah, Edgard; Koutsandrea, Chryssanthi; Papaefthimiou, Ioannis; Papaconstantinou, Dimitris; Georgalas, Ilias

    2014-01-01

    Laser peripheral iridotomy is the procedure of choice for the treatment of angle-closure glaucoma caused by relative or absolute pupillary block. Nd: YAG laser iridotomy has been reported to have several complications such as Iris bleeding, hyphema, transient IOP elevation, intraocular inflammation, choroidal, retinal detachment and vitreous hemorrhage. We report a case of a 74 year old lady on anticoagulant treatment who developed pupillary block and angle closure glaucoma after cataract surgery and anterior chamber intraocular lens (ACIOL) insertion complicated with intraoperative bleeding. The patient was treated with Nd: YAG laser iridotomy , however, the ACIOL was inadvertently fractured after a single shot of laser and it had to be replaced. Although the incidence is rare. Ophthalmologists and Opticians should be aware that an ACIOL may be fractured even after a single Nd:YAG laser shot and avoid to perform it close to the ACIOL. Pretreatment counseling should include this rare complication. PMID:24600484

  20. Boiling effect in liquid nitrogen directly cooled Yb³⁺:YAG laser.

    PubMed

    Sakurai, Toshimitsu; Chosrowjan, Haik; Furuse, Hiroaki; Taniguchi, Seiji; Kitamura, Toshiyuki; Fujita, Masayuki; Ishii, Shinya; Izawa, Yasukazu

    2016-02-20

    Liquid nitrogen (LN2) behavior on the surface of excited Yb(3+):YAG is investigated using fluorometry. From the time-resolved temperature variations and integrated fluorescence spectra intensity on this directly cooled Yb(3+):YAG surface, we observe a phase transition of LN2 from nucleate boiling to film boiling. As a result of this pool boiling, good beam quality should occur when the temperature and heat flux at an excited surface of Yb(3+):YAG are below 95 K and 15.8  W/cm2, respectively. That is, the LN2 should remain in a steady state of nucleate boiling to produce good beam quality using pool boiling.

  1. Spectroscopic investigation of the Cr to Tm energy transfer in Yttrium Aluminum Garnet (YAG) crystals

    NASA Technical Reports Server (NTRS)

    Dibartolo, B.

    1988-01-01

    New and interesting schemes have recently been considered for the efficient operation of solid-state ionic laser systems. Often the available data on these systems were obtained only because they seemed directly related to the laser performance and provide no insight into the physical processes. A more systematic approach is desirable, where more attention is devoted to the elementary basic processes and to the nature of the mechanisms at work. It is with this aim that we have undertaken the present study. Yttrium Aluminum Garnet (Y4Al5O12), called YAG, has two desirable properties as host for rare earth impurities: (1) trivalent rare earth ions can replace the yttrium without any charge compensation problem, and (2) YAG crystals have high cutoff energies. The results of measurements and calculations indicate that the Cr(3+) ion in YAG can be used to sensitize efficiently the Tm(3+) ion.

  2. In vitro investigation on Ho:YAG laser-assisted bone ablation underwater.

    PubMed

    Zhang, Xianzeng; Chen, Chuanguo; Chen, Faner; Zhan, Zhenlin; Xie, Shusen; Ye, Qing

    2016-07-01

    Liquid-assisted hard tissue ablation by infrared lasers has extensive clinical application. However, detailed studies are still needed to explore the underlying mechanism. In the present study, the dynamic process of bubble evolution induced by Ho:YAG laser under water without and with bone tissue at different thickness layer were studied, as well as its effects on hard tissue ablation. The results showed that the Ho:YAG laser was capable of ablating hard bone tissue effectively in underwater conditions. The penetration of Ho:YAG laser can be significantly increased up to about 4 mm with the assistance of bubble. The hydrokinetic forces associated with the bubble not only contributed to reducing the thermal injury to peripheral tissue, but also enhanced the ablation efficiency and improve the ablation crater morphology. The data also presented some clues to optimal selection of irradiation parameters and provided additional knowledge of the bubble-assisted hard tissue ablation mechanism. PMID:27056700

  3. Design and development of a high-power LED-pumped Ce:Nd:YAG laser.

    PubMed

    Villars, Brenden; Steven Hill, E; Durfee, Charles G

    2015-07-01

    By studying quasi-continuous wave (QCW) operation of a Ce:Nd:YAG solid-state laser directly pumped by LED arrays, we demonstrate the feasibility of direct-LED pumping as an alternative to direct-diode or flashlamp pumping. LEDs emitting either at 460 or 810 nm were used to pump an uncooled Ce:Nd:YAG laser rod (at 30-Hz repetition rate for tens of seconds). Pumping at 460 nm was made possible by the Ce(3+) co-dopant that enables transfer of excitations near to Nd(3+) ions in the YAG lattice. Comparison of these two pumping schemes has allowed for a thorough analysis of the performance and efficiency of this laser system. QCW output energies as high as 18 mJ/pulse are reported, which to the best of our knowledge is the highest output pulse energy achieved by an LED-pumped solid-state laser to date. PMID:26125364

  4. Laser performance, thermal focusing and depolarization effects in Nd:Cr:GSGG and Nd:YAG

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie A.; Barnes, Norman P.

    1990-01-01

    The laser performance of Nd:Cr:GSGG and Nd:YAG was investigated and compared for laser efficiency, thermal focusing, and depolarization effects. Laser efficiency was studied for Nd:Cr:GSGG and Nd:YAG under similar conditions. Laser efficiency was measured as a function of electrical energy and output mirror reflectivity. Maximum laser efficiency was calculated by determining the losses in the laser cavity. Thermal focusing and birefringence loss of Nd:Cr:GSGG and Nd:YAG have been examined by varying the average pump power. The average pump power changed by adjusting both the energy per pulse and the pulse-repetition frequency. Substantial thermal focusing differences for Nd:Cr:GSGG are explained.

  5. Compact diode stack end pumped Nd:YAG amplifier using core doped ceramics.

    PubMed

    Denis, Thomas; Hahn, Sven; Mebben, Sandra; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar

    2010-02-10

    We report on a compact Nd:YAG amplifier emitting a maximum pulse energy of 14 mJ. By amplifying a passively Q-switched oscillator (M(2)<1.2) a good beam quality of M(2) approximately 1.7 was achieved. The amplifier is diode pumped by an 8 bar diode stack of 800 W power and a nonimaging optic. This optic homogenizes the pump light and transfers it into a 5 mm diameter core doped rod with a centrally neodymium doped region of 3 mm and a samarium doped YAG cladding. We show that this cladding reduces parasitic effects in the laser rod compared to an undoped YAG cladding. Finally, we compare the compact amplifier with an amplifier, which is mode selectively pumped by a fiber coupled pump diode.

  6. TEM00 mode Nd:YAG solar laser by side-pumping a grooved rod

    NASA Astrophysics Data System (ADS)

    Vistas, Cláudia R.; Liang, Dawei; Almeida, Joana; Guillot, Emmanuel

    2016-05-01

    A simple TEM00 mode solar laser system with a grooved Nd:YAG rod pumped through a heliostat-parabolic mirror system is reported here. The radiation coupling capacity of a fused silica tube lens was combined with the multipass pumping ability of a 2 V-shaped cavity to provide efficient side-pumping along a 4.0 mm diameter grooved Nd:YAG single-crystal rod. TEM00 mode solar laser power of 3.4 W was measured by adopting an asymmetric large-mode laser resonant cavity. Record TEM00 mode solar laser collection efficiency of 3.4 W/m2and slope efficiency of 1.9% was achieved, which corresponds to 1.8 and 2.4 times more than the previous TEM00 mode Nd:YAG solar laser using the PROMES-CNRS heliostat-parabolic mirror system, respectively.

  7. Neodymium:YAG laser cutting of intraocular lens haptics in vitro and in vivo.

    PubMed

    Feder, J M; Rosenberg, M A; Farber, M D

    1989-09-01

    Various complications following intraocular lens (IOL) surgery result in explantation of the lenses. Haptic fibrosis may necessitate cutting the IOL haptics prior to removal. In this study we used the neodymium: YAG (Nd:YAG) laser to cut polypropylene and poly(methyl methacrylate) (PMMA) haptics in vitro and in rabbit eyes. In vitro we were able to cut 100% of both haptic types successfully (28 PMMA and 30 polypropylene haptics). In rabbit eyes we were able to cut 50% of the PMMA haptics and 43% of the polypropylene haptics. Poly(methyl methacrylate) haptics were easier to cut in vitro and in vivo than polypropylene haptics, requiring fewer shots for transection. Complications of Nd:YAG laser use frequently interfered with haptic transections in rabbit eyes. Haptic transection may be more easily accomplished in human eyes.

  8. Erbium:YAG laser incision of urethral strictures: early clinical results

    NASA Astrophysics Data System (ADS)

    Munoz, John A.; Riemer, Jennifer D.; Hayes, Gary B.; Negus, Dan; Fried, Nathaniel M.

    2007-02-01

    Two cases involving Erbium:YAG laser incision of proximal bulbar urethral strictures are described. Erbium:YAG laser radiation with a wavelength of 2.94 μm, pulse energy of 10 mJ, and a pulse repetition rate of 15 Hz, was delivered through a 2-m-long, 250-μm-core sapphire optical fiber in contact with tissue. Total laser irradiation time was 5 min. The first patient suffering from a virgin urethral stricture was treated and is stricture-free. The second patient suffering from a recurrent urethral stricture required further treatment. This case report describes the first clinical application of the Er:YAG laser in urology.

  9. Wound healing after irradiation of bone tissues by Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Watanabe, Hisashi; Yoshino, Toshiaki; Aoki, Akira; Ishikawa, Isao

    1997-05-01

    Clinical applications of Er:YAG laser are now developing in periodontics and restorative dentistry. To date, there have been few studies indicating safety criteria for intraoral usage of the Er:YAG laser. The present study examined the effects of the Er:YAG laser on bone tissues, supposing mis- irradiation in the oral cavity during dental application, especially periodontal surgery. The experiments were performed using the newly-developed Er:YAG laser apparatus equipped with a contact probe. In experiment 1, 10 pulses of laser irradiation were administered to the parietal bone of a rat at 50, 150 and 300 mJ/pulse with and without water irrigation, changing the irradiation distance to 0, 5, 10 and 20 mm, respectively. As a control, electric knife was employed. Macroscopic and SEM observations of the wound surface were performed. In experiment 2, laser irradiation in a straight line was performed at 150 mJ/pulse, 1- pps and 0,5, 10 mm irradiation distance without water irrigation. Wound healing was observed histologically at 0, 3, 7, 14 and 28 days after laser irradiation and compared with that of the control. Non-contact irradiation by Er:YAG laser did not cause severe damage to the parietal bone tissue under water irrigation. Contact irradiation induced a limited wound, however, new bone formation was observed 28 days after laser irradiation, while osseous defect with thermal degenerative tissue remained at the control site. In conclusion, irradiation with an Er:YAG laser would not cause severe damage to surrounding bone tissues in the oral cavity when used within the usual power settings for dental treatment. Furthermore, this laser may be applicable for osseous surgery because of its high ablation efficiency and good wound healing after irradiation.

  10. SEM evaluation of smear layer removal by Er:YAG laser in root canals

    NASA Astrophysics Data System (ADS)

    Brugnera, Aldo, Jr.; Roe, Iain M.; Guerisoli, Danilo M.; Barbizam, Joao Vicente B.; Pecora, Jesus D.

    2002-06-01

    The effects of two endodontic irrigants associated or not with Er:YAG laser on a smear layer created by hand instrumentation were evaluated in vitro in the middle and apical thirds of root canals. Twenty five human maxillary canines with a single root were distributed randomly into five groups of five teeth each. Group 1 was irrigated with sodium hypochlorite 1.0%, Group 2 received EDTAC 15% as irrigating solution and Group 3 received both NaClO 1.0% and EDTAC 15%. Group 4 was irrigated with distilled water and irradiated with Er:YAG laser. Group 5 received NaClO 1.0% as irrigating solution and was irradiated with Er:YAG laser. Teeth were split longitudinally and prepared for examination under scanning electron microscopy. The teeth irrigated with NaClO (Group 1) showed the higher amount of smear layer, with statistically significant differences (p<0.05) from the teeth irrigated with distilled water and irradiated with Er:YAG laser (Group 4), which showed intermediate amounts of smear layer. The teeth irrigated with EDTAC 15%, NaClO 1.0% associated with EDTAC 15% and NaClO 1.0% with Er:YAG laser (Groups 2,3 and 5) showed the lowest amounts of smear layer, being statistically similar between them and different (p<0.05) from Groups 1 and 4. There were no differences between the radicular thirds. It can be concluded that irradiation with Er:YAG laser can be as effective as EDTAC 15% when used associated with 1.0% sodium hypochlorite, but not as effective when used together with distilled water.

  11. Microleakage of class V resin composite restorations after conventional and Er:YAG laser preparation.

    PubMed

    Delme, K I M; Deman, P J; De Moor, R J G

    2005-09-01

    This in vitro study compared the microleakage of Class V resin composite restorations at bevelled enamel/composite and dentin/composite interfaces following Er:YAG laser (pre-treatment modalities: laser-etching and/or acid-etching) or conventional preparation and acid-etch, in association with two resin composite formulations and their three-step adhesive system. Class V cavities with conventional bevel produced on the lingual and buccal surfaces of eighty extracted caries- and restoration-free human teeth, were assigned to eight groups: cavities were or Er:YAG-lased and acid-etched (groups 1 and 5); or Er:YAG-lased, laser-etched and acid-etched (groups 2 and 6); or Er:YAG-lased and only laser-etched (groups 3 and 7); or cut by dental drill at high-speed and acid-etched (groups 4 and 8). The specimens were restored with Optibond FL+Herculite XRV (groups 1, 2, 3 and 4) or with Scotchbond MP+Z 100 (groups 5, 6, 7 and 8), stored in distilled water at 37 degrees C for 24 h, thermocycled 1500 times between 5 and 55 degrees C, placed in a 2% aqueous solution of methylene blue for 24 h at 37 degrees C, embedded in resin and sectioned. Microleakage was assessed according to the depth of dye penetration along the restoration. There were statistically significant differences between occlusal and cervical regions for all groups (P<0.01) except for groups 3 and 7. Pair-wise comparison of groups showed that acid-etch is advocated when using resin composite in Er:YAG-lased Class V cavities; the seal at enamel margins in Er:YAG-lased and laser-etched cavities depended on the resin composite formulation and corresponding adhesive (P<0.05).

  12. Atomic-scale disproportionation in amorphous silicon monoxide

    NASA Astrophysics Data System (ADS)

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-05-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

  13. Amorphous-crystalline transition in thermoelectric NbO2

    NASA Astrophysics Data System (ADS)

    Music, Denis; Chen, Yen-Ting; Bliem, Pascal; Geyer, Richard W.

    2015-06-01

    Density functional theory was employed to design enhanced amorphous NbO2 thermoelectrics. The covalent-ionic nature of Nb-O bonding is identical in amorphous NbO2 and its crystalline counterpart. However, the Anderson localisation occurs in amorphous NbO2, which may affect the transport properties. We calculate a multifold increase in the absolute Seebeck coefficient for the amorphous state. These predictions were critically appraised by measuring the Seebeck coefficient of sputtered amorphous and crystalline NbO2 thin films with the identical short-range order. The first-order phase transition occurs at approximately 550 °C, but amorphous NbO2 possesses enhanced transport properties at all temperatures. Amorphous NbO2, reaching  -173 μV K-1, exhibits up to a 29% larger absolute Seebeck coefficient value, thereby validating the predictions.

  14. Atomic-scale disproportionation in amorphous silicon monoxide.

    PubMed

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-05-13

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

  15. Characterization of Poly-Amorphous Indomethacin by Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Otsuka, Makoto; Nishizawa, Jun-ichi; Fukura, Naomi; Sasaki, Tetsuo

    2012-09-01

    Since the stability of amorphous solids of pharmaceuticals differs depending on the method of preparation, there are several solid-state chemical structures in amorphous solids, which like poly-amorphous solids might have different characteristics the same as in crystalline solids. However, it is not easy to identify the differences in solid-state characteristics between amorphous solids using conventional analytical methods, such as powder X-ray diffraction analysis, since all of the poly-amorphous solids had similar halo X-ray diffraction patterns. However, terahertz spectroscopy can distinguish the amorphous solids of indomethacin with different physicochemical properties, and is expected to provide a rapid and non-destructive qualitative analysis for the solid materials, it would be useful for the qualitative evaluation of amorphous solids in the pharmaceutical industry.

  16. Characterization of Poly-Amorphous Indomethacin by Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Otsuka, Makoto; Nishizawa, Jun-ichi; Fukura, Naomi; Sasaki, Tetsuo

    2012-05-01

    Since the stability of amorphous solids of pharmaceuticals differs depending on the method of preparation, there are several solid-state chemical structures in amorphous solids, which like poly-amorphous solids might have different characteristics the same as in crystalline solids. However, it is not easy to identify the differences in solid-state characteristics between amorphous solids using conventional analytical methods, such as powder X-ray diffraction analysis, since all of the poly-amorphous solids had similar halo X-ray diffraction patterns. However, terahertz spectroscopy can distinguish the amorphous solids of indomethacin with different physicochemical properties, and is expected to provide a rapid and non-destructive qualitative analysis for the solid materials, it would be useful for the qualitative evaluation of amorphous solids in the pharmaceutical industry.

  17. Atomic-scale disproportionation in amorphous silicon monoxide

    PubMed Central

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  18. Experimental Studies Of Endoscopic Local Hyperthermia With Contact Nd-YAG Laser

    NASA Astrophysics Data System (ADS)

    Suzuki, Sohtaro; Aoki, Jun; Shiina, Yasubumi; Miwa, Takeshi; Daikuzono, Norio; Joffe, Stephen N.

    1987-03-01

    We have been studying experimentally and clinically to evaluate the histological effects and safety of the therapeutic Nd-YAG laser endoscopy by the contact method with new ceramic endoprobes comparing wit Li those by the non-contact method with single quartz fiber. In this paper, we would like to discuss possibilities of clinical application of endoscopic local hyperthermia using Nd-YAG laser (Laserthermia) with computer control system. Newly developed computer controlled Laserthermia may possible to apply for the treatment of the malignant tumor in the gastrointestinal (GI) tract.

  19. Ruby and Sm:YAG fluorescence pressure gauges up to 120 GPa and 700 K

    SciTech Connect

    Wei Qingguo; Dubrovinsky, Leonid; Dubrovinskaia, Natalia

    2011-08-15

    Diamond anvil cell (DAC) technique relies on pressure determination based on use of pressure gauges. Fluorescence-based gauges, such as ruby and Sm doped yttrium aluminum garnet (Sm:YAG), are frequently used in the high pressure research. Here we present the results of DAC experiments which allowed extending calibration curves of the fluorescence frequency versus pressure up to 120 GPa at high temperatures up to 700 K for both for ruby and Sm:YAG. Cubic boron nitride was used as the reference gauge.

  20. Argon and YAG laser photocoagulation and excision of hemangiomas and vascular malformations of the nose.

    PubMed Central

    Apfelberg, D B

    1995-01-01

    A total of 22 patients--19 children, 3 adults--with a variety of hemangiomas and vascular malformations of the nose were treated over a 5-year period. Various laser modalities were used. Some lesions could be photocoagulated by the argon or the yttrium-aluminum-garnet (YAG) laser. Larger lesions were resected with the YAG laser and sapphire tips. Preliminary arteriography with superselective embolization was necessary in 1 patient. Total removal was possible in 13 patients, and no complications or side effects were noted. Images Figure 1. Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. PMID:7571558

  1. The Effect of Temperature on the Radiative Performance of Ho-Yag Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1995-01-01

    We present the emitter efficiency results for the thin film 25 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) selective emitter from 1000 to 1700 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns) and used to calculate the radiative efficiency. The radiative efficiency and power density of rare earth doped selective emitters are strongly dependent on temperature and experimental results indicate an optimum temperature (1650 K for Ho YAG) for thermophotovoltaic (TPV) applications.

  2. Shear bond strength after Er:YAG laser radiation conditioning of enamel and dentin

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Dolezalova, Libuse; Kubelka, Jiri; Prochazka, Stanislav; Hamal, Karel; Krejsa, Otakar

    1997-12-01

    This study compares bond shear strength between hard dental tissues and composite resin filling material after a classical acid etching treatment procedure and Er:YAG laser surface conditioning. The retention of composite resin was evaluated for three cases: (1) the flat dental substrate without any conditioning, (2) the classical drilling machine prepared surface with acid etching and (3) the Er:YAG laser conditioning of enamel and dentin. None significant differences between bond shear strength of the classical drilling machine prepared surface with acid etching in comparison with the laser radiation conditioning were found.

  3. Heat generation on root surfaces after KTP:NdYAG use in endodontic treatment

    NASA Astrophysics Data System (ADS)

    Nammour, S.; Kowalyk, Kenneth; Valici, Ch.; Guillaume, Patrick

    1997-05-01

    The canals of 30 recently extracted human teeth were filled with a photosensitizer. A series of 5 shots, separated by a resting time of 1 second also, was delivered by means of the KTP:YAG fiber tip. The temperature increases were measured on the topical point of the root surfaces by the use of a thermocouple. For laser settings, the rises were always below the safety threshold of 7 C. We conclude that the KTP:NdYAG laser can be harmless for periodontal tissues under some conditions.

  4. Dual-loss modulated Nd:GGG laser with Cr4+:YAG and GaAs

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Jia; Li, Yufei; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Li, Tao; Chu, Hongwei

    2014-12-01

    We demonstrate a diode-pumped dual-loss passively Q-switched and mode-locked (DP-QML) Nd:GGG laser by simultaneously employing Cr4+:YAG and GaAs as saturable absorbers. In comparison with single passively Q-switched and mode-locked (SP-QML) Nd:GGG laser with the Cr4+:YAG or GaAs, the maximum pulse width compression and the highest peak power improvement are 76.8% and 18.5 times in DP-QML laser, with the value of 67 ns and 2.9 kW, respectively.

  5. Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp

    NASA Astrophysics Data System (ADS)

    Saiki, Taku; Imasaki, Kazuo; Motokoshi, Shinji; Yamanaka, Chiyoe; Fujita, Hisanori; Nakatsuka, Masahiro; Izawa, Yasukazu

    2006-12-01

    We observed the lasing of highly sensitized Nd/Cr:YAG ceramic disks that use artificial solar radiation pumping. The disk material can be used for high power multi-stage amplifiers pumped by lamplight or sunlight because of its scalability and ability to handle high power densities. A maximum output power of 86 mW was experimentally obtained, and this value correlated well with the calculated results. A small signal gain of 1.9 was obtained, and the estimated stored energy was 0.6 J/cm 3, which is three or four times higher than that from a Nd:YAG medium.

  6. Effects of pulsed Nd:YAG laser on the surface of rabbit retina

    SciTech Connect

    Fleck, B.W.; Chew, P.T.; Lim, A.S.; Tock, E.P. )

    1991-03-01

    Six albino rabbits were subjected to pulsed Nd:YAG laser irradiation to the retinal surface to determine whether such treatment would lead to proliferative vitreoretinopathy. Choroidal, retinal, and preretinal hemorrhages, noted at the time of treatment, resolved after 7 to 10 days. Histological examination showed no signs of anterior segment damage or proliferative vitreoretinopathy. These preliminary findings suggest that more extensive experimentation is warranted to determine if pulsed Nd:YAG laser may in fact safely be used to separate vitreoretinal adhesions in the treatment of retinal detachment.

  7. Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm.

    PubMed

    Wang, Yicheng; Lan, Ruijun; Mateos, Xavier; Li, Jiang; Hu, Chen; Li, Chaoyu; Suomalainen, Soile; Härkönen, Antti; Guina, Mircea; Petrov, Valentin; Griebner, Uwe

    2016-08-01

    A passively mode-locked Ho:YAG ceramic laser around 2.1 µm is demonstrated using GaSb-based near-surface SESAM as saturable absorber. Stable and self-starting mode-locked operation is realized in the entire tuning range from 2059 to 2121 nm. The oscillator operated at 82 MHz with a maximum output power of 230 mW at 2121 nm. The shortest pulses with duration of 2.1 ps were achieved at 2064 nm. We also present spectroscopic properties of Ho:YAG ceramics at room temperature. PMID:27505767

  8. Bronchoscopic utilization of the Nd:YAG laser for obstructing lesions of the trachea and bronchi.

    PubMed

    Unger, M

    1984-10-01

    The combination of recent technological developments in earlier detection of lung cancer, together with the simultaneous introduction of new palliative therapeutic tools, including the Nd:YAG laser, offers new hope in the treatment of lung carcinomas. Endobronchial usage of the Nd:YAG laser has provided a new technique to treat otherwise untreatable, obstructive malignant tumors, as well as the means to avoid the need for more extensive surgical procedures for benign lesions. It is important to quantify and translate this information to advanced science for optimal development and use.

  9. Annealing behavior of high permeability amorphous alloys

    SciTech Connect

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ were investigated. Annealing this alloy below 400/sup 0/C results in magnetic hardening; annealing above 400/sup 0/C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation.

  10. Thermoluminescence characteristics of hydrogenated amorphous zirconia

    NASA Astrophysics Data System (ADS)

    Montalvo, T. R.; Tenorio, L. O.; Nieto, J. A.; Salgado, M. B.; Estrada, A. M. S.; Furetta, C.

    2005-05-01

    This paper reports the experimental results concerning the thermoluminescent (TL) characteristics of hydrogenated amorphous zirconium oxide (a-Zr:H) powder prepared by the sol-gel method. The advantages of this method are the homogeneity and the purity of the gels associated with a relatively low sintering temperature. Hydrogenated amorphous powder was characterized by thermal analysis and X-ray diffraction. The main TL characteristics investigated were the TL response as a function of the absorbed dose, the reproducibility of the TL readings and the fading. The undoped a-Zr:H powder presents a TL glow curve with two peaks centered at 150 and 260 degrees C, respectively, after beta irradiation. The TL response a-Zr:H as a function of the absorbed dose showed a linear behavior over a wide range. The results presented open the possibility to use this material as a good TL dosimeter.

  11. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  12. Wear Resistant Amorphous and Nanocomposite Coatings

    SciTech Connect

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  13. Characterization of Amorphous Zinc Tin Oxide Semiconductors

    SciTech Connect

    Rajachidambaram, Jaana Saranya; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Varga, Tamas; Flynn, Brendan T.; Thevuthasan, Suntharampillai; Herman, Gregory S.

    2012-06-12

    Amorphous zinc tin oxide (ZTO) was investigated to determine the effect of deposition and post annealing conditions on film structure, composition, surface contamination, and thin film transistor (TFT) device performance. X-ray diffraction results indicated that the ZTO films remain amorphous even after annealing to 600 °C. We found that the bulk Zn:Sn ratio of the sputter deposited films were slightly tin rich compared to the composition of the ceramic sputter target, and there was a significant depletion of zinc at the surface. X-ray photoelectron spectroscopy also indicated that residual surface contamination depended strongly on the sample post-annealing conditions where water, carbonate and hydroxyl species were absorbed to the surface. Electrical characterization of ZTO films, using TFT test structures, indicated that mobilities as high as 17 cm2/Vs could be obtained for depletion mode devices.

  14. Reversibility and criticality in amorphous solids

    PubMed Central

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-01-01

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning' transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. These findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched. PMID:26564783

  15. Reversibility and criticality in amorphous solids

    DOE PAGESBeta

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaoticmore » behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.« less

  16. Reversibility and criticality in amorphous solids

    SciTech Connect

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.

  17. Reversibility and criticality in amorphous solids.

    PubMed

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A; Lookman, Turab

    2015-01-01

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a 'front depinning' transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. These findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched. PMID:26564783

  18. Design Requirements for Amorphous Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Ounaies, Z.; Young, J. A.; Harrison, J. S.

    1999-01-01

    An overview of the piezoelectric activity in amorphous piezoelectric polymers is presented. The criteria required to render a polymer piezoelectric are discussed. Although piezoelectricity is a coupling between mechanical and electrical properties, most research has concentrated on the electrical properties of potentially piezoelectric polymers. In this work, we present comparative mechanical data as a function of temperature and offer a summary of polarization and electromechanical properties for each of the polymers considered.

  19. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, R.C.

    1985-02-11

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  20. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1988-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  1. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1986-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  2. Nd:YAG laser welding of coated sheet steel

    SciTech Connect

    Graham, M.P.; Kerr, H.W.; Weckman, D.C.

    1994-12-31

    Coated sheet steels are used extensively in the automotive industry for the fabrication of automobile body components; however, their reduced weldability by the traditional welding processes has led to numerous studies into the use of alternate process such as laser welding. In this paper, we present a modified joint geometry which allows high quality lap welds of coated sheet steels to be made by laser welding processes. Hot-dipped galvanized sheet (16 gauge), with a 60 g/m zinc coating was used in this study. A groove was created in the top sheet of a specimen pair by pressing piano wires of various diameters into the sheet. The specimens were clamped together in a lag-joint configuration such that they were in contacted only along the grove projection. A parametric study was conducted using the variables of welding speed, laser mean power (685 W, 1000 W and 1350 W), and grove size. Weld quality and weld pool dimensions were assessed using metallurgical cross-sections and image analysis techniques. Acceptable quality seam welds were produced in the galvanized sheet steel with both grove sizes when using 1000 W and 1350 W laser mean powers and a range of welding speeds. Results of the shear-tensile tests showed that high loads to failure, with failure occurring in the parent material, were predominately found in welds produced at speeds over 1.2 m/min and when using the high mean laser powers: 1000 W and 1350 W. A modified lap joint geometry, in which a groove is pre-placed in the top sheet of the lap-joint configuration, has been developed which permits laser welding of coated sheet steels. Good quality seam welds have been produced in 16 gauge galvanized sheet steels at speeds up to 2.7 m/min using a 2 kW CW Nd:YAG laser operating at 1350 W laser mean power. Weld quality was not affected by changes in groove size.

  3. Multiple cell photoresponsive amorphous alloys and devices

    SciTech Connect

    Ovshinsky, S.R.; Adler, D.

    1990-01-02

    This patent describes an improved photoresponsive tandem multiple solar cell device. The device comprising: at least a first and second superimposed cell of various materials. The first cell being formed of a silicon alloy material. The second cell including an amorphous silicon alloy semiconductor cell body having an active photoresponsive region in which radiation can impinge to produce charge carriers, the amorphous cell body including at least one density of states reducing element. The element being fluorine. The amorphous cell body further including a band gap adjusting element therein at least in the photoresponsive region to enhance the radiation absorption thereof, the adjusting element being germanium: the second cell being a multi-layer body having deposited semiconductor layers of opposite (p and n) conductivity type; and the first cell being formed with the second cell in substantially direct Junction contact therebetween. The first and second cells designed to generate substantially matched currents from each cell from a light source directed through the first cell and into the second cell.

  4. Concurrent multiscale modeling of amorphous materials

    NASA Astrophysics Data System (ADS)

    Tan, Vincent

    2013-03-01

    An approach to multiscale modeling of amorphous materials is presented whereby atomistic scale domains coexist with continuum-like domains. The atomistic domains faithfully predict severe deformation while the continuum domains allow the computation to scale up the size of the model without incurring excessive computational costs associated with fully atomistic models and without the introduction of spurious forces across the boundary of atomistic and continuum-like domains. The material domain is firstly constructed as a tessellation of Amorphous Cells (AC). For regions of small deformation, the number of degrees of freedom is then reduced by computing the displacements of only the vertices of the ACs instead of the atoms within. This is achieved by determining, a priori, the atomistic displacements within such Pseudo Amorphous Cells associated with orthogonal deformation modes of the cell. Simulations of nanoscale polymer tribology using full molecular mechanics computation and our multiscale approach give almost identical prediction of indentation force and the strain contours of the polymer. We further demonstrate the capability of performing adaptive simulations during which domains that were discretized into cells revert to full atomistic domains when their strain attain a predetermined threshold. The authors would like to acknowledge the financial support given to this study by the Agency of Science, Technology and Research (ASTAR), Singapore (SERC Grant No. 092 137 0013).

  5. Phase transitions in biogenic amorphous calcium carbonate

    NASA Astrophysics Data System (ADS)

    Gong, Yutao

    Geological calcium carbonate exists in both crystalline phases and amorphous phases. Compared with crystalline calcium carbonate, such as calcite, aragonite and vaterite, the amorphous calcium carbonate (ACC) is unstable. Unlike geological calcium carbonate crystals, crystalline sea urchin spicules (99.9 wt % calcium carbonate and 0.1 wt % proteins) do not present facets. To explain this property, crystal formation via amorphous precursors was proposed in theory. And previous research reported experimental evidence of ACC on the surface of forming sea urchin spicules. By using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), we studied cross-sections of fresh sea urchin spicules at different stages (36h, 48h and 72h after fertilization) and observed the transition sequence of three mineral phases: hydrated ACC → dehydrated ACC → biogenic calcite. In addition, we unexpectedly found hydrated ACC nanoparticles that are surrounded by biogenic calcite. This observation indicates the dehydration from hydrated ACC to dehydrated ACC is inhibited, resulting in stabilization of hydrated ACC nanoparticles. We thought that the dehydration was inhibited by protein matrix components occluded within the biomineral, and we designed an in vitro assay to test the hypothesis. By utilizing XANES-PEEM, we found that SM50, the most abundant occluded matrix protein in sea urchin spicules, has the function to stabilize hydrated ACC in vitro.

  6. Amorphous molybdenum silicon superconducting thin films

    SciTech Connect

    Bosworth, D. Sahonta, S.-L.; Barber, Z. H.; Hadfield, R. H.

    2015-08-15

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using W{sub x}Si{sub 1−x}, though other amorphous superconductors such as molybdenum silicide (Mo{sub x}Si{sub 1−x}) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo{sub 83}Si{sub 17}. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  7. Amorphous molybdenum silicon superconducting thin films

    NASA Astrophysics Data System (ADS)

    Bosworth, D.; Sahonta, S.-L.; Hadfield, R. H.; Barber, Z. H.

    2015-08-01

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WxSi1-x, though other amorphous superconductors such as molybdenum silicide (MoxSi1-x) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo83Si17. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  8. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    PubMed

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-01-01

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS. PMID:26633346

  9. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  10. Influence of Nd:YAG or Er:YAG laser surface treatment on microtensile bond strength of indirect resin composites to resin cement. Lasers surface treatment of indirect resin composites.

    PubMed

    Caneppele, T M F; de Souza, A C Oliveira; Batista, G R; Borges, A B; Torres, C R G

    2012-09-01

    This study evaluated the influence of the surface pretreatment of indirect resin composite (Signum, Admira Lab and Sinfony) on the microtensile bond strength of a resin cement. Sixty samples made of each brand were divided into 6 groups, according to surface treatment: (1) control; (2) controlled-air abrasion with Al2O3; (3) Er:YAG Laser 200 mJ, 10 Hz, for 10s; (4) Er: YAG Laser 300 mJ, 10 Hz, for 10 s; (5) Nd:YAG 80 mJ, S15Hz for 1 min; (6) Nd:YAG 120mJ, 15 Hz for 1 min. After treatments, all the groups received an application of 37% phosphoric acid and adhesive. The pair of blocks of the same brand were cemented to each other with dual resin cement. The blocks were sectioned to obtain resin-resin sticks (1 x1 mm) and analyzed by microtensile bond testing. The bond strength values were statistically different, irrespective of the surface treatment performed, with highest values for Sinfony (43.81 MPa) and lowest values for Signum (32.33 MPA). The groups treated with the Nd:YAG laser showed the lowest bond strength values and power did not interfere in the results, both for Nd:YAG laser and Er:YAG. Controlled-air abrasion with Al203 is an efficient surface treatment method and the use of the Nd:YAG and Er:YAG lasers reduced bond strength, irrespective of the intensity of energy used.

  11. In vitro effects of Nd:YAG laser radiation on blood: a quantitative and morphologic analysis

    SciTech Connect

    Borrero, E.; Rosenthal, D.; Otis, J.B.

    1988-01-01

    Use of the Neodymium: yttrium -aluminum -garnet (Nd:YAG) laser to recanalize stenosed arteries may require delivery of the beam through blood. To assess the degree of hemolysis and debris formation, 54 samples of citrated whole blood were exposed to Nd:YAG laser radiation of varying powers (10, 20 and 30 watts) and duration (1, 2.5 and 5 seconds). Compared to control samples which were not subjected to laser light, there was no significant decrease in hematocrit (41 to 40.5 +/- 5%), hemoglobin concentration (13.8 to 13.8 +/- .06 g/1OO ml), or increase in free hemoglobin concentration. Debris weight (from .45 +/- .002 to .45 +/- .002 mg), as well as the white blood cell count, was also not significantly changed (from 5,400 to 5,200 +/- 240 WBC/cm). Light microscopy examination of debris from samples of whole blood, washed erythrocytes, and platelet-rich plasma subjected to the laser at 30 watts for five seconds failed to demonstrate the presence of membrane denaturation of blood elements, as compared with the morphologic changes observed in whole blood samples exposed to a hot tip rather than Nd:YAG laser radiation. Nd:YAG laser can be used intravascularly without fear of hemolysis or debris micro-embolization up to a power of 30 watts for five seconds.

  12. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  13. Nd:YAG laser cleaning of ablation debris from excimer-laser-ablated polyimide

    NASA Astrophysics Data System (ADS)

    Gu, Jianhui; Low, Jason; Lim, Puay K.; Lim, Pean

    2001-10-01

    In the processing of excimer laser ablation of nozzles on polyimide in air, both gases like CO2, CO and HCN and solid debris including C2 approximately C12 are produced in laser ablation area. In this paper, we reported for the first time a Nd:YAG laser cleaning of ablation debris generated in excimer laser ablation of polyimide. It demonstrated effective cleaning with the advantages of shortening cleaning cycle time and simplifying cleaning process. The laser used for the cleaning was a Q-switched and frequency doubled Nd:YAG laser with wavelength of 532 nm and repetition rate of 10 Hz. The laser cleaning effect was compared with conventional plasma ashing. AFM measurement showed that the Nd:YAG laser cleaning had no damage to the substrate. XPS results indicated that the polyimide surface cleaned with laser beam had a lower oxygen/carbon ratio than that of plasma ashing. The study shows that frequency doubled Nd:YAG laser cleaning is effective in ablation debris removal from excimer laser ablated polyimide.

  14. Holmium:YAG laser: effects of various treatments on root surface topography and acid resistance

    NASA Astrophysics Data System (ADS)

    Holt, Raleigh A.; Nordquist, Robert E.

    1996-04-01

    The effects of Holmium:YAG laser energy with and without a topical fluoride mixture (resin to NaF) was compared with two types of topical fluorides on surface topography and resistance to acid destruction of root surfaces. Scanning electron microscopy (SEM) was used to evaluate the effects of the selected treatments on surface topography before acid exposure. Toluidine blue dye was used to test the permeability of root surfaces after acid exposures. SEM examinations of the dentinal root surfaces showed consistently smooth surfaces with tubule closures when using topical resin to fluoride and HO:YAG laser treatment; in contrast, HO:YAG laser energy treatment alone exhibited increased roughness of root surfaces. Topical fluoride applications alone presented surfaces similar to untreated control sites. Toluidine blue dye penetration into root surfaces of the fluoride/laser-treated root surfaces showed significantly less dye penetration after acid exposures than controls and other treatment protocols. The results of this study indicate that the resin-fluoride application and holmium:YAG irradiation effectively produced increased smoothness and increased resistance to destruction of root surfaces in human extracted teeth under these in vitro conditions.

  15. Raman study of human dentin irradiated with Er:YAG laser

    NASA Astrophysics Data System (ADS)

    S. Soares, Luis E.; Martin, Airton A.; Brugnera, Aldo, Jr.; Zanin, Fatima A.; Arisawa, Emilia A.; T. Pacheco, Marcos T.

    2004-09-01

    Raman Spectroscopy was used to examine the distribution of the mineral and organic components in the human dentin before and after the chemical and thermal etching process. Polished dentin disks (n = 6/group) with 4mm thickness from twelve third molars were irradiated with Er:YAG laser. The dentin disks were prepared by polishing through a series of SiO2 papers with water and cleaned by ultrasonic system. Four pretreatment were performed. The disks were etched with 37% phosphoric acid (group I), Er:YAG laser 80mJ, 3Hz, 30s. (group II), Er:YAG laser 120mJ, 3Hz, 30s. (group III) and Er:YAG laser 180mJ, 3Hz, 30s. (group IV). The Raman spectra obtained from normal and treated dentin were analyzed. Attention was paid to the mineral PO4 (962 cm-1), CO3 (1073 cm-1) and to the organic component (1453cm-1). Raman spectroscopy showed that the mineral and organic dentin content were more affected in autoclaved teeth than in the specimens treated by Thymol. Peak area reduction in the specimens treated by Thymol in group I and II showed to be the most conservative procedures regarding to changes in organic and inorganic dentin components. Pulse energies of 120 and 180mJ showed to produce more reduction in the organic and inorganic content associated with more reduction in the peak areas at 960 and 1453cm-1.

  16. Er:YAG laser irradiation of human dentin: Raman study of collagen

    NASA Astrophysics Data System (ADS)

    Soares, Luis E. S.; Martin, Airton A.; Brugnera, Aldo, Jr.; Zanin, Fatima; Arisawa, Emilia A.; Pacheco, Marcos T. T.

    2004-05-01

    Raman Spectroscopy was used to examine the distribution of the organic components in the human dentin before and after the chemical and thermal etching process. Polished dentin disks (n = 6/group) with 4mm thickness from twelve third molars were irradiated with Er:YAG laser. The dentin disks were prepared by polishing through a series of SiO2 papers with water and cleaned by ultrasonic system. Four pretreatment were performed. The disks were etched with 37% phoshporic acid for 15 s (group 1), Er:YAG laser 80 mJ, 3Hz, 30s. (group II), Er:YAG laser 120 mJ, 3Hz, 30s. (group III) and Er:YAG laser 180mJ, 3Hz, 30s. (group IV). The Raman spectra obtained from normal and treated dentin were analyzed. Attention was paid to the organic component (1453cm-1). Raman spectroscopy showed that the organic dentin content were more affected in autoclaved teeth than in the specimens treated by Thymol. Peak area reduction in the specimens treated by Thymol in group I and II showed to be the most conservative procedures regarding to changes in organic dentin components. Pulse energies of 120 and 180 mJ showed to preduce more reduction in the organic content associated with more reduction in the peak areas at 1453 cm-1.

  17. YAG laser in experimental and clinical surgery of the head and neck

    NASA Astrophysics Data System (ADS)

    Tulibacki, Marek P.; Kukwa, Andrzej; Zajac, Andrzej; Zendzian, Waldemar

    1996-03-01

    The authors present their basic and clinical experience aiming at the evaluation of the possibilities of different types of YAG-laser. The aim of the present study was the assessment of the degree of tissue destruction for the most adequate clinical application of laser; the work was carried out using experimental animals and cadavers.

  18. Chromium Carbide Thin Films Synthesized by Pulsed Nd:YAG Laser Deposition

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Terajima, Ryou; Emura, Masanari

    1999-06-01

    Chromium carbide thin films are synthesized on Si(100)substrates by a pulsed Nd:YAG laser deposition method at differentsubstrate temperatures. Glancing-angle X-ray diffraction shows that acrystalline chromium carbide film can be prepared at the substratetemperature of 700°C. Grain size of the films, examined witha field-emission secondary electron microscope, increases withincreasing substrate temperature.

  19. Tm:YLF Pumped Ho:YAG and Ho:LuAG Lasers

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Reichle, Donald J.; Walsh, Brian M.; Axenson, Theresa J.

    2004-01-01

    Room temperature Ho:YAG and Ho:LuAG lasers pumped by a Tm:YLF laser demonstrated a 3.4 mJ threshold and 0.41 slope efficiency, incident optical to laser output energy. Results for numerous rod lengths, Ho concentrations, and output mirror reflectivities are presented.

  20. Erbium:YAG laser-mediated oligonucleotide and DNA delivery via the skin: an animal study.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Liu, Ching-Ru; Fang, Chia-Lang; Hu, Chung-Hong; Fang, Jia-You

    2006-10-27

    Topical delivery of antisense oligonucleotides (ASOs) and DNA is attractive for treatment of skin disorders. However, this delivery method is limited by the low permeability of the stratum corneum (SC). The objective of this study was to enhance and optimize the skin absorption of gene-based drugs by an erbium:yttrium-aluminum-garnet (Er:YAG) laser. The animal model utilized nude mice. In the in vitro permeation study, the Er:YAG laser treatment produced a 3-30-fold increase in ASO permeation which was dependent on the laser fluence and ASO molecular mass used. The fluorescence microscopic images showed a more-significant localization of a 15-mer ASO in the epidermis and hair follicles after laser application as compared with the control. The expressions of reporter genes coding for beta-galactosidase and green fluorescent protein (GFP) in skin were assessed by X-gal staining and confocal laser scanning microscopy. The SC ablation effect and photomechanical waves produced by the Er:YAG laser resulted in DNA expression being extensively distributed from the epidermis to the subcutis. The GFP expression in 1.4 J/cm2-treated skin was 160-fold higher than that in intact skin. This non-invasive, well-controlled technique of using an Er:YAG laser for gene therapy provides an efficient strategy to deliver ASOs and DNA via the skin.

  1. High power 2 {mu}m diode-pumped Tm:YAG laser

    SciTech Connect

    Beach, R.J.; Sutton, S.B.; Honea, E.C.; Skidmore, J.A.; Emanuel, M.A.

    1996-01-01

    Using a scaleable diode end-pumping technology developed at LLNL, we have demonstrated a compact Tm:YAG laser capable of generating more than 50 W of cw 2 {mu}m laser output power. The design and operational characteristics of this laser, which was built originally for use in assessing laser surgical techniques, are discussed.

  2. High power 2 {micro}m wing-pumped Tm{sup 3+}:YAG laser

    SciTech Connect

    Beach, R.J.; Sutton, S.B.; Honea, E.C.; Skidmore, J.A.; Emanuel, M.A.

    1996-01-01

    Using a scalable diode end-pumping technology developed at Lawrence Livermore National Laboratory the authors have demonstrated a compact Tm{sup 3+}:YAG laser capable of generating greater than 50 W of cw 2 {micro}m laser output power. The design and operational characteristics of this laser will be discussed.

  3. Investigation of two-frequency Nd{sup 3+} : YAG laser

    SciTech Connect

    Arapov, Yu D; Ivanov, A F; Kas'yanov, I V; Magda, L E

    2013-02-28

    A repetitively pulsed two-frequency laser is developed. Pulsed operation of a laser based on a Nd{sup 3+} : YAG crystal with simultaneous amplification of radiation at two wavelengths in a single-pass amplifier is studied. (laser optics 2012)

  4. Multi-Billion Shot, High-Fluence Exposure of Cr(4+): YAG Passive Q-Switch

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Dallas, Joseph L.; Afzal, Robert S.

    1997-01-01

    NASA's Goddard Space Flight Center is developing the Geoscience Laser Altimeter System (GLAS) employing a diode pumped, Q-Switched, ND:YAG laser operating at 40 Hz repetition rate. To meet the five-year mission lifetime goal, a single transmitter would accumulate over 6.3 billion shots. Cr(4+):YAG is a promising candidate material for passively Q-switching the laser. Historically, the performance of saturable absorbers has degraded over long-duration usage. To measure the multi-billion shot performance of Cr(4+):YAG, a passively Q-switched GLAS-like oscillator was tested at an accelerated repetition rate of 500 Hz. The intracavity fluence was calculated to be approximately 2.5 J/cm(exp 2). The laser was monitored autonomously for 165 days. There was no evidence of change in the material optical properties during the 7.2 billion shot test.. All observed changes in laser operation could be attributed to pump laser diode aging. This is the first demonstration of multi-billion shot exposure testing of Cr(4+):YAG in this pulse energy regime

  5. Comparison of preparation speed of Er:YAG laser and conventional drilling machine

    NASA Astrophysics Data System (ADS)

    Jelinkova, Helena; Dostalova, Tatjana; Dolezalova, Libuse; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1997-05-01

    Clinical tests of the caries treatment with a Er:YAG laser system have been very promising. The problem of the Er:YAG laser drilling machine is the speed of preparation. It is not possible to increase the laser energy and repetition rate because this process is directly connected with temperature elevation. Therefore attention has been paid to define the differences between the classical and the laser drilling effect with a safe but effective laser energy and repetition rate. For the experiment, an Er:YAG laser drilling machine with an articulated arm was designed. Thirty samples of extracted human teeth were cut by both this system and classical drilling machine. The circumference, area and structure of surface sections were observed and analyzed. From the comparison of the measured time of preparation significant differences followed from the time of preparation. The time of preparation related to 1 mm2 of the cut surface was 5.42 sec for the Er:YAG laser machine and 0.66 sec for the classical method. From this comparison it follows that the laser system is 8 times slower than the classical preparation technique. In both cases the roughness of the surface analyzed by SCAN was found similar. Also, there were no differences between the distribution of the elements, especially calcium and phosphorus.

  6. Nd: YAG Laser Posterior Capsulotomy Rates in Myopic Eyes after Implantation of Capsular Tension Ring

    PubMed Central

    Keles, Sadullah; Kartal, Baki; Apil, Aytekin; Ondas, Osman; Kozan, Betul Dertsiz; Topdagi, Elif; Ekinci, Metin; Ceylan, Erdinc; Baykal, Orhan

    2014-01-01

    Background The aim f this study was to evaluate the effect of capsular tension ring implantation during cataract surgery on the incidence of neodymium: YAG (Nd: YAG) laser posterior capsulotomy in myopic (axial length [AL] ≥25.00 mm) eyes. Material/Methods In this retrospective study, the records of the cases of 117 myopic patients who underwent cataract surgery between January 2004 and January 2011 were reviewed. A total of 153 eyes with an axial length of 25 mm or higher were included in the study with consideration of exclusion criteria mentioned below. Eyes were grouped by presence or lack of capsular tension ring (CTR+ and CTR−, respectively). Results The study included 153 eyes from 107 myopic patients. Hydrophilic acrylic IOL and capsular tension ring (CTR) were implanted in 78 eyes (CTR+ group), and 75 eyes received only the hydrophilic acrylic IOL (CTR− group). Six eyes (7.6%) in CTR+ and 16 eyes (21.3%) in CTR− required Nd: YAG laser capsulotomy within 7 years. The difference between the 2 groups was statistically significant (p=0.021). Conclusions Because CTRs significantly decrease subsequent need for Nd: YAG laser posterior capsulotomy in myopic patients, are very inexpensive, and provide other benefits, our data suggest that the use of CTRs in myopic eyes undergoing cataract surgery with an hydrophilic acrylic IOL implantation is advantageous and should be standard practice. PMID:25132225

  7. Er:YAG laser ablation: 5-11 years prospective study

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Nemec, Michal; Sulc, Jan; Miyagi, Mitsunobu

    2005-03-01

    The Er:YAG laser at 2940 nm has been proposed for use in dental cavity preparation and removal of carious enamel and dentin. The purpose of the present study was to determine the effect of the Er:YAG laser ablation in treating dental caries after a period from 5 to 11 years. For this study, 133 cavities were chosen, and for their reparation of it the three restorative materials were used. Baseline examination was made in the following intervals: one week, 1 year, and from 5 to 11 years after cavity preparation and placement of filling material. Clinical assessments were carried out in accordance with the US Public Health Service System. The follow-up included: the marginal ridge, marginal adaptation, anatomic form, caries, color match, cavo surface margin discoloration, surface smoothness, and postoperative sensitivity. Er:YAG laser ablation is an excellent method for treating frontal teeth, i.e., incisors, canines, premolars, and initial occlusal caries of molars. However, visual control of non-contact therapy is necessary. Er:YAG laser ablation is safe, and it strongly reduces pain. The laser treatment markedly decreases the unpleasant sound and vibration.

  8. Transmyocardial revascularization on canine with Ho:YAG laser - an experimental study

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqing; Zhu, Jing; Zhang, Hui-Guo

    2005-07-01

    Background and Objective: To evaluate the efficiency of transmyocardial revascularization with Ho:YAG laser and find out adequate physical parameters of the laser. Materials and Methods: 10 dogs were studied. All the samples were divided into two groups: the laser group (5 dogs) and the control group (5 dogs). Acute myocardial ischemia was induced in all the samples, and transmyocardial laser revascularization (TMLR) was only done in the laser group. We compared the difference of improvement in myocardial perfusion between the two groups with single photon emission computed tomograph (SPECT) and observed the patency of the laser channels and heat injures in the tissue adjacent to the channels with light- and electro-scope. Results: After 4 weeks, the recovery of myocardial perfusion was significantly faster in the laser group than in the control group through SPECT (P<0.05). Most of the laser channels drilled with Ho:YAG laser were filled with fibrin. There were amount of microvessels and erythrocytes inside and around the channels. Only slight heat injures were seen in the tissue adjacent to the channels. Only 20-30 watts were needed in TMLR. Conclusions: Transmyocardial revascularization with Ho:YAG laser limits infarct expansion and reduces myocardial ischemia efficiently. TMLR with Ho:YAG laser can become a new technique to treat ischemic heart disease.

  9. 407 W End-pumped Multi-segmented Nd:YAG Laser.

    PubMed

    Kracht, Dietmar; Wilhelm, Ralf; Frede, Maik; Dupré, Klaus; Ackermann, Lothar

    2005-12-12

    A composite crystalline Nd:YAG rod consisting of 5 segments with different dopant concentrations for high power diode end-pumping is presented. A maximum laser output power of 407 W with an optical-to-optical efficiency of 54 % was achieved by longitudinal pumping with a high power laser diode stack.

  10. Investigation of Er:YAG laser root canal irradiation using en face OCT

    NASA Astrophysics Data System (ADS)

    Todea, Carmen; Balabuc, Cosmin; Filip, Laura; Calniceanu, Mircea; Bradu, Adrian; Hughes, Michael; Podoleanu, Adrian G.

    2009-07-01

    This pilot study was designed to investigate the quality of endodontic treatment performed with/without Er:YAG laser using en-face Optical Coherence Tomography (OCT) prototype which evinced the presence of voids and microleakage within the root canal.

  11. Laboratory investigation of the efficacy of holmium:YAG laser irradiation in removing intracanal debris

    NASA Astrophysics Data System (ADS)

    Nuebler-Moritz, Michael; Gutknecht, Norbert; Sailer, Hermann F.; Hering, Peter; Prettl, Wilhelm

    1997-05-01

    Current endodontic therapy involves debridement and disinfection of the root canal by means of mechanical instrumentation and chemical irrigation. However, several studies have shown that these techniques fail to achieve complete cleansing. Recently, lasers have been suggested for use within root canals. This study was conducted to determine the efficacy of Holmium:YAG laser irradiation in removing intracanal debris and smear layer. Root canal surfaces of freshly-extracted human teeth were exposed to pulsed Ho:YAG laser radiation. Subsequently, laser induced structural changes were investigated using scanning electron microscopy. Temperature measurements during irradiation were performed by means of thermocouples. The result of this survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment modalities. However, limitations exist with regard to circumscribed and well-quantified irradiation of root canal surfaces, due to the lack of perpendicular delivery of the laser beam. Additional studies will be required to develop suitable optical transmission systems, in order to achieve complete cleansing and to avoid damage to the periradicular tissues, respectively.

  12. Nd-YAG laser core-through urethrotomy in obliterative posttraumatic urethral strictures in children.

    PubMed

    Dogra, P N; Nabi, G

    2003-11-01

    This study analysed the feasibility and effectiveness of Nd-YAG laser core-through urethrotomy in the management of obliterative posttraumatic urethral strictures in children. Between May 1997 and April 2000, 61 patients underwent core-through urethrotomy in posttraumatic urethral strictures, ten of whom were children (ages 5-15 years). Three patients had had previous railroading procedures, two attempted core-through urethrotomy, and two underwent end-to-end urethroplasties. Patients were on suprapubic cystostomy for a mean period of 12 months with mean stricture length of 2 cm. Nd-YAG laser core-through urethrotomy was carried out using 600- micro m bare-contact fibre as a day care procedure. There were no intraoperative or postoperative complications. Micturating cystourethrography was performed 6 weeks following urethral catheter removal. Urethroscopy and uroflowmetry were carried out after 3 months. Mean follow-up was 24 months.Nd-YAG laser core-through urethrotomy was seen to be successful in all patients without any complications. All patients are voiding without obstructive symptoms. Four required optical urethrotomy/endoscopic dilatation at least twice. Nd-YAG laser core-through urethrotomy is a safe and effective procedure for the management of obliterative posttraumatic urethral strictures in children

  13. Ureteropyeloscopy and homium: YAG laser lithotripsy for treatment of ureteral calculi (report of 356 cases)

    NASA Astrophysics Data System (ADS)

    Wu, Zhong; Din, Qiang; Jiang, Hao-wen; Zen, Jing-cun; Yu, Jiang; Zhang, Yuanfang

    2005-07-01

    Objective: To evaluate the efficacy and safety of holmium YAG laser lithotripsy for the treatment of ureteral calculi. Methods: A total of 356 patients underwent ureteropyeloscopic lithotripsy using holmium YAG laser with a semirigid uretesopyeloscope, 93 upper, 135 middle, and 128 lower ureteral stones were treated. Results: The overall successful fragmentation rate for all ureteral stones in a single session achieved 98% (349/356). The successful fragmentation rate stratified by stone location was 95% 88/93 in the upper ureter, 99% (134/135) in the mid ureter , and 99%(127/128) in the distal ureter. 12 cases with bilateral ureteral stones which caused acute renal failure and anuria were treated rapidly and effectively by the holmium YAG laser lithotripsy. No complications such as perforation and severe trauma were encountered during the operations. 2 weeks 17months (with an average of 6.8 month ) follow up postoperatively revealed that the overall stone-free rate was 98%(343/349) and no ureteral stenosis was found. Conclusions Holmium YAG laser lithotripsy is a highly effective, minimally invasive and safe therapy for ureteral calculi. It is indicated as a first choice of treatment for patients with ureteral calculi, especially for the ones with mid- lower levels of ureteral calculi.

  14. Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water

    SciTech Connect

    Hakuta, Yukiya; Haganuma, Tsukasa; Sue, Kiwamu; Adschiri, Tadafumi; Arai, Kunio

    2003-06-19

    Phosphor YAG:Tb ((Y{sub 2.7}Tb{sub 0.3})Al{sub 5}O{sub 12}) nano particles were synthesized by a hydrothermal method at supercritical conditions (400 deg. C and 30 MPa) using a flow reactor. Hydroxide sol solutions formed by stoichiometric aluminum nitrate, yttrium nitrate, terbium nitrate and potassium hydroxide solutions. The relationship between particle size and experimental variables including pH, concentration of coexistent ions and hydroxide sol were investigated. Particles were characterized by XRD, TEM and photo-luminescence measurements. Particle size of YAG:Tb became finer as pH was increased or potassium nitrate concentration of the starting metal salt solution was increased. By removing the coexisting ions (NO{sub 3}{sup -}, K{sup +}) from the metal salt solution, single phase YAG:Tb particles with 20 nm particle size were obtained. The emission spectra of YAG:Tb particles of 14 nm shows a blue shift.

  15. 140 Mbit/s heterodyne ASK data transmission with diode-pumped Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Leeb, Walter R.; Scholtz, Arpad L.; Pribil, Klaus; Hirn, Richard

    1990-07-01

    The capabilities of the Nd-YAG laser for optical intersatellite links have been experimentally demonstrated. The experimental setup is described and the heterodyne ASK receiver sensitivity is reported. The receiver exhibited a degradation of -5.6 dB compared to the shot noise limit.

  16. New long-wavelength Nd:YAG laser at 1. 44 micron: effect on brain

    SciTech Connect

    Martiniuk, R.; Bauer, J.A.; McKean, J.D.; Tulip, J.; Mielke, B.W.

    1989-02-01

    A wavelength-shifted Nd:YAG laser, tuned to coincide with the infrared absorption peak of water at 1.44 microns, was used to make lesions in normal rabbit brain. A total of 48 lesions were made with power up to 20 W, with energy up to 40 joules, and with two different spot sizes. These lesions were compared to lesions made with 1.06 microns radiation from an Nd:YAG laser under identical operating conditions. Measurements of blood-brain barrier damage and width, depth, and volume of tissue affected were obtained 30 minutes after placement of the lesions. It was found that 1.44-microns lesions produced photoevaporative tissue loss at the highest intensities used. The layer of coagulated tissue remaining after photovaporization had a mean thickness of 0.6 mm irrespective of the volume of tissue removed. There was no photovaporization in the 1.06-microns lesions. In addition, the amount of peripheral edema per unit volume of tissue coagulated was approximately half at the 1.44-microns wavelength. These findings suggest that the 1.44-microns Nd:YAG laser may be a useful surgical instrument since it combines the photoevaporative effect of the CO/sub 2/ laser while maintaining the advantages of the conventional Nd:YAG laser (quartz fiber delivery and effective hemostasis).

  17. 14-W continuous-wave mode-locked Nd:YAG laser

    SciTech Connect

    De Silvestri, S.; Laporta, P.; Magni, V.

    1986-12-01

    A new design procedure for solid-state laser resonators operating in the fundamental mode is applied to the optimization of the mode volume and stability of a cw Nd:YAG laser. The optimized laser provides the highest power in the mode-locking regime reported to date.

  18. Using transurethral Ho:YAG-laser resection to treat urethral stricture and bladder neck contracture

    NASA Astrophysics Data System (ADS)

    Bo, Juanjie; Dai, Shengguo; Huang, Xuyuan; Zhu, Jing; Zhang, Huiguo; Shi, Hongmin

    2005-07-01

    Objective: Ho:YAG laser had been used to treat the common diseases of urinary system such as bladder cancer and benign prostatic hyperplasia in our hospital. This study is to assess the efficacy and safety of transurethral Ho:YAG-laser resection to treat the urethral stricture and bladder neck contracture. Methods: From May 1997 to August 2004, 26 cases of urethral stricture and 33 cases of bladder neck contracture were treated by transurethral Ho:YAG-laser resection. These patients were followed up at regular intervals after operation. The uroflow rate of these patients was detected before and one-month after operation. The blood loss and the energy consumption of holmium-laser during the operation as well as the complications and curative effect after operation were observed. Results: The therapeutic effects were considered successful, with less bleeding and no severe complications. The Qmax of one month postoperation increased obviously than that of preoperation. Of the 59 cases, restenosis appeared in 11 cases (19%) with the symptoms of dysuria and weak urinary stream in 3-24 months respectively. Conclusions: The Ho:YAG-laser demonstrated good effect to treat the obstructive diseases of lower urinary tract such as urethral stricture and bladder neck contracture. It was safe, minimal invasive and easy to operate.

  19. Neodymium YAG lasers. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Mauk, S. C.

    1980-01-01

    Various aspects of neodymium yag lasers are discussed in approximately 267 citations. Laser materials and outputs, laser mode locking; crystal, fiber, and nonlinear optics, optical pumping communications, energy conversion efficiency, and laser applications are covered. Pulsed, continuous wave, solid state, Q switched, infrared, and dye lasers are included.

  20. A contact Nd:YAG laser to resect large ciliary body and choroidal tumors.

    PubMed

    Peyman, G A; Alghadyan, A; Peace, J H

    1987-10-01

    We used a contact Nd:YAG laser fit with a 0.2-mm diameter sapphire tip to excise a large (5 1/2 clock hour) iris ciliary body-choroidal tumor and a large (15 X 8 X 3 mm) choroidal tumor. The cutting and coagulation action of the laser helped to minimize intraoperative and postoperative hemorrhage.

  1. Contact application of Nd:YAG laser through a fiberoptic and a sapphire tip.

    PubMed

    Peyman, G A; Katoh, N; Tawakol, M; Khoobehi, B; Desai, A

    1987-10-01

    We evaluated the effects of Nd:YAG laser energy directly applied to ocular tissue through a fiberoptic and a sapphire tip. All ocular tissue could be easily cut with the maximum 4 watts of energy. The coagulated borders extended 20 to 200 mu into the healthy tissue depending on the speed with which the cutting was performed.

  2. Clinical efficacy of the Er:YAG laser treatment on hypersensitive dentin.

    PubMed

    Yu, Chuan-Hang; Chang, Yu-Chao

    2014-06-01

    Dentin hypersensitivity is a common symptomatic condition that causes discomfort and sometimes severe pain. The purpose of this study was to evaluate the clinical efficacy of the erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser treatment on cervically exposed hypersensitive dentin. Twenty patients with dentin hypersensitivity of caries-free teeth were selected. A visual analog scale (VAS) was used to measure dentin sensitivity in response to air stimulus. A 2-minute Er:YAG laser (energy level: 60 mJ/pulse; repetition rate: 2 Hz) was applied to cervically exposed hypersensitive dentin. After 4 weeks, the hypersensitive teeth were examined again, and the VAS score was measured again and recorded. No complications such as detrimental pulpal effects were observed. Eighteen participants reported significantly reduced dentin hypersensitivity 4 weeks after the laser desensitization treatment. The VAS scores measured 4 weeks after the Er:YAG laser desensitization treatment were significantly decreased as compared with those measured at the baseline (p < 0.05). In conclusion, the Er:YAG laser desensitization treatment can effectively reduce hypersensitivity of cervically exposed hypersensitive dentin. PMID:23602018

  3. Soft tissue effects of the THC:YAG laser on canine vocal cords.

    PubMed

    Kay, S L; Oz, M C; Haber, M; Blitzer, A; Treat, M R; Trokel, S L

    1992-09-01

    Recently, a laser based on a thulium-holmium-chromium (THC) doped Yttrium-aluminum-garnet (YAG) rod has been developed that produces light of 2.15 microns wavelength and can be transmitted through a low OH- silica fiberoptic cable. This wavelength falls on one of the peaks of the energy absorption spectrum of water. Thus, the THC:YAG laser eliminates the disadvantage of a cumbersome delivery system found in the CO2 laser while still providing precise cutting and minimal tissue injury inherent in lasers emitting light absorbed by water. We evaluated the soft tissue effects of this laser on canine vocal cords. Ablative lesions were produced by the THC:YAG laser and histologically examined on postoperative days 1, 7, and 28. Results indicate that the depth of tissue penetration is easily controlled and the healing response to tissue injury is comparable to that of the CO2 laser. The THC:YAG laser should prove to be a superior laser for use in otorhinolaryngology, especially when adapted to a flexible endoscope.

  4. Nd:YAG laser treatment of herpes and aphthous ulcers: a preliminary study

    NASA Astrophysics Data System (ADS)

    Parkins, Frederick M.; O'Toole, Thomas J.; Yancey, John M.

    2000-06-01

    Previously herpes labialis and recurrent aphthous ulcers have not been successfully treated. A preliminary study with a pulsed Nd:YAG laser evaluated the results with a protocol of four minute non-contact exposures for both types of lesions. Most patients experienced relief of symptoms. The progress of herpes lesion was halted and aphthous lesions became desensitized.

  5. An animal model for learning Nd:YAG laser ablation of the endometrium.

    PubMed

    Gimpelson, R J; Schomburg, M E; Bagby, M L

    1989-07-01

    Gynecologists must have a good model for practice before performing Nd:YAG laser ablation on humans. The New Zealand white rabbit has been used as a teaching model in courses. Knowing the anatomy and technique enables gynecologists to acquire the skill and dexterity needed to perform this useful procedure. PMID:2769653

  6. Infrared emission from hydrogenated amorphous carbon and amorphous carbon grains in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Duley, W. W.; Jones, A. P.; Taylor, S. D.; Williams, D. A.

    1993-01-01

    The correlations deduced by Boulanger et al. (1990) from IRAS maps of the Chamaeleon, Taurus and Ursa Major molecular cloud complexes are interpreted in terms of the evolutionary hydrogenated amorphous carbon model of interstellar dust. In particular, regions of relatively strong 12-micron emission may be regions where recently accreted carbon is being converted by ambient UV to small PAHs in situ. Regions of weak 12-micron emission are probably quiescent regions where carbon has been annealed to amorphous carbon. Observational consequences of these inferences are briefly described.

  7. Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.; MacLeod, Bruce D.; Sabatino, Ernest, III; Hartnett, Thomas M.; Gentilman, Richard L.

    2011-06-01

    A study of the laser induced damage threshold (LiDT) of anti-reflection (AR) microstructures (ARMs) built in the end facets of metal ion doped yttrium aluminum garnet (YAG) laser gain material, has been conducted. Test samples of undoped and ytterbium-doped polycrystalline YAG produced by Raytheon Company were processed with ARMs in one surface and subjected to standardized pulsed LiDT testing at the near-infrared (NIR) wavelength of 1064nm. As received YAG samples with a simple commercial polish were also submitted to the damage tests for comparison, along with YAG samples that were treated with a single layer thin-film AR coating designed for maximum transmission at 1064nm. Additional samples of single crystal sapphire and quartz, and polycrystalline ALONTM windows were prepared with thin-film AR coatings and ARMs textures to expand the 1064nm laser damage testing to other important NIR transmitting materials. It was found that the pulsed laser damage resistance of ARMs textured ceramic YAG windows is 11 J/cm2, a value that is 43% higher than untreated ceramic YAG windows, suggesting that ARMs fabrication removed residual sub-surface damage, a factor that has been shown to be important for increasing the damage resistance of an optic. This conclusion is also supported by the high damage threshold values found with the single layer AR coatings on ceramic YAG where the coatings may have shielded the sub-surface polishing damage. Testing results for the highly polished sapphire windows also support the notion that better surface preparation produces higher damage resistance. The damage threshold for untreated sapphire windows exceeded 32 J/cm2 for one sample with an average of 27.5 J/cm2 for the two samples tested. The ARMs-treated sapphire windows had similar damage thresholds as the untreated material, averaging 24.9 J/cm2, a value 1.5 to 2 times higher than the damage threshold of the thin film AR coated sapphire windows.

  8. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    NASA Astrophysics Data System (ADS)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  9. Formation of amorphous silicon by light ion damage

    SciTech Connect

    Shih, Y.C.

    1985-12-01

    Amorphization by implantation of boron ions (which is the lightest element generally used in I.C. fabrication processes) has been systematically studied for various temperatures, various voltages and various dose rates. Based on theoretical considerations and experimental results, a new amorphization model for light and intermediate mass ion damage is proposed consisting of two stages. The role of interstitial type point defects or clusters in amorphization is emphasized. Due to the higher mobility of interstitials out-diffusion to the surface particularly during amorphization with low energy can be significant. From a review of the idealized amorphous structure, diinterstitial-divacancy pairs are suggested to be the embryos of amorphous zones formed during room temperature implantation. The stacking fault loops found in specimens implanted with boron at room temperature are considered to be the origin of secondary defects formed during annealing.

  10. Pulsed Nd:YAG laser deposition of ruthenium thin films

    NASA Astrophysics Data System (ADS)

    Wai Keat, Lee

    Ruthenium (Ru) is one of the noble air-stable transition metals, which has excellent thermal chemical stability, low electrical resistivity, and relatively high work function near the valence band edge of Si. Recently, Ru has been introduced into the semiconductor industries as a result of the interesting chemical, physical, and electrical properties it possessed. So far, investigations of ruthenium films have been centered on material properties of Ru layers, growth using direct current/radiofrequency (DC/RF) magnetron sputtering, and chemical vapor deposition. However, comparatively little work has been carried out using the pulsed laser deposition (PLD) technique. In this research work, the growth of Ru film using PLD was investigated. The Ru films were deposited on silicon (Si) substrates employing 355 nm pulsed Nd:YAG laser source. Laser fluence ranged from 2 to 8 J/cm2 was employed, with deposition duration from 5 to 180 minutes under high vacuum condition. Optical emission spectroscopy (OES) was employed to study the species and purity of the plasma during the deposition. It was observed that intensity of the Ru species spectra increased with increasing laser fluence and more prominent after laser fluence of 4 J/cm2. No impurities were observed. Film thicknesses ranging from 15 to 280 nm were obtained. As the deposition duration and the laser fluence increased, the thickness of the deposited Ru films increased. It is observed that there was a critical deposition duration value, and this value increases as the laser fluence increased. X-ray diffraction (XRD) spectra showed Ru with crystalline orientation of (101), (100), and (002) peaks. The XRD results revealed an enhanced diffraction peak when film thickness increased, under all laser fluences. Grain sizes were deduced from the XRD data by using the Scherrer's formula and the values fall in the range of 20 to 35 nm for the film thickness covering from 50 nm to 250 nm. Besides, the electrical properties of

  11. Delivery of Erbium:YAG laser radiation through side-firing germanium oxide optical fibers

    NASA Astrophysics Data System (ADS)

    Ngo, Anthony K.; Fried, Nathaniel M.

    2006-02-01

    The Erbium:YAG laser is currently being tested experimentally for endoscopic applications in urology, including more efficient laser lithotripsy and more precise incision of urethral strictures than the Holmium:YAG laser. While side-firing silica fibers are available for use with the Ho:YAG laser in urology, no such fibers exist for use with the Er:YAG laser. These applications may benefit from the availability of a side-firing, mid-infrared optical fiber capable of delivering the laser radiation at a 90-degree angle to the tissue. The objective of this study is to describe the simple construction and characterization of a side-firing germanium oxide fiber for potential use in endoscopic laser surgery. Side-firing fibers were constructed from 450-micron-core germanium oxide fibers of 1.45-m-length by polishing the distal tip at a 45-degree angle and placing a 1-cm-long protective quartz cap over the fiber tip. Er:YAG laser radiation with a wavelength of 2.94 microns, pulse duration of 300 microseconds, pulse repetition rate of 3 Hz, and pulse energies of from 5 to 550 mJ was coupled into the fibers. The fiber transmission rate and damage threshold measured 48 +/- 4 % and 149 +/- 37 mJ, respectively (n = 6 fibers). By comparison, fiber transmission through normal germanium oxide trunk fibers measured 66 +/- 3 %, with no observed damage (n = 5 fibers). Sufficient pulse energies were transmitted through the side-firing fibers for contact tissue ablation. Although these initial tests are promising, further studies will need to be conducted, focusing on assembly of more flexible, smaller diameter fibers, fiber bending transmission tests, long-term fiber reliability tests, and improvement of the fiber output spatial beam profile.

  12. Nd:YAG laser systems with radiation delivery by thin hollow waveguides

    NASA Astrophysics Data System (ADS)

    Nemec, Michal; Jelínková, Helena; Šulc, Jan; Miyagi, Mitsunobu; Iwai, Katsumasa; Shi, Yi-Wei; Matsuura, Yuji

    2008-04-01

    The goal of the work was the investigation of hollow waveguide utilization for near infrared laser radiation delivery. As basic delivery unit, a new thin cyclic olefin polymer coated silver hollow glass waveguide with diameters 100/190 μm or 250/360 μm and length up to 20 cm was used. Four near infrared laser sources were based on the Nd:YAG crystals. The first one - Nd:YAG laser passively Q-switched by LiF:F 2- saturable absorber - was coherently pumped by Alexandrite radiation. The system generated 1.06 μm wavelength radiation with 6 ns length of pulse and 0.7 mJ maximum output energy. The second and third laser systems were compact longitudinally diode pumped Nd:YAG lasers generating radiation at wavelength 1.06 μm and 1.44 μm. These lasers were operating in a free-running regime under pulsed pumping (pulse repetition rate 50 Hz). Mean output power 160 mW (90 mW) with pulse length 0.5 ms (1 ms) was generated at wavelength 1.06 μm (1.44 μm). The last radiation source was the Nd:YAG/V:YAG microchip laser pumped by laser diode and generating the radiation at 1.34 μm wavelength. The output power, pulse length, and repetition rate were 25 mW, 6 ns, and 250 Hz, respectively. All lasers were generating beam with gaussian TEM 00 profile. These radiations were focused into thin a waveguide and delivery radiation characteristics were investigated. It was recognized that the output spatial structure is significantly modified in all cases. However a compact delivery system can be useful for near infrared powerful radiation delivery in some special technological and medical applications.

  13. Amorphous silicon/polycrystalline thin film solar cells

    SciTech Connect

    Ullal, H.S.

    1991-03-13

    An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

  14. Structure and dynamics of amorphous water ice.

    PubMed

    Laufer, D; Kochavi, E; Bar-Nun, A

    1987-12-15

    Further insight into the structure and dynamics of amorphous water ice, at low temperatures, was obtained by trapping in it Ar, Ne, H2, and D2. Ballistic water-vapor deposition results in the growth of smooth, approximately 1 x 0.2 micrometer2, ice needles. The amorphous ice seems to exist in at least two separate forms, at T < 85 K and at 85 < T < 136.8 K, and transform irreversibly from one form to the other through a series of temperature-dependent metastable states. The channels formed by the water hexagons in the ice are wide enough to allow the free penetration of H2 and D2 into the ice matrix even in the relatively compact cubic ice, resulting in H2-(D2-) to-ice ratios (by number) as high as 0.63. The larger Ar atoms can penetrate only into the wider channels of amorphous ice, and Ne is an intermediate case. Dynamic percolation behavior explains the emergence of Ar and Ne (but not H2 and D2) for the ice, upon warming, in small and big gas jets. The big jets, each containing approximately 5 x 10(10) atoms, break and propel the ice needles. Dynamic percolation also explains the collapse of the ice matrix under bombardment by Ar , at a pressure exceeding 2.6 dyn cm-2, and the burial of huge amounts of gas inside the collapsed matrix, up to an Ar-to-ice of 3.3 (by number). The experimental results could be relevant to comets, icy satellites, and icy grain mantles in dense interstellar clouds.

  15. Structure and dynamics of amorphous water ice

    NASA Technical Reports Server (NTRS)

    Laufer, D.; Kochavi, E.; Bar-Nun, A.; Owen, T. (Principal Investigator)

    1987-01-01

    Further insight into the structure and dynamics of amorphous water ice, at low temperatures, was obtained by trapping in it Ar, Ne, H2, and D2. Ballistic water-vapor deposition results in the growth of smooth, approximately 1 x 0.2 micrometer2, ice needles. The amorphous ice seems to exist in at least two separate forms, at T < 85 K and at 85 < T < 136.8 K, and transform irreversibly from one form to the other through a series of temperature-dependent metastable states. The channels formed by the water hexagons in the ice are wide enough to allow the free penetration of H2 and D2 into the ice matrix even in the relatively compact cubic ice, resulting in H2-(D2-) to-ice ratios (by number) as high as 0.63. The larger Ar atoms can penetrate only into the wider channels of amorphous ice, and Ne is an intermediate case. Dynamic percolation behavior explains the emergence of Ar and Ne (but not H2 and D2) for the ice, upon warming, in small and big gas jets. The big jets, each containing approximately 5 x 10(10) atoms, break and propel the ice needles. Dynamic percolation also explains the collapse of the ice matrix under bombardment by Ar , at a pressure exceeding 2.6 dyn cm-2, and the burial of huge amounts of gas inside the collapsed matrix, up to an Ar-to-ice of 3.3 (by number). The experimental results could be relevant to comets, icy satellites, and icy grain mantles in dense interstellar clouds.

  16. Continuous-wave and passively Q-switched 1.06 μm ceramic Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    He, Ying; Ma, Yufei; Li, Jiang; Li, Xudong; Yan, Renpeng; Gao, Jing; Yu, Xin; Sun, Rui; Pan, Yubai

    2016-07-01

    In this paper, a diode-pumped continuous-wave and passively Q-switched 1.06 μm laser with gain medium of ceramic was demonstrated. Laser output characteristics using Nd:YAG ceramics with different doping concentrations of 1.0%, 2.0%, and 4.0% were studied. A maximum output power of 7.74 W with optical efficiency of 51.6% was obtained through the optimization of the coupler's transmission. By using Cr4+:YAG crystals with initial transmissions of 80% and 90% as saturable absorbers, the pulsed ceramic Nd:YAG laser performance was investigated.

  17. Effect of Nd:YAG laser irradiation and fluoride application in the progression of dentin erosion in vitro.

    PubMed

    João-Souza, Samira Helena; Scaramucci, Tais; Hara, Anderson T; Aranha, Ana Cecilia Corrêa

    2015-12-01

    Nd:YAG laser and its association with fluoride have been proposed as an option for the prevention of dental erosion. This study evaluated the progression of existing dentin erosive lesions after treatment with different Nd:YAG laser (1064 nm) protocols, associated or not with fluoride. Erosive lesions were created with 1 % citric acid for 10 min in human dentin specimens. They were randomly assigned into eight groups (n = 15): no treatment (control), 1-min application of 2 % sodium fluoride gel (NaF), Nd:YAG1 (Nd:YAG laser irradiation 0.5 W; 50 mJ; ~41.66 J/cm(2); 10 Hz; 40 s; in contact), Nd:YAG2 (0.7 W; 70 mJ; ~62.50 J/cm(2); 10 Hz; 40 s; in contact), Nd:YAG3 (1 W; 100 mJ; ~54,16 J/cm(2); 10 Hz; 40 s; 1 mm unfocused), NaF + Nd:YAG1, NaF + Nd:YAG2, and NaF + Nd:YAG3. After treatment, the specimens were submitted to a 5-day erosion-remineralization cycling model, 6×/day. Dentin surface loss (SL) was evaluated with optical profilometry after the formation of the initial lesion; after treatment; and after days 1, 3, and 5. Data were statistically analyzed (alpha = 0.05). Significant differences were observed among the groups in all testing times (p < 0.001), except after initial lesion formation. Loss of dentin surface was observed after irradiation with all Nd:YAG laser protocols (p < 0.05). The association fluoride and laser did not differ significantly from laser alone. NaF showed the lowest values of SL and Nd:YAG2 and NaF + Nd:YAG2, the highest. Within the limitations of an in vitro study, it was concluded that laser irradiation, according to the parameters used, was not an appropriated approach to prevent dentin erosion progression, even when it was associated with fluoride.

  18. Effect of Nd:YAG laser irradiation and fluoride application in the progression of dentin erosion in vitro.

    PubMed

    João-Souza, Samira Helena; Scaramucci, Tais; Hara, Anderson T; Aranha, Ana Cecilia Corrêa

    2015-12-01

    Nd:YAG laser and its association with fluoride have been proposed as an option for the prevention of dental erosion. This study evaluated the progression of existing dentin erosive lesions after treatment with different Nd:YAG laser (1064 nm) protocols, associated or not with fluoride. Erosive lesions were created with 1 % citric acid for 10 min in human dentin specimens. They were randomly assigned into eight groups (n = 15): no treatment (control), 1-min application of 2 % sodium fluoride gel (NaF), Nd:YAG1 (Nd:YAG laser irradiation 0.5 W; 50 mJ; ~41.66 J/cm(2); 10 Hz; 40 s; in contact), Nd:YAG2 (0.7 W; 70 mJ; ~62.50 J/cm(2); 10 Hz; 40 s; in contact), Nd:YAG3 (1 W; 100 mJ; ~54,16 J/cm(2); 10 Hz; 40 s; 1 mm unfocused), NaF + Nd:YAG1, NaF + Nd:YAG2, and NaF + Nd:YAG3. After treatment, the specimens were submitted to a 5-day erosion-remineralization cycling model, 6×/day. Dentin surface loss (SL) was evaluated with optical profilometry after the formation of the initial lesion; after treatment; and after days 1, 3, and 5. Data were statistically analyzed (alpha = 0.05). Significant differences were observed among the groups in all testing times (p < 0.001), except after initial lesion formation. Loss of dentin surface was observed after irradiation with all Nd:YAG laser protocols (p < 0.05). The association fluoride and laser did not differ significantly from laser alone. NaF showed the lowest values of SL and Nd:YAG2 and NaF + Nd:YAG2, the highest. Within the limitations of an in vitro study, it was concluded that laser irradiation, according to the parameters used, was not an appropriated approach to prevent dentin erosion progression, even when it was associated with fluoride. PMID:26370205

  19. Medical imaging applications of amorphous silicon

    SciTech Connect

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance.

  20. Radiation resistance studies of amorphous silicon films

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Payson, J. Scott

    1989-01-01

    Hydrogenated amorphous silicon thin films were irradiated with 2.00 MeV helium ions using fluences ranging from 1E11 to 1E15 cm(-2). The films were characterized using photothermal deflection spectroscopy and photoconductivity measurements. The investigations show that the radiation introduces sub-band-gap states 1.35 eV below the conduction band and the states increase supralinearly with fluence. Photoconductivity measurements suggest the density of states above the Fermi energy is not changing drastically with fluence.

  1. Mechanism for hydrogen diffusion in amorphous silicon

    SciTech Connect

    Biswas, R.; Li, Q.; Pan, B.C.; Yoon, Y.

    1998-01-01

    Tight-binding molecular-dynamics calculations reveal a mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicons and breaking their Si{endash}Si bonds. The diffusing hydrogen carries with it a newly created dangling bond. These intermediate transporting states are densely populated in the network, have lower energies than H at the center of stretched Si{endash}Si bonds, and can play a crucial role in hydrogen diffusion. {copyright} {ital 1998} {ital The American Physical Society}

  2. Obstacles using amorphous materials for volume applications

    NASA Astrophysics Data System (ADS)

    Kiessling, Albert; Reininger, Thomas

    2012-10-01

    This contribution is especially focussed on the attempt to use amorphous or nanocrystalline metals in position sensor applications and to describe the difficulties and obstacles encountered in coherence with the development of appropriate industrial high volume series products in conjunction with the related quality requirements. The main motivation to do these investigations was to beat the generally known sensors especially silicon based Hall-sensors as well as AMR- and GMR-sensors - well known from mobile phones and electronic storage devices like hard discs and others - in terms of cost-effectiveness and functionality.

  3. Amorphous computing: examples, mathematics and theory.

    PubMed

    Stark, W Richard

    2013-01-01

    The cellular automata model was described by John von Neumann and his friends in the 1950s as a representation of information processing in multicellular tissue. With crystalline arrays of cells and synchronous activity, it missed the mark (Stark and Hughes, BioSystems 55:107-117, 2000). Recently, amorphous computing, a valid model for morphogenesis in multicellular information processing, has begun to fill the void. Through simple examples and elementary mathematics, this paper begins a computation theory for this important new direction. PMID:23946719

  4. Diffusion and ion mixing in amorphous alloys

    SciTech Connect

    Hahn, H.; Averback, R.S.; Ding, F.; Loxton, C.; Baker, J.

    1986-10-01

    Tracer impurity diffusion and ion beam mixing in amorphous (a-)Ni/sub 50/Zr/sub 50/ were measured. A correlation between the metallic radius of an impurity and its tracer diffusivity was observed; it is similar to that found in crystalline ..cap alpha..-Zr and ..cap alpha..-Ti. In addition, the temperature dependence of diffusion in a-NiZr exhibits Arrhenius behavior. Ion beam mixing of different impurities in a-NiZr correlates with tracer diffusivity at both high and low temperatures. At higher temperatures radiation enhanced diffusion (RED) was observed. The activation enthalpy of the RED diffusion coefficient is 0.3 eV/atom.

  5. Encoding of Memory in Sheared Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2014-01-01

    We show that memory can be encoded in a model amorphous solid subjected to athermal oscillatory shear deformations, and in an analogous spin model with disordered interactions, sharing the feature of a deformable energy landscape. When these systems are subjected to oscillatory shear deformation, they retain memory of the deformation amplitude imposed in the training phase, when the amplitude is below a "localization" threshold. Remarkably, multiple persistent memories can be stored using such an athermal, noise-free, protocol. The possibility of such memory is shown to be linked to the presence of plastic deformations and associated limit cycles traversed by the system, which exhibit avalanche statistics also seen in related contexts.

  6. Self-Diffusion in Amorphous Silicon.

    PubMed

    Strauß, Florian; Dörrer, Lars; Geue, Thomas; Stahn, Jochen; Koutsioubas, Alexandros; Mattauch, Stefan; Schmidt, Harald

    2016-01-15

    The present Letter reports on self-diffusion in amorphous silicon. Experiments were done on ^{29}Si/^{nat}Si heterostructures using neutron reflectometry and secondary ion mass spectrometry. The diffusivities follow the Arrhenius law in the temperature range between 550 and 700 °C with an activation energy of (4.4±0.3)  eV. In comparison with single crystalline silicon the diffusivities are tremendously higher by 5 orders of magnitude at about 700 °C, which can be interpreted as the consequence of a high diffusion entropy. PMID:26824552

  7. Deuterium in crystalline and amorphous silicon

    SciTech Connect

    Borzi, R.; Ma, H.; Fedders, P.A.; Leopold, D.J.; Norberg, R.E.; Boyce, J.B.; Johnson, N.M.; Ready, S.E.; Walker, J.

    1997-07-01

    The authors report deuteron magnetic resonance (DMR) measurements on aged deuterium-implanted single crystal n-type silicon and comparisons with amorphous silicon spectra. The sample film was prepared six years ago by deuteration from a-D{sub 2} plasma and evaluated by a variety of experimental methods. Deuterium has been evolving with time and the present DMR signal shows a smaller deuteron population. A doublet from Si-D configurations along (111) has decreased more than have central molecular DMR components, which include 47 and 12 kHz FWHM gaussians. Transient DMR magnetization recoveries indicate spin lattice relaxation to para-D{sub 2} relaxation centers.

  8. Cyclic behaviors of amorphous shape memory polymers.

    PubMed

    Yu, Kai; Li, Hao; McClung, Amber J W; Tandon, Gyaneshwar P; Baur, Jeffery W; Qi, H Jerry

    2016-04-01

    Cyclic loading conditions are commonly encountered in the applications of shape memory polymers (SMPs), where the cyclic characteristics of the materials determine their performance during the service life, such as deformation resistance, shape recovery speed and shape recovery ratio. Recent studies indicate that in addition to the physical damage or some other irreversible softening effects, the viscoelastic nature could also be another possible reason for the degraded cyclic behavior of SMPs. In this paper, we explore in detail the influence of the viscoelastic properties on the cyclic tension and shape memory (SM) behavior of an epoxy based amorphous thermosetting polymer. Cyclic experiments were conducted first, which show that although the epoxy material does not have any visible damage or irreversible softening effect during deformation, it still exhibits obvious degradation in the cyclic tension and SM behaviors. A linear multi-branched model is utilized to assist in the prediction and understanding of the mechanical responses of amorphous SMPs. Parametric studies based on the applied model suggest that the shape memory performance can be improved by adjusting programming and recovery conditions, such as lowering the loading rate, increasing the programming temperature, and reducing the holding time. PMID:26924339

  9. Structural and Elastic Properties of Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Feldman, Joseph; Papaconstantopoulos, Dimitris; Bernstein, Noam; Mehl, Michael

    2003-03-01

    In this work we study the elastic and structural properties of amorphous silicon using the NRL tight-binding method (N. Bernstein, et al., Phys. Rev. B 62, 4477 (2000).). Using conjugate gradient energy minimization we have relaxed a 216 atom model. The amorphous-crystal energy difference is 0.017 Ryd/atom, similar to a calculation on a related model using the empirical Stillinger-Weber potential and twice the experimental value. The structure of the relaxed model is consistent with diffraction experiments as well as more indirect experimental results. The model is fully four-fold coordinated with an RMS bond angle deviation of only 11^rc, and is expanded 2% in volume with respect to the TB crystalline value. Using the method of homogeneous deformation we have found a relaxed shear modulus of ˜57 GPa (with an estimated 2% uncertainty due to anisotropy) and relaxed bulk modulus of 87.3 GPa, in very good agreement with a previous (ab initio) calculated value of 82.5 GPa (M. Durandurdu and D. A. Drabold, Phys. Rev. B 64, 014101 (2001).). We find that the distribution of relaxation displacements under shear is markedly skewed towards large values. Finally, we discuss the force constants and vacancy energy distributions for several models.

  10. Modeling of amorphous polyaniline emeraldine base.

    PubMed

    Canales, Manel; Curcó, David; Alemán, Carlos

    2010-08-01

    Amorphous polyaniline emeraldine base has been investigated using atomistic classical molecular dynamics simulations. Initially, different sets of force-field parameters, which differ in the atomic charges and/or the van der Waals parameters, were tested. The experimental density of polyaniline was satisfactorily reproduced using the following combination: (i) equilibrium bond lengths, equilibrium bond angles, and electrostatic charges derived from quantum mechanical calculations and (ii) van der Waals parameters extrapolated from GROMOS for all atoms with the exception of the CH pseudoparticles of the phenyl ring, which were taken from an anisotropic united atom potential. Next, this force field was used to investigate the structure of the polymer in the amorphous state, the trajectories performed for this purpose allowing accumulation of 750 ns. Analyses of the energies evidence that the interactions between one repeating unit containing an amine nitrogen atom and another unit with an imine nitrogen are favored with respect to those between two identical repeating units. This conclusion is also supported by quantum mechanical and quantum mechanical/molecular mechanics calculations. On the other hand, the partial radial distribution functions indicate that this material only exhibits short-range intramolecular correlation, which is in excellent agreement with experimental evidence.

  11. Atomic-Scale Imprinting into Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo; Li, Rui; Simon, Georg; Kinser, Emely; Liu, Ze; Chen, Zheng; Zhou, Chao; Singer, Jonathan; Osuji, Chinedum; Schroers, Jan

    Nanoimprinting by thermoplastic forming (TPF) has attracted significant attention in recent years due to its promise of low-cost fabrication of nanostructured devices. Usually performed using polymers, amorphous metals have been identified as a material class that might be even better suited for nanoimprinting due to a combination of mechanical properties and processing ability. Commonly referred to as metallic glasses, their featureless atomic structure suggests that there may not be an intrinsic size limit to the material's ability to replicate a mold. To study this hypothesis, we demonstrate atomic-scale imprinting into amorphous metals by TPF under ambient conditions. Atomic step edges of a SrTiO3 (STO) single crystal used as mold were successfully imprinted into Pt-based bulk metallic glasses (BMGs) with high fidelity. Terraces on the BMG replicas possess atomic smoothness with sub-Angstrom roughness that is identical to the one measured on the STO mold. Systematic studies revealed that the quality of the replica depends on the loading rate during imprinting, that the same mold can be used multiple times without degradation of mold or replicas, and that the atomic-scale features on as-imprinted BMG surfaces has impressive long-term stability (months).

  12. Structural Characteristics of Synthetic Amorphous Calcium Carbonate

    SciTech Connect

    Michel, F. Marc; MacDonald, Jason; Feng, Jian; Phillips, Brian L.; Ehm, Lars; Tarabrella, Cathy; Parise, John B.; Reeder, Richard J.

    2008-08-06

    Amorphous calcium carbonate (ACC) is an important phase involved in calcification by a wide variety of invertebrate organisms and is of technological interest in the development of functional materials. Despite widespread scientific interest in this phase a full characterization of structure is lacking. This is mainly due to its metastability and difficulties in evaluating structure using conventional structure determination methods. Here we present new findings from the application of two techniques, pair distribution function analysis and nuclear magnetic resonance spectroscopy, which provide new insight to structural aspects of synthetic ACC. Several important results have emerged from this study of ACC formed in vitro using two common preparation methods: (1) ACC exhibits no structural coherence over distances > 15 {angstrom} and is truly amorphous; (2) most of the hydrogen in ACC is present as structural H{sub 2}O, about half of which undergoes restricted motion on the millisecond time scale near room temperature; (3) the short- and intermediate-range structure of ACC shows no distinct match to any known structure in the calcium carbonate system; and (4) most of the carbonate in ACC is monodentate making it distinctly different from monohydrocalcite. Although the structure of synthetic ACC is still not fully understood, the results presented provide an important baseline for future experiments evaluating biogenic ACC and samples containing certain additives that may play a role in stabilization of ACC, crystallization kinetics, and final polymorph selection.

  13. The future of amorphous silicon photovoltaic technology

    SciTech Connect

    Crandall, R; Luft, W

    1995-06-01

    Amorphous silicon modules are commercially available. They are the first truly commercial thin-film photovoltaic (PV) devices. Well-defined production processes over very large areas (>1 m{sup 2}) have been implemented. There are few environmental issues during manufacturing, deployment in the field, or with the eventual disposal of the modules. Manufacturing safety issues are well characterized and controllable. The highest measured initial efficiency to date is 13.7% for a small triple-stacked cell and the highest stabilized module efficiency is 10%. There is a consensus among researchers, that in order to achieve a 15% stabilized efficiency, a triple-junction amorphous silicon structure is required. Fundamental improvements in alloys are needed for higher efficiencies. This is being pursued through the DOE/NREL Thin-Film Partnership Program. Cost reductions through improved manufacturing processes are being pursued under the National Renewable Energy Laboratory/US Department of Energy (NREL/DOE)-sponsored research in manufacturing technology (PVMaT). Much of the work in designing a-Si devices is a result of trying to compensate for the Staebler-Wronski effect. Some new deposition techniques hold promise because they have produced materials with lower stabilized defect densities. However, none has yet produced a high efficiency device and shown it to be more stable than those from standard glow discharge deposited material.

  14. Cyclic behaviors of amorphous shape memory polymers.

    PubMed

    Yu, Kai; Li, Hao; McClung, Amber J W; Tandon, Gyaneshwar P; Baur, Jeffery W; Qi, H Jerry

    2016-04-01

    Cyclic loading conditions are commonly encountered in the applications of shape memory polymers (SMPs), where the cyclic characteristics of the materials determine their performance during the service life, such as deformation resistance, shape recovery speed and shape recovery ratio. Recent studies indicate that in addition to the physical damage or some other irreversible softening effects, the viscoelastic nature could also be another possible reason for the degraded cyclic behavior of SMPs. In this paper, we explore in detail the influence of the viscoelastic properties on the cyclic tension and shape memory (SM) behavior of an epoxy based amorphous thermosetting polymer. Cyclic experiments were conducted first, which show that although the epoxy material does not have any visible damage or irreversible softening effect during deformation, it still exhibits obvious degradation in the cyclic tension and SM behaviors. A linear multi-branched model is utilized to assist in the prediction and understanding of the mechanical responses of amorphous SMPs. Parametric studies based on the applied model suggest that the shape memory performance can be improved by adjusting programming and recovery conditions, such as lowering the loading rate, increasing the programming temperature, and reducing the holding time.

  15. CORROSION STUDY OF AMORPHOUS METAL RIBBONS

    SciTech Connect

    Lian, T; Day, S D; Farmer, J C

    2006-07-31

    Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The potential advantages of amorphous metals have been recognized for some time [Latanison 1985]. Iron-based corrosion-resistant, amorphous-metal coatings under development may prove important for maritime applications [Farmer et al. 2005]. Such materials could also be used to coat the entire outer surface of containers for the transportation and long-term storage of spent nuclear fuel, or to protect welds and heat affected zones, thereby preventing exposure to environments that might cause stress corrosion cracking [Farmer et al. 1991, 2000a, 2000b]. In the future, it may be possible to substitute such high-performance iron-based materials for more-expensive nickel-based alloys, thereby enabling cost savings in a wide variety of industrial applications. It should be noted that thermal-spray ceramic coatings have also been investigated for such applications [Haslam et al. 2005]. This report focuses on the corrosion resistance of iron-based melt-spun amorphous metal ribbons. Melt-Spun ribbon is made by rapid solidification--a stream of molten metal is dropped onto a spinning copper wheel, a process that enables the manufacture of amorphous metals which are unable to be manufactured by conventional cold or hot rolling techniques. The study of melt-spun ribbon allows quick evaluation of amorphous metals corrosion resistance. The melt-spun ribbons included in this study are DAR40, SAM7, and SAM8, SAM1X series, and SAM2X series. The SAM1X series ribbons have

  16. Biostimulative effects of Nd:YAG Q-switch dye on normal human fibroblast cultures: study of a new chemosensitizing agent for the Nd:YAG laser

    SciTech Connect

    Castro, D.J.; Saxton, R.E.; Fetterman, H.R.; Castro, D.J.; Ward, P.H.

    1987-12-01

    Kodak Q-switch II is a new chemical with an absorption maxima at 1051 nm, designed to be used as an Nd:YAG dye laser. The potential for this dye as a new chemosensitizing agent in the treatment of connective tissue diseases and wound healing with low energy Nd:YAG laser was examined. Two normal fibroblast cell lines were tested for sensitivity to various levels of this dye in vitro. These cells were exposed to Q-switch II dye at concentrations of 0.01, 0.1, 1, 10, 50, and 100 micrograms/ml for 1 and 24 hours. Cell viability was assessed by the trypan blue exclusion test. Cell duplication and DNA synthesis were measured by the incorporation of (/sup 3/H)-thymidine at 6 and 24 hours postexposure to Q-switch II dye. At concentrations up to 10 micrograms/ml, both cell lines tested showed no changes in cell viability. However, at concentrations equal or higher than 50 micrograms/ml, more than 40% of the fibroblasts incorporated trypan blue after 24 hours of exposure to this dye, indicating significant cell destruction. The results indicate that Q-switch II dye is nontoxic to normal human fibroblast cultures and showed significant biostimulative effects on cell duplication at concentrations equal to or lower than 10 micrograms/ml. Further studies will be required to determine the usefulness of Q-switch II dye as a new photochemosensitizing agent for potential biostimulation of wound healing and/or treatment of connective tissue diseases with the Nd:YAG laser (near infrared, 1060 nm) at nonthermal levels of energies.

  17. Fine tuning of emission property of white light-emitting diodes by quantum-dot-coating on YAG:Ce nanophosphors

    NASA Astrophysics Data System (ADS)

    Kong, Dal Sung; Kim, Min Jeong; Song, Hee Jo; Cho, In Sun; Jeong, Sohee; Shin, Hyunjung; Lee, Sangwook; Jung, Hyun Suk

    2016-08-01

    We report fine tuning of emission color of Ce-doped yttrium aluminum garnet (Y3Al5O12:Ce3+, YAG:Ce) nanophosphor-based white light-emitting diodes (WLED), by coating CdSe/CdS/ZnS quantum dots (QDs) onto the surface of the YAG:Ce nanoparticles via surface functionalization of both the QDs and the YAG:Ce. Mixture of bromo-functionalized QDs and amino-functionalized YAG:Ce nanoparticles results in conformal coating of the QDs onto the YAG:Ce nanoparticles (QD@YAG:Ce). By varying the QD to YAG:Ce weight ratios, the luminescence spectra of the QD@YAG:Ce are tuned. A high-quality warm-white-light emission is achieved by appropriate combination of the yellow and red emissions from the QD@YAG:Ce, and the blue emission from InGaN LED chip. However, without surface functionalization, irregular mixtures of YAG:Ce and QDs are formed, which consequently make it hard to control the emission spectra. This study demonstrates a promising way to prepare uniformly QD-coated nanophosphors and an approach to control the emission spectra the nanophosphors.

  18. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  19. LOW-TEMPERATURE CRYSTALLIZATION OF AMORPHOUS SILICATE IN ASTROPHYSICAL ENVIRONMENTS

    SciTech Connect

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Kimura, Hiroshi

    2010-07-01

    We construct a theoretical model for low-temperature crystallization of amorphous silicate grains induced by exothermic chemical reactions. As a first step, the model is applied to the annealing experiments, in which the samples are (1) amorphous silicate grains and (2) amorphous silicate grains covered with an amorphous carbon layer. We derive the activation energies of crystallization for amorphous silicate and amorphous carbon from the analysis of the experiments. Furthermore, we apply the model to the experiment of low-temperature crystallization of an amorphous silicate core covered with an amorphous carbon layer containing reactive molecules. We clarify the conditions of low-temperature crystallization due to exothermic chemical reactions. Next, we formulate the crystallization conditions so as to be applicable to astrophysical environments. We show that the present crystallization mechanism is characterized by two quantities: the stored energy density Q in a grain and the duration of the chemical reactions {tau}. The crystallization conditions are given by Q>Q{sub min} and {tau} < {tau}{sub cool} regardless of details of the reactions and grain structure, where {tau}{sub cool} is the cooling timescale of the grains heated by exothermic reactions, and Q{sub min} is minimum stored energy density determined by the activation energy of crystallization. Our results suggest that silicate crystallization occurs in wider astrophysical conditions than hitherto considered.

  20. Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Bai, Feng; Li, Hong-Jin; Huang, Yuan-Yuan; Fan, Wen-Zhong; Pan, Huai-Hai; Wang, Zhuo; Wang, Cheng-Wei; Qian, Jing; Li, Yang-Bo; Zhao, Quan-Zhong

    2016-10-01

    We have used femtosecond laser pulses to ablate monocrystalline silicon wafer. Raman spectroscopy and X-ray diffraction analysis of ablation surface indicates horizontally polarized laser beam shows an enhancement in amorphization efficiency by a factor of 1.6-1.7 over the circularly polarized laser ablation. This demonstrates that one can tune the amorphization efficiency through the polarization of irradiation laser.

  1. Electrically conducting ternary amorphous fully oxidized materials and their application

    NASA Technical Reports Server (NTRS)

    Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)

    2004-01-01

    Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.

  2. Pressure-induced transformations in amorphous silicon: A computational study

    SciTech Connect

    Garcez, K. M. S.; Antonelli, A.

    2014-02-14

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  3. Method for improving the stability of amorphous silicon

    DOEpatents

    Branz, Howard M.

    2004-03-30

    A method of producing a metastable degradation resistant amorphous hydrogenated silicon film is provided, which comprises the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.

  4. Using Amorphous Phases in the Design of Structural Alloys

    NASA Astrophysics Data System (ADS)

    Schwarz, R. B.; Nash, P.

    1989-01-01

    The recent discovery that amorphous alloy powders can be prepared by mechanically alloying a mixture of pure crystalline intermetallics is opening new windows to the synthesis of engineering materials. Amorphous powders synthesized by mechanical alloying may find application in the design of structural alloys, high thermal conductivity alloys, and metal-matrix composites.

  5. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOEpatents

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  6. Amorphization and nanocrystallization of silcon under shock compression

    DOE PAGESBeta

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energymore » changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.« less

  7. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (~10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J/cm2, respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  8. Absorption and thermal study of dental enamel when irradiated with Nd:YAG laser with the aim of caries prevention

    NASA Astrophysics Data System (ADS)

    Boari, H. G. D.; Ana, P. A.; Eduardo, C. P.; Powell, G. L.; Zezell, D. M.

    2009-07-01

    It is widely recognized that Nd:YAG can increase enamel resistance to demineralization; however, the safe parameters and conditions that enable the application of Nd:YAG laser irradiation in vivo are still unknown. The aim of this study was to determine a dye as a photoabsorber for Nd:YAG laser and to verify in vitro a safe condition of Nd:YAG irradiation for caries prevention. Fifty-eight human teeth were selected. In a first morphological study, four dyes (waterproof India ink., iron oxide, caries indicator and coal paste) were tested before Nd:YAG laser irradiation, under two different irradiation conditions: 60 mJ/pulse and 10 Hz (84.9 J/cm2); 80 mJ/pulse and 10 Hz (113.1 J/cm2). In a second study, the enamel surface and pulp chamber temperatures were evaluated during laser irradiations. All dyes produced enamel surface melting, with the exception of the caries indicator, and coal paste was the only dye that could be completely removed. All irradiation conditions produced temperature increases of up to 615.08°C on the enamel surface. Nd:YAG laser irradiation at 60 mJ/pulse, 10 Hz and 84.9 J/cm2 promoted no harmful temperature increase in the pulp chamber (ANOVA, p < 0.05). Among all dyes tested, the coal paste was an efficient photoabsorber for Nd:YAG irradiation, considered feasible for clinical practice. Nd:YAG laser at 84.9 J/cm2 can be indicated as a safe parameter for use in caries prevention.

  9. Removal Of Surface Deposits And Intrinsic Stains Of Teeth With Fiber Optics Of Nd-YAG Laser

    NASA Astrophysics Data System (ADS)

    Marioka, Toshio; Maseda, Yusaku; Oho, Takahiko

    1987-03-01

    An impact of the Q-switched Nd-YAG laser caused bleaching of stains and removal of deposits and pit & fissure contents of teeth. No chalky spots or craters were found microscopically on the enamel surface after irradiation. These results strongly suggested the clinical applicability of Q-switched Nd-YAG laser in removing dental deposits, intrinsic pigmentation of enamel, and pit and fissure contents of molar.

  10. Fabrication and Characterization of Amorphous/Nanocrystalline Thin Film Composite

    NASA Astrophysics Data System (ADS)

    Newton, Benjamin S.

    Combining the absorption abilities of amorphous silicon and the electron transport capabilities of crystalline silicon would be a great advantage to not only solar cells but other semiconductor devices. In this work composite films were created using molecular beam epitaxy and electron beam deposition interchangeably as a method to create metallic precursors. Aluminum induced crystallization techniques were used to convert an amorphous silicon film with a capping layer of aluminum nanodots into a film composed of a mixture of amorphous silicon and nanocrystalline silicon. This layer was grown into the amorphous layer by cannibalizing a portion of the amorphous silicon material during the aluminum induced crystallization. Characterization was performed on films and metallic precursors utilizing SEM, TEM, ellipsometry and spectrophotometer.

  11. Direct-patterned optical waveguides on amorphous silicon films

    DOEpatents

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  12. Parametrized dielectric functions of amorphous GeSn alloys

    NASA Astrophysics Data System (ADS)

    D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia

    2015-09-01

    We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  13. Atomistic simulation of damage accumulation and amorphization in Ge

    SciTech Connect

    Gomez-Selles, Jose L. Martin-Bragado, Ignacio; Claverie, Alain; Benistant, Francis

    2015-02-07

    Damage accumulation and amorphization mechanisms by means of ion implantation in Ge are studied using Kinetic Monte Carlo and Binary Collision Approximation techniques. Such mechanisms are investigated through different stages of damage accumulation taking place in the implantation process: from point defect generation and cluster formation up to full amorphization of Ge layers. We propose a damage concentration amorphization threshold for Ge of ∼1.3 × 10{sup 22} cm{sup −3} which is independent on the implantation conditions. Recombination energy barriers depending on amorphous pocket sizes are provided. This leads to an explanation of the reported distinct behavior of the damage generated by different ions. We have also observed that the dissolution of clusters plays an important role for relatively high temperatures and fluences. The model is able to explain and predict different damage generation regimes, amount of generated damage, and extension of amorphous layers in Ge for different ions and implantation conditions.

  14. Atomic structure of amorphous shear bands in boron carbide.

    PubMed

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  15. Moringa coagulant as a stabilizer for amorphous solids: Part I.

    PubMed

    Bhende, Santosh; Jadhav, Namdeo

    2012-06-01

    Stabilization of amorphous state is a focal area for formulators to reap benefits related with solubility and consequently bioavailability of poorly soluble drugs. In the present work, an attempt has been made to explore the potential of moringa coagulant as an amorphous state stabilizer by investigating its role in stabilization of spray-dried (amorphous) ibuprofen, meloxicam and felodipine. Thermal studies like glass forming ability, glass transition temperature, hot stage microscopy and DSC were carried out for understanding thermodynamic stabilization of drugs. PXRD and dissolution studies were performed to support contribution of moringa coagulant. Studies showed that hydrogen bonding and electrostatic interactions between drug and moringa coagulant are responsible for amorphous state stabilization as explored by ATR-FTIR and molecular docking. Especially, H-bonding was found to be predominant mechanism for drug stabilization. Therein, arginine (basic amino acid in coagulant) exhibited various interactions and played important role in stabilization of aforesaid amorphous drugs. PMID:22359158

  16. Salt Fog Testing Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-07-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  17. Amorphous molybdenum sulfides as hydrogen evolution catalysts.

    PubMed

    Morales-Guio, Carlos G; Hu, Xile

    2014-08-19

    Providing energy for a population projected to reach 9 billion people within the middle of this century is one of the most pressing societal issues. Burning fossil fuels at a rate and scale that satisfy our near-term demand will irreversibly damage the living environment. Among the various sources of alternative and CO2-emission-free energies, the sun is the only source that is capable of providing enough energy for the whole world. Sunlight energy, however, is intermittent and requires an efficient storage mechanism. Sunlight-driven water splitting to make hydrogen is widely considered as one of the most attractive methods for solar energy storage. Water splitting needs a hydrogen evolution catalyst to accelerate the rate of hydrogen production and to lower the energy loss in this process. Precious metals such as Pt are superior catalysts, but they are too expensive and scarce for large-scale applications. In this Account, we summarize our recent research on the preparation, characterization, and application of amorphous molybdenum sulfide catalysts for the hydrogen evolution reaction. The catalysts can be synthesized by electrochemical deposition under ambient conditions from readily available and inexpensive precursors. The catalytic activity is among the highest for nonprecious catalysts. For example, at a loading of 0.2 mg/cm(2), the optimal catalyst delivers a current density of 10 mA/cm(2) at an overpotential of 160 mV. The growth mechanism of the electrochemically deposited film catalysts was revealed by an electrochemical quartz microcrystal balance study. While different electrochemical deposition methods produce films with different initial compositions, the active catalysts are the same and are identified as a "MoS(2+x)" species. The activity of the film catalysts can be further promoted by divalent Fe, Co, and Ni ions, and the origins of the promotional effects have been probed. Highly active amorphous molybdenum sulfide particles can also be prepared

  18. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets

    PubMed Central

    Han, Ruo-qiao; Ji, Ling-fei; Ling, Chen

    2016-01-01

    Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964

  19. Short-pulse Er:YAG laser increases bond strength of composite resin to sound and eroded dentin

    NASA Astrophysics Data System (ADS)

    Cersosimo, Maria Cecília Pereira; Matos, Adriana Bona; Couto, Roberta Souza D.'Almeida; Marques, Márcia Martins; de Freitas, Patricia Moreira

    2016-04-01

    This study evaluated the influence of the irradiation with a short-pulse Er:YAG laser on the adhesion of composite resin to sound and eroded dentin (SD and ED). Forty-six samples of occlusal dentine, obtained from human molars, had half of their surface protected, while the other half was submitted to erosive cycles. Afterward, 23 samples were irradiated with Er:YAG laser, resulting in four experimental groups: SD, sound irradiated dentine (SID-Er:YAG, 50 μs, 2 Hz, 80 mJ, and 12.6 J/cm2), ED, and eroded irradiated dentin (EID-erosion + Er:YAG laser). A self-etching adhesive system was used, and then cylinders of composite resin were prepared. A microshear bond strength test was performed after 24 h storage (n=20). The morphology of SD and ED, with or without Er:YAG laser irradiation, was evaluated under scanning electron microscopy (n=3). Bond strength values (MPa) were subjected to analysis of variance followed by Tukey's test. Statistically significant differences were found among the experimental groups: SD (9.76±3.39 B), SID (12.77±5.09 A), ED (5.12±1.72 D), and EID (7.62±3.39 C). Even though erosion reduces the adhesion to dentin, the surface irradiation with a short-pulse Er:YAG laser increases adhesion to both ED and SD.

  20. Short-pulse Er:YAG laser increases bond strength of composite resin to sound and eroded dentin

    NASA Astrophysics Data System (ADS)

    Cersosimo, Maria Cecília Pereira; Matos, Adriana Bona; Couto, Roberta Souza D.'Almeida; Marques, Márcia Martins; de Freitas, Patricia Moreira

    2016-04-01

    This study evaluated the influence of the irradiation with a short-pulse Er:YAG laser on the adhesion of composite resin to sound and eroded dentin (SD and ED). Forty-six samples of occlusal dentine, obtained from human molars, had half of their surface protected, while the other half was submitted to erosive cycles. Afterward, 23 samples were irradiated with Er:YAG laser, resulting in four experimental groups: SD, sound irradiated dentine (SID-Er:YAG, 50 μs, 2 Hz, 80 mJ, and 12.6 J/cm2), ED, and eroded irradiated dentin (EID-erosion + Er:YAG laser). A self-etching adhesive system was used, and then cylinders of composite resin were prepared. A microshear bond strength test was performed after 24 h storage (n=20). The morphology of SD and ED, with or without Er:YAG laser irradiation, was evaluated under scanning electron microscopy (n=3). Bond strength values (MPa) were subjected to analysis of variance followed by Tukey's test. Statistically significant differences were found among the experimental groups: SD (9.76±3.39 B), SID (12.77±5.09 A), ED (5.12±1.72 D), and EID (7.62±3.39 C). Even though erosion reduces the adhesion to dentin, the surface irradiation with a short-pulse Er:YAG laser increases adhesion to both ED and SD.