Science.gov

Sample records for members form tissue-specific

  1. Membrane-associated forms of peptidylglycine alpha-amidating monooxygenase activity in rat pituitary. Tissue specificity.

    PubMed

    May, V; Cullen, E I; Braas, K M; Eipper, B A

    1988-06-05

    Membrane-associated peptidylglycine alpha-amidating monooxygenase (PAM) activity was investigated in rat anterior and neurointermediate pituitary tissues and in pituitary AtT-20/D-16v and GH3 cell lines. A substantial fraction of total pituitary PAM activity was found to be membrane-associated. Triton X-100, N-octyl-beta-D-glucopyranoside, and Zwittergent were effective in solubilizing PAM activity from crude pituitary membranes. The distribution of enzyme activity between soluble and membrane-associated forms was tissue-specific. In the anterior pituitary lobe and pituitary cell lines, 40-60% of total PAM activity was membrane-associated while only 10% of the alpha-amidating activity in the neurointermediate lobe was membrane-associated. Soluble and membrane-associated forms of PAM shared nearly identical characteristics with respect to copper and ascorbate requirements, pH optima, and Km values. Upon subcellular fractionation of anterior and neurointermediate pituitary lobe homogenates on Percoll gradients, 12-18% of total PAM activity was found in the rough endoplasmic reticulum/Golgi fractions and 42-60% was localized to secretory granule fractions. For both tissues, membrane-associated PAM activity was enriched in the rough endoplasmic reticulum/Golgi pool, whereas most of the secretory granule-associated enzyme activity was soluble.

  2. Tissue-specific rhamnogalacturonan I forms the gel with hyperelastic properties.

    PubMed

    Mikshina, P V; Petrova, A A; Faizullin, D A; Zuev, Yu F; Gorshkova, T A

    2015-07-01

    Rhamnogalacturonans I are complex pectin polysaccharides extremely variable in structure and properties and widely represented in various sources. The complexity and diversity of the structure of rhamnogalacturonans I are the reasons for the limited information about the properties and supramolecular organization of these polysaccharides, including the relationship between these parameters and the functions of rhamnogalacturonans I in plant cells. In the present work, on the example of rhamnogalacturonan I from flax gelatinous fibers, the ability of this type of pectic polysaccharides to form at physiological concentrations hydrogels with hyperelastic properties was revealed for the first time. According to IR spectroscopy, water molecules are more tightly retained in the gelling rhamnogalacturonan I from flax fiber cell wall in comparison with the non-gelling rhamnogalacturonan I from primary cell wall of potato. With increase in strength of water binding by rhamnogalacturonan I, there is an increase in elastic modulus and decrease in Poisson's ratio of gel formed by this polysaccharide. The model of hyperelastic rhamnogalacturonan I capture by laterally interacting cellulose microfibrils, constructed using the finite element method, confirmed the suitability of rhamnogalacturonan I gel with the established properties for the function in the gelatinous cell wall, allowing consideration of this tissue- and stage-specific pectic polysaccharide as an important factor in creation of gelatinous fiber contractility.

  3. A Single Cell Functions as a Tissue-Specific Stem Cell and the In Vitro Niche-Forming Cell

    PubMed Central

    Ghosh, Moumita; Helm, Karen M.; Smith, Russell W.; Giordanengo, Matthew S.; Li, Bilan; Shen, Hongmei

    2011-01-01

    Tissue-specific stem cell (TSC) behavior is determined by the stem cell niche. However, delineation of the TSC–niche interaction requires purification of both entities. We reasoned that the niche could be defined by the location of the TSC. We demonstrate that a single CD49fbright/Sca1+/ALDH+ basal cell generates rare label-retaining cells and abundant label-diluting cells. Label-retaining and label-diluting cells were located in the rimmed domain of a unique clone type, the rimmed clone. The TSC property of self-renewal was tested by serial passage at clonal density and analysis of clone-forming cell frequency. A single clone could be passaged up to five times and formed only rimmed clones. Thus, rimmed clone formation was a cell-intrinsic property. Differentiation potential was evaluated in air–liquid interface cultures. Homogenous cultures of rimmed clones were highly mitotic but were refractory to standard differentiation signals. However, rimmed clones that were cocultured with unfractionated tracheal cells generated each of the cell types found in the tracheal epithelium. Thus, the default niche is promitotic: Multipotential differentiation requires adaptation of the niche. Because lung TSCs are typically evaluated after injury, the behavior of CD49fbright/Sca1+/ALDH+ cells was tested in normal and naphthalene-treated mice. These cells were mitotically active in the normal and repaired epithelium, their proliferation rate increased in response to injury, and they retained label for 34 days. We conclude that the CD49fbright/Sca1+/ALDH+ tracheal basal cell is a TSC, that it generates its own niche in vitro, and that it participates in tracheal epithelial homeostasis and repair. PMID:21131442

  4. A single cell functions as a tissue-specific stem cell and the in vitro niche-forming cell.

    PubMed

    Ghosh, Moumita; Helm, Karen M; Smith, Russell W; Giordanengo, Matthew S; Li, Bilan; Shen, Hongmei; Reynolds, Susan D

    2011-09-01

    Tissue-specific stem cell (TSC) behavior is determined by the stem cell niche. However, delineation of the TSC-niche interaction requires purification of both entities. We reasoned that the niche could be defined by the location of the TSC. We demonstrate that a single CD49f(bright)/Sca1(+)/ALDH(+) basal cell generates rare label-retaining cells and abundant label-diluting cells. Label-retaining and label-diluting cells were located in the rimmed domain of a unique clone type, the rimmed clone. The TSC property of self-renewal was tested by serial passage at clonal density and analysis of clone-forming cell frequency. A single clone could be passaged up to five times and formed only rimmed clones. Thus, rimmed clone formation was a cell-intrinsic property. Differentiation potential was evaluated in air-liquid interface cultures. Homogenous cultures of rimmed clones were highly mitotic but were refractory to standard differentiation signals. However, rimmed clones that were cocultured with unfractionated tracheal cells generated each of the cell types found in the tracheal epithelium. Thus, the default niche is promitotic: Multipotential differentiation requires adaptation of the niche. Because lung TSCs are typically evaluated after injury, the behavior of CD49f(bright)/Sca1(+)/ALDH(+) cells was tested in normal and naphthalene-treated mice. These cells were mitotically active in the normal and repaired epithelium, their proliferation rate increased in response to injury, and they retained label for 34 days. We conclude that the CD49f(bright)/Sca1(+)/ALDH(+) tracheal basal cell is a TSC, that it generates its own niche in vitro, and that it participates in tracheal epithelial homeostasis and repair.

  5. SMRT has tissue-specific isoform profiles that include a form containing one CoRNR box

    SciTech Connect

    Short, Stephen; Malartre, Marianne; Sharpe, Colin . E-mail: colin.sharpe@port.ac.uk

    2005-09-02

    SMRT acts as a corepressor for a range of transcription factors. The amino-terminal part of the protein includes domains that mainly mediate transcriptional repression whilst the carboxy-terminal part includes domains that interact with nuclear receptors using up to three motifs called CoRNR boxes. The region of the SMRT primary transcript encoding the interaction domains is subject to alternative splicing that varies the inclusion of the third CoRNR box. The profile in mice includes an abundant, novel SMRT isoform that possesses just one CoRNR box. Mouse tissues therefore express SMRT isoforms containing one, two or three CoRNR boxes. In frogs, the SMRT isoform profile is tissue-specific. The mouse also shows distinct profiles generated by differential expression levels of the SMRT transcript isoforms. The formation of multiple SMRT isoforms and their tissue-specific regulation indicates a mechanism, whereby cells can define the repertoire of transcription factors regulated by SMRT.

  6. The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis.

    PubMed

    Senger, Stefania; Csokmay, John; Akbar, Tanveer; Tanveer, Akbar; Jones, Takako Iida; Sengupta, Prabuddha; Lilly, Mary A

    2011-05-01

    The nuclear pore complex (NPC) mediates the transport of macromolecules between the nucleus and cytoplasm. Recent evidence indicates that structural nucleoporins, the building blocks of the NPC, have a variety of unanticipated cellular functions. Here, we report an unexpected tissue-specific requirement for the structural nucleoporin Seh1 during Drosophila oogenesis. Seh1 is a component of the Nup107-160 complex, the major structural subcomplex of the NPC. We demonstrate that Seh1 associates with the product of the missing oocyte (mio) gene. In Drosophila, mio regulates nuclear architecture and meiotic progression in early ovarian cysts. Like mio, seh1 has a crucial germline function during oogenesis. In both mio and seh1 mutant ovaries, a fraction of oocytes fail to maintain the meiotic cycle and develop as pseudo-nurse cells. Moreover, the accumulation of Mio protein is greatly diminished in the seh1 mutant background. Surprisingly, our characterization of a seh1 null allele indicates that, although required in the female germline, seh1 is dispensable for the development of somatic tissues. Our work represents the first examination of seh1 function within the context of a multicellular organism. In summary, our studies demonstrate that Mio is a novel interacting partner of the conserved nucleoporin Seh1 and add to the growing body of evidence that structural nucleoporins can have novel tissue-specific roles.

  7. The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis

    PubMed Central

    Senger, Stefania; Csokmay, John; Akbar, Tanveer; Jones, Takako Iida; Sengupta, Prabuddha; Lilly, Mary A.

    2011-01-01

    The nuclear pore complex (NPC) mediates the transport of macromolecules between the nucleus and cytoplasm. Recent evidence indicates that structural nucleoporins, the building blocks of the NPC, have a variety of unanticipated cellular functions. Here, we report an unexpected tissue-specific requirement for the structural nucleoporin Seh1 during Drosophila oogenesis. Seh1 is a component of the Nup107-160 complex, the major structural subcomplex of the NPC. We demonstrate that Seh1 associates with the product of the missing oocyte (mio) gene. In Drosophila, mio regulates nuclear architecture and meiotic progression in early ovarian cysts. Like mio, seh1 has a crucial germline function during oogenesis. In both mio and seh1 mutant ovaries, a fraction of oocytes fail to maintain the meiotic cycle and develop as pseudo-nurse cells. Moreover, the accumulation of Mio protein is greatly diminished in the seh1 mutant background. Surprisingly, our characterization of a seh1 null allele indicates that, although required in the female germline, seh1 is dispensable for the development of somatic tissues. Our work represents the first examination of seh1 function within the context of a multicellular organism. In summary, our studies demonstrate that Mio is a novel interacting partner of the conserved nucleoporin Seh1 and add to the growing body of evidence that structural nucleoporins can have novel tissue-specific roles. PMID:21521741

  8. Tissue-specific incorporation and genotoxicity of different forms of tritium in the marine mussel, Mytilus edulis.

    PubMed

    Jaeschke, Benedict C; Millward, Geoffrey E; Moody, A John; Jha, Awadhesh N

    2011-01-01

    Marine mussels (Mytilus edulis) were exposed to seawater spiked with tritiated water (HTO) at a dose rate of 122 and 79 μGy h(-1) for 7 and 14 days, respectively, and tritiated glycine (T-Gly) at a dose rate of 4.9 μGy h(-1) over 7 days. This was followed by depuration in clean seawater for 21 days. Tissues (foot, gills, digestive gland, mantle, adductor muscle and byssus) and DNA extracts from tissues were analysed for their tritium activity concentrations. All tissues demonstrated bio-accumulation of tritium from HTO and T-Gly. Tritium from T-Gly showed increased incorporation into DNA compared to HTO. About 90% of the initial activity from HTO was depurated within one day, whereas T-Gly was depurated relatively slowly, indicating that tritium may be bound with different affinities in tissues. Both forms of tritium caused a significant induction of micronuclei in the haemocytes of mussels. Our findings identify significant differential impacts on Mytilus edulis of the two chemical forms of tritium and emphasise the need for a separate classification and control of releases of tritiated compounds, to adequately protect the marine ecosystem.

  9. SCI1, the first member of the tissue-specific inhibitors of CDK (TIC) class, is probably connected to the auxin signaling pathway

    PubMed Central

    DePaoli, Henrique; Goldman, Gustavo; Goldman, Maria-Helena

    2012-01-01

    The recent finding of a tissue-specific cell cycle regulator (SCI1) that inhibits cell proliferation/differentiation in the upper pistil points to an unanticipated way of controlling plant morphogenesis. The similarity between the SCI1 RNAi-silenced plants and some auxin-related phenotypes suggested that SCI1 could be involved in the auxin signaling pathway. To address this hypothesis, we analyzed the expression of three auxin-related genes in transgenic plants in which SCI1 was silenced and overexpressed. The results showed that the expression levels of the auxin-related genes largely correlated with the SCI1 expression level. Additionally, we analyzed the Arabidopsis SCI1 upstream regulatory region and found putative cis-acting elements also present in the AtCYCB1;1 AtYUC1, AtYUC2 and AtYUC4 URRs, suggesting a cell cycle- and auxin-related transcriptional regulation. Based on our previous and the current studies, we propose SCI1 as a signal transducer engaging auxin signaling and cell division/differentiation. PMID:22301969

  10. Tissue-specific spatial organization of genomes.

    PubMed

    Parada, Luis A; McQueen, Philip G; Misteli, Tom

    2004-01-01

    Genomes are organized in vivo in the form of chromosomes. Each chromosome occupies a distinct nuclear subvolume in the form of a chromosome territory. The spatial positioning of chromosomes within the interphase nucleus is often nonrandom. It is unclear whether the nonrandom spatial arrangement of chromosomes is conserved among tissues or whether spatial genome organization is tissue-specific. Using two-dimensional and three-dimensional fluorescence in situ hybridization we have carried out a systematic analysis of the spatial positioning of a subset of mouse chromosomes in several tissues. We show that chromosomes exhibit tissue-specific organization. Chromosomes are distributed tissue-specifically with respect to their position relative to the center of the nucleus and also relative to each other. Subsets of chromosomes form distinct types of spatial clusters in different tissues and the relative distance between chromosome pairs varies among tissues. Consistent with the notion that nonrandom spatial proximity is functionally relevant in determining the outcome of chromosome translocation events, we find a correlation between tissue-specific spatial proximity and tissue-specific translocation prevalence. Our results demonstrate that the spatial organization of genomes is tissue-specific and point to a role for tissue-specific spatial genome organization in the formation of recurrent chromosome arrangements among tissues.

  11. Reliability and Validity of the Group Member Rating Form.

    ERIC Educational Resources Information Center

    Chalupa, Marilyn R.; Chen, Catherine S.; Sormunen-Jones, Carolee

    2000-01-01

    Business communication students (n=92) used a new instrument to rate their performance and that of other group members. Factor analyses and Cronbach's alpha confirmed the reliability and validity of the Group Member Rating Form as a self-evaluation instrument. (SK)

  12. Organ and Tissue-specific Sucrose Transporters. Important Hubs in Gene and Metabolite Networks Regulating Carbon Use in Wood-forming Tissues of Populus

    SciTech Connect

    Harding, Scott A.; Tsai, Chung-Jui

    2016-01-04

    The overall project objective was to probe the relationship between sucrose transporters and plant productivity in the biomass for biofuels woody perennial, Populus. At the time the proposal was written, sucrose transporters had already been investigated in many plant model systems, primarily with respect to the export of photosynthate sucrose from source leaves, and the uptake of sucrose in storage organs and seeds. Preliminary findings by the PI found that in Populus, sucrose transporter genes (SUTs) were well expressed in wood-forming tissues that comprise the feedstock for biofuels production. Because sucrose comprises by far the predominant form in which photosynthate is delivered from source organs to sink organs like roots and wood-forming tissues, SUTs control a gate that nominally at least could impact the allocation or partitioning of sucrose for potentially competing end uses like growth (stem biomass) and storage. In addition, water use might be conditioned by the way in which sucrose is distributed throughout the plant, and/or by the way in which sucrose is partitioned intracellularly. Several dozen transgenic lines were produced in year 1 of the project to perturb the expression ratio of multiple plasma membrane (PM) SUTs (intercellular trafficking), versus the single tonoplast membrane (TM) sucrose transporter that effectively regulates intracellular trafficking of sucrose. It was possible to obtain transgenic lines with dual SUT gene knockdown using the 35S promoter, but not the wood-specific TUA1 promoter. By the end of project year 2, a decision was made to work with the 35S plants while archiving the TUA1 plants. The PhD candidate charged with producing the transgenic lines abandoned the project during its second year, substantially contributing to the decision to operate with just the 35S lines. That student’s interests ranged more toward evolutionary topics, and a report on SUT gene evolution was published (Peng et al 2014).

  13. 75 FR 5873 - Proposed Collection; Comment Request for the HCTC Family Member Eligibility Form

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Internal Revenue Service Proposed Collection; Comment Request for the HCTC Family Member Eligibility Form..., HCTC Family Member Eligibility Form. DATES: Written comments should be received on or before April 5...: HCTC Family Member Eligibility Form. OMB Number: 1545-2163. Form Number: 14116. Abstract: This...

  14. 75 FR 5870 - Proposed Collection; Comment Request for the HCTC Medicare Family Member Registration Form

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Internal Revenue Service Proposed Collection; Comment Request for the HCTC Medicare Family Member... Medicare Family Member Registration Form. DATES: Written comments should be received on or before April 5...: HCTC Medicare Family Member Registration Form. OMB Number: 1545-2162. Form Number: 14117....

  15. Tissue-specific circadian clocks in plants.

    PubMed

    Endo, Motomu

    2016-02-01

    Circadian clocks affect a large proportion of differentially expressed genes in many organisms. Tissue-specific hierarchies in circadian networks in mammals have been contentiously debated, whereas little attention has been devoted to the concept in plants, owing to technical difficulties. Recently, several studies have demonstrated tissue-specific circadian clocks and their coupling in plants, suggesting that plants possess a hierarchical network of circadian clocks. The following review summarizes recent studies describing the tissue-specific functions and properties of these circadian clocks and discusses the network structure and potential messengers that might share temporal information on such a network.

  16. Identification of tissue-specific targeting peptide

    NASA Astrophysics Data System (ADS)

    Jung, Eunkyoung; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Seung-Hoon; Kim, Daejin; Park, Kisoo; Choi, Kihang; Choi, Yun-Jaie; Jung, Dong Hyun

    2012-11-01

    Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of peptides on the basis of peptide sequence information using four machine learning models and isolated the groups of peptides capable of mediating selective targeting to specific tissues. As a representative liver-specific targeting sequence, the peptide "DKNLQLH" was selected by the sequence similarity analysis. This peptide has a high degree of homology with protein ligands which can interact with corresponding membrane counterparts. We anticipate that our models will be applicable to the prediction of tissue-specific targeting peptides which can recognize the endothelial markers of target tissues.

  17. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  18. Tissue Specificity of Human Disease Module

    PubMed Central

    Kitsak, Maksim; Sharma, Amitabh; Menche, Jörg; Guney, Emre; Ghiassian, Susan Dina; Loscalzo, Joseph; Barabási, Albert-László

    2016-01-01

    Genes carrying mutations associated with genetic diseases are present in all human cells; yet, clinical manifestations of genetic diseases are usually highly tissue-specific. Although some disease genes are expressed only in selected tissues, the expression patterns of disease genes alone cannot explain the observed tissue specificity of human diseases. Here we hypothesize that for a disease to manifest itself in a particular tissue, a whole functional subnetwork of genes (disease module) needs to be expressed in that tissue. Driven by this hypothesis, we conducted a systematic study of the expression patterns of disease genes within the human interactome. We find that genes expressed in a specific tissue tend to be localized in the same neighborhood of the interactome. By contrast, genes expressed in different tissues are segregated in distinct network neighborhoods. Most important, we show that it is the integrity and the completeness of the expression of the disease module that determines disease manifestation in selected tissues. This approach allows us to construct a disease-tissue network that confirms known and predicts unexpected disease-tissue associations. PMID:27748412

  19. A hierarchy of ECM-mediated signalling tissue-specific gene expression regulates tissue-specific gene expression

    SciTech Connect

    Roskelley, Calvin D; Srebrow, Anabella; Bissell, Mina J

    1995-10-07

    A dynamic and reciprocal flow of information between cells and the extracellular matrix contributes significantly to the regulation of form and function in developing systems. Signals generated by the extracellular matrix do not act in isolation. Instead, they are processed within the context of global signalling hierarchies whose constituent inputs and outputs are constantly modulated by all the factors present in the cell's surrounding microenvironment. This is particularly evident in the mammary gland, where the construction and subsequent destruction of such a hierarchy regulates changes in tissue-specific gene expression, morphogenesis and apoptosis during each developmental cycle of pregnancy, lactation and involution.

  20. Ribosomopathies: Global process, tissue specific defects

    PubMed Central

    Yelick, Pamela C; Trainor, Paul A

    2015-01-01

    Disruptions in ribosomal biogenesis would be expected to have global and in fact lethal effects on a developing organism. However, mutations in ribosomal protein genes have been shown in to exhibit tissue specific defects. This seemingly contradictory finding - that globally expressed genes thought to play fundamental housekeeping functions can in fact exhibit tissue and cell type specific functions ‐ provides new insight into roles for ribosomes, the protein translational machinery of the cell, in regulating normal development and disease. Furthermore it illustrates the surprisingly dynamic nature of processes regulating cell type specific protein translation. In this review, we discuss our current knowledge of a variety of ribosomal protein mutations associated with human disease, and models to better understand the molecular mechanisms associated with each. We use specific examples to emphasize both the similarities and differences between the effects of various human ribosomal protein mutations. Finally, we discuss areas of future study that are needed to further our understanding of the role of ribosome biogenesis in normal development, and possible approaches that can be used to treat debilitating ribosomopathy diseases. PMID:26442198

  1. Ribosomopathies: Global process, tissue specific defects.

    PubMed

    Yelick, Pamela C; Trainor, Paul A

    2015-01-01

    Disruptions in ribosomal biogenesis would be expected to have global and in fact lethal effects on a developing organism. However, mutations in ribosomal protein genes have been shown in to exhibit tissue specific defects. This seemingly contradictory finding - that globally expressed genes thought to play fundamental housekeeping functions can in fact exhibit tissue and cell type specific functions - provides new insight into roles for ribosomes, the protein translational machinery of the cell, in regulating normal development and disease. Furthermore it illustrates the surprisingly dynamic nature of processes regulating cell type specific protein translation. In this review, we discuss our current knowledge of a variety of ribosomal protein mutations associated with human disease, and models to better understand the molecular mechanisms associated with each. We use specific examples to emphasize both the similarities and differences between the effects of various human ribosomal protein mutations. Finally, we discuss areas of future study that are needed to further our understanding of the role of ribosome biogenesis in normal development, and possible approaches that can be used to treat debilitating ribosomopathy diseases.

  2. Nuclear membrane diversity: underlying tissue-specific pathologies in disease?

    PubMed Central

    Worman, Howard J.; Schirmer, Eric C.

    2015-01-01

    Human ‘laminopathy’ diseases result from mutations in genes encoding nuclear lamins or nuclear envelope (NE) transmembrane proteins (NETs). These diseases present a seeming paradox: the mutated proteins are widely expressed yet pathology is limited to specific tissues. New findings suggest tissue-specific pathologies arise because these widely expressed proteins act in various complexes that include tissue-specific components. Diverse mechanisms to achieve NE tissue-specificity include tissue-specific regulation of the expression, mRNA splicing, signaling, NE-localization and interactions of potentially hundreds of tissue-specific NETs. New findings suggest these NETs underlie tissue-specific NE roles in cytoskeletal mechanics, cell-cycle regulation, signaling, gene expression and genome organization. This view of the NE as ‘specialized’ in each cell type is important to understand the tissue-specific pathology of NE-linked diseases. PMID:26115475

  3. Nuclear membrane diversity: underlying tissue-specific pathologies in disease?

    PubMed

    Worman, Howard J; Schirmer, Eric C

    2015-06-01

    Human 'laminopathy' diseases result from mutations in genes encoding nuclear lamins or nuclear envelope (NE) transmembrane proteins (NETs). These diseases present a seeming paradox: the mutated proteins are widely expressed yet pathology is limited to specific tissues. New findings suggest tissue-specific pathologies arise because these widely expressed proteins act in various complexes that include tissue-specific components. Diverse mechanisms to achieve NE tissue-specificity include tissue-specific regulation of the expression, mRNA splicing, signaling, NE-localization and interactions of potentially hundreds of tissue-specific NETs. New findings suggest these NETs underlie tissue-specific NE roles in cytoskeletal mechanics, cell-cycle regulation, signaling, gene expression and genome organization. This view of the NE as 'specialized' in each cell type is important to understand the tissue-specific pathology of NE-linked diseases.

  4. Catalytic iron-mediated triene carbocyclizations: Stereoselective five-membered ring forming carbocyclizations

    SciTech Connect

    Takacs, J.M.; Myoung, Young-Chan; Anderson, L.G.

    1994-11-18

    The full details of investigations into the regiochemistry and stereochemistry of iron-catalyzed carbocylizations of 2,7,9-decatriene derivatives to form five-membered carbocyclic ring systems are described. The roles of the allylic substituent, the alkene geometry, diene substitution, and the influence of resident stereogenic centers incorporated in the tether chain connecting the reacting 1,3-diene and alkene subunits are discussed.

  5. Understanding of Essential Elements Required in Informed Consent Form among Researchers and Institutional Review Board Members.

    PubMed

    Koonrungsesomboon, Nut; Laothavorn, Junjira; Karbwang, Juntra

    2015-06-01

    The process of informed consent remains a constant challenge in clinical research. The aim of the present study was to evaluate the understanding of researchers and members of Institutional Review Boards (IRBs) regarding the essential elements of an Informed Consent Form (ICF) as required by internationally recognized regulations. Using eight case studies to illustrate basic ethical elements, the study involved 107 participants, mainly from the Asia Pacific and African regions. The results showed that most of the participants had general knowledge regarding the essential elements required in an ICF. However, the issues of confidentiality of data and payment for study participation proved to be problematic for some participants, accounting for 35% and 28% of all incorrect answers respectively. This suggests that participants' understanding of the underlying concepts of the required ICF elements is limited. Ethical training of researchers and IRB members, particularly in the Asia Pacific and African regions, concerning valid informed consent is still needed.

  6. AN INFRARED/X-RAY SURVEY FOR NEW MEMBERS OF THE TAURUS STAR-FORMING REGION

    SciTech Connect

    Luhman, K. L.; Allen, P. R.; Mamajek, E. E.; Cruz, K. L.

    2009-09-20

    We present the results of a search for new members of the Taurus star-forming region using data from the Spitzer Space Telescope and the XMM-Newton Observatory. We have obtained optical and near-infrared spectra of 44 sources that exhibit red Spitzer colors that are indicative of stars with circumstellar disks and 51 candidate young stars that were identified by Scelsi and coworkers using XMM-Newton. We also performed spectroscopy on four possible companions to members of Taurus that were reported by Kraus and Hillenbrand. Through these spectra, we have demonstrated the youth and membership of 41 sources, 10 of which were independently confirmed as young stars by Scelsi and coworkers. Five of the new Taurus members are likely to be brown dwarfs based on their late spectral types (>M6). One of the brown dwarfs has a spectral type of L0, making it the first known L-type member of Taurus and the least massive known member of the region (M {approx} 4-7 M{sub Jup}). Another brown dwarf exhibits a flat infrared spectral energy distribution, which indicates that it could be in the protostellar class I stage (star+disk+envelope). Upon inspection of archival images from various observatories, we find that one of the new young stars has a large edge-on disk (r = 2.''5 = 350 AU). The scattered light from this disk has undergone significant variability on a timescale of days in optical images from the Canada-France-Hawaii Telescope. Using the updated census of Taurus, we have measured the initial mass function for the fields observed by XMM-Newton. The resulting mass function is similar to previous ones that we have reported for Taurus, showing a surplus of stars at spectral types of K7-M1 (0.6-0.8 M{sub sun}) relative to other nearby star-forming regions, such as IC 348, Chamaeleon I, and the Orion Nebula Cluster.

  7. Tissue-specific transcriptional profiling of iron-deficient and cadmium-stressed rice using laser capture microdissection

    PubMed Central

    Ogo, Yuko; Kakei, Yusuke; Itai, Reiko Nakanishi; Kobayashi, Takanori; Nakanishi, Hiromi; Nishizawa, Naoko K

    2014-01-01

    Several metals are essential nutrients for plants. However, they become toxic at high levels and deleteriously affect crop yield and quality. We recently reported the spatial gene expression profiles of iron (Fe)-deficient and cadmium (Cd)-stressed rice using laser microdissection and microarray analysis. The roots of Fe-deficient and Cd-stressed rice were separated into the vascular bundle (VB), cortex (Cor), and epidermis plus exodermis (EP). In addition, vascular bundles from new and old leaves at the lowest node, which are important for metal distribution, were analyzed separately (newDC and oldDC, respectively). Genes expressed in a tissue-specific manner in the VB, Cor, EP, newDC, and oldDC formed large clusters. The genes upregulated in all of the VB, Cor, and EP by Fe deficiency formed a substantial cluster that was smaller than the tissue-specific clusters. Significant numbers of genes expressed in newDC or oldDC were also expressed in VB in roots, suggesting that vascular bundles in the lowest nodes and roots have a partially common function. The expression patterns of transporter families involved in metal homeostasis were investigated, and members of each family were either expressed differentially in each tissue or showed different responses to Fe deficiency. One potassium transporter gene, OsHAK22, was upregulated by Fe deficiency in VB, Cor, and EP, suggesting that OsHAK22 is involved in potassium transport associated with mugineic acids secretion. PMID:25763624

  8. Tissue-specific posttranslational modification allows functional targeting of thyrotropin.

    PubMed

    Ikegami, Keisuke; Liao, Xiao-Hui; Hoshino, Yuta; Ono, Hiroko; Ota, Wataru; Ito, Yuka; Nishiwaki-Ohkawa, Taeko; Sato, Chihiro; Kitajima, Ken; Iigo, Masayuki; Shigeyoshi, Yasufumi; Yamada, Masanobu; Murata, Yoshiharu; Refetoff, Samuel; Yoshimura, Takashi

    2014-11-06

    Thyroid-stimulating hormone (TSH; thyrotropin) is a glycoprotein secreted from the pituitary gland. Pars distalis-derived TSH (PD-TSH) stimulates the thyroid gland to produce thyroid hormones (THs), whereas pars tuberalis-derived TSH (PT-TSH) acts on the hypothalamus to regulate seasonal physiology and behavior. However, it had not been clear how these two TSHs avoid functional crosstalk. Here, we show that this regulation is mediated by tissue-specific glycosylation. Although PT-TSH is released into the circulation, it does not stimulate the thyroid gland. PD-TSH is known to have sulfated biantennary N-glycans, and sulfated TSH is rapidly metabolized in the liver. In contrast, PT-TSH has sialylated multibranched N-glycans; in the circulation, it forms the macro-TSH complex with immunoglobulin or albumin, resulting in the loss of its bioactivity. Glycosylation is fundamental to a wide range of biological processes. This report demonstrates its involvement in preventing functional crosstalk of signaling molecules in the body.

  9. Developmental regulation of transcription by a tissue-specific TAF homolog

    PubMed Central

    Hiller, Mark A.; Lin, Ting-Yi; Wood, Cricket; Fuller, Margaret T.

    2001-01-01

    Alternate forms of the general transcription machinery have been described in several tissues or cell types. However, the role of tissue-specific TBP-associated factors (TAFIIs) and other tissue-specific transcription components in regulating differential gene expression during development was not clear. Here we show that the cannonball gene of Drosophila encodes a cell type-specific homolog of a more ubiquitously expressed component of the general transcription factor TFIID. cannonball is required in vivo for high level transcription of a set of stage- and tissue-specific target genes during male gametogenesis. Regulation of transcription by cannonball is absolutely required for spermatogenesis, as null mutations block meiotic cell cycle progression and result in a complete failure of spermatid differentiation. Our results demonstrate that cell type-specific TAFIIs play an important role in developmental regulation of gene expression. PMID:11316795

  10. Developmental regulation of transcription by a tissue-specific TAF homolog.

    PubMed

    Hiller, M A; Lin, T Y; Wood, C; Fuller, M T

    2001-04-15

    Alternate forms of the general transcription machinery have been described in several tissues or cell types. However, the role of tissue-specific TBP-associated factors (TAF(II)s) and other tissue-specific transcription components in regulating differential gene expression during development was not clear. Here we show that the cannonball gene of Drosophila encodes a cell type-specific homolog of a more ubiquitously expressed component of the general transcription factor TFIID. cannonball is required in vivo for high level transcription of a set of stage- and tissue-specific target genes during male gametogenesis. Regulation of transcription by cannonball is absolutely required for spermatogenesis, as null mutations block meiotic cell cycle progression and result in a complete failure of spermatid differentiation. Our results demonstrate that cell type-specific TAF(II)s play an important role in developmental regulation of gene expression.

  11. The reconstruction and analysis of tissue specific human metabolic networks.

    PubMed

    Hao, Tong; Ma, Hong-Wu; Zhao, Xue-Ming; Goryanin, Igor

    2012-02-01

    Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at .

  12. Tissue specificity in the nuclear envelope supports its functional complexity.

    PubMed

    de Las Heras, Jose I; Meinke, Peter; Batrakou, Dzmitry G; Srsen, Vlastimil; Zuleger, Nikolaj; Kerr, Alastair Rw; Schirmer, Eric C

    2013-01-01

    Nuclear envelope links to inherited disease gave the conundrum of how mutations in near-ubiquitous proteins can yield many distinct pathologies, each focused in different tissues. One conundrum-resolving hypothesis is that tissue-specific partner proteins mediate these pathologies. Such partner proteins may have now been identified with recent proteome studies determining nuclear envelope composition in different tissues. These studies revealed that the majority of the total nuclear envelope proteins are tissue restricted in their expression. Moreover, functions have been found for a number these tissue-restricted nuclear envelope proteins that fit with mechanisms proposed to explain how the nuclear envelope could mediate disease, including defects in mechanical stability, cell cycle regulation, signaling, genome organization, gene expression, nucleocytoplasmic transport, and differentiation. The wide range of functions to which these proteins contribute is consistent with not only their involvement in tissue-specific nuclear envelope disease pathologies, but also tissue evolution.

  13. Tissue specificity in the nuclear envelope supports its functional complexity

    PubMed Central

    de las Heras, Jose I; Meinke, Peter; Batrakou, Dzmitry G; Srsen, Vlastimil; Zuleger, Nikolaj; Kerr, Alastair RW; Schirmer, Eric C

    2013-01-01

    Nuclear envelope links to inherited disease gave the conundrum of how mutations in near-ubiquitous proteins can yield many distinct pathologies, each focused in different tissues. One conundrum-resolving hypothesis is that tissue-specific partner proteins mediate these pathologies. Such partner proteins may have now been identified with recent proteome studies determining nuclear envelope composition in different tissues. These studies revealed that the majority of the total nuclear envelope proteins are tissue restricted in their expression. Moreover, functions have been found for a number these tissue-restricted nuclear envelope proteins that fit with mechanisms proposed to explain how the nuclear envelope could mediate disease, including defects in mechanical stability, cell cycle regulation, signaling, genome organization, gene expression, nucleocytoplasmic transport, and differentiation. The wide range of functions to which these proteins contribute is consistent with not only their involvement in tissue-specific nuclear envelope disease pathologies, but also tissue evolution. PMID:24213376

  14. Aminopeptidase P Mediated Targeting for Breast Tissue Specific Conjugate Delivery.

    PubMed

    Cordova, Antoinette; Woodrick, Jordan; Grindrod, Scott; Zhang, Li; Saygideger-Kont, Yasemin; Wang, Kan; DeVito, Stephen; Daniele, Stefano G; Paige, Mikell; Brown, Milton L

    2016-09-21

    Cytotoxic chemotherapies are used to treat breast cancer, but are limited by systemic toxicity. The key to addressing this important issue is the development of a nontoxic, tissue selective, and molecular specific delivery system. In order to potentially increase the therapeutic index of clinical reagents, we designed an Aminopeptidase P (APaseP) targeting tissue-specific construct conjugated to a homing peptide for selective binding to human breast-derived cancer cells. Homing peptides are short amino acid sequences derived from phage display libraries that have the unique property of localizing to specific organs. Our molecular construct allows for tissue-specific drug delivery, by binding to APaseP in the vascular endothelium. The breast homing peptide evaluated in our studies is a cyclic nine-amino-acid peptide with the sequence CPGPEGAGC, referred to as PEGA. We show by confocal microscopy that the PEGA peptide and similar peptide conjugates distribute to human breast tissue xenograft specifically and evaluate the interaction with the membrane-bound proline-specific APaseP (KD = 723 ± 3 nM) by binding studies. To achieve intracellular breast cancer cell delivery, the incorporation of the Tat sequence, a cell-penetrating motif derived from HIV, was conjugated with the fluorescently labeled PEGA peptide sequence. Ultimately, tissue specific peptides and their conjugates can enhance drug delivery and treatment by their ability to discriminate between tissue types. Tissue specific conjugates as we have designed may be valuable tools for drug delivery and visualization, including the potential to treat breast cancer, while simultaneously minimizing systemic toxicity.

  15. Analysis of methylation microarray for tissue specific detection.

    PubMed

    Muangsub, Tachapol; Samsuwan, Jarunya; Tongyoo, Pumipat; Kitkumthorn, Nakarin; Mutirangura, Apiwat

    2014-12-10

    The role of human DNA methylation has been extensively studied in genomic imprinting, X-inactivation, and disease. However, studies of tissue-specific methylation remain limited. In this study, we use bioinformatics methods to analyze methylation data and reveal loci that are exclusively methylated or unmethylated in individual tissues. We collect 39 previously published DNA methylation profiles using an Illumina® HumanMethylation 27 BeadChip Kit containing 22 common tissues and involving 27,578 CpG loci across the human genome. We found 86 positions of tissue specific methylation CpG (TSM) that encompass 34 hypermethylated TSMs (31 genes) and 52 hypomethylated TSMs (47 genes). Tissues were found to contain 1 to 25 TSM loci, with the majority in the liver (25), testis (18), and brain (16). Fewer TSM loci were found in the muscle (8), ovary (7), adrenal gland (3), pancreas (2-4), kidney, spleen, and stomach (1 each). TSMs are predominantly located 0-300 base pairs in the 3' direction after the transcription start site. Similar to known promoters of methylation, hypermethylated TSM genes suppress transcription, while hypomethylated TSMs allow gene transcription. The majority of hypermethylated TSM genes encode membrane proteins and receptors, while hypomethylated TSM genes primarily encode signal peptides and tissue-specific proteins. In summary, the database of TSM loci produced herein is useful for the selection of tissue-specific DNA markers as diagnostic tools, as well as for the further study of the mechanisms and roles of TSM. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. ELF5 isoform expression is tissue-specific and significantly altered in cancer.

    PubMed

    Piggin, Catherine L; Roden, Daniel L; Gallego-Ortega, David; Lee, Heather J; Oakes, Samantha R; Ormandy, Christopher J

    2016-01-07

    E74-like factor 5 (ELF5) is an epithelial-specific member of the E26 transforming sequence (ETS) transcription factor family and a critical regulator of cell fate in the placenta, pulmonary bronchi, and milk-producing alveoli of the mammary gland. ELF5 also plays key roles in malignancy, particularly in basal-like and endocrine-resistant forms of breast cancer. Almost all genes undergo alternative transcription or splicing, which increases the diversity of protein structure and function. Although ELF5 has multiple isoforms, this has not been considered in previous studies of ELF5 function. RNA-sequencing data for 6757 samples from The Cancer Genome Atlas were analyzed to characterize ELF5 isoform expression in multiple normal tissues and cancers. Extensive in vitro analysis of ELF5 isoforms, including a 116-gene quantitative polymerase chain reaction panel, was performed in breast cancer cell lines. ELF5 isoform expression was found to be tissue-specific due to alternative promoter use but altered in multiple cancer types. The normal breast expressed one main isoform, while in breast cancer there were subtype-specific alterations in expression. Expression of other ETS factors was also significantly altered in breast cancer, with the basal-like subtype demonstrating a distinct ETS expression profile. In vitro inducible expression of the full-length isoforms 1 and 2, as well as isoform 3 (lacking the Pointed domain) had similar phenotypic and transcriptional effects. Alternative promoter use, conferring differential regulatory responses, is the main mechanism governing ELF5 action rather than differential transcriptional activity of the isoforms. This understanding of expression and function at the isoform level is a vital first step in realizing the potential of transcription factors such as ELF5 as prognostic markers or therapeutic targets in cancer.

  17. Tissue-specific regulation of chromatin insulator function.

    PubMed

    Matzat, Leah H; Dale, Ryan K; Moshkovich, Nellie; Lei, Elissa P

    2012-01-01

    Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type-specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP-seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator.

  18. Tissue-Specific Regulation of Chromatin Insulator Function

    PubMed Central

    Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.

    2012-01-01

    Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434

  19. Oscillator networks with tissue-specific circadian clocks in plants.

    PubMed

    Inoue, Keisuke; Araki, Takashi; Endo, Motomu

    2017-09-08

    Many organisms rely on circadian clocks to synchronize their biological processes with the 24-h rotation of the earth. In mammals, the circadian clock consists of a central clock in the suprachiasmatic nucleus and peripheral clocks in other tissues. The central clock is tightly coupled to synchronize rhythmicity and can organize peripheral clocks through neural and hormonal signals. In contrast to mammals, it has long been assumed that the circadian clocks in each plant cell is able to be entrained by external light, and they are only weakly coupled to each other. Recently, however, several reports have demonstrated that plants have unique oscillator networks with tissue-specific circadian clocks. Here, we introduce our current view regarding tissue-specific properties and oscillator networks of plant circadian clocks. Accumulating evidence suggests that plants have multiple oscillators, which show distinct properties and reside in different tissues. A direct tissue-isolation technique and micrografting have clearly demonstrated that plants have hierarchical oscillator networks consisting of multiple tissue-specific clocks. Copyright © 2017. Published by Elsevier Ltd.

  20. Predicting Tissue-Specific Enhancers in the Human Genome

    SciTech Connect

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  1. Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming

    SciTech Connect

    Golovashchenko, Sergey Fedorovich

    2011-03-15

    A tubular preform is contracted in an electro-hydraulic forming operation. The tubular preform is wrapped with one or more coils of wire and placed in a chamber of an electro-hydraulic forming tool. The electro-hydraulic forming tool is discharged to form a compressed area on a portion of the tube. The tube is then placed in a hydroforming tool that expands the tubular preform to form a part.

  2. Tissue-specific gene targeting by the multiprotein mammalian DREAM complex.

    PubMed

    Flowers, Stephen; Beck, George R; Moran, Elizabeth

    2011-08-12

    The mammalian DP, RB-like, E2F, and MuvB-like proteins (DREAM) complex, whose key components include p130 and E2F4, plays a fundamental role in repression of cell cycle-specific genes during growth arrest. Mammalian DREAM is well conserved with Drosophila and Caenorhabditis elegans complexes that repress pivotal developmental genes, but the mammalian complex has been thought to exist only in quiescent cells and not to be linked with development. However, new findings here identify tissue-specific promoters repressed by DREAM in proliferating precursors, revealing a new connection between control of growth arrest and terminal differentiation. Mechanistically, tissue-specific promoter occupation by DREAM is dependent on the integrity of a repressor form of the SWI/SNF chromatin-remodeling complex.

  3. A novel, tissue-specific, Drosophila homeobox gene.

    PubMed Central

    Barad, M; Jack, T; Chadwick, R; McGinnis, W

    1988-01-01

    The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen. Images PMID:2901348

  4. Method and tool for expanding tubular members by electro-hydraulic forming

    DOEpatents

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2013-10-29

    An electro-hydraulic forming tool having one or more electrodes for forming parts with sharp corners. The electrodes may be moved and sequentially discharged several times to form various areas of the tube. Alternatively, a plurality of electrodes may be provided that are provided within an insulating tube that defines a charge area opening. The insulating tube is moved to locate the charge area opening adjacent one of the electrodes to form spaced locations on a preform. In other embodiments, a filament wire is provided in a cartridge or supported by an insulative support.

  5. Characterization of alternatively spliced products and tissue-specific isoforms of USP28 and USP25

    PubMed Central

    Valero, Rebeca; Bayés, Mònica; Francisca Sánchez-Font, M; González-Angulo, Olga; Gonzàlez-Duarte, Roser; Marfany, Gemma

    2001-01-01

    Background The ubiquitin-dependent protein degradation pathway is essential for the proteolysis of intracellular proteins and peptides. Deubiquitinating enzymes constitute a complex protein family involved in a multitude of cellular processes. The ubiquitin-specific proteases (UBP) are a group of enzymes whose predicted function is to reverse the ubiquitinating reaction by removing ubiquitin from a large variety of substrates. We have lately reported the characterization of human USP25, a specific-ubiquitin protease gene at 21q11.2, with a specific pattern of expression in murine fetal brains and adult testis. Results Database homology searches at the DNA and protein levels and cDNA library screenings led to the identification of a new UBP member in the human genome, named USP28, at 11q23. This novel gene showed preferential expression in heart and muscle. Moreover, cDNA, expressed sequence tag and RT-PCR analyses provided evidence for alternatively spliced products and tissue-specific isoforms. Concerning function, USP25 overexpression in Down syndrome fetal brains was shown by real-time PCR. Conclusions On the basis of the genomic and protein sequence as well as the functional data, USP28 and USP25 establish a new subfamily of deubiquitinating enzymes. Both genes have alternatively spliced exons that could generate protein isoforms with distinct tissue-specific activity. The overexpression of USP25 in Down syndrome fetal brains supports the gene-dosage effects suggested for other UBP members related to aneuploidy syndromes. PMID:11597335

  6. Do the Cotham Member stromatolites of the Late Triassic, SW UK represent extinction "disaster forms"?

    NASA Astrophysics Data System (ADS)

    Ibarra, Y.; Corsetti, F. A.; Greene, S.; Bottjer, D. J.

    2011-12-01

    A widespread and well-preserved horizon (~20cm thick) of alternating stromatolite-dendrolite facies occurs at the top of the Cotham Member of the Lilstock Formation in the Upper Triassic (latest Rhaetian) of the SW UK. The close stratigraphic position to the Triassic-Jurassic (T-J) mass extinction interval raises questions about the potential relationship to the mass extinction. Were the Cotham Member stromatolites a result of a decline in taxonomic richness (including decline of bioturbators and grazers) across the Late Triassic extinction episode? Or, were they deposited in a hypersaline lagoon, an environment known to develop microbialites during non-extinction times, and therefore decoupled from the extinction event? Light microscopic observations of thin sections reveal a sparse assemblage of shelly epifauna including molluscs and echinoderm fragments. Carbon and oxygen isotope values of micro-drilled portions of the stromatolites exhibit ∂13C values of -0.1% to -1.7% and ∂18O values of -0.8% to -2.3%. We also observe 2 thin layers (each about 1mm thick) of gypsum pseudomorphs a few centimeters below the first occurrence of stromatolites. On the one hand, the isotopic evidence and the presence of echinoderm fragments (echinoderms/crinoids generally require open marine conditions) would argue against a restricted lagoonal origin for the stromatolites and dendrolites. On the other hand, the presence of evaporite minerals within cm of the stromatolitic units would argue for at least periodic restriction of the depositional environment. Consequently, more work is needed to unequivocally resolve the depositional environment of the Cotham Member stromatolites and their relevance to the T-J mass extinction.

  7. Members of the evolutionarily conserved PMT family of protein O-mannosyltransferases form distinct protein complexes among themselves.

    PubMed

    Girrbach, Verena; Strahl, Sabine

    2003-04-04

    Protein O-mannosyltransferases (PMTs) initiate the assembly of O-mannosyl glycans, an essential protein modification. Since PMTs are evolutionarily conserved in fungi but are absent in green plants, the PMT family is a putative target for new antifungal drugs, particularly in fighting the threat of phytopathogenic fungi. The PMT family is phylogenetically classified into PMT1, PMT2, and PMT4 subfamilies, which differ in protein substrate specificity. In the model organism Saccharomyces cerevisiae as well as in many other fungi the PMT family is highly redundant, and only the simultaneous deletion of PMT1/PMT2 and PMT4 subfamily members is lethal. In this study we analyzed the molecular organization of PMT family members in S. cerevisiae. We show that members of the PMT1 subfamily (Pmt1p and Pmt5p) interact in pairs with members of the PMT2 subfamily (Pmt2p and Pmt3p) and that Pmt1p-Pmt2p and Pmt5p-Pmt3p complexes represent the predominant forms. Under certain physiological conditions, however, Pmt1p interacts also with Pmt3p, and Pmt5p with Pmt2p, suggesting a compensatory cooperation that guarantees the maintenance of O-mannosylation. Unlike the PMT1/PMT2 subfamily members, the single member of the PMT4 subfamily (Pmt4p) acts as a homomeric complex. Using mutational analyses we demonstrate that the same conserved protein domains underlie both heteromeric and homomeric interactions, and we identify an invariant arginine residue of transmembrane domain two as essential for the formation and/or stability of PMT complexes in general. Our data suggest that protein-protein interactions between the PMT family members offer a point of attack to shut down overall protein O-mannosylation in fungi.

  8. A Survey for New Members of the Taurus Star-forming Region with the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Mamajek, E. E.; Shukla, S. J.; Loutrel, N. P.

    2017-01-01

    Previous studies have found that ˜1 deg2 fields surrounding the stellar aggregates in the Taurus star-forming region exhibit a surplus of solar-mass stars relative to denser clusters like IC 348 and the Orion Nebula Cluster. To test whether this difference reflects mass segregation in Taurus or a variation in the initial mass function, we have performed a survey for members of Taurus across a large field (˜40 deg2) that was imaged by the Sloan Digital Sky Survey (SDSS). We obtained optical and near-infrared spectra of candidate members identified with those images and the Two Micron All Sky Survey, as well as miscellaneous candidates that were selected with several other diagnostics of membership. We have classified 22 of the candidates as new members of Taurus, which includes one of the coolest known members (M9.75). Our updated census of members within the SDSS field shows a surplus of solar-mass stars relative to clusters, although it is less pronounced than in the smaller fields toward the stellar aggregates that were surveyed for previously measured mass functions in Taurus. In addition to spectra of our new members, we include in our study near-IR spectra of roughly half of the known members of Taurus, which are used to refine their spectral types and extinctions. We also present an updated set of near-IR standard spectra for classifying young stars and brown dwarfs at M and L types. Based on observations performed with the Sloan Digital Sky Survey, Hobby-Eberly Telescope, NASA Infrared Telescope Facility, Gemini Observatory, and Canada-France-Hawaii Telescope.

  9. Laminin mediates tissue-specific gene expression in mammary epithelia

    PubMed Central

    1995-01-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta- casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain. PMID:7730398

  10. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    PubMed

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  11. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    SciTech Connect

    Streuli, Charles H; Schmidhauser, Christian; Bailey, Nina; Yurchenco, Peter; Skubitz, Amy P. N.; Roskelley, Calvin; Bissell, Mina J

    1995-04-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta-casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain.

  12. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  13. Reconstruction of Tissue-Specific Metabolic Networks Using CORDA

    PubMed Central

    Schultz, André; Qutub, Amina A.

    2016-01-01

    Human metabolism involves thousands of reactions and metabolites. To interpret this complexity, computational modeling becomes an essential experimental tool. One of the most popular techniques to study human metabolism as a whole is genome scale modeling. A key challenge to applying genome scale modeling is identifying critical metabolic reactions across diverse human tissues. Here we introduce a novel algorithm called Cost Optimization Reaction Dependency Assessment (CORDA) to build genome scale models in a tissue-specific manner. CORDA performs more efficiently computationally, shows better agreement to experimental data, and displays better model functionality and capacity when compared to previous algorithms. CORDA also returns reaction associations that can greatly assist in any manual curation to be performed following the automated reconstruction process. Using CORDA, we developed a library of 76 healthy and 20 cancer tissue-specific reconstructions. These reconstructions identified which metabolic pathways are shared across diverse human tissues. Moreover, we identified changes in reactions and pathways that are differentially included and present different capacity profiles in cancer compared to healthy tissues, including up-regulation of folate metabolism, the down-regulation of thiamine metabolism, and tight regulation of oxidative phosphorylation. PMID:26942765

  14. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Tissue-specific splicing mutation in acute intermittent porphyria

    SciTech Connect

    Grandchamp, B.; Picat, C. ); Mignotte, V.; Romeo, P.H.; Goossens, M. ); Wilson, J.H.P.; Sandkuyl, L. ); Te Velde, K. ); Nordmann, Y. )

    1989-01-01

    An inherited deficiency of porphobilinogen deaminase in humans is responsible for the autosomal dominant disease acute intermittent porphyria. Different classes of mutations have been described at the protein level suggesting that this is a heterogeneous disease. It was previously demonstrated that porphobilinogen deaminase is encoded by two distinct mRNA species expressed in a tissue-specific manner. Analysis of the genomic sequences indicated that these two mRNAs are transcribed from two promoters and only differ in their first exon. The first mutation identified in the human porphobilinogen deaminase gene is a single-base substitution (G {yields} A) in the canonical 5{prime} splice donor site of intron 1. This mutation leads to a particular subtype of acute intermittent porphyria characterized by the restriction of the enzymatic defect to nonerythropoietic tissues. Hybridization analysis using olignonucleotide probes after in vitro amplification of genomic DNA offers another possibility of detecting asymptomatic carriers of the mutation in affected families.

  16. Repressor-mediated tissue-specific gene expression in plants

    DOEpatents

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  17. SAGA function in tissue-specific gene expression

    PubMed Central

    Weake, Vikki M.; Workman, Jerry L.

    2012-01-01

    The SAGA transcription co-activator plays multiple roles in regulating transcription due to the presence of functionally independent modules of subunits within the complex. We have recently identified a role for the ubiquitin protease activity of SAGA in regulating tissue-specific gene expression in Drosophila. Here, we discuss the modular nature of SAGA and the different mechanisms through which SAGA is recruited to target promoters. We propose that the genes sensitive to loss of the ubiquitin protease activity of SAGA share functional characteristics that require de-ubiquitination of ubH2B for full activation. We hypothesize that de-ubiquitination of ubH2B by SAGA destabilizes promoter nucleosomes, thus enhancing recruitment of Pol II to weak promoters. In addition, SAGA-mediated de-ubiquitination of ubH2B may facilitate binding of factors that are important for the transition of paused Pol II into transcription elongation. PMID:22196215

  18. Tissue-specific cell wall hydration in sugarcane stalks.

    PubMed

    Maziero, Priscila; Jong, Jennifer; Mendes, Fernanda M; Gonçalves, Adilson R; Eder, Michaela; Driemeier, Carlos

    2013-06-19

    Plant cell walls contain water, especially under biological and wet processing conditions. The present work characterizes this water in tissues of sugarcane stalks. Environmental scanning electron microscopy shows tissue deformation upon drying. Dynamic vapor sorption determines the equilibrium and kinetics of moisture uptake. Thermoporometry by differential scanning calorimetry quantifies water in nanoscale pores. Results show that cell walls from top internodes of stalks are more deformable, slightly more sorptive to moisture, and substantially more porous. These differences of top internode are attributed to less lignified walls, which is confirmed by lower infrared spectral signal from aromatics. Furthermore, cell wall nanoscale porosity, an architectural and not directly compositional characteristic, is shown to be tissue-specific. Nanoscale porosities are ranked as follows: pith parenchyma > pith vascular bundles > rind. This ranking coincides with wall reactivity and digestibility in grasses, suggesting that nanoscale porosity is a major determinant of wall recalcitrance.

  19. Tissue-specific regulation of flowering by photoreceptors.

    PubMed

    Endo, Motomu; Araki, Takashi; Nagatani, Akira

    2016-02-01

    Plants use various kinds of environmental signals to adjust the timing of the transition from the vegetative to reproductive phase (flowering). Since flowering at the appropriate time is crucial for plant reproductive strategy, several kinds of photoreceptors are deployed to sense environmental light conditions. In this review, we will update our current understanding of light signaling pathways in flowering regulation, especially, in which tissue do photoreceptors regulate flowering in response to light quality and photoperiod. Since light signaling is also integrated into other flowering pathways, we also introduce recent progress on how photoreceptors are involved in tissue-specific thermosensation and the gibberellin pathway. Finally, we discuss the importance of cell-type-specific analyses for future plant studies.

  20. Tissue-specific prediction of directly regulated genes

    PubMed Central

    McLeay, Robert C.; Leat, Chris J.; Bailey, Timothy L.

    2011-01-01

    Direct binding by a transcription factor (TF) to the proximal promoter of a gene is a strong evidence that the TF regulates the gene. Assaying the genome-wide binding of every TF in every cell type and condition is currently impractical. Histone modifications correlate with tissue/cell/condition-specific (‘tissue specific’) TF binding, so histone ChIP-seq data can be combined with traditional position weight matrix (PWM) methods to make tissue-specific predictions of TF–promoter interactions. Results: We use supervised learning to train a naïve Bayes predictor of TF–promoter binding. The predictor's features are the histone modification levels and a PWM-based score for the promoter. Training and testing uses sets of promoters labeled using TF ChIP-seq data, and we use cross-validation on 23 such datasets to measure the accuracy. A PWM+histone naïve Bayes predictor using a single histone modification (H3K4me3) is substantially more accurate than a PWM score or a conservation-based score (phylogenetic motif model). The naïve Bayes predictor is more accurate (on average) at all sensitivity levels, and makes only half as many false positive predictions at sensitivity levels from 10% to 80%. On average, it correctly predicts 80% of bound promoters at a false positive rate of 20%. Accuracy does not diminish when we test the predictor in a different cell type (and species) from training. Accuracy is barely diminished even when we train the predictor without using TF ChIP-seq data. Availability: Our tissue-specific predictor of promoters bound by a TF is called Dr Gene and is available at http://bioinformatics.org.au/drgene. Contact: t.bailey@imb.uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21724591

  1. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation

    PubMed Central

    Sebastian, Soji; Faralli, Hervé; Yao, Zizhen; Rakopoulos, Patricia; Palii, Carmen; Cao, Yi; Singh, Kulwant; Liu, Qi-Cai; Chu, Alphonse; Aziz, Arif; Brand, Marjorie; Tapscott, Stephen J.; Dilworth, F. Jeffrey

    2013-01-01

    Alternate splicing contributes extensively to cellular complexity by generating protein isoforms with divergent functions. However, the role of alternate isoforms in development remains poorly understood. Mef2 transcription factors are essential transducers of cell signaling that modulate differentiation of many cell types. Among Mef2 family members, Mef2D is unique, as it undergoes tissue-specific splicing to generate a muscle-specific isoform. Since the ubiquitously expressed (Mef2Dα1) and muscle-specific (Mef2Dα2) isoforms of Mef2D are both expressed in muscle, we examined the relative contribution of each Mef2D isoform to differentiation. Using both in vitro and in vivo models, we demonstrate that Mef2D isoforms act antagonistically to modulate differentiation. While chromatin immunoprecipitation (ChIP) sequencing analysis shows that the Mef2D isoforms bind an overlapping set of genes, only Mef2Dα2 activates late muscle transcription. Mechanistically, the differential ability of Mef2D isoforms to activate transcription depends on their susceptibility to phosphorylation by protein kinase A (PKA). Phosphorylation of Mef2Dα1 by PKA provokes its association with corepressors. Conversely, exon switching allows Mef2Dα2 to escape this inhibitory phosphorylation, permitting recruitment of Ash2L for transactivation of muscle genes. Thus, our results reveal a novel mechanism in which a tissue-specific alternate splicing event has evolved that permits a ubiquitously expressed transcription factor to escape inhibitory signaling for temporal regulation of gene expression. PMID:23723416

  2. Sex and Tissue Specificity of Peg3 Promoters

    PubMed Central

    Perera, Bambarendage P. U.; Kim, Joomyeong

    2016-01-01

    The expression of mouse Peg3 (Paternally expressed gene 3) is driven by 4 promoters, including its main and three alternative promoters. The sexual, temporal and spatial specificity of these promoters was characterized in the current study. According to the results, the main promoter displays ubiquitous expression patterns throughout different stages and tissues. In contrast, the expression of Peg3 driven by the alternative promoter U2 was detected mainly in muscle and skin, but not in brain, starting from the late embryonic stage, revealing its tissue and stage specificity. The expression levels of both the main and U2 promoters are also sexually biased: the levels in females start higher but become lower than those in males during early postnatal stages. As an imprinted locus, the paternal alleles of these promoters are active whereas the maternal alleles are silent. Interestingly, deletion of the repressed maternal allele of the main promoter has an unusual effect on the opposite paternal allele, causing the up-regulation of both the main and U2 promoters. Overall, the promoters of Peg3 derive sexually biased and tissue-specific expression patterns. PMID:27711129

  3. Tissue-specific effector functions of innate lymphoid cells

    PubMed Central

    Björkström, Niklas K; Kekäläinen, Eliisa; Mjösberg, Jenny

    2013-01-01

    Innate lymphoid cells (ILCs) is the collective term for a group of related innate lymphocytes, including natural killer (NK) cells and the more recently discovered non-NK ILCs, which all lack rearranged antigen receptors such as those expressed by T and B cells. Similar to NK cells, the newly discovered ILCs depend on the transcription factor Id2 and the common γ-chain of the interleukin-2 receptor for development. However, in contrast to NK cells, non-NK ILCs also require interleukin-7. In addition to the cytotoxic functions of NK cells, assuring protection against tumour development and viruses, new data indicate that ILCs contribute to a wide range of homeostatic and pathophysiological conditions in various organs via specialized cytokine production capabilities. Here we summarize current knowledge on ILCs with a particular emphasis on their tissue-specific effector functions, in the gut, liver, lungs and uterus. When possible, we try to highlight the role that these cells play in humans. PMID:23489335

  4. Tissue-specific patterns of allelically-skewed DNA methylation

    PubMed Central

    Marzi, Sarah J.; Meaburn, Emma L.; Dempster, Emma L.; Lunnon, Katie; Paya-Cano, Jose L.; Smith, Rebecca G.; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C.; Mill, Jonathan

    2016-01-01

    ABSTRACT While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood. PMID:26786711

  5. Tissue-Specific Glycosylation at the Glycopeptide Level.

    PubMed

    Medzihradszky, Katalin F; Kaasik, Krista; Chalkley, Robert J

    2015-08-01

    This manuscript describes the enrichment and mass spectrometric analysis of intact glycopeptides from mouse liver, which yielded site-specific N- and O-glycosylation data for ∼ 130 proteins. Incorporation of different sialic acid variants in both N- and O-linked glycans was observed, and the importance of using both collisional activation and electron transfer dissociation for glycopeptide analysis was illustrated. The N-glycan structures of predicted lysosomal, endoplasmic reticulum (ER), secreted and transmembrane proteins were compared. The data suggest that protein N-glycosylation differs depending on cellular location. The glycosylation patterns of several mouse liver and mouse brain glycopeptides were compared. Tissue-specific differences in glycosylation were observed between sites within the same protein: Some sites displayed a similar spectrum of glycan structures in both tissues, whereas for others no overlap was observed. We present comparative brain/liver glycosylation data on 50 N-glycosylation sites from 34 proteins and 13 O-glycosylation sites from seven proteins.

  6. Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila

    PubMed Central

    Smibert, Peter; Miura, Pedro; Westholm, Jakub O.; Shenker, Sol; May, Gemma; Duff, Michael O.; Zhang, Dayu; Eads, Brian D.; Carlson, Joe; Brown, James B.; Eisman, Robert C.; Andrews, Justen; Kaufman, Thomas; Cherbas, Peter; Celniker, Susan E.; Graveley, Brenton R.; Lai, Eric C.

    2012-01-01

    SUMMARY We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system. PMID:22685694

  7. Tissue-Specific Effects of Esophageal Extracellular Matrix

    PubMed Central

    Keane, Timothy J.; DeWard, Aaron; Londono, Ricardo; Saldin, Lindsey T.; Castleton, Arthur A.; Carey, Lisa; Nieponice, Alejandro; Lagasse, Eric

    2015-01-01

    Biologic scaffolds composed of extracellular matrix (ECM) have been used to facilitate repair or remodeling of numerous tissues, including the esophagus. The theoretically ideal scaffold for tissue repair is the ECM derived from the particular tissue to be treated, that is, site-specific or homologous ECM. The preference or potential advantage for the use of site-specific ECM remains unknown in the esophageal location. The objective of the present study was to characterize the in vitro cellular response and in vivo host response to a homologous esophageal ECM (eECM) versus nonhomologous ECMs derived from small intestinal submucosa and urinary bladder. The in vitro response of esophageal stem cells was characterized by migration, proliferation, and three-dimensional (3D) organoid formation assays. The in vivo remodeling response was evaluated in a rat model of esophageal mucosal resection. Results of the study showed that the eECM retains favorable tissue-specific characteristics that enhance the migration of esophageal stem cells and supports the formation of 3D organoids to a greater extent than heterologous ECMs. Implantation of eECM facilitates the remodeling of esophageal mucosa following mucosal resection, but no distinct advantage versus heterologous ECM could be identified. PMID:26192009

  8. Tissue-Specific Effects of Esophageal Extracellular Matrix.

    PubMed

    Keane, Timothy J; DeWard, Aaron; Londono, Ricardo; Saldin, Lindsey T; Castleton, Arthur A; Carey, Lisa; Nieponice, Alejandro; Lagasse, Eric; Badylak, Stephen F

    2015-09-01

    Biologic scaffolds composed of extracellular matrix (ECM) have been used to facilitate repair or remodeling of numerous tissues, including the esophagus. The theoretically ideal scaffold for tissue repair is the ECM derived from the particular tissue to be treated, that is, site-specific or homologous ECM. The preference or potential advantage for the use of site-specific ECM remains unknown in the esophageal location. The objective of the present study was to characterize the in vitro cellular response and in vivo host response to a homologous esophageal ECM (eECM) versus nonhomologous ECMs derived from small intestinal submucosa and urinary bladder. The in vitro response of esophageal stem cells was characterized by migration, proliferation, and three-dimensional (3D) organoid formation assays. The in vivo remodeling response was evaluated in a rat model of esophageal mucosal resection. Results of the study showed that the eECM retains favorable tissue-specific characteristics that enhance the migration of esophageal stem cells and supports the formation of 3D organoids to a greater extent than heterologous ECMs. Implantation of eECM facilitates the remodeling of esophageal mucosa following mucosal resection, but no distinct advantage versus heterologous ECM could be identified.

  9. Tissue specific regulation of lipogenesis by thyroid hormone

    SciTech Connect

    Blennemann, B.; Freake, H. )

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  10. Tissue-specific actions of FXR in metabolism and cancer.

    PubMed

    Gadaleta, Raffaella Maria; Cariello, Marica; Sabbà, Carlo; Moschetta, Antonio

    2015-01-01

    The nuclear Farnesoid X Receptor (FXR) is a transcription factor critically involved in metabolic homeostasis in the gut-liver axis. FXR activity is mediated by hormonal and dietary signals and driven by bile acids (BAs), which are the natural FXR ligands. Given the great physiological importance in BA homeostasis, as well as in the regulation of glucose and lipid metabolism, FXR plays a pivotal role in the pathogenesis of a wide range of disease of the liver, biliary tract and intestine, including hepatic and colorectal cancer. In the last years several studies have shown the relative FXR tissue-specific importance, highlighting synergism and additive effects in the liver and intestine. Gain- and loss-of-FXR-function mouse models have been generated in order to identify the biological processes and the molecular FXR targets. Taking advantage of the knowledge on the structure-activity relationship of BAs for FXR, semi-synthetic and synthetic molecules have been generated to obtain more selective and powerful FXR activators than BAs. This article is part of a Special Issue entitled: Linking transcription to physiology in lipodomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Tissue-specific patterns of allelically-skewed DNA methylation.

    PubMed

    Marzi, Sarah J; Meaburn, Emma L; Dempster, Emma L; Lunnon, Katie; Paya-Cano, Jose L; Smith, Rebecca G; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C; Mill, Jonathan

    2016-01-01

    While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood.

  12. Tissue-Specific Protein Expression in Plant Mitochondria.

    PubMed Central

    Conley, C. A.; Hanson, M. R.

    1994-01-01

    Although the physiological role of plant mitochondria is thought to vary in different tissues at progressive stages of development, there has been little documentation that the complement of mitochondrial proteins is altered in different plant organs. Because the phenomenon of cytoplasmic male sterility suggests an unusual function for mitochondria in floral buds, we examined the tissue-specific expression of mitochondrial proteins in petunia buds at several stages of development, using both fertile and cytoplasmic male sterile plants. On tissue prints of cryostat-sectioned buds, antibodies recognizing subunit A of the mitochondrial ATPase (ATPA) localized very differently from antibodies recognizing subunit II of the cytochrome oxidase (COXII), which indicated that mitochondria in the same tissue could differentially express mitochondrially encoded proteins. The petunia cytoplasmic male sterility-associated fused (pcf) gene encodes a protein that colocalized with ATPA and the nuclear-encoded mitochondrial alternative oxidase (AOA) in sporogenous tissues, where little COXII protein was found. These overlapping and differential localization patterns may provide clues to the molecular mechanism of cytoplasmic male sterility. PMID:12244222

  13. Tissue-specific insulin signaling mediates female sexual attractiveness.

    PubMed

    Fedina, Tatyana Y; Arbuthnott, Devin; Rundle, Howard D; Promislow, Daniel E L; Pletcher, Scott D

    2017-08-01

    Individuals choose their mates so as to maximize reproductive success, and one important component of this choice is assessment of traits reflecting mate quality. Little is known about why specific traits are used for mate quality assessment nor about how they reflect it. We have previously shown that global manipulation of insulin signaling, a nutrient-sensing pathway governing investment in survival versus reproduction, affects female sexual attractiveness in the fruit fly, Drosophila melanogaster. Here we demonstrate that these effects on attractiveness derive from insulin signaling in the fat body and ovarian follicle cells, whose signals are integrated by pheromone-producing cells called oenocytes. Functional ovaries were required for global insulin signaling effects on attractiveness, and manipulations of insulin signaling specifically in late follicle cells recapitulated effects of global manipulations. Interestingly, modulation of insulin signaling in the fat body produced opposite effects on attractiveness, suggesting a competitive relationship with the ovary. Furthermore, all investigated tissue-specific insulin signaling manipulations that changed attractiveness also changed fecundity in the corresponding direction, pointing to insulin pathway activity as a reliable link between fecundity and attractiveness cues. The cues themselves, cuticular hydrocarbons, responded distinctly to fat body and follicle cell manipulations, indicating independent readouts of the pathway activity from these two tissues. Thus, here we describe a system in which female attractiveness results from an apparent connection between attractiveness cues and an organismal state of high fecundity, both of which are created by lowered insulin signaling in the fat body and increased insulin signaling in late follicle cells.

  14. A C++ framework for creating tissue specific segmentation-pipelines

    NASA Astrophysics Data System (ADS)

    Pfeifer, Bernhard; Hanser, Friedrich; Seger, Michael; Hintermueller, Christoph; Modre-Osprian, Robert; Fischer, Gerald; Muehlthaler, Hannes; Trieb, Thomas; Tilg, Bernhard

    2005-04-01

    For a clinical application of the inverse problem of electrocardiography, a flexible and fast generation of a patient's volume conductor model is essential. The volume conductor model includes compartments like chest, lungs, ventricles, atria and the associated blood masses. It is a challenging task to create an automatic or semi-automatic segmentation procedure for each compartment. For the extraction of the lungs, as one example, a region growing algorithm can be used, to extract the blood masses of the ventricles Active Appearance Models may succeed, and to construct the atrial myocardium a multiplicity of operations are necessary. These examples illustrate that there is no common method that will succeed for all compartments like a least common denominator. Another problem is the automatization of combining different methods and the origination of a segmentation pipeline in order to extract a compartment and, accordingly, the desired model - in our case the complete volume conductor model for estimating the spread of electrical excitation in the patient's heart. On account of this, we developed a C++ framework and a special application with the goal of creating tissue-specific segmentation pipelines. The C++ framework uses different standard frameworks like DCMTK for handling medical images (http://dicom.offis.de/dcmtk.php.en), ITK (http://www.itk.org/) for some segmentation methods, and Qt (http://www.trolltech.com/) for creating user interfaces. Our Medical Segmentation Toolkit (MST) enables to combine different segmentation techniques for each compartment. In addition, the framework enables to create user-defined compartment pipelines.

  15. Tissue Specificity of Decellularized Rhesus Monkey Kidney and Lung Scaffolds

    PubMed Central

    Nakayama, Karina H.; Lee, C. Chang I.; Batchelder, Cynthia A.; Tarantal, Alice F.

    2013-01-01

    Initial steps in establishing an optimal strategy for functional bioengineered tissues is generation of three-dimensional constructs containing cells with the appropriate organization and phenotype. To effectively utilize rhesus monkey decellularized kidney scaffolds, these studies evaluated two key parameters: (1) residual scaffold components after decellularization including proteomics analysis, and (2) the use of undifferentiated human embryonic stem cells (hESCs) for recellularization in order to explore cellular differentiation in a tissue-specific manner. Sections of kidney and lung were selected for a comparative evaluation because of their similar pattern of organogenesis. Proteomics analysis revealed the presence of growth factors and antimicrobial proteins as well as stress proteins and complement components. Immunohistochemistry of recellularized kidney scaffolds showed the generation of Cytokeratin+ epithelial tubule phenotypes throughout the scaffold that demonstrated a statistically significant increase in expression of kidney-associated genes compared to baseline hESC gene expression. Recellularization of lung scaffolds showed that cells lined the alveolar spaces and demonstrated statistically significant upregulation of key lung-associated genes. However, overall expression of kidney and lung-associated markers was not statistically different when the kidney and lung recellularized scaffolds were compared. These results suggest that decellularized scaffolds have an intrinsic spatial ability to influence hESC differentiation by physically shaping cells into tissue-appropriate structures and phenotypes, and that additional approaches may be needed to ensure consistent recellularization throughout the matrix. PMID:23717553

  16. The first insight into the tissue specific taxus transcriptome via Illumina second generation sequencing.

    PubMed

    Hao, Da Cheng; Ge, GuangBo; Xiao, PeiGen; Zhang, YanYan; Yang, Ling

    2011-01-01

    Illumina second generation sequencing is now an efficient route for generating enormous sequence collections that represent expressed genes and quantitate expression level. Taxus is a world-wide endangered gymnosperm genus and forms an important anti-cancer medicinal resource, but the large and complex genomes of Taxus have hindered the development of genomic resources. The research of its tissue-specific transcriptome is absent. There is also no study concerning the association between the plant transcriptome and metabolome with respect to the plant tissue type. We performed the de novo assembly of Taxus mairei transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 13,737,528 sequencing reads corresponding to 2.03 Gb total nucleotides. These reads were assembled into 36,493 unique sequences. Based on similarity search with known proteins, 23,515 Unigenes were identified to have the Blast hit with a cut-off E-value above 10⁻⁵. Furthermore, we investigated the transcriptome difference of three Taxus tissues using a tag-based digital gene expression system. We obtained a sequencing depth of over 3.15 million tags per sample and identified a large number of genes associated with tissue specific functions and taxane biosynthetic pathway. The expression of the taxane biosynthetic genes is significantly higher in the root than in the leaf and the stem, while high activity of taxane-producing pathway in the root was also revealed via metabolomic analyses. Moreover, many antisense transcripts and novel transcripts were found; clusters with similar differential expression patterns, enriched GO terms and enriched metabolic pathways with regard to the differentially expressed genes were revealed for the first time. Our data provides the most comprehensive sequence resource available for Taxus study and will help define mechanisms of tissue specific functions and secondary metabolism in non-model plant organisms.

  17. Tissue-specific transcriptomics in the field cricket Teleogryllus oceanicus.

    PubMed

    Bailey, Nathan W; Veltsos, Paris; Tan, Yew-Foon; Millar, A Harvey; Ritchie, Michael G; Simmons, Leigh W

    2013-02-01

    Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection--testis and accessory gland--would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection.

  18. Tissue-specific ceruloplasmin gene expression in the mammary gland.

    PubMed Central

    Jaeger, J L; Shimizu, N; Gitlin, J D

    1991-01-01

    Using a ceruloplasmin cDNA clone in RNA blot analysis, a single 3.7 kb ceruloplasmin-specific transcript was detected in rat mammary gland tissue from pregnant and lactating animals. Ceruloplasmin gene expression in the mammary gland was tissue-specific, with no evidence of expression in brain, heart or other extrahepatic tissues. Ceruloplasmin mRNA was also detected in mammary gland tissue from male, virgin female and non-pregnant/multiparous animals, and the abundance of ceruloplasmin-specific transcripts in virgin female rats was independent of their stage of oestrus. In virgin female mammary gland the content of ceruloplasmin mRNA was 20% of that in hepatic tissue from these animals and approx. 2-3-fold greater than that found in mammary gland tissue of pregnant or lactating animals. Development studies revealed ceruloplasmin gene expression in male and female mammary gland by only 2 weeks of age, prior to the onset of puberty. Biosynthetic studies indicated that the ceruloplasmin mRNA in mammary gland tissue was translated into a 132 kDa protein qualitatively similar to that synthesized in liver. By in situ hybridization, ceruloplasmin gene expression was localized to the epithelium lining the mammary gland alveolar ducts, without evidence of expression in the surrounding mesenchyme. Ceruloplasmin gene expression was also detected in a human breast adenocarcinoma cell line and in biopsy tissue from women with invasive ductal carcinoma. Taken together, these data indicate that the mammary gland is a prominent site of extrahepatic ceruloplasmin gene expression and add to the evidence that ceruloplasmin biosynthesis is associated with growth and differentiation in non-hepatic tissues. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:1764031

  19. Tissue-Specific Transcriptomics in the Field Cricket Teleogryllus oceanicus

    PubMed Central

    Bailey, Nathan W.; Veltsos, Paris; Tan, Yew-Foon; Millar, A. Harvey; Ritchie, Michael G.; Simmons, Leigh W.

    2013-01-01

    Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection—testis and accessory gland—would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection. PMID:23390599

  20. Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas

    PubMed Central

    Van Sluys, Marie-Anne; White, Frank F.; Ryan, Robert P.; Dow, J. Maxwell; Rabinowicz, Pablo; Salzberg, Steven L.; Leach, Jan E.; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J.

    2008-01-01

    Background Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. Methodology/Principal Findings To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Conclusions/Significance Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale

  1. Russulaceae and Thelephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador.

    PubMed

    Haug, Ingeborg; Weiss, Michael; Homeier, Jürgen; Oberwinkler, Franz; Kottke, Ingrid

    2005-03-01

    * Three members of the Nyctaginaceae, two Neea species and one Guapira species, occurred scattered within a very species-rich neotropical mountain rain forest. The three species were found to form ectomycorrhizas of very distinctive characters, while all other tree species examined formed arbuscular mycorrhizas. * The ectomycorrhizas were structurally typified according to light and transmission electron microscope investigations. The internal transcribed spacer (ITS) rDNA and part of the nuclear large subunit (LSU, 28S) rDNA of the mycorrhiza forming fungi were amplified and sequenced. Phylogenetic analyses were carried out. * Neea species 1 was found to form typical ectomycorrhizas with five different fungal species, Russula puiggarii, Lactarius sp., two Tomentella or Thelephora species, and one ascomycete. Neea species 2 and the Guapira species were associated with only one fungus each, a Tomentella/Thelephora species clustering closely together in an ITS-neighbour-joining tree. The long and fine rootlets of the Guapira species showed proximally a hyphal mantle and a Hartig net, but distally intracellular fungal colonization of the epidermis and root hair development. The ectomycorrhizal segments of the long roots of Neea species 2 displayed a hyphal mantle and a Hartig net around alive root-hair-like outgrowths of the epidermal cells. * The distribution and the evolution of ectomycorrhizas in the predominantly neotropic Nyctaginaceae are discussed.

  2. A novel EID family member, EID-3, inhibits differentiation and forms a homodimer or heterodimer with EID-2

    SciTech Connect

    Sasajima, Yuka; Tanaka, Hiroyuki; Miyake, Satoshi; Yuasa, Yasuhito . E-mail: yuasa.monc@tmd.ac.jp

    2005-08-05

    The EID family members, i.e., E1A-like inhibitor of differentiation-1 (EID-1) and EID-1-like inhibitor of differentiation-2 (EID-2), were identified as negative regulators of cellular differentiation. EID-1 seems to inhibit differentiation by blocking histone acetyltransferase activity and EID-2 possibly inhibits differentiation through binding to class I histone deacetylases (HDACs). Here, we report a novel inhibitor of differentiation exhibiting homology with EID-2 termed EID-3 (EID-2-like inhibitor of differentiation-3). Like EID-2, EID-3 inhibited MyoD- and GR{alpha}-dependent transcription and blocked muscle differentiation in cultured cells by binding to class I HDACs. Unlike that of EID-2, the C-terminus, but not the N-terminus, of EID-3 was required for nuclear localization. EID-3 formed a homodimer or heterodimer with EID-2. These results suggest that EID-3 inhibits differentiation by blocking transcription as a complex in cells.

  3. Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota).

    PubMed

    Schmull, Michaela; Miadlikowska, Jolanta; Pelzer, Monika; Stocker-Wörgötter, Elfie; Hofstetter, Valerie; Fraker, Emily; Hodkinson, Brendan P; Reeb, Valerie; Kukwa, Martin; Lumbsch, H Thorsten; Kauff, Frank; Lutzoni, François

    2011-01-01

    The genus Lecidea Ach. sensu lato (sensu Zahlbruckner) includes almost 1200 species, out of which only 100 species represent Lecidea sensu stricto (sensu Hertel). The systematic position of the remaining species is mostly unsettled but anticipated to represent several unrelated lineages within Lecanoromycetes. This study attempts to elucidate the phylogenetic placement of members of this heterogeneous group of lichen-forming fungi and to improve the classification and phylogeny of Lecanoromycetes. Twenty-five taxa of Lecidea sensu lato and 22 putatively allied species were studied in a broad selection of 268 taxa, representing 48 families of Lecanoromycetes. Six loci, including four ribosomal and two protein-coding genes for 315- and 209-OTU datasets were subjected to maximum likelihood and Bayesian analyses. The resulting well supported phylogenetic relationships within Lecanoromycetes are in agreement with published phylogenies, but the addition of new taxa revealed putative rearrangements of several families (e.g. Catillariaceae, Lecanoraceae, Lecideaceae, Megalariaceae, Pilocarpaceae and Ramalinaceae). As expected, species of Lecidea sensu lato and putatively related taxa are scattered within Lecanoromycetidae and beyond, with several species nested in Lecanoraceae and Pilocarpaceae and others placed outside currently recognized families in Lecanorales and orders in Lecanoromycetidae. The phylogenetic affiliations of Schaereria and Strangospora are outside Lecanoromycetidae, probably with Ostropomycetidae. All species referred to as Lecidea sensu stricto based on morphology (including the type species, Lecidea fuscoatra [L.] Ach.) form, with Porpidia species, a monophyletic group with high posterior probability outside Lecanorales, Peltigerales and Teloschistales, in Lecanoromycetidae, supporting the recognition of order Lecideales Vain. in this subclass. The genus name Lecidea must be redefined to apply only to Lecidea sensu stricto and to include at least

  4. Tissue-specific Ctr1 Gene Expression and in silico Analysis of Its Putative Protein Product

    NASA Astrophysics Data System (ADS)

    Samsonov, Sergey A.; Nordlund, Eija; Platonova, Natalia A.; Skvortsov, Alexey N.; Tsymbalenko, Nadezhda V.; Puchkova, Ludmila V.

    2006-08-01

    Investigations of the links between Ctr1 gene activity and copper status in rat organs (liver, cerebellum, choroid plexus and mammary gland) with distinct types of copper metabolism as well as theoretical analysis of CTR1 domains structure were carried out in the research. The results suggest that (i) activity of mammalian Ctr1 gene is tissue-specific regulated at least by two different mechanisms: the gene activity is repressed by high intracellular Cu content and is activated/inactivated dependently on the cuproenzymes synthesis level required by physiological conditions. (ii) Multimerized conservative transmembrane domains 2 and 3 form the channel with copper binding amino acid side chains groups oriented inside this channel. These groups can transfer copper to the cytosolic domain, where Cu binds to CTR1 cytosolic HCH-motifs and can be further transferred to CXXC-motif of any known Cu(I)-chaperon.

  5. Tissue-specific expression of B7x protects from CD4 T cell–mediated autoimmunity

    PubMed Central

    Wei, Joyce; Loke, P’ng

    2011-01-01

    B7x, an inhibitory member of the B7/CD28 superfamily, is highly expressed in a broad range of nonhematopoietic organs, suggesting a role in maintaining peripheral tolerance. As endogenous B7x protein is expressed in pancreatic islets, we investigated whether the molecule inhibits diabetogenic responses. Transfer of disease-inducing BDC2.5 T cells into B7x-deficient mice resulted in a more aggressive form of diabetes than in wild-type animals. This exacerbation of disease correlated with higher frequencies of islet-infiltrating Th1 and Th17 cells. Conversely, local B7x overexpression inhibited the development of autoimmunity, as crossing diabetes-susceptible BDC2.5/B6g7 mice to animals overexpressing B7x in pancreatic islets abrogated disease induction. This protection was caused by the inhibition of IFN-γ production by CD4 T cells and not to a skewing or expansion of Th2 or regulatory T cells. The suppressive function of B7x was also supported by observations from another autoimmune model, experimental autoimmune encephalomyelitis, in which B7x-deficient mice developed exacerbated disease in comparison with wild-type animals. Analysis of central nervous system–infiltrating immune cells revealed that the loss of endogenous B7x resulted in expanded Th1 and Th17 responses. Data from these two autoimmune models provide evidence that B7x expression in the periphery acts as an immune checkpoint to prevent tissue-specific autoimmunity. PMID:21727190

  6. Tuning of shortening speed in coleoid cephalopod muscle: no evidence for tissue-specific muscle myosin heavy chain isoforms

    PubMed Central

    Shaffer, Justin F.; Kier, William M.

    2015-01-01

    The contractile protein myosin II is ubiquitous in muscle. It is widely accepted that animals express tissue-specific myosin isoforms that differ in amino acid sequence and ATPase activity in order to tune muscle contractile velocities. Recent studies, however, suggested that the squid Doryteuthis pealeii might be an exception; members of this species do not express muscle-specific myosin isoforms, but instead alter sarcomeric ultrastructure to adjust contractile velocities. We investigated whether this alternative mechanism of tuning muscle contractile velocity is found in other coleoid cephalopods. We analyzed myosin heavy chain transcript sequences and expression profiles from muscular tissues of a cuttlefish, Sepia officinalis, and an octopus, Octopus bimaculoides, in order to determine if these cephalopods express tissue-specific myosin heavy chain isoforms. We identified transcripts of four and six different myosin heavy chain isoforms in S. officinalis and O. bimaculoides muscular tissues, respectively. Transcripts of all isoforms were expressed in all muscular tissues studied, and thus S. officinalis and O. bimaculoides do not appear to express tissue-specific muscle myosin isoforms. We also examined the sarcomeric ultrastructure in the transverse muscle fibers of the arms of O. bimaculoides and the arms and tentacles of S. officinalis using transmission electron microscopy and found that the fast contracting fibers of the prey capture tentacles of S. officinalis have shorter thick filaments than those found in the slower transverse muscle fibers of the arms of both species. It thus appears that coleoid cephalopods, including the cuttlefish and octopus, may use ultrastructural modifications rather than tissue-specific myosin isoforms to adjust contractile velocities. PMID:26997860

  7. Tuning of shortening speed in coleoid cephalopod muscle: no evidence for tissue-specific muscle myosin heavy chain isoforms.

    PubMed

    Shaffer, Justin F; Kier, William M

    2016-03-01

    The contractile protein myosin II is ubiquitous in muscle. It is widely accepted that animals express tissue-specific myosin isoforms that differ in amino acid sequence and ATPase activity in order to tune muscle contractile velocities. Recent studies, however, suggested that the squid Doryteuthis pealeii might be an exception; members of this species do not express muscle-specific myosin isoforms, but instead alter sarcomeric ultrastructure to adjust contractile velocities. We investigated whether this alternative mechanism of tuning muscle contractile velocity is found in other coleoid cephalopods. We analyzed myosin heavy chain transcript sequences and expression profiles from muscular tissues of a cuttlefish, Sepia officinalis, and an octopus, Octopus bimaculoides, in order to determine if these cephalopods express tissue-specific myosin heavy chain isoforms. We identified transcripts of four and six different myosin heavy chain isoforms in S. officinalis and O. bimaculoides muscular tissues, respectively. Transcripts of all isoforms were expressed in all muscular tissues studied, and thus S. officinalis and O. bimaculoides do not appear to express tissue-specific muscle myosin isoforms. We also examined the sarcomeric ultrastructure in the transverse muscle fibers of the arms of O. bimaculoides and the arms and tentacles of S. officinalis using transmission electron microscopy and found that the fast contracting fibers of the prey capture tentacles of S. officinalis have shorter thick filaments than those found in the slower transverse muscle fibers of the arms of both species. It thus appears that coleoid cephalopods, including the cuttlefish and octopus, may use ultrastructural modifications rather than tissue-specific myosin isoforms to adjust contractile velocities.

  8. Lung cancer signature biomarkers: tissue specific semantic similarity based clustering of digital differential display (DDD) data.

    PubMed

    Srivastava, Mousami; Khurana, Pankaj; Sugadev, Ragumani

    2012-11-02

    The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs) in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD) rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used 'Gene Ontology semantic similarity score' to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal) and disease (cancer) sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95) identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1-4). Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1), chemotherapy/drug resistance biomarkers (panel 2), hypoxia regulated biomarkers (panel 3) and lung extra cellular matrix biomarkers (panel 4). Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3), HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1/SAG, AIB1 and AZIN1) are significantly down regulated

  9. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD) data

    PubMed Central

    2012-01-01

    Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs) in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD) rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal) and disease (cancer) sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95) identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4). Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1), chemotherapy/drug resistance biomarkers (panel 2), hypoxia regulated biomarkers (panel 3) and lung extra cellular matrix biomarkers (panel 4). Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3), HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1/SAG, AIB1 and AZIN1

  10. Testis-specific TAF homologs collaborate to control a tissue-specific transcription program.

    PubMed

    Hiller, Mark; Chen, Xin; Pringle, M Jodeane; Suchorolski, Martin; Sancak, Yasemin; Viswanathan, Sridhar; Bolival, Benjamin; Lin, Ting-Yi; Marino, Susan; Fuller, Margaret T

    2004-11-01

    Alternate forms of the PolII transcription initiation machinery have been proposed to play a role in selective activation of cell-type-specific gene expression programs during cellular differentiation. The cannonball (can) gene of Drosophila encodes a homolog of a TBP-associated factor (dTAF5) protein expressed only in spermatocytes, where it is required for normal transcription of genes required for spermatid differentiation. We show that Drosophila primary spermatocytes also express four additional tissue-specific TAFs: nht (homolog of dTAF4), mia (homolog of dTAF6), sa (homolog of dTAF8) and rye (homolog of dTAF12). Mutations in nht, mia and sa have similar effects in primary spermatocytes on transcription of several target genes involved in spermatid differentiation, and cause the same phenotypes as mutations in can, blocking both meiotic cell cycle progression and spermatid differentiation. The nht, mia, sa and rye proteins contain histone fold domain dimerization motifs. The nht and rye proteins interact structurally when co-expressed in bacteria, similarly to their generally expressed homologs TAF4 and TAF12, which heterodimerize. Strikingly, the structural interaction is tissue specific: nht did not interact with dTAF12 and dTAF4 did not interact with rye in a bacterial co-expression assay. We propose that the products of the five Drosophila genes encoding testis TAF homologs collaborate in an alternative TAF-containing protein complex to regulate a testis-specific gene expression program in primary spermatocytes required for terminal differentiation of male germ cells.

  11. Drosophila starvin encodes a tissue-specific BAG-domain protein required for larval food uptake.

    PubMed

    Coulson, Michelle; Robert, Stanley; Saint, Robert

    2005-12-01

    We describe a developmental, genetic, and molecular analysis of the sole Drosophila member of the BAG family of genes, which is implicated in stress response and survival in mammalian cells. We show that the gene, termed starvin (stv), is expressed in a highly tissue-specific manner, accumulating primarily in tendon cells following germ-band retraction and later in somatic muscles and the esophagus during embryonic stage 15. We show that stv expression falls within known tendon and muscle cell transcriptional regulatory cascades, being downstream of stripe, but not of another tendon transcriptional regulator, delilah, and downstream of the muscle regulator, mef-2. We generated a series of stv alleles and, surprisingly, given the muscle and tendon-specific embryonic expression of stv, found that the gross morphology and function of somatic muscles is normal in stv mutants. Nonetheless, stv mutant larvae exhibit a striking and fully penetrant mutant phenotype of failure to grow after hatching and a severely impaired ability to take up food. Our study provides the first report of an essential, developmentally regulated BAG-family gene.

  12. Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator.

    PubMed

    Penttinen, Pauliina; Jaehrling, Jan; Damdimopoulos, Anastasios E; Inzunza, José; Lemmen, Josephine G; van der Saag, Paul; Pettersson, Katarina; Gauglitz, Günter; Mäkelä, Sari; Pongratz, Ingemar

    2007-10-01

    Numerous dietary compounds can modify gene expression by binding to the members of the nuclear receptor superfamily of transcription factors. For example, dietary polyphenols, such as soy isoflavones genistein and daidzein, modulate the activity of the estrogen receptors (ERs)-alpha and ERbeta. An additional class of dietary polyphenols that modulate cellular signaling pathways are lignans, compounds that are common constituents of Western diets. In this study, we show that a metabolite of dietary lignans, enterolactone, at physiological concentrations, activates ER-mediated transcription in vitro with preference for ERalpha. The effects of enterolactone are mediated by the ER ligand binding domain and are susceptible to antiestrogen treatment. Furthermore, the affinity of enterolactone toward ERalpha, measured by a novel ligand binding assay, is augmented in cell culture conditions. Moreover, our results demonstrate for the first time that enterolactone has estrogenic activity in vivo. In transgenic estrogen-sensitive reporter mice, enterolactone induces tissue-specific estrogen-responsive reporter gene expression as well as promotes uterine stromal edema and expression of estrogen-responsive endogenous genes (CyclinD1 and Ki67). Taken together, our data show that enterolactone is a selective ER agonist inducing ER-mediated transcription both in vitro in different cell lines and in vivo in the mouse uterus.

  13. A Novel CpG Island Set Identifies Tissue-Specific Methylation at Developmental Gene Loci

    PubMed Central

    Illingworth, Robert; Kerr, Alastair; DeSousa, Dina; Jørgensen, Helle; Ellis, Peter; Stalker, Jim; Jackson, David; Clee, Chris; Plumb, Robert; Rogers, Jane; Humphray, Sean; Cox, Tony; Langford, Cordelia; Bird, Adrian

    2008-01-01

    CpG islands (CGIs) are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%–8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues. PMID:18232738

  14. A novel CpG island set identifies tissue-specific methylation at developmental gene loci.

    PubMed

    Illingworth, Robert; Kerr, Alastair; Desousa, Dina; Jørgensen, Helle; Ellis, Peter; Stalker, Jim; Jackson, David; Clee, Chris; Plumb, Robert; Rogers, Jane; Humphray, Sean; Cox, Tony; Langford, Cordelia; Bird, Adrian

    2008-01-01

    CpG islands (CGIs) are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%-8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues.

  15. The function of vestigial in Drosophila wing development: how are tissue-specific responses to signalling pathways specified?

    PubMed

    de Celis, J F

    1999-07-01

    The activities of conserved signal transduction pathways are central to the development of Drosophila wings, legs, and eyes. Yet, all these structures have characteristic morphologies, suggesting that additional factors provide organ-specific information. One excellent candidate for such a function is Vestigial, which activity promotes the formation of wings. The biochemical function of Vestigial is unknown, however, since no homologies with other proteins have been identified. Two recent reports show that Vestigial interacts with the transcription factor Scalloped, forming an active complex that binds to specific DNA sequences and regulates gene expression in cooperation with several signalling pathways. These results illustrate how tissue-specific transcription factors cooperate with general signalling pathways to regulate gene expression in a tissue-specific manner.

  16. Tissue-specific accumulation and speciation of selenium in rainbow trout (Oncorhynchus mykiss) exposed to elevated dietary selenomethionine.

    PubMed

    Misra, Sougat; Peak, Derek; Chen, Ning; Hamilton, Charmain; Niyogi, Som

    2012-05-01

    The toxicity of selenium in fish is influenced by its chemical speciation and the exposure route. In the natural environment, selenium exposure to fish occurs primarily in the form of selenomethionine in diet. Thus, the main objective of this study was to examine the tissue-specific selenium burden and speciation in fish exposed to elevated dietary selenomethionine. Rainbow trout (Oncorhynchus mykiss) were treated with dietary selenomethionine (40 μg g(-1) dry mass) for 2 weeks, and at the end of the exposure different tissue samples were collected to assess the tissue-specific distribution and speciation of selenium. We used synchrotron-based X-ray absorption near edge spectroscopy (XANES) to determine the selenium speciation profile. Selenomethionine, selenocysteine and selenocystine were found to be the predominant form of selenium in all of the tissues; however their relative proportion varied across different tissues. In general, the organs primarily involved in selenium handling in fish (e.g., liver, kidney) accumulated a higher percentage of selenocystine. We also found that dietary selenomethionine exposure resulted into a marked increase in selenium burden of all major tissues in fish including the brain. Collectively, our findings provide new insights into the tissue-specific distribution and speciation of selenium in fish exposed to selenomethionine via diet. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Sequence- and Structure-Based Analysis of Tissue-Specific Phosphorylation Sites

    PubMed Central

    Karabulut, Nermin Pinar; Frishman, Dmitrij

    2016-01-01

    Phosphorylation is the most widespread and well studied reversible posttranslational modification. Discovering tissue-specific preferences of phosphorylation sites is important as phosphorylation plays a role in regulating almost every cellular activity and disease state. Here we present a comprehensive analysis of global and tissue-specific sequence and structure properties of phosphorylation sites utilizing recent proteomics data. We identified tissue-specific motifs in both sequence and spatial environments of phosphorylation sites. Target site preferences of kinases across tissues indicate that, while many kinases mediate phosphorylation in all tissues, there are also kinases that exhibit more tissue-specific preferences which, notably, are not caused by tissue-specific kinase expression. We also demonstrate that many metabolic pathways are differentially regulated by phosphorylation in different tissues. PMID:27332813

  18. Cloning, expression, and regulation of tissue-specific genes in Drosophila

    SciTech Connect

    Korochkin, L.I.

    1995-08-01

    The family of esterase genes was studied in various Drosophilia species. These genes are classified as tissue-specific and housekeeping ones. The expression of tissue-specific esterases in the male reproductive system of Drosophilia species from the virilis and melanogaster groups was thoroughly examined. Modifier genes controlling activity level, time of synthesis, and distribution in cells of the tissue-specific esterase isozyme from the ejaculatory bulb were revealed. The structural gene coding of this enzyme was isolated, cloned, and sequenced. This gene was shown to be similar in different Drosophilia species; the transcriptional level of tissue specificity of this gene was determined. The possibility of transformating the tissue-specific gene into a housekeeping one was demonstrated. In different Drosophilia species, this gene can be expressed in different parts of the reproductive system. In transgenic males carrying the gene of another species, the foreign gene is expressed as in the donor. 68 refs., 11 figs.

  19. Bridging sequence diversity and tissue-specific expression by DNA methylation in genes of the mouse prolactin superfamily

    PubMed Central

    Hayakawa, Koji; Nakanishi, Momo O.; Ohgane, Jun; Tanaka, Satoshi; Hirosawa, Mitsuko; Soares, Michael J.; Yagi, Shintaro; Shiota, Kunio

    2016-01-01

    Much of the DNA in genomes is organized within gene families and hierarchies of gene superfamilies. DNA methylation is the main epigenetic event involved in gene silencing and genome stability. In the present study, we analyzed the DNA methylation status of the prolactin (PRL) superfamily to obtain insight into its tissue-specific expression and the evolution of its sequence diversity. The PRL superfamily in mice consists of two dozen members, which are expressed in a tissue-specific manner. The genes in this family have CpG-less sequences, and they are located within a 1-Mb region as a gene cluster on chromosome 13. We tentatively grouped the family into several gene clusters, depending on location and gene orientation. We found that all the members had tissue-dependent differentially methylated regions (T-DMRs) around the transcription start site. The T-DMRs are hypermethylated in nonexpressing tissues and hypomethylated in expressing cells, supporting the idea that the expression of the PRL superfamily genes is subject to epigenetic regulation. Interestingly, the DNA methylation patterns of T-DMRs are shared within a cluster, while the patterns are different among the clusters. Finally, we reconstituted the nucleotide sequences of T-DMRs by converting TpG to CpG based on the consideration of a possible conversion of 5-methylcytosine to thymine by spontaneous deamination during the evolutionary process. On the phylogenic tree, the reconstituted sequences were well matched with the DNA methylation pattern of T-DMR and orientation. Our study suggests that DNA methylation is involved in tissue-specific expression and sequence diversity during evolution. PMID:22193412

  20. Complex extracellular matrices promote tissue-specific stem cell differentiation.

    PubMed

    Philp, Deborah; Chen, Silvia S; Fitzgerald, Wendy; Orenstein, Jan; Margolis, Leonid; Kleinman, Hynda K

    2005-02-01

    Most cells in tissues contact an extracellular matrix on at least one surface. These complex mixtures of interacting proteins provide structural support and biological signals that regulate cell differentiation and may be important for stem cell differentiation. In this study, we have grown a rhesus monkey embryonic stem cell line in the presence of various extracellular matrix components in monolayer, in a NASA-developed rotating wall vessel bioreactor in vitro, and subcutaneously in vivo. We find that individual components of the extracellular matrix, such as laminin-1 or collagen I, do not influence the growth or morphology of the cells. In contrast, a basement membrane extract, Matrigel, containing multiple extracellular matrix components, induces the cells within 4 days to form immature glandular- and tubular-like structures, many of which contain a lumen with polarized epithelium and microvilli. Such structures were seen in vitro when the cells were grown in the bioreactor and when the cells were injected into mice. These tubular- and glandular-like structures were polarized epithelia based on immunostaining for laminin and cytokeratin. The cell aggregates and tumors also contained additional mixed populations of cells, including mesenchymal cells and neuronal cells, based on immunostaining with vimentin and neuronal markers. An extract of cartilage, containing multiple cartilage matrix components, promoted chondrogenesis in vivo where alcian blue-stained cartilage nodules could be observed. Some of these nodules stained with von Kossa, indicating that they had formed calcified cartilage. We conclude that extracellular matrices can promote the differentiation of embryonic stem cells into differentiated cells and structures that are similar to the tissue from which the matrix is derived. Such preprogramming of cell differentiation with extracellular matrices may be useful in targeting stem cells to repair specific damaged organs.

  1. Tissue-Specificity of Gene Expression Diverges Slowly between Orthologs, and Rapidly between Paralogs

    PubMed Central

    2016-01-01

    The ortholog conjecture implies that functional similarity between orthologous genes is higher than between paralogs. It has been supported using levels of expression and Gene Ontology term analysis, although the evidence was rather weak and there were also conflicting reports. In this study on 12 species we provide strong evidence of high conservation in tissue-specificity between orthologs, in contrast to low conservation between within-species paralogs. This allows us to shed a new light on the evolution of gene expression patterns. While there have been several studies of the correlation of expression between species, little is known about the evolution of tissue-specificity itself. Ortholog tissue-specificity is strongly conserved between all tetrapod species, with the lowest Pearson correlation between mouse and frog at r = 0.66. Tissue-specificity correlation decreases strongly with divergence time. Paralogs in human show much lower conservation, even for recent Primate-specific paralogs. When both paralogs from ancient whole genome duplication tissue-specific paralogs are tissue-specific, it is often to different tissues, while other tissue-specific paralogs are mostly specific to the same tissue. The same patterns are observed using human or mouse as focal species, and are robust to choices of datasets and of thresholds. Our results support the following model of evolution: in the absence of duplication, tissue-specificity evolves slowly, and tissue-specific genes do not change their main tissue of expression; after small-scale duplication the less expressed paralog loses the ancestral specificity, leading to an immediate difference between paralogs; over time, both paralogs become more broadly expressed, but remain poorly correlated. Finally, there is a small number of paralog pairs which stay tissue-specific with the same main tissue of expression, for at least 300 million years. PMID:28030541

  2. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm

    PubMed Central

    Singh, Anupama; Kushwaha, Hemant R.; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  3. Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis.

    PubMed Central

    Harada, N; Utsumi, T; Takagi, Y

    1993-01-01

    Extensive screening of aromatase cDNA was carried out in cDNA libraries from various human tissues. The DNA sequences of all the isolated cDNA clones were identical in the region encoded by exons 2-10 of the aromatase gene. However, tissue-specific sequences, which were classified into four groups, were observed in the 5' portions of the clones corresponding to the region encoded by exon 1. All of them were also found in clones isolated from a human genomic library and mapped between exons 1 and 2 of the human aromatase gene reported previously, suggesting the presence of multiple exons 1 and promoters in the gene. Reverse transcription-PCR analyses of aromatase mRNAs in various tissues revealed that aromatase transcripts are tissue-specifically spliced by alternative use of multiple exons 1, although minor forms of the transcripts were also present in each tissue. Aromatase mRNA is spliced from 10 exons in most tissues, but from 9 exons in the prostate and from 10 or 11 exons in the placenta. This suggests that tissue-specific regulation of the aromatase gene in various tissues may be explained by alternative use of multiple exons 1 flanked with tissue-specific promoters. The alternative use of multiple exons 1 for liver transcripts was found to change developmentally. Furthermore, switch from an adipose-specific exon 1 to another type of exon 1 was observed in aromatase transcripts of adipose tissues of three of five breast cancer patients. Images Fig. 3 Fig. 4 PMID:8248245

  4. The Role of the Ubiquitously Expressed Transcription Factor Sp1 in Tissue-specific Transcriptional Regulation and in Disease

    PubMed Central

    O’Connor, Leigh; Gilmour, Jane; Bonifer, Constanze

    2016-01-01

    Sp1 belongs to the 26 member strong Sp/KLF family of transcription factors. It is a paradigm for a ubiquitously expressed transcription factor and is involved in regulating the expression of genes associated with a wide range of cellular processes in mammalian cells. Sp1 can interact with a range of proteins, including other transcription factors, members of the transcription initiation complex and epigenetic regulators, enabling tight regulation of its target genes. In this review, we discuss the mechanisms involved in Sp1-mediated transcriptional regulation, as well as how a ubiquitous transcription factor can be involved in establishing a tissue-specific pattern of gene expression and mechanisms by which its activity may be regulated. We also consider the role of Sp1 in human diseases, such as cancer. PMID:28018142

  5. Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs.

    PubMed

    Amin, Viren; Harris, R Alan; Onuchic, Vitor; Jackson, Andrew R; Charnecki, Tim; Paithankar, Sameer; Lakshmi Subramanian, Sai; Riehle, Kevin; Coarfa, Cristian; Milosavljevic, Aleksandar

    2015-02-18

    Tissue-specific expression of lincRNAs suggests developmental and cell-type-specific functions, yet tissue specificity was established for only a small fraction of lincRNAs. Here, by analysing 111 reference epigenomes from the NIH Roadmap Epigenomics project, we determine tissue-specific epigenetic regulation for 3,753 (69% examined) lincRNAs, with 54% active in one of the 14 cell/tissue clusters and an additional 15% in two or three clusters. A larger fraction of lincRNA TSSs is marked in a tissue-specific manner by H3K4me1 than by H3K4me3. The tissue-specific lincRNAs are strongly linked to tissue-specific pathways and undergo distinct chromatin state transitions during cellular differentiation. Polycomb-regulated lincRNAs reside in the bivalent state in embryonic stem cells and many of them undergo H3K27me3-mediated silencing at early stages of differentiation. The exquisitely tissue-specific epigenetic regulation of lincRNAs and the assignment of a majority of them to specific tissue types will inform future studies of this newly discovered class of genes.

  6. Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

    PubMed Central

    Ko, Je Yeong; Oh, Sumin; Yoo, Kyung Hyun

    2017-01-01

    Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development. PMID:28359147

  7. Genome-wide de Novo Prediction of Proximal and Distal Tissue-Specific Enhancers

    SciTech Connect

    Loots, G G; Ovcharenko, I V

    2005-11-03

    Determining how transcriptional regulatory networks are encoded in the human genome is essential for understanding how cellular processes are directed. Here, we present a novel approach for systematically predicting tissue specific regulatory elements (REs) that blends genome-wide expression profiling, vertebrate genome comparisons, and pattern analysis of transcription factor binding sites. This analysis yields 4,670 candidate REs in the human genome with distinct tissue specificities, the majority of which reside far away from transcription start sites. We identify key transcription factors (TFs) for 34 distinct tissues and demonstrate that tissue-specific gene expression relies on multiple regulatory pathways employing similar, but different cohorts of interacting TFs. The methods and results we describe provide a global view of tissue specific gene regulation in humans, and propose a strategy for deciphering the transcriptional regulatory code in eukaryotes.

  8. How to Support and Engage Students in Alternative Forms of Education and Training? A Qualitative Study of School Staff Members in Flanders

    ERIC Educational Resources Information Center

    Van Praag, Lore; Van Caudenberg, Rut; Nouwen, Ward; Clycq, Noel; Timmerman, Christiane

    2017-01-01

    This study focuses on how students, who for a variety of reasons struggle in mainstream secondary schools, can be supported and engaged by alternative forms of education and training to attain a (formal) qualification. Interviews and focus groups are carried out with school staff members of distinct types of alternative learning arenas in Flanders…

  9. A tissue-specific scaffold for tissue engineering-based ureteral reconstruction.

    PubMed

    Xu, Yongde; Fu, Weijun; Wang, Zhongxin; Li, Gang; Zhang, Xu

    2015-01-01

    Terminally differentiated somatic cells can rapidly change phenotypes when they are isolated from their native tissue and cultured in vitro. This problem may become a barrier to tissue engineering-based organ reconstruction, which utilizes somatic cells. The present study was designed to validate the feasibility of maintaining the urothelial cell phenotype in a tissue-specific ureteral scaffold. The tissue-specific scaffold was fabricated by blending poly (L-lactic acid) (PLLA) and ureteral extracellular matrix (UECM) using electrostatic spinning technology. PLLA was used to enhance the mechanical properties, and UECM was used to mimic the natural components of the ureter. Primary urothelial cells (UCs), derived from ureteral mucosa, were seeded onto the tissue-specific scaffold to assess cell adhesion, proliferation and phenotypes at designated time points. The results showed that UCs in the tissue-specific scaffold exhibited better proliferation compared to cells in pure PLLA or a PLLA-small intestinal submucosa (PLLA-SIS) scaffold (p<0.05). At different time points, the expression of a UC-specific marker (UroplakinⅢ) in the tissue-specific scaffold was significantly higher than its expression in pure PLLA or a PLLA-SIS scaffold (p<0.05). Therefore, the tissue-specific scaffold appears to be an ideal substrate for promoting UC survival and phenotype maintenance.

  10. TISSUE-SPECIFIC VENOUS EXPRESSION OF THE EPH FAMILY RECEPTOR EPHB1 IN THE SKIN VASCULATURE

    PubMed Central

    Li, Wenling; Mukouyama, Yoh-suke

    2013-01-01

    Background The major arteries and veins are formed early during development. The molecular tools to identify arterial and venous endothelial cells improve our understanding of arterial-venous differentiation and branching morphogenesis. Compared to arterial differentiation, relatively little is known about what controls venous development, due to a lack of definitive molecular markers for venous endothelial cells. Results Here we report that the antibody against EphB1, an EphB class receptor, makes it possible to establish a reliable whole-mount immunohistochemical analysis of venous identity with greater resolution than previously possible in embryonic and adult skin vasculature models. EphB1 expression is restricted to the entire venous vasculature throughout embryonic development to adulthood, whereas the previously established venous marker EphB4 is also detectable in lymphatic vasculature. This venous-restricted expression of EphB1 is established after the vascular remodeling of the primary capillary plexus has occurred. Compared to its venous-specific expression in the skin, however, EphB1 is not restricted to the venous vasculature in yolk sac, trunk and lung. Conclusions These studies introduce EphB1 as a new venous-restricted marker in a tissue-specific and time-dependent manner. PMID:23649798

  11. Contributions of tissue-specific pathologies to corneal injuries following exposure to SM vapor.

    PubMed

    McNutt, Patrick M; Tuznik, Kaylie M; Glotfelty, Elliot J; Nelson, Marian R; Lyman, Megan E; Hamilton, Tracey A

    2016-06-01

    Corneal injuries resulting from ocular exposure to sulfur mustard (SM) vapor are the most prevalent chemical warfare injury. Ocular exposures exhibit three distinct, dose-dependent clinical trajectories: complete injury resolution, immediate transition to a chronic injury, or apparent recovery followed by the subsequent development of persistent ocular manifestations. These latter two trajectories include a constellation of corneal symptoms that are collectively known as mustard gas keratopathy (MGK). The etiology of MGK is not understood. Here, we synthesize recent findings from in vivo rabbit SM vapor studies, suggesting that tissue-specific damage during the acute injury can decrement the regenerative capacities of corneal endothelium and limbal stem cells, thereby predisposing the cornea to the chronic or delayed forms of MGK. This hypothesis not only provides a mechanism to explain the acute and MGK injuries but also identifies novel therapeutic modalities to mitigate or eliminate the acute and long-term consequences of ocular exposure to SM vapor. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  12. Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation.

    PubMed

    Vragović, Kristina; Sela, Ayala; Friedlander-Shani, Lilach; Fridman, Yulia; Hacham, Yael; Holland, Neta; Bartom, Elizabeth; Mockler, Todd C; Savaldi-Goldstein, Sigal

    2015-01-20

    The mechanisms ensuring balanced growth remain a critical question in developmental biology. In plants, this balance relies on spatiotemporal integration of hormonal signaling pathways, but the understanding of the precise contribution of each hormone is just beginning to take form. Brassinosteroid (BR) hormone is shown here to have opposing effects on root meristem size, depending on its site of action. BR is demonstrated to both delay and promote onset of stem cell daughter differentiation, when acting in the outer tissue of the root meristem, the epidermis, and the innermost tissue, the stele, respectively. To understand the molecular basis of this phenomenon, a comprehensive spatiotemporal translatome mapping of Arabidopsis roots was performed. Analyses of wild type and mutants featuring different distributions of BR revealed autonomous, tissue-specific gene responses to BR, implying its contrasting tissue-dependent impact on growth. BR-induced genes were primarily detected in epidermal cells of the basal meristem zone and were enriched by auxin-related genes. In contrast, repressed BR genes prevailed in the stele of the apical meristem zone. Furthermore, auxin was found to mediate the growth-promoting impact of BR signaling originating in the epidermis, whereas BR signaling in the stele buffered this effect. We propose that context-specific BR activity and responses are oppositely interpreted at the organ level, ensuring coherent growth.

  13. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves1

    PubMed Central

    Hübner, Michaela; Matsubara, Shizue; Beyer, Peter

    2015-01-01

    Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly β-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of β-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation. PMID:26134165

  14. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves.

    PubMed

    Lätari, Kira; Wüst, Florian; Hübner, Michaela; Schaub, Patrick; Beisel, Kim Gabriele; Matsubara, Shizue; Beyer, Peter; Welsch, Ralf

    2015-08-01

    Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly β-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of β-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Tissue-Specific and Development-Dependent Accumulation of Phenylpropanoids in Larch Mycorrhizas.

    PubMed Central

    Weiss, M.; Mikolajewski, S.; Peipp, H.; Schmitt, U.; Schmidt, J.; Wray, V.; Strack, D.

    1997-01-01

    The tissue-specific and development-dependent accumulation of secondary products in roots and mycorrhizas of larch (Larix decidua Mill.; Pinaceae) was studied using high-performance liquid chromatography and histochemical methods. The compounds identified were soluble catechin, epicatechin, quercetin 3-O-[alpha]-rhamnoside, cyanidin- and peonidin 3-O-[beta]-glucoside, 4-O-[beta]-hydroxybenzoyl-O-[beta]-glucose, 4-hydroxybenzoate 4-O-[beta]-glucoside, maltol 3-O-[beta]-glucoside, and the wall-bound 4-hydroxybenzaldehyde, vanillin, and ferulate. In addition, we partially identified a tetrahydroxystilbene monoglycoside, a quercetin glycoside, and eight oligomeric proanthocyanidins. Comparison between the compounds accumulating in the apical tissue of fine roots, long roots, and in vitro grown mycorrhizas (L. decidua-Suillus tridentinus) showed elevated levels of the major compounds catechin and epicatechin as well as the minor compound 4-hydroxybenzoate 4-O-[beta]-glucoside specifically in the root apex of young mycorrhizas. The amounts of wall-bound 4-hydroxybenzaldehyde and vanillin were increased in all of the mycorrhizal sections examined. During the early stages of mycorrhization the concentrations of these compounds increased rapidly, perhaps induced by the mycorrhizal fungus. In addition, studies of L. decidua-Boletinus cavipes mycorrhizas from a natural stand showed that the central part of the subapical cortex tissue and the endodermis both accumulate massive concentrations of catechin, epicatechin, and wall-bound ferulate compared with the outer part of the cortex, where the Hartig net is being formed. PMID:12223686

  16. Tissue specific responses to cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis.

    PubMed

    Rocha, Thiago Lopes; Gomes, Tânia; Mestre, Nélia C; Cardoso, Cátia; Bebianno, Maria João

    2015-12-01

    In recent years, Cd-based quantum dots (QDs) have generated interest from the life sciences community due to their potential applications in nanomedicine, biology and electronics. However, these engineered nanomaterials can be released into the marine environment, where their environmental health hazards remain unclear. This study investigated the tissue-specific responses related to alterations in the antioxidant defense system induced by CdTe QDs, in comparison with its dissolved counterpart, using the marine mussel Mytilus galloprovincialis. Mussels were exposed to CdTe QDs and dissolved Cd for 14 days at 10 μgCd L(-1) and biomarkers of oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (total, Se-independent and Se-dependent GPx) and glutathione-S-transferase (GST) activities] were analyzed along with Cd accumulation in the gills and digestive gland of mussels. Results show that both Cd forms changed mussels' antioxidant responses with distinct modes of action (MoA). There were tissue- and time-dependent differences in the biochemical responses to each Cd form, wherein QDs are more pro-oxidant when compared to dissolved Cd. The gills are the main tissue affected by QDs, with effects related to the increase of SOD, GST and GPx activities, while those of dissolved Cd was associated to the increase of CAT activity, Cd accumulation and exposure time. Digestive gland is a main tissue for accumulation of both Cd forms, but changes in antioxidant enzyme activities are smaller than in gills. A multivariate analysis revealed that the antioxidant patterns are tissue dependent, indicating nano-specific effects possibly associated to oxidative stress and changes in redox homeostasis.

  17. The effects of form training on foul-shooting performance in members of a women's college basketball team.

    PubMed Central

    Kladopoulos, C N; McComas, J J

    2001-01-01

    The effects of instruction and feedback in proper form on foul-shooting performance was evaluated in 3 players of a women's NCAA Division II college basketball team. Players showed an increase in percentage of shots made and in correct form compared to baseline shooting without instruction or feedback. All players reached criterion within seven training sessions. The results suggest that training proper form is an effective strategy for improving foul-shooting performance. PMID:11678527

  18. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues

    PubMed Central

    Blazie, Stephen M.; Geissel, Heather C.; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-01-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3′untranslated region (3′UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3′UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3′UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. PMID:28348061

  19. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues.

    PubMed

    Blazie, Stephen M; Geissel, Heather C; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-06-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3'untranslated region (3'UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3'UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3'UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. Copyright © 2017 Blazie et al.

  20. Complementarity of medium-throughput in situ RNA hybridization and tissue-specific transcriptomics: case study of Arabidopsis seed development kinetics

    PubMed Central

    Francoz, Edith; Ranocha, Philippe; Pernot, Clémentine; Ru, Aurélie Le; Pacquit, Valérie; Dunand, Christophe; Burlat, Vincent

    2016-01-01

    The rationale of this study is to compare and integrate two heterologous datasets intended to unravel the spatiotemporal specificities of gene expression in a rapidly growing and complex organ. We implemented medium-throughput RNA in situ hybridization (ISH) for 39 genes mainly corresponding to cell wall proteins for which we have particular interest, selected (i) on their sequence identity (24 class III peroxidase multigenic family members and 15 additional genes used as positive controls) and (ii) on their expression levels in a publicly available Arabidopsis thaliana seed tissue-specific transcriptomics study. The specificity of the hybridization signals was carefully studied, and ISH results obtained for the 39 selected genes were systematically compared with tissue-specific transcriptomics for 5 seed developmental stages. Integration of results illustrates the complementarity of both datasets. The tissue-specific transcriptomics provides high-throughput possibilities whereas ISH provides high spatial resolution. Moreover, depending on the tissues and the developmental stages considered, one or the other technique appears more sensitive than the other. For each tissue/developmental stage, we finally determined tissue-specific transcriptomic threshold values compatible with the spatiotemporally-specific detection limits of ISH for lists of hundreds to tens-of-thousands of genes. PMID:27095274

  1. Tissue-specific sequence and structural environments of lysine acetylation sites.

    PubMed

    Karabulut, Nermin Pinar; Frishman, Dmitrij

    2015-07-01

    Lysine acetylation is a widespread reversible post-translational modification that regulates a broad spectrum of biological activities across various cellular compartments, cell types, tissues, and disease states. While compartment-specific trends in lysine acetylation have recently been investigated, its tissue-specific preferences remain unexplored. Here we present a comprehensive tissue-based analysis of sequence and structural features of lysine acetylation sites (LASs) based on the recent experimental data of Lundby et al. (2012). We show that acetylated substrates are characterized by tissue-specific motifs both in linear amino acid sequence and in spatial environments. We further demonstrate that the general tendency of LASs to reside in ordered regions and, specifically, in α-helices, is also subject to tissue specific variation. In line with previous findings we show that LASs are generally more evolutionarily conserved than non-LASs, especially in proteins with known function and in structurally regular regions. On the other hand, as revealed by metabolic pathway analysis, LASs have diverse cellular functions in different tissues and are frequently associated with tissue-specific protein domains. These findings may imply the existence of tissue-specific lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism

    PubMed Central

    Jerby, Livnat; Shlomi, Tomer; Ruppin, Eytan

    2010-01-01

    The computational study of human metabolism has been advanced with the advent of the first generic (non-tissue specific) stoichiometric model of human metabolism. In this study, we present a new algorithm for rapid reconstruction of tissue-specific genome-scale models of human metabolism. The algorithm generates a tissue-specific model from the generic human model by integrating a variety of tissue-specific molecular data sources, including literature-based knowledge, transcriptomic, proteomic, metabolomic and phenotypic data. Applying the algorithm, we constructed the first genome-scale stoichiometric model of hepatic metabolism. The model is verified using standard cross-validation procedures, and through its ability to carry out hepatic metabolic functions. The model's flux predictions correlate with flux measurements across a variety of hormonal and dietary conditions, and improve upon the predictive performance obtained using the original, generic human model (prediction accuracy of 0.67 versus 0.46). Finally, the model better predicts biomarker changes in genetic metabolic disorders than the generic human model (accuracy of 0.67 versus 0.59). The approach presented can be used to construct other human tissue-specific models, and be applied to other organisms. PMID:20823844

  3. Tissue-specific activity of the pro-opiomelanocortin gene promoter

    SciTech Connect

    Jeannotte, L.; Trifiro, M.A.; Plante, R.K.; Chamberland, M.; Drouin, J.

    1987-11-01

    The pro-opiomelanocortin (POMC) gene is specifically expressed in corticotroph cells of the anterior pituitary. To define the POMC promoter sequences responsible for tissue-specific expression, we assessed POMC promoter activity by gene transfer into POMC-expressing pituitary tumor cells (AtT-20) and fibroblast L cells. The rat POMC promoter was only efficiently utilized and correctly transcribed in AtT-20 cells. 5'-End deletion analysis revealed two promoter regions for activity in AtT-20 cells. When tested by fusion to a heterologuous promoter, DNA fragments corresponding to both regions exhibited tissue-specific activity, suggesting the presence of at least two tissue-specific DNA sequence elements within the promoter. In summary, POMC promoter sequences from -480 to -34 base pairs appear sufficient to mimic the specificity of anterior pituitary expression.

  4. Tissue-specific responses to the LRPPRC founder mutation in French Canadian Leigh Syndrome

    PubMed Central

    Sasarman, Florin; Nishimura, Tamiko; Antonicka, Hana; Weraarpachai, Woranontee; Shoubridge, Eric A.; Allen, Bruce; Burelle, Yan; Charron, Guy; Coderre, Lise; DesRosiers, Christine; Laprise, Catherine; Morin, Charles; Rioux, John; Shoubridge, Eric A.

    2015-01-01

    French Canadian Leigh Syndrome (LSFC) is an early-onset, progressive neurodegenerative disorder with a distinct pattern of tissue involvement. Most cases are caused by a founder missense mutation in LRPPRC. LRPPRC forms a ribonucleoprotein complex with SLIRP, another RNA-binding protein, and this stabilizes polyadenylated mitochondrial mRNAs. LSFC fibroblasts have reduced levels of LRPPRC and a specific complex IV assembly defect; however, further depletion of mutant LRPPRC results in a complete failure to assemble a functional oxidative phosphorylation system, suggesting that LRPPRC levels determine the nature of the biochemical phenotype. We tested this hypothesis in cultured muscle cells and tissues from LSFC patients. LRPPRC levels were reduced in LSFC muscle cells, resulting in combined complex I and IV deficiencies. A similar combined deficiency was observed in skeletal muscle. Complex IV was only moderately reduced in LSFC heart, but was almost undetectable in liver. Both of these tissues showed elevated levels of complexes I and III. Despite the marked biochemical differences, the steady-state levels of LRPPRC and mitochondrial mRNAs were extremely low, LRPPRC was largely detergent-insoluble, and SLIRP was undetectable in all LSFC tissues. The level of the LRPPRC/SLIRP complex appeared much reduced in control tissues by the first dimension blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis compared with fibroblasts, and even by second dimension analysis it was virtually undetectable in control heart. These results point to tissue-specific pathways for the post-transcriptional handling of mitochondrial mRNAs and suggest that the biochemical defects in LSFC reflect the differential ability of tissues to adapt to the mutation. PMID:25214534

  5. Molecular characterization of PRR13 and its tissue-specific expression in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Verleih, Marieke; Rebl, Alexander; Köllner, Bernd; Korytář, Tomáš; Kotterba, Günter; Anders, Eckhard; Wimmers, Klaus; Goldammer, Tom

    2010-12-01

    The proline-rich protein 13 (PRR13) is reported to be a key regulator of the resistance to cytostatica by decreasing the copy number of the proapoptotic gene thrombospondin-1. We isolated and characterized the complete PRR13 gene sequence of rainbow trout (Oncorhynchus mykiss). The gene comprises four exons and three introns, the latter of comparatively short lengths (100-811 bp). The full-length PRR13 cDNA consists of 1,101 nucleotides, including an open reading frame of 563 bp, which is predicted to encode a 187 amino acid protein with a molecular mass of 18.8 kDa. A continuous stretch of ten serine residues at the C-terminus is highly conserved and characteristic for vertebrate PRR13, but not for other known proline-rich proteins. Phylogenetic analyses suggest a clear separation of teleostean PRR13 proteins and those from mammalian and reptilian species. Comparison of the tissue-specific PRR13 mRNA abundance in two strains of the rainbow trout coastal form (TCO Steelhead II-WA vs. BORN Steelhead II-Germany) revealed an increased expression in the BORN trout in nearly all examined tissues. The major expression differences were detected in gill (2.29-fold) and in liver tissue (2.16-fold). Hence, the increased PRR13 expression in BORN trout might cause improved protection from natural cytostatica and therefore support our assumption that PRR13 is a candidate gene possibly involved in the varying ability of the two rainbow trout strains to handle environmental stress under local conditions of the Southern Baltic.

  6. Tissue Specific Expression Levels of Apoptosis Involved Genes Have Correlations with Codon and Amino Acid Usage

    PubMed Central

    Sadeghi, Iman; Salavaty, Abbas; Nasiri, Habib

    2016-01-01

    Different mechanisms, including transcriptional and post transcriptional processes, regulate tissue specific expression of genes. In this study, we report differences in gene/protein compositional features between apoptosis involved genes selectively expressed in human tissues. We found some correlations between codon/amino acid usage and tissue specific expression level of genes. The findings can be significant for understanding the translational selection on these features. The selection may play an important role in the differentiation of human tissues and can be considered for future studies in diagnosis of some diseases such as cancer. PMID:28154517

  7. Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus.

    PubMed

    Shank, Elizabeth A; Klepac-Ceraj, Vanja; Collado-Torres, Leonardo; Powers, Gordon E; Losick, Richard; Kolter, Roberto

    2011-11-29

    Many different systems of bacterial interactions have been described. However, relatively few studies have explored how interactions between different microorganisms might influence bacterial development. To explore such interspecies interactions, we focused on Bacillus subtilis, which characteristically develops into matrix-producing cannibals before entering sporulation. We investigated whether organisms from the natural environment of B. subtilis--the soil--were able to alter the development of B. subtilis. To test this possibility, we developed a coculture microcolony screen in which we used fluorescent reporters to identify soil bacteria able to induce matrix production in B. subtilis. Most of the bacteria that influence matrix production in B. subtilis are members of the genus Bacillus, suggesting that such interactions may be predominantly with close relatives. The interactions we observed were mediated via two different mechanisms. One resulted in increased expression of matrix genes via the activation of a sensor histidine kinase, KinD. The second was kinase independent and conceivably functions by altering the relative subpopulations of B. subtilis cell types by preferentially killing noncannibals. These two mechanisms were grouped according to the inducing strain's relatedness to B. subtilis. Our results suggest that bacteria preferentially alter their development in response to secreted molecules from closely related bacteria and do so using mechanisms that depend on the phylogenetic relatedness of the interacting bacteria.

  8. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    PubMed

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene

  9. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks

    PubMed Central

    Lin, Wen-hsien; Liu, Wei-chung; Hwang, Ming-jing

    2009-01-01

    Background Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Results Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Conclusion Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while

  10. Scaffolding in tissue engineering: general approaches and tissue-specific considerations

    PubMed Central

    Leong, K. W.

    2008-01-01

    Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example. PMID:19005702

  11. Development of a Novel Tissue Specific Aromatase Activity Regulation Therapeutic Method

    DTIC Science & Technology

    2009-09-01

    estrogen receptor modulators (SERMs), especially tamoxifen , have been clinically used. Although tamoxifen is a powerful blocking drug for estrogen...now believed that tamoxifen can slightly increase the risk of uterine cancer. While tamoxifen has been clinically used as the first line therapeutic...TERMS Aromatase, tissue specific delivery, siRNA, liquid cationic liposom, lipid nanoparticles 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  12. Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs

    PubMed Central

    Pihlajamaa, Päivi; Sahu, Biswajyoti; Lyly, Lauri; Aittomäki, Viljami; Hautaniemi, Sampsa; Jänne, Olli A

    2014-01-01

    Androgen receptor (AR) binds male sex steroids and mediates physiological androgen actions in target tissues. ChIP-seq analyses of AR-binding events in murine prostate, kidney and epididymis show that in vivo AR cistromes and their respective androgen-dependent transcription programs are highly tissue specific mediating distinct biological pathways. This high order of tissue specificity is achieved by the use of exclusive collaborating factors in the three androgen-responsive tissues. We find two novel collaborating factors for AR signaling in vivo—Hnf4α (hepatocyte nuclear factor 4α) in mouse kidney and AP-2α (activating enhancer binding protein 2α) in mouse epididymis—that define tissue-specific AR recruitment. In mouse prostate, FoxA1 serves for the same purpose. FoxA1, Hnf4α and AP-2α motifs are over-represented within unique AR-binding loci, and the cistromes of these factors show substantial overlap with AR-binding events distinct to each tissue type. These licensing or pioneering factors are constitutively bound to chromatin and guide AR to specific genomic loci upon hormone exposure. Collectively, liganded receptor and its DNA-response elements are required but not sufficient for establishment of tissue-specific transcription programs. PMID:24451200

  13. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression

    PubMed Central

    Andergassen, Daniel; Dotter, Christoph P; Wenzel, Daniel; Sigl, Verena; Bammer, Philipp C; Muckenhuber, Markus; Mayer, Daniela; Kulinski, Tomasz M; Theussl, Hans-Christian; Penninger, Josef M; Bock, Christoph; Barlow, Denise P; Pauler, Florian M; Hudson, Quanah J

    2017-01-01

    To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta. DOI: http://dx.doi.org/10.7554/eLife.25125.001 PMID:28806168

  14. Integrative analysis of tissue-specific methylation and alternative splicing identifies conserved transcription factor binding motifs

    PubMed Central

    Wan, Jun; Oliver, Verity F.; Zhu, Heng; Zack, Donald J.; Qian, Jiang; Merbs, Shannath L.

    2013-01-01

    The exact role of intragenic DNA methylation in regulating tissue-specific gene regulation is unclear. Recently, the DNA-binding protein CTCF has been shown to participate in the regulation of alternative splicing in a DNA methylation-dependent manner. To globally evaluate the relationship between DNA methylation and tissue-specific alternative splicing, we performed genome-wide DNA methylation profiling of mouse retina and brain. In protein-coding genes, tissue-specific differentially methylated regions (T-DMRs) were preferentially located in exons and introns. Gene ontology and evolutionary conservation analysis suggest that these T-DMRs are likely to be biologically relevant. More than 14% of alternatively spliced genes were associated with a T-DMR. T-DMR-associated genes were enriched for developmental genes, suggesting that a specific set of alternatively spliced genes may be regulated through DNA methylation. Novel DNA sequences motifs overrepresented in T-DMRs were identified as being associated with positive and/or negative regulation of alternative splicing in a position-dependent context. The majority of these evolutionarily conserved motifs contain a CpG dinucleotide. Some transcription factors, which recognize these motifs, are known to be involved in splicing. Our results suggest that DNA methylation-dependent alternative splicing is widespread and lay the foundation for further mechanistic studies of the role of DNA methylation in tissue-specific splicing regulation. PMID:23887936

  15. Scaffolding in tissue engineering: general approaches and tissue-specific considerations.

    PubMed

    Chan, B P; Leong, K W

    2008-12-01

    Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example.

  16. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression.

    PubMed

    Andergassen, Daniel; Dotter, Christoph P; Wenzel, Daniel; Sigl, Verena; Bammer, Philipp C; Muckenhuber, Markus; Mayer, Daniela; Kulinski, Tomasz M; Theussl, Hans-Christian; Penninger, Josef M; Bock, Christoph; Barlow, Denise P; Pauler, Florian M; Hudson, Quanah J

    2017-08-14

    To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta.

  17. Concise Review: Tissue-Specific Microvascular Endothelial Cells Derived from Human Pluripotent Stem Cells

    PubMed Central

    Wilson, Hannah K.; Canfield, Scott G.; Shusta, Eric V.; Palecek, Sean P.

    2014-01-01

    Accumulating evidence suggests that endothelial cells (ECs) display significant heterogeneity across tissue types, playing an important role in tissue regeneration and homeostasis. Recent work demonstrating the derivation of tissue-specific microvascular endothelial cells (TS-MVECs) from human pluripotent stem cells (hPSCs) has ignited the potential to generate tissue-specific models which may be applied to regenerative medicine and in vitro modeling applications. Here we review techniques by which hPSC-derived TS-MVECs have been made to date and discuss how current hPSC-EC differentiation protocols may be directed towards tissue-specific fates. We begin by discussing the nature of EC tissue specificity in vivo and review general hPSC-EC differentiation protocols generated over the last decade. Finally, we describe how specificity can be integrated into hPSC-EC protocols to generate hPSC-derived TS-MVECs in vitro, including EC and parenchymal cell co-culture, directed differentiation, and direct reprogramming strategies. PMID:25070152

  18. An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction.

    PubMed

    Piro, Rosario Michael; Ala, Ugo; Molineris, Ivan; Grassi, Elena; Bracco, Chiara; Perego, Gian Paolo; Provero, Paolo; Di Cunto, Ferdinando

    2011-11-01

    Gene coexpression relationships that are phylogenetically conserved between human and mouse have been shown to provide important clues about gene function that can be efficiently used to identify promising candidate genes for human hereditary disorders. In the past, such approaches have considered mostly generic gene expression profiles that cover multiple tissues and organs. The individual genes of multicellular organisms, however, can participate in different transcriptional programs, operating at scales as different as single-cell types, tissues, organs, body regions or the entire organism. Therefore, systematic analysis of tissue-specific coexpression could be, in principle, a very powerful strategy to dissect those functional relationships among genes that emerge only in particular tissues or organs. In this report, we show that, in fact, conserved coexpression as determined from tissue-specific and condition-specific data sets can predict many functional relationships that are not detected by analyzing heterogeneous microarray data sets. More importantly, we find that, when combined with disease networks, the simultaneous use of both generic (multi-tissue) and tissue-specific conserved coexpression allows a more efficient prediction of human disease genes than the use of generic conserved coexpression alone. Using this strategy, we were able to identify high-probability candidates for 238 orphan disease loci. We provide proof of concept that this combined use of generic and tissue-specific conserved coexpression can be very useful to prioritize the mutational candidates obtained from deep-sequencing projects, even in the case of genetic disorders as heterogeneous as XLMR.

  19. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.

    PubMed

    Parmar, Manoj B; Wright, Jonathan M

    2013-11-01

    A whole-genome duplication (WGD) early in the teleost fish lineage makes fish ideal organisms to study the fate of duplicated genes and underlying evolutionary trajectories that have led to the retention of ohnologous gene duplicates in fish genomes. Here, we compare the genomic organization and tissue-specific transcription of the ohnologous fabp7 and fabp10 genes in medaka, three-spined stickleback, and spotted green pufferfish to the well-studied duplicated fabp7 and fabp10 genes of zebrafish. Teleost fabp7 and fabp10 genes contain four exons interrupted by three introns. Polypeptide sequences of Fabp7 and Fabp10 show the highest sequence identity and similarity with their orthologs from vertebrates. Orthology was evident as the ohnologous Fabp7 and Fabp10 polypeptides of teleost fishes each formed distinct clades and clustered together with their orthologs from other vertebrates in a phylogenetic tree. Furthermore, ohnologous teleost fabp7 and fabp10 genes exhibit conserved gene synteny with human FABP7 and chicken FABP10, respectively, which provides compelling evidence that the duplicated fabp7 and fabp10 genes of teleost fishes most likely arose from the well-documented WGD. The tissue-specific distribution of fabp7a, fabp7b, fabp10a, and fabp10b transcripts provides evidence of diverged spatial transcriptional regulation between ohnologous gene duplicates of fabp7 and fabp10 in teleost fishes.

  20. Analysing Algorithms and Data Sources for the Tissue-Specific Reconstruction of Liver Healthy and Cancer Cells.

    PubMed

    Ferreira, Jorge; Correia, Sara; Rocha, Miguel

    2017-03-01

    Genome-Scale Metabolic Models (GSMMs), mathematical representations of the cell metabolism in different organisms including humans, are resourceful tools to simulate metabolic phenotypes and understand associated diseases, such as obesity, diabetes and cancer. In the last years, different algorithms have been developed to generate tissue-specific metabolic models that simulate different phenotypes for distinct cell types. Hepatocyte cells are one of the main sites of metabolic conversions, mainly due to their diverse physiological functions. Most of the liver's tissue is formed by hepatocytes, being one of the largest and most important organs regarding its biological functions. Hepatocellular carcinoma is, also, one of the most important human cancers with high mortality rates. In this study, we will analyze four different algorithms (MBA, mCADRE, tINIT and FASTCORE) for tissue-specific model reconstruction, based on a template model and two types of data sources: transcriptomics and proteomics. These methods will be applied to the reconstruction of metabolic models for hepatocyte cells and HepG2 cancer cell line. The models will be analyzed and compared under different perspectives, emphasizing their functional analysis considering a set of metabolic liver tasks. The results show that there is no "ideal" algorithm. However, with the current analysis, we were able to retrieve knowledge about the metabolism of the liver.

  1. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression

    PubMed Central

    Ponnaluri, V. K. Chaithanya; Ehrlich, Kenneth C.; Zhang, Guoqiang; Lacey, Michelle; Johnston, Douglas; Pradhan, Sriharsa; Ehrlich, Melanie

    2017-01-01

    ABSTRACT Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study—owing to their myogenic DMRs—overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage. PMID:27911668

  2. Transgenic Zebrafish Reveal Tissue-Specific Differences in Estrogen Signaling in Response to Environmental Water Samples

    PubMed Central

    Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki S.; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. Results: We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves. Citation: Gorelick DA, Iwanowicz LR, Hung AL, Blazer VS, Halpern ME. 2014. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to

  3. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    PubMed

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  4. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA

    PubMed Central

    Fox, Rebecca M.; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J.

    2013-01-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously. PMID:23578928

  5. Elastomeric member

    DOEpatents

    Hoppie, L.O.

    1985-07-30

    An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond there between. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.

  6. Elastomeric member

    DOEpatents

    Hoppie, Lyle O.

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

  7. Primary structure and tissue-specific expression of blue crab (Callinectes sapidus) metallothionein isoforms.

    PubMed Central

    Brouwer, M; Enghild, J; Hoexum-Brouwer, T; Thogersen, I; Truncali, A

    1995-01-01

    In aquatic animals, synthesis of the metal-binding protein metallothionein (MT) can be induced through exposure to elevated levels of metals in food or water. Whether the different routes of exposure lead to expression of different metallothionein isoforms in different tissues in unknown. In this study we examined the induction of metallothionein isoforms in the hepatopancreas and gills of the blue crab Callinectes sapidus. When blue crabs are exposed to cadmium in their diet, the metal accumulates in the hepatopancreas. Size-exclusion and anion-exchange chromatography show the presence of five low-molecular-mass cadmium-binding proteins. All of the observed cadmium-binding proteins belong to the class I MT family. They are designated as MT-Ia, MT-Ib, MT-Ic, MT-IIa and MT-IIb. All purified proteins run as single peaks upon rechromatography on anion-exchange HPLC, except for MT-Ic, which segregates into two peaks corresponding to MT-Ia and MT-Ic. The amino acid sequence of MT-Ia and MT-Ic is identical. MT-Ib differs from MT-Ia and MT-Ic only in having an extra N-terminal methionine. The 18 cysteine residues in MT-Ia and MT-IIa occur in identical positions; however, of the remaining 40 amino acids, 15 are found to be different. MT-IIb is identical with MT-IIa, except for an extra methionine residue at its N-terminal position. It appears therefore that, of the five observed CdMTs, only two are the products of distinct genes. CdMT-Ia and -IIa are posttranslationally modified forms of Ib and IIb, respectively, and CdMT-Ia and -Ic appear to be conformational isomers. Cadmium-induced expression of the two genes is tissue-specific. When crabs are exposed to cadmium in water, the metal accumulates in the gills, where it is bound to MT-II. MT-I is virtually absent. PMID:7487904

  8. Correlating Molecular Character of NIR Imaging Agents with Tissue-Specific Uptake

    PubMed Central

    Owens, Eric A.; Hyun, Hoon; Tawney, Joseph G.; Choi, Hak Soo; Henary, Maged

    2015-01-01

    Near-infrared (NIR) fluorescent contrast agents are emerging in optical imaging as sensitive, cost-effective, and nonharmful alternatives to current agents that emit harmful ionizing radiation. Developing spectrally distinct NIR fluorophores to visualize sensitive vital tissues to selectively avoid them during surgical resection of diseased tissue is of great significance. Herein, we report the synthetic variation of pentamethine cyanine fluorophores with modifications of physicochemical properties toward prompting tissue-specific uptake into sensitive tissues (i.e., endocrine glands). Tissue-specific targeting and biodistribution studies revealed localization of contrast agents in the adrenal and pituitary glands, pancreas, and lymph nodes with dependence on molecular characteristics. Incorporation of hydrophobic heterocyclic rings, alkyl groups, and halogens allowed a fine-tuning capability to the hydrophobic character and dipole moment for observing perturbation in biological activity in response to minor structural alterations. These NIR contrast agents have potential for clinical translation for intraoperative imaging in the delineation of delicate glands. PMID:25923454

  9. Tissue-specific insulin signaling in the regulation of metabolism and aging.

    PubMed

    Zhang, Jingjing; Liu, Feng

    2014-07-01

    In mammals, insulin signaling regulates glucose homeostasis and plays an essential role in metabolism, organ growth, development, fertility, and lifespan. The defects in this signaling pathway contribute to various metabolic diseases such as type 2 diabetes, polycystic ovarian disease, hypertension, hyperlipidemia, and atherosclerosis. However, reducing the insulin signaling pathway has been found to increase longevity and delay the aging-associated diseases in various animals, ranging from nematodes to mice. These seemly paradoxical findings raise an interesting question as to how modulation of the insulin signaling pathway could be an effective approach to improve metabolism and aging. In this review, we summarize current understanding on tissue-specific functions of insulin signaling in the regulation of metabolism and lifespan. We also discuss the potential benefits and limitations in modulating tissue-specific insulin signaling pathway to improve metabolism and healthspan. © 2014 International Union of Biochemistry and Molecular Biology.

  10. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons

    PubMed Central

    Zhang, Fan; Pomerantz, Jason H.; Sen, George; Palermo, Adam T.; Blau, Helen M.

    2007-01-01

    DNA methylation is among the most stable epigenetic marks, ensuring tissue-specific gene expression in a heritable manner throughout development. Here we report that differentiated mesodermal somatic cells can confer tissue-specific changes in DNA methylation on epidermal progenitor cells after fusion in stable multinucleate heterokaryons. Myogenic factors alter regulatory regions of genes in keratinocyte cell nuclei, demethylating and activating a muscle-specific gene and methylating and silencing a keratinocyte-specific gene. Because these changes occur in the absence of DNA replication or cell division, they are mediated by an active mechanism. Thus, the capacity to transfer epigenetic changes to other nuclei is not limited to embryonic stem cells and oocytes but is also a property of highly specialized mammalian somatic cells. These results suggest the possibility of directing the reprogramming of readily available postnatal human progenitor cells toward specific tissue cell types. PMID:17360535

  11. Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori

    SciTech Connect

    Liu Yan; Yu Lian; Guo Xiuyang; Guo Tingqing; Wang Shengpeng; Lu Changde . E-mail: cdlu@sibs.ac.cn

    2006-03-31

    The gene encoding sericin 1 (Ser1) of silkworm (Bombyx mori) is specifically expressed in the middle silk gland cells. To identify element involved in this transcription-dependent spatial restriction, truncation of the 5' terminal from the sericin 1 (Ser1) promoter is studied in vivo. A 209 bp DNA sequence upstream of the transcriptional start site (-586 to -378) is found to be responsible for promoting tissue-specific transcription. Analysis of this 209 bp region by overlapping deletion studies showed that a 25 bp region (-500 to -476) suppresses the ectopic expression of the Ser1 promoter. An unknown factor abundant in fat body nuclear extracts is shown to bind to this 25 bp fragment. These results suggest that this 25 bp region and the unknown factor are necessary for determining the tissue-specificity of the Ser1 promoter.

  12. Limbal Stromal Tissue Specific Stem Cells and Their Differentiation Potential to Corneal Epithelial Cells.

    PubMed

    Katikireddy, Kishore Reddy; Jurkunas, Ula V

    2016-01-01

    From the derivation of the first human embryonic stem (hES) cell line to the development of induced pluripotent stem (iPS) cells; it has become evident that tissue specific stem cells are able to differentiate into a specific somatic cell types. The understanding of key processes such as the signaling pathways and the role of the microenvironment in epidermal/epithelial development has provided important clues for the derivation of specific epithelial cell types.Various differentiation protocols/methods were used to attain specific epithelial cell types. Here, we describe in detail the procedure to follow for isolation of tissue specific stem cells, mimicking their microenvironment to attain stem cell characteristics, and their potential differentiation to corneal epithelial cells.

  13. A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10.

    PubMed

    Sanz, Lionel A; Chamberlain, Stormy; Sabourin, Jean-Charles; Henckel, Amandine; Magnuson, Terry; Hugnot, Jean-Philippe; Feil, Robert; Arnaud, Philippe

    2008-10-08

    Genomic imprinting is a developmental mechanism that mediates parent-of-origin-specific expression in a subset of genes. How the tissue specificity of imprinted gene expression is controlled remains poorly understood. As a model to address this question, we studied Grb10, a gene that displays brain-specific expression from the paternal chromosome. Here, we show in the mouse that the paternal promoter region is marked by allelic bivalent chromatin enriched in both H3K4me2 and H3K27me3, from early embryonic stages onwards. This is maintained in all somatic tissues, but brain. The bivalent domain is resolved upon neural commitment, during the developmental window in which paternal expression is activated. Our data indicate that bivalent chromatin, in combination with neuronal factors, controls the paternal expression of Grb10 in brain. This finding highlights a novel mechanism to control tissue-specific imprinting.

  14. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    PubMed Central

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Rav Acha, Moshe; Newton-Cheh, Christopher; Pfeufer, Arne; Lynch, Stacey N.; Olesen, Søren-Peter; Brunak, Søren; Ellinor, Patrick T.; Jukema, J.Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Folkert W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I.W.; Lage, Kasper; Olsen, Jesper V.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated wtih complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LQTS). We integrated the LQTS network with GWAS loci from the corresponding common complex trait, QT interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LQTS protein network to filter weak GWAS signals by identifying single nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics. PMID:24952909

  15. Tissue-specific Insulin Signaling in the Regulation of Metabolism and Aging

    PubMed Central

    Zhang, Jingjing

    2014-01-01

    In mammals, insulin signaling regulates glucose homeostasis and plays an essential role in metabolism, organ growth, development, fertility, and lifespan. Defects in this signaling pathway contribute to various metabolic diseases such as type 2 diabetes, polycystic ovarian disease, hypertension, hyperlipidemia, and atherosclerosis. However, reducing the insulin signaling pathway has been found to increase longevity and delay the aging-associated diseases in various animals, ranging from nematodes to mice. These seemly paradoxical findings raise an interesting question as to how modulation of the insulin signaling pathway could be an effective approach to improve metabolism and aging. In this review, we summarize current understanding on tissue-specific functions of insulin signaling in the regulation of metabolism and lifespan. We also discuss potential benefits and limitations in modulating tissue-specific insulin signaling pathway to improve metabolism and healthspan. PMID:25087968

  16. Wagging the dogma; tissue-specific cell cycle control in the mouse embryo.

    PubMed

    Pagano, Michele; Jackson, Peter K

    2004-09-03

    The family of cyclin-dependent kinases (Cdks) lies at the core of the machinery that drives the cell division cycle. Studies in cultured mammalian cells have provided insight into the cellular functions of many Cdks. Recent Cdk and cyclin knockouts in the mouse show that the functions of G1 cell cycle regulatory genes are often essential only in specific cell types, pointing to our limited understanding of tissue-specific expression, redundancy, and compensating mechanisms in the Cdk network.

  17. Species and tissues specific differentiation of processed animal proteins in aquafeeds using proteomics tools.

    PubMed

    Rasinger, J D; Marbaix, H; Dieu, M; Fumière, O; Mauro, S; Palmblad, M; Raes, M; Berntssen, M H G

    2016-09-16

    The rapidly growing aquaculture industry drives the search for sustainable protein sources in fish feed. In the European Union (EU) since 2013 non-ruminant processed animal proteins (PAP) are again permitted to be used in aquafeeds. To ensure that commercial fish feeds do not contain PAP from prohibited species, EU reference methods were established. However, due to the heterogeneous and complex nature of PAP complementary methods are required to guarantee the safe use of this fish feed ingredient. In addition, there is a need for tissue specific PAP detection to identify the sources (i.e. bovine carcass, blood, or meat) of illegal PAP use. In the present study, we investigated and compared different protein extraction, solubilisation and digestion protocols on different proteomics platforms for the detection and differentiation of prohibited PAP. In addition, we assessed if tissue specific PAP detection was feasible using proteomics tools. All work was performed independently in two different laboratories. We found that irrespective of sample preparation gel-based proteomics tools were inappropriate when working with PAP. Gel-free shotgun proteomics approaches in combination with direct spectral comparison were able to provide quality species and tissue specific data to complement and refine current methods of PAP detection and identification. To guarantee the safe use of processed animal protein (PAP) in aquafeeds efficient PAP detection and monitoring tools are required. The present study investigated and compared various proteomics workflows and shows that the application of shotgun proteomics in combination with direct comparison of spectral libraries provides for the desired species and tissue specific classification of this heat sterilized and pressure treated (≥133°C, at 3bar for 20min) protein feed ingredient. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Tissue-Specific Expression and Posttranslational Modification of Histone H3 Variants

    PubMed Central

    Garcia, Benjamin A.; Thomas, C. Eric; Kelleher, Neil L.; Mizzen, Craig A.

    2008-01-01

    Analyses of histone H3 from ten rat tissues using a Middle Down proteomics platform revealed tissue-specific differences in their expression and global PTM abundance. ESI/FTMS with electron capture dissociation showed that, in general, these proteins were hypomodified in heart, liver and testes. H3.3 was hypermodified compared to H3.2 in some, but not all tissues. In addition, a novel rat testes-specific H3 protein was identified with this approach. PMID:18700791

  19. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples

    USGS Publications Warehouse

    Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  20. Specific Neuropilins Expression in Alveolar Macrophages among Tissue-Specific Macrophages

    PubMed Central

    Aung, Naing Ye; Ohe, Rintaro; Meng, Hongxue; Kabasawa, Takanobu; Yang, Suran; Kato, Tomoya; Yamakawa, Mitsunori

    2016-01-01

    In the immune system, neuropilins (NRPs), including NRP-1 and NRP-2, are expressed in thymocytes, dendritic cells, regulatory T cells and macrophages. Their functions on immune cells around the neoplastic cells vary into pro-angiogenesis, tumor progression and anti-angiogenesis according to their ligands. Even though NRPs expression on malignant tumors and immune system has studied, a PubMed-based literature query did not yield any articles describing NRPs expression on tissue-specific macrophages. The aims of this study were (i) to detect NRPs expression on tissue-specific macrophages in the brain, liver, spleen, lymph node and lung; (ii) to observe NRPs expression in classes of macrophages, including alveolar macrophages (AMs), bronchial macrophages (BMs), interstitial macrophages (IMs), intravascular macrophages (IVMs) and macrophage subsets (M1, M2 and Mox) in lung; and (iii) to detect the co-expression of NRPs and dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) in AMs. Both NRPs were specifically detected in AMs among tissue-specific macrophages by immunohistochemistry (IHC). NRPs mRNA expression levels were characterized in normal lung by reverse transcriptase polymerase chain reaction (RT-PCR) and in situ-polymerase chain reaction (in situ-PCR). The expression of both NRPs was detected in AMs, BMs and IVMs by IHC. The frequency of NRPs+ AMs in lung tissue adjacent to the cancer margin was significantly higher than the frequencies in inflamed and normal lung tissue. Double and triple IHC demonstrated that NRPs are expressed on all macrophage subsets in lung. Double IHC showed co-expression of DC-SIGN and NRPs in AMs. This study demonstrated for the first time the specific expression of both NRPs in AMs among tissue-specific macrophages and their expression on M1, M2 and Mox macrophages. Furthermore, the possible origin of AMs from blood monocytes could be suggested from a co-expression of NRPs and DC-SIGN. PMID:26900851

  1. Tissue-specific alternative splicing of Tak1 is conserved in deuterostomes.

    PubMed

    Venables, Julian P; Vignal, Emmanuel; Baghdiguian, Stephen; Fort, Philippe; Tazi, Jamal

    2012-01-01

    Alternative splicing allows organisms to rapidly modulate protein functions to physiological changes and therefore represents a highly versatile adaptive process. We investigated the conservation of the evolutionary history of the "Fox" family of RNA-binding splicing factors (RBFOX) as well as the conservation of regulated alternative splicing of the genes they control. We found that the RBFOX proteins are conserved in all metazoans examined. In humans, Fox proteins control muscle-specific alternative splicing of many genes but despite the conservation of splicing factors, conservation of regulation of alternative splicing has never been demonstrated between man and nonvertebrate species. Therefore, we studied 40 known Fox-regulated human exons and found that 22 had a tissue-specific splicing pattern in muscle and heart. Of these, 11 were spliced in the same tissue-specific manner in mouse tissues and 4 were tissue-specifically spliced in muscle and heart of the frog Xenopus laevis. The inclusion of two of these alternative exons was also downregulated during tadpole development. Of the 40 in the starting set, the most conserved alternative splicing event was in the transforming growth factor (TGF) beta-activated kinase Tak1 (MAP3K7) as this was also muscle specific in urochordates and in Ambulacraria, the most ancient deuterostome clade. We found exclusion of the muscle-specific exon of Tak1 was itself under control of TGF beta in cell culture and consistently that TGF beta caused an upregulation of Fox2 (RBFOX2) expression. The alternative exon, which codes for an in-frame 27 amino acids between the kinase and known regulatory domain of TAK1, contains conserved features in all organisms including potential phosphorylation sites and likely has an important conserved function in TGF beta signaling and development. This study establishes that deuterostomes share a remarkable conserved physiological process that involves a splicing factor and expression of tissue-specific

  2. Tissue-specific expression and promoter analyses of the human tissue kallikrein gene in transgenic mice.

    PubMed Central

    Xiong, W; Wang, J; Chao, L; Chao, J

    1997-01-01

    The expression of the tissue kallikrein gene is tissue-specific and exhibits a complex pattern of transcriptional and post-translational regulation. Information concerning the mechanism of its tissue-specific expression has been limited owing to the lack of suitable cell lines for the expression study. We approached this problem by introducing human tissue kallikrein gene constructs into mouse embryos, creating transgenic lines carrying its coding sequence with varying lengths of the promoter region. One construct (PHK) contained 801 bp in the 5'-flanking region and two deletion constructs contained either 302 bp (D300) or 202 bp (D200) of the promoter region. The expression of human tissue kallikrein in these transgenic mice was monitored by Northern blot, reverse transcriptase-PCR followed by Southern blot, and radioimmunoassay. In all three lines, human tissue kallikrein was expressed predominantly in the pancreas and at lower levels in other tissues, including salivary gland, kidney and spleen. This pattern was similar to that of tissue kallikrein expression in human tissues. The D300 line has higher levels of transgene expression than the D200 and PHK lines. The results indicate that the 202 bp segment immediately upstream of the translation starting site is sufficient to direct a tissue-specific expression pattern of the human tissue kallikrein gene, and that regulatory elements might exist between -801 and -202. PMID:9224635

  3. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    PubMed

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (p<2.2e-16) than HK gene promoters. The entropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Evaluation of a novel promoter from Populus trichocarpa for mature xylem tissue specific gene delivery.

    PubMed

    Nguyen, Van Phap; Cho, Jin-Seong; Choi, Young-Im; Lee, Sang-Won; Han, Kyung-Hwan; Ko, Jae-Heung

    2016-07-01

    Wood (i.e., secondary xylem) is an important raw material for many industrial applications. Mature xylem (MX) tissue-specific genetic modification offers an effective means to improve the chemical and physical properties of the wood. Here, we describe a promoter that drives strong gene expression in a MX tissue-specific manner. Using whole-transcriptome genechip analyses of different tissue types of poplar, we identified five candidate genes that had strong expression in the MX tissue. The putative promoter sequences of the five MX-specific genes were evaluated for their promoter activity in both transgenic Arabidopsis and poplar. Among them, we found the promoter of Potri.013G007900.1 (called the PtrMX3 promoter) had the strongest activity in MX and thus was further characterized. In the stem and root tissues of transgenic Arabidopsis plants, the PtrMX3 promoter activity was found exclusively in MX tissue. MX-specific activity of the promoter was reproduced in the stem tissue of transgenic poplar plants. The PtrMX3 promoter activity was not influenced by abiotic stresses or exogenously applied growth regulators, indicating the PtrMX3 promoter is bona fide MX tissue-specific. Our study provides a strong MX-specific promoter for MX-specific modifications of woody biomass.

  5. Tissue specificity and variability of imprinted IGF2 expression in humans

    SciTech Connect

    Giannoukakis, N.; Rouleau, G.; Polychronakos, C.

    1994-09-01

    Parental genomic imprinting refers to the phenomenon where expression of a gene copy depends on the sex of the parent from which it is derived. The human insulin-like growth factor II gene, IGF2, is parentally imprinted with the paternal gene copy exclusively expressed in fetal and term placenta as well as in fetal kidney. In mice, imprinted IGF2 expression is tissue-specific. In a preliminary approach to investigate tissue-specific IGF2 imprinting in humans, we evaluated allele-specific expression in four samples of umbilical cord blood leukocytes of fetuses found to imprint IGF2 in placenta. IGF2 mRNA transcripts from the gene copy transmitted from each parent were distinguished using a transcribed ApaI polymorphism by performing reverse transcription-PCR on total RNA from cord blood leukocytes. Postnatal peripheral blood was examined using the same method. Of 77 informative individuals, 68 expressed both IGF2 copies, but 9 individuals showed unambiguous monoallelic expression. Two individuals from each category were screened again and the results were identical. These data indicate that imprinted IGF2 expression is tissue-specific and show variability of IGF2 imprinting among individuals. This variability may be genetic. We are in the process of screening large pedigrees to test this hypothesis.

  6. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    PubMed

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Genetic and molecular analysis of Sn, a light-inducible, tissue specific regulatory gene in maize.

    PubMed

    Tonelli, C; Consonni, G; Dolfini, S F; Dellaporta, S L; Viotti, A; Gavazzi, G

    1991-03-01

    The Sn locus of maize is functionally similar to the R and B loci, in that Sn differentially controls the tissue-specific deposition of anthocyanin pigments in certain seedling and plant cells. We show that Sn shows molecular similarity to the R gene and have used R DNA probes to characterize several Sn alleles. Northern analysis demonstrates that all Sn alleles encode a 2.5 kb transcript, which is expressed in a tissue-specific fashion consistent with the distribution of anthocyanins. Expression of the Sn gene is light-regulated. However, the Sn: bol3 allele allows Sn mRNA transcription to occur in the dark, leading to pigmentation in dark-grown seedlings and cob integuments. We report the isolation of genomic and cDNA clones of the light-independent Sn: bol3 allele. Using Sn cDNA as a probe, the spatial and temporal expression of Sn has been examined. The cell-specific localization of Sn mRNA has been confirmed by in situ hybridization using labelled antisense RNA probes. According to its proposed regulatory role, expression of Sn precedes and, in turn, causes a coordinate and tissue-specific accumulation of mRNA of structural genes for pigment synthesis and deposition, such as A1 and C2. The functional and structural relationship between R, B, Lc and Sn is discussed in terms of an evolutionary derivation from a single ancestral gene which gave rise this diverse gene family by successive duplication events.

  8. Tissue-specific NETs alter genome organization and regulation even in a heterologous system

    PubMed Central

    de las Heras, Jose I.; Batrakou, Dzmitry G.

    2017-01-01

    ABSTRACT Different cell types exhibit distinct patterns of 3D genome organization that correlate with changes in gene expression in tissue and differentiation systems. Several tissue-specific nuclear envelope transmembrane proteins (NETs) have been found to influence the spatial positioning of genes and chromosomes that normally occurs during tissue differentiation. Here we study 3 such NETs: NET29, NET39, and NET47, which are expressed preferentially in fat, muscle and liver, respectively. We found that even when exogenously expressed in a heterologous system they can specify particular genome organization patterns and alter gene expression. Each NET affected largely different subsets of genes. Notably, the liver-specific NET47 upregulated many genes in HT1080 fibroblast cells that are normally upregulated in hepatogenesis, showing that tissue-specific NETs can favor expression patterns associated with the tissue where the NET is normally expressed. Similarly, global profiling of peripheral chromatin after exogenous expression of these NETs using lamin B1 DamID revealed that each NET affected the nuclear positioning of distinct sets of genomic regions with a significant tissue-specific component. Thus NET influences on genome organization can contribute to gene expression changes associated with differentiation even in the absence of other factors and overt cellular differentiation changes. PMID:28045568

  9. Lipodystrophy and severe metabolic dysfunction in mice with adipose tissue-specific insulin receptor ablation.

    PubMed

    Qiang, Guifen; Whang Kong, Hyerim; Xu, Shanshan; Pham, Hoai An; Parlee, Sebastian D; Burr, Aaron A; Gil, Victoria; Pang, Jingbo; Hughes, Amy; Gu, Xuejiang; Fantuzzi, Giamila; MacDougald, Ormond A; Liew, Chong Wee

    2016-07-01

    Insulin signaling plays pivotal roles in the development and metabolism of many tissues and cell types. A previous study demonstrated that ablation of insulin receptor (IR) with aP2-Cre markedly reduced adipose tissues mass and protected mice from obesity. However, multiple studies have demonstrated widespread non-adipocyte recombination of floxed alleles in aP2-Cre mice. These findings underscore the need to re-evaluate the role of IR in adipocyte and systemic metabolism with a more adipose tissue-specific Cre mouse line. We generated and phenotyped a new adipose tissue-specific IR mouse model using the adipose tissue-specific Adipoq-Cre line. Here we show that the Adipoq-Cre-mediated IR KO in mice leads to lipodystrophy and metabolic dysfunction, which is in stark contrast to the previous study. In contrast to white adipocytes, absence of insulin signaling does not affect development of marrow and brown adipocytes, but instead is required for lipid accumulation particularly for the marrow adipocytes. Lipodystrophic IR KO mice have profound insulin resistance, hyperglycemia, organomegaly, and impaired adipokine secretion. Our results demonstrate differential roles for insulin signaling for white, brown, and marrow adipocyte development and metabolic regulation.

  10. Tissue-Specific Venom Composition and Differential Gene Expression in Sea Anemones

    PubMed Central

    Macrander, Jason; Broe, Michael; Daly, Marymegan

    2016-01-01

    Cnidarians represent one of the few groups of venomous animals that lack a centralized venom transmission system. Instead, they are equipped with stinging capsules collectively known as nematocysts. Nematocysts vary in abundance and type across different tissues; however, the venom composition in most species remains unknown. Depending on the tissue type, the venom composition in sea anemones may be vital for predation, defense, or digestion. Using a tissue-specific RNA-seq approach, we characterize the venom assemblage in the tentacles, mesenterial filaments, and column for three species of sea anemone (Anemonia sulcata, Heteractis crispa, and Megalactis griffithsi). These taxa vary with regard to inferred venom potency, symbiont abundance, and nematocyst diversity. We show that there is significant variation in abundance of toxin-like genes across tissues and species. Although the cumulative toxin abundance for the column was consistently the lowest, contributions to the overall toxin assemblage varied considerably among tissues for different toxin types. Our gene ontology (GO) analyses also show sharp contrasts between conserved GO groups emerging from whole transcriptome analysis and tissue-specific expression among GO groups in our differential expression analysis. This study provides a framework for future characterization of tissue-specific venom and other functionally important genes in this lineage of simple bodied animals. PMID:27389690

  11. Tissue specific response to DNA damage: C. elegans as role model.

    PubMed

    Lans, Hannes; Vermeulen, Wim

    2015-08-01

    The various symptoms associated with hereditary defects in the DNA damage response (DDR), which range from developmental and neurological abnormalities and immunodeficiency to tissue-specific cancers and accelerated aging, suggest that DNA damage affects tissues differently. Mechanistic DDR studies are, however, mostly performed in vitro, in unicellular model systems or cultured cells, precluding a clear and comprehensive view of the DNA damage response of multicellular organisms. Studies performed in intact, multicellular animals models suggest that DDR can vary according to the type, proliferation and differentiation status of a cell. The nematode Caenorhabditis elegans has become an important DDR model and appears to be especially well suited to understand in vivo tissue-specific responses to DNA damage as well as the impact of DNA damage on development, reproduction and health of an entire multicellular organism. C. elegans germ cells are highly sensitive to DNA damage induction and respond via classical, evolutionary conserved DDR pathways aimed at efficient and error-free maintenance of the entire genome. Somatic tissues, however, respond differently to DNA damage and prioritize DDR mechanisms that promote growth and function. In this mini-review, we describe tissue-specific differences in DDR mechanisms that have been uncovered utilizing C. elegans as role model. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Tissue specific DNA methylation in normal human breast epithelium and in breast cancer.

    PubMed

    Avraham, Ayelet; Cho, Sean Soonweng; Uhlmann, Ronit; Polak, Mia Leonov; Sandbank, Judith; Karni, Tami; Pappo, Itzhak; Halperin, Ruvit; Vaknin, Zvi; Sella, Avishay; Sukumar, Saraswati; Evron, Ella

    2014-01-01

    Cancer is a heterogeneous and tissue-specific disease. Thus, the tissue of origin reflects on the natural history of the disease and dictates the therapeutic approach. It is suggested that tissue differentiation, mediated mostly by epigenetic modifications, could guide tissue-specific susceptibility and protective mechanisms against cancer. Here we studied breast specific methylation in purified normal epithelium and its reflection in breast cancers. We established genome wide methylation profiles of various normal epithelial tissues and identified 110 genes that were differentially methylated in normal breast epithelium. A number of these genes also showed methylation alterations in breast cancers. We elaborated on one of them, TRIM29 (ATDC), and showed that its promoter was hypo-methylated in normal breast epithelium and heavily methylated in other normal epithelial tissues. Moreover, in breast carcinomas methylation increased and expression decreased whereas the reverse was noted for multiple other carcinomas. Interestingly, TRIM29 regulation in breast tumors clustered according to the PAM50 classification. Thus, it was repressed in the estrogen receptor positive tumors, particularly in the more proliferative luminal B subtype. This goes in line with previous reports indicating tumor suppressive activity of TRIM29 in estrogen receptor positive luminal breast cells in contrast to oncogenic function in pancreatic and lung cancers. Overall, these findings emphasize the linkage between breast specific epigenetic regulation and tissue specificity of cancer.

  13. HNF1alpha is involved in tissue-specific regulation of CFTR gene expression.

    PubMed Central

    Mouchel, Nathalie; Henstra, Sytse A; McCarthy, Victoria A; Williams, Sarah H; Phylactides, Marios; Harris, Ann

    2004-01-01

    The CFTR (cystic fibrosis transmembrane conductance regulator) gene shows a complex pattern of expression with tissue-specific and temporal regulation. However, the genetic elements and transcription factors that control CFTR expression are largely unidentified. The CFTR promoter does not confer tissue specificity on gene expression, suggesting that there are regulatory elements outside the upstream region. Analysis of potential regulatory elements defined as DNase 1-hypersensitive sites within introns of the gene revealed multiple predicted binding sites for the HNF1alpha (hepatocyte nuclear factor 1alpha) transcription factor. HNF1alpha, which is expressed in many of the same epithelial cell types as CFTR and shows similar differentiation-dependent changes in gene expression, bound to these sites in vitro. Overexpression of heterologous HNF1alpha augmented CFTR transcription in vivo. In contrast, antisense inhibition of HNF1 alpha transcription decreased the CFTR mRNA levels. Hnf1 alpha knockout mice showed lower levels of CFTR mRNA in their small intestine in comparison with wild-type mice. This is the first report of a transcription factor, which confers tissue specificity on the expression of this important disease-associated gene. PMID:14656222

  14. Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes.

    PubMed

    Holmström, Maria H; Iglesias-Gutierrez, Eduardo; Zierath, Juleen R; Garcia-Roves, Pablo M

    2012-03-15

    The tissue-specific role of mitochondrial respiratory capacity in the development of insulin resistance and type 2 diabetes is unclear. We determined mitochondrial function in glycolytic and oxidative skeletal muscle and liver from lean (+/?) and obese diabetic (db/db) mice. In lean mice, the mitochondrial respiration pattern differed between tissues. Tissue-specific mitochondrial profiles were then compared between lean and db/db mice. In liver, mitochondrial respiratory capacity and protein expression, including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), was decreased in db/db mice, consistent with increased mitochondrial fission. In glycolytic muscle, mitochondrial respiration, as well as protein and mRNA expression of mitochondrial markers, was increased in db/db mice, suggesting increased mitochondrial content and fatty acid oxidation capacity. In oxidative muscle, mitochondrial complex I function and PGC-1α and mitochondrial transcription factor A (TFAM) protein levels were decreased in db/db mice, along with increased level of proteins related to mitochondrial dynamics. In conclusion, mitochondrial respiratory performance is under the control of tissue-specific mechanisms and is not uniformly altered in response to obesity. Furthermore, insulin resistance in glycolytic skeletal muscle can be maintained by a mechanism independent of mitochondrial dysfunction. Conversely, insulin resistance in liver and oxidative skeletal muscle from db/db mice is coincident with mitochondrial dysfunction.

  15. A humanized IKBKAP transgenic mouse models a tissue specific human splicing defect

    PubMed Central

    Hims, Matthew M.; Shetty, Ranjit S.; Pickel, James; Mull, James; Leyne, Maire; Liu, Lijuan; Gusella, James F.; Slaugenhaupt, Susan A.

    2007-01-01

    Familial dysautonomia (FD) is a severe hereditary sensory and autonomic neuropathy, and all patients with FD have a splice mutation in the IKBKAP gene. The FD splice mutation results in variable, tissue-specific skipping of exon 20 in IKBKAP mRNA, which leads to reduced IKAP protein levels. The development of therapies for FD will require suitable mouse models for preclinical studies. In this study, we report the generation and characterization of a mouse model carrying the complete human IKBKAP locus with the FD IVS20+6T>C splice mutation. We show that the mutant IKBKAP transgene is mis-spliced in this model in a tissue specific manner that replicates the pattern seen in FD patient tissues. Creation of this humanized mouse is the first step towards development of a complex phenotypic model of FD. These transgenic mice are an ideal model system for testing the effectiveness of therapeutic agents that target the mis-splicing defect. Lastly, these mice will permit direct studies of tissue-specific splicing and the identification of regulatory factors that play a role in complex gene expression. PMID:17644305

  16. A humanized IKBKAP transgenic mouse models a tissue-specific human splicing defect.

    PubMed

    Hims, Matthew M; Shetty, Ranjit S; Pickel, James; Mull, James; Leyne, Maire; Liu, Lijuan; Gusella, James F; Slaugenhaupt, Susan A

    2007-09-01

    Familial dysautonomia (FD) is a severe hereditary sensory and autonomic neuropathy, and all patients with FD have a splice mutation in the IKBKAP gene. The FD splice mutation results in variable, tissue-specific skipping of exon 20 in IKBKAP mRNA, which leads to reduced IKAP protein levels. The development of therapies for FD will require suitable mouse models for preclinical studies. In this study, we report the generation and characterization of a mouse model carrying the complete human IKBKAP locus with the FD IVS20+6T-->C splice mutation. We show that the mutant IKBKAP transgene is misspliced in this model in a tissue-specific manner that replicates the pattern seen in FD patient tissues. Creation of this humanized mouse is the first step toward development of a complex phenotypic model of FD. These transgenic mice are an ideal model system for testing the effectiveness of therapeutic agents that target the missplicing defect. Last, these mice will permit direct studies of tissue-specific splicing and the identification of regulatory factors that play a role in complex gene expression.

  17. Identification and evolutionary analysis of tissue-specific isoforms of mitochondrial complex I subunit NDUFV3.

    PubMed

    Guerrero-Castillo, Sergio; Cabrera-Orefice, Alfredo; Huynen, Martijn A; Arnold, Susanne

    2017-03-01

    Mitochondrial complex I is the largest respiratory chain complex. Despite the enormous progress made studying its structure and function in recent years, potential regulatory roles of its accessory subunits remained largely unresolved. Complex I gene NDUFV3, which occurs in metazoa, contains an extra exon that is only present in vertebrates and thereby evolutionary even younger than the rest of the gene. Alternative splicing of this extra exon gives rise to a short NDUFV3-S and a long NDUFV3-L protein isoform. Complexome profiling revealed that the two NDUFV3 isoforms are constituents of the multi-subunit complex I. Further mass spectrometric analyses of complex I from different murine and bovine tissues showed a tissue-specific expression pattern of NDUFV3-S and NDUFV3-L. Hence, NDUFV3-S was identified as the only isoform in heart and skeletal muscle, whereas in liver, brain, and lung NDUFV3-L was expressed as the dominant isoform, together with NDUFV3-S present in all tissues analyzed. Thus, we identified NDUFV3 as the first out of 30 accessory subunits of complex I present in vertebrate- and tissue-specific isoforms. Interestingly, the tissue-specific expression pattern of NDUFV3-S and NDUFV3-L isoforms was paralleled by changes in kinetic parameters, especially the substrate affinity of complex I. This may indicate a regulatory role of the NDUFV3 isoforms in different vertebrate tissues.

  18. miTALOS v2: Analyzing Tissue Specific microRNA Function

    PubMed Central

    Preusse, Martin; Theis, Fabian J.; Mueller, Nikola S.

    2016-01-01

    MicroRNAs are involved in almost all biological processes and have emerged as regulators of signaling pathways. We show that miRNA target genes and pathway genes are not uniformly expressed across human tissues. To capture tissue specific effects, we developed a novel methodology for tissue specific pathway analysis of miRNAs. We incorporated the most recent and highest quality miRNA targeting data (TargetScan and StarBase), RNA-seq based gene expression data (EBI Expression Atlas) and multiple new pathway data sources to increase the biological relevance of the predicted miRNA-pathway associations. We identified new potential roles of miR-199a-3p, miR-199b-3p and the miR-200 family in hepatocellular carcinoma, involving the regulation of metastasis through MAPK and Wnt signaling. Also, an association of miR-571 and Notch signaling in liver fibrosis was proposed. To facilitate data update and future extensions of our tool, we developed a flexible database backend using the graph database neo4j. The new backend as well as the novel methodology were included in the updated miTALOS v2, a tool that provides insights into tissue specific miRNA regulation of biological pathways. miTALOS v2 is available at http://mips.helmholtz-muenchen.de/mitalos. PMID:26998997

  19. Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max.

    PubMed

    Tuteja, Jigyasa H; Clough, Steven J; Chan, Wan-Ching; Vodkin, Lila O

    2004-04-01

    Chalcone synthase, a key regulatory enzyme in the flavonoid pathway, constitutes an eight-member gene family in Glycine max (soybean). Three of the chalcone synthase (CHS) gene family members are arranged as inverted repeats in a 10-kb region, corresponding to the I locus (inhibitor). Spontaneous mutations of a dominant allele (I or i(i)) to a recessive allele (i) have been shown to delete promoter sequences, paradoxically increasing total CHS transcript levels and resulting in black seed coats. However, it is not known which of the gene family members contribute toward pigmentation and how this locus affects CHS expression in other tissues. We investigated the unusual nature of the I locus using four pairs of isogenic lines differing with respect to alleles of the I locus. RNA gel blots using a generic open reading frame CHS probe detected similar CHS transcript levels in stems, roots, leaves, young pods, and cotyledons of the yellow and black isolines but not in the seed coats, which is consistent with the dominant I and i(i) alleles mediating CHS gene silencing in a tissue-specific manner. Using real-time RT-PCR, a variable pattern of expression of CHS genes in different tissues was demonstrated. However, increase in pigmentation in the black seed coats was associated with release of the silencing effect specifically on CHS7/CHS8, which occurred at all stages of seed coat development. These expression changes were linked to structural changes taking place at the I locus, shown to encompass a much wider region of at least 27 kb, comprising two identical 10.91-kb stretches of CHS gene duplications. The suppressive effect of this 27-kb I locus in a specific tissue of the G. max plant represents a unique endogenous gene silencing mechanism.

  20. Tissue-Specific Gene Silencing Mediated by a Naturally Occurring Chalcone Synthase Gene Cluster in Glycine maxW⃞

    PubMed Central

    Tuteja, Jigyasa H.; Clough, Steven J.; Chan, Wan-Ching; Vodkin, Lila O.

    2004-01-01

    Chalcone synthase, a key regulatory enzyme in the flavonoid pathway, constitutes an eight-member gene family in Glycine max (soybean). Three of the chalcone synthase (CHS) gene family members are arranged as inverted repeats in a 10-kb region, corresponding to the I locus (inhibitor). Spontaneous mutations of a dominant allele (I or ii) to a recessive allele (i) have been shown to delete promoter sequences, paradoxically increasing total CHS transcript levels and resulting in black seed coats. However, it is not known which of the gene family members contribute toward pigmentation and how this locus affects CHS expression in other tissues. We investigated the unusual nature of the I locus using four pairs of isogenic lines differing with respect to alleles of the I locus. RNA gel blots using a generic open reading frame CHS probe detected similar CHS transcript levels in stems, roots, leaves, young pods, and cotyledons of the yellow and black isolines but not in the seed coats, which is consistent with the dominant I and ii alleles mediating CHS gene silencing in a tissue-specific manner. Using real-time RT-PCR, a variable pattern of expression of CHS genes in different tissues was demonstrated. However, increase in pigmentation in the black seed coats was associated with release of the silencing effect specifically on CHS7/CHS8, which occurred at all stages of seed coat development. These expression changes were linked to structural changes taking place at the I locus, shown to encompass a much wider region of at least 27 kb, comprising two identical 10.91-kb stretches of CHS gene duplications. The suppressive effect of this 27-kb I locus in a specific tissue of the G. max plant represents a unique endogenous gene silencing mechanism. PMID:15064367

  1. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles.

    PubMed

    Blazie, Stephen M; Babb, Cody; Wilky, Henry; Rawls, Alan; Park, Jin G; Mangone, Marco

    2015-01-20

    Tissue-specific RNA plasticity broadly impacts the development, tissue identity and adaptability of all organisms, but changes in composition, expression levels and its impact on gene regulation in different somatic tissues are largely unknown. Here we developed a new method, polyA-tagging and sequencing (PAT-Seq) to isolate high-quality tissue-specific mRNA from Caenorhabditis elegans intestine, pharynx and body muscle tissues and study changes in their tissue-specific transcriptomes and 3'UTRomes. We have identified thousands of novel genes and isoforms differentially expressed between these three tissues. The intestine transcriptome is expansive, expressing over 30% of C. elegans mRNAs, while muscle transcriptomes are smaller but contain characteristic unique gene signatures. Active promoter regions in all three tissues reveal both known and novel enriched tissue-specific elements, along with putative transcription factors, suggesting novel tissue-specific modes of transcription initiation. We have precisely mapped approximately 20,000 tissue-specific polyadenylation sites and discovered that about 30% of transcripts in somatic cells use alternative polyadenylation in a tissue-specific manner, with their 3'UTR isoforms significantly enriched with microRNA targets. For the first time, PAT-Seq allowed us to directly study tissue specific gene expression changes in an in vivo setting and compare these changes between three somatic tissues from the same organism at single-base resolution within the same experiment. We pinpoint precise tissue-specific transcriptome rearrangements and for the first time link tissue-specific alternative polyadenylation to miRNA regulation, suggesting novel and unexplored tissue-specific post-transcriptional regulatory networks in somatic cells.

  2. Peripheral leptin and ghrelin receptors are regulated in a tissue-specific manner in activity-based anorexia.

    PubMed

    Pardo, María; Roca-Rivada, Arturo; Al-Massadi, Omar; Seoane, Luisa M; Camiña, Jesús P; Casanueva, Felipe F

    2010-10-01

    The aim of this research was to investigate the effect of long-term exposure to low leptin and high ghrelin levels, inherent to activity-based anorexia (ABA), on peripheral metabolism-implicated tissues such as muscle and fat depots. For this purpose, rats under ABA were submitted to a global study which included the characterization of body weight and composition change, the evaluation of leptin and ghrelin levels as well as their receptors expression at peripheral level. Our results confirm that feeding restriction to 1 h per day, and particularly the combination of this fasting regime with exercise (ABA), significantly reduces fat mass, decreases leptin circulating levels, increases ghrelin levels strikingly and enhances insulin sensitivity. By direct in vitro assays, we show that visceral and gonadal fat participate more than subcutaneous fat in the hypoleptinemia of these animals. The study of ghrelin (GHS-R1a) and leptin (LEPR) receptors at peripheral level exhibits a tissue-specific expression pattern. Concretely, oxidative-soleus type of muscle appears to be more susceptible to ghrelin and leptin circulating levels than glycolytic-gastrocnemius type under exercise and food restriction situations. In relation to adipose tissue, chronic hyperghrelinemia induces GHS-R1a expression on visceral and subcutaneous fat which might suggest the prevention of lipid loss. On the other hand, only subcutaneous fat express the active long form of LEPR compared to visceral and gonadal fat under low leptin levels in ABA animals. All together, these findings indicate tissue-specific mechanisms for the control of energy homeostasis in response to nutrient and energy availability. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador.

    PubMed

    Setaro, Sabrina; Weiss, Michael; Oberwinkler, Franz; Kottke, Ingrid

    2006-01-01

    Cavendishia nobilis var. capitata is an endemic member of the Ericaceae growing as a hemiepiphyte in the tropical mountain rain forest of southern Ecuador. Mycorrhizas were collected from 20 individuals along an altitudinal gradient between 1850 and 2300 m. Transmission electron microscopy was used to study the symbiotic association in detail, and phylogenetic analyses based on nuclear rDNA coding for the ribosomal large subunit (nucLSU) were carried out to identify the associated mycorrhizal fungi. Microscopic and ultrastructural investigations showed the formation of a hyphal sheath, intercellular penetration of fine hyphae and colonization of the cortical cells by swollen hyphae of the same fungus. These structures were formed by hymenomycetes and ascomycetes. Molecular phylogenetic analysis detected seven groups of mycorrhizal fungi belonging to the Sebacinales. This is the first study to obtain evidence of ectendomycorrhizas in the Vaccinioideae. The ascomycetous nucLSU sequences belonged to members of the Leotiomycetes. The ectendomycorrhiza of C. nobilis with Sebacinales is discussed as a specific, hitherto undescribed mycorrhizal subcategory of ectomycorrhizas. We propose the term 'cavendishioid mycorrhiza'. This subcategory is most likely specific for the Andean clade of Ericaceae.

  4. Tissue specific transcript profiling of wheat phosphate transporter genes and its association with phosphate allocation in grains

    PubMed Central

    Shukla, Vishnu; Kaur, Mandeep; Aggarwal, Sipla; Bhati, Kaushal Kumar; Kaur, Jaspreet; Mantri, Shrikant; Pandey, Ajay K.

    2016-01-01

    Approaches enabling efficient phosphorus utilization in crops are of great importance. In cereal crop like wheat, utilization of inorganic phosphate (Pi) is high and mature grains are the major sink for Pi utilization and storage. Research that addresses the importance of the Pi homeostasis in developing grains is limited. In an attempt to understand the Pi homeostasis in developing wheat grains, we identified twelve new phosphate transporters (PHT), these are phyologentically well distributed along with the members reported from Arabidopsis and rice. Enhanced expression of PHT1-subfamily genes was observed in roots subjected to the Pi starvation suggesting their active role in Pi homeostasis. Differential expression patterns of all the PHT genes during grain filling stages suggested their importance in the filial tissues. Additionally, high accumulation of Pi and total P in aleurone correlates well with the expression of TaPHTs and other phosphate starvation related genes. Tissue specific transcript accumulation of TaPHT1.1, TaPHT1.2, TaPHT1.4 in aleurone; TaPHT3.1 in embryo and TaPHT4.2 in the endosperm was observed. Furthermore, their transcript abundance was affected in low phytate wheat grains. Altogether, this study helps in expanding the knowledge and prioritize the candidate wheat Pi-transporters to modulate the Pi homeostasis in cereal grains. PMID:27995999

  5. Comparative analysis of tissue-specific transcriptomes in the funnel-web spider Macrothele calpeiana (Araneae, Hexathelidae)

    PubMed Central

    Frías-López, Cristina; Almeida, Francisca C.; Guirao-Rico, Sara; Vizueta, Joel; Sánchez-Gracia, Alejandro; Arnedo, Miquel A.

    2015-01-01

    The funnel-web spider Macrothele calpeiana is a charismatic Mygalomorph with a great interest in basic, applied and translational research. Nevertheless, current scarcity of genomic and transcriptomic data of this species clearly limits the research in this non-model organism. To overcome this limitation, we launched the first tissue-specific enriched RNA-seq analysis in this species using a subtractive hybridization approach, with two main objectives, to characterize the specific transcriptome of the putative chemosensory appendages (palps and first pair of legs), and to provide a new set of DNA markers for further phylogenetic studies. We have characterized the set of transcripts specifically expressed in putative chemosensory tissues of this species, much of them showing features shared by chemosensory system genes. Among specific candidates, we have identified some members of the iGluR and NPC2 families. Moreover, we have demonstrated the utility of these newly generated data as molecular markers by inferring the phylogenetic position M. calpeina in the phylogenetic tree of Mygalomorphs. Our results provide novel resources for researchers interested in spider molecular biology and systematics, which can help to expand our knowledge on the evolutionary processes underlying fundamental biological questions, as species invasion or biodiversity origin and maintenance. PMID:26157629

  6. Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene.

    PubMed Central

    Slocombe, S P; Piffanelli, P; Fairbairn, D; Bowra, S; Hatzopoulos, P; Tsiantis, M; Murphy, D J

    1994-01-01

    The nucleotide sequence of a Brassica napus stearoyl-acyl carrier protein desaturase gene (Bn10) is presented. This gene is one member of a family of four closely related genes expressed in oilseed rape. The expression of the promoter of this gene in transgenic tobacco was found to be temporally regulated in the developing seed tissues. However, the promoter was also particularly active in other oleogenic tissues such as the tapetum and pollen grains. This raises the interesting question of whether seed-expressed lipid synthesis genes are regulated by separate tissue-specific determinants or by a single factor common to all oleogenic tissues. Parts of the plants undergoing rapid development such as the components of immature flowers and seedlings also exhibited high levels of promoter activity. These tissues are likely to have an elevated requirement for membrane lipid synthesis. Stearoyl-acyl carrier protein desaturase transcript levels have previously been shown to be temporally regulated in the B. napus embryo (S.P. Slocombe, I. Cummins, R.P. Jarvis, D.J. Murphy [1992] Plant Mol Biol 20: 151-155). Evidence is presented demonstrating the induction of desaturase mRNA by abscisic acid in the embryo. PMID:8016261

  7. The low density lipoprotein receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies

    PubMed Central

    Lillis, Anna P.; Van Duyn, Lauren B.; Murphy-Ullrich, Joanne E.; Strickland, Dudley K.

    2008-01-01

    The low-density lipoprotein (LDL) receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, in macrophages and in adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: first, its ability to recognize more than thirty distinct ligands; second, its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner; and third, its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. PMID:18626063

  8. Pb{sub 5}Bi{sub 24}Se{sub 41}: A new member of the homologous series forming topological insulator heterostructures

    SciTech Connect

    Segawa, Kouji; Taskin, A.A.; Ando, Yoichi

    2015-01-15

    We have synthesized Pb{sub 5}Bi{sub 24}Se{sub 41}, which is a new member of the (PbSe){sub 5}(Bi{sub 2}Se{sub 3}){sub 3m} homologous series with m=4. This series of compounds consist of alternating layers of the topological insulator Bi{sub 2}Se{sub 3} and the ordinary insulator PbSe. Such a naturally-formed heterostructure has recently been elucidated to give rise to peculiar quasi-two-dimensional topological states throughout the bulk, and the discovery of Pb{sub 5}Bi{sub 24}Se{sub 41} expands the tunability of the topological states in this interesting homologous series. The trend in the resistivity anisotropy in this homologous series suggests an important role of hybridization of the topological states in the out-of-plane transport. - Graphical abstract: X-ray diffraction profiles taken on cleaved surfaces of single-crystal samples of the (PbSe){sub 5}(Bi{sub 2}Se{sub 3}){sub 3m} homologous series with various m values up to 4, which realizes topological insulator heterostructures. Schematic crystal structure of the new phase, m=4, is also shown. - Highlights: • We have synthesized a new member of the homologous series related to topological insulators. • In this compound, a heterostructure of topological and ordinary insulators naturally forms. • Resistivity anisotropy suggests an important role of hybridization of the topological states. • This compound expands the tunability of the topological states via chemical means.

  9. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency.

    PubMed

    Müller, Julia; Mayerl, Steffen; Visser, Theo J; Darras, Veerle M; Boelen, Anita; Frappart, Lucien; Mariotta, Luca; Verrey, Francois; Heuer, Heike

    2014-01-01

    The monocarboxylate transporter Mct10 (Slc16a10; T-type amino acid transporter) facilitates the cellular transport of thyroid hormone (TH) and shows an overlapping expression with the well-established TH transporter Mct8. Because Mct8 deficiency is associated with distinct tissue-specific alterations in TH transport and metabolism, we speculated that Mct10 inactivation may compromise the tissue-specific TH homeostasis as well. However, analysis of Mct10 knockout (ko) mice revealed normal serum TH levels and tissue TH content in contrast to Mct8 ko mice that are characterized by high serum T3, low serum T4, decreased brain TH content, and increased tissue TH concentrations in the liver, kidneys, and thyroid gland. Surprisingly, mice deficient in both TH transporters (Mct10/Mct8 double knockout [dko] mice) showed normal serum T4 levels in the presence of elevated serum T3, indicating that the additional inactivation of Mct10 partially rescues the phenotype of Mct8 ko mice. As a consequence of the normal serum T4, brain T4 content and hypothalamic TRH expression were found to be normalized in the Mct10/Mct8 dko mice. In contrast, the hyperthyroid situation in liver, kidneys, and thyroid gland of Mct8 ko mice was even more severe in Mct10/Mct8 dko animals, suggesting that in these organs, both transporters contribute to the TH efflux. In summary, our data indicate that Mct10 indeed participates in tissue-specific TH transport and also contributes to the generation of the unusual serum TH profile characteristic for Mct8 deficiency.

  10. Identification of tissue-specific cell death using methylation patterns of circulating DNA.

    PubMed

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J; Wasserfall, Clive H; Schatz, Desmond A; Greenbaum, Carla J; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K; Golan, Talia; Ben Sasson, Shmuel A; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A M James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-03-29

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics.

  11. Single cell analysis reveals gametic and tissue-specific instability of the SCA1 CAG repeat

    SciTech Connect

    Chong, S.S.; McCall, A.E.; Cota, J.

    1994-09-01

    Spinocerebellar ataxia type 1 is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat within the SCA1 gene on chromosome 6p22-23. We performed a comparative analysis of the SCA1 CAG repeat from blood and sperm of an affected male. Genomic amplification revealed a broader smear of the SCA1 allele product from sperm compared to that from peripheral blood leukocytes (PBL). To resolve this observed difference, we analyzed single sperm directly and demonstrate that the SCA1 allele in PBL is also heterogeneous, although the range of variability in allele sizes is much less than that observed in sperm. Limited genome analysis was also performed on PBL DNA from an unaffected individual with an upper normal allele of 36 repeats in parallel with an affected individual with an expanded allele of 40 repeats. The 36 repeat normal allele, which contains a CAT interruption, was completely stable compared to the uninterrupted repeat of the SCA1 allele, demonstrating a direct correlation between absence of a CAT interruption and somatic instability of the repeat. We also analyzed the size of the CAG repeat in tissues derived from various brain regions from a patient with juvenile-onset disease to determine if the size of the expansion correlated with the site of neuropathology. The results clearly show tissue-specific differences in mosaicism of repeat length. More importantly, the pattern of tissue-specific differences in repeat-length mosaicism in SCA1 within the brain parallels those seen in Huntington disease. In both disorders the expanded alleles are smaller in cerebellar tissue. These results suggest that the observed tissue-specific differences in instability of the SCA1 CAG repeat, either within the brain or between blood and sperm, are a function of the intracellular milieu or the intrinsic replicative potential of the various celltypes.

  12. Identification of tissue-specific cell death using methylation patterns of circulating DNA

    PubMed Central

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-01-01

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580

  13. Tissue-specific control of brain-enriched miR-7 biogenesis

    PubMed Central

    Choudhury, Nila Roy; de Lima Alves, Flavia; de Andrés-Aguayo, Luisa; Graf, Thomas; Cáceres, Javier F.; Rappsilber, Juri; Michlewski, Gracjan

    2013-01-01

    MicroRNA (miRNA) biogenesis is a highly regulated process in eukaryotic cells. Several mature miRNAs exhibit a tissue-specific pattern of expression without an apparent tissue-specific pattern for their corresponding primary transcripts. This discrepancy is suggestive of post-transcriptional regulation of miRNA abundance. Here, we demonstrate that the brain-enriched expression of miR-7, which is processed from the ubiquitous hnRNP K pre-mRNA transcript, is achieved by inhibition of its biogenesis in nonbrain cells in both human and mouse systems. Using stable isotope labeling by amino acids in cell culture (SILAC) mass spectrometry combined with RNase-assisted RNA pull-down, we identified Musashi homolog 2 (MSI2) and Hu antigen R (HuR) proteins as inhibitors of miR-7 processing in nonneural cells. This is achieved through HuR-mediated binding of MSI2 to the conserved terminal loop of pri-miR-7. Footprinting and electrophoretic gel mobility shift analysis (EMSA) provide further evidence for a direct interaction between pri-miR-7-1 and the HuR/MSI2 complex, resulting in stabilization of the pri-miR-7-1 structure. We also confirmed the physiological relevance of this inhibitory mechanism in a neuronal differentiation system using human SH-SY5Y cells. Finally, we show elevated levels of miR-7 in selected tissues from MSI2 knockout (KO) mice without apparent changes in the abundance of the pri-miR-7 transcript. Altogether, our data provide the first insight into the regulation of brain-enriched miRNA processing by defined tissue-specific factors. PMID:23307866

  14. Differential tissue-specific function of the Adora2b in cardio-protection

    PubMed Central

    Seo, Seong-wook; Koeppen, Michael; Bonney, Stephanie; Gobel, Merit; Thayer, Molly; Harter, Patrick N.; Ravid, Katya; Eltzschig, Holger K.; Mittelbronn, Michel; Walker, Lori; Eckle, Tobias

    2015-01-01

    The adenosine A2b-receptor (Adora2b) has been implicated in cardio-protection from myocardial ischemia. As such the Adora2b was found to be critical in ischemic preconditioning (IP) or ischemia reperfusion (IR) injury of the heart. While the Adora2b is present on various cells types, the tissue specific role of the Adora2b in cardio-protection is still unknown. To study the tissue specific role of Adora2b signaling on inflammatory cells, endothelia or myocytes during myocardial ischemia in vivo, we intercrossed floxed Adora2b mice with Lyz2-Cre+, VE-Cadherin-Cre+ or Myosin-Cre+ transgenic mice, respectively. Mice were exposed to 60 minutes of myocardial ischemia with or without IP (4×5min) followed by 120 minutes of reperfusion. Cardio-protection by IP was abolished in Adora2bf/f-VE-Cadherin-Cre+ or Adora2bf/f-Myosin-Cre+, indicating that Adora2bs signaling on endothelia or myocytes mediates IP. In contrast, primarily Adora2b signaling on inflammatory cells was necessary to provide cardio-protection in IR injury, indicated by significantly larger infarcts and higher troponin levels in Adora2bf/f-Lyz2-Cre+ mice only. Cytokine profiling of IR injury in Adora2bf/f-Lyz2-Cre+ mice pointed towards PMNs. Analysis of PMNs from Adora2bf/f-Lyz2-Cre+ confirmed PMNs as one source of identified tissue cytokines. Finally, adoptive transfer of Ador2b−/− PMNs revealed a critical role of the Adorab2 on PMNs in cardio-protection from IR-injury. Adora2b signaling mediates different types of cardio-protection in a tissue specific manner. These findings have implications for the use of Adora2b agonists in the treatment or prevention of myocardial injury by ischemia. PMID:26136425

  15. Profile analysis and prediction of tissue-specific CpG island methylation classes

    PubMed Central

    2009-01-01

    Background The computational prediction of DNA methylation has become an important topic in the recent years due to its role in the epigenetic control of normal and cancer-related processes. While previous prediction approaches focused merely on differences between methylated and unmethylated DNA sequences, recent experimental results have shown the presence of much more complex patterns of methylation across tissues and time in the human genome. These patterns are only partially described by a binary model of DNA methylation. In this work we propose a novel approach, based on profile analysis of tissue-specific methylation that uncovers significant differences in the sequences of CpG islands (CGIs) that predispose them to a tissue- specific methylation pattern. Results We defined CGI methylation profiles that separate not only between constitutively methylated and unmethylated CGIs, but also identify CGIs showing a differential degree of methylation across tissues and cell-types or a lack of methylation exclusively in sperm. These profiles are clearly distinguished by a number of CGI attributes including their evolutionary conservation, their significance, as well as the evolutionary evidence of prior methylation. Additionally, we assess profile functionality with respect to the different compartments of protein coding genes and their possible use in the prediction of DNA methylation. Conclusion Our approach provides new insights into the biological features that determine if a CGI has a functional role in the epigenetic control of gene expression and the features associated with CGI methylation susceptibility. Moreover, we show that the ability to predict CGI methylation is based primarily on the quality of the biological information used and the relationships uncovered between different sources of knowledge. The strategy presented here is able to predict, besides the constitutively methylated and unmethylated classes, two more tissue specific methylation classes

  16. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression

    PubMed Central

    Lianoglou, Steve; Garg, Vidur; Yang, Julie L.; Leslie, Christina S.; Mayr, Christine

    2013-01-01

    More than half of human genes use alternative cleavage and polyadenylation (ApA) to generate mRNA transcripts that differ in the lengths of their 3′ untranslated regions (UTRs), thus altering the post-transcriptional fate of the message and likely the protein output. The extent of 3′ UTR variation across tissues and the functional role of ApA remain poorly understood. We developed a sequencing method called 3′-seq to quantitatively map the 3′ ends of the transcriptome of diverse human tissues and isogenic transformation systems. We found that cell type-specific gene expression is accomplished by two complementary programs. Tissue-restricted genes tend to have single 3′ UTRs, whereas a majority of ubiquitously transcribed genes generate multiple 3′ UTRs. During transformation and differentiation, single-UTR genes change their mRNA abundance levels, while multi-UTR genes mostly change 3′ UTR isoform ratios to achieve tissue specificity. However, both regulation programs target genes that function in the same pathways and processes that characterize the new cell type. Instead of finding global shifts in 3′ UTR length during transformation and differentiation, we identify tissue-specific groups of multi-UTR genes that change their 3′ UTR ratios; these changes in 3′ UTR length are largely independent from changes in mRNA abundance. Finally, tissue-specific usage of ApA sites appears to be a mechanism for changing the landscape targetable by ubiquitously expressed microRNAs. PMID:24145798

  17. Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome

    PubMed Central

    Pérez-Montarelo, Dafne; Hudson, Nicholas J.; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P.; Reverter, Antonio

    2012-01-01

    The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species. PMID:23049964

  18. Shade-induced stem elongation in rice seedlings: Implication of tissue-specific phytohormone regulation.

    PubMed

    Liu, Huihui; Yang, Chuanwei; Li, Lin

    2016-07-01

    A better understanding of shade avoidance syndrome (SAS) is an urgent need because of its effect on energy reallocation. Leverage-related mechanism in crops is of potential economic interest for agricultural applications. Here we report the SAS phenotype at tissue level rice seedlings. Tissue-specific RNA-sequencing indicates auxin plays different roles between coleoptile and the first leaf. Phenotypes of wild type treated by gibberellin and brassinosteroid biosynthesis inhibitors and of related mutants suggest these two hormones positively regulate SAS. Our work reveals the diversity of hormone responses in different organs and different species in shade conditions. © 2016 Institute of Botany, Chinese Academy of Sciences.

  19. Outfits for different occasions: tissue-specific roles of Nuclear Envelope proteins

    PubMed Central

    Gomez-Cavazos, J Sebastian; Hetzer, Martin W

    2013-01-01

    The Nuclear Envelope (NE) contains over 100 different proteins that associate with nuclear components such as chromatin, the lamina and the transcription machinery. Mutations in genes encoding NE proteins have been shown to result in tissue-specific defects and disease, suggesting cell-type specific differences in NE composition and function. Consistent with these observations, recent studies have revealed unexpected functions for numerous NE associated proteins during cell differentiation and development. Here we review the latest insights into the roles played by the NE in cell differentiation, development, disease and aging, focusing primarily on inner nuclear membrane (INM) proteins and nuclear pore components. PMID:22995343

  20. Generation of Tissue-Specific Mouse Models to Analyze HDAC Functions.

    PubMed

    Hagelkruys, Astrid; Moser, Mirjam A; Seiser, Christian

    2017-01-01

    Histone deacetylases (HDACs) play crucial roles during mammalian development and for cellular homeostasis. In addition, these enzymes are promising targets for small molecule inhibitors in the treatment of cancer and neurological diseases. Conditional HDAC knock-out mice are excellent tools for defining the functions of individual HDACs in vivo and for identifying the molecular targets of HDAC inhibitors in disease. Here, we describe the generation of tissue-specific HDAC knock-out mice and delineate a strategy for the generation of conditional HDAC knock-in mice.

  1. Novel strong tissue specific promoter for gene expression in human germ cells

    PubMed Central

    2010-01-01

    Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS) was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102), where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter). To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD) suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1), whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293). In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X). The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12), and an important role - in the rest two cell lines. PMID:20716342

  2. Data mining for biomarker development: a review of tissue specificity analysis.

    PubMed

    Klee, Eric W

    2008-03-01

    Novel biomarker development requires a significant resource commitment to translate candidate markers into clinical assays. Consequently, it is imperative high quality candidates are selected early in a biomarker development program. High throughput gene expression data are routinely used to identify transcripts differentially expressed in diseased versus normal samples. Data-mining Expressed Sequence Tag, Serial Analysis of Gene Expression, Massively Parallel Signature Sequencing, and microarray expression databases can provide additional information on the expression of candidate biomarkers across multiple tissues, organs, and disease states. From this information, quantitative measures of tissue-specific gene specificity are computed and used to guide candidate biomarker selection.

  3. Biotransformation of tissue-specific hormone tibolone with fungal culture Trichothecium roseum

    NASA Astrophysics Data System (ADS)

    Shah, Syed Adnan Ali; Sultan, Sadia; Zaimi bin Mohd Noor, M.

    2013-06-01

    Whole cells based biotransformation is an important tool for bioconversion of steroids. It can be used to synthesize biologically potent compounds with diverse structures. Biotransformation of tissue-specific hormone tibolone (1) with Trichothecium roseum (ATCC 13411) has being carried out for the first time. Two new and three known metabolites 2-6 were isolated from fermentation of tibolone (1) with Trichothecium roseum and their structures were characterized by 2D NMR spectroscopy and mass spectrometry. The relative stereochemistry of new metabolites 5 and 6 was deduced by 2D NOESY experiments. The effect of cultures on tibolone structural modifications and time-course studies has also been conducted.

  4. The mouse Eb meiotic recombination hotspot contains a tissue-specific transcriptional enhancer.

    PubMed

    Ling, X; Shenkar, R; Sakai, D; Arnheim, N

    1993-01-01

    A meiotic recombination hotspot exists within the second intron of the mouse major histocompatibility complex (MHC) gene, Eb. In the present study, a small fragment from the intron which contains two potential transcriptional regulatory elements was cloned into an expression vector and its effect on transcription was tested. This fragment was found to contain tissue-specific transcriptional enhancer activity. An octamer-like sequence and a B motif may contribute to this enhancer activity. Similar regulatory sequences with the same orientation and distance from one another are found in another mouse MHC recombination hotspot.

  5. GATA transcription factors as tissue-specific master regulators for induced responses

    PubMed Central

    Block, Dena Hs; Shapira, Michael

    2015-01-01

    GATA transcription factors play important roles in directing developmental genetic programs and cell differentiation, and are conserved in animals, plants and fungi. C. elegans has 11 GATA-type transcription factors that orchestrate development of the gut, epidermis and vulva. However, the expression of certain GATA proteins persists into adulthood, where their function is less understood. Accumulating evidence demonstrates contributions of 2 terminal differentiation GATA transcription factors, ELT-2 and ELT-3, to epithelial immune responses in the adult intestine and epidermis (hypodermis), respectively. Involvement in other stress responses has also been documented. We recently showed that ELT-2 acted as a tissue-specific master regulator, cooperating with 2 transcription factors activated by the p38 pathway, ATF-7 and SKN-1, to control immune responses in the adult C. elegans intestine. Here, we discuss the broader implications of these findings for understanding the involvement of GATA transcription factors in adult stress responses, and draw parallels between ELT-2 and ELT-3 to speculate that the latter may fulfill similar tissue-specific functions in the epidermis. PMID:27123374

  6. GATA transcription factors as tissue-specific master regulators for induced responses.

    PubMed

    Block, Dena Hs; Shapira, Michael

    2015-01-01

    GATA transcription factors play important roles in directing developmental genetic programs and cell differentiation, and are conserved in animals, plants and fungi. C. elegans has 11 GATA-type transcription factors that orchestrate development of the gut, epidermis and vulva. However, the expression of certain GATA proteins persists into adulthood, where their function is less understood. Accumulating evidence demonstrates contributions of 2 terminal differentiation GATA transcription factors, ELT-2 and ELT-3, to epithelial immune responses in the adult intestine and epidermis (hypodermis), respectively. Involvement in other stress responses has also been documented. We recently showed that ELT-2 acted as a tissue-specific master regulator, cooperating with 2 transcription factors activated by the p38 pathway, ATF-7 and SKN-1, to control immune responses in the adult C. elegans intestine. Here, we discuss the broader implications of these findings for understanding the involvement of GATA transcription factors in adult stress responses, and draw parallels between ELT-2 and ELT-3 to speculate that the latter may fulfill similar tissue-specific functions in the epidermis.

  7. Analysis of circadian pattern reveals tissue-specific alternative transcription in leptin signaling pathway

    PubMed Central

    Ptitsyn, Andrey A; Gimble, Jeffrey M

    2007-01-01

    Background It has been previously reported that most mammalian genes display a circadian oscillation in their baseline expression. Consequently, the phase and amplitude of each component of a signal transduction cascade has downstream consequences. Results Here, we report our analysis of alternative transcripts in the leptin signaling pathway which is responsible for the systemic regulation of macronutrient storage and energy balance. We focused on the circadian expression pattern of a critical component of the leptin signaling system, suppressor of cytokine signaling 3 (SOCS3). On an Affymetrix GeneChip 430A2 microarray, this gene is represented by three probe sets targeting different regions within the 3' end of the last exon. We demonstrate that in murine brown adipose tissue two downstream 3' probe sets experience circadian baseline oscillation in counter-phase to the upstream probe set. Such differences in expression patterns are a telltale sign of alternative splicing within the last exon of SOCS3. In contrast, all three probe sets oscillated in a common phase in murine liver and white adipose tissue. This suggests that the regulation of SOCS3 expression in brown fat is tissue specific. Another component of the signaling pathway, Janus kinase (JAK), is directly regulated by SOCS and has alternative transcript probe sets oscillating in counter-phase in a white adipose tissue specific manner. Conclusion We hypothesize that differential oscillation of alternative transcripts may provide a mechanism to maintain steady levels of expression in spite of circadian baseline variation. PMID:18047714

  8. A novel method for tissue-specific RNAi rescue in Drosophila.

    PubMed

    Schulz, Joachim G; David, Guido; Hassan, Bassem A

    2009-07-01

    Targeted gene silencing by RNA interference allows the study of gene function in plants and animals. In cell culture and small animal models, genetic screens can be performed--even tissue-specifically in Drosophila--with genome-wide RNAi libraries. However, a major problem with the use of RNAi approaches is the unavoidable false-positive error caused by off-target effects. Until now, this is minimized by computational RNAi design, comparing RNAi to the mutant phenotype if known, and rescue with a presumed ortholog. The ultimate proof of specificity would be to restore expression of the same gene product in vivo. Here, we present a simple and efficient method to rescue the RNAi-mediated knockdown of two independent genes in Drosophila. By exploiting the degenerate genetic code, we generated Drosophila RNAi Escape Strategy Construct (RESC) rescue proteins containing frequent silent mismatches in the complete RNAi target sequence. RESC products were no longer efficiently silenced by RNAi in cell culture and in vivo. As a proof of principle, we rescue the RNAi-induced loss of function phenotype of the eye color gene white and tracheal defects caused by the knockdown of the heparan sulfate proteoglycan syndecan. Our data suggest that RESC is widely applicable to rescue and validate ubiquitous or tissue-specific RNAi and to perform protein structure-function analysis.

  9. Tissue specificity of epithelial keratins: differential expression of mRNAs from two multigene families.

    PubMed Central

    Kim, K H; Rheinwald, J G; Fuchs, E V

    1983-01-01

    Human epithelial cells cultured from stratified and simple squamous tissues all produce keratins of 40,000 to 58,000 daltons, but within this range the number and sizes vary with different epithelial cells. We have shown that this tissue-specific variation in the keratins is not due to posttranslational modification or processing, but rather to the differential expression of a family of heterogeneous but closely related mRNAs. All of these epithelial keratin mRNAs can be further grouped into two distinct subfamilies by their ability to hybridize with either of two cloned epidermal keratin cDNAs. All of the keratin mRNAs hybridize to one or the other, but not both, of the two cloned cDNAs. However, the mRNAs within each group hybridize with varying degrees of stringency, indicating that they are of similar but not identical sequence. Both types of keratin mRNAs are always expressed in every epithelial cell line studied, suggesting that filament assembly is dependent on the presence of both types of keratins. Within each of these two groups, the slight sequence differences in each class may reflect subtle tissue-specific variations in the structural and functional requirements of the epithelial cytoskeleton. Images PMID:6190074

  10. Post-transcription initiation function of the ubiquitous SAGA complex in tissue-specific gene activation

    PubMed Central

    Weake, Vikki M.; Dyer, Jamie O.; Seidel, Christopher; Box, Andrew; Swanson, Selene K.; Peak, Allison; Florens, Laurence; Washburn, Michael P.; Abmayr, Susan M.; Workman, Jerry L.

    2011-01-01

    The Spt–Ada–Gcn5–acetyltransferase (SAGA) complex was discovered from Saccharomyces cerevisiae and has been well characterized as an important transcriptional coactivator that interacts both with sequence-specific transcription factors and the TATA-binding protein TBP. SAGA contains a histone acetyltransferase and a ubiquitin protease. In metazoans, SAGA is essential for development, yet little is known about the function of SAGA in differentiating tissue. We analyzed the composition, interacting proteins, and genomic distribution of SAGA in muscle and neuronal tissue of late stage Drosophila melanogaster embryos. The subunit composition of SAGA was the same in each tissue; however, SAGA was associated with considerably more transcription factors in muscle compared with neurons. Consistent with this finding, SAGA was found to occupy more genes specifically in muscle than in neurons. Strikingly, SAGA occupancy was not limited to enhancers and promoters but primarily colocalized with RNA polymerase II within transcribed sequences. SAGA binding peaks at the site of RNA polymerase pausing at the 5′ end of transcribed sequences. In addition, many tissue-specific SAGA-bound genes required its ubiquitin protease activity for full expression. These data indicate that in metazoans SAGA plays a prominent post-transcription initiation role in tissue-specific gene expression. PMID:21764853

  11. Tissue-specific mutation accumulation in human adult stem cells during life

    NASA Astrophysics Data System (ADS)

    Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben

    2016-10-01

    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.

  12. Effect of Tissue Specificity on the Performance of Extracellular Matrix in Improving Endothelialization of Cardiovascular Implants

    PubMed Central

    Tu, Qiufen; Yang, Zhilu; Zhu, Ying; Xiong, Kaiqin; Maitz, Manfred F.; Wang, Jin; Zhao, Yuancong; Jin, Jian; Lei, Yuechang

    2013-01-01

    Natural extracellular matrix (ECM) deposited in situ by cultured endothelial cells (ECs) has been proven effective in accelerating endothelialization of titanium (Ti) cardiovascular implants (CVIs) in our previous studies. In this study, the ECM deposited by smooth muscle cells (SMCs) was used in comparison to investigate the effects of tissue specificity of the ECM on the ability to accelerate endothelialization of CVIs. The results demonstrated that the ECM deposited by ECs and SMCs (EC-ECM, SMC-ECM, respectively) differed considerably in components and fibril morphology. Surface modification of Ti CVIs with both types of natural ECM was effective in improving their in vitro hemocompatibility and cytocompatibility simultaneously. However, the endothelialization of ECM-modified Ti CVIs in a canine model demonstrated a high tissue specificity of the ECM. Although the ECM deposited by SMCs (SMC-ECM) induced fewer platelet adhesion and sustained better growth and viability of ECs in vitro, its performance in accelerating in vivo endothelialization of Ti CVIs was extremely poor. In contrast, the ECM deposited by ECs (EC-ECM) led to complete endothelium formation in vivo. PMID:22924620

  13. Understanding multicellular function and disease with human tissue-specific networks

    PubMed Central

    Greene, Casey S.; Krishnan, Arjun; Wong, Aaron K.; Ricciotti, Emanuela; Zelaya, Rene A.; Himmelstein, Daniel S.; Zhang, Ran; Hartmann, Boris M.; Zaslavsky, Elena; Sealfon, Stuart C.; Chasman, Daniel I.; FitzGerald, Garret A.; Dolinski, Kara; Grosser, Tilo; Troyanskaya, Olga G.

    2016-01-01

    Tissue and cell-type identity lie at the core of human physiology and disease. Understanding the genetic underpinnings of complex tissues and individual cell lineages is crucial for developing improved diagnostics and therapeutics. We present genome-wide functional interaction networks for 144 human tissues and cell types developed using a data-driven Bayesian methodology that integrates thousands of diverse experiments spanning tissue and disease states. Tissue-specific networks predict lineage-specific responses to perturbation, reveal genes’ changing functional roles across tissues, and illuminate disease-disease relationships. We introduce NetWAS, which combines genes with nominally significant GWAS p-values and tissue-specific networks to identify disease-gene associations more accurately than GWAS alone. Our webserver, GIANT, provides an interface to human tissue networks through multi-gene queries, network visualization, analysis tools including NetWAS, and downloadable networks. GIANT enables systematic exploration of the landscape of interacting genes that shape specialized cellular functions across more than one hundred human tissues and cell types. PMID:25915600

  14. Proteomic Landscape of Tissue-Specific Cyclin E Functions in Vivo

    PubMed Central

    Odajima, Junko; Jung, Piotr; Ndassa-Colday, Yasmine; Ficaro, Scott; Geng, Yan; Marco, Eugenio; Michowski, Wojciech; Wang, Yaoyu E.; DeCaprio, James A.; Litovchick, Larisa; Marto, Jarrod; Sicinski, Piotr

    2016-01-01

    E-type cyclins (cyclins E1 and E2) are components of the cell cycle machinery that has been conserved from yeast to humans. The major function of E-type cyclins is to drive cell division. It is unknown whether in addition to their ‘core’ cell cycle functions, E-type cyclins also perform unique tissue-specific roles. Here, we applied high-throughput mass spectrometric analyses of mouse organs to define the repertoire of cyclin E protein partners in vivo. We found that cyclin E interacts with distinct sets of proteins in different compartments. These cyclin E interactors are highly enriched for phosphorylation targets of cyclin E and its catalytic partner, the cyclin-dependent kinase 2 (Cdk2). Among cyclin E interactors we identified several novel tissue-specific substrates of cyclin E-Cdk2 kinase. In proliferating compartments, cyclin E-Cdk2 phosphorylates Lin proteins within the DREAM complex. In the testes, cyclin E-Cdk2 phosphorylates Mybl1 and Dmrtc2, two meiotic transcription factors that represent key regulators of spermatogenesis. In embryonic and adult brains cyclin E interacts with proteins involved in neurogenesis, while in adult brains also with proteins regulating microtubule-based processes and microtubule cytoskeleton. We also used quantitative proteomics to demonstrate re-wiring of the cyclin E interactome upon ablation of Cdk2. This approach can be used to study how protein interactome changes during development or in any pathological state such as aging or cancer. PMID:27828963

  15. How does Tra2β protein regulate tissue-specific RNA splicing?

    PubMed

    Elliott, David J; Best, Andrew; Dalgliesh, Caroline; Ehrmann, Ingrid; Grellscheid, Sushma

    2012-08-01

    The splicing regulator protein Tra2β is conserved between humans and insects and is essential for mouse development. Recent identification of physiological RNA targets has started to uncover molecular targets and mechanisms of action of Tra2β. At a transcriptome-wide level, Tra2β protein binds a matrix of AGAA-rich sequences mapping frequently to exons. Particular tissue-specific alternatively spliced exons contain high concentrations of high scoring Tra2β-binding sites and bind Tra2β strongly in vitro. These top exons were also activated for splicing inclusion in cellulo by co-expression of Tra2β protein and were significantly down-regulated after genetic depletion of Tra2β. Tra2β itself seems to be fairly evenly expressed across several different mouse tissues. In the present paper, we review the properties of Tra2β and its regulated target exons, and mechanisms through which this fairly evenly expressed alternative splicing regulator might drive tissue-specific splicing patterns.

  16. Cellular Proteomes Drive Tissue-Specific Regulation of the Heat Shock Response

    PubMed Central

    Ma, Jian; Grant, Christopher E.; Plagens, Rosemary N.; Barrett, Lindsey N.; Guisbert, Karen S. Kim; Guisbert, Eric

    2017-01-01

    The heat shock response (HSR) is a cellular stress response that senses protein misfolding and restores protein folding homeostasis, or proteostasis. We previously identified an HSR regulatory network in Caenorhabditis elegans consisting of highly conserved genes that have important cellular roles in maintaining proteostasis. Unexpectedly, the effects of these genes on the HSR are distinctly tissue-specific. Here, we explore this apparent discrepancy and find that muscle-specific regulation of the HSR by the TRiC/CCT chaperonin is not driven by an enrichment of TRiC/CCT in muscle, but rather by the levels of one of its most abundant substrates, actin. Knockdown of actin subunits reduces induction of the HSR in muscle upon TRiC/CCT knockdown; conversely, overexpression of an actin subunit sensitizes the intestine so that it induces the HSR upon TRiC/CCT knockdown. Similarly, intestine-specific HSR regulation by the signal recognition particle (SRP), a component of the secretory pathway, is driven by the vitellogenins, some of the most abundant secretory proteins. Together, these data indicate that the specific protein folding requirements from the unique cellular proteomes sensitizes each tissue to disruption of distinct subsets of the proteostasis network. These findings are relevant for tissue-specific, HSR-associated human diseases such as cancer and neurodegenerative diseases. Additionally, we characterize organismal phenotypes of actin overexpression including a shortened lifespan, supporting a recent hypothesis that maintenance of the actin cytoskeleton is an important factor for longevity. PMID:28143946

  17. The RNA Export Factor, Nxt1, Is Required for Tissue Specific Transcriptional Regulation

    PubMed Central

    Jiang, Jianqiao; White-Cooper, Helen

    2013-01-01

    The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex. PMID:23754955

  18. Model of Tryptophan Metabolism, Readily Scalable Using Tissue-specific Gene Expression Data*

    PubMed Central

    Stavrum, Anne-Kristin; Heiland, Ines; Schuster, Stefan; Puntervoll, Pål; Ziegler, Mathias

    2013-01-01

    Tryptophan is utilized in various metabolic routes including protein synthesis, serotonin, and melatonin synthesis and the kynurenine pathway. Perturbations in these pathways have been associated with neurodegenerative diseases and cancer. Here we present a comprehensive kinetic model of the complex network of human tryptophan metabolism based upon existing kinetic data for all enzymatic conversions and transporters. By integrating tissue-specific expression data, modeling tryptophan metabolism in liver and brain returned intermediate metabolite concentrations in the physiological range. Sensitivity and metabolic control analyses identified expected key enzymes to govern fluxes in the branches of the network. Combining tissue-specific models revealed a considerable impact of the kynurenine pathway in liver on the concentrations of neuroactive derivatives in the brain. Moreover, using expression data from a cancer study predicted metabolite changes that resembled the experimental observations. We conclude that the combination of the kinetic model with expression data represents a powerful diagnostic tool to predict alterations in tryptophan metabolism. The model is readily scalable to include more tissues, thereby enabling assessment of organismal tryptophan metabolism in health and disease. PMID:24129579

  19. Tissue-specific autophagy responses to aging and stress in C. elegans

    PubMed Central

    Chapin, Hannah C.; Okada, Megan; Merz, Alexey J.; Miller, Dana L.

    2015-01-01

    Cellular function relies on a balance between protein synthesis and breakdown. Macromolecular breakdown through autophagy is broadly required for cellular and tissue development, function, and recovery from stress. While Caenorhabditis elegans is frequently used to explore cellular responses to development and stress, the most common assays for autophagy in this system lack tissue-level resolution. Different tissues within an organism have unique functional characteristics and likely vary in their reliance on autophagy under different conditions. To generate a tissue-specific map of autophagy in C. elegans we used a dual fluorescent protein (dFP) tag that releases monomeric fluorescent protein (mFP) upon arrival at the lysosome. Tissue-specific expression of dFP::LGG-1 revealed autophagic flux in all tissues, but mFP accumulation was most dramatic in the intestine. We also observed variable responses to stress: starvation increased autophagic mFP release in all tissues, whereas anoxia primarily increased intestinal autophagic flux. We observed autophagic flux with tagged LGG-1, LGG-2, and two autophagic cargo reporters: a soluble cytoplasmic protein, and mitochondrial TOMM-7. Finally, an increase in mFP in older worms was consistent with an age-dependent shift in proteostasis. These novel measures of autophagic flux in C. elegans reveal heterogeneity in autophagic response across tissues during stress and aging. PMID:26142908

  20. Tissue-specific autophagy responses to aging and stress in C. elegans.

    PubMed

    Chapin, Hannah C; Okada, Megan; Merz, Alexey J; Miller, Dana L

    2015-06-01

    Cellular function relies on a balance between protein synthesis and breakdown. Macromolecular breakdown through autophagy is broadly required for cellular and tissue development, function, and recovery from stress. While Caenorhabditis elegans is frequently used to explore cellular responses to development and stress, the most common assays for autophagy in this system lack tissue-level resolution. Different tissues within an organism have unique functional characteristics and likely vary in their reliance on autophagy under different conditions. To generate a tissue-specific map of autophagy in C. elegans we used a dual fluorescent protein (dFP) tag that releases monomeric fluorescent protein (mFP) upon arrival at the lysosome. Tissue-specific expression of dFP::LGG-1 revealed autophagic flux in all tissues, but mFP accumulation was most dramatic in the intestine. We also observed variable responses to stress: starvation increased autophagic mFP release in all tissues, whereas anoxia primarily increased intestinal autophagic flux. We observed autophagic flux with tagged LGG-1, LGG-2, and two autophagic cargo reporters: a soluble cytoplasmic protein, and mitochondrial TOMM-7. Finally, an increase in mFP in older worms was consistent with an age-dependent shift in proteostasis. These novel measures of autophagic flux in C. elegans reveal heterogeneity in autophagic response across tissues during stress and aging.

  1. Stem cell delivery in tissue-specific hydrogel enabled meniscal repair in an orthotopic rat model.

    PubMed

    Yuan, Xiaoning; Wei, Yiyong; Villasante, Aránzazu; Ng, Johnathan J D; Arkonac, Derya E; Chao, Pen-Hsiu Grace; Vunjak-Novakovic, Gordana

    2017-04-04

    Interest in non-invasive injectable therapies has rapidly risen due to their excellent safety profile and ease of use in clinical settings. Injectable hydrogels can be derived from the extracellular matrix (ECM) of specific tissues to provide a biomimetic environment for cell delivery and enable seamless regeneration of tissue defects. We investigated the in situ delivery of human mesenchymal stem cells (hMSCs) in decellularized meniscus ECM hydrogel to a meniscal defect in a nude rat model. First, decellularized meniscus ECM hydrogel retained tissue-specific proteoglycans and collagens, and significantly upregulated expression of fibrochondrogenic markers by hMSCs versus collagen hydrogel alone in vitro. The meniscus ECM hydrogel in turn supported delivery of hMSCs for integrative repair of a full-thickness defect model in meniscal explants after in vitro culture and in vivo subcutaneous implantation. When applied to an orthotopic model of meniscal injury in nude rat, hMSCs in meniscus ECM hydrogel were retained out to eight weeks post-injection, contributing to tissue regeneration and protection from joint space narrowing, pathologic mineralization, and osteoarthritis development, as evidenced by macroscopic and microscopic image analysis. Based on these findings, we propose the use of tissue-specific meniscus ECM-derived hydrogel for the delivery of therapeutic hMSCs to treat meniscal injury.

  2. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications

    PubMed Central

    Sas, Kelli M.; Kayampilly, Pradeep; Byun, Jaeman; Nair, Viji; Hinder, Lucy M.; Zhang, Hongyu; Lin, Chengmao; Qi, Nathan R.; Michailidis, George; Groop, Per-Henrik; Nelson, Robert G.; Darshi, Manjula; Sharma, Kumar; Schelling, Jeffrey R.; Sedor, John R.; Pop-Busui, Rodica; Weinberg, Joel M.; Soleimanpour, Scott A.; Abcouwer, Steven F.; Gardner, Thomas W.; Burant, Charles F.; Feldman, Eva L.; Kretzler, Matthias; Brosius, Frank C.

    2016-01-01

    Diabetes is associated with altered cellular metabolism, but how altered metabolism contributes to the development of diabetic complications is unknown. We used the BKS db/db diabetic mouse model to investigate changes in carbohydrate and lipid metabolism in kidney cortex, peripheral nerve, and retina. A systems approach using transcriptomics, metabolomics, and metabolic flux analysis identified tissue-specific differences, with increased glucose and fatty acid metabolism in the kidney, a moderate increase in the retina, and a decrease in the nerve. In the kidney, increased metabolism was associated with enhanced protein acetylation and mitochondrial dysfunction. To confirm these findings in human disease, we analyzed diabetic kidney transcriptomic data and urinary metabolites from a cohort of Southwestern American Indians. The urinary findings were replicated in 2 independent patient cohorts, the Finnish Diabetic Nephropathy and the Family Investigation of Nephropathy and Diabetes studies. Increased concentrations of TCA cycle metabolites in urine, but not in plasma, predicted progression of diabetic kidney disease, and there was an enrichment of pathways involved in glycolysis and fatty acid and amino acid metabolism. Our findings highlight tissue-specific changes in metabolism in complication-prone tissues in diabetes and suggest that urinary TCA cycle intermediates are potential prognostic biomarkers of diabetic kidney disease progression. PMID:27699244

  3. Structural disorder: a tool for housekeeping proteins performing tissue-specific interactions.

    PubMed

    Banerjee, Sanghita; De, Rajat K

    2016-09-01

    An interaction between a pair of proteins unique for a particular tissue is denoted as a tissue-specific interaction (TSI). Tissue-specific (TS) proteins always perform TSIs with a limited number of interacting partners. However, it has been claimed that housekeeping (HK) proteins frequently take part in TSIs. This is actually an unusual phenomenon. How a single HK protein mediates TSIs - remains an interesting yet an unsolved question. We have hypothesized that HK proteins have attained a high degree of structural flexibility to modulate TSIs efficiently. We have observed that HK proteins are selected to be intrinsically disordered compared to TS proteins. Therefore, the purposeful adaptation of structural disorder brings out special advantages for HK proteins compared to TS proteins. We have demonstrated that TSIs may play vital roles in shaping the molecular adaptation of disordered regions within HK proteins. We also have noticed that HK proteins, mediating a huge number of TSIs, have a greater portion of their interacting interfaces overlapped with the adjacent disordered segment. Moreover, these HK proteins, mediating TSIs, preferably adapt single domain (SD). We have concluded that HK proteins adapt a high degree of structural flexibility to mediate TSIs. Besides, having a SD along with structural flexibility is more economic than maintaining multiple domains with a rigid structure. This assists them in attaining various structural conformations upon binding to their partners, thereby designing an economically optimum molecular system.

  4. Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus.

    PubMed

    Kelsey, Gavin

    2010-08-15

    The GNAS locus on chromosome 20q13.11 is the archetypal complex imprinted locus. It comprises a bewildering array of alternative transcripts determined by differentially imprinted promoters which encode distinct proteins. It also provides the classic example of tissue-specific imprinted gene expression, in which the canonical GNAS transcript coding for Gsalpha is expressed predominantly from the maternal allele in a set of seemingly unrelated tissues. Functionally, this rather obscure imprinting is nevertheless of considerable clinical significance, as it dictates the nature of the disease caused by inactivating mutations in Gsalpha, with end organ hormone resistance specifically on maternal transmission (pseudohypoparathyroidism type 1a, PHP1a). In addition, there is a bona fide imprinting disorder, PHP1b, which is caused specifically by DNA methylation defects in the differentially methylated regions (DMRs) that determine tissue-specific monoallelic expression of GNAS. Although the genetic defect in PHP1a and the disrupted imprinting in PHP1b both essentially result in profound reduction of Gsalpha activity in tissues with monoallelic GNAS expression, and despite a growing awareness of the overlap in these two conditions, there are important pathophysiological differences between the two whose basis is not fully understood. PHP1b is one of the only imprinted gene syndromes in which cis-acting mutations have been discovered that disrupt methylation of germline-derived imprint marks; such imprinting mutations in GNAS are helping to provide important new insights into the mechanisms of imprinting establishment generally.

  5. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators.

    PubMed

    Bedinger, Daniel H; Adams, Sean H

    2015-11-05

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic and mitogenic responses to insulin are regulated by divergent post-receptor signaling mechanisms downstream from the activated insulin receptor (IR). However, the anabolic and growth-promoting properties of insulin require tissue-specific inter-relationships between the two pathways, and the nature and scope of insulin-regulated processes vary greatly across tissues. Understanding the nuances of this interplay between metabolic and growth-regulating properties of insulin would have important implications for development of novel insulin and IR modulator therapies that stimulate insulin receptor activation in both pathway- and tissue-specific manners. This review will provide a unique perspective focusing on the roles of "metabolic" and "mitogenic" actions of insulin signaling in various tissues, and how these networks should be considered when evaluating selective pharmacologic approaches to prevent or treat metabolic disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Dissecting Target Toxic Tissue and Tissue Specific Responses of Irinotecan in Rats Using Metabolomics Approach

    PubMed Central

    Yao, Yiran; Zhang, Pei; Wang, Jing; Chen, Jiaqing; Wang, Yong; Huang, Yin; Zhang, Zunjian; Xu, Fengguo

    2017-01-01

    As an anticancer agent, irinotecan (CPT-11) has been widely applied in clinical, especially in the treatment of colorectal cancer. However, its clinical use has long been limited by the side effects and potential tissue toxicity. To discriminate the target toxic tissues and dissect the specific response of target tissues after CPT-11 administration in rats, untargeted metabolomic study was conducted. First, differential metabolites between CPT-11 treated group and control group in each tissue were screened out. Then, based on fold changes of these differential metabolites, principal component analysis and hierarchical cluster analysis were performed to visualize the degree and specificity of the influences of CPT-11 on the metabolic profiles of nine tissues. Using this step-wise method, ileum, jejunum, and liver were finally recognized as target toxic tissues. Furthermore, tissue specific responses of liver, ileum, and jejunum to CPT-11 were dissected and specific differential metabolites were screened out. Perturbations in Krebs cycle, amino acid, purine and bile acid metabolism were observed in target toxic tissues. In conclusion, our study put forward a new approach to dissect target toxic tissues and tissue specific responses of CPT-11 using metabolomics. PMID:28344557

  7. Tissue specific resonance frequencies of water and metabolites within the human brain

    NASA Astrophysics Data System (ADS)

    Chadzynski, Grzegorz L.; Bender, Benjamin; Groeger, Adriane; Erb, Michael; Klose, Uwe

    2011-09-01

    Chemical shift imaging (CSI) without water suppression was used to examine tissue-specific resonance frequencies of water and metabolites within the human brain. The aim was to verify if there are any regional differences in those frequencies and to determine the influence of chemical shift displacement in slice-selection direction. Unsuppressed spectra were acquired at 3 T from nine subjects. Resonance frequencies of water and after water signal removal of total choline, total creatine and NAA were estimated. Furthermore, frequency distances between the water and those resonances were calculated. Results were corrected for chemical shift displacement. Frequency distances between water and metabolites were consistent and greater for GM than for WM. The highest value of WM to GM difference (14 ppb) was observed for water to NAA frequency distance. This study demonstrates that there are tissue-specific differences between frequency distances of water and metabolites. Moreover, the influence of chemical shift displacement in slice-selection direction is showed to be negligible.

  8. Acetohydroxyacid synthase activity and transcripts profiling reveal tissue-specific regulation of ahas genes in sunflower.

    PubMed

    Ochogavía, Ana C; Breccia, Gabriela; Vega, Tatiana; Felitti, Silvina A; Picardi, Liliana A; Nestares, Graciela

    2014-07-01

    Acetohydroxyacid synthase (AHAS) is the target site of several herbicides and catalyses the first step in the biosynthesis of branched chain amino acid. Three genes coding for AHAS catalytic subunit (ahas1, ahas2 and ahas3) have been reported for sunflower. The aim of this work was to study the expression pattern of ahas genes family and AHAS activity in sunflower (Helianthus annuus L.). Different organs (leaves, hypocotyls, roots, flowers and embryos) were evaluated at several developmental stages. The transcriptional profile was studied through RT-qPCR. The highest expression for ahas1 was shown in leaves, where all the induced and natural gene mutations conferring herbicide resistance were found. The maximal expression of ahas2 and ahas3 occurred in immature flowers and embryos. The highest AHAS activity was found in leaves and immature embryos. Correlation analysis among ahas gene expression and AHAS activity was discussed. Our results show that differences in ahas genes expression are tissue-specific and temporally regulated. Moreover, the conservation of multiple AHAS isoforms in sunflower seems to result from different expression requirements controlled by tissue-specific regulatory mechanisms at different developmental stages. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. A tissue-specific role for intraflagellar transport genes during craniofacial development

    PubMed Central

    Williams, Trevor J.; Snedeker, John; Brugmann, Samantha A.

    2017-01-01

    Primary cilia are nearly ubiquitous, cellular projections that function to transduce molecular signals during development. Loss of functional primary cilia has a particularly profound effect on the developing craniofacial complex, causing several anomalies including craniosynostosis, micrognathia, midfacial dysplasia, cleft lip/palate and oral/dental defects. Development of the craniofacial complex is an intricate process that requires interactions between several different tissues including neural crest cells, neuroectoderm and surface ectoderm. To understand the tissue-specific requirements for primary cilia during craniofacial development we conditionally deleted three separate intraflagellar transport genes, Kif3a, Ift88 and Ttc21b with three distinct drivers, Wnt1-Cre, Crect and AP2-Cre which drive recombination in neural crest, surface ectoderm alone, and neural crest, surface ectoderm and neuroectoderm, respectively. We found that tissue-specific conditional loss of ciliary genes with different functions produces profoundly different facial phenotypes. Furthermore, analysis of basic cellular behaviors in these mutants suggests that loss of primary cilia in a distinct tissue has unique effects on development of adjacent tissues. Together, these data suggest specific spatiotemporal roles for intraflagellar transport genes and the primary cilium during craniofacial development. PMID:28346501

  10. Cell type-specific properties and environment shape tissue specificity of cancer genes

    PubMed Central

    Schaefer, Martin H.; Serrano, Luis

    2016-01-01

    One of the biggest mysteries in cancer research remains why mutations in certain genes cause cancer only at specific sites in the human body. The poor correlation between the expression level of a cancer gene and the tissues in which it causes malignant transformations raises the question of which factors determine the tissue-specific effects of a mutation. Here, we explore why some cancer genes are associated only with few different cancer types (i.e., are specific), while others are found mutated in a large number of different types of cancer (i.e., are general). We do so by contrasting cellular functions of specific-cancer genes with those of general ones to identify properties that determine where in the body a gene mutation is causing malignant transformations. We identified different groups of cancer genes that did not behave as expected (i.e., DNA repair genes being tissue specific, immune response genes showing a bimodal specificity function or strong association of generally expressed genes to particular cancers). Analysis of these three groups demonstrates the importance of environmental impact for understanding why certain cancer genes are only involved in the development of some cancer types but are rarely found mutated in other types of cancer. PMID:26856619

  11. Tissue-Specific DNA Methylation Patterns in Forensic Samples Detected by Pyrosequencing®.

    PubMed

    Antunes, Joana; Balamurugan, Kuppareddi; Duncan, George; McCord, Bruce

    2015-01-01

    In certain circumstances the outcome of a trial may hinge on the ability of a forensic laboratory to determine the identity of biological stains present at crime scenes. An example of such a situation would be the detection of blood, saliva, vaginal fluid, or other body fluid in a specific location whereby its presence would reinforce the victim's or suspect's version of the events that happened during the commission of a crime. However, current serological methods used for identifying body fluids may lack the sensitivity and specificity to identify these fluids, particularly for trace levels. New procedures using proteomic methods and RNA-based gene expression show promise in addressing this issue; however, concerns about stability and relative levels of gene expression remain. An alternative approach is to utilize patterns of epigenetic DNA methylation. DNA methylation is an epigenetic mechanism that regulates the specificity of genes being expressed or silenced in cells. Regions in the human genome referred to as tissue-specific differentially methylated regions account for unique patterns of DNA methylation that are specific for each cell type. This chapter addresses the application of bisulfite-modified PCR combined with Pyrosequencing(®) to detect tissue-specific DNA methylation patterns and perform trace serological analysis. The quantitative nature and precision available with Pyrosequencing presents major advantages in these studies as it permits detection of and contrast between cells with differential levels of methylation. The procedure can be applied to a variety of biological fluids which may be present at crime scenes.

  12. Role of the extracellular matrix in tissue-specific gene expression in the sea urchin embryo.

    PubMed

    Benson, S; Rawson, R; Killian, C; Wilt, F

    1991-07-01

    The role of extracellular matrix (ECM) in the differentiation of tissue types was examined in embryos of Strongylocentrotus purpuratus. We have examined the expression of various tissue-specific molecular markers after disrupting the ECM by culturing embryos in the presence of beta-aminoproprionitrile fumarate (BAPN), which disrupts collagen deposition, and beta-D-xyloside, which disrupts proteoglycan metabolism. The markers examined included accumulation of primary mesenchyme-specific mRNA (SM 50); an aboral ectoderm-specific mRNA (Spec 1); and a gut-specific enzyme, alkaline phosphatase. Treatment with BAPN or beta-D-xyloside results in developmental arrest at the mesenchyme blastula stage. Although spicule formation is inhibited, the accumulation of SM 50 transcripts and the synthesis of most of the prominent spicule matrix proteins is similar to that of control embryos. Spec 1 mRNA, in contrast, while accumulating to a significant extent when collagen and proteoglycan metabolism is disrupted, does accumulate to a level somewhat lower than that seen in control embryos. Additionally, the postgastrula rise in gut-specific alkaline phosphatase is reversibly inhibited by BAPN and xyloside treatment. These results demonstrate a differential effect of the ECM on expression of tissue-specific molecular markers.

  13. VISTA Enhancer Browser--A Database of Tissue-Specific HumanEnhancers

    SciTech Connect

    Visel, Axel; Minovitsky, Simon; Dubchak, Inna; Pennacchio, Len A.

    2006-08-01

    Despite the known existence of distant-acting cis-regulatoryelements in the human genome, only a small fraction of these elements hasbeen identified and experimentally characterized in vivo. This paucity ofenhancer collections with defined activities has thus hinderedcomputational approaches for the genome-wide prediction of enhancers andtheir functions. To fill this void, we utilize comparative genomeanalysis to identify candidate enhancer elements in the human genomecoupled with the experimental determination of their in vivo enhanceractivity in transgenic mice (1). These data are available through theVISTA Enhancer Browser (http://enhancer.lbl.gov). This growing databasecurrently contains over 250 experimentally tested DNA fragments, of whichmore than 100 have been validated as tissue-specific enhancers. For eachpositive enhancer, we provide digital images of whole-mount embryostaining at embryonic day 11.5 and an anatomical description of thereporter gene expression pattern. Users can retrieve elements near singlegenes of interest, search for enhancers that target reporter geneexpression to a particular tissue, or download entire collections ofenhancers with a defined tissue specificity or conservation depth. Theseexperimentally validated training sets are expected to provide a basisfor a wide range of downstream computational and functional studies ofenhancer function.

  14. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  15. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation.

    PubMed

    Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting

    2017-09-12

    Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.

  16. Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model

    PubMed Central

    Suh, Yeunsu; Davis, Michael E.; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved. PMID:23741331

  17. Identification of novel tissue-specific genes by analysis of microarray databases: a human and mouse model.

    PubMed

    Song, Yan; Ahn, Jinsoo; Suh, Yeunsu; Davis, Michael E; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI's Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved.

  18. Chemical ligation of S-scylated cysteine peptides to form native peptides via 5-, 11-, and 14-membered cyclic transition states.

    PubMed

    Katritzky, Alan R; Tala, Srinivasa R; Abo-Dya, Nader E; Ibrahim, Tarek S; El-Feky, Said A; Gyanda, Kapil; Pandya, Keyur M

    2011-01-07

    Cysteine-containing dipeptides 3a-l, (3b+3b') (compound numbers in parentheses are used to indicate racemic mixtures; thus (3b+3b') is the racemate of 3b and 3b'), and tripeptide 13 were synthesized in 68-96% yields by acylation of cysteine with N-(Pg-α-aminoacyl)- and N-(Pg-α-dipeptidoyl)benzotriazoles (where Pg stands for protecting group in the nomenclature for peptides throughout the paper) in the presence of Et(3)N. Cysteine-containing peptides 3a-l and 13 were S-acylated to give S-(Pg-α-aminoacyl)dipeptides 5a-l and S-(Pg-α-aminoacyl)tripeptide 14 without racemization in 47-90% yields using N-(Pg-α-aminoacyl)benzotriazoles 2 in CH(3)CN-H(2)O (7:3) in the presence of KHCO(3). (In our peptide nomenclature, the prefixes di-, tri-, etc. refer to the number of amino acid residues in the main peptide chain; amino acid residues attached to sulfur are designated as S-acyl peptides. Thus we avoid use of the prefix "iso".) Selective S-acylations of serine peptide 3k and threonine peptide 3l containing free OH groups were thus achieved in 58% and 72% yield, respectively. S-(Pg-α-aminoacyl)cysteines 4a,b underwent native chemical ligations to form native dipeptides 3f,i via 5-membered cyclic transition states. Microwave irradiation of S-(Pg-α-aminoacyl)tripeptide 15 and S-(Pg-α-aminoacyl)tetrapeptide 17 in the presence of NaH(2)PO(4)/Na(2)HPO(4) buffer solution at pH 7.8 achieved chemical ligations, involving intramolecular migrations of acyl groups, via 11- and 14-membered cyclic transition states from the S-atom of a cysteine residue to a peptide terminal amino group to form native peptides 19 and 20 in isolated yields of 26% and 23%, respectively.

  19. Union Members Are Community Members

    ERIC Educational Resources Information Center

    Gray, David

    2013-01-01

    Unions serve their members' interests. But union members are also community members, and their interests go well beyond increasing pay and benefits. A local union president has found that his members are best served by participating in a community-wide coalition. Providing eyeglasses to needy students, promoting healthy eating, and increasing…

  20. De novo transcriptome analysis of Perna viridis highlights tissue-specific patterns for environmental studies.

    PubMed

    Leung, Priscilla T Y; Ip, Jack C H; Mak, Sarah S T; Qiu, Jian Wen; Lam, Paul K S; Wong, Chris K C; Chan, Leo L; Leung, Kenneth M Y

    2014-09-19

    The tropical green-lipped mussel Perna viridis is a common biomonitor throughout the Indo-Pacific region that is used for environmental monitoring and ecotoxicological investigations. However, there is limited molecular data available regarding this species. We sought to establish a global transcriptome database from the tissues of adductor muscle, gills and the hepatopancreas of P. viridis in an effort to advance our understanding of the molecular aspects involved during specific toxicity responses in this sentinel species. Illumina sequencing results yielded 544,272,542 high-quality filtered reads. After de novo assembly using Trinity, 233,257 contigs were generated with an average length of 1,264 bp and an N50 length of 2,868 bp; 192,879 assembled transcripts and 150,111 assembled unigenes were obtained after clustering. A total of 93,668 assembled transcripts (66,692 assembled genes) with putative functions for protein domains were predicted based on InterProScan analysis. Based on similarity searches, 44,713 assembled transcripts and 25,319 assembled unigenes were annotated with at least one BLAST hit. A total of 21,262 assembled transcripts (11,947 assembled genes) were annotated with at least one well-defined Gene Ontology (GO) and 5,131 assembled transcripts (3,181 assembled unigenes) were assigned to 329 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The quantity of assembled unigenes and transcripts obtained from male and female mussels were similar but varied among the three studied tissues, with the highest numbers recorded in the gills, followed by the hepatopancreas, and then the adductor muscle. Multivariate analyses revealed strong tissue-specific patterns among the three different tissues, but not between sexes in terms of expression profiles for annotated genes in various GO terms, and genes associated with stress responses and degradation of xenobiotics. The expression profiles of certain selected genes in each tissue type were further

  1. Nodes occupying central positions in human tissue specific PPI networks are enriched with many splice variants.

    PubMed

    Sinha, Anupam; Nagarajaram, Hampapathalu Adimurthy

    2014-10-01

    The functional repertoire of genes in the eukaryotic organisms is enhanced by the phenomenon of alternative splicing. Hence, a node in a tissue specific protein-protein interaction (TS PPIN) network can be thought of as an ensemble of various spliced protein products of the corresponding gene expressed in that tissue. Here we demonstrate that the nodes that occupy topologically central positions characterized by high degree, betweenness, closeness, and eigenvector centrality values in TS PPINs of Homo sapiens are associated with high number of splice variants. We also show that the high "centrality" of these genes/nodes could in part be explained by the presence of a large number of promiscuous domains. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Tissue-specific variation in C4 and Slp gene regulation.

    PubMed Central

    Cox, B J; Robins, D M

    1988-01-01

    C4 and Slp are highly homologous mouse genes that differ in function and regulation. Allelic variants exist in quantitative regulation of C4 and in hormonal regulation of Slp. We have examined expression in several tissues, including liver and peritoneal macrophages which are the major sites of synthesis, using a probe that allows direct comparison of C4 and Slp mRNAs. Correctly-sized and initiated RNA, within an order of magnitude of liver levels, is found in mammary gland, lung, spleen, and kidney; lower levels are detectable in testis, brain, heart and submaxillary gland. By comparing expression in congenic mouse strains differing in C4 and Slp loci, regulation of these genes is seen to vary in different tissues. This provides a well-defined genetic system in which to examine cis-acting sequences and trans-acting factors that result in tissue-specific patterns of gene regulation. Images PMID:3405752

  3. Photoperiod sensitivity of the Arabidopsis circadian clock is tissue-specific.

    PubMed

    Shimizu, Hanako; Araki, Takashi; Endo, Motomu

    2015-01-01

    Tissue-specific functions of the circadian clock in Arabidopsis have recently been revealed. The vasculature clock shows distinctive gene expression profiles compared to the clock in other tissues under light-dark cycles. However, it has not yet been established whether the vasculature clock also shows unique gene expression patterns that correlate with temperature cycles, another important environmental cue. Here, we detected diel phase of TIMING OF CAB EXPRESSION 1 (TOC1) expression in the vasculature and whole leaf under long-day light-dark cycles and temperature cycles. We found that the vasculature clock had advanced TOC1 phase under light-dark cycles but not under temperature cycles, suggesting that the vasculature clock has lower sensitivity against temperature signals. Furthermore, the phase advancement of TOC1 was seen only under long-day condition but not under short-day condition. These results support our previous conclusion that the circadian clock in vasculature preferentially senses photoperiodic signals.

  4. Structural organization and tissue-specific expression of the gene encoding rat cysteine dioxygenase.

    PubMed

    Tsuboyama, N; Hosokawa, Y; Totani, M; Oka, J; Matsumoto, A; Koide, T; Kodama, H

    1996-11-28

    Cysteine dioxygenase (CDO) is a key enzyme involved in the metabolism of L-cysteine. Genomic clones containing the 5'-flanking sequence of the rat CDO gene were isolated and characterized. The CDO gene spanned about 15 kb, and comprised 5 exons. All boundaries between the exons and introns matched the GT/AG rule. The major transcription start point (tsp) was A at 213 bp upstream from the ATG codon. The 5'-flanking region contained a TATA-box-like sequence and putative cis-acting regulatory elements. The 3' end of CDO was polyadenylated at several sites. Northern blots of RNA from rat tissues revealed the highest CDO mRNA level in the liver. Significant levels were observed in the kidney, lung and brain, implying tissue-specific differences in CDO promoter function.

  5. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases

    PubMed Central

    Marbach, Daniel; Lamparter, David; Quon, Gerald; Kellis, Manolis; Kutalik, Zoltán; Bergmann, Sven

    2016-01-01

    Mapping the molecular circuits that are perturbed by genetic variants underlying complex traits and diseases remains a great challenge. We present a comprehensive resource of 394 cell type and tissue-specific gene regulatory networks for human, each specifying the genome-wide connectivity between transcription factors, enhancers, promoters and genes. Integration with 37 genome-wide association studies (GWASs) shows that disease-associated genetic variants — including variants that do not reach genome-wide significance — often perturb regulatory modules that are highly specific to disease-relevant cell types or tissues. Our resource opens the door to systematic analysis of regulatory programs across hundreds of human cell types and tissues. PMID:26950747

  6. The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes.

    PubMed

    Kou, Liang; Lu, Xiao-Wen; Wu, Min-Ke; Wang, Hang; Zhang, Yu-Jiao; Sato, Soh; Shen, Jie-Fei

    2014-02-21

    Dedifferentiated fat (DFAT) cells derived from mature adipocytes have been considered to be a homogeneous group of multipotent cells, which present to be an alternative source of adult stem cells for regenerative medicine. However, many aspects of the cellular nature about DFAT cells remained unclarified. This study aimed to elucidate the basic characteristics of DFAT cells underlying their functions and differentiation potentials. By modified ceiling culture technique, DFAT cells were converted from human mature adipocytes from the human buccal fat pads. Flow cytometry analysis revealed that those derived cells were a homogeneous population of CD13(+) CD29(+) CD105(+) CD44(+) CD31(-) CD34(-) CD309(-) α-SMA(-) cells. DFAT cells in this study demonstrated tissue-specific differentiation properties with strong adipogenic but much weaker osteogenic capacity. Neither did they express endothelial markers under angiogenic induction.

  7. A tissue-specific gene expression template portrays heart development and pathology

    PubMed Central

    2014-01-01

    Congenital heart defects (CHD) are the most common cause of death in children under the age of 1. Tetralogy of Fallot (TOF) is a severe CHD that results from developmental defects in the conotruncal outflow tract. Recently, a tissue-specific gene expression template (GET) was derived from microarray data that accurately characterized multiple normal human tissues. We used the GET to examine spatial, temporal, and a pathological condition (TOF) within a single organ, the heart. The GET, as previously defined, generally identified temporal and spatial differences in the cardiac tissue. Differences in the stoichiometry of the GET reflected the severe developmental disturbance associated with TOF. Our analysis suggests that the homoeostatic equilibrium assessed by the GET at the inter-organ level is generally maintained at the intra-organ level as well. PMID:24618031

  8. Targeting tissue-specific metabolic signaling pathways in aging: the promise and limitations.

    PubMed

    Hu, Fang; Liu, Feng

    2014-01-01

    It has been well established that most of the age-related diseases such as insulin resistance, type 2 diabetes, hypertension, cardiovascular disease, osteoporosis, and atherosclerosis are all closely related to metabolic dysfunction. On the other hand, interventions on metabolism such as calorie restriction or genetic manipulations of key metabolic signaling pathways such as the insulin and mTOR signaling pathways slow down the aging process and improve healthy aging. These findings raise an important question as to whether improving energy homeostasis by targeting certain metabolic signaling pathways in specific tissues could be an effective anti-aging strategy. With a more comprehensive understanding of the tissue-specific roles of distinct metabolic signaling pathways controlling energy homeostasis and the cross-talks between these pathways during aging may lead to the development of more effective therapeutic interventions not only for metabolic dysfunction but also for aging.

  9. Tissue-Specific Effects of Loss of Estrogen during Menopause and Aging

    PubMed Central

    Wend, Korinna; Wend, Peter; Krum, Susan A.

    2012-01-01

    The roles of estrogens have been best studied in the breast, breast cancers, and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women’s Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs) used for the treatment of breast cancers and postmenopausal symptoms. PMID:22654856

  10. Tissue-specific DNA demethylation is required for proper B-cell differentiation and function

    PubMed Central

    Orlanski, Shari; Labi, Verena; Reizel, Yitzhak; Spiro, Adam; Lichtenstein, Michal; Levin-Klein, Rena; Koralov, Sergei B.; Skversky, Yael; Rajewsky, Klaus; Cedar, Howard; Bergman, Yehudit

    2016-01-01

    There is ample evidence that somatic cell differentiation during development is accompanied by extensive DNA demethylation of specific sites that vary between cell types. Although the mechanism of this process has not yet been elucidated, it is likely to involve the conversion of 5mC to 5hmC by Tet enzymes. We show that a Tet2/Tet3 conditional knockout at early stages of B-cell development largely prevents lineage-specific programmed demethylation events. This lack of demethylation affects the expression of nearby B-cell lineage genes by impairing enhancer activity, thus causing defects in B-cell differentiation and function. Thus, tissue-specific DNA demethylation appears to be necessary for proper somatic cell development in vivo. PMID:27091986

  11. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival

    PubMed Central

    Gaude, Edoardo; Frezza, Christian

    2016-01-01

    Cancer cells undergo a multifaceted rewiring of cellular metabolism to support their biosynthetic needs. Although the major determinants of this metabolic transformation have been elucidated, their broad biological implications and clinical relevance are unclear. Here we systematically analyse the expression of metabolic genes across 20 different cancer types and investigate their impact on clinical outcome. We find that cancers undergo a tissue-specific metabolic rewiring, which converges towards a common metabolic landscape. Of note, downregulation of mitochondrial genes is associated with the worst clinical outcome across all cancer types and correlates with the expression of epithelial-to-mesenchymal transition gene signature, a feature of invasive and metastatic cancers. Consistently, suppression of mitochondrial genes is identified as a key metabolic signature of metastatic melanoma and renal cancer, and metastatic cell lines. This comprehensive analysis reveals unexpected facets of cancer metabolism, with important implications for cancer patients' stratification, prognosis and therapy. PMID:27721378

  12. Gambogic acid is a tissue-specific proteasome inhibitor in vitro and in vivo.

    PubMed

    Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zhao, Chong; Liao, Siyan; Yang, Changshan; Liu, Yurong; Zhao, Canguo; Li, Shujue; Lu, Xiaoyu; Liu, Chunjiao; Guan, Lixia; Zhao, Kai; Shi, Xiaoqing; Song, Wenbin; Zhou, Ping; Dong, Xiaoxian; Guo, Haiping; Wen, Guanmei; Zhang, Change; Jiang, Lili; Ma, Ningfang; Li, Bing; Wang, Shunqing; Tan, Huo; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2013-01-31

    Gambogic acid (GA) is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.

  13. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21.

    PubMed

    Owen, Bryn M; Mangelsdorf, David J; Kliewer, Steven A

    2015-01-01

    Fibroblast growth factors (FGFs) 15/19 and 21 belong to a subfamily of FGFs that function as hormones. Produced in response to specific nutritional cues, they act on overlapping sets of cell surface receptors composed of classic FGF receptors in complex with βKlotho, and regulate metabolism and related processes during periods of fluctuating energy availability. Pharmacologically, both FGF15/19 and FGF21 cause weight loss and improve both insulin-sensitivity and lipid parameters in rodent and primate models of metabolic disease. Recently, FGF21 was shown to have similar effects in obese patients with type 2 diabetes. We discuss here emerging concepts in FGF15/19 and FGF21 tissue-specific actions and critically assess their putative role as candidate targets for treating metabolic disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions.

    PubMed

    Raices, Marcela; D'Angelo, Maximiliano A

    2012-11-01

    Nuclear pore complexes (NPCs) are multiprotein aqueous channels that penetrate the nuclear envelope connecting the nucleus and the cytoplasm. NPCs consist of multiple copies of roughly 30 different proteins known as nucleoporins (NUPs). Due to their essential role in controlling nucleocytoplasmic transport, NPCs have traditionally been considered as structures of ubiquitous composition. The overall structure of the NPC is indeed conserved in all cells, but new evidence suggests that the protein composition of NPCs varies among cell types and tissues. Moreover, mutations in various nucleoporins result in tissue-specific diseases. These findings point towards a heterogeneity in NPC composition and function. This unexpected heterogeneity suggests that cells use a combination of different nucleoporins to assemble NPCs with distinct properties and specialized functions.

  15. Sex- and Tissue-specific Functions of Drosophila Doublesex Transcription Factor Target Genes

    PubMed Central

    Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C.; Hempel, Leonie; Pavlou, Hania J.; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan; Smith, Harold E.; Przytycka, Teresa M.; Goodwin, Stephen F.; Van Doren, Mark; Oliver, Brian

    2014-01-01

    Primary sex determination “switches” evolve rapidly, but Doublesex (DSX) related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSXF and DSXM), but little is known about how dsx controls sexual development, whether DSXF and DSXM bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSXF and DSXM bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression. PMID:25535918

  16. Crystallization and preliminary crystallographic analysis of the tetrameric form of phosphofructokinase-2 from Escherichia coli, a member of the ribokinase family

    SciTech Connect

    Cabrera, Ricardo; Caniuguir, Andrés; Ambrosio, Andre L. B.; Guixé, Victoria; Garratt, Richard C.; Babul, Jorge

    2006-09-01

    The phosphofructokinase-2 enzyme from E. coli was crystallized in its tetrameric inhibited form. This is the only member of the ribokinase family known to suffer a transition from dimer to tetramer in response to the allosteric binding of MgATP. Escherichia coli contains two phosphofructokinases, Pfk-1 and Pfk-2, which belong to unrelated protein families. In addition to catalytic function, the enzymes have converged in showing substrate inhibition by the nucleotide MgATP. However, although both Pfk-1 and Pfk-2 have been extensively characterized biochemically, only the structure of the former has been solved by X-ray diffraction. In order to fully understand how the same function has evolved on different structural folds, Pfk-2 has been crystallized by the hanging-drop vapour-diffusion method using PEG 6000 as precipitant. Single crystals were grown in the presence of MgATP and diffracted to 1.98 Å. The crystals belong to the orthorhombic system, space group P222{sub 1}, with unit-cell parameters a = 42.8, b = 86.8, c = 171.3 Å. The calculated Matthews coefficient of 2.45 Å{sup 3} Da{sup −1} indicates the presence of two monomers in the asymmetric unit, corresponding to a solvent content of 49%. Structure determination is ongoing.

  17. Structure of an Amide Bond Forming F420:γ-glutamyl Ligase from Archaeoglobus Fulgidus - A Member of a New Family of Non-ribosomal Peptide Synthases

    PubMed Central

    Nocek, B.; Evdokimova, E.; Proudfoot, M.; Kudritska, M.; Grochowski, L. L.; White, R. H.; Savchenko, A.; Yakunin, A. F.; Edwards, A.

    2008-01-01

    F420 is a flavin-like redox-active coenzyme commonly used by archaea and some eubacteria in a variety of biochemical reactions in methanogenesis, the formation of secondary metabolites, the degradation of nitroaromatic compounds, activation of nitroimidazofurans, and F420-dependent photolysis in DNA repair. Coenzyme F420-2 biosynthesis from 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) and lactaldehyde involves six enzymatic steps and five proteins (CofA, CofB, CofC, CofD, and CofE). CofE, a F420-0:γ-glutamyl ligase, is responsible for the last two enzymatic steps; it catalyses the GTP-dependent addition of two l-glutamate residues to F420-0 to form F420-2. CofE is found in archaea, the aerobic actinomycetes, and cyanobacteria. Here, we report the first crystal structure of the apo-F420-0:γ-glutamyl ligase (CofE-AF) from Archaeoglobus fulgidus and its complex with GDP at 2.5 Å and 1.35 Å resolution, respectively. The structure of CofE-AF reveals a novel protein fold with an intertwined, butterfly-like dimer formed by two-domain monomers. GDP and Mn2+ are bound within the putative active site in a large groove at the dimer interface. We show that the enzyme adds a glutamate residue to both F420-0 and F420-1 in two distinct steps. CofE represents the first member of a new structural family of non-ribosomal peptide synthases. PMID:17669425

  18. The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply.

    PubMed

    Hoffmann, Peter R; Höge, Simone C; Li, Ping-An; Hoffmann, Fukun W; Hashimoto, Ann C; Berry, Marla J

    2007-01-01

    Selenoprotein P (Sel P) is a selenium-rich glycoprotein believed to play a key role in selenium (Se) transport throughout the body. Development of a Sel P knockout mouse model has supported this notion and initial studies have indicated that selenium supply to various tissues is differentially affected by genetic deletion of Sel P. Se in the form of the amino acid, selenocysteine, is incorporated into selenoproteins at UGA codons. Thus, Se availability affects not only selenoprotein levels, but also the turnover of selenoprotein mRNAs via the nonsense-mediated decay pathway. We investigated how genetic deletion of Sel P in mice affected levels of the mRNAs encoding all known members of the murine selenoprotein family, as well as three non-selenoprotein factors involved in their synthesis, selenophosphate synthetase 1 (SPS1), SECIS-binding protein 2 (SBP2) and SECp43. Our findings present a comprehensive description of selenoprotein mRNA expression in the following murine tissues: brain, heart, intestine, kidney, liver, lung, spleen and testes. We also describe how abundance of selenoproteins and selenoprotein-synthesis factors are affected by genetic deletion of Sel P in some of these tissues, providing insight into how the presence of this selenoprotein influences selenoprotein mRNA levels, and thus, the selenoproteome.

  19. Comparative Transcriptome Analysis Reveals Substantial Tissue Specificity in Human Aortic Valve

    PubMed Central

    Wang, Jun; Wang, Ying; Gu, Weidong; Ni, Buqing; Sun, Haoliang; Yu, Tong; Gu, Wanjun; Chen, Liang; Shao, Yongfeng

    2016-01-01

    RNA sequencing (RNA-seq) has revolutionary roles in transcriptome identification and quantification of different types of tissues and cells in many organisms. Although numerous RNA-seq data derived from many types of human tissues and cell lines, little is known on the transcriptome repertoire of human aortic valve. In this study, we sequenced the total RNA prepared from two calcified human aortic valves and reported the whole transcriptome of human aortic valve. Integrating RNA-seq data of 13 human tissues from Human Body Map 2 Project, we constructed a transcriptome repertoire of human tissues, including 19,505 protein-coding genes and 4,948 long intergenic noncoding RNAs (lincRNAs). Among them, 263 lincRNAs were identified as novel noncoding transcripts in our data. By comparing transcriptome data among different human tissues, we observed substantial tissue specificity of RNA transcripts, both protein-coding genes and lincRNAs, in human aortic valve. Further analysis revealed that aortic valve-specific lincRNAs were more likely to be recently derived from repetitive elements in the primate lineage, but were less likely to be conserved at the nucleotide level. Expression profiling analysis showed significant lower expression levels of aortic valve-specific protein-coding genes and lincRNA genes, when compared with genes that were universally expressed in various tissues. Isoform-level expression analysis also showed that a majority of mRNA genes had a major isoform expressed in the human aortic valve. To our knowledge, this is the first comparative transcriptome analysis between human aortic valve and other human tissues. Our results are helpful to understand the transcriptome diversity of human tissues and the underlying mechanisms that drive tissue specificity of protein-coding genes and lincRNAs in human aortic valve. PMID:27493474

  20. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    PubMed

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  1. Tissue-Specific Activation of a Single Gustatory Receptor Produces Opposing Behavioral Responses in Drosophila

    PubMed Central

    Joseph, Ryan M.; Heberlein, Ulrike

    2012-01-01

    Understanding sensory systems that perceive environmental inputs and neural circuits that select appropriate motor outputs is essential for studying how organisms modulate behavior and make decisions necessary for survival. Drosophila melanogaster oviposition is one such important behavior, in which females evaluate their environment and choose to lay eggs on substrates they may find aversive in other contexts. We employed neurogenetic techniques to characterize neurons that influence the choice between repulsive positional and attractive egg-laying responses toward the bitter-tasting compound lobeline. Surprisingly, we found that neurons expressing Gr66a, a gustatory receptor normally involved in avoidance behaviors, receive input for both attractive and aversive preferences. We hypothesized that these opposing responses may result from activation of distinct Gr66a-expressing neurons. Using tissue-specific rescue experiments, we found that Gr66a-expressing neurons on the legs mediate positional aversion. In contrast, pharyngeal taste cells mediate the egg-laying attraction to lobeline, as determined by analysis of mosaic flies in which subsets of Gr66a neurons were silenced. Finally, inactivating mushroom body neurons disrupted both aversive and attractive responses, suggesting that this brain structure is a candidate integration center for decision-making during Drosophila oviposition. We thus define sensory and central neurons critical to the process by which flies decide where to lay an egg. Furthermore, our findings provide insights into the complex nature of gustatory perception in Drosophila. We show that tissue-specific activation of bitter-sensing Gr66a neurons provides one mechanism by which the gustatory system differentially encodes aversive and attractive responses, allowing the female fly to modulate her behavior in a context-dependent manner. PMID:22798487

  2. Tissue-specific mutation accumulation in human adult stem cells during life

    PubMed Central

    Blokzijl, Francis; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; IJzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben

    2017-01-01

    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer1,2. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication1. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells3–5. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues1. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life. PMID:27698416

  3. Illuminating a plant’s tissue-specific metabolic diversity using computational metabolomics and information theory

    PubMed Central

    Li, Dapeng; Heiling, Sven; Baldwin, Ian T.

    2016-01-01

    Secondary metabolite diversity is considered an important fitness determinant for plants’ biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue–metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function. PMID:27821729

  4. Tissue-specific hormonal profiling during dormancy release in macaw palm seeds.

    PubMed

    Ribeiro, Leonardo M; Garcia, Queila S; Müller, Maren; Munné-Bosch, Sergi

    2015-04-01

    Little is known about the control exerted by hormones in specific tissues during germination and post-germinative development in monocot seeds, whose embryos have complex structures and can remain dormant for long periods of time. Here the tissue-specific hormonal profile of macaw palm (Acrocomia aculeata) seeds overcoming dormancy and seedling during initial development was examined. Endogenous hormonal concentrations were determined in the cotyledonary petiole, haustorium, operculum, endosperm adjacent to the embryo and peripheral endosperm of dry dormant seeds, imbibed seeds trapped in phase I of germination, and germinating (phase 2 and phase 3) seeds 2, 5, 10 and 15 days after sowing. Evaluations were performed on seeds treated for overcoming dormancy by removal of the operculum and by immersion in a gibberellic acid (GA3 ) solution. Removal of the operculum effectively helped in overcoming dormancy, which was associated with the synthesis of active gibberellins (GAs) and cytokinins (CKs), as well as reductions of abscisic acid (ABA) in the cotyledonary petiole. In imbibed seeds trapped in phase I of germination, exogenous GA3 caused an increase in active GAs in the cotyledonary petiole and operculum and reduction in ABA in the operculum. Initial seedling development was associated with increases in the CK/auxin ratio in the haustorium and GA levels in the endosperm which is possibly related to the mobilization of metabolic reserves. Increases in salicylic acid (SA) and jasmonic acid (JA) concentrations were associated with the development of the vegetative axis. Hormones play a crucial tissue-specific role in the control of dormancy, germination and initial development of seedlings in macaw palm, including a central role not only for GAs and ABA, but also for CKs and other hormones.

  5. Tissue-Specific Whole Transcriptome Sequencing in Castor, Directed at Understanding Triacylglycerol Lipid Biosynthetic Pathways

    PubMed Central

    Swarbreck, David; Febrer, Melanie; Larson, Tony R.; Graham, Ian A.; Caccamo, Mario; Slabas, Antoni R.

    2012-01-01

    Background Storage triacylglycerols in castor bean seeds are enriched in the hydroxylated fatty acid ricinoleate. Extensive tissue-specific RNA-Seq transcriptome and lipid analysis will help identify components important for its biosynthesis. Methodology/Findings Storage triacylglycerols (TAGs) in the endosperm of developing castor (Ricinus communis) seeds are highly enriched in ricinoleic acid (18:1-OH). We have analysed neutral lipid fractions from other castor tissues using TLC, GLC and mass spectrometry. Cotyledons, like the endosperm, contain high levels of 18:1-OH in TAG. Pollen and male developing flowers accumulate TAG but do not contain 18:1-OH and leaves do not contain TAG or 18:1-OH. Analysis of acyl-CoAs in developing endosperm shows that ricinoleoyl-CoA is not the dominant acyl-CoA, indicating that either metabolic channelling or enzyme substrate selectivity are important in the synthesis of tri-ricinolein in this tissue. RNA-Seq transcriptomic analysis, using Illumina sequencing by synthesis technology, has been performed on mRNA isolated from two stages of developing seeds, germinating seeds, leaf and pollen-producing male flowers in order to identify differences in lipid-metabolic pathways and enzyme isoforms which could be important in the biosynthesis of TAG enriched in 18:1-OH. This study gives comprehensive coverage of gene expression in a variety of different castor tissues. The potential role of differentially expressed genes is discussed against a background of proteins identified in the endoplasmic reticulum, which is the site of TAG biosynthesis, and transgenic studies aimed at increasing the ricinoleic acid content of TAG. Conclusions/Significance Several of the genes identified in this tissue-specific whole transcriptome study have been used in transgenic plant research aimed at increasing the level of ricinoleic acid in TAG. New candidate genes have been identified which might further improve the level of ricinoleic acid in transgenic

  6. In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine.

    PubMed

    Iurlaro, Mario; McInroy, Gordon R; Burgess, Heather E; Dean, Wendy; Raiber, Eun-Ang; Bachman, Martin; Beraldi, Dario; Balasubramanian, Shankar; Reik, Wolf

    2016-06-29

    Genome-wide methylation of cytosine can be modulated in the presence of TET and thymine DNA glycosylase (TDG) enzymes. TET is able to oxidise 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). TDG can excise the oxidative products 5fC and 5caC, initiating base excision repair. These modified bases are stable and detectable in the genome, suggesting that they could have epigenetic functions in their own right. However, functional investigation of the genome-wide distribution of 5fC has been restricted to cell culture-based systems, while its in vivo profile remains unknown. Here, we describe the first analysis of the in vivo genome-wide profile of 5fC across a range of tissues from both wild-type and Tdg-deficient E11.5 mouse embryos. Changes in the formylation profile of cytosine upon depletion of TDG suggest TET/TDG-mediated active demethylation occurs preferentially at intron-exon boundaries and reveals a major role for TDG in shaping 5fC distribution at CpG islands. Moreover, we find that active enhancer regions specifically exhibit high levels of 5fC, resulting in characteristic tissue-diagnostic patterns, which suggest a role in embryonic development. The tissue-specific distribution of 5fC can be regulated by the collective contribution of TET-mediated oxidation and excision by TDG. The in vivo profile of 5fC during embryonic development resembles that of embryonic stem cells, sharing key features including enrichment of 5fC in enhancer and intragenic regions. Additionally, by investigating mouse embryo 5fC profiles in a tissue-specific manner, we identify targeted enrichment at active enhancers involved in tissue development.

  7. Aryl hydrocarbon hydroxylase tissue-specific activities: evidence for baseline levels in mammalian tissues

    SciTech Connect

    Uziel, M.; Griffin, G.D.; Walsh, P.J.

    1985-01-01

    The tissue-specific activities of arylhydrocarbon hydroxylase benzo(a)pyrene (AHH(BaP)) in human, mouse, rat, and hamster tissues have been reviewed. Three categories of AHH activities are defined: baseline values from tissues that have been protected from adventitious exposures to AHH inducers; background levels from tissues where there have been no overt measures to protect against exposure; and induced levels resulting from overt exposure to chemical inducers. Evidence that the baseline category exists is derived from the observations that an upper limit of AHH tissue-specific activity of about 1.5 nmol/h x g tissue occurs in human placenta, human foreskin, lymphocyte, and epitheliod and fibroblastoid cell lines; mouse lung and liver; rat fetal liver, and noninducible rat cell lines from lung, liver, embryo kidney, and adrenals; and hamster kidney. The collected values for nonexposed tissues range from 0.02 nmol/h x g to values less than 1.5 nmol/h x g. The most consistent observation of this type was from human placental material from nonsmoking mothers. Animals raised under standard laboratory conditions without special dietary precautions show background AHH activities that range from 2 nmol/h x g to 200 nmol/h x g in portal of entry tissues such as liver, lung, and intestines. Almost all tissue samples showed induced AHH levels of up to 500 nmol/h x g when those tissues were overtly exposed to substances containing chemical inducers of AHH. Measurements of placental AHH from smoking mothers showed that more than 95% of those samples had AHH values exceeding 2.5 nmol/h x g.

  8. Tissue-specificity and phylogenetics of Pl-MT mRNA during Paracentrotus lividus embryogenesis.

    PubMed

    Russo, Roberta; Zito, Francesca; Matranga, Valeria

    2013-05-01

    Metallothioneins (MTs) constitute a family of cysteine-rich, low molecular weight proteins, which generally provide protection against metal toxicity and oxidative stress counteracting the cell damage caused by essential and non-essential heavy metals. Equally important is the physiological role of MTs in the homeostasis of essential metals, which are involved in a wide variety of cellular processes. The aim of this work was to investigate the expression and the territorial localization of Paracentrotus lividus MT (Pl-MT) mRNA during sea urchin development by Quantitative Polymerase Chain Reaction (QPCR) and Whole Mount In Situ Hybridization (WMISH), as well as the phylogenetic comparison with selected MT homologs present in different phyla. We found that Pl-MT mRNA is accumulated in unfertilized eggs and constitutively expressed during development, with very low levels of maternal mRNA at cleavage stages, followed by a significant rise during gastrulation with a peak at the prism stage. Pl-MT mRNA was expressed in the vegetative plate at mesenchyme blastula, later restricted to the endoderm of gastrula embryos and finally to the gut of plutei. Indirect immunofluorescence (IF) using a specific antibody for the endoderm marker Endo1 demonstrated a co-localization with the Pl-MT transcripts in the midgut and hindgut after the intestine differentiation occurs and when larval feeding begins. Our results show for the first time the constitutive temporal and tissue-specific expression of MT in P. lividus embryos, providing new information for studies on the mechanisms controlling basal and induced MT gene expression. The analysis of the phylogenetic relationship of Pl-MT with homologs from different phyla, ranging from yeast to vertebrates, suggests the evolutionary process of these proteins, which could have been selected not only on the basis of their ability to bind metals but also by their tissue-specificity.

  9. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots

    PubMed Central

    Wu, Honghong; Shabala, Lana; Liu, Xiaohui; Azzarello, Elisa; Zhou, Meixue; Pandolfi, Camilla; Chen, Zhong-Hua; Bose, Jayakumar; Mancuso, Stefano; Shabala, Sergey

    2015-01-01

    Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na+ sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na+ sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na+ removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive) were used to understand the essentiality of vacuolar Na+ sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-day old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na+ distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: (1) salinity stress tolerance correlated positively with vacuolar Na+ sequestration ability in the mature root zone but not in the root apex; (2) contrary to expectations, cytosolic Na+ levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na+ levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the “salt sensor;” (3) no significant difference in the vacuolar Na+ sequestration ability was found between sensitive and tolerant groups in either transition or elongation zones; (4) the overall Na+ accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na+ uptake, signaling, and sequestration in wheat roots. The implications of these findings for plant breeding for salinity stress tolerance are discussed

  10. Quality assessment and control of tissue specific RNA-seq libraries of Drosophila transgenic RNAi models.

    PubMed

    Amaral, Andreia J; Brito, Francisco F; Chobanyan, Tamar; Yoshikawa, Seiko; Yokokura, Takakazu; Van Vactor, David; Gama-Carvalho, Margarida

    2014-01-01

    RNA-sequencing (RNA-seq) is rapidly emerging as the technology of choice for whole-transcriptome studies. However, RNA-seq is not a bias free technique. It requires large amounts of RNA and library preparation can introduce multiple artifacts, compounded by problems from later stages in the process. Nevertheless, RNA-seq is increasingly used in multiple studies, including the characterization of tissue-specific transcriptomes from invertebrate models of human disease. The generation of samples in this context is complex, involving the establishment of mutant strains and the delicate contamination prone process of dissecting the target tissue. Moreover, in order to achieve the required amount of RNA, multiple samples need to be pooled. Such datasets pose extra challenges due to the large variability that may occur between similar pools, mostly due to the presence of cells from surrounding tissues. Therefore, in addition to standard quality control of RNA-seq data, analytical procedures for control of "biological quality" are critical for successful comparison of gene expression profiles. In this study, the transcriptome of the central nervous system (CNS) of a Drosophila transgenic strain with neuronal-specific RNAi of an ubiquitous gene was profiled using RNA-seq. After observing the existence of an unusual variance in our dataset, we showed that the expression profile of a small panel of marker genes, including GAL4 under control of a tissue specific driver, can identify libraries with low levels of contamination from neighboring tissues, enabling the selection of a robust dataset for differential expression analysis. We further analyzed the potential of profiling a complex tissue to identify cell-type specific changes in response to target gene down-regulation. Finally, we showed that trimming 5' ends of reads decreases nucleotide frequency biases, increasing the coverage of protein coding genes with a potential positive impact in the incurrence of systematic

  11. Analysis of tissue specific progenitor cell differentiation using FT-IR

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-07-01

    Tissue specific progenitor cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-contact and non-destructive methods from the view point of safety. Or the analysis with small quantities of materials could be possible if the quantities of materials are acceptable. A non-contact and non-destructive quality control method has been required. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The changes in the cells and tissues, which are subtle and often not obvious in the histpathological studies, are shown to be well resolved using FT-IR. Moreover, although most techniques designed to detect one or a few changes, FT-IR is possible to identify the changes in the levels of various cellular biochemicals simultaneously under in vivo and in vitro conditions. The objective of this study is to establish the infrared spectroscopy of tissue specific progenitor cell differentiations as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examine the adipose differentiation kinetics of preadipose cells (3T3-L1) and the osteoblast differentiation kinetics of mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra.

  12. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits

    PubMed Central

    Katter, Katharina; Geurts, Aron M.; Hoffmann, Orsolya; Mátés, Lajos; Landa, Vladimir; Hiripi, László; Moreno, Carol; Lazar, Jozef; Bashir, Sanum; Zidek, Vaclav; Popova, Elena; Jerchow, Boris; Becker, Katja; Devaraj, Anantharam; Walter, Ingrid; Grzybowksi, Michael; Corbett, Molly; Filho, Artur Rangel; Hodges, Matthew R.; Bader, Michael; Ivics, Zoltán; Jacob, Howard J.; Pravenec, Michal; Bősze, Zsuzsanna; Rülicke, Thomas; Izsvák, Zsuzsanna

    2013-01-01

    Germline transgenesis is an important procedure for functional investigation of biological pathways, as well as for animal biotechnology. We have established a simple, nonviral protocol in three important biomedical model organisms frequently used in physiological studies. The protocol is based on the hyperactive Sleeping Beauty transposon system, SB100X, which reproducibly promoted generation of transgenic founders at frequencies of 50–64, 14–72, and 15% in mice, rats, and rabbits, respectively. The SB100X-mediated transgene integrations are less prone to genetic mosaicism and gene silencing as compared to either the classical pronuclear injection or to lentivirus-mediated transgenesis. The method was successfully applied to a variety of transgenes and animal models, and can be used to generate founders with single-copy integrations. The transposon vector also allows the generation of transgenic lines with tissue-specific expression patterns specified by promoter elements of choice, exemplified by a rat reporter strain useful for tracking serotonergic neurons. As a proof of principle, we rescued an inborn genetic defect in the fawn-hooded hypertensive rat by SB100X transgenesis. A side-by-side comparison of the SB100X- and piggyBac-based protocols revealed that the two systems are complementary, offering new opportunities in genome manipulation.—Katter, K., Geurts, A. M., Hoffmann, O., Mátés, L., Landa,V., Hiripi, L., Moreno, C., Lazar, J., Bashir, S., Zidek, V., Popova, E., Jerchow, B., Becker, K., Devaraj, A., Walter, I., Grzybowksi, M., Corbett, M., Rangel Filho, A., Hodges, M. R., Bader, M., Ivics, Z., Jacob, H. J., Pravenec, M., Bősze, Z., Rülicke, T., Izsvák, Z. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. PMID:23195032

  13. Tissue-specific and glucose-responsive expression of the pancreatic derived factor (PANDER) promoter.

    PubMed

    Burkhardt, Brant R; Yang, Michael C; Robert, Claudia E; Greene, Scott R; McFadden, K Kelly; Yang, Jichun; Wu, Jianmei; Gao, Zhiyong; Wolf, Bryan A

    2005-09-25

    Pancreatic derived factor (PANDER) is a recently identified cytokine-like protein that is dominantly expressed in the islets of Langerhans of the pancreas. To investigate the mechanism of tissue-specific regulation of PANDER, we identified and characterized the promoter region. The transcriptional start site was identified 520 bp upstream of the translational start codon by 5'-RLM-RACE. Computer algorithms identified several islet-associated and glucose-responsive binding motifs that included A and E boxes, hepatocyte nuclear factors 1 and 4, Oct-1, and signal transducer and activator of transcription 3, and 5. Reporter gene analysis revealed cell type-specific PANDER promoter expression in islet and liver-derived cell lines. Levels of PANDER mRNA were directly concordant to the observed cell type-specific PANDER promoter gene expression. The minimal element was mapped to the 5'-UTR and located between +200 and +491 relative to the transcriptional start site and imparted maximal gene expression. In addition, several putative glucose-responsive binding sites were further functionally characterized to reveal critical regulatory elements of PANDER. The PANDER promoter was demonstrated to be glucose-responsive in a dose-dependent manner in murine insulinoma beta-TC3 cells and primary murine islets, but unresponsive in glucagon-secreting alpha-TC3 cells. Our findings revealed that the 5'-UTR of PANDER contains the minimal element for gene expression and imparts both tissue-specificity and glucose-responsiveness. The regulation of PANDER gene expression mimics that of insulin and suggests a potential biological function of PANDER involved in metabolic homeostasis.

  14. Tissue-specific activation of a single gustatory receptor produces opposing behavioral responses in Drosophila.

    PubMed

    Joseph, Ryan M; Heberlein, Ulrike

    2012-10-01

    Understanding sensory systems that perceive environmental inputs and neural circuits that select appropriate motor outputs is essential for studying how organisms modulate behavior and make decisions necessary for survival. Drosophila melanogaster oviposition is one such important behavior, in which females evaluate their environment and choose to lay eggs on substrates they may find aversive in other contexts. We employed neurogenetic techniques to characterize neurons that influence the choice between repulsive positional and attractive egg-laying responses toward the bitter-tasting compound lobeline. Surprisingly, we found that neurons expressing Gr66a, a gustatory receptor normally involved in avoidance behaviors, receive input for both attractive and aversive preferences. We hypothesized that these opposing responses may result from activation of distinct Gr66a-expressing neurons. Using tissue-specific rescue experiments, we found that Gr66a-expressing neurons on the legs mediate positional aversion. In contrast, pharyngeal taste cells mediate the egg-laying attraction to lobeline, as determined by analysis of mosaic flies in which subsets of Gr66a neurons were silenced. Finally, inactivating mushroom body neurons disrupted both aversive and attractive responses, suggesting that this brain structure is a candidate integration center for decision-making during Drosophila oviposition. We thus define sensory and central neurons critical to the process by which flies decide where to lay an egg. Furthermore, our findings provide insights into the complex nature of gustatory perception in Drosophila. We show that tissue-specific activation of bitter-sensing Gr66a neurons provides one mechanism by which the gustatory system differentially encodes aversive and attractive responses, allowing the female fly to modulate her behavior in a context-dependent manner.

  15. The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis

    PubMed Central

    Laker, Rhianna C.; Taddeo, Evan P.; Akhtar, Yasir N.; Zhang, Mei; Hoehn, Kyle L.; Yan, Zhen

    2016-01-01

    The mitochondrial permeability transition pore (mPTP) is a key regulator of mitochondrial function that has been implicated in the pathogenesis of metabolic disease. Cyclophilin D (CypD) is a critical regulator that directly binds to mPTP constituents to facilitate the pore opening. We previously found that global CypD knockout mice (KO) are protected from diet-induced glucose intolerance; however, the tissue-specific function of CypD and mPTP, particularly in the control of glucose homeostasis, has not been ascertained. To this end, we performed calcium retention capacity (CRC) assay to compare the importance of CypD in the liver versus skeletal muscle. We found that liver mitochondria are more dependent on CypD for mPTP opening than skeletal muscle mitochondria. To ascertain the tissue-specific role of CypD in metabolic homeostasis, we generated liver-specific and muscle-specific CypD knockout mice (LKO and MKO, respectively) and fed them either a chow diet or 45% high-fat diet (HFD) for 14 weeks. MKO mice displayed similar body weight gain and glucose intolerance compared with wild type littermates (WT), whereas LKO mice developed greater visceral obesity, glucose intolerance and pyruvate intolerance compared with WT mice. These findings demonstrate that loss of muscle CypD is not sufficient to alter whole body glucose metabolism, while the loss of liver CypD exacerbates obesity and whole-body metabolic dysfunction in mice fed HFD. PMID:28005946

  16. Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory.

    PubMed

    Li, Dapeng; Heiling, Sven; Baldwin, Ian T; Gaquerel, Emmanuel

    2016-11-22

    Secondary metabolite diversity is considered an important fitness determinant for plants' biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue-metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function.

  17. Tissue-Specific Transcript Profiling for ABC Transporters in the Sequestering Larvae of the Phytophagous Leaf Beetle Chrysomela populi

    PubMed Central

    Gretscher, René R.; Groth, Marco; Boland, Wilhelm; Burse, Antje

    2014-01-01

    Background Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC) carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi. Results In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp). RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration. Conclusion We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant

  18. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    PubMed

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  19. Developmental effects on ureide levels are mediated by tissue-specific regulation of allantoinase in Phaseolus vulgaris L.

    PubMed

    Díaz-Leal, Juan Luis; Gálvez-Valdivieso, Gregorio; Fernández, Javier; Pineda, Manuel; Alamillo, Josefa M

    2012-06-01

    The ureides allantoin and allantoate are key molecules in the transport and storage of nitrogen in ureide legumes. In shoots and leaves from Phaseolus vulgaris plants using symbiotically fixed nitrogen as the sole nitrogen source, ureide levels were roughly equivalent to those of nitrate-supported plants during the whole vegetative stage, but they exhibited a sudden increase at the onset of flowering. This rise in the level of ureides, mainly in the form of allantoate, was accompanied by increases in allantoinase gene expression and enzyme activity, consistent with developmental regulation of ureide levels mainly through the tissue-specific induction of allantoate synthesis catalysed by allantoinase. Moreover, surprisingly high levels of ureides were also found in non-nodulated plants fertilized with nitrate, at both early and late developmental stages. The results suggest that remobilized N from lower leaves is probably involved in the sharp rise in ureides in shoots and leaves during early pod filling in N(2)-fixing plants and in the significant amounts of ureides observed in non-nodulated plants.

  20. Surveying the serologic proteome in a tissue-specific kras(G12D) knockin mouse model of pancreatic cancer.

    PubMed

    Ludwig, Michael R; Kojima, Kyoko; Bowersock, Gregory J; Chen, Dongquan; Jhala, Nirag C; Buchsbaum, Donald J; Grizzle, William E; Klug, Christopher A; Mobley, James A

    2016-02-01

    We have applied a serologic proteomic workflow involving three complementary MS approaches to a tissue-specific Kras(G12D) -knockin mouse model of pancreatic cancer that consistently forms precancerous lesions by 4 months of age. The three proteomics applications were highly complementary and allowed us to survey the entire range of low to high molecular weight serologic proteins. Combined, we identified 121 (49↓, 72↑) unique and statistically relevant serologic biomarkers with 88% previously reported to be associated with cancer and 38% specifically correlated with pancreatic cancer. Four markers, lysozyme C2, cytokeratin 19, Serpina1A and Pcf11, were further verified by Western blotting. When applying systems analysis, the top-associated gene ontology functions were tied to wound healing, RXR signaling, growth, differentiation and innate immune activation through the JAK/STAT pathway. Upon further investigation of the apparent immune response using a multiplex cytokine screen, we found that IFN-γ, VEGF and GM-CSF were significantly increased in serum from the Kras(G12D) animals compared to littermate controls. By combining three complementary MS applications, we were able to survey the native intact peptidome and the global proteome in parallel, unveiling pathways that may be biologically relevant to promotion of pancreatic cancer progression and serologic markers of noninvasive early-stage neoplasia.

  1. Hepatocyte growth factor/scatter factor induces a variety of tissue- specific morphogenic programs in epithelial cells

    PubMed Central

    1995-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is the mesenchymal ligand of the epithelial tyrosine kinase receptor c-Met. In vitro, HGF/SF has morphogenic properties, e.g., induces kidney epithelial cells to form branching ducts in collagen gels. Mutation of the HGF/SF gene in mice results in embryonic lethality due to severe liver and placenta defects. Here, we have evaluated the morphogenic activity of HGF/SF with a large variety of epithelial cells grown in three- dimensional collagen matrices. We found that HGF/SF induces SW 1222 colon carcinoma cells to form crypt-like structures. In these organoids, cells exhibit apical/basolateral polarity and build a well- developed brush border towards the lumen. Capan 2 pancreas carcinoma cells, upon addition of HGF/SF, develop large hollow spheroids lined with a tight layer of polarized cells. Collagen inside the cysts is digested and the cells show features of pancreatic ducts. HGF/SF induces EpH4 mammary epithelial cells to form long branches with end- buds that resemble developing mammary ducts. pRNS-1-1 prostate epithelial cells in the presence of HGF/SF develop long ducts with distal branching as found in the prostate. Finally, HGF/SF simulates alveolar differentiation in LX-1 lung carcinoma cells. Expression of transfected HGF/SF cDNA in LX-1 lung carcinoma and EpH4 mammary epithelial cells induce morphogenesis in an autocrine manner. In the cell lines tested, HGF/SF activated the Met receptor by phosphorylation of tyrosine residues. These data show that HGF/SF induces intrinsic, tissue-specific morphogenic activities in a wide variety of epithelial cells. Apparently, HGF/SF triggers respective endogenous programs and is thus an inductive, not an instructive, mesenchymal effector for epithelial morphogenesis. PMID:8522613

  2. A frame shift mutation in a tissue-specific alternatively spliced exon of collagen 2A1 in Wagner's vitreoretinal degeneration.

    PubMed

    Gupta, Sanjoy K; Leonard, Brian C; Damji, Karim F; Bulman, Dennis E

    2002-02-01

    To describe the genetic basis of an autosomal dominant vitreoretinopathy in a large French-Canadian kindred. A clinical cohort study followed by laboratory-based genetic and molecular analysis. Thirty-two affected and 22 unaffected members of the kindred were examined. Candidate genes/regions for Wagner's disease and Stickler syndrome were tested for genetic linkage. Mutation analysis was carried out with direct PCR-based sequencing. Funduscopic examinations of 32 affected patients revealed optically clear vitreous, vitreous veils, and radial perivascular pigmentation. Spondyloarthropathies or craniofacial abnormalities were notably absent. There was a 53% rate of retinal detachments that required surgical intervention. Genetic linkage was obtained to COL2A1, the candidate gene for Stickler's type I. A frame shift mutation in exon 2, leading to early truncation of the protein (Cys57Stop), was detected. Wagner's disease in this large kindred has had devastating visual consequences. In affected individuals, we found a novel COL2A1 frame shift mutation in exon 2. The mutation arises in an exon that is selectively present in vitreous collagen mRNAs, but absent in cartilage mRNAs through tissue-specific alternative splicing. Tissue-specific alternative splicing of COL2A1 mRNAs thus provides an elegant biochemical mechanism for a clinical phenotype of Wagner's disease in this kindred.

  3. Preparation, characterization, and reactivity of dinitrogen molybdenum complexes with bis(diphenylphosphino)amine derivative ligands that form a unique 4-membered P-N-P chelate ring.

    PubMed

    Ogawa, Takahiko; Kajita, Yuji; Wasada-Tsutsui, Yuko; Wasada, Hiroaki; Masuda, Hideki

    2013-01-07

    Five dinitrogen-molybdenum complexes bearing bis(diphenylphosphino)amine derivative ligands (L(R)) that form a unique 4-membered P-N-P chelate ring, trans-[Mo(N(2))(2)(L(R))(2)] (2(R): R = Ph, Xy, p-MeOPh, 3,5-iPr(2)Ph, iPr), were prepared for the purpose of binding a dinitrogen molecule. The corresponding two dichloride-molybdenum complexes, trans-[MoCl(2)(L(R))(2)] (1(R): R = Ph, Xy), were also prepared as comparisons. FT-IR spectra of 2(R) were measured and compared the ν(N≡N) values. Moreover, X-ray crystal structure determination of 1(R) (R = Ph, Xy) and 2(R) (R = Xy, 3,5-iPr(2)Ph) is performed. These experimental results indicated that the coordinated dinitrogen molecule gets easily influenced by the N-substitutent of diphosphinoamine ligand. In addition, to investigate the effect of the properties of the diphosphinoamine ligand for the dinitrogen molybdenum complexes, we performed DFT calculations that focused on the difference of N-substituent, the dihedral angle between P-N-P plane and N-substituent aryl group, and the P-N-P bite angle. This calculation revealed that the competition between the back-donation from metal to dinitrogen and that from metal to ligand was affected by P-N-P bite angle and the dihedral angle of N-substituent of ligand. In order to examine the reactivity with respect to conversion of dinitrogen to ammonia, protonation and trimethylsilylation reactions of the coordinated dinitrogens were carried out for 2(R).

  4. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii.

    PubMed

    Huth, Troy J; Place, Sean P

    2013-11-20

    The notothenioids comprise a diverse group of fishes that rapidly radiated after isolation by the Antarctic Circumpolar Current approximately 14-25 million years ago. Given that evolutionary adaptation has led to finely tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs and limits of adaptive responses to environmental perturbation. As such, notothenioids have a rich history with respect to studies attempting to understand the vulnerability of polar ecosystems to the negative impacts associated with global climate change. Unfortunately, despite being a model system for understanding physiological adaptations to extreme environments, we still lack fundamental molecular tools for much of the Nototheniidae family. Specimens of the emerald notothen, Trematomus bernacchii, were acclimated for 28 days in flow-through seawater tanks maintained near ambient seawater temperatures (-1.5°C) or at +4°C. Following acclimation, tissue specific cDNA libraries for liver, gill and brain were created by pooling RNA from n = 5 individuals per temperature treatment. The tissue specific libraries were bar-coded and used for 454 pyrosequencing, which yielded over 700 thousand sequencing reads. A de novo assembly and annotation of these reads produced a functional transcriptome library of T. bernacchii containing 30,107 unigenes, 13,003 of which possessed significant homology to a known protein product. Digital gene expression analysis of these extremely cold adapted fish reinforced the loss of an inducible heat shock response and allowed the preliminary exploration into other elements of the cellular stress response. Preliminary exploration of the transcriptome of T. bernacchii under elevated temperatures enabled a semi-quantitative comparison to prior studies aimed at characterizing the thermal response of this endemic fish whose size, abundance and distribution has established it as a

  5. Tissue Specificity of the Heat-Shock Response in Maize 1

    PubMed Central

    Cooper, Pam; Ho, Tuan-Hua David; Hauptmann, Randal M.

    1984-01-01

    The tissue specificity of the heat-shock response in maize was investigated. The ability to synthesize heat shock proteins (hsp) at 40°C, as well as the intensity and duration of that synthesis, was analyzed in coleoptiles, scutella, green and etiolated leaves, suspension-cultured cells, germinating pollen grains, and primary root sections at different stages of development. One-dimensional sodium dodecyl sulfate gel electrophoresis of extracted proteins revealed that most of the tissues synthesized the typical set of 10 hsp, but that the exact characteristics of the response depended upon the tissue type. While elongating portions of the primary root exhibited a strong heat shock response, the more mature portions showed a reduced ability to synthesize hsp. Leaves, whether green or etiolated, excised or intact, constitutively synthesized a low level of hsp at 25°C, and high levels could be induced at 40°C. Suspension-cultures of Black Mexican sweet corn synthesized, besides the typical set of hsp, two additional polypeptides. In contrast to all the other tissues, germinating pollen grains could not be induced to synthesize the typical set of hsp but did synthesize two new polypeptides of 92 and 56 kD molecular weight. The heat shock response was transient for most of the tissues which synthesized the standard set of hsp. Hsp synthesis was detected up to 2 to 3 hours, but not at 10 hours of continuous 40°C treatment. The exception was suspension cultured cells, in which hsp synthesis showed only a slight reduction after 10 hours at 40°C. Tissue-specific differences in the heat-shock response suggest that there are differences in the way a given tissue is able to adapt to high temperature. We have confirmed the previous suggestion that maize hsp do not accumulate in substantial quantities. Using two-dimensional gel analysis, hsp could be detected by autoradiography but not by sensitive silver staining techniques. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6

  6. Tissue-Specific and Genetic Regulation of Insulin Sensitivity-Associated Transcripts in African Americans

    PubMed Central

    Sharma, Neeraj K.; Sajuthi, Satria P.; Chou, Jeff W.; Calles-Escandon, Jorge; Demons, Jamehl; Rogers, Samantha; Ma, Lijun; Palmer, Nicholette D.; McWilliams, David R.; Beal, John; Comeau, Mary E.; Cherry, Kristina; Hawkins, Gregory A.; Menon, Lata; Kouba, Ethel; Davis, Donna; Burris, Marcie; Byerly, Sara J.; Easter, Linda; Bowden, Donald W.; Freedman, Barry I.; Langefeld, Carl D.

    2016-01-01

    Context: Compared with European Americans, African Americans (AAs) are more insulin resistant, have a higher insulin secretion response to glucose, and develop type 2 diabetes more often. Molecular processes and/or genetic variations contributing to altered glucose homeostasis in high-risk AAs remain uncharacterized. Objective: Adipose and muscle transcript expression profiling and genotyping were performed in 260 AAs to identify genetic regulatory mechanisms associated with insulin sensitivity (SI). We hypothesized that: 1) transcription profiles would reveal tissue-specific modulation of physiologic pathways with SI, and 2) a subset of SI-associated transcripts would be controlled by DNA sequence variants as expression quantitative traits, and these variants in turn would be associated with SI. Design and Settings: The cross-sectional research study was performed in a clinical research unit. Participants: Unrelated nondiabetic AAs were recruited for the study. Main Outcome Measures: SI was measured by frequently sampled iv glucose tolerance test. Results: The expression levels of 2212 transcripts in adipose and 145 transcripts in muscle were associated with SI. Genes involved in eIF2, eIF4-p70S6K, and mTOR signaling were modulated with SI in both tissues. Genes involved in leukocyte extravasation signaling showed adipose-specific regulation, and genes involved in oxidative phosphorylation had discordant regulation between tissues. Intersecting cis-expression quantitative trait loci results with data from transcript-SI association analysis identified cis-regulatory single nucleotide polymorphisms for 363 and 42 SI-associated transcripts in adipose and muscle, respectively. Cis-eSNPs for three SI-associated adipose transcripts, NINJ1, AGA, and CLEC10A were associated with SI. Abrogation of NINJ1 induction in THP1 macrophages modulated expression of genes in chemokine signaling, cell adhesion, and angiogenesis pathways. Conclusion: This study identified multiple

  7. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development.

    PubMed

    Pattison, Richard J; Csukasi, Fabiana; Zheng, Yi; Fei, Zhangjun; van der Knaap, Esther; Catalá, Carmen

    2015-08-01

    Fruit formation and early development involve a range of physiological and morphological transformations of the various constituent tissues of the ovary. These developmental changes vary considerably according to tissue type, but molecular analyses at an organ-wide level inevitably obscure many tissue-specific phenomena. We used laser-capture microdissection coupled to high-throughput RNA sequencing to analyze the transcriptome of ovaries and fruit tissues of the wild tomato species Solanum pimpinellifolium. This laser-capture microdissection-high-throughput RNA sequencing approach allowed quantitative global profiling of gene expression at previously unobtainable levels of spatial resolution, revealing numerous contrasting transcriptome profiles and uncovering rare and cell type-specific transcripts. Coexpressed gene clusters linked specific tissues and stages to major transcriptional changes underlying the ovary-to-fruit transition and provided evidence of regulatory modules related to cell division, photosynthesis, and auxin transport in internal fruit tissues, together with parallel specialization of the pericarp transcriptome in stress responses and secondary metabolism. Analysis of transcription factor expression and regulatory motifs indicated putative gene regulatory modules that may regulate the development of different tissues and hormonal processes. Major alterations in the expression of hormone metabolic and signaling components illustrate the complex hormonal control underpinning fruit formation, with intricate spatiotemporal variations suggesting separate regulatory programs.

  8. Integrated interactions database: tissue-specific view of the human and model organism interactomes.

    PubMed

    Kotlyar, Max; Pastrello, Chiara; Sheahan, Nicholas; Jurisica, Igor

    2016-01-04

    IID (Integrated Interactions Database) is the first database providing tissue-specific protein-protein interactions (PPIs) for model organisms and human. IID covers six species (S. cerevisiae (yeast), C. elegans (worm), D. melonogaster (fly), R. norvegicus (rat), M. musculus (mouse) and H. sapiens (human)) and up to 30 tissues per species. Users query IID by providing a set of proteins or PPIs from any of these organisms, and specifying species and tissues where IID should search for interactions. If query proteins are not from the selected species, IID enables searches across species and tissues automatically by using their orthologs; for example, retrieving interactions in a given tissue, conserved in human and mouse. Interaction data in IID comprises three types of PPI networks: experimentally detected PPIs from major databases, orthologous PPIs and high-confidence computationally predicted PPIs. Interactions are assigned to tissues where their proteins pairs or encoding genes are expressed. IID is a major replacement of the I2D interaction database, with larger PPI networks (a total of 1,566,043 PPIs among 68,831 proteins), tissue annotations for interactions, and new query, analysis and data visualization capabilities. IID is available at http://ophid.utoronto.ca/iid.

  9. Tissue-Specific Transcriptomic Profiling of Sorghum propinquum using a Rice Genome Array

    PubMed Central

    Zhang, Ting; Zhao, Xiuqin; Huang, Liyu; Liu, Xiaoyue; Zong, Ying; Zhu, Linghua; Yang, Daichang; Fu, Binying

    2013-01-01

    Sorghum (Sorghum bicolor) is one of the world's most important cereal crops. S. propinquum is a perennial wild relative of S. bicolor with well-developed rhizomes. Functional genomics analysis of S. propinquum, especially with respect to molecular mechanisms related to rhizome growth and development, can contribute to the development of more sustainable grain, forage, and bioenergy cropping systems. In this study, we used a whole rice genome oligonucleotide microarray to obtain tissue-specific gene expression profiles of S. propinquum with special emphasis on rhizome development. A total of 548 tissue-enriched genes were detected, including 31 and 114 unique genes that were expressed predominantly in the rhizome tips (RT) and internodes (RI), respectively. Further GO analysis indicated that the functions of these tissue-enriched genes corresponded to their characteristic biological processes. A few distinct cis-elements, including ABA-responsive RY repeat CATGCA, sugar-repressive TTATCC, and GA-responsive TAACAA, were found to be prevalent in RT-enriched genes, implying an important role in rhizome growth and development. Comprehensive comparative analysis of these rhizome-enriched genes and rhizome-specific genes previously identified in Oryza longistaminata and S. propinquum indicated that phytohormones, including ABA, GA, and SA, are key regulators of gene expression during rhizome development. Co-localization of rhizome-enriched genes with rhizome-related QTLs in rice and sorghum generated functional candidates for future cloning of genes associated with rhizome growth and development. PMID:23536906

  10. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging

    PubMed Central

    Visser, W. Edward; Barnhoorn, Sander; Ottaviani, Alexandre; van der Pluijm, Ingrid; Brandt, Renata; Kaptein, Ellen; van Heerebeek, Ramona; van Toor, Hans; Garinis, George A.; Peeters, Robin P.; Medici, Marco; van Ham, Willy; Vermeij, Wilbert P.; de Waard, Monique C.; de Krijger, Ronald R.; Boelen, Anita; Kwakkel, Joan; Kopchick, John J.; List, Edward O.; Melis, Joost P. M.; Darras, Veerle M.; Dollé, Martijn E. T.; van der Horst, Gijsbertus T. J.; Hoeijmakers, Jan H. J.; Visser, Theo J.

    2016-01-01

    DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging. PMID:26953569

  11. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity.

    PubMed

    Mintz-Oron, Shira; Meir, Sagit; Malitsky, Sergey; Ruppin, Eytan; Aharoni, Asaph; Shlomi, Tomer

    2012-01-03

    Plant metabolic engineering is commonly used in the production of functional foods and quality trait improvement. However, to date, computational model-based approaches have only been scarcely used in this important endeavor, in marked contrast to their prominent success in microbial metabolic engineering. In this study we present a computational pipeline for the reconstruction of fully compartmentalized tissue-specific models of Arabidopsis thaliana on a genome scale. This reconstruction involves automatic extraction of known biochemical reactions in Arabidopsis for both primary and secondary metabolism, automatic gap-filling, and the implementation of methods for determining subcellular localization and tissue assignment of enzymes. The reconstructed tissue models are amenable for constraint-based modeling analysis, and significantly extend upon previous model reconstructions. A set of computational validations (i.e., cross-validation tests, simulations of known metabolic functionalities) and experimental validations (comparison with experimental metabolomics datasets under various compartments and tissues) strongly testify to the predictive ability of the models. The utility of the derived models was demonstrated in the prediction of measured fluxes in metabolically engineered seed strains and the design of genetic manipulations that are expected to increase vitamin E content, a significant nutrient for human health. Overall, the reconstructed tissue models are expected to lay down the foundations for computational-based rational design of plant metabolic engineering. The reconstructed compartmentalized Arabidopsis tissue models are MIRIAM-compliant and are available upon request.

  12. Metabolic profiling of the tissue-specific responses in mussel Mytilus galloprovincialis towards Vibrio harveyi challenge.

    PubMed

    Liu, Xiaoli; Ji, Chenglong; Zhao, Jianmin; Wang, Qing; Li, Fei; Wu, Huifeng

    2014-08-01

    Mussel Mytilus galloprovincialis is a marine aquaculture shellfish distributing widely along the coast in north China. In this work, we studied the differential metabolic responses induced by Vibrio harveyi in digestive gland and gill tissues from M. galloprovincialis using NMR-based metabolomics. The differential metabolic responses in the two tissue types were detected, except the similarly altered taurine and betaine. These metabolic responses suggested that V. harveyi mainly induced osmotic disruption and reduced energy demand via the metabolic pathways of glucose synthesis and ATP/AMP conversion in mussel digestive gland. In mussel gill tissues, V. harveyi basically caused osmotic stress and possible reduced energy demand as shown by the elevated phosphocholine that is involved in one of the metabolic pathways of ATP synthesis from ADP and phosphocholine. The altered mRNA expression levels of related genes (superoxide dismutase with copper and zinc, heat shock protein 90, defensin and lysozyme) suggested that V. harveyi induced clear oxidative and immune stresses in both digestive gland and gill tissues. However, the mRNA expression levels of both lysozyme and defensin in digestive gland were more significantly up-regulated than those in gill from V. harveyi-challenged mussel M. galloprovincialis, meaning that the immune organ, digestive gland, was more sensitive than gill. Overall, our results indicated that V. harveyi could induce tissue-specific metabolic responses in mussel M. galloprovincialis.

  13. Caenorhabditis elegans Expresses Three Functional Profilins in a Tissue-Specific Manner

    PubMed Central

    Polet, D.; Lambrechts, A.; Ono, K.; Mah, A.; Peelman, F.; Vandekerckhove, J.; Baillie, D. L.; Ampe, C.; Ono, S.

    2008-01-01

    Profilins are actin binding proteins, which also interact with polyphosphoinositides and proline-rich ligands. On the basis of the genome sequence, three diverse profilin homologues (PFN) are predicted to exist in Caenorhabditis elegans. We show that all three isoforms PFN-1, PFN-2, and PFN-3 are expressed in vivo and biochemical studies indicate they bind actin and influence actin dynamics in a similar manner. In addition, they bind poly(l-proline) and phosphatidylinositol 4,5-bisphosphate micelles. PFN-1 is essential whereas PFN-2 and PFN-3 are nonessential. Immunostainings revealed different expression patterns for the profilin isoforms. In embryos, PFN-1 localizes in the cytoplasm and to the cell–cell contacts at the early stages, and in the nerve ring during later stages. During late embryogenesis, expression of PFN-3 was specifically detected in body wall muscle cells. In adult worms, PFN-1 is expressed in the neurons, the vulva, and the somatic gonad, PFN-2 in the intestinal wall, the spermatheca, and the pharynx, and PFN-3 localizes in a striking dot-like fashion in body wall muscle. Thus the model organism Caenorhabditis elegans expresses three profilin isoforms and is the first invertebrate animal with tissue-specific profilin expression. PMID:16317718

  14. Improved regulatory element prediction based on tissue-specific local epigenomic signatures

    PubMed Central

    He, Yupeng; Gorkin, David U.; Dickel, Diane E.; Nery, Joseph R.; Castanon, Rosa G.; Lee, Ah Young; Shen, Yin; Visel, Axel; Pennacchio, Len A.; Ren, Bing; Ecker, Joseph R.

    2017-01-01

    Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulatory element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared with existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types. REPTILE is available at https://github.com/yupenghe/REPTILE/. PMID:28193886

  15. Dendroctonus armandi (Curculionidae: Scolytinae) cytochrome P450s display tissue specificity and responses to host terpenoids.

    PubMed

    Dai, Lulu; Ma, Mingyuan; Gao, Guanqun; Chen, Hui

    2016-11-01

    Bark beetles oxidize the defensive allelochemicals of their host trees both to detoxify them and convert them into components of their pheromone systems which were catalyzed by cytochrome P450 enzymes (CYPs) and occur in different tissues of the insect. We study P450 genes in the Chinese white pine beetle (Dendroctonus armandi), and some bio-information analysis was done for the full-length deduced amino acid sequences. The tissue specificity of these P450 genes was determined in three tissues (antenna, gut and reproductive organs). Differential expression of the P450 genes was observed between sexes, and within these significant differences exposed to stimuli (α-pinene (1:1 racemic mix), (S)-(-)-α-pinene, (S)-(-)-β-pinene, (+)-3-carene, (±)-limonene and turpentine oil) at 24h. Increased expression of P450 genes suggested that they play a role in the detoxification of monoterpenes released by the host trees. The different transcript accumulation patterns of these bark beetle P450 genes provided insight into ecological interactions of D. armandi with its host pine.

  16. Identification of spermatozoa by tissue-specific differential DNA methylation using bisulfite modification and pyrosequencing.

    PubMed

    Balamurugan, Kuppareddi; Bombardi, Robin; Duncan, George; McCord, Bruce

    2014-11-01

    The focus of this study is to evaluate the application of epigenetic markers as a forensic tool for the determination of semen present in sexual assault cases. A series of genetic loci were screened in order to identify certain epigenetic markers displaying differential methylation that can allow semen to be differentiated from blood, buccal cells, skin epidermis, and vaginal epithelial cells. Of the different loci tested, a panel of six markers, DACT1, USP49, DDX4, Hs_INSL6_03, Hs_ZC3H12D_05, and B_SPTB_03 were identified to contain tissue-specific differential methylation. Samples ranging from 9-21 for each tissue type were collected and subjected to bisulfite modification. The bisulfite modified DNA was amplified by PCR, and analyzed by pyrosequencing to quantitate the level of methylation at each marker. All six markers successfully differentiated semen samples from the other four tissue types analyzed. Sperm DNA was hypomethylated in all but one marker, B_SPTB_03, where this marker showed hypermethylation. Mean methylation percentages for semen samples were statistically significant from mean methylation percentages of the other four tissues studied (p < 0.01). The results of this study demonstrate the applicability of epigenetic markers as a novel tool for determination of spermatozoa and to identify the tissue source of origin of a DNA sample.

  17. Modified oleic cottonseeds show altered content, composition and tissue-specific distribution of triacylglycerol molecular species.

    PubMed

    Horn, Patrick J; Sturtevant, Drew; Chapman, Kent D

    2014-01-01

    Targeted increases in monounsaturated (oleic acid) fatty acid content of refined cottonseed oil could support improved human nutrition and cardiovascular health. Genetic modifications of cottonseed fatty acid composition have been accomplished using several different molecular strategies. Modification of oleic acid content in cottonseed embryos using a dominant-negative protein approach, while successful in effecting change in the desired fatty acid composition, resulted in reduced oil content and seed viability. Here these changes in fatty acid composition were associated with changes in dominant molecular species of triacylglycerols (TAGs) and their spatial distributions within embryo tissues. A combination of mass spectrometry (MS)-based lipidomics approaches, including MS imaging of seed cryo-sections, revealed that cotton embryos expressing a non-functional allele of a Brassica napus delta-12 desaturase showed altered accumulation of TAG species, especially within cotyledonary tissues. While lipid analysis of seed extracts could demonstrate detailed quantitative changes in TAG species in transgenics, the spatial contribution of metabolite compartmentation could only be visualized by MS imaging. Our results suggest tissue-specific differences in TAG biosynthetic pathways within cotton embryos, and indicate the importance of considering the location of metabolites in tissues in addition to their identification and quantification when developing a detailed view of cellular metabolism. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Tissue specific CTCF occupancy and boundary function at the human growth hormone locus.

    PubMed

    Tsai, Yu-Cheng; Cooke, Nancy E; Liebhaber, Stephen A

    2014-04-01

    The robust and tissue-specific activation of the human growth hormone (hGH) gene cluster in the pituitary and placenta constitutes an informative model for analysis of gene regulation. The five-gene hGH cluster is regulated by two partially overlapping sets of DNase I hypersensitive sites (HSs) that constitute the pituitary (HSI, II, III and V) and placental (HSIII, IV, and V) locus control regions (LCRs). The single placenta-specific LCR component, HSIV, is located at -30 kb to the cluster. Here we generate a series of hGH/BAC transgenes specifically modified to identify structural features of the hGH locus required for its appropriate placental expression. We find that placental specificity is dependent on the overall multigene configuration of the cluster whereas the distance between the cluster and its LCR impacts the level of placental expression. We further observe that a major function of the placental hGH LCR is to insulate the transgene locus from site-of-integration effects. This insulation activity is linked to placenta-specific occupancy of the chromatin architectural protein, CTCF, at HSIV. These data reveal a remarkable combination of structural configurations and regulatory determinants that must work in concert to insure robust and tightly controlled expression from a complex multigene locus.

  19. Tissue-specific in vivo transcription start sites of the human and murine cystic fibrosis genes.

    PubMed

    White, N L; Higgins, C F; Trezise, A E

    1998-03-01

    The in vivo transcription start sites of the human cystic fibrosis transmembrane conductance regulator gene ( CFTR ) and its murine homologue ( Cftr ) have been mapped in a range of tissues using the technique of 5' rapid amplification of cDNA ends (5' RACE). These are the first in vivo transcription start sites for CFTR or Cftr to be reported. Distinct, tissue-specific patterns of CFTR start site usage were identified in both mouse and human. In particular, striking variation in the position of the murine Cftr transcription start site was seen along the length of the intestinal tract; different start sites being utilized in ileum and in duodenum. In humans, distinct transcription start sites are utilized in adult and foetal lungs. In addition, a novel 5'-untranslated exon of murine Cftr , denoted exon -1, was identified and shown to be expressed exclusively in mouse testis. Expression of exon -1-containing Cftr transcripts was shown by mRNA in situ hybridization to be confined to the germ cells and to be regulated during spermatogenesis.

  20. The Circadian Clock That Controls Gene Expression in Arabidopsis Is Tissue Specific1

    PubMed Central

    Thain, Simon C.; Murtas, Giovanni; Lynn, James R.; McGrath, Robert. B.; Millar, Andrew J.

    2002-01-01

    The expression of CHALCONE SYNTHASE (CHS) expression is an important control step in the biosynthesis of flavonoids, which are major photoprotectants in plants. CHS transcription is regulated by endogenous programs and in response to environmental signals. Luciferase reporter gene fusions showed that the CHS promoter is controlled by the circadian clock both in roots and in aerial organs of transgenic Arabidopsis plants. The period of rhythmic CHS expression differs from the previously described rhythm of chlorophyll a/b-binding protein (CAB) gene expression, indicating that CHS is controlled by a distinct circadian clock. The difference in period is maintained in the wild-type Arabidopsis accessions tested and in the de-etiolated 1 and timing of CAB expression 1 mutants. These clock-affecting mutations alter the rhythms of both CAB and CHS markers, indicating that a similar (if not identical) circadian clock mechanism controls these rhythms. The distinct tissue distribution of CAB and CHS expression suggests that the properties of the circadian clock differ among plant tissues. Several animal organs also exhibit heterogeneous circadian properties in culture but are believed to be synchronized in vivo. The fact that differing periods are manifest in intact plants supports our proposal that spatially separated copies of the plant circadian clock are at most weakly coupled, if not functionally independent. This autonomy has apparently permitted tissue-specific specialization of circadian timing. PMID:12226490

  1. Identifying and functionally characterizing tissue-specific and ubiquitously expressed human lncRNAs

    PubMed Central

    Lu, Jianping; Chen, Hong; Ding, Na; Wang, Guangjuan; Xu, Juan; Li, Xia

    2016-01-01

    Recent advances in transcriptome sequencing have made it possible to distinguish ubiquitously expressed long non-coding RNAs (UE lncRNAs) from tissue-specific lncRNAs (TS lncRNAs), thereby providing clues to their cellular functions. Here, we assembled and functionally characterized a consensus lncRNA transcriptome by curating hundreds of RNA-seq datasets across normal human tissues from 16 independent studies. In total, 1,184 UE and 2,583 TS lncRNAs were identified. These different lncRNA populations had several distinct features. Specifically, UE lncRNAs were associated with genomic compaction and highly conserved exons and promoter regions. We found that UE lncRNAs are regulated at the transcriptional level (with especially strong regulation of enhancers) and are associated with epigenetic modifications and post-transcriptional regulation. Based on these observations we propose a novel way to predict the functions of UE and TS lncRNAs through analysis of their genomic location and similarities in epigenetic modifications. Our characterization of UE and TS lncRNAs may provide a foundation for lncRNA genomics and the delineation of complex disease mechanisms. PMID:26760768

  2. Tissue-specific expression of human CD4 in transgenic mice.

    PubMed Central

    Gillespie, F P; Doros, L; Vitale, J; Blackwell, C; Gosselin, J; Snyder, B W; Wadsworth, S C

    1993-01-01

    The gene for the human CD4 glycoprotein, which serves as the receptor for human immunodeficiency virus type 1, along with approximately 23 kb of sequence upstream of the translational start site, was cloned. The ability of 5' flanking sequences to direct tissue-specific expression was tested in cell culture and in transgenic mice. A 5' flanking region of 6 kb was able to direct transcription of the CD4 gene in NIH 3T3 cells but did not result in detectable expression in the murine T-cell line EL4 or in four lines of transgenic mice. A larger 5' flanking region of approximately 23 kb directed high-level CD4 transcription in the murine T-cell line EL4 and in three independent lines of transgenic mice. Human CD4 expression in all tissues analyzed was tightly correlated with murine CD4 expression; the highest levels of human CD4 RNA expression were found in the thymus and spleen, with relatively low levels detected in other tissues. Expression of human CD4 protein in peripheral blood mononuclear cells was examined by flow cytometry in these transgenic animals and found to be restricted to the murine CD4+ subset of lymphocytes. Human CD4 protein, detected with an anti-human CD4 monoclonal antibody, was present on the surface of 45 to 50% of the peripheral blood mononuclear cells from all transgenic lines. Images PMID:8474453

  3. An Arabidopsis Tissue-Specific RNAi Method for Studying Genes Essential to Mitosis

    PubMed Central

    Burgos-Rivera, Brunilís; Dawe, R. Kelly

    2012-01-01

    A large fraction of the genes in plants can be considered essential in the sense that when absent the plant fails to develop past the first few cell divisions. The fact that angiosperms pass through a haploid gametophyte stage can make it challenging to propagate such mutants even in the heterozygous condition. Here we describe a tissue-specific RNAi method that allows us to visualize cell division phenotypes in petals, which are large dispensable organs. Portions of the APETALA (AP3) and PISTILLATA (PI) promoters confer early petal-specific expression. We show that when either promoter is used to drive the expression of a beta-glucuronidase (GUS) RNAi transgene in plants uniformly expressing GUS, GUS expression is knocked down specifically in petals. We further tested the system by targeting the essential kinetochore protein CENPC and two different components of the Spindle Assembly Checkpoint (MAD2 and BUBR1). Plant lines expressing petal-specific RNAi hairpins targeting these genes exhibited an array of petal phenotypes. Cytological analyses of the affected flower buds confirmed that CENPC knockdown causes cell cycle arrest but provided no evidence that either MAD2 or BUBR1 are required for mitosis (although both genes are required for petal growth by this assay). A key benefit of the petal-specific RNAi method is that the phenotypes are not expressed in the lineages leading to germ cells, and the phenotypes are faithfully transmitted for at least four generations despite their pronounced effects on growth. PMID:23236491

  4. Tissue-Specific Remodeling of the Mitochondrial Proteome in Type 1 Diabetic Akita Mice

    PubMed Central

    Bugger, Heiko; Chen, Dong; Riehle, Christian; Soto, Jamie; Theobald, Heather A.; Hu, Xiao X.; Ganesan, Balasubramanian; Weimer, Bart C.; Abel, E. Dale

    2009-01-01

    OBJECTIVE To elucidate the molecular basis for mitochondrial dysfunction, which has been implicated in the pathogenesis of diabetes complications. RESEARCH DESIGN AND METHODS Mitochondrial matrix and membrane fractions were generated from liver, brain, heart, and kidney of wild-type and type 1 diabetic Akita mice. Comparative proteomics was performed using label-free proteome expression analysis. Mitochondrial state 3 respirations and ATP synthesis were measured, and mitochondrial morphology was evaluated by electron microscopy. Expression of genes that regulate mitochondrial biogenesis, substrate utilization, and oxidative phosphorylation (OXPHOS) were determined. RESULTS In diabetic mice, fatty acid oxidation (FAO) proteins were less abundant in liver mitochondria, whereas FAO protein content was induced in mitochondria from all other tissues. Kidney mitochondria showed coordinate induction of tricarboxylic acid (TCA) cycle enzymes, whereas TCA cycle proteins were repressed in cardiac mitochondria. Levels of OXPHOS subunits were coordinately increased in liver mitochondria, whereas mitochondria of other tissues were unaffected. Mitochondrial respiration, ATP synthesis, and morphology were unaffected in liver and kidney mitochondria. In contrast, state 3 respirations, ATP synthesis, and mitochondrial cristae density were decreased in cardiac mitochondria and were accompanied by coordinate repression of OXPHOS and peroxisome proliferator–activated receptor (PPAR)-γ coactivator (PGC)-1α transcripts. CONCLUSIONS Type 1 diabetes causes tissue-specific remodeling of the mitochondrial proteome. Preservation of mitochondrial function in kidney, brain, and liver, versus mitochondrial dysfunction in the heart, supports a central role for mitochondrial dysfunction in diabetic cardiomyopathy. PMID:19542201

  5. Tissue-specific deletion patterns of the mitochondrial genome with advancing age.

    PubMed

    Meissner, Christoph; Bruse, Petra; Oehmichen, Manfred

    2006-05-01

    Aging is a multifactorial process and a lot of theories have been put forward to explain the deterioration of organ function with advancing age. The free radical hypothesis developed by Harman is amongst the most prominent today and has been focused on mitochondrial aging in the last decades. Applying a long PCR approach we screened human skeletal muscle, heart, caudate nucleus and cerebellum of 50 individuals for large-scale deletions of mitochondrial DNA (mtDNA). The most important observation of our study was the detection of age dependent tissue specific deletion patterns of mtDNA. The pattern of the same tissue of different individuals was more similar than the pattern of different tissues of the same individuals. Whereas deletions were barely detectable in cerebellar tissue, in caudate nucleus a specific banding pattern with deletions of 4-8 kb was already observed around the age of thirty. However, the increase of these large-scale deletions in number and variety over lifetime was more pronounced in skeletal muscle or heart. Our data support the notion that different tissues accumulate mtDNA damage in a specific manner. Although functional consequences of mitochondrial deletions are clearly supported by experimental data on the single-cell level in model organisms and mammals, their role regarding impaired function of organs with advancing age in humans remains unresolved.

  6. Tissue-specific methylation differences and cognitive function in fragile X premutation females

    SciTech Connect

    Allingham-Hawkins, D.J.; Babul, R.; Chitayat, D.

    1996-08-09

    Tissue-specific variation in (CGG){sub n} repeat size and methylation status of the FMR1 gene was investigated in 17 female premutation carriers. Minor variation in premutation repeat size among leukocyte, lymphoblast, and fibroblast tissues was noted in some subjects. One subject exhibited a premutation size allele of (CGG){sub 64} in leukocyte and fibroblast tissues by polymerase chain reaction analysis but a normal-size allele of (CGG){sub 46} in lymphoblast cells, suggesting low-level mosaicism in blood and clonality of the lymphoblast cell line. Six subjects exhibited differences in methylation pattern between leukocytes and lymphoblasts but not between leukocytes and fibroblasts, whereas 2 subjects showed large differences in methylation pattern between leukocytes and fibroblasts. Cognitive function was studied in 14 subjects using the Wechsler Adult Intelligence Scale-Revised. Mean Verbal and Performance IQs were well within the average range as was the mean Full Scale IQ; nevertheless, a trend toward lower Performance IQ compared with Verbal IQ was observed. No significant correlation was apparent between Full Scale IQ and (CGG){sub n} repeat size; however, a significant positive correlation was observed between Full Scale IQ and the proportion of the active X carrying the normal FMR1 allele in fibroblasts but not in leukocytes or lymphoblasts. 24 refs., 1 fig., 2 tabs.

  7. Tissue specific regulation of peripheral-type benzodiazepine receptor density after chemical sympathectomy

    SciTech Connect

    Basile, A.S.; Skolnick, P.

    1988-01-01

    The characteristics of (/sup 3/H)Ro 5-4864 binding to peripheral benzodiazepine receptors (PBR) in the central nervous system and peripheral tissues were examined after chemical sympathectomy with 6-hydroxydopamine (6-OHDA). One week after the intracisternal administration of 6-OHDA, the number of (/sup 3/H)Ro 5-4864 binding sites (Bmax) in the hypothalamus and striatum increased 41 and 50% respectively, concurrent with significant reductions in catecholamine content. An increase (34%) in the Bmax of (/sup 3/H)Ro 5-4864 to cardiac ventricle was observed one week after parenteral 6-OHDA administration. In contrast, the B/sub max/ of (/sup 3/H)Ro 5-4684 to pineal gland decreased 48% after 6-OHDA induced reduction in norepinephrine content. The Bmax values for (/sup 3/H)Ro 5-4864 binding to other tissues (including lung, kidney, spleen, cerebral cortex, cerebellum, hippocampus and olfactory bulbs) were unaffected by 6-OHDA administration. The density of pineal, but not cardiac PBR was also reduced after reserpine treatment, an effect reversed by isoproterenol administration. These findings demonstrate that alterations in sympathetic input may regulate the density of PBR in both the central nervous system and periphery in a tissue specific fashion. 33 references, 4 tables.

  8. Tissue-specific distribution of serine/threonine protein phosphatase 1 of Toxocara canis.

    PubMed

    Ma, Guang Xu; Zhou, Rong Qiong; Huang, Han Cheng; Hu, Shi Jun; Lin, Jie

    2014-10-15

    Serine/threonine protein phosphatase 1 (PP1) is expressed in developing and reproductively active male Toxocara canis. To investigate the tissue-specific expression of PP1 in T. canis, the PP1 protein was expressed in Escherichia coli, and the recombinant protein was used to generate a rabbit polyclonal antiserum. Indirect fluorescence immunohistochemical analysis of adult male T. canis showed that PP1 was expressed in the germ line tissues, primarily in the testis, seminal vesicle, vas deferens, and sperm cells, indicating the potential roles of PP1 in spermatogenesis. What's more, structural predictions of PP1 in T. canis were performed. The predictions of the structure indicated that PP1 may be a potential target for antihelmintic drugs. This is the first report of the tissue distributions and structural prediction of PP1 in T. canis, which might lead to the development of novel, innovative strategies for controlling T. canis infestations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The Tissue-Specific Expression of a Tobacco Phytochrome B Gene.

    PubMed Central

    Adam, E.; Kozma-Bognar, L.; Kolar, C.; Schafer, E.; Nagy, F.

    1996-01-01

    We have isolated a genomic clone from Nicotiana tabacum, designated Nt-PHYB-1, encoding a type-II, "green tissue" phytochrome apoprotein. Recombinant genes, consisting of the 3319-bp promoter of the Nt-PHYB-1 gene (including the entire 5[prime] untranslated sequence but not the ATG) or its deletion derivatives and the bacterial [beta]-glucuronidase reporter gene, were constructed and transferred into tobacco. The expression patterns and levels of the endogenous Nt-PHYB-1, as well as those of the transgenes, were determined by RNase protection assays and by [beta]-glucuronidase histochemical staining. We show that (a) the PHYB-1 gene has three transcription start sites, (b) the abundance of the three PHYB-1-specific mRNAs is different, and that (c) it is not regulated by light. However, we do demonstrate that transcription of the endogenous PHYB-1 gene and that of the recombinant genes exhibit a well-defined organ and tissue specificity. This tobacco PHYB gene is relatively highly expressed in leaf, stem, and different floral organs but not in root. Deletion analysis of the Nt-PHYB-1 promoter indicates that a 382-bp region, located between -1472 and -1089, is required for high-level expression of this gene. PMID:12226242

  10. T-STAG: resource and web-interface for tissue-specific transcripts and genes

    PubMed Central

    Gupta, Shobhit; Vingron, Martin; Haas, Stefan A.

    2005-01-01

    T-STAG (tissue-specific transcripts and genes) is a resource and web-interface, designated to analyze tissue/tumor-specific expression patterns in human and mouse transcriptomes. It integrates our refined prediction of specific expression patterns both in genes as well as in individual isoforms with man–mouse orthology data. In combination with the features for combining/contrasting the genes expressed in different tissues, T-STAG implicates important biological applications, such as the detection of differentially expressed genes in tumors, the retrieval of orthologs with significant expression in the same tissue etc. Additionally, our refined categorization of expressed sequence tags (ESTs) according to the normalization of cDNA libraries allows searching for putative low-abundant transcripts. The results are tightly linked to our visualization tools, GeneNest (expression patterns of genes) and SpliceNest (gene structure and alternative splicing). The user-friendly interface of T-STAG offers a platform for comprehensive analysis of tissue and/or tumor-specific expression patterns revealed by the EST data. T-STAG is freely accessible at . PMID:15980556

  11. Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression

    PubMed Central

    Catusse, Julie; Strub, Jean-Marc; Job, Claudette; Van Dorsselaer, Alain; Job, Dominique

    2008-01-01

    Proteomic analysis of mature sugarbeet seeds led to the identification of 759 proteins and their specific tissue expression in root, cotyledons, and perisperm. In particular, the proteome of the perispermic storage tissue found in many seeds of the Caryophyllales is described here. The data allowed us to reconstruct in detail the metabolism of the seeds toward recapitulating facets of seed development and provided insights into complex behaviors such as germination. The seed appears to be well prepared to mobilize the major classes of reserves (the proteins, triglycerides, phytate, and starch) during germination, indicating that the preparation of the seed for germination is mainly achieved during its maturation on the mother plant. Furthermore, the data revealed several pathways that can contribute to seed vigor, an important agronomic trait defined as the potential to produce vigorous seedlings, such as glycine betaine accumulation in seeds. This study also identified several proteins that, to our knowledge, have not previously been described in seeds. For example, the data revealed that the sugarbeet seed can initiate translation either through the traditional cap-dependent mechanism or by a cap-independent process. The study of the tissue specificity of the seed proteome demonstrated a compartmentalization of metabolic activity between the roots, cotyledons, and perisperm, indicating a division of metabolic tasks between the various tissues. Furthermore, the perisperm, although it is known as a dead tissue, appears to be very active biochemically, playing multiple roles in distributing sugars and various metabolites to other tissues of the embryo. PMID:18635686

  12. Taproot promoters cause tissue specific gene expression within the storage root of sugar beet.

    PubMed

    Oltmanns, Heiko; Kloos, Dorothee U; Briess, Waltraud; Pflugmacher, Maike; Stahl, Dietmar J; Hehl, Reinhard

    2006-08-01

    The storage root (taproot) of sugar beet (Beta vulgaris L.) originates from hypocotyl and primary root and contains many different tissues such as central xylem, primary and secondary cambium, secondary xylem and phloem, and parenchyma. It was the aim of this work to characterize the promoters of three taproot-expressed genes with respect to their tissue specificity. To investigate this, promoters for the genes Tlp, His1-r, and Mll were cloned from sugar beet, linked to reporter genes and transformed into sugar beet and tobacco. Reporter gene expression analysis in transgenic sugar beet plants revealed that all three promoters are active in the storage root. Expression in storage root tissues is either restricted to the vascular zone (Tlp, His1-r) or is observed in the whole organ (Mll). The Mll gene is highly organ specific throughout different developmental stages of the sugar beet. In tobacco, the Tlp and Mll promoters drive reporter gene expression preferentially in hypocotyl and roots. The properties of the Mll promoter may be advantageous for the modification of sucrose metabolism in storage roots.

  13. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis

    PubMed Central

    Lindström, Nils O.; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J. Martin

    2012-01-01

    The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms’ tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue–tissue interactions guiding multiple developmental processes. PMID:21167960

  14. Resident Tissue-Specific Mesenchymal Progenitor Cells Contribute to Fibrogenesis in Human Lung Allografts

    PubMed Central

    Walker, Natalie; Badri, Linda; Wettlaufer, Scott; Flint, Andrew; Sajjan, Uma; Krebsbach, Paul H.; Keshamouni, Venkateshwar G.; Peters-Golden, Marc; Lama, Vibha N.

    2011-01-01

    Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft–derived MSCs uniquely express embryonic lung mesenchyme–associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs. PMID:21641374

  15. Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts.

    PubMed

    Walker, Natalie; Badri, Linda; Wettlaufer, Scott; Flint, Andrew; Sajjan, Uma; Krebsbach, Paul H; Keshamouni, Venkateshwar G; Peters-Golden, Marc; Lama, Vibha N

    2011-06-01

    Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation. We demonstrate that human lung allograft-derived MSCs uniquely express embryonic lung mesenchyme-associated transcription factors with a 35,000-fold higher expression of forkhead/winged helix transcription factor forkhead box (FOXF1) noted in lung compared with bone marrow MSCs. Fibrotic differentiation of MSCs isolated from normal lung allografts was noted in the presence of profibrotic mediators associated with BOS, including transforming growth factor-β and IL-13. MSCs isolated from patients with BOS demonstrated increased expression of α-SMA and collagen I when compared with non-BOS controls, consistent with a stable in vivo fibrotic phenotype. FOXF1 mRNA expression in the BAL cell pellet correlated with the number of MSCs in the BAL fluid, and myofibroblasts present in the fibrotic lesions expressed FOXF1 by in situ hybridization. These data suggest a key role for local tissue-specific, organ-resident, mesenchymal precursors in the fibrogenic processes in human adult lungs. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Regulating expression of cell and tissue-specific genes by modifying transcription

    SciTech Connect

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  17. Regulating expressin of cell and tissue-specific genes by modifying transcription

    SciTech Connect

    Beachy, R N; Dai, Shunhong

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  18. Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears.

    PubMed

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Born, Erik W

    2012-11-06

    Several perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) of varying chain length are bioaccumulative in biota. However, wildlife reports have focused on liver and with very little examination of other tissues, and thus there is a limited understanding of their distribution and potential effects in the mammalian body. In the present study, the comparative accumulation of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, and select precursors were examined in the liver, blood, muscle, adipose, and brain of 20 polar bears (Ursus maritimus) from Scoresby Sound, Central East Greenland. Overall, PFSA and PFCA concentrations were highest in liver followed by blood > brain > muscle ≈ adipose. Liver and blood samples contained proportionally more of the shorter/medium chain length (C(6) to C(11)) PFCAs, whereas adipose and brain samples were dominated by longer chain (C(13) to C(15)) PFCAs. PFCAs with lower lipophilicities accumulated more in the liver, whereas the brain accumulated PFCAs with higher lipophilicities. The concentration ratios (±SE) between perfluorooctane sulfonate and its precursor perfluorooctane sulfonamide varied among tissues from 9 (±1):1 (muscle) to 36 (±7):1 (liver). PFCA and PFSA patterns in polar bears indicate that the pharmacokinetics of these compounds are to some extent tissue-specific, and are the result of several factors that may include differing protein interactions throughout the body.

  19. Tissue-specific uptake and bioconcentration of the oral contraceptive norethindrone in two freshwater fishes.

    PubMed

    Nallani, Gopinath C; Paulos, Peter M; Venables, Barney J; Edziyie, Regina E; Constantine, Lisa A; Huggett, Duane B

    2012-02-01

    The environmental presence of the oral contraceptive norethindrone (NET) has been reported and shown to have reproductive effects in fish at environmentally realistic exposure levels. The current study examined bioconcentration potential of NET in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus). Fathead minnows were exposed to 50 μg/l NET for 28 days and allowed to depurate in clean water for 14 days. In a minimized 14-day test design, catfish were exposed to 100 μg/l NET for 7 days followed by 7-day depuration. In the fathead test, tissues (muscle, liver, and kidneys) were sampled during the uptake (days 1, 3, 7, 14, and 28) and depuration (days 35 and 42) phases. In the catfish test, muscle, liver, gill, brain, and plasma were collected during the uptake (days 1, 3, and 7) and depuration (day 14) stages. NET tissue levels were determined by gas chromatography-mass spectrometry (GC-MS). Accumulation of NET in tissues was greatest in liver followed by plasma, gill, brain, and muscle. Tissue-specific bioconcentration factors (BCFs) ranged from 2.6 to 40.8. Although NET has been reported to elicit reproductive effects in fish, the present study indicated a low potential to bioconcentrate in aquatic biota.

  20. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster.

    PubMed Central

    Abraham, I; Doane, W W

    1978-01-01

    Laboratory strains of Drosophila melanogaster were screened for spatial variations in adult midgut alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) expression. No strain-specific differences were found anteriorly, but three patterns of activity were discerned in the posterior midgut: A, activity throughout most of the region; B, activity in the anterior part of the region; and C, little or no activity. Alleles of a control gene, map, are responsible for this tissue-specific regulation of activity; e.g., mapA homozygotes produce the A pattern and mapC homozygotes the C pattern. The map locus was placed at 2--80 +/- on the genetic map of chromosome 2R, about two crossover units distal to the Amy structural gene region for alpha-amylase. Electrophoretic studies showed that mapA is trans acting in mapA/mapC flies, allowing expression of amylase isozymes coded for by genes on the opposite chromosome. The map gene behaves as a temporal gene that is clearly separable from the tightly linked, duplicated Amy structural genes. Images PMID:100784

  1. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue

    PubMed Central

    Korutla, Laxminarayana; Habertheuer, Andreas; Yu, Ming; Rostami, Susan; Yuan, Chao-Xing; Reddy, Sanjana; Korutla, Varun; Koeberlein, Brigitte; Trofe-Clark, Jennifer; Rickels, Michael R.; Naji, Ali

    2017-01-01

    In transplantation, there is a critical need for noninvasive biomarker platforms for monitoring immunologic rejection. We hypothesized that transplanted tissues release donor-specific exosomes into recipient circulation and that the quantitation and profiling of donor intra-exosomal cargoes may constitute a biomarker platform for monitoring rejection. Here, we have tested this hypothesis in a human-into-mouse xenogeneic islet transplant model and validated the concept in clinical settings of islet and renal transplantation. In the xenogeneic model, we quantified islet transplant exosomes in recipient blood over long-term follow-up using anti-HLA antibody, which was detectable only in xenoislet recipients of human islets. Transplant islet exosomes were purified using anti-HLA antibody–conjugated beads, and their cargoes contained the islet endocrine hormone markers insulin, glucagon, and somatostatin. Rejection led to a marked decrease in transplant islet exosome signal along with distinct changes in exosomal microRNA and proteomic profiles prior to appearance of hyperglycemia. In the clinical settings of islet and renal transplantation, donor exosomes with respective tissue specificity for islet β cells and renal epithelial cells were reliably characterized in recipient plasma over follow-up periods of up to 5 years. Collectively, these findings demonstrate the biomarker potential of transplant exosome characterization for providing a noninvasive window into the conditional state of transplant tissue. PMID:28319051

  2. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue.

    PubMed

    Vallabhajosyula, Prashanth; Korutla, Laxminarayana; Habertheuer, Andreas; Yu, Ming; Rostami, Susan; Yuan, Chao-Xing; Reddy, Sanjana; Liu, Chengyang; Korutla, Varun; Koeberlein, Brigitte; Trofe-Clark, Jennifer; Rickels, Michael R; Naji, Ali

    2017-04-03

    In transplantation, there is a critical need for noninvasive biomarker platforms for monitoring immunologic rejection. We hypothesized that transplanted tissues release donor-specific exosomes into recipient circulation and that the quantitation and profiling of donor intra-exosomal cargoes may constitute a biomarker platform for monitoring rejection. Here, we have tested this hypothesis in a human-into-mouse xenogeneic islet transplant model and validated the concept in clinical settings of islet and renal transplantation. In the xenogeneic model, we quantified islet transplant exosomes in recipient blood over long-term follow-up using anti-HLA antibody, which was detectable only in xenoislet recipients of human islets. Transplant islet exosomes were purified using anti-HLA antibody-conjugated beads, and their cargoes contained the islet endocrine hormone markers insulin, glucagon, and somatostatin. Rejection led to a marked decrease in transplant islet exosome signal along with distinct changes in exosomal microRNA and proteomic profiles prior to appearance of hyperglycemia. In the clinical settings of islet and renal transplantation, donor exosomes with respective tissue specificity for islet β cells and renal epithelial cells were reliably characterized in recipient plasma over follow-up periods of up to 5 years. Collectively, these findings demonstrate the biomarker potential of transplant exosome characterization for providing a noninvasive window into the conditional state of transplant tissue.

  3. Tissue-Specific Cell Cycle Indicator Reveals Unexpected Findings for Cardiac Myocyte Proliferation

    PubMed Central

    Hirai, Maretoshi; Chen, Ju; Evans, Sylvia M.

    2017-01-01

    Rationale Discerning cardiac myocyte cell cycle behavior is challenging owing to commingled cell types with higher proliferative activity. Objective To investigate cardiac myocyte cell cycle activity in development and the early postnatal period. Methods and Results To facilitate studies of cell type–specific proliferation, we have generated tissue-specific cell cycle indicator BAC transgenic mouse lines. Experiments using embryonic fibroblasts from CyclinA2-LacZ-floxed-EGFP, or CyclinA2-EGFP mice, demonstrated that CyclinA2-βgal and CyclinA2-EGFP were expressed from mid-G1 to mid-M phase. Using Troponin T-Cre;CyclinA2-LacZ-EGFP mice, we examined cardiac myocyte cell cycle activity during embryogenesis and in the early postnatal period. Our data demonstrated that right ventricular cardiac myocytes exhibited reduced cell cycle activity relative to left ventricular cardiac myocytes in the immediate perinatal period. Additionally, in contrast to a recent report, we could find no evidence to support a burst of cardiac myocyte cell cycle activity at postnatal day 15. Conclusions Our data highlight advantages of a cardiac myocyte–specific cell cycle reporter for studies of cardiac myocyte cell cycle regulation. PMID:26472817

  4. Central Tolerance to Tissue-specific Antigens Mediated by Direct and Indirect Antigen Presentation

    PubMed Central

    Gallegos, Alena M.; Bevan, Michael J.

    2004-01-01

    Intrathymic expression of tissue-specific antigens (TSAs) by medullary thymic epithelial cells (Mtecs) leads to deletion of autoreactive T cells. However, because Mtecs are known to be poor antigen-presenting cells (APCs) for tolerance to ubiquitous antigens, and very few Mtecs express a given TSA, it was unclear if central tolerance to TSA was induced directly by Mtec antigen presentation or indirectly by thymic bone marrow (BM)-derived cells via cross-presentation. We show that professional BM-derived APCs acquire TSAs from Mtecs and delete autoreactive CD8 and CD4 T cells. Although direct antigen presentation by Mtecs did not delete the CD4 T cell population tested in this study, Mtec presentation efficiently deleted both monoclonal and polyclonal populations of CD8 T cells. For developing CD8 T cells, deletion by BM-derived APC and by Mtec presentation occurred abruptly at the transitional, CD4high CD8low TCRintermediate stage, presumably as the cells transit from the cortex to the medulla. These studies reveal a cooperative relationship between Mtecs and BM-derived cells in thymic elimination of autoreactive T cells. Although Mtecs synthesize TSAs and delete a subset of autoreactive T cells, BM-derived cells extend the range of clonal deletion by cross-presenting antigen captured from Mtecs. PMID:15492126

  5. Tissue-specific expression and dynamic organization of SR splicing factors in Arabidopsis.

    PubMed

    Fang, Yuda; Hearn, Stephen; Spector, David L

    2004-06-01

    The organization of the pre-mRNA splicing machinery has been extensively studied in mammalian and yeast cells and far less is known in living plant cells and different cell types of an intact organism. Here, we report on the expression, organization, and dynamics of pre-mRNA splicing factors (SR33, SR1/atSRp34, and atSRp30) under control of their endogenous promoters in Arabidopsis. Distinct tissue-specific expression patterns were observed, and differences in the distribution of these proteins within nuclei of different cell types were identified. These factors localized in a cell type-dependent speckled pattern as well as being diffusely distributed throughout the nucleoplasm. Electron microscopic analysis has revealed that these speckles correspond to interchromatin granule clusters. Time-lapse microscopy revealed that speckles move within a constrained nuclear space, and their organization is altered during the cell cycle. Fluorescence recovery after photobleaching analysis revealed a rapid exchange rate of splicing factors in nuclear speckles. The dynamic organization of plant speckles is closely related to the transcriptional activity of the cells. The organization and dynamic behavior of speckles in Arabidopsis cell nuclei provides significant insight into understanding the functional compartmentalization of the nucleus and its relationship to chromatin organization within various cell types of a single organism.

  6. Dendritic Cells Display Subset and Tissue-Specific Maturation Dynamics over Human Life.

    PubMed

    Granot, Tomer; Senda, Takashi; Carpenter, Dustin J; Matsuoka, Nobuhide; Weiner, Joshua; Gordon, Claire L; Miron, Michelle; Kumar, Brahma V; Griesemer, Adam; Ho, Siu-Hong; Lerner, Harvey; Thome, Joseph J C; Connors, Thomas; Reizis, Boris; Farber, Donna L

    2017-03-21

    Maturation and migration to lymph nodes (LNs) constitutes a central paradigm in conventional dendritic cell (cDC) biology but remains poorly defined in humans. Using our organ donor tissue resource, we analyzed cDC subset distribution, maturation, and migration in mucosal tissues (lungs, intestines), associated lymph nodes (LNs), and other lymphoid sites from 78 individuals ranging from less than 1 year to 93 years of age. The distribution of cDC1 (CD141(hi)CD13(hi)) and cDC2 (Sirp-α(+)CD1c(+)) subsets was a function of tissue site and was conserved between donors. We identified cDC2 as the major mature (HLA-DR(hi)) subset in LNs with the highest frequency in lung-draining LNs. Mature cDC2 in mucosal-draining LNs expressed tissue-specific markers derived from the paired mucosal site, reflecting their tissue-migratory origin. These distribution and maturation patterns were largely maintained throughout life, with site-specific variations. Our findings provide evidence for localized DC tissue surveillance and reveal a lifelong division of labor between DC subsets, with cDC2 functioning as guardians of the mucosa.

  7. Tissue-Specific Evolution of Protein Coding Genes in Human and Mouse.

    PubMed

    Kryuchkova-Mostacci, Nadezda; Robinson-Rechavi, Marc

    2015-01-01

    Protein-coding genes evolve at different rates, and the influence of different parameters, from gene size to expression level, has been extensively studied. While in yeast gene expression level is the major causal factor of gene evolutionary rate, the situation is more complex in animals. Here we investigate these relations further, especially taking in account gene expression in different organs as well as indirect correlations between parameters. We used RNA-seq data from two large datasets, covering 22 mouse tissues and 27 human tissues. Over all tissues, evolutionary rate only correlates weakly with levels and breadth of expression. The strongest explanatory factors of purifying selection are GC content, expression in many developmental stages, and expression in brain tissues. While the main component of evolutionary rate is purifying selection, we also find tissue-specific patterns for sites under neutral evolution and for positive selection. We observe fast evolution of genes expressed in testis, but also in other tissues, notably liver, which are explained by weak purifying selection rather than by positive selection.

  8. Tissue-Specific and Complex Complementation Patterns in the Punch Locus of DROSOPHILA MELANOGASTER

    PubMed Central

    Mackay, William J.; Reynolds, Elaine R.; O'Donnell, Janis M.

    1985-01-01

    Mutations in the Punch locus result in loss of GTP cyclohydrolase activity, but all mutations do not affect the enzyme in the same way. There are at least three classes of Punch mutations. One class results in a dominant eye color, recessive lethal phenotype. A second class of mutations also causes a recessive lethal phenotype, but heterozygous mutants have normal eye color. They show loss of GTP cyclohydrolase function in all tissues where activity can be measured. Alleles comprising a third class are recessive eye color mutations that are homozygous viable. Individuals with this third type of mutation show loss of enzyme activity in the eye, but show normal or near-normal activity elsewhere. In order to examine the organization and function of this locus further, we have performed interallelic complementation tests on 25 Punch mutations, monitoring viability and enzyme activity in prepupae and adults. Most allele combinations are lethal. Those that complement do so in ways that are tissue-or stage-specific and unpredictable. Tests of mutants with tissue-specific phenotypes and of individuals mutant for complementing Punch lethal alleles lead us to conclude that Punch is a complex locus, both with respect to its organization and to its products. PMID:3934035

  9. Tissue-Specific Fatty Acids Response to Different Diets in Common Carp (Cyprinus carpio L.)

    PubMed Central

    Böhm, Markus; Schultz, Sebastian; Koussoroplis, Apostolos-Manuel; Kainz, Martin J.

    2014-01-01

    Fish depend on dietary fatty acids (FA) to support their physiological condition and health. Exploring the FA distribution in common carp (Cyprinus carpio), one of the world's most consumed freshwater fish, is important to understand how and where FA of different sources are allocated. We investigated diet effects on the composition of polar and neutral lipid fatty acids (PLFA and NLFA, respectively) in eight different tissues (dorsal and ventral muscle, heart, kidney, intestine, eyes, liver and adipose tissue) of common carp. Two-year old carp were exposed to three diet sources (i.e., zooplankton, zooplankton plus supplementary feeds containing vegetable, VO, or fish oil, FO) with different FA composition. The PLFA and NLFA response was clearly tissue-specific after 210 days of feeding on different diets. PLFA were generally rich in omega-3 polyunsaturated FA and only marginally influenced by dietary FA, whereas the NLFA composition strongly reflected dietary FA profiles. However, the NLFA composition in carp tissues varied considerably at low NLFA mass ratios, suggesting that carp is able to regulate the NLFA composition and thus FA quality in its tissues when NLFA contents are low. Finally, this study shows that FO were 3X more retained than VO as NLFA particularly in muscle tissues, indicating that higher nutritional quality feeds are selectively allocated into tissues and thus available for human consumption. PMID:24733499

  10. Negative regulation in correct tissue-specific expression of mouse mammary tumor virus in transgenic mice.

    PubMed Central

    Ross, S R; Hsu, C L; Choi, Y; Mok, E; Dudley, J P

    1990-01-01

    Mouse mammary tumor virus (MMTV) is an endogenous murine retrovirus that is expressed in the epithelial cells of the mammary and salivary glands, lungs, kidneys, and seminal vesicles and in the lymphoid cells of the spleen and thymus. Several studies have shown that the long terminal repeat (LTR) of this virus can direct the expression of reporter genes to the same tissues in transgenic mice. To determine whether multiple regulatory elements within the LTR are involved in this tissue-specific expression, we have established lines of transgenic mice containing transgenes that have deletions in the MMTV LTR. Deletions of all LTR sequences upstream of -364 or of LTR sequences from -165 to -665 both result in the expression of linked reporter genes such as the simian virus 40 early region or the bacterial enzyme chloramphenicol acetyltransferase in novel sites, such as the heart, brain, and skeletal muscle; expression of endogenous MMTV and transgenes containing the full-length LTR is not detected in these organs. Negative regulation appears to involve more than one region, since deletion of sequences between either -201 and -471 or -201 and -344, as well as sequences upstream of -364, results in inappropriate expression in heart, brain, and skeletal muscle. Therefore, a negative regulatory element(s) in the MMTV LTR can suppress transcription from the viral promoter in several different organs. This represents the first example of generalized negative regulatory elements that act in many different tissues in transgenic mice to prevent inappropriate expression of a gene. Images PMID:1700274

  11. Tissue-specific roles of Fgfr2 in development of the external genitalia

    PubMed Central

    Gredler, Marissa L.; Seifert, Ashley W.; Cohn, Martin J.

    2015-01-01

    Congenital anomalies frequently occur in organs that undergo tubulogenesis. Hypospadias is a urethral tube defect defined by mislocalized, oversized, or multiple openings of the penile urethra. Deletion of Fgfr2 or its ligand Fgf10 results in severe hypospadias in mice, in which the entire urethral plate is open along the ventral side of the penis. In the genital tubercle, the embryonic precursor of the penis and clitoris, Fgfr2 is expressed in two epithelial populations: the endodermally derived urethral epithelium and the ectodermally derived surface epithelium. Here, we investigate the tissue-specific roles of Fgfr2 in external genital development by generating conditional deletions of Fgfr2 in each of these cell types. Conditional deletion of Fgfr2 results in two distinct phenotypes: endodermal Fgfr2 deletion causes mild hypospadias and inhibits maturation of a complex urethral epithelium, whereas loss of ectodermal Fgfr2 results in severe hypospadias and absence of the ventral prepuce. Although these cell type-specific mutants exhibit distinctive genital anomalies, cellular analysis reveals that Fgfr2 regulates epithelial maturation and cell cycle progression in the urethral endoderm and in the surface ectoderm. The unexpected finding that ectodermal deletion of Fgfr2 results in the most severe hypospadias highlights a major role for Fgfr2 in the developing genital surface epithelium, where epithelial maturation is required for maintenance of a closed urethral tube. These results demonstrate that urethral tubulogenesis, prepuce morphogenesis, and sexually dimorphic patterning of the lower urethra are controlled by discrete regions of Fgfr2 activity. PMID:26081573

  12. HOXA5 plays tissue-specific roles in the developing respiratory system.

    PubMed

    Landry-Truchon, Kim; Houde, Nicolas; Boucherat, Olivier; Joncas, France-Hélène; Dasen, Jeremy S; Philippidou, Polyxeni; Mansfield, Jennifer H; Jeannotte, Lucie

    2017-10-01

    Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract. © 2017. Published by The Company of Biologists Ltd.

  13. GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles.

    PubMed

    Antanaviciute, Agne; Daly, Catherine; Crinnion, Laura A; Markham, Alexander F; Watson, Christopher M; Bonthron, David T; Carr, Ian M

    2015-08-15

    In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. Here, we present Gene TIssue Expression Ranker (GeneTIER), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias toward the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/. umaan@leeds.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  14. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    PubMed

    Chausse, Bruno; Vieira-Lara, Marcel A; Sanchez, Angélica B; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  15. Intermittent Fasting Results in Tissue-Specific Changes in Bioenergetics and Redox State

    PubMed Central

    Chausse, Bruno; Vieira-Lara, Marcel A.; Sanchez, Angélica B.; Medeiros, Marisa H. G.; Kowaltowski, Alicia J.

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart. PMID:25749501

  16. Distal cis-regulatory elements are required for tissue-specific expression of enamelin (Enam)

    PubMed Central

    Hu, Yuanyuan; Papagerakis, Petros; Ye, Ling; Feng, Jerry Q.; Simmer, James P.; Hu, Jan C-C.

    2009-01-01

    Enamel formation is orchestrated by the sequential expression of genes encoding enamel matrix proteins; however, the mechanisms sustaining the spatio–temporal order of gene transcription during amelogenesis are poorly understood. The aim of this study was to characterize the cis-regulatory sequences necessary for normal expression of enamelin (Enam). Several enamelin transcription regulatory regions, showing high sequence homology among species, were identified. DNA constructs containing 5.2 or 3.9 kb regions upstream of the enamelin translation initiation site were linked to a LacZ reporter and used to generate transgenic mice. Only the 5.2-Enam–LacZ construct was sufficient to recapitulate the endogenous pattern of enamelin tooth-specific expression. The 3.9-Enam–LacZ transgenic lines showed no expression in dental cells, but ectopic β-galactosidase activity was detected in osteoblasts. Potential transcription factor-binding sites were identified that may be important in controlling enamelin basal promoter activity and in conferring enamelin tissue-specific expression. Our study provides new insights into regulatory mechanisms governing enamelin expression. PMID:18353004

  17. T-STAG: resource and web-interface for tissue-specific transcripts and genes.

    PubMed

    Gupta, Shobhit; Vingron, Martin; Haas, Stefan A

    2005-07-01

    T-STAG (tissue-specific transcripts and genes) is a resource and web-interface, designated to analyze tissue/tumor-specific expression patterns in human and mouse transcriptomes. It integrates our refined prediction of specific expression patterns both in genes as well as in individual isoforms with man-mouse orthology data. In combination with the features for combining/contrasting the genes expressed in different tissues, T-STAG implicates important biological applications, such as the detection of differentially expressed genes in tumors, the retrieval of orthologs with significant expression in the same tissue etc. Additionally, our refined categorization of expressed sequence tags (ESTs) according to the normalization of cDNA libraries allows searching for putative low-abundant transcripts. The results are tightly linked to our visualization tools, GeneNest (expression patterns of genes) and SpliceNest (gene structure and alternative splicing). The user-friendly interface of T-STAG offers a platform for comprehensive analysis of tissue and/or tumor-specific expression patterns revealed by the EST data. T-STAG is freely accessible at http://tstag.molgen.mpg.de.

  18. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    PubMed

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  19. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana

    PubMed Central

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296

  20. Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways.

    PubMed

    Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-08-07

    Glycolysis is the core metabolic pathway supplying energy to cells. Whereas the vast majority of studies focus on specific aspects of the process, global analyses characterizing simultaneously all enzymes involved in the process are scarce. Here, we demonstrate that quantitative label- and standard-free proteomics allows accurate determination of titers of metabolic enzymes and enables simultaneous measurements of titers and maximal enzymatic activities (Amax) of all glycolytic enzymes and the gluconeogenic fructose 1,6-bisphosphatase in mouse brain, liver and muscle. Despite occurrence of tissue-specific isoenzymes bearing different kinetic properties, the enzyme titers often correlated well with the Amax values. To provide a more general picture of energy metabolism, we analyzed titers of the enzymes in additional 7 mouse organs and in human cells. Across the analyzed samples, we identified two basic profiles: a "fast glucose uptake" one in brain and heart, and a "gluconeogenic rich" one occurring in liver. In skeletal muscles and other organs, we found intermediate profiles. Obtained data highlighted the glucose-flux-limiting role of hexokinase which activity was always 10- to 100-fold lower than the average activity of all other glycolytic enzymes. A parallel determination of enzyme titers and maximal enzymatic activities allowed determination of kcat values without enzyme purification. Results of our in-depth proteomic analysis of the mouse organs did not support the concepts of regulation of glycolysis by lysine acetylation.

  1. Zooming-in on cancer metabolic rewiring with tissue specific constraint-based models.

    PubMed

    Di Filippo, Marzia; Colombo, Riccardo; Damiani, Chiara; Pescini, Dario; Gaglio, Daniela; Vanoni, Marco; Alberghina, Lilia; Mauri, Giancarlo

    2016-06-01

    The metabolic rearrangements occurring in cancer cells can be effectively investigated with a Systems Biology approach supported by metabolic network modeling. We here present tissue-specific constraint-based core models for three different types of tumors (liver, breast and lung) that serve this purpose. The core models were extracted and manually curated from the corresponding genome-scale metabolic models in the Human Metabolic Atlas database with a focus on the pathways that are known to play a key role in cancer growth and proliferation. Along similar lines, we also reconstructed a core model from the original general human metabolic network to be used as a reference model. A comparative Flux Balance Analysis between the reference and the cancer models highlighted both a clear distinction between the two conditions and a heterogeneity within the three different cancer types in terms of metabolic flux distribution. These results emphasize the need for modeling approaches able to keep up with this tumoral heterogeneity in order to identify more suitable drug targets and develop effective treatments. According to this perspective, we identified key points able to reverse the tumoral phenotype toward the reference one or vice-versa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit

    PubMed Central

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-01-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were ‘transcriptional regulation’ and ‘hormone metabolism’, indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. PMID:26463995

  3. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize.

    PubMed

    Jiang, Yi; Zeng, Biao; Zhao, Hainan; Zhang, Mei; Xie, Shaojun; Lai, Jinsheng

    2012-09-01

    Transcription factors (TFs) are important regulators of gene expression. To better understand TF-encoding genes in maize (Zea mays L.), a genome-wide TF prediction was performed using the updated B73 reference genome. A total of 2298 TF genes were identified, which can be classified into 56 families. The largest family, known as the MYB superfamily, comprises 322 MYB and MYB-related TF genes. The expression patterns of 2 014 (87.64%) TF genes were examined using RNA-seq data, which resulted in the identification of a subset of TFs that are specifically expressed in particular tissues (including root, shoot, leaf, ear, tassel and kernel). Similarly, 98 kernel-specific TF genes were further analyzed, and it was observed that 29 of the kernel-specific genes were preferentially expressed in the early kernel developmental stage, while 69 of the genes were expressed in the late kernel developmental stage. Identification of these TFs, particularly the tissue-specific ones, provides important information for the understanding of development and transcriptional regulation of maize.

  4. Tissue specific and androgen-regulated expression of human prostate-specific transglutaminase.

    PubMed Central

    Dubbink, H J; Verkaik, N S; Faber, P W; Trapman, J; Schröder, F H; Romijn, J C

    1996-01-01

    Transglutaminases (TGases) are calcium-dependent enzymes catalysing the post-translational cross-linking of proteins. In the prostate at least two TGases are present, the ubiquitously expressed tissue-type TGase (TGC), and a prostate-restricted TGase (TGP). This paper deals with the molecular cloning and characterization of the cDNA encoding the human prostate TGase (hTGP). For this purpose we have screened a human prostate cDNA library with a probe from the active-site region of TGC. The largest isolated cDNA contained an open reading frame encoding a protein of 684 amino acids with a predicted molecular mass of 77 kDa as confirmed by in vitro transcription-translation and subsequent SDS/PAGE. The hTGP gene was tissue-specifically expressed in the prostate, yielding an mRNA of approx. 3.5 kb. Furthermore, a 3-fold androgen-induced upregulation of hTGP mRNA expression has been demonstrated in the recently developed human prostate cancer cell line, PC346C. Other well established human prostate cancer cell lines, LNCaP and PC-3, showed no detectable hTGP mRNA expression on a Northern bolt. The gene coding for prostate TGase was assigned to chromosome 3. PMID:8645175

  5. Spectral unmixing of multi-color tissue specific in vivo fluorescence in mice

    NASA Astrophysics Data System (ADS)

    Zacharakis, Giannis; Favicchio, Rosy; Garofalakis, Anikitos; Psycharakis, Stylianos; Mamalaki, Clio; Ripoll, Jorge

    2007-07-01

    Fluorescence Molecular Tomography (FMT) has emerged as a powerful tool for monitoring biological functions in vivo in small animals. It provides the means to determine volumetric images of fluorescent protein concentration by applying the principles of diffuse optical tomography. Using different probes tagged to different proteins or cells, different biological functions and pathways can be simultaneously imaged in the same subject. In this work we present a spectral unmixing algorithm capable of separating signal from different probes when combined with the tomographic imaging modality. We show results of two-color imaging when the algorithm is applied to separate fluorescence activity originating from phantoms containing two different fluorophores, namely CFSE and SNARF, with well separated emission spectra, as well as Dsred- and GFP-fused cells in F5-b10 transgenic mice in vivo. The same algorithm can furthermore be applied to tissue-specific spectroscopy data. Spectral analysis of a variety of organs from control, DsRed and GFP F5/B10 transgenic mice showed that fluorophore detection by optical systems is highly tissue-dependent. Spectral data collected from different organs can provide useful insight into experimental parameter optimisation (choice of filters, fluorophores, excitation wavelengths) and spectral unmixing can be applied to measure the tissue-dependency, thereby taking into account localized fluorophore efficiency. Summed up, tissue spectral unmixing can be used as criteria in choosing the most appropriate tissue targets as well as fluorescent markers for specific applications.

  6. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    SciTech Connect

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  7. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish

    PubMed Central

    Ablain, Julien; Durand, Ellen M.; Yang, Song; Zhou, Yi; Zon, Leonard I.

    2015-01-01

    Summary CRISPR/Cas9 technology of genome editing has greatly facilitated the targeted inactivation of genes in vitro and in vivo in a wide range of organisms. In zebrafish it allows the rapid generation of knock-out lines by simply injecting a guide RNA (gRNA) and Cas9 mRNA into one-cell stage embryos. Here, we report a simple and scalable CRISPR-based vector system for tissue-specific gene inactivation in zebrafish. As proof of principle, we used our vector with the gata1 promoter driving Cas9 expression to silence the urod gene, implicated in heme biosynthesis, specifically in the erythrocytic lineage. Urod targeting yielded red fluorescent erythrocytes in zebrafish embryos, recapitulating the phenotype observed in the yquem mutant. While F0 embryos displayed mosaic gene disruption, the phenotype appeared very penetrant in stable F1 fish. This vector system constitutes a unique tool to spatially control gene knock-out and greatly broadens the scope of loss-of-function studies in zebrafish. PMID:25752963

  8. Allelic imbalance identifies novel tissue specific cis-regulatory variation for human UGT2B15

    PubMed Central

    Sun, Chang; Southard, Catherine; Witonsky, David B.; Olopade, Olufunmilayo I.; Di Rienzo, Anna

    2010-01-01

    Allelic imbalance (AI) is a powerful tool to identify cis-regulatory variation for gene expression. UGT2B15 is an important enzyme involved in the metabolism of multiple endobiotics and xenobiotics. In this study, we measured the relative expression of two alleles at this gene by using SNP rs1902023:G>T. An excess of the G over the T allele was consistently observed in liver (P<0.001), but not in breast (P=0.06) samples, suggesting that SNPs in strong linkage disequilibrium with G253T regulate UGT2B15 expression in liver. Seven such SNPs were identified by resequencing the promoter and exon 1, which define two distinct haplotypes. Reporter gene assays confirmed that one haplotype displayed ~20% higher promoter activity compared to the other major haplotype in liver HepG2 (P<0.001), but not in breast MCF-7 (P=0.540) cells. Reporter gene assays with additional constructs pointed to rs34010522:G>T and rs35513228:C>T as the cis-regulatory variants; both SNPs were also evaluated in LNCaP and Caco-2 cells. By ChIP, we showed that the transcription factor Nrf2 binds to the region spanning rs34010522:G>T in all four cell lines. Our results provide a good example for how AI can be used to identify cis-regulatory variation and gain insights into the tissue specific regulation of gene expression. PMID:19847790

  9. GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles

    PubMed Central

    Antanaviciute, Agne; Daly, Catherine; Crinnion, Laura A.; Markham, Alexander F.; Watson, Christopher M.; Bonthron, David T.; Carr, Ian M.

    2015-01-01

    Motivation: In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. Results: Here, we present Gene TIssue Expression Ranker (GeneTIER), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias toward the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. Availability and Implementation: Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/. Contact: umaan@leeds.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25861967

  10. Poly(A) code analyses reveal key determinants for tissue-specific mRNA alternative polyadenylation

    PubMed Central

    Weng, Lingjie; Li, Yi; Xie, Xiaohui; Shi, Yongsheng

    2016-01-01

    mRNA alternative polyadenylation (APA) is a critical mechanism for post-transcriptional gene regulation and is often regulated in a tissue- and/or developmental stage-specific manner. An ultimate goal for the APA field has been to be able to computationally predict APA profiles under different physiological or pathological conditions. As a first step toward this goal, we have assembled a poly(A) code for predicting tissue-specific poly(A) sites (PASs). Based on a compendium of over 600 features that have known or potential roles in PAS selection, we have generated and refined a machine-learning algorithm using multiple high-throughput sequencing-based data sets of tissue-specific and constitutive PASs. This code can predict tissue-specific PASs with >85% accuracy. Importantly, by analyzing the prediction performance based on different RNA features, we found that PAS context, including the distance between alternative PASs and the relative position of a PAS within the gene, is a key feature for determining the susceptibility of a PAS to tissue-specific regulation. Our poly(A) code provides a useful tool for not only predicting tissue-specific APA regulation, but also for studying its underlying molecular mechanisms. PMID:27095026

  11. Comparative Analysis of Human Tissue Interactomes Reveals Factors Leading to Tissue-Specific Manifestation of Hereditary Diseases

    PubMed Central

    Barshir, Ruth; Shwartz, Omer; Smoly, Ilan Y.; Yeger-Lotem, Esti

    2014-01-01

    An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with data of protein-protein interactions (PPIs). The resulting tissue interaction networks (interactomes) shared a large fraction of their proteins and PPIs, and only a small fraction of them were tissue-specific. Applying this resource to hereditary diseases, we first show that most of the disease-causing genes are widely expressed across tissues, yet, enigmatically, cause disease phenotypes in few tissues only. Upon testing for factors that could lead to tissue-specific vulnerability, we find that disease-causing genes tend to have elevated transcript levels and increased number of tissue-specific PPIs in their disease tissues compared to unaffected tissues. We demonstrate through several examples that these tissue-specific PPIs can highlight disease mechanisms, and thus, owing to their small number, provide a powerful filter for interrogating disease etiologies. As two thirds of the hereditary diseases are associated with these factors, comparative tissue analysis offers a meaningful and efficient framework for enhancing the understanding of the molecular basis of hereditary diseases. PMID:24921629

  12. 5'-heterogeneity of glucocorticoid receptor messenger RNA is tissue specific: differential regulation of variant transcripts by early-life events.

    PubMed

    McCormick, J A; Lyons, V; Jacobson, M D; Noble, J; Diorio, J; Nyirenda, M; Weaver, S; Ester, W; Yau, J L; Meaney, M J; Seckl, J R; Chapman, K E

    2000-04-01

    Glucocorticoid receptor (GR) gene expression is regulated in a complex tissue-specific manner, notably by early-life environmental events that program tissue GR levels. We have identified and characterized several new rat GR mRNAs. All encode a common protein, but differ in their 5'-leader sequences as a consequence of alternate splicing of, potentially, 11 different exon 1 sequences. Most are located in a 3-kb CpG island, upstream of exon 2, that exhibits substantial promoter activity in transfected cells. Ribonuclease (RNase) protection analysis demonstrated significant levels of six alternate exons 1 in vivo in rat, with differences between liver, hippocampus, and thymus reflecting tissue-specific differences in promoter activity. Two of the alternate exons 1 (exons 1(6) and 1(10)) were expressed in all tissues examined, together present in 77-87% of total GR mRNA. The remaining GR transcripts contained tissue-specific alternate first exons. Importantly, tissue-specific first exon usage was altered by perinatal environmental manipulations. Postnatal handling, which permanently increases GR in the hippocampus, causing attenuation of stress responses, selectively elevated GR mRNA containing the hippocampus-specific exon 1(7). Prenatal glucocorticoid exposure, which increases hepatic GR expression and produces adult hyperglycemia, decreased the proportion of hepatic GR mRNA containing the predominant exon 1(10), suggesting an increase in a minor exon 1 variant. Such tissue specificity of promoter usage allows differential GR regulation and programming.

  13. Identification of a cis element for tissue-specific alternative splicing of chloroplast ascorbate peroxidase pre-mRNA in higher plants.

    PubMed

    Yoshimura, Kazuya; Yabuta, Yukinori; Ishikawa, Takahiro; Shigeoka, Shigeru

    2002-10-25

    Alternative splicing events in the 3'-terminal region of chloroplast ascorbate peroxidase (chlAPX) pre-mRNA in spinach and tobacco, which produced four types of mRNA variants, one form (tAPX-I) encoding thylakoid-bound APX (tAPX) and three forms (sAPX-I, -II, and -III) encoding stromal APX (sAPX), were regulated in a tissue-specific manner. The ratio of the level of sAPX mRNAs (sAPX-I, -II, and -III) to tAPX-I mRNA was close to 1 in leaf, whereas the ratio in root was greatly elevated due to an increase in sAPX-III and a decrease in tAPX-I resulting from the alternative excision of intron 11 and intron 12, respectively. A putative splicing regulatory cis element (SRE), which is highly conserved in the sequences of chlAPX genes of higher plants, was identified upstream of the acceptor site in intron 12. The deletion of the SRE sequence diminished the splicing efficiency of intron 12 in tobacco leaf in vivo. Gel-shift analysis showed that SRE interacts strongly with a nuclear protein from leaves but not those from the roots of spinach and tobacco. These results indicate that the tissue-specific alternative splicing of chlAPX pre-mRNA is regulated by the splicing enhancer SRE.

  14. Two New Complete Genome Sequences Offer Insight into Host and Tissue Specificity of Plant Pathogenic Xanthomonas spp.▿†

    PubMed Central

    Bogdanove, Adam J.; Koebnik, Ralf; Lu, Hong; Furutani, Ayako; Angiuoli, Samuel V.; Patil, Prabhu B.; Van Sluys, Marie-Anne; Ryan, Robert P.; Meyer, Damien F.; Han, Sang-Wook; Aparna, Gudlur; Rajaram, Misha; Delcher, Arthur L.; Phillippy, Adam M.; Puiu, Daniela; Schatz, Michael C.; Shumway, Martin; Sommer, Daniel D.; Trapnell, Cole; Benahmed, Faiza; Dimitrov, George; Madupu, Ramana; Radune, Diana; Sullivan, Steven; Jha, Gopaljee; Ishihara, Hiromichi; Lee, Sang-Won; Pandey, Alok; Sharma, Vikas; Sriariyanun, Malinee; Szurek, Boris; Vera-Cruz, Casiana M.; Dorman, Karin S.; Ronald, Pamela C.; Verdier, Valérie; Dow, J. Maxwell; Sonti, Ramesh V.; Tsuge, Seiji; Brendel, Volker P.; Rabinowicz, Pablo D.; Leach, Jan E.; White, Frank F.; Salzberg, Steven L.

    2011-01-01

    Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity. PMID:21784931

  15. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp.

    PubMed

    Bogdanove, Adam J; Koebnik, Ralf; Lu, Hong; Furutani, Ayako; Angiuoli, Samuel V; Patil, Prabhu B; Van Sluys, Marie-Anne; Ryan, Robert P; Meyer, Damien F; Han, Sang-Wook; Aparna, Gudlur; Rajaram, Misha; Delcher, Arthur L; Phillippy, Adam M; Puiu, Daniela; Schatz, Michael C; Shumway, Martin; Sommer, Daniel D; Trapnell, Cole; Benahmed, Faiza; Dimitrov, George; Madupu, Ramana; Radune, Diana; Sullivan, Steven; Jha, Gopaljee; Ishihara, Hiromichi; Lee, Sang-Won; Pandey, Alok; Sharma, Vikas; Sriariyanun, Malinee; Szurek, Boris; Vera-Cruz, Casiana M; Dorman, Karin S; Ronald, Pamela C; Verdier, Valérie; Dow, J Maxwell; Sonti, Ramesh V; Tsuge, Seiji; Brendel, Volker P; Rabinowicz, Pablo D; Leach, Jan E; White, Frank F; Salzberg, Steven L

    2011-10-01

    Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.

  16. Finasteride treatment alters tissue specific androgen receptor expression in prostate tissues.

    PubMed

    Bauman, Tyler M; Sehgal, Priyanka D; Johnson, Karen A; Pier, Thomas; Bruskewitz, Reginald C; Ricke, William A; Huang, Wei

    2014-06-01

    Normal and pathologic growth of the prostate is dependent on the synthesis of dihydrotestosterone (DHT) from testosterone by 5α-reductase. Finasteride is a selective inhibitor of 5α-reductase 2, one isozyme of 5α-reductase found in abundance in the human prostate. The objective of this study was to investigate the effects of finasteride on androgen receptor expression and tissue morphology in human benign prostatic hyperplasia specimens. Patients undergoing transurethral resection of the prostate and either treated or not treated with finasteride between 2004 and 2010 at the University of Wisconsin-Hospital were retrospectively identified using an institutional database. Prostate specimens from each patient were triple-stained for androgen receptor, prostate-specific antigen, and basal marker cytokeratin 5. Morphometric analysis was performed using the multispectral imaging, and results were compared between groups of finasteride treated and non-treated patients. Epithelial androgen receptor but not stromal androgen receptor expression was significantly lower in patients treated with finasteride than in non-treated patients. Androgen receptor-regulated prostate-specific antigen was not significantly decreased in finasteride-treated patients. Significant luminal epithelial atrophy and basal cell hyperplasia were prevalent in finasteride treated patients. Epithelial androgen receptor expression was highly correlated to the level of luminal epithelial atrophy. In this study, finasteride decreased the expression of epithelial androgen receptor in a tissue specific manner. The correlation between epithelial androgen receptor and the extent of luminal epithelial atrophy suggests that epithelial androgen receptor may be directly regulating the atrophic effects observed with finasteride treatment. © 2014 Wiley Periodicals, Inc.

  17. Finasteride Treatment Alters Tissue Specific Androgen Receptor Expression in Prostate Tissues

    PubMed Central

    Bauman, Tyler M.; Sehgal, Priyanka D.; Johnson, Karen A.; Pier, Thomas; Bruskewitz, Reginald C.; Ricke, William A.; Huang, Wei

    2014-01-01

    BACKGROUND Normal and pathologic growth of the prostate is dependent on the synthesis of dihydrotestosterone (DHT) from testosterone by 5α-reductase. Finasteride is a selective inhibitor of 5α-reductase 2, one isozyme of 5α-reductase found in abundance in the human prostate. The objective of this study was to investigate the effects of finasteride on androgen receptor expression and tissue morphology in human benign prostatic hyperplasia specimens. METHODS Patients undergoing transurethral resection of the prostate and either treated or not treated with finasteride between 2004 and 2010 at the University of Wisconsin-Hospital were retrospectively identified using an institutional database. Prostate specimens from each patient were triple-stained for androgen receptor, prostate-specific antigen, and basal marker cytokeratin 5. Morphometric analysis was performed using the multispectral imaging, and results were compared between groups of finasteride treated and non-treated patients. RESULTS Epithelial androgen receptor but not stromal androgen receptor expression was significantly lower in patients treated with finasteride than in non-treated patients. Androgen receptor-regulated prostate-specific antigen was not significantly decreased in finasteride-treated patients. Significant luminal epithelial atrophy and basal cell hyperplasia were prevalent in finasteride treated patients. Epithelial androgen receptor expression was highly correlated to the level of luminal epithelial atrophy. CONCLUSIONS In this study, finasteride decreased the expression of epithelial androgen receptor in a tissue specific manner. The correlation between epithelial androgen receptor and the extent of luminal epithelial atrophy suggests that epithelial androgen receptor may be directly regulating the atrophic effects observed with finasteride treatment. PMID:24789081

  18. Tissue-specific expression of monocarboxylate transporters during fasting in mice.

    PubMed

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1-4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms.

  19. Tissue-Specific Expression of Monocarboxylate Transporters during Fasting in Mice

    PubMed Central

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I.; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1–4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms. PMID:25390336

  20. Characterization of a novel rice metallothionein gene promoter: its tissue specificity and heavy metal responsiveness.

    PubMed

    Dong, Chun-Juan; Wang, Yun; Yu, Shi-Shi; Liu, Jin-Yuan

    2010-10-01

    The rice (Oryza sativa L.) metallothionein gene OsMT-I-4b has previously been identified as a type I MT gene. To elucidate the regulatory mechanism involved in its tissue specificity and abiotic induction, we isolated a 1 730 bp fragment of the OsMT-I-4b promoter region. Histochemical β-glucuronidase (GUS) staining indicated a precise spacial and temporal expression pattern in transgenic Arabidopsis. Higher GUS activity was detected in the roots and the buds of flower stigmas, and relatively lower GUS staining in the shoots was restricted to the trichomes and hydathodes of leaves. No activity was observed in the stems and seeds. Additionally, in the root of transgenic plants, the promoter activity was highly upregulated by various environmental signals, such as abscisic acid, drought, dark, and heavy metals including Cu²(+) , Zn²(+) , Pb²(+) and Al³(+) . Slight induction was observed in transgenic seedlings under salinity stress, or when treated with Co²(+) and Cd²(+) . Promoter analysis of 5'-deletions revealed that the region -583/-1 was sufficient to drive strong GUS expression in the roots but not in the shoots. Furthermore, deletion analysis indicated important promoter regions containing different metal-responsive cis-elements that were responsible for responding to different heavy metals. Collectively, these findings provided important insight into the transcriptional regulation mechanisms of the OsMT-I-4b promoter, and the results also gave us some implications for the potential application of this promoter in plant genetic engineering.

  1. Subtle Changes in Motif Positioning Cause Tissue-Specific Effects on Robustness of an Enhancer's Activity

    PubMed Central

    Erceg, Jelena; Saunders, Timothy E.; Girardot, Charles; Devos, Damien P.; Hufnagel, Lars; Furlong, Eileen E. M.

    2014-01-01

    Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood. PMID:24391522

  2. Tissue-specific gene expression in maize seeds during colonization by Aspergillus flavus and Fusarium verticillioides.

    PubMed

    Shu, Xiaomei; Livingston, David P; Franks, Robert G; Boston, Rebecca S; Woloshuk, Charles P; Payne, Gary A

    2015-09-01

    Aspergillus flavus and Fusarium verticillioides are fungal pathogens that colonize maize kernels and produce the harmful mycotoxins aflatoxin and fumonisin, respectively. Management practice based on potential host resistance to reduce contamination by these mycotoxins has proven difficult, resulting in the need for a better understanding of the infection process by these fungi and the response of maize seeds to infection. In this study, we followed the colonization of seeds by histological methods and the transcriptional changes of two maize defence-related genes in specific seed tissues by RNA in situ hybridization. Maize kernels were inoculated with either A. flavus or F. verticillioides 21-22 days after pollination, and harvested at 4, 12, 24, 48, 72, 96 and 120 h post-inoculation. The fungi colonized all tissues of maize seed, but differed in their interactions with aleurone and germ tissues. RNA in situ hybridization showed the induction of the maize pathogenesis-related protein, maize seed (PRms) gene in the aleurone and scutellum on infection by either fungus. Transcripts of the maize sucrose synthase-encoding gene, shrunken-1 (Sh1), were observed in the embryo of non-infected kernels, but were induced on infection by each fungus in the aleurone and scutellum. By comparing histological and RNA in situ hybridization results from adjacent serial sections, we found that the transcripts of these two genes accumulated in tissue prior to the arrival of the advancing pathogens in the seeds. A knowledge of the patterns of colonization and tissue-specific gene expression in response to these fungi will be helpful in the development of resistance. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  3. Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon

    PubMed Central

    Barmeyer, Christian; Rahner, Christoph; Yang, Youshan; Sigworth, Frederick J.; Binder, Henry J.

    2010-01-01

    KCNN4 channels that provide the driving force for cAMP- and Ca2+-induced anion secretion are present in both apical and basolateral membranes of the mammalian colon. However, only a single KCNN4 has been cloned. This study was initiated to identify whether both apical and basolateral KCNN4 channels are encoded by the same or different isoforms. Reverse transcriptase-PCR (RT-PCR), real-time quantitative-PCR (RT-QPCR), and immunofluorescence studies were used to clone and identify tissue-specific expression of KCNN4 isoforms. Three distinct KCNN4 cDNAs that are designated as KCNN4a, KCNN4b, and KCNN4c encoding 425, 424, and 395 amino acid proteins, respectively, were isolated from the rat colon. KCNN4a differs from KCNN4b at both the nucleotide and the amino acid level with distinct 628 bp at the 3′-untranslated region and an additional glutamine at position 415, respectively. KCNN4c differs from KCNN4b by lacking the second exon that encodes a 29 amino acid motif. KCNN4a and KCNN4b/c are identified as smooth muscle- and epithelial cell-specific transcripts, respectively. KCNN4b and KCNN4c transcripts likely encode basolateral (40 kDa) and apical (37 kDa) membrane proteins in the distal colon, respectively. KCNN4c, which lacks the S2 transmembrane segment, requires coexpression of a large conductance K+ channel β-subunit for plasma membrane expression. The KCNN4 channel blocker TRAM-34 inhibits KCNN4b- and KCNN4c-mediated 86Rb (K+ surrogate) efflux with an apparent inhibitory constant of 0.6 ± 0.1 and 7.8 ± 0.4 μM, respectively. We conclude that apical and basolateral KCNN4 K+ channels that regulate K+ and anion secretion are encoded by distinct isoforms in colonic epithelial cells. PMID:20445171

  4. Sex- and Tissue-Specific Methylome Changes in Brains of Mice Perinatally Exposed to Lead

    PubMed Central

    Sánchez-Martín, Francisco Javier; Lindquist, Diana M.; Landero-Figueroa, Julio; Zhang, Xiang; Chen, Jing; Cecil, Kim M.; Medvedovic, Mario; Puga, Alvaro

    2014-01-01

    Changes in DNA methylation and subsequent changes in gene expression regulation are the hallmarks of age- and tissue-dependent epigenetic drift and plasticity resulting from the combinatorial integration of genetic determinants and environmental cues. To determine whether perinatal lead exposure caused persistent DNA methylation changes in target tissues, we exposed mouse dams to 0, 3 or 30 ppm of lead acetate in drinking water for a period extending from 2 months prior to mating, through gestation, until weaning of pups at postnatal day-21, and analyzed whole-genome DNA methylation in brain cortex and hippocampus of 2-month old exposed and unexposed progeny. Lead exposure resulted in hypermethylation of three differentially methylated regions in the hippocampus of females, but not males. These regions mapped to Rn4.5s, Sfi1, and Rn45s loci in mouse chromosomes 2, 11 and 17, respectively. At a conservative fdr<0.001, 1,623 additional CpG sites were differentially methylated in female hippocampus, corresponding to 117 unique genes. Sixty of these genes were tested for mRNA expression and showed a trend towards negative correlation between mRNA expression and methylation in exposed females but not males. No statistically significant methylome changes were detected in male hippocampus or in cortex of either sex. We conclude that exposure to lead during embryonic life, a time when the organism is most sensitive to environmental cues, appears to have a sex- and tissue-specific effect on DNA methylation that may produce pathological or physiological deviations from the epigenetic plasticity operative in unexposed mice. PMID:25530354

  5. Tissue-Specific MicroRNA Expression Patterns in Four Types of Kidney Disease.

    PubMed

    Baker, Maria Angeles; Davis, Seth J; Liu, Pengyuan; Pan, Xiaoqing; Williams, Anna Marie; Iczkowski, Kenneth A; Gallagher, Sean T; Bishop, Kaylee; Regner, Kevin R; Liu, Yong; Liang, Mingyu

    2017-10-01

    MicroRNAs contribute to the development of kidney disease. Previous analyses of microRNA expression in human kidneys, however, were limited by tissue heterogeneity or the inclusion of only one pathologic type. In this study, we used laser-capture microdissection to obtain glomeruli and proximal tubules from 98 human needle kidney biopsy specimens for microRNA expression analysis using deep sequencing. We analyzed specimens from patients with diabetic nephropathy (DN), FSGS, IgA nephropathy (IgAN), membranoproliferative GN (MPGN) (n=19-23 for each disease), and a control group (n=14). Compared with control glomeruli, DN, FSGS, IgAN, and MPGN glomeruli exhibited differential expression of 18, 12, two, and 17 known microRNAs, respectively. The expression of several microRNAs also differed between disease conditions. Specifically, compared with control or FSGS glomeruli, IgAN glomeruli exhibited downregulated expression of hsa-miR-3182. Furthermore, in combination, the expression levels of hsa-miR-146a-5p and hsa-miR-30a-5p distinguished DN from all other conditions except IgAN. Compared with control proximal tubules, DN, FSGS, IgAN, and MPGN proximal tubules had differential expression of 13, 14, eight, and eight microRNAs, respectively, but expression of microRNAs did not differ significantly between the disease conditions. The abundance of several microRNAs correlated with indexes of renal function. Finally, we validated the differential glomerular expression of select microRNAs in a second cohort of patients with DN (n=19) and FSGS (n=21). In conclusion, we identified tissue-specific microRNA expression patterns associated with several kidney pathologies. The identified microRNAs could be developed as biomarkers of kidney diseases and might be involved in disease mechanisms. Copyright © 2017 by the American Society of Nephrology.

  6. Effects of ovariectomy and intrinsic aerobic capacity on tissue-specific insulin sensitivity

    PubMed Central

    Park, Young-Min; Rector, R. Scott; Thyfault, John P.; Zidon, Terese M.; Padilla, Jaume; Welly, Rebecca J.; Meers, Grace M.; Morris, Matthew E.; Britton, Steven L.; Koch, Lauren G.; Booth, Frank W.; Kanaley, Jill A.

    2015-01-01

    High-capacity running (HCR) rats are protected against the early (i.e., ∼11 wk postsurgery) development of ovariectomy (OVX)-induced insulin resistance (IR) compared with low-capacity running (LCR) rats. The purpose of this study was to utilize the hyperinsulinemic euglycemic clamp to determine whether 1) HCR rats remain protected from OVX-induced IR when the time following OVX is extended to 27 wk and 2) tissue-specific glucose uptake differences are responsible for the protection in HCR rats under sedentary conditions. Female HCR and LCR rats (n = 40; aged ∼22 wk) randomly received either OVX or sham (SHM) surgeries and then underwent the clamp 27 wk following surgeries. [3-3H]glucose was used to determine glucose clearance, whereas 2-[14C]deoxyglucose (2-DG) was used to assess glucose uptake in skeletal muscle, brown adipose tissue (BAT), subcutaneous white adipose tissue (WAT), and visceral WAT. OVX decreased the glucose infusion rate and glucose clearance in both lines, but HCR had better insulin sensitivity than LCR (P < 0.05). In both lines, OVX significantly reduced glucose uptake in soleus and gastrocnemius muscles; however, HCR showed ∼40% greater gastrocnemius glucose uptake compared with LCR (P < 0.05). HCR also exhibited greater glucose uptake in BAT and visceral WAT compared with LCR (P < 0.05), yet these tissues were not affected by OVX in either line. In conclusion, OVX impairs insulin sensitivity in both HCR and LCR rats, likely driven by impairments in insulin-mediated skeletal muscle glucose uptake. HCR rats have greater skeletal muscle, BAT, and WAT insulin-mediated glucose uptake, which may aid in protection against OVX-associated insulin resistance. PMID:26646101

  7. Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seedling development.

    PubMed

    Maucher, H; Hause, B; Feussner, I; Ziegler, J; Wasternack, C

    2000-01-01

    Allene oxide synthase (AOS) is the first enzyme in the lipoxygenase (LOX) pathway which leads to formation of jasmonic acid (JA). Two full-length cDNAs of AOS designated as AOS1 and AOS2, respectively, were isolated from barley (H. vulgare cv. Salome) leaves, which represent the first AOS clones from a monocotyledonous species. For AOS1, the open reading frame encompasses 1461 bp encoding a polypeptide of 487 amino acids with calculated molecular mass of 53.4 kDa and an isoelectric point of 9.3, whereas the corresponding data of AOS2 are 1443 bp, 480 amino acids, 52.7 kDa and 7.9. Southern blot analysis revealed at least two genes. Despite the lack of a putative chloroplast signal peptide in both sequences, the protein co-purified with chloroplasts and was localized within chloroplasts by immunocytochemical analysis. The barley AOSs, expressed in bacteria as active enzymes, catalyze the dehydration of LOX-derived 9- as well as 13-hydroperoxides of polyenoic fatty acids to the unstable allene oxides. In leaves, AOS mRNA accumulated upon treatment with jasmonates, octadecanoids and metabolizable carbohydrates, but not upon floating on abscisic acid, NaCl, Na-salicylate or infection with powdery mildew. In developing seedlings, AOS mRNA strongly accumulated in the scutellar nodule, but less in the leaf base. Both tissues exhibited elevated JA levels. In situ hybridizations revealed the preferential occurrence of AOS mRNA in parenchymatic cells surrounding the vascular bundles of the scutellar nodule and in the young convoluted leaves as well as within the first internode. The properties of both barley AOSs, their up-regulation of their mRNAs and their tissue specific expression suggest a role during seedling development and jasmonate biosynthesis.

  8. Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella.

    PubMed

    Sicard, Adrien; Kappel, Christian; Lee, Young Wha; Woźniak, Natalia Joanna; Marona, Cindy; Stinchcombe, John R; Wright, Stephen I; Lenhard, Michael

    2016-11-29

    Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genus Capsella Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease in SAP activity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles.

  9. Genetic Dissection of Tissue-Specific Apolipoprotein E Function for Hypercholesterolemia and Diet-Induced Obesity.

    PubMed

    Wagner, Tobias; Bartelt, Alexander; Schlein, Christian; Heeren, Joerg

    2015-01-01

    ApoE deficiency in mice (Apoe-/-) results in severe hypercholesterolemia and atherosclerosis. In diet-induced obesity, Apoe-/- display steatohepatitis but reduced accumulation of triacylglycerides and enhanced insulin sensitivity in white adipose tissue (WAT). Although the vast majority of apoE is expressed by hepatocytes apoE is also abundantly expressed in WAT. As liver and adipose tissue play important roles for metabolism, this study aims to outline functions of both hepatocyte- and adipocyte-derived apoE separately by investigating a novel mouse model of tissue-specific apoE deficiency. Therefore we generated transgenic mice carrying homozygous floxed Apoe alleles. Mice lacking apoE either in hepatocytes (ApoeΔHep) or in adipose tissue (ApoeΔAT) were fed experimental diets. ApoeΔHep exhibited slightly higher body weights, adiposity and liver weights on diabetogenic high fat diet (HFD). Accordingly, hepatic steatosis and markers of inflammation were more pronounced compared to controls. Hypercholesterolemia evoked by lipoprotein remnant accumulation was present in ApoeΔHep mice fed a Western type diet (WTD). Lipidation of VLDL particles and tissue uptake of VLDL were disturbed in ApoeΔHep while the plasma clearance rate remained unaltered. ApoeΔAT did not display any detectable phenotype, neither on HFD nor on WTD. In conclusion, our novel conditional apoE deletion model has proven here the role of hepatocyte apoE for VLDL production and diet-induced dyslipidemia. Specific deletion of apoE in adipocytes cannot reproduce the adipose phenotype of global Apoe-/- mice, suggesting that apoE produced in other cell types than hepatocytes or adipocytes explains the lean and insulin-sensitive phenotype described for Apoe-/- mice.

  10. Genetic Dissection of Tissue-Specific Apolipoprotein E Function for Hypercholesterolemia and Diet-Induced Obesity

    PubMed Central

    Schlein, Christian; Heeren, Joerg

    2015-01-01

    ApoE deficiency in mice (Apoe−/−) results in severe hypercholesterolemia and atherosclerosis. In diet-induced obesity, Apoe−/− display steatohepatitis but reduced accumulation of triacylglycerides and enhanced insulin sensitivity in white adipose tissue (WAT). Although the vast majority of apoE is expressed by hepatocytes apoE is also abundantly expressed in WAT. As liver and adipose tissue play important roles for metabolism, this study aims to outline functions of both hepatocyte- and adipocyte-derived apoE separately by investigating a novel mouse model of tissue-specific apoE deficiency. Therefore we generated transgenic mice carrying homozygous floxed Apoe alleles. Mice lacking apoE either in hepatocytes (ApoeΔHep) or in adipose tissue (ApoeΔAT) were fed experimental diets. ApoeΔHep exhibited slightly higher body weights, adiposity and liver weights on diabetogenic high fat diet (HFD). Accordingly, hepatic steatosis and markers of inflammation were more pronounced compared to controls. Hypercholesterolemia evoked by lipoprotein remnant accumulation was present in ApoeΔHep mice fed a Western type diet (WTD). Lipidation of VLDL particles and tissue uptake of VLDL were disturbed in ApoeΔHep while the plasma clearance rate remained unaltered. ApoeΔAT did not display any detectable phenotype, neither on HFD nor on WTD. In conclusion, our novel conditional apoE deletion model has proven here the role of hepatocyte apoE for VLDL production and diet-induced dyslipidemia. Specific deletion of apoE in adipocytes cannot reproduce the adipose phenotype of global Apoe−/− mice, suggesting that apoE produced in other cell types than hepatocytes or adipocytes explains the lean and insulin-sensitive phenotype described for Apoe−/− mice. PMID:26695075

  11. A tissue-specific landscape of sense/antisense transcription in the mouse intestine.

    PubMed

    Klostermeier, Ulrich C; Barann, Matthias; Wittig, Michael; Häsler, Robert; Franke, Andre; Gavrilova, Olga; Kreck, Benjamin; Sina, Christian; Schilhabel, Markus B; Schreiber, Stefan; Rosenstiel, Philip

    2011-06-10

    The intestinal mucosa is characterized by complex metabolic and immunological processes driven highly dynamic gene expression programs. With the advent of next generation sequencing and its utilization for the analysis of the RNA sequence space, the level of detail on the global architecture of the transcriptome reached a new order of magnitude compared to microarrays. We report the ultra-deep characterization of the polyadenylated transcriptome in two closely related, yet distinct regions of the mouse intestinal tract (small intestine and colon). We assessed tissue-specific transcriptomal architecture and the presence of novel transcriptionally active regions (nTARs). In the first step, signatures of 20,541 NCBI RefSeq transcripts could be identified in the intestine (74.1% of annotated genes), thereof 16,742 are common in both tissues. Although the majority of reads could be linked to annotated genes, 27,543 nTARs not consistent with current gene annotations in RefSeq or ENSEMBL were identified. By use of a second independent strand-specific RNA-Seq protocol, 20,966 of these nTARs were confirmed, most of them in vicinity of known genes. We further categorized our findings by their relative adjacency to described exonic elements and investigated regional differences of novel transcribed elements in small intestine and colon. The current study demonstrates the complexity of an archetypal mammalian intestinal mRNA transcriptome in high resolution and identifies novel transcriptionally active regions at strand-specific, single base resolution. Our analysis for the first time shows a strand-specific comparative picture of nTARs in two tissues and represents a resource for further investigating the transcriptional processes that contribute to tissue identity.

  12. Tissue-specific transcription profiles of sex steroid biosynthesis enzymes and the androgen receptor.

    PubMed

    Hoppe, U; Holterhus, P-M; Wünsch, L; Jocham, D; Drechsler, T; Thiele, S; Marschke, C; Hiort, O

    2006-08-01

    17beta-hydroxysteroid dehydrogenase (17beta-HSD) and 5alpha-reductase isoenzymes play a crucial role in the formation and metabolism of sex steroids. Not only the key androgens testosterone and dihydrotestosterone but also their precursors are potent activators of the androgen receptor and are, therefore, likely to act as determinants of male sexual differentiation and maturation in a differentially regulated way. The aim of the present study was to relatively quantify the expression of the mRNA of 17beta-HSD isoenzymes, namely, type 1, 2, 3, 4, 5, 7, and 10, together with the 5alpha-reductase type 1 and 2, and the androgen receptor in normal human males and females. RNA was isolated from peripheral blood cells of both sexes and from genital skin fibroblasts (GSFs) of two different localizations (foreskin and scrotal skin) obtained from phenotypically normal males. mRNA expression was semi-quantified by quantitative reverse-transcriptase polymerase chain reaction with the LightCycler Instrument (Roche). The examined enzymes show statistically significant differences in their transcription pattern between the blood and the GSF RNA samples. Within the GSF samples, there are also significant variations between the two examined localizations in the transcription of 17beta-HSD type 1, 2, 4, and 5 as well as for the androgen receptor. We found large interindividual variation of enzyme transcription patterns in all investigated tissues. In peripheral blood cells, no sex-specific differences were seen. We conclude that sex steroid enzymes are expressed not only in genital primary target tissues but also in peripheral blood. The expression in different target tissues may contribute to both the individual sexual and tissue-specific phenotype in humans.

  13. Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    PubMed Central

    Mittapalli, Omprakash; Bai, Xiaodong; Bonello, Pierluigi; Herms, Daniel A.

    2010-01-01

    Background The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. Methodology and Principal Findings Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. Conclusions and Significance To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis. PMID:21060843

  14. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline*

    PubMed Central

    Zhu, Xun; Xie, Shangbo; Armengaud, Jean; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Wu, Qingjun; Wang, Shaoli; Xia, Jixing; He, Rongjun; Zhang, Youjun

    2016-01-01

    The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest. PMID:26902207

  15. Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella

    PubMed Central

    Sicard, Adrien; Lee, Young Wha; Woźniak, Natalia Joanna; Marona, Cindy; Stinchcombe, John R.; Wright, Stephen I.; Lenhard, Michael

    2016-01-01

    Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genus Capsella. Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease in SAP activity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles. PMID:27849572

  16. Regulation of Dpp activity by tissue-specific cleavage of an upstream site within the prodomain

    PubMed Central

    Sopory, Shailaja; Kwon, Sunjong; Wehrli, Marcel; Christian, Jan L.

    2010-01-01

    BMP4 is synthesized as an inactive precursor that is cleaved at two sites during maturation: initially at a site (S1) adjacent to the ligand domain, and then at an upstream site (S2) within the prodomain. Cleavage at the second site regulates the stability of mature BMP4 and this in turn influences its signaling intensity and range of action. The Drosophila ortholog of BMP4, Dpp, functions as a long- or short-range signaling molecule in the wing disc or embryonic midgut, respectively but mechanisms that differentially regulate its bioactivity in these tissues have not been explored. In the current studies we demonstrate, by dpp mutant rescue, that cleavage at the S2 site of proDpp is required for development of the wing and leg imaginal discs, whereas cleavage at the S1 site is sufficient to rescue Dpp function in the midgut. Both the S1 and S2 site of proDpp are cleaved in the wing disc, and S2-cleavage is essential to generate sufficient ligand to exceed the threshold for pMAD activation at both short- and long-range in most cells. By contrast, proDpp is cleaved at the S1 site alone in the embryonic mesoderm and this generates sufficient ligand to activate physiological target genes in neighboring cells. These studies provide the first biochemical and genetic evidence that that selective cleavage of the S2 site of proDPP provides a tissue-specific mechanism for regulating Dpp activity, and that differential cleavage can contribute to, but is not an absolute determinant of signaling range. PMID:20659445

  17. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function.

    PubMed

    Jonker, Jacqueline T; de Mol, Pieter; de Vries, Suzanna T; Widya, Ralph L; Hammer, Sebastiaan; van Schinkel, Linda D; van der Meer, Rutger W; Gans, Rijk O B; Webb, Andrew G; Kan, Hermien E; de Koning, Eelco J P; Bilo, Henk J G; Lamb, Hildo J

    2013-11-01

    To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics committee. The study followed 12 patients with type 2 diabetes mellitus (seven men; mean age, 46 years ± 2 [standard error]) before and after 6 months of moderate-intensity exercise, followed by a high-altitude trekking expedition with exercise of long duration. Abdominal, epicardial, and paracardial fat volume were measured by using magnetic resonance (MR) imaging. Cardiac function was quantified with cardiac MR, and images were analyzed by a researcher who was supervised by a senior researcher (4 and 21 years of respective experience in cardiac MR). Hepatic, myocardial, and intramyocellular triglyceride (TG) content relative to water were measured with proton MR spectroscopy at 1.5 and 7 T. Two-tailed paired t tests were used for statistical analysis. Exercise reduced visceral abdominal fat volume from 348 mL ± 57 to 219 mL ± 33 (P < .01), and subcutaneous abdominal fat volume remained unchanged (P = .9). Exercise decreased hepatic TG content from 6.8% ± 2.3 to 4.6% ± 1.6 (P < .01) and paracardial fat volume from 4.6 mL ± 0.9 to 3.7 mL ± 0.8 (P = .02). Exercise did not change epicardial fat volume (P = .9), myocardial TG content (P = .9), intramyocellular lipid content (P = .3), or cardiac function (P = .5). A 6-month exercise intervention in type 2 diabetes mellitus decreased hepatic TG content and visceral abdominal and paracardial fat volume, which are associated with increased cardiovascular risk, but cardiac function was unaffected. Tissue-specific exercise-induced changes in body fat distribution in type 2 diabetes mellitus were demonstrated in this study. RSNA, 2013

  18. Tissue-Specific Epigenetic Modifications in Root Apical Meristem Cells of Hordeum vulgare

    PubMed Central

    Braszewska-Zalewska, Agnieszka J.; Wolny, Elzbieta A.; Smialek, Lukasz; Hasterok, Robert

    2013-01-01

    Epigenetic modifications of chromatin structure are essential for many biological processes, including growth and reproduction. Patterns of DNA and histone modifications have recently been widely studied in many plant species, although there is virtually no data on the spatial and temporal distribution of epigenetic markers during plant development. Accordingly, we have used immunostaining techniques to investigate epigenetic modifications in the root apical meristem of Hordeum vulgare. Histone H4 acetylation (H4K5ac), histone H3 dimethylation (H3K4me2, H3K9me2) and DNA methylation (5mC) patterns were established for various root meristem tissues. Distinct levels of those modifications were visualised in the root cap, epidermis, cortex and vascular tissues. The lateral root cap cells seem to display the highest level of H3K9me2 and 5mC. In the epidermis, the highest level of 5mC and H3K9me2 was detected in the nuclei from the boundary of the proximal meristem and the elongation zone, while the vascular tissues were characterized by the highest level of H4K5ac. Some of the modified histones were also detectable in the cytoplasm in a highly tissue-specific manner. Immunolocalisation of epigenetic modifications of chromatin carried out in this way, on longitudinal or transverse sections, provides a unique topographic context within the organ, and will provide some answers to the significant biological question of tissue differentiation processes during root development in a monocotyledon plant species. PMID:23935955

  19. Tissue specificity in rat peripheral nerve regeneration through combined skeletal muscle and vein conduit grafts.

    PubMed

    Tos, P; Battiston, B; Geuna, S; Giacobini-Robecchi, M G; Hill, M A; Lanzetta, M; Owen, E R

    2000-01-01

    Diffusible factors from the distal stumps of transected peripheral nerves exert a neurotropic effect on regenerating nerves in vivo (specificity). This morphological study was designed to investigate the existence of tissue specificity in peripheral nerve fiber regeneration through a graft of vein filled with fresh skeletal muscle. This tubulization technique demonstrated experimental and clinical results similar to those obtained with traditional autologous nerve grafts. Specifically, we used Y-shaped grafts to assess the orientation pattern of regenerating axons in the distal stump tissue. Animal models were divided into four experimental groups. The proximal part of the Y-shaped conduit was sutured to a severed tibial nerve in all experiments. The two distal stumps were sutured to different targets: group A to two intact nerves (tibial and peroneal), group B to an intact nerve and an unvascularized tendon, group C to an intact nerve and a vascularized tendon, and group D to a nerve graft and an unvascularized tendon. Morphological evaluation by light and electron microscopy was conducted in the distal forks of the Y-shaped tube. Data showed that almost all regenerating nerve fibers spontaneously oriented towards the nerve tissue (attached or not to the peripheral innervation field), showing a good morphological pattern of regeneration in both the early and late phases of regeneration. When the distal choice was represented by a tendon (vascularized or not), very few nerve fibers were detected in the corresponding distal fork of the Y-shaped graft. These results show that, using the muscle-vein-combined grafting technique, regenerating axons are able to correctly grow and orientate within the basement membranes of the graft guided by the neurotropic lure of the distal nerve stump. Copyright 2000 Wiley-Liss, Inc.

  20. A Tissue-Specific Approach to the Analysis of Metabolic Changes in Caenorhabditis elegans

    PubMed Central

    Pujol, Claire; Ipsen, Sabine; Brodesser, Susanne; Mourier, Arnaud; Tolnay, Markus; Frank, Stephan; Trifunović, Aleksandra

    2011-01-01

    The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E) stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX) to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens. PMID:22162770

  1. Bombyx E75 isoforms display stage- and tissue-specific responses to 20-hydroxyecdysone

    PubMed Central

    Li, Kang; Guo, Enen; Hossain, Muktadir S.; Li, Qingrong; Cao, Yang; Tian, Ling; Deng, Xiaojuan; Li, Sheng

    2015-01-01

    Resulted from alternative splicing of the 5′ exons, the nuclear receptor gene E75 in the silkworm, Bombyx mori, processes three mRNA isoforms, BmE75A, BmE75B and BmE75C. From the early 5th larval instar to the prepupal stages, BmE75A mRNA and protein levels in the prothoracic glands display developmental profiles similar to ecdysteroid titer. In the fat body, mRNA levels but not protein levels of all three BmE75 isoforms correlate with ecdysteroid titer; moreover, proteins of all three BmE75 isoforms disappear at the prepupal stages, and a modified BmE75 protein with smaller molecular weight and cytoplasm localization occurs. At the early 5th larval instar stage, treatment of the prothoracic glands and fat body with 20-hydroxyecdysone (20E) and/or cycloheximide (CHX) revealed that BmE75A is 20E primary-responsive at both mRNA and protein levels, while BmE75B and BmE75C exhibit various responses to 20E. At the early wandering stage, RNAi-mediated reduction of gene expression of the 20E nuclear receptor complex, EcR-USP, significantly decreased mRNA and protein levels of all three BmE75 isoforms in both tissues. In conclusion, BmE75 isoforms display stage- and tissue-specific responses to 20E at both mRNA and protein levels; moreover, they are regulated by other unknown factors at the protein level. PMID:26166384

  2. Complex tissue-specific patterns and distribution of multiple RAGE splice variants in different mammals.

    PubMed

    López-Díez, Raquel; Rastrojo, Alberto; Villate, Olatz; Aguado, Begoña

    2013-01-01

    The receptor for advanced glycosylation end products (RAGE) is a multiligand receptor involved in diverse cell signaling pathways. Previous studies show that this gene expresses several splice variants in human, mouse, and dog. Alternative splicing (AS) plays an important role in expanding transcriptomic and proteomic diversity, and it has been related to disease. AS is also one of the main evolutionary mechanisms in mammalian genomes. However, limited information is available regarding the AS of RAGE in a wide context of mammalian tissues. In this study, we examined in detail the different RAGE mRNAs generated by AS from six mammals, including two primates (human and monkey), two artiodactyla (cow and pig), and two rodentia (mouse and rat) in 6-18 different tissues including fetal, adult, and tumor. By nested reverse transcription-polymerase chain reaction (RT-PCR) we identified a high number of splice variants including noncoding transcripts and predicted coding ones with different potential protein modifications affecting mainly the transmembrane and ligand-binding domains that could influence their biological function. However, analysis of RNA-seq data enabled detecting only the most abundant splice variants. More than 80% of the detected RT-PCR variants (87 of 101 transcripts) are novel (different exon/intron structure to the previously described ones), and interestingly, 20-60% of the total transcripts (depending on the species) are noncoding ones that present tissue specificity. Our results suggest that RAGE undergoes extensive AS in mammals, with different expression patterns among adult, fetal, and tumor tissues. Moreover, most splice variants seem to be species specific, especially the noncoding variants, with only two (canonical human Tv1-RAGE, and human N-truncated or Tv10-RAGE) conserved among the six different species. This could indicate a special evolution pattern of this gene at mRNA level.

  3. Cloning, characterization and tissue specific expression of Amur tiger (Panthera tigris altaica) IGF-I.

    PubMed

    Hu, Xi-Lian; Zhu, Mu-Yuan; Zhang, Zhi-He; Hou, Rong; Shen, Fu-Jun; Li, Fu-Zhen; Zhang, An-Ju

    2006-08-01

    Insulin-like growth factor I (IGF-I) plays an important role in regulating gonad function, which is essential for normal reproduction in animals, especially in sexual receptivity and reproductive behavior. In this study, a cDNA encoding Amur tiger (Panthera tigris altaica) IGF-I was isolated from liver total RNA using RT-PCR. The IGF-I cDNA of Amur tiger (ATIGF-I) was highly homologous to that of other animals, 84.8% to rat, 93.7% to human and horse. Alignment analysis showed that the cysteine residues and many amino acid residues of putative mature ATIGF-I are highly conserved in mammalian species, confirming the high sequence homology observed in other species. DNA encoding the mature ATIGF-I peptide was ligated with pET-DsbA expression vector and highly expressed in Escherichia coli BL21 with IPTG induction. The recombinant proteins expressed existed mostly in the soluble protein fraction, and were purified with metal affinity resins. Western blotting confirmed that the recombinant proteins reacted with antibodies against IGF-I. The results obtained here should be useful for large-scale production of biological active ATIGF-I protein, as well as for further research on growth, development, and reproduction in the Amur tiger. Tissue specific expression of ATIGF-I mRNA in the Amur tiger was examined by reverse transcription-polymerase chain reaction (RT-PCR), The major ATIGF-I mRNA expression tissue was the liver, while medium signals were found in the uterus, ovary, and pituitary, and minor signals were detected in various tissues including the heart, spleen, pancreas, and kidney. The results indicate that IGF-I might play an important role in the reproductive system and in cub development in the Amur tiger.

  4. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish.

    PubMed

    Gombeau, Kewin; Pereira, Sandrine; Ravanat, Jean-Luc; Camilleri, Virginie; Cavalie, Isabelle; Bourdineaud, Jean-Paul; Adam-Guillermin, Christelle

    2016-04-01

    We examined the effects of chronic exposure to different concentrations (2 and 20 μg L(-)(1)) of environmentally relevant waterborne depleted uranium (DU) on the DNA methylation patterns both at HpaII restriction sites (5'-CCGG-3') and across the whole genome in the zebrafish brain, gonads, and eyes. We first identified sex-dependent differences in the methylation level of HpaII sites after exposure. In males, these effects were present as early as 7 days after exposure to 20 μg L(-)(1) DU, and were even more pronounced in the brain, gonads, and eyes after 24 days. However, in females, hypomethylation was only observed in the gonads after exposure to 20 μg L(-)(1) DU for 24 days. Sex-specific effects of DU were also apparent at the whole-genome level, because in males, exposure to 20 μg L(-)(1) DU for 24 days resulted in cytosine hypermethylation in the brain and eyes and hypomethylation in the gonads. In contrast, in females, hypermethylation was observed in the brain after exposure to both concentrations of DU for 7 days. Based on our current knowledge of uranium toxicity, several hypotheses are proposed to explain these findings, including the involvement of oxidative stress, alteration of demethylation enzymes and the calcium signaling pathway. This study reports, for the first time, the sex- and tissue-specific epigenetic changes that occur in a nonhuman organism after exposure to environmentally relevant concentrations of uranium, which could induce transgenerational epigenetic effects.

  5. A tissue-specific approach to the analysis of metabolic changes in Caenorhabditis elegans.

    PubMed

    Hench, Jürgen; Bratić Hench, Ivana; Pujol, Claire; Ipsen, Sabine; Brodesser, Susanne; Mourier, Arnaud; Tolnay, Markus; Frank, Stephan; Trifunović, Aleksandra

    2011-01-01

    The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E) stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX) to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens.

  6. Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis

    PubMed Central

    Audebert, Stéphane; Helmbacher, Françoise; Dono, Rosanna; Maina, Flavio

    2015-01-01

    The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF) receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26 stopMet knock-in context (Del-R26 Met) reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an RTK when occurring

  7. Tissue-specific accumulation of metallothionein as influenced by route of zinc administration

    SciTech Connect

    Fleet, J.C.; McCormick, C.C.

    1986-03-05

    The effect of route of administration of zinc (Zn) on the induction of metallothionein (MT) in the liver, kidney and pancreas of chicks was examined. Four-week-old chicks were assigned to one of four treatments: 5 mg Zn/kg intraperitoneal (IP) injection, 5 mg Zn/kg intravenous (IV) injection, 16 mg Zn oral (O) dose, or an appropriate control (C). Zn was administered as Zn acetate dissolved in distilled deionized water, except for the IV solution, which was made isotonic by addition of 0.9% NaCl and 0.1% glucose. Chicks were fasted for 12 hours, treated, sacrificed 24 hours later and tissues removed. Analysis of tissues was conducted using the modified Cd/sup 109//hemaglobin affinity assay of Eaton and Toal (1982). All tissues, within each treatment, were significantly induced relative to control levels. Kidney was consistently the least induced tissue across all treatments (IP, 137.0 +/- 27.4 ..mu..g MT/g tissue above saline control level; O, 83.8 +/- 18.0; IV 18.2 +/- 3.71). A comparison of tissue MT accumulation with treatments showed that liver was induced to a greater extent than pancreas for the IP treatment (pancreas/liver ratio = 0.68 +/- 0.03). In contrast, the reverse trend was seen for both O (1.52 +/- 0.40) and IV (1.92 +/- 0.37), indicating greater pancreatic accumulation. Their results suggest that route of administration has a marked effect on the tissue-specific accumulation of MT, perhaps through factors independent of the metal, zinc.

  8. Tissue-specific accumulation of hepatic zinc metallothionein following parenteral iron loading

    SciTech Connect

    McCormick, C.C.

    1984-05-01

    The synthesis in various tissues of the unique metal-binding protein, metallothionein, can be influenced by the administration of certain trace elements. Zinc and cadmium, both of which bind to metallothionein, are most widely recognized as potent inducers. Preliminary results in our laboratory suggested that iron loading causes a marked accumulation of hepatic zinc metallothionein. In this report the effects of parenteral iron administration on metallothionein concentration in various tissues are presented. Male chicks (300-350 g) received (ip) either a single injection (+1 Fe) of iron (10 mg Fe/kg, as FeCl/sub 3/), two injections (+2 Fe) given 24-hr apart, three injections (+3 Fe) each given 24-hr apart, or an equivalent volume of 0.9% saline (control). Twenty-four hours following the final injection, chicks were killed and tissues analyzed for cytoplasmic zinc and metallothionein (Zn-MT). The parenteral administration of ferric iron, FeCl/sub 3/, resulted in a marked tissue-specific accumulation of zinc as metallothionein. In chicks given +2 Fe, hepatic Zn-MT increased more than 10-fold with a third injection (+3 Fe) causing no further change. The concentration of Zn-MT in renal and pancreatic tissue was unaffected by iron loading. An increase in hepatic Zn-MT was evident prior to detectable changes in total hepatic iron. The administration of other ferrous iron compounds at a similar rate produced comparable changes in hepatic Zn-MT. Feeding excess dietary iron, however, had no effect on liver Zn-MT levels even though similar hepatic iron concentrations were attained. Results indicated that parenteral administration, but not feeding, of various iron compounds causes a marked increase in zinc metallothionein, specifically in liver tissue.

  9. 17β-Estradiol suppresses visceral adipogenesis and activates brown adipose tissue-specific gene expression.

    PubMed

    Al-Qahtani, Saad Misfer; Bryzgalova, Galyna; Valladolid-Acebes, Ismael; Korach-André, Marion; Dahlman-Wright, Karin; Efendić, Suad; Berggren, Per-Olof; Portwood, Neil

    2017-01-01

    Both functional ovaries and estrogen replacement therapy (ERT) reduce the risk of type 2 diabetes (T2D). Understanding the mechanisms underlying the antidiabetic effects of 17β-estradiol (E2) may permit the development of a molecular targeting strategy for the treatment of metabolic disease. This study examines how the promotion of insulin sensitivity and weight loss by E2 treatment in high-fat-diet (HFD)-fed mice involve several anti-adipogenic processes in the visceral adipose tissue. Magnetic resonance imaging (MRI) revealed specific reductions in visceral adipose tissue volume in HFD+E2 mice, compared with HFD mice. This loss of adiposity was associated with diminished visceral adipocyte size and reductions in expression of lipogenic genes, adipokines and of the nuclear receptor nr2c2/tr4. Meanwhile, expression levels of adipose triglyceride lipase/pnpla2 and leptin receptor were increased. As mRNA levels of stat3, a transcription factor involved in brown adipose tissue differentiation, were also increased in visceral adipose, the expression of other brown adipose-specific markers was assessed. Both expression and immunohistochemical staining of ucp-1 were increased, and mRNA levels of dio-2, and of adrβ3, a regulator of ucp-1 expression during the thermogenic response, were increased. Furthermore, expression of cpt-1b, a brown adipose-specific gene involved in fatty acid utilization, was also increased. Methylation studies demonstrated that the methylation status of both dio-2 and adrβ3 was significantly reduced. These results show that improved glycemic control and weight loss due to E2 involve anti-adipogenic mechanisms which include suppressed lipogenesis and augmented fatty acid utilization, and in addition, the activation of brown adipose tissue-specific gene expression in association with E2-dependent epigenetic modifications in these genes.

  10. Early Chronotype and Tissue-Specific Alterations of Circadian Clock Function in Spontaneously Hypertensive Rats

    PubMed Central

    Sládek, Martin; Polidarová, Lenka; Nováková, Marta; Parkanová, Daniela; Sumová, Alena

    2012-01-01

    Malfunction of the circadian timing system may result in cardiovascular and metabolic diseases, and conversely, these diseases can impair the circadian system. The aim of this study was to reveal whether the functional state of the circadian system of spontaneously hypertensive rats (SHR) differs from that of control Wistar rat. This study is the first to analyze the function of the circadian system of SHR in its complexity, i.e., of the central clock in the suprachiasmatic nuclei (SCN) as well as of the peripheral clocks. The functional properties of the SCN clock were estimated by behavioral output rhythm in locomotor activity and daily profiles of clock gene expression in the SCN determined by in situ hybridization. The function of the peripheral clocks was assessed by daily profiles of clock gene expression in the liver and colon by RT-PCR and in vitro using real time recording of Bmal1-dLuc reporter. The potential impact of the SHR phenotype on circadian control of the metabolic pathways was estimated by daily profiles of metabolism-relevant gene expression in the liver and colon. The results revealed that SHR exhibited an early chronotype, because the central SCN clock was phase advanced relative to light/dark cycle and the SCN driven output rhythm ran faster compared to Wistar rats. Moreover, the output rhythm was dampened. The SHR peripheral clock reacted to the dampened SCN output with tissue-specific consequences. In the colon of SHR the clock function was severely altered, whereas the differences are only marginal in the liver. These changes may likely result in a mutual desynchrony of circadian oscillators within the circadian system of SHR, thereby potentially contributing to metabolic pathology of the strain. The SHR may thus serve as a valuable model of human circadian disorders originating in poor synchrony of the circadian system with external light/dark regime. PMID:23056539

  11. Tissue-specific expression and functional role of dehydrins in heat tolerance of sugarcane (Saccharum officinarum).

    PubMed

    Galani, Saddia; Wahid, Abdul; Arshad, Muhammad

    2013-04-01

    Studies on the functional roles of dehydrins (DHNs) in heat tolerance of plants are scarce. This study was conducted to immunohistolocalize DHNs in leaves of heat-tolerant (CP-4333) and heat-sensitive (HSF-240) sugarcane (Saccharum officinarum L.) clones at three phenological stages in order to elucidate their putative roles under heat stress. CP-4333 indicated greater amounts of heat-stable proteins than HSF-240 under heat stress. Western blotting revealed the expression of three DHNs in CP-4333 (13- and 15-kDa peptides at 48 h and an additional 18-kDa band at 72 h) and two (13 and 15 kDa at 48 h) in HSF-240 at formative stage; two DHNs in CP-4333 (20 and 25 kDa) and one in HSF-240 (20 kDa) at grand growth stage, while two DHNs in CP-4333 (20 and 22 kDa) and one in HSF-240 (20 kDa) at maturity stage. Tissue-specific immunohistolocalization showed that DHNs were expressed in stele particularly the phloem and the cells intervening bundle sheath and vascular bundles. Furthermore, DHNs were also found scattered along the epidermal and parenchymatous cells. Recovery of sugarcane from heat stress manifested a gradual disappearance of DHNs in both the clones, being quicker in sensitive clone (HSF-240). Results suggested specific implications for DHNs synthesis. Their synthesis in epidermis appears to protect the mesophyll tissues from heat injury. When associated to vascular tissue, they tend to ensure the normal photoassimilate loading into the sieve element-companion cell complex. DHNs diminution during recovery suggested that their expression was transitory. However, prolonged retention of DHNs by tolerant clone appears to be an adaptive advantage of sugarcane to withstand heat stress.

  12. Tissue-specific metabolic activation and mutagenicity of 3-nitrobenzanthrone in MutaMouse.

    PubMed

    Chen, Guosheng; Gingerich, John; Soper, Lynda; Douglas, George R; White, Paul A

    2008-10-01

    3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N-acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures. Published 2008 Wiley-Liss, Inc.

  13. Phylogenetic Analysis and Structural Predictions of Human Adenovirus Penton Proteins as a Basis for Tissue-Specific Adenovirus Vector Design▿

    PubMed Central

    Madisch, Ijad; Hofmayer, Soeren; Moritz, Christian; Grintzalis, Alexander; Hainmueller, Jens; Pring-Akerblom, Patricia; Heim, Albert

    2007-01-01

    The penton base is a major capsid protein of human adenoviruses (HAdV) which forms the vertices of the capsid and interacts with hexon and fiber protein. Two hypervariable loops of the penton are exposed on the capsid surface. Sequences of these and 300 adjacent amino acid residues of all 51 HAdV and closely related simian adenoviruses were studied. Adjacent sequences and predicted overall secondary structure were conserved. Phylogenetic analysis revealed clustering corresponding to the HAdV species and recombination events in the origin of HAdV prototypes. All HAdV except serotypes 40 and 41 of species F exhibited an integrin binding RGD motif in the second loop. The lengths of the loops (HVR1 and RGD loops) varied significantly between HAdV species with the longest RGD loop observed in species C and the longest HVR1 in species B. Long loops may permit the insertion of motifs that modify tissue tropism. Genetic analysis of HAdV prime strain p17′H30, a neutralization variant of HAdV-D17, indicated the significance of nonhexon neutralization epitopes for HAdV immune escape. Fourteen highly conserved motifs of the penton base were analyzed by site-directed mutagenesis of HAdV-D8 and tested for sustained induction of early cytopathic effects. Thus, three new motifs essential for penton base function were identified additionally to the RGD site, which interacts with a secondary cellular receptor responsible for internalization. Therefore, our penton primary structure data and secondary structure modeling in combination with the recently published fiber knob sequences may permit the rational design of tissue-specific adenoviral vectors. PMID:17522221

  14. The Influence of the Form of a Wooden Beam on Its Stiffness and Strength III : Stresses in Wood Members Subjected to Combined Column and Beam Action

    NASA Technical Reports Server (NTRS)

    Newlin, J A; Trayer, G W

    1925-01-01

    The general purpose in this study was to determine the stresses in a wooden member subjected to combined beam and column action. What may be considered the specific purpose, as it relates more directly to the problem of design, was to determine the particular stress that obtains at maximum load which, for combined loading, does not occur simultaneously with maximum stress.

  15. Genetic anticipation in a special form of hypertrophic cardiomyopathy with sudden cardiac death in a family with 74 members across 5 generations

    PubMed Central

    Guo, Xiying; Fan, Chaomei; Wang, Yanping; Wang, Miao; Cai, Chi; Yang, Yinjian; Zhao, Shihua; Duan, Fujian; Li, Yishi

    2017-01-01

    Abstract Hypertrophic cardiomyopathy (HCM) is the most common heritable heart disease. The genetic anticipation of HCM and its associated etiology, sudden cardiac death (SCD), remains unclear. The aim of this study was to investigate the mechanism underlying the genetic anticipation of HCM and associated SCD. An HCM family including 5 generations and 74 members was studied. Two-dimensional echocardiography was performed to diagnose HCM. The age of onset of HCM was defined as the age at first diagnosis according to hospital records. The information on SCD was confirmed by verification by ≥2 family members and a review of hospital records. Whole-genome sequencing was performed on 4 HCM subjects and 1 healthy control in the family. The identified mutations were screened in all available family members and 216 unrelated healthy controls by Sanger sequencing. The median ages of onset of HCM were 63.5, 38.5, and 18.0 years in members of the second, third, and fourth generations of the family, respectively, and the differences between the generations were significant (P < 0.001). The age at SCD also decreased with each subsequent generation (P < 0.05). In particular, among the third-generation family members, SCD occurred between 30 and 40 years of age at approximately 8 am, whereas among the fourth-generation family members, all 5 males who experienced SCD were 16 years of age and died at approximately 8 am. The sarcomere gene mutations MYH7-A719H and MYOZ2-L169G were detected in the HCM individuals in this pedigree. Increases in the number of mutations and the frequency of multiple gene mutations were observed in the younger generations. Moreover, a structural variant was present in the HCM phenotype–positive subjects but was absent in the HCM phenotype–negative subjects. HCM may exhibit genetic anticipation, with a decreased age of onset and increased severity in successive generations. Multiple gene mutations may contribute to genetic anticipation in HCM

  16. Conditional Tissue-Specific Foxa2 Ablation in Mouse Pancreas Causes Hyperinsulinemic Hypoglycemia: RETRACTED.

    PubMed

    Wu, Zengbin; Fei, Aihua; Liu, Yingbin; Pan, Shuming

    demonstrates that homozygous Foxa2 ablation leads to an imbalance in β/α ratio, profound hypoglucagonemia, inappropriate hyperinsulinemia, and hypoglycemia in mice. Our conditional tissue-specific Foxa2 ablation mouse model will be useful in elucidating regulation of normal and abnormal α- and β-cell differentiation and pinpointing novel targets for diabetes control.

  17. Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data

    PubMed Central

    Badr, Eman; ElHefnawi, Mahmoud; Heath, Lenwood S.

    2016-01-01

    Alternative splicing is a vital process for regulating gene expression and promoting proteomic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs). Here, we report a genome-wide analysis to study alternative splicing on multiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize the DEXSeq package along with our previously reported algorithms. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differentially used exons across the four tissues. We identified tissue-specific exonic splicing enhancers that overlap with various previously published experimental and computational databases. A complicated exonic enhancer regulatory network was revealed, where multiple exonic enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the exonic enhancers are found to be co-occurring with multiple exonic silencers and vice versa, which demonstrates a complicated relationship between tissue-specific exonic enhancers and silencers. PMID:27861625

  18. Biochemistry of Short-Chain Alkanes (Tissue-Specific Biosynthesis of n-Heptane in Pinus jeffreyi).

    PubMed

    Savage, T. J.; Hamilton, B. S.; Croteau, R.

    1996-01-01

    Short-chain (C7-C11) alkanes accumulate as the volatile component of oleoresin (pitch) in several pine species native to western North America. To establish the tissue most amenable for use in detailed studies of short-chain alkane biosynthesis, we examined the tissue specificity of alkane accumulation and biosynthesis in Pinus jeffreyi Grev. & Balf. Short-chain alkane accumulation was highly tissue specific in both 2-year-old saplings and mature trees; heart-wood xylem accumulated alkanes up to 7.1 mg g-1 dry weight, whereas needles and other young green tissue contained oleoresin with monoterpenoid, rather than paraffinic, volatiles. These tissue-specific differences in oleoresin composition appear to be a result of tissue-specific rates of alkane and monoterpene biosynthesis; incubation of xylem tissue with [14C]sucrose resulted in accumulation of radiolabel in alkanes but not monoterpenes, whereas incubation of foliar tissue with 14CO2 resulted in the accumulation of radiolabel in monoterpenes but not alkanes. Furthermore, incubation of xylem sections with [14C]acetate resulted in incorporation of radiolabel into alkanes at rates up to 1.7 nmol h-1 g-1 fresh weight, a rate that exceeds most biosynthetic rates reported with other plant systems for the incorporation of this basic precursor into natural products. This suggests that P. jeffreyi may provide a suitable model for elucidating the enzymology and molecular biology of short-chain alkane biosynthesis.

  19. Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus

    PubMed Central

    Bondarenko, Semen M.; Artemov, Gleb N.; Stegniy, Vladimir N.

    2017-01-01

    Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO—a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells. PMID:28158219

  20. Tissue-specific gene expression in medullary thyroid carcinoma cells employing calcitonin regulatory elements and AAV vectors.

    PubMed

    Jiang, S; Altmann, A; Grimm, D; Kleinschmidt, J A; Schilling, T; Germann, C; Haberkorn, U

    2001-07-01

    Calcitonin (CT), the major secretory product of the C cell, is also expressed in C-cell-derived neoplasia. To investigate the role of the CT gene regulatory sequence in tissue-specific gene expression, the genes coding for the herpes simplex virus thymidine kinase (HSVtk) and for the enhanced green fluorescent protein (EGFP) regulated by the CT promoter (rAAV/CT266tkneo), the CT promoter/enhancer element (rAAV/CTenhtkneo), or the cytomegalovirus (CMV) promoter (rAAV/CMVtkneo) were transduced by recombinant adenoassociated viral (AAV) vectors into the medullary thyroid carcinoma (MTC) cell lines TT and hMTC and into HeLa cells as controls. In TT cell lines and hMTC cell lines transiently infected by the rAAV/CT266tkneo viruses, a significant increase in (3)H ganciclovir uptake was observed. Upon ganciclovir treatment, TT cells infected by rAAV/CT266tkneo revealed a significant growth inhibition, which was less tissue-specific because HeLa cells were also affected by these particles (74.5%). In contrast, a minor but more tissue-specific growth inhibition (33.6%) was observed for TT cells after transient infection with the rAAV/CTenhtkneo particles. Employing EGFP controlled by CMV promoter and the individual CT regulatory sequences for transduction by rAAV particles, similar results were obtained indicating that both the CT promoter and enhancer element are required for tissue-specific gene expression in MTC.

  1. X-linkage is not a general inhibitor of tissue-specific gene expression in Drosophila melanogaster.

    PubMed

    Argyridou, E; Huylmans, A K; Königer, A; Parsch, J

    2017-07-01

    As a consequence of its difference in copy number between males and females, the X chromosome is subject to unique evolutionary forces and gene regulatory mechanisms. Previous studies of Drosophila melanogaster have shown that the expression of X-linked, testis-specific reporter genes is suppressed in the male germline. However, it is not known whether this phenomenon is restricted to testis-expressed genes or if it is a more general property of genes with tissue-specific expression, which are also underrepresented on the X chromosome. To test this, we compared the expression of three tissue-specific reporter genes (ovary, accessory gland and Malpighian tubule) inserted at various autosomal and X-chromosomal locations. In contrast to testis-specific reporter genes, we found no reduction of X-linked expression in any of the other tissues. In accessory gland and Malpighian tubule, we detected higher expression of the X-linked reporter genes, which suggests that they are at least partially dosage compensated. We found no difference in the tissue-specificity of X-linked and autosomal reporter genes. These findings indicate that, in general, the X chromosome is not a detrimental environment for tissue-specific gene expression and that the suppression of X-linked expression is limited to the male germline.

  2. Biochemistry of Short-Chain Alkanes (Tissue-Specific Biosynthesis of n-Heptane in Pinus jeffreyi).

    PubMed Central

    Savage, T. J.; Hamilton, B. S.; Croteau, R.

    1996-01-01

    Short-chain (C7-C11) alkanes accumulate as the volatile component of oleoresin (pitch) in several pine species native to western North America. To establish the tissue most amenable for use in detailed studies of short-chain alkane biosynthesis, we examined the tissue specificity of alkane accumulation and biosynthesis in Pinus jeffreyi Grev. & Balf. Short-chain alkane accumulation was highly tissue specific in both 2-year-old saplings and mature trees; heart-wood xylem accumulated alkanes up to 7.1 mg g-1 dry weight, whereas needles and other young green tissue contained oleoresin with monoterpenoid, rather than paraffinic, volatiles. These tissue-specific differences in oleoresin composition appear to be a result of tissue-specific rates of alkane and monoterpene biosynthesis; incubation of xylem tissue with [14C]sucrose resulted in accumulation of radiolabel in alkanes but not monoterpenes, whereas incubation of foliar tissue with 14CO2 resulted in the accumulation of radiolabel in monoterpenes but not alkanes. Furthermore, incubation of xylem sections with [14C]acetate resulted in incorporation of radiolabel into alkanes at rates up to 1.7 nmol h-1 g-1 fresh weight, a rate that exceeds most biosynthetic rates reported with other plant systems for the incorporation of this basic precursor into natural products. This suggests that P. jeffreyi may provide a suitable model for elucidating the enzymology and molecular biology of short-chain alkane biosynthesis. PMID:12226177

  3. Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data.

    PubMed

    Badr, Eman; ElHefnawi, Mahmoud; Heath, Lenwood S

    2016-01-01

    Alternative splicing is a vital process for regulating gene expression and promoting proteomic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs). Here, we report a genome-wide analysis to study alternative splicing on multiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize the DEXSeq package along with our previously reported algorithms. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differentially used exons across the four tissues. We identified tissue-specific exonic splicing enhancers that overlap with various previously published experimental and computational databases. A complicated exonic enhancer regulatory network was revealed, where multiple exonic enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the exonic enhancers are found to be co-occurring with multiple exonic silencers and vice versa, which demonstrates a complicated relationship between tissue-specific exonic enhancers and silencers.

  4. Tissue-specific features of the X chromosome and nucleolus spatial dynamics in a malaria mosquito, Anopheles atroparvus.

    PubMed

    Bondarenko, Semen M; Artemov, Gleb N; Sharakhov, Igor V; Stegniy, Vladimir N

    2017-01-01

    Spatial organization of chromosome territories is important for maintenance of genomic stability and regulation of gene expression. Recent studies have shown tissue-specific features of chromosome attachments to the nuclear envelope in various organisms including malaria mosquitoes. However, other spatial characteristics of nucleus organization, like volume and shape of chromosome territories, have not been studied in Anopheles. We conducted a thorough analysis of tissue-specific features of the X chromosome and nucleolus volume and shape in follicular epithelium and nurse cells of the Anopheles atroparvus ovaries using a modern open-source software. DNA of the polytene X chromosome from ovarian nurse cells was obtained by microdissection and was used as a template for amplification with degenerate oligo primers. A fluorescently labeled X chromosome painting probe was hybridized with formaldehyde-fixed ovaries of mosquitoes using a 3D-FISH method. The nucleolus was stained by immunostaining with an anti-fibrillarin antibody. The analysis was conducted with TANGO-a software for a chromosome spatial organization analysis. We show that the volume and position of the X chromosome have tissue-specific characteristics. Unlike nurse cell nuclei, the growth of follicular epithelium nuclei is not accompanied with the proportional growth of the X chromosome. However, the shape of the X chromosome does not differ between the tissues. The dynamics of the X chromosome attachment regions location is tissue-specific and it is correlated with the process of nucleus growth in follicular epithelium and nurse cells.

  5. Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome.

    PubMed

    Feizi, Amir; Gatto, Francesco; Uhlen, Mathias; Nielsen, Jens

    2017-01-01

    Protein secretory pathway in eukaryal cells is responsible for delivering functional secretory proteins. The dysfunction of this pathway causes a range of important human diseases from congenital disorders to cancer. Despite the piled-up knowledge on the molecular biology and biochemistry level, the tissue-specific expression of the secretory pathway genes has not been analyzed on the transcriptome level. Based on the recent RNA-sequencing studies, the largest fraction of tissue-specific transcriptome encodes for the secretome (secretory proteins). Here, the question arises that if the expression levels of the secretory pathway genes have a tissue-specific tuning. In this study, we tackled this question by performing a meta-analysis of the recently published transcriptome data on human tissues. As a result, we detected 68 as called "extreme genes" which show an unusual expression pattern in specific gene families of the secretory pathway. We also inspected the potential functional link between detected extreme genes and the corresponding tissues enriched secretome. As a result, the detected extreme genes showed correlation with the enrichment of the nature and number of specific post-translational modifications in each tissue's secretome. Our findings conciliate both the housekeeping and tissue-specific nature of the protein secretory pathway, which we attribute to a fine-tuned regulation of defined gene families to support the diversity of secreted proteins and their modifications.

  6. Molecular cloning of tissue-specific transcripts of a transketolase-related gene: Implications for the evolution of new vertebrate genes

    SciTech Connect

    Coy, J.F.; Duebel, S.; Kioschis, P.; Delius, H.; Poustka, A.

    1996-03-05

    As part of a systematic search for differentially expressed genes, we have isolated a novel transketolase-related gene (TKR) (HGMW-approved symbol TKT), located between the green color vision pigment gene (GCP) and the ABP-280 filamin gene (FLN1) in Xq28. Transcripts encoding tissue-specific protein isoforms could be isolated. Comparison with known transketolases (TK) demonstrated a TKR-specific deletion mutating one thiamine binding site. Genomic sequencing of the TKR gene revealed the presence of a pseudoexon as well as the acquisition of a tissue-specific spliced exon compared to TK. Since it has been postulated that the vertebrate genome arose by two cycles of tetraploidization from a cephalochordate genome, this could represent an example of the modulation of the function of a preexisting transketolase gene by gene duplication. Thiamine defiency is closely involved with two neurological disorders, Beriberi and Wernicke-Korsakoff syndromes, and in both of these conditions TK with altered activity are found. We discuss the possible involvement of TKR in explaining the observed variant transketolase forms. 34 refs., 4 figs., 1 tab.

  7. A proximal tissue-specific module and a distal negative regulatory module control apolipoprotein(a) gene transcription.

    PubMed Central

    Negi, Sarita; Singh, Saurabh K; Pati, Nirupma; Handa, Vikas; Chauhan, Ruchi; Pati, Uttam

    2004-01-01

    The apo(a) [apolipoprotein(a)] gene is responsible for variations in plasma lipoprotein(a), high levels of which are a risk factor for atherosclerosis and myocardial infarction. The apo(a) promoter stimulates the expression of reporter genes in HepG2 cells, but not in HeLa cells. In the present study, we demonstrate that the 1.4 kb apo(a) promoter comprises two composite regulatory regions: a distal negative regulatory module (positions -1432 to -716) and a proximal tissue-specific module (-716 to -616). The distal negative regulatory module contains two strong negative regulatory regions [polymorphic PNR (pentanucleotide repeat region) and NREbeta (negative regulatory element beta)], which sandwich the postive regulatory region PREbeta (positive regulatory element beta). The PNR was shown to bind to transcription factors in a tissue-specific manner, whereas the ubiquitous transcription factors hepatocyte nuclear factor 3alpha and GATA binding protein 4 bound to NREbeta to repress gene transcription. The proximal tissue-specific module contains two regulatory elements: an activating region (PREalpha) that activates transcription in HepG2 cells, and NREalpha, which is responsible for repressing the apo(a) gene in HeLa cells. NREalpha binds to a HeLa-specific repressor. These multiple regulatory elements might work co-operatively to finely regulate apo(a) gene expression. Although the tissue-specific module is required for apo(a) gene activation and repression in a tissue-specific manner, the combinatorial interplay of the distal and proximal regulators might define the complex pathway(s) of apo(a) gene regulation. PMID:14680477

  8. Identification of CTLA2A, DEFB29, WFDC15B, SERPINA1F and MUP19 as Novel Tissue-Specific Secretory Factors in Mouse

    PubMed Central

    Zhang, Jibin; Ahn, Jinsoo; Suh, Yeunsu; Hwang, Seongsoo; Davis, Michael E.; Lee, Kichoon

    2015-01-01

    Secretory factors in animals play an important role in communication between different cells, tissues and organs. Especially, the secretory factors with specific expression in one tissue may reflect important functions and unique status of that tissue in an organism. In this study, we identified potential tissue-specific secretory factors in the fat, muscle, heart, lung, kidney and liver in the mouse by analyzing microarray data from NCBI’s Gene Expression Omnibus (GEO) public repository and searching and predicting their subcellular location in GeneCards and WoLF PSORT, and then confirmed tissue-specific expression of the genes using semi-quantitative PCR reactions. With this approach, we confirmed 11 lung, 7 liver, 2 heart, 1 heart and muscle, 7 kidney and 2 adipose and liver-specific secretory factors. Among these genes, 1 lung-specific gene - CTLA2A (cytotoxic T lymphocyte-associated protein 2 alpha), 3 kidney-specific genes - SERPINA1F (serpin peptidase inhibitor, Clade A, member 1F), WFDC15B (WAP four-disulfide core domain 15B) and DEFB29 (defensin beta 29) and 1 liver-specific gene - MUP19 (major urinary protein 19) have not been reported as secretory factors. These genes were tagged with hemagglutinin at the 3’end and then transiently transfected to HEK293 cells. Through protein detection in cell lysate and media using Western blotting, we verified secretion of the 5 genes and predicted the potential pathways in which they may participate in the specific tissue through data analysis of GEO profiles. In addition, alternative splicing was detected in transcripts of CTLA2A and SERPINA1F and the corresponding proteins were found not to be secreted in cell culture media. Identification of novel secretory factors through the current study provides a new platform to explore novel secretory factors and a general direction for further study of these genes in the future. PMID:25946105

  9. The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development.

    PubMed

    Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank

    2013-01-01

    The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.

  10. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.

    PubMed

    Ni, Jingchao; Koyuturk, Mehmet; Tong, Hanghang; Haines, Jonathan; Xu, Rong; Zhang, Xiang

    2016-11-10

    Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods

  11. Light-regulated, tissue-specific immunophilins in a higher plant.

    PubMed Central

    Luan, S; Albers, M W; Schreiber, S L

    1994-01-01

    In addition to their application in organ transplantation, immunosuppressive drugs are valuable tools for studying signal transduction in eukaryotic cells. Using affinity chromatography, we have purified immunosuppressive drug receptors (immunophilins) from fava bean. Proteins belonging to both major classes of the immunophilin family identified from animal sources [FK506- and rapamycin-binding proteins (FKBPs) and cyclophilins] were present in this higher plant. FKBP13, the most abundant FKBP family member in leaf tissues, was not detected in root tissues, whereas other FKBPs were present in both tissues. While the abundance of cyclophilin A in leaves was similar to that in roots, cyclophilin B/C was expressed at a much higher level in leaf tissues than in root tissues. Subcellular localization of immunophilins in mesophyll cells showed that chloroplasts contained FKBP13 and cyclophilin B/C but not other members, which explains the preferential expression of these two proteins in leaves over roots. The abundance of chloroplast-localized immunophilins, FKBP13 and cyclophilin B/C, was regulated by light. Although etiolated leaves produced detectable levels of cyclophilin B/C, they did not express FKBP13. Illumination of etiolated plants dramatically increased the expression of both FKBP13 and cyclophilin B/C. The light-induced expression of FKBP13 is closely correlated with the accumulation of chlorophyll in the leaf tissue. Our findings suggest that FKBP13 and cyclophilin B/C may play a specific role in chloroplasts. Images PMID:7508125

  12. Pore forming activity of the potent RTX-toxin produced by pediatric pathogen Kingella kingae: characterization and comparison to other RTX-family members*

    PubMed Central

    Bárcena-Uribarri, Iván; Benz, Roland; Winterhalter, Mathias; Zakharian, Eleonora; Balashova, Nataliya

    2015-01-01

    Pediatric septic arthritis in patients under age of four is frequently caused by the oral Gram-negative bacterium Kingella kingae. This organism may be responsible for a severe form of infective endocarditis in otherwise healthy children and adults. A major virulence factor of K. kingae is RtxA, a toxin that belongs to the RTX (Repeats-in-ToXin) group of secreted pore forming toxins. To understand the RtxA effects on host cell membranes, the toxin activity was studied using planar lipid bilayers. K. kingae strain PYKK081 and its isogenic RtxA-deficient strain, KKNB100, were tested for their ability to form pores in artificial membranes of asolectin/n-decane. RtxA, purified from PYKK081, was able to rapidly form pores with an apparent diameter of 1.9 nm as measured by the partition of nonelectrolytes in the pores. The RtxA channels are cation-selective and showed strong voltage-dependent gating. In contrast to supernatants of PYKK081, those of KKNB100 did not show any pore forming activity. We concluded that RtxA toxin is the only secreted protein from K. kingae forming large channels in host cell membranes where it induces cation flux leading to programmed cell death. Furthermore, our findings suggested that the planar lipid bilayer technique can effectively be used to test possible inhibitors of RTX toxin activity and to investigate the mechanism of the toxin binding to the membrane. PMID:25858109

  13. Pore forming activity of the potent RTX-toxin produced by pediatric pathogen Kingella kingae: Characterization and comparison to other RTX-family members.

    PubMed

    Bárcena-Uribarri, Iván; Benz, Roland; Winterhalter, Mathias; Zakharian, Eleonora; Balashova, Nataliya

    2015-07-01

    Pediatric septic arthritis in patients under age of four is frequently caused by the oral Gram-negative bacterium Kingella kingae. This organism may be responsible for a severe form of infective endocarditis in otherwise healthy children and adults. A major virulence factor of K. kingae is RtxA, a toxin that belongs to the RTX (Repeats-in-ToXin) group of secreted pore forming toxins. To understand the RtxA effects on host cell membranes, the toxin activity was studied using planar lipid bilayers. K. kingae strain PYKK081 and its isogenic RtxA-deficient strain, KKNB100, were tested for their ability to form pores in artificial membranes of asolectin/n-decane. RtxA, purified from PYKK081, was able to rapidly form pores with an apparent diameter of 1.9nm as measured by the partition of nonelectrolytes in the pores. The RtxA channels are cation-selective and showed strong voltage-dependent gating. In contrast to supernatants of PYKK081, those of KKNB100 did not show any pore forming activity. We concluded that RtxA toxin is the only secreted protein from K. kingae forming large channels in host cell membranes where it induces cation flux leading to programmed cell death. Furthermore, our findings suggested that the planar lipid bilayer technique can effectively be used to test possible inhibitors of RTX toxin activity and to investigate the mechanism of the toxin binding to the membrane.

  14. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics.

    PubMed

    Fagerberg, Linn; Hallström, Björn M; Oksvold, Per; Kampf, Caroline; Djureinovic, Dijana; Odeberg, Jacob; Habuka, Masato; Tahmasebpoor, Simin; Danielsson, Angelika; Edlund, Karolina; Asplund, Anna; Sjöstedt, Evelina; Lundberg, Emma; Szigyarto, Cristina Al-Khalili; Skogs, Marie; Takanen, Jenny Ottosson; Berling, Holger; Tegel, Hanna; Mulder, Jan; Nilsson, Peter; Schwenk, Jochen M; Lindskog, Cecilia; Danielsson, Frida; Mardinoglu, Adil; Sivertsson, Asa; von Feilitzen, Kalle; Forsberg, Mattias; Zwahlen, Martin; Olsson, IngMarie; Navani, Sanjay; Huss, Mikael; Nielsen, Jens; Ponten, Fredrik; Uhlén, Mathias

    2014-02-01

    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.

  15. Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors.

    PubMed Central

    Hanamura, A; Cáceres, J F; Mayeda, A; Franza, B R; Krainer, A R

    1998-01-01

    The SR proteins are essential metazoan pre-mRNA splicing factors that can also influence the selection of alternative 5' splice sites in a concentration-dependent manner. Their activity in alternative splicing in vitro is antagonized by members of the hnRNP A/B family of proteins. The opposite effects of members of these two families of antagonistic splicing factors in vitro and upon overexpression in vivo suggest that changes in their relative levels may be a natural mechanism for the regulation of alternative splicing in vivo. One prediction of this model is that the ratios of these antagonists should vary in different cell types and in other situations in which cellular or viral transcripts are differentially spliced. We raised monoclonal antibodies specific for SF2/ASF and used them to measure the abundance of SF2/ASF protein and its isoforms, its phosphorylation state in vivo and during splicing in vitro, and its association with the spliceosome. SF2/ASF exists predominantly or exclusively in a highly phosphorylated state in vivo in all cell types examined, and unphosphorylated protein was not detectable. Unphosphorylated recombinant SF2/ASF becomes rapidly phosphorylated under splicing conditions in HeLa cell extracts and associates stably with one or more exons of beta-globin pre-mRNA. This interaction appears to persist through the splicing reaction and SF2/ASF remains bound to spliced mRNA. We compared the distribution of SF2/ASF to that of its antagonist, hnRNP A1, in different rat tissues and in immortal and transformed cell lines. We found that the protein levels of these antagonistic splicing factors vary naturally over a very wide range, supporting the notion that changes in the ratio of these proteins can affect alternative splicing of a variety of pre-mRNAs in vivo. PMID:9630249

  16. Tissue-Specific Expression of Estrogen Receptor 1 Is Regulated by DNA Methylation in a T-DMR.

    PubMed

    Maekawa, Ryo; Sato, Shun; Okada, Maki; Lee, Lifa; Tamura, Isao; Jozaki, Kosuke; Kajimura, Takuya; Asada, Hiromi; Yamagata, Yoshiaki; Tamura, Hiroshi; Yamamoto, Shigeru; Sugino, Norihiro

    2016-03-01

    The mechanism controlling tissue-specific expression of estrogen receptor 1 (ESR1) is unclear. In other genes, DNA methylation of a region called the tissue-dependent and differentially methylated region (T-DMR) has been associated with tissue-specific gene expression. This study investigated whether human ESR1 has a T-DMR and whether DNA methylation of the T-DMR regulates its expression. ESR1 expression was tissue-specific, being high in the endometrium and mammary gland and low/nil in the placenta and skin. Therefore, DNA methylation profiles of the promoter of ESR1 were analyzed in these tissues and in breast cancer tissues. In all of the normal tissues, the proximal promoter regions were unmethylated. On the other hand, the distal regions (T-DMR) were unmethylated in the endometrium and mammary gland, but were moderately methylated and hypermethylated in the placenta and skin, respectively. T-DMR-methylated reporter assay was performed to examine whether DNA methylation at the T-DMR suppresses ESR1 transcription. T-DMR, but not the promoter region, had transcriptional activities and DNA methylation of the T-DMR suppressed ESR1 transcription. Early growth response protein 1 was shown to be a possible transcription factor to bind the T-DMR and up-regulate ESR1 expression. ESR1 has several upstream exons, and each upstream exon, Exon-A/Exon-B/Exon-C, had its own T-DMR. In some breast cancer cases and breast cancer cell lines, ESR1 expression was not regulated by DNA methylation at T-DMR as it is in normal tissues. In conclusion, ESR1 has a T-DMR. DNA methylation status at the T-DMR is involved in tissue-specific ESR1 expression in normal tissues but not always in breast cancer.

  17. Responsiveness of genes to manipulation of transcription factors in ES cells is associated with histone modifications and tissue specificity

    PubMed Central

    2011-01-01

    Background In addition to determining static states of gene expression (high vs. low), it is important to characterize their dynamic status. For example, genes with H3K27me3 chromatin marks are not only suppressed but also poised for activation. However, the responsiveness of genes to perturbations has never been studied systematically. To distinguish gene responses to specific factors from responsiveness in general, it is necessary to analyze gene expression profiles of cells responding to a large variety of disturbances, and such databases did not exist before. Results We estimated the responsiveness of all genes in mouse ES cells using our recently published database on expression change after controlled induction of 53 transcription factors (TFs) and other genes. Responsive genes (N = 4746), which were readily upregulated or downregulated depending on the kind of perturbation, mostly have regulatory functions and a propensity to become tissue-specific upon differentiation. Tissue-specific expression was evaluated on the basis of published (GNF) and our new data for 15 organs and tissues. Non-responsive genes (N = 9562), which did not change their expression much following any perturbation, were enriched in housekeeping functions. We found that TF-responsiveness in ES cells is the best predictor known for tissue-specificity in gene expression. Among genes with CpG islands, high responsiveness is associated with H3K27me3 chromatin marks, and low responsiveness is associated with H3K36me3 chromatin, stronger tri-methylation of H3K4, binding of E2F1, and GABP binding motifs in promoters. Conclusions We thus propose the responsiveness of expression to perturbations as a new way to define the dynamic status of genes, which brings new insights into mechanisms of regulation of gene expression and tissue specificity. PMID:21306619

  18. Diet-induced weight loss has chronic tissue-specific effects on glucocorticoid metabolism in overweight postmenopausal women.

    PubMed

    Stomby, A; Simonyte, K; Mellberg, C; Ryberg, M; Stimson, R H; Larsson, C; Lindahl, B; Andrew, R; Walker, B R; Olsson, T

    2015-05-01

    Tissue-specific glucocorticoid metabolism is altered in obesity, and may increase cardiovascular risk. This dysregulation is normalized by short-term calorie restriction and weight loss, an effect that varies with dietary macronutrient composition. However, tissue-specific glucocorticoid metabolism has not been studied during long-term (>6 months) dietary interventions. Therefore our aim was to test whether long-term dietary interventions, either a paleolithic-type diet (PD) or a diet according to Nordic nutrition recommendations (NNR) could normalize tissue-specific glucocorticoid metabolism in overweight and obese women. Forty-nine overweight/obese postmenopausal women were randomized to a paleolithic diet or a diet according to NNR for 24 months. At baseline, 6 and 24 months anthropometric measurements, insulin sensitivity, excretion of urinary glucocorticoid metabolites in 24-hour collections, conversion of orally administered cortisone to plasma cortisol and transcript levels of 11β hydroxysteroid dehydrogenase type 1 (11βHSD1) in subcutaneous adipose tissue were studied. Both diet groups achieved significant and sustained weight loss. Weight loss with the PD was greater than on NNR diet after 6 months (P<0.001) but similar at 24 months. Urinary measurement of 5α-reductase activity was increased after 24 months in both groups compared with baseline (P<0.001). Subcutaneous adipose tissue 11βHSD1 gene expression decreased at 6 and 24 months in both diet groups (P=0.036). Consistent with increased liver 11βHSD1, conversion of oral cortisone to cortisol increased at 6 months (P=0.023) but was unchanged compared with baseline by 24 months. Long-term weight loss in postmenopausal women has tissue-specific and time-dependent effects on glucocorticoid metabolism. This may alter local-tissue cortisol exposure contributing to improved metabolic function during weight loss.

  19. Systems Biology of Tissue-Specific Response to Anaplasma phagocytophilum Reveals Differentiated Apoptosis in the Tick Vector Ixodes scapularis

    PubMed Central

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C.; Kocan, Katherine M.; Šíma, Radek; López, Juan A.; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A

  20. Supporting members

    NASA Astrophysics Data System (ADS)

    Life Supporting Members L. Thomas Aldrich Thomas D. Barrow Hugh J . A. Chivers Allan V. Cox Samuel S. Goldich Pembroke J. Hart A. Ivan Johnson Helmut E. Landsberg Paolo Lanzano Murli H. Manghnani L. L. Nettleton Charles B. Officer Hyman Orlin Ned A. Ostenso Erick O. Schonstedt Waldo E. Smith Athelstan Spilhaus A. F. Spilhaus, Jr. John W. Townsend, Jr. James A. Van Allen Leonard W. Weis Charles A. Whitten J. Tuzo Wilson

  1. A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis.

    PubMed

    Lee, Jee Eun; Chung, Moo K; Lazar, Mariana; DuBray, Molly B; Kim, Jinsuh; Bigler, Erin D; Lainhart, Janet E; Alexander, Andrew L

    2009-02-01

    Voxel-based analysis (VBA) is commonly used for statistical analysis of image data, including the detection of significant signal differences between groups. Typically, images are co-registered and then smoothed with an isotropic Gaussian kernel to compensate for image misregistration, to improve the signal-to-noise ratio (SNR), to reduce the number of multiple comparisons, and to apply random field theory. Problems with typical implementations of VBA include poor tissue specificity from image misregistration and smoothing. In this study, we developed a new tissue-specific, smoothing-compensated (T-SPOON) method for the VBA of diffusion tensor imaging (DTI) data with improved tissue specificity and compensation for image misregistration and smoothing. When compared with conventional VBA methods, the T-SPOON method introduced substantially less errors in the normalized and smoothed DTI maps. Another confound of the conventional DTI-VBA is that it is difficult to differentiate between differences in morphometry and DTI measures that describe tissue microstructure. T-SPOON VBA decreased the effects of differential morphometry in the DTI VBA studies. T-SPOON and conventional VBA were applied to a DTI study of white matter in autism. T-SPOON VBA results were found to be more consistent with region of interest (ROI) measurements in the corpus callosum and temporal lobe regions. The T-SPOON method may be also applicable to other quantitative imaging maps such as T1 or T2 relaxometry, magnetization transfer, or PET tracer maps.

  2. A Study of Diffusion Tensor Imaging by Tissue-Specific, Smoothing-Compensated Voxel-Based Analysis

    PubMed Central

    Lee, Jee Eun; Chung, Moo K.; Lazar, Mariana; DuBray, Molly B.; Kim, Jinsuh; Bigler, Erin D.; Lainhart, Janet E.; Alexander, Andrew L.

    2009-01-01

    Voxel-based analysis (VBA) is commonly used for statistical analysis of image data, including the detection of significant signal differences between groups. Typically, images are co-registered and then smoothed with an isotropic Gaussian kernel to compensate for image misregistration, to improve the signal-to-noise ratio (SNR), to reduce the number of multiple comparisons, and to apply random field theory. Problems with typical implementations of VBA include poor tissue specificity from image misregistration and smoothing. In this study, we developed a new tissue-specific, smoothing-compensated (T-SPOON) method for the VBA of diffusion tensor imaging (DTI) data with improved tissue specificity and compensation for image misregistration and smoothing. When compared with conventional VBA methods, the T-SPOON method introduced substantially less errors in the normalized and smoothed DTI maps. Another confound of the conventional DTI-VBA is that it is difficult to differentiate between differences in morphometry and DTI measures that describe tissue microstructure. T-SPOON VBA decreased the effects of differential morphometry in the DTI VBA studies. T-SPOON and conventional VBA were applied to a DTI study of white matter in autism. T-SPOON VBA results were found to be more consistent with region of interest (ROI) measurements in the corpus callosum and temporal lobe regions. The T-SPOON method may be also applicable to other quantitative imaging maps such as T1 or T2 relaxometry, magnetization transfer, or PET tracer maps. PMID:18976713

  3. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues

    PubMed Central

    Guo, Zhiyun; Maki, Miranda; Ding, Ruofan; Yang, Yalan; zhang, Bao; Xiong, Lili

    2014-01-01

    Tissue-specific miRNAs (TS miRNA) specifically expressed in particular tissues play an important role in tissue identity, differentiation and function. However, transcription factor (TF) and TS miRNA regulatory networks across multiple tissues have not been systematically studied. Here, we manually extracted 116 TS miRNAs and systematically investigated the regulatory network of TF-TS miRNA in 12 human tissues. We identified 2,347 TF-TS miRNA regulatory relations and revealed that most TF binding sites tend to enrich close to the transcription start site of TS miRNAs. Furthermore, we found TS miRNAs were regulated widely by non-tissue specific TFs and the tissue-specific expression level of TF have a close relationship with TF-genes regulation. Finally, we describe TSmiR (http://bioeng.swjtu.edu.cn/TSmiR), a novel and web-searchable database that houses interaction maps of TF-TS miRNA in 12 tissues. Taken together, these observations provide a new suggestion to better understand the regulatory network and mechanisms of TF-TS miRNAs underlying different tissues. PMID:24889152

  4. Comparative tissue-specific toxicities of 20 cancer preventive agents using cultured cells from 8 different normal human epithelia.

    PubMed

    Elmore, E; Luc, T T; Steele, V E; Redpath, J L

    2001-01-01

    Comparative toxicity was determined for twenty potential chemopreventive agents in the Human Epithelial Cell Cytotoxicity (HECC) Assay using epithelial cell cultures from eight different tissues including: skin, kidney, breast, bronchus, cervix, prostate, oral cavity, and liver. The endpoints assessed were inhibition of: growth at 3 and 5 days; mitochondrial function; and proliferating cell nuclear antigen or albumin expression. Difluoromethylornithine (DFMO), s-allylcysteine, dehydroepiandrosterone (DHEA) analogue 8543, l-selenomethionine, and vitamin E acetate were not toxic or only produced mild toxicity with all endpoints in all eight cell types. N-acetyl-l-cysteine, calcium chloride, DHEA, genistein, ibuprofen, indole-3-carbinol, 4-hydroxyphenylretinamide (4-HPR), oltipraz, piroxicam, phenylethyl isothiocyanate, 9-cis-retinoic acid, and p-xylylselenocyanate each showed at least a 10-fold decrease in their TC(50) (toxic concentration that inhibited growth by 50%) for at least one endpoint with one or more cell types. For some agents such as DHEA and piroxicam, the TC(50)s for growth inhibition were 10-fold lower after 5 days compared with 3 days. Unique tissue-specific toxicity was observed for each toxic agent suggesting that tissue-specific effects are the rule rather than the exception. The HECC Assay is effective in identifying tissue-specific toxicity for chemopreventive agents and may help to identify potential toxicity problems in phase I human clinical trials.

  5. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    PubMed

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  6. Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.).

    PubMed

    Pradhan, Seema; Kant, Chandra; Verma, Subodh; Bhatia, Sabhyata

    2017-01-01

    The CCCH zinc finger is a group of proteins characterised by a typical motif consisting of three cysteine residues and one histidine residue. These proteins have been reported to play important roles in regulation of plant growth, developmental processes and environmental responses. In the present study, genome wide analysis of the CCCH zinc finger gene family was carried out in the available chickpea genome. Various bioinformatics tools were employed to predict 58 CCCH zinc finger genes in chickpea (designated CarC3H1-58), which were analysed for their physio-chemical properties. Phylogenetic analysis classified the proteins into 12 groups in which members of a particular group had similar structural organization. Further, the numbers as well as the types of CCCH motifs present in the CarC3H proteins were compared with those from Arabidopsis and Medicago truncatula. Synteny analysis revealed valuable information regarding the evolution of this gene family. Tandem and segmental duplication events were identified and their Ka/Ks values revealed that the CarC3H gene family in chickpea had undergone purifying selection. Digital, as well as real time qRT-PCR expression analysis was performed which helped in identification of several CarC3H members that expressed preferentially in specific chickpea tissues as well as during abiotic stresses (desiccation, cold, salinity). Moreover, molecular characterization of an important member CarC3H45 was carried out. This study provides comprehensive genomic information about the important CCCH zinc finger gene family in chickpea. The identified tissue specific and abiotic stress specific CCCH genes could be potential candidates for further characterization to delineate their functional roles in development and stress.

  7. Crystal structure of the soluble form of the human fcgamma-receptor IIb: a new member of the immunoglobulin superfamily at 1.7 A resolution.

    PubMed Central

    Sondermann, P; Huber, R; Jacob, U

    1999-01-01

    Fcgamma-receptors (FcgammaRs) represent the link between the humoral and cellular immune responses. Via the binding to FcgammaR-positive cells, immunocomplexes trigger several functions such as endocytosis, antibody-dependent cell-mediated cytotoxity (ADCC) and the release of mediators, making them a valuable target for the modulation of the immune system. We solved the crystal structure of the soluble human Fcgamma-receptor IIb (sFcgammaRIIb) to 1.7 A resolution. The structure reveals two typical immunoglobulin (Ig)-like domains enclosing an angle of approximately 70 degrees, leading to a heart-shaped overall structure. In contrast to the observed flexible arrangement of the domains in other members of the Ig superfamily, the two domains are anchored by several hydrogen bonds. The structure reveals that the residues relevant for IgG binding, which were already partially characterized by mutagenesis studies, are located within the BC, C'E and FG loops between the beta-strands of the second domain. Moreover, we discuss a model for the sFcgammaRIIb:IgG complex. In this model, two FcgammaR molecules bind one IgG molecule with their second domains, while the first domain points away from the complex and is therefore available for binding other cell surface molecules, by which potential immunosuppressing functions could be mediated. PMID:10064577

  8. Stage and Tissue Specific Expression of Four TCR Subunits in Olive Flounder (Paralichthys olivaceus).

    PubMed

    Lee, Young Mee; Lee, Jeong-Ho; Noh, Jae Koo; Kim, Hyun Chul; Park, Choul-Ji; Park, Jong-Won; Hwang, In Joon; Kim, Sung Yeon

    2013-12-01

    TCR subunits are members of membrane-bound receptors which allow the fast and efficient elimination of the specific fish pathogens have regulated function in adaptive immunity. Sequence structure of TCR subunits have been reported for various teleosts, but the information of each TCR subunit functional characterization through expression analysis in fish was unknown. In this study, we examined the gene expression of TCR subunits in the early developmental stages and observed transcript levels in various tissues from healthy adult olive flounder by RT-PCR. The mRNA expression of alpha subunit was already detected in the previous hatching step. But the transcripts of another TCR subunit were not observed during embryo development and increased after hatching and maintained until metamorphosis at the same level. It was found that all TCR subunits mRNAs are commonly expressed in the immune-related organ such as spleen, kidney and gill, also weak expressed in fin and eye. TCR alpha and beta subunit were expressed in brain, whereas gamma and delta were not expressed same tissue. The sequence alignment analysis shows that there are more than 80% sequence homology between TCR subunits. Because it has a high similarity of amino acid sequence to expect similar in function, but expression analysis show that will have may functional diversity due to different time and place of expression.

  9. The Nuclear Receptor Rev-erbα Regulates Adipose Tissue-specific FGF21 Signaling.

    PubMed

    Jager, Jennifer; Wang, Fenfen; Fang, Bin; Lim, Hee-Woong; Peed, Lindsey C; Steger, David J; Won, Kyoung-Jae; Kharitonenkov, Alexei; Adams, Andrew C; Lazar, Mitchell A

    2016-05-13

    FGF21 is an atypical member of the FGF family that functions as a hormone to regulate carbohydrate and lipid metabolism. Here we demonstrate that the actions of FGF21 in mouse adipose tissue, but not in liver, are modulated by the nuclear receptor Rev-erbα, a potent transcriptional repressor. Interrogation of genes induced in the absence of Rev-erbα for Rev-erbα-binding sites identified βKlotho, an essential coreceptor for FGF21, as a direct target gene of Rev-erbα in white adipose tissue but not liver. Rev-erbα ablation led to the robust elevated expression of βKlotho. Consequently, the effects of FGF21 were markedly enhanced in the white adipose tissue of mice lacking Rev-erbα. A major Rev-erbα-controlled enhancer at the Klb locus was also bound by the adipocytic transcription factor peroxisome proliferator-activated receptor (PPAR) γ, which regulates its activity in the opposite direction. These findings establish Rev-erbα as a specific modulator of FGF21 signaling in adipose tissue. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Crystal structure of the ligand-binding form of nanoRNase from Bacteroides fragilis, a member of the DHH/DHHA1 phosphoesterase family of proteins.

    PubMed

    Uemura, Yuri; Nakagawa, Noriko; Wakamatsu, Taisuke; Kim, Kwang; Montelione, Gaetano Thomas; Hunt, John Francis; Kuramitsu, Seiki; Masui, Ryoji

    2013-08-19

    NanoRNase (Nrn) specifically degrades nucleoside 3',5'-bisphosphate and the very short RNA, nanoRNA, during the final step of mRNA degradation. The crystal structure of Nrn in complex with a reaction product GMP was determined. The overall structure consists of two domains that are interconnected by a flexible loop and form a cleft. Two Mn²⁺ ions are coordinated by conserved residues in the DHH motif of the N-terminal domain. GMP binds near the DHHA1 motif region in the C-terminal domain. Our structure enables us to predict the substrate-bound form of Nrn as well as other DHH/DHHA1 phosphoesterase family proteins.

  11. A Novel Approach to Prostate Cancer Chemotherapy: Design of Prodrugs for Tissue-Specific Activation

    DTIC Science & Technology

    1999-08-01

    of Linkers having a free amino group to form the corresponding lactam or cyclic urea, we used synthetic strategies that mask the amino group as an...Deprotection of the silyl ether 21 by fluoride ion and subsequent two-step oxidation of primary alcohol to the corresponding carboxylic acid afforded...remove excess phosgene ; after filtration and CH2Cl2 wash, the solvent was evaporated. The residue and 30 mg of 5-FUJNa (1 eq) were dried under vacuum for 1

  12. A Novel Approach to Prostate Cancer Chemotherapy: Design of Prodrugs for Tissue-Specific Activation

    DTIC Science & Technology

    2002-09-01

    of the potential facile cyclization of the Linkers having a free amino group to form the corresponding cyclic urea or lactam, we used synthetic...corresponding lactam or cyclic urea, we used synthetic strategies that mask the amino group as an inert nitro or azido group. Reduction to the...g) HBTU/DIEA/DMF, Dox.HCI, 62.6% compound 8 in 73% yield. Deprotection of the silyl ether 8 by fluoride ion and subsequent two-step oxidation of

  13. A complex Quaternary ignimbrite-forming phonolitic eruption: the Poris Member of the Diego Hernández Formation (Tenerife, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Edgar, C. J.; Wolff, J. A.; Nichols, H. J.; Cas, R. A. F.; Martí, J.

    2002-11-01

    The Poris Member (0.28 Ma) of the Diego Hernández Formation (Tenerife, Canary Islands) is a widespread succession of plinian fall, surge and non-welded ignimbrite deposits. It was erupted from the northeastern sector of the multicyclic Las Cañadas Caldera, the summit caldera complex of the Las Cañadas Edifice. We present new stratigraphic data which allow the evolution of the eruption to be divided into six main stages: (1) an initial surge-producing phreatomagmatic phase. (2) Generation of a buoyant plinian column culminating in vent-wall collapse and temporary vent blockage. (3) A resumption of phreatomagmatic activity, producing accretionary lapilli-bearing ash surges and a phreatomagmatic ignimbrite. (4) Sustained column collapse, resulting in the progressive aggradation of a complex, compositionally layered ignimbrite sequence. (5) A late plinian phase marked by sharp chemical zonation. (6) Final vent destruction and the generation of multiple surges and pyroclastic flows. Volume calculations indicate a total erupted volume in the order of 13-14 km 3 (3-4 km 3 dense rock equivalent), which together with facies and lithic analysis implies that a small-scale caldera collapse occurred, contributing to the incremental enlargement of the Las Cañadas Caldera. The geochemistry and mingling inter-relationships of four magmatic endmembers, ranging from alkaline mafic to evolved phonolitic liquids, indicate that two magma chambers fed stages 4 and 5 of the eruption sequence. The eruption was triggered when mafic magma intruded the two-chamber system.

  14. Tissue Specific Localization of Pectin–Ca2+ Cross-Linkages and Pectin Methyl-Esterification during Fruit Ripening in Tomato (Solanum lycopersicum)

    PubMed Central

    Hyodo, Hiromi; Terao, Azusa; Furukawa, Jun; Sakamoto, Naoya; Yurimoto, Hisayoshi; Satoh, Shinobu; Iwai, Hiroaki

    2013-01-01

    Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca2+) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue–tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue. PMID:24236073

  15. Tissue specific localization of pectin-Ca²⁺ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (Solanum lycopersicum).

    PubMed

    Hyodo, Hiromi; Terao, Azusa; Furukawa, Jun; Sakamoto, Naoya; Yurimoto, Hisayoshi; Satoh, Shinobu; Iwai, Hiroaki

    2013-01-01

    Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca²⁺) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue-tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.

  16. Protein profiles of Taenia solium cysts obtained from skeletal muscles and the central nervous system of pigs: Search for tissue-specific proteins.

    PubMed

    Navarrete-Perea, José; Moguel, Bárbara; Bobes, Raúl José; Villalobos, Nelly; Carrero, Julio César; Sciutto, Edda; Soberón, Xavier; Laclette, Juan Pedro

    2017-01-01

    Taeniasis/cysticercosis caused by the tapeworm Taenia solium is a parasite disease transmitted among humans and pigs, the main intermediate host. The larvae/cysts can lodge in several tissues of the pig, i.e. skeletal muscles and different locations of the central nervous system. The molecular mechanisms associated to tissue preferences of the cysts remain poorly understood. The major public health concern about this zoonosis is due to the human infections by the larval form in the central nervous system, causing a highly pleomorphic and debilitating disease known as neurocysticercosis. This study was aimed to explore the 2DE protein maps of T. solium cysts obtained from skeletal muscles and central nervous system of naturally infected pigs. The gel images were analyzed through a combination of PDQuest™ and multivariate analysis. Results showed that differences in the protein patterns of cysts obtained from both tissues were remarkably discrete. Only 7 protein spots were found specifically associated to the skeletal muscle localization of the cysts; none was found significantly associated to the central nervous system. The use of distinct protein fractions of cysts allowed preliminary identification of several tissue-specific antigenic bands. The implications of these findings are discussed, as well as several strategies directed to achieve the complete characterization of this parasite's proteome, in order to extend our understanding of the molecular mechanisms underlying tissue localization of the cysts and to open avenues for the development of immunological tissue-specific diagnosis of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects

    PubMed Central

    Stimac, Monika; Dolinsek, Tanja; Lampreht, Ursa; Cemazar, Maja; Sersa, Gregor

    2015-01-01

    Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined. PMID:25909447

  18. Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array

    PubMed Central

    2013-01-01

    Background DNA methylation has been recognized as a key mechanism in cell differentiation. Various studies have compared tissues to characterize epigenetically regulated genomic regions, but due to differences in study design and focus there still is no consensus as to the annotation of genomic regions predominantly involved in tissue-specific methylation. We used a new algorithm to identify and annotate tissue-specific differentially methylated regions (tDMRs) from Illumina 450k chip data for four peripheral tissues (blood, saliva, buccal swabs and hair follicles) and six internal tissues (liver, muscle, pancreas, subcutaneous fat, omentum and spleen with matched blood samples). Results The majority of tDMRs, in both relative and absolute terms, occurred in CpG-poor regions. Further analysis revealed that these regions were associated with alternative transcription events (alternative first exons, mutually exclusive exons and cassette exons). Only a minority of tDMRs mapped to gene-body CpG islands (13%) or CpG islands shores (25%) suggesting a less prominent role for these regions than indicated previously. Implementation of ENCODE annotations showed enrichment of tDMRs in DNase hypersensitive sites and transcription factor binding sites. Despite the predominance of tissue differences, inter-individual differences in DNA methylation in internal tissues were correlated with those for blood for a subset of CpG sites in a locus- and tissue-specific manner. Conclusions We conclude that tDMRs preferentially occur in CpG-poor regions and are associated with alternative transcription. Furthermore, our data suggest the utility of creating an atlas cataloguing variably methylated regions in internal tissues that correlate to DNA methylation measured in easy accessible peripheral tissues. PMID:23919675

  19. Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2) defects predicts differential effects on aminoacylation.

    PubMed

    Euro, Liliya; Konovalova, Svetlana; Asin-Cayuela, Jorge; Tulinius, Már; Griffin, Helen; Horvath, Rita; Taylor, Robert W; Chinnery, Patrick F; Schara, Ulrike; Thorburn, David R; Suomalainen, Anu; Chihade, Joseph; Tyynismaa, Henna

    2015-01-01

    The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes.

  20. Alteration of Drosophila life span using conditional, tissue-specific expression of transgenes triggered by doxycyline or RU486/Mifepristone.

    PubMed

    Ford, Daniel; Hoe, Nicholas; Landis, Gary N; Tozer, Kevin; Luu, Allan; Bhole, Deepak; Badrinath, Ananth; Tower, John

    2007-06-01

    The conditional systems Tet-on and Geneswitch were compared and optimized for the tissue-specific expression of transgenes and manipulation of life span in adult Drosophila. Two versions of Tet-on system reverse-tetracycline-Trans-Activator (rtTA) were compared: the original rtTA, and rtTAM2-alt containing mutations designed to optimize regulation and expression. The rtTAM2-alt version gave less leaky expression of target constructs in the absence of doxycyline, however the absolute level of expression that could be achieved was less than that produced by rtTA, in contrast to a previous report. Existing UAS-rtTAM2-alt insertions were re-balanced, and combined with several tissue-general and tissue-specific GAL4 driver lines to yield tissue-specific, doxycyline-inducible transgene expression over three orders of magnitude. The Geneswitch (GS) system also had low background, but the absolute level of expression was low relative to Tet-on. Consequently, actin5C-GS multi-insert chromosomes were generated and higher-level expression was achieved without increased background. Moderate level over-expression of MnSOD has beneficial effects on life span. Here high-level over-expression of MnSOD was found to have toxic effects. In contrast, motor-neuron-specific over-expression of MnSOD had no detectable effect on life span. The results suggest that motor-neuron tissue is not the essential tissue for either MnSOD induced longevity or toxicity in adult males.

  1. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein α-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the Gsα gene

    PubMed Central

    Yu, Shuhua; Yu, Dawen; Lee, Eric; Eckhaus, Michael; Lee, Randy; Corria, Zakia; Accili, Domenico; Westphal, Heiner; Weinstein, Lee S.

    1998-01-01

    Albright hereditary osteodystrophy (AHO), an autosomal dominant disorder characterized by short stature, obesity, and skeletal defects, is associated with heterozygous inactivating mutations of GNAS1, the gene encoding the heterotrimeric G protein α-subunit (Gsα) that couples multiple receptors to the stimulation of adenylyl cyclase. It has remained unclear why only some AHO patients present with multihormone resistance and why AHO patients demonstrate resistance to some hormones [e.g., parathyroid hormone (PTH)] but not to others (e.g., vasopressin), even though all activate adenylyl cyclase. We generated mice with a null allele of the mouse homolog Gnas. Homozygous Gs deficiency is embryonically lethal. Heterozygotes with maternal (m−/+) and paternal (+/p−) inheritance of the Gnas null allele have distinct phenotypes, suggesting that Gnas is an imprinted gene. PTH resistance is present in m−/+, but not +/p−, mice. Gsα expression in the renal cortex (the site of PTH action) is markedly reduced in m−/+ but not in +/p− mice, demonstrating that the Gnas paternal allele is imprinted in this tissue. Gnas is also imprinted in brown and white adipose tissue. The maximal physiological response to vasopressin (urinary concentrating ability) is normal in both m−/+ and +/p− mice and Gnas is not imprinted in the renal inner medulla (the site of vasopressin action). Tissue-specific imprinting of Gnas is likely the mechanism for variable and tissue-specific hormone resistance in these mice and a similar mechanism might explain the variable phenotype in AHO. PMID:9671744

  2. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes.

    PubMed

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-12-23

    Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression evolution of changed-tissues DE

  3. Cell- and Tissue-Specific Transcriptome Analyses of Medicago truncatula Root Nodules

    PubMed Central

    Limpens, Erik; Moling, Sjef; Hooiveld, Guido; Pereira, Patrícia A.; Bisseling, Ton; Becker, Jörg D.; Küster, Helge

    2013-01-01

    Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies. PMID:23734198

  4. Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability

    PubMed Central

    Woodward, Jessica; Taylor, Gillian C.; Soares, Dinesh C.; Boyle, Shelagh; Sie, Daoud; Read, David; Chathoth, Keerthi; Vukovic, Milica; Tarrats, Nuria; Jamieson, David; Campbell, Kirsteen J.; Blyth, Karen; Acosta, Juan Carlos; Ylstra, Bauke; Arends, Mark J.; Kranc, Kamil R.; Jackson, Andrew P.; Bickmore, Wendy A.

    2016-01-01

    Chromosomal instability is a hallmark of cancer, but mitotic regulators are rarely mutated in tumors. Mutations in the condensin complexes, which restructure chromosomes to facilitate segregation during mitosis, are significantly enriched in cancer genomes, but experimental evidence implicating condensin dysfunction in tumorigenesis is lacking. We report that mice inheriting missense mutations in a condensin II subunit (Caph2nes) develop T-cell lymphoma. Before tumors develop, we found that the same Caph2 mutation impairs ploidy maintenance to a different extent in different hematopoietic cell types, with ploidy most severely perturbed at the CD4+CD8+ T-cell stage from which tumors initiate. Premalignant CD4+CD8+ T cells show persistent catenations during chromosome segregation, triggering DNA damage in diploid daughter cells and elevated ploidy. Genome sequencing revealed that Caph2 single-mutant tumors are near diploid but carry deletions spanning tumor suppressor genes, whereas P53 inactivation allowed Caph2 mutant cells with whole-chromosome gains and structural rearrangements to form highly aggressive disease. Together, our data challenge the view that mitotic chromosome formation is an invariant process during development and provide evidence that defective mitotic chromosome structure can promote tumorigenesis. PMID:27737961

  5. Yki/YAP, Sd/TEAD and Hth/MEIS control tissue specification in the Drosophila eye disc epithelium.

    PubMed

    Zhang, Tianyi; Zhou, Qingxiang; Pignoni, Francesca

    2011-01-01

    During animal development, accurate control of tissue specification and growth are critical to generate organisms of reproducible shape and size. The eye-antennal disc epithelium of Drosophila is a powerful model system to identify the signaling pathway and transcription factors that mediate and coordinate these processes. We show here that the Yorkie (Yki) pathway plays a major role in tissue specification within the developing fly eye disc epithelium at a time when organ primordia and regional identity domains are specified. RNAi-mediated inactivation of Yki, or its partner Scalloped (Sd), or increased activity of the upstream negative regulators of Yki cause a dramatic reorganization of the eye disc fate map leading to specification of the entire disc epithelium into retina. On the contrary, constitutive expression of Yki suppresses eye formation in a Sd-dependent fashion. We also show that knockdown of the transcription factor Homothorax (Hth), known to partner Yki in some developmental contexts, also induces an ectopic retina domain, that Yki and Scalloped regulate Hth expression, and that the gain-of-function activity of Yki is partially dependent on Hth. Our results support a critical role for Yki- and its partners Sd and Hth--in shaping the fate map of the eye epithelium independently of its universal role as a regulator of proliferation and survival.

  6. The phosphorylation status of T522 modulates tissue-specific functions of SIRT1 in energy metabolism in mice.

    PubMed

    Lu, Jing; Xu, Qing; Ji, Ming; Guo, Xiumei; Xu, Xiaojiang; Fargo, David C; Li, Xiaoling

    2017-05-01

    SIRT1, the most conserved mammalian NAD(+)-dependent protein deacetylase, is an important metabolic regulator. However, the mechanisms by which SIRT1 is regulated in vivo remain unclear. Here, we report that phosphorylation modification of T522 on SIRT1 is crucial for tissue-specific regulation of SIRT1 activity in mice. Dephosphorylation of T522 is critical for repression of its activity during adipogenesis. The phospho-T522 level is reduced during adipogenesis. Knocking-in a constitutive T522 phosphorylation mimic activates the β-catenin/GATA3 pathway, repressing PPARγ signaling, impairing differentiation of white adipocytes, and ameliorating high-fat diet-induced dyslipidemia in mice. In contrast, phosphorylation of T522 is crucial for activation of hepatic SIRT1 in response to over-nutrition. Hepatic SIRT1 is hyperphosphorylated at T522 upon high-fat diet feeding. Knocking-in a SIRT1 mutant defective in T522 phosphorylation disrupts hepatic fatty acid oxidation, resulting in hepatic steatosis after high-fat diet feeding. In addition, the T522 dephosphorylation mimic impairs systemic energy metabolism. Our findings unveil an important link between environmental cues, SIRT1 phosphorylation, and energy homeostasis and demonstrate that the phosphorylation of T522 is a critical element in tissue-specific regulation of SIRT1 activity in vivo. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  7. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N

    SciTech Connect

    McAllister, G.; Amara, S.G.; Lerner, M.R. )

    1988-07-01

    Sera from some patients with systemic lupus erythematosus and other autoimmune diseases have antibodies against nuclear antigens. An example is anti-Sm sera, which recognize proteins associated with small nuclear RNA molecules (small nuclear ribonucleoprotein (snRNP) particles). In this paper anti-Sm sera were used to probe immunoblots of various rat tissues. A previously unidentified M{sub r} 28,000 polypeptide was recognized by these anti-Sm sera. This polypeptide, referred to as N, is expressed in a tissue-specific manner, being most abundant in rat brain, less so in heart, and undetectable in the other tissues examined. Immunoprecipitation experiments using antibodies directed against the cap structure of small nuclear RNAs have demonstrated that N is a snRNP-associated polypeptide. Anti-Sm serum was also used to isolate a partial cDNA clone ({lambda}rb91) from a rat brain phage {lambda}gt11 cDNA expression library. A longer cDNA clone was obtained by rescreening the library with {lambda}rb91. In vitro transcription and subsequent translation of this subcloned, longer insert (pGMA2) resulted in a protein product with the same electrophoretic and immunological properties as N, confirming that pGMA2 encodes N. The tissue distribution of N and the involvement of snRNP particles in nuclear pre-mRNA processing may imply a role for N in tissue-specific pre-mRNA splicing.

  8. Yki/YAP, Sd/TEAD and Hth/MEIS Control Tissue Specification in the Drosophila Eye Disc Epithelium

    PubMed Central

    Pignoni, Francesca

    2011-01-01

    During animal development, accurate control of tissue specification and growth are critical to generate organisms of reproducible shape and size. The eye-antennal disc epithelium of Drosophila is a powerful model system to identify the signaling pathway and transcription factors that mediate and coordinate these processes. We show here that the Yorkie (Yki) pathway plays a major role in tissue specification within the developing fly eye disc epithelium at a time when organ primordia and regional identity domains are specified. RNAi-mediated inactivation of Yki, or its partner Scalloped (Sd), or increased activity of the upstream negative regulators of Yki cause a dramatic reorganization of the eye disc fate map leading to specification of the entire disc epithelium into retina. On the contrary, constitutive expression of Yki suppresses eye formation in a Sd-dependent fashion. We also show that knockdown of the transcription factor Homothorax (Hth), known to partner Yki in some developmental contexts, also induces an ectopic retina domain, that Yki and Scalloped regulate Hth expression, and that the gain-of-function activity of Yki is partially dependent on Hth. Our results support a critical role for Yki- and its partners Sd and Hth - in shaping the fate map of the eye epithelium independently of its universal role as a regulator of proliferation and survival. PMID:21811580

  9. MEF2D drives photoreceptor development through a genome-wide competition for tissue-specific enhancers.

    PubMed

    Andzelm, Milena M; Cherry, Timothy J; Harmin, David A; Boeke, Annabel C; Lee, Charlotte; Hemberg, Martin; Pawlyk, Basil; Malik, Athar N; Flavell, Steven W; Sandberg, Michael A; Raviola, Elio; Greenberg, Michael E

    2015-04-08

    Organismal development requires the precise coordination of genetic programs to regulate cell fate and function. MEF2 transcription factors (TFs) play essential roles in this process but how these broadly expressed factors contribute to the generation of specific cell types during development is poorly understood. Here we show that despite being expressed in virtually all mammalian tissues, in the retina MEF2D binds to retina-specific enhancers and controls photoreceptor cell development. MEF2D achieves specificity by cooperating with a retina-specific factor CRX, which recruits MEF2D away from canonical MEF2 binding sites and redirects it to retina-specific enhancers that lack the consensus MEF2-binding sequence. Once bound to retina-specific enhancers, MEF2D and CRX co-activate the expression of photoreceptor-specific genes that are critical for retinal function. These findings demonstrate that broadly expressed TFs acquire specific functions through competitive recruitment to enhancers by tissue-specific TFs and through selective activation of these enhancers to regulate tissue-specific genes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery

    PubMed Central

    Stelzle, Florian; Knipfer, Christian; Adler, Werner; Rohde, Maximilian; Oetter, Nicolai; Nkenke, Emeka; Schmidt, Michael; Tangermann-Gerk, Katja

    2013-01-01

    Laser surgery provides a number of advantages over conventional surgery. However, it implies large risks for sensitive tissue structures due to its characteristic non-tissue-specific ablation. The present study investigates the discrimination of nine different ex vivo tissue types by using uncorrected (raw) autofluorescence spectra for the development of a remote feedback control system for tissue-selective laser surgery. Autofluorescence spectra (excitation wavelength 377 ± 50 nm) were measured from nine different ex vivo tissue types, obtained from 15 domestic pig cadavers. For data analysis, a wavelength range between 450 nm and 650 nm was investigated. Principal Component Analysis (PCA) and Quadratic Discriminant Analysis (QDA) were used to discriminate the tissue types. ROC analysis showed that PCA, followed by QDA, could differentiate all investigated tissue types with AUC results between 1.00 and 0.97. Sensitivity reached values between 93% and 100% and specificity values between 94% and 100%. This ex vivo study shows a high differentiation potential for physiological tissue types when performing autofluorescence spectroscopy followed by PCA and QDA. The uncorrected autofluorescence spectra are suitable for reliable tissue discrimination and have a high potential to meet the challenges necessary for an optical feedback system for tissue-specific laser surgery. PMID:24152930

  11. Tissue-specific regulation of the rabbit 15-lipoxygenase gene in erythroid cells by a transcriptional silencer.

    PubMed Central

    O'Prey, J; Harrison, P R

    1995-01-01

    The 15-lipoxygenase (lox) gene is expressed in a tissue-specific manner, predominantly in erythroid cells but also in airway epithelial cells and eosinophils. We demonstrate in this report that the 5' flanking DNA of the 15-lox gene contains sequences which down-regulate its activity in a variety of non-erythroid cell lines but not in two erythroid cell lines. The element has characteristics of a transcriptional 'silencer' since it functions in both orientations. The main activity of the silencer has been mapped to the first 900 bp of 5' flanking DNA, which contains nine binding sites for a nuclear factor present in non-erythroid cells but not in erythroid cells. These binding sites have similar sequences and multiple copies of the binding sites confer tissue-specific down-regulation when attached to a minimal lox promoter fragment. The 5' flanking DNA also contains a cluster of three binding sites for the GATA family of transcription factors. Images PMID:7478994

  12. LCR-mediated, long-term tissue-specific gene expression within replicating episomal plasmid and cosmid vectors.

    PubMed

    Chow, C-M; Athanassiadou, A; Raguz, S; Psiouri, L; Harland, L; Malik, M; Aitken, M A; Grosveld, F; Antoniou, M

    2002-03-01

    Locus control regions (LCRs) are transcriptional regulatory elements, which possess a dominant chromatin remodelling and transcriptional activating capability conferring full physiological levels of expression on a gene linked in cis, when integrated into the host cell genome. Using the human beta-globin LCR (betaLCR) as a model, we show that this class of control element can drive high levels of tissue-specific gene expression in stably transfected cultured cells from within an Epstein-Barr virus-based plasmid REV. Furthermore, a 38-kb betaLCR minilocus-REV cosmid vector was efficiently retained and maintained therapeutic levels of beta-globin transgene expression in the absence of drug selective pressure over a 2-month period of continuous culture equivalent to at least 60 generations. This demonstrates for the first time the feasibility of using REVs for gene therapy of the haemoglobinopathies. Importantly, our results demonstrate that as in the case of integrated transgenes, expression from within REVs is prone to silencing but that the inclusion of the betaLCR prevented this repression of gene function. Therefore, appropriate control elements to provide and maintain tissue-specific gene expression, as well as the episomal status of REVs is a crucial feature in vector design. Our data suggest that LCRs can contribute to this vital function.