Sample records for members negatively regulate

  1. miR-30 Family Members Negatively Regulate Osteoblast Differentiation*

    PubMed Central

    Wu, Tingting; Zhou, Haibo; Hong, Yongfeng; Li, Jing; Jiang, Xinquan; Huang, Hui

    2012-01-01

    miRNAs are endogenously expressed 18- to 25-nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. Recently, it has been indicated that miRNAs are closely related to osteogenesis. Our previous data suggested that miR-30 family members might be important regulators during the biomineralization process. However, whether and how they modulate osteogenic differentiation have not been explored. In this study, we demonstrated that miR-30 family members negatively regulate BMP-2-induced osteoblast differentiation by targeting Smad1 and Runx2. Evidentially, overexpression of miR-30 family members led to a decrease of alkaline phosphatase activity, whereas knockdown of them increased the activity. Then bioinformatic analysis identified potential target sites of the miR-30 family located in the 3′ untranslated regions of Smad1 and Runx2. Western blot analysis and quantitative RT-PCR assays demonstrated that miR-30 family members inhibit Smad1 gene expression on the basis of repressing its translation. Furthermore, dual-luciferase reporter assays confirmed that Smad1 is a direct target of miR-30 family members. Rescue experiments that overexpress Smad1 and Runx2 significantly eliminated the inhibitory effect of miR-30 on osteogenic differentiation and provided strong evidence that miR-30 mediates the inhibition of osteogenesis by targeting Smad1 and Runx2. Also, the inhibitory effects of the miR-30 family were validated in mouse bone marrow mesenchymal stem cells. Therefore, our study uncovered that miR-30 family members are key negative regulators of BMP-2-mediated osteogenic differentiation. PMID:22253433

  2. Emotion valence, intensity and emotion regulation in immigrants and majority members in the Netherlands.

    PubMed

    Stupar, Snežana; van de Vijver, Fons J R; Fontaine, Johnny R J

    2015-08-01

    We were interested in interethnic differences and similarities in how emotion regulation strategies (reappraisal, suppression and social sharing) can be predicted by emotion valence and intensity. The sample consisted of 389 Dutch majority members and members of five immigrant groups: 136 Turkish and Moroccan, 105 Antillean and Surinamese, 102 Indonesian, 313 Western and 150 other non-Western immigrants. In a path model with latent variables we confirmed that emotion regulation strategies were significantly and similarly related to emotion valence and intensity across the groups. Negative emotions were more reappraised and suppressed than positive emotions. Intensity was positively related to social sharing and negatively related to reappraisal and suppression. The Dutch majority group scored higher on emotion valence than Turkish and Moroccan immigrants. Also, the Dutch majority group scored lower on reappraisal than all non-Western groups, and lower on suppression than Turkish and Moroccan immigrants. We conclude that group differences reside more in mean scores on some components than in how antecedents are linked to regulation strategies. © 2014 International Union of Psychological Science.

  3. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.

    PubMed

    Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina

    2015-03-01

    Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize. © 2014 John Wiley & Sons Ltd.

  4. When rejection sensitivity matters: regulating dependence within daily interactions with family and friends.

    PubMed

    Overall, Nickola C; Sibley, Chris G

    2009-08-01

    This diary study examined situational dependence within daily interactions with family members and close friends over a 2-week period. Experiencing low personal control (high situational dependence) when interacting with family members and friends was associated with lower perceived regard and intimacy. Participants generally regulated felt dependence by derogating and withdrawing from their interaction partner (self-protective dependence regulation) and exhibiting lower levels of positive behavior, such as expressing thoughts and feelings or trying to improve the interaction (relationship-promotive dependence regulation). Furthermore, higher rejection sensitivity (but not low self-esteem) was associated with more negative evaluations of perceived regard and intimacy, greater self-protective dependence regulation, and lower relationship-promotive dependence regulation within low control interactions. These results identify dependence as a key element of rejection risk contexts and support the situation-specific nature of rejection sensitivity.

  5. Positive and Negative Regulation of Muscle Cell Identity by Members of the hedgehog and TGF-β Gene Families

    PubMed Central

    Du, Shao Jun; Devoto, Stephen H.; Westerfield, Monte; Moon, Randall T.

    1997-01-01

    We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-β signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-β superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-β signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-β signals exert competing positive and negative influences on the development of muscle pioneer cells. PMID:9314535

  6. TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation.

    PubMed

    Ikeda, Miho; Ohme-Takagi, Masaru

    2014-01-01

    In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  7. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease.

    PubMed

    Takaya, Akiko; Tabuchi, Fumiaki; Tsuchiya, Hiroko; Isogai, Emiko; Yamamoto, Tomoko

    2008-06-01

    Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS systems, LasR/LasI and RhlR/RhlI. Many reports have demonstrated that these two systems are regulated and interconnected by global regulators. We found that lon-disrupted cells overproduce pyocyanin, the biosynthesis of which depends on the RhlR/RhlI system, and show increased levels of a transcriptional regulator, RhlR. The QS systems are organized hierarchically: the RhlR/RhlI system is subordinate to LasR/LasI. To elucidate the mechanism by which Lon negatively regulates RhlR/RhlI, we examined the effect of lon disruption on the LasR/LasI system. We found that Lon represses the expression of LasR/LasI by degrading LasI, an HSL synthase, leading to negative regulation of the RhlR/RhlI system. RhlR/RhlI was also shown to be regulated by Lon independently of LasR/LasI via regulation of RhlI, an HSL synthase. In view of these findings, it is suggested that Lon protease is a powerful negative regulator of both HSL-mediated QS systems in P. aeruginosa.

  8. Regulation and Socio-Emotional Interactions in a Positive and a Negative Group Climate

    ERIC Educational Resources Information Center

    Bakhtiar, Aishah; Webster, Elizabeth A.; Hadwin, Allyson F.

    2018-01-01

    Collaboration in an online environment can be a socially and emotionally demanding task. It requires group members to engage in a great deal of regulation, where favourable emotions need to be sustained for the group's productive functioning. The purpose of this cross-case analysis was to examine the interplay of two groups' regulatory processes,…

  9. Purification and Crystallization of Murine Myostatin: A Negative Regulator of Muscle Mass

    NASA Technical Reports Server (NTRS)

    Hong, Young S.; Adamek, Daniel; Bridge, Kristi; Malone, Christine C.; Young, Ronald B.; Miller, Teresa; Karr, Laurel

    2004-01-01

    Myostatin (MSTN) has been crystallized and its preliminary X-ray diffraction data were collected. MSTN is a negative regulator of muscle growt/differentiation and suppressor of fat accumulation. It is a member of TGF-b family of proteins. Like other members of this family, the regulation of MSTN is critically tied to its process of maturation. This process involves the formation of a homodimer followed by two proteolytic steps. The first proteolytic cleavage produces a species where the n-terminal portion of the dimer is covalently separated from, but remains non-covalently bound to, the c-terminal, functional, portion of the protein. The protein is activated upon removal of the n-terminal "pro-segment" by a second n-terminal proteolytic cut by BMP-1 in vivo, or by acid treatment in vitro. Understanding the structural nature and physical interactions involved in these regulatory processes is the objective of our studies. Murine MSTN was purified from culture media of genetically engineered Chinese Hamster Ovary cells by multicolumn purification process and crystallized using the vapor diffusion method.

  10. TRAF family member-associated NF-κB activator (TANK) is a negative regulator of osteoclastogenesis and bone formation.

    PubMed

    Maruyama, Kenta; Kawagoe, Tatsukata; Kondo, Takeshi; Akira, Shizuo; Takeuchi, Osamu

    2012-08-17

    The differentiation of bone-resorbing osteoclasts is induced by RANKL signaling, and leads to the activation of NF-κB via TRAF6 activation. TRAF family member-associated NF-κB activator (TANK) acts as a negative regulator of Toll-like receptors (TLRs) and B-cell receptor (BCR) signaling by inhibiting TRAF6 activation. Tank(-/-) mice spontaneously develop autoimmune glomerular nephritis in an IL-6-dependent manner. Despite its importance in the TCRs and BCR-activated TRAF6 inhibition, the involvement of TANK in RANKL signaling is poorly understood. Here, we report that TANK is a negative regulator of osteoclast differentiation. The expression levels of TANK mRNA and protein were up-regulated during RANKL-induced osteoclastogenesis, and overexpression of TANK in vitro led to a decrease in osteoclast formation. The in vitro osteoclastogenesis of Tank(-/-) cells was significantly increased, accompanied by increased ubiquitination of TRAF6 and enhanced canonical NF-κB activation in response to RANKL stimulation. Tank(-/-) mice showed severe trabecular bone loss, but increased cortical bone mineral density, because of enhanced bone erosion and formation. TANK mRNA expression was induced during osteoblast differentiation and Tank(-/-) osteoblasts exhibited enhaced NF-κB activation, IL-11 expression, and bone nodule formation than wild-type control cells. Finally, wild-type mice transplanted with bone marrow cells from Tank(-/-) mice showed trabecular bone loss analogous to that in Tank(-/-) mice. These findings demonstrate that TANK is critical for osteoclastogenesis by regulating NF-κB, and is also important for proper bone remodeling.

  11. TRAF Family Member-associated NF-κB Activator (TANK) Is a Negative Regulator of Osteoclastogenesis and Bone Formation*

    PubMed Central

    Maruyama, Kenta; Kawagoe, Tatsukata; Kondo, Takeshi; Akira, Shizuo; Takeuchi, Osamu

    2012-01-01

    The differentiation of bone-resorbing osteoclasts is induced by RANKL signaling, and leads to the activation of NF-κB via TRAF6 activation. TRAF family member-associated NF-κB activator (TANK) acts as a negative regulator of Toll-like receptors (TLRs) and B-cell receptor (BCR) signaling by inhibiting TRAF6 activation. Tank−/− mice spontaneously develop autoimmune glomerular nephritis in an IL-6-dependent manner. Despite its importance in the TCRs and BCR-activated TRAF6 inhibition, the involvement of TANK in RANKL signaling is poorly understood. Here, we report that TANK is a negative regulator of osteoclast differentiation. The expression levels of TANK mRNA and protein were up-regulated during RANKL-induced osteoclastogenesis, and overexpression of TANK in vitro led to a decrease in osteoclast formation. The in vitro osteoclastogenesis of Tank−/− cells was significantly increased, accompanied by increased ubiquitination of TRAF6 and enhanced canonical NF-κB activation in response to RANKL stimulation. Tank−/− mice showed severe trabecular bone loss, but increased cortical bone mineral density, because of enhanced bone erosion and formation. TANK mRNA expression was induced during osteoblast differentiation and Tank−/− osteoblasts exhibited enhaced NF-κB activation, IL-11 expression, and bone nodule formation than wild-type control cells. Finally, wild-type mice transplanted with bone marrow cells from Tank−/− mice showed trabecular bone loss analogous to that in Tank−/− mice. These findings demonstrate that TANK is critical for osteoclastogenesis by regulating NF-κB, and is also important for proper bone remodeling. PMID:22773835

  12. An essential role of ubiquitination in Cbl-mediated negative regulation of the Src-family kinase Fyn

    PubMed Central

    Rao, Navin; Ghosh, Amiya K.; Douillard, Patrice; Andoniou, Christopher E.; Zhou, Pengcheng; Band, Hamid

    2009-01-01

    SUMMARY The Cbl family of ubiquitin ligases function as negative regulators of activated receptor tyrosine kinases by facilitating their ubiquitination and subsequent lysosomal targeting. Here, we have investigated the role of Cbl ubiquitin ligase activity in the negative regulation of a non-receptor tyrosine kinase, the Src-family kinase Fyn. Using primary embryonic fibroblasts from Cbl+/+ and Cbl−/− mice, we demonstrate that endogenous Cbl mediates the ubiquitination of Fyn and dictates the rate of Fyn turnover. By analyzing CHO-TS20 cells with a temperature-sensitive ubiquitin activating enzyme, we demonstrate that intact cellular ubiquitin machinery is required for Cbl-induced degradation of Fyn. Analyses of Cbl mutants, with mutations in or near the RING finger domain, in 293T cells revealed that the ubiquitin ligase activity of Cbl is essential for Cbl-induced degradation of Fyn by the proteasome pathway. Finally, use of a SRE-luciferase reporter demonstrated that Cbl-dependent negative regulation of Fyn function requires the region of Cbl that mediates the ubiquitin ligase activity. Given the conservation of structure between various Src-family kinases and the ability of Cbl to interact with multiple members of this family, Cbl-dependent ubiquitination could serve a general role to negatively regulate activated Src-family kinases. PMID:19966925

  13. TRAF Family Member-Associated NF-κB Activator (TANK) Induced by RANKL Negatively Regulates Osteoclasts Survival and Function

    PubMed Central

    Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping

    2012-01-01

    Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption. PMID:23139637

  14. TRAF family member-associated NF-κB activator (TANK) induced by RANKL negatively regulates osteoclasts survival and function.

    PubMed

    Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping

    2012-01-01

    Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption.

  15. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes.

    PubMed

    Jia, Da; Gomez, Timothy S; Metlagel, Zoltan; Umetani, Junko; Otwinowski, Zbyszek; Rosen, Michael K; Billadeau, Daniel D

    2010-06-08

    We recently showed that the Wiskott-Aldrich syndrome protein (WASP) family member, WASH, localizes to endosomal subdomains and regulates endocytic vesicle scission in an Arp2/3-dependent manner. Mechanisms regulating WASH activity are unknown. Here we show that WASH functions in cells within a 500 kDa core complex containing Strumpellin, FAM21, KIAA1033 (SWIP), and CCDC53. Although recombinant WASH is constitutively active toward the Arp2/3 complex, the reconstituted core assembly is inhibited, suggesting that it functions in cells to regulate actin dynamics through WASH. FAM21 interacts directly with CAPZ and inhibits its actin-capping activity. Four of the five core components show distant (approximately 15% amino acid sequence identify) but significant structural homology to components of a complex that negatively regulates the WASP family member, WAVE. Moreover, biochemical and electron microscopic analyses show that the WASH and WAVE complexes are structurally similar. Thus, these two distantly related WASP family members are controlled by analogous structurally related mechanisms. Strumpellin is mutated in the human disease hereditary spastic paraplegia, and its link to WASH suggests that misregulation of actin dynamics on endosomes may play a role in this disorder.

  16. Interaction of the receptor FGFRL1 with the negative regulator Spred1.

    PubMed

    Zhuang, Lei; Villiger, Peter; Trueb, Beat

    2011-09-01

    FGFRL1 is a member of the fibroblast growth factor receptor family. It plays an essential role during branching morphogenesis of the metanephric kidneys, as mice with a targeted deletion of the Fgfrl1 gene show severe kidney dysplasia. Here we used the yeast two-hybrid system to demonstrate that FGFRL1 binds with its C-terminal, histidine-rich domain to Spred1 and to other proteins of the Sprouty/Spred family. Members of this family are known to act as negative regulators of the Ras/Raf/Erk signaling pathway. Truncation experiments further showed that FGFRL1 interacts with the SPR domain of Spred1, a domain that is shared by all members of the Sprouty/Spred family. The interaction could be verified by coprecipitation of the interaction partners from solution and by codistribution at the cell membrane of COS1 and HEK293 cells. Interestingly, Spred1 increased the retention time of FGFRL1 at the plasma membrane where the receptor might interact with ligands. FGFRL1 and members of the Sprouty/Spred family belong to the FGF synexpression group, which also includes FGF3, FGF8, Sef and Isthmin. It is conceivable that FGFRL1, Sef and some Sprouty/Spred proteins work in concert to control growth factor signaling during branching morphogenesis of the kidneys and other organs. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. TRAF Family Member-associated NF-κB Activator (TANK) Inhibits Genotoxic Nuclear Factor κB Activation by Facilitating Deubiquitinase USP10-dependent Deubiquitination of TRAF6 Ligase*

    PubMed Central

    Wang, Wei; Huang, Xuan; Xin, Hong-Bo; Fu, Mingui; Xue, Aimin; Wu, Zhao-Hui

    2015-01-01

    DNA damage-induced NF-κB activation plays a critical role in regulating cellular response to genotoxic stress. However, the molecular mechanisms controlling the magnitude and duration of this genotoxic NF-κB signaling cascade are poorly understood. We recently demonstrated that genotoxic NF-κB activation is regulated by reversible ubiquitination of several essential mediators involved in this signaling pathway. Here we show that TRAF family member-associated NF-κB activator (TANK) negatively regulates NF-κB activation by DNA damage via inhibiting ubiquitination of TRAF6. Despite the lack of a deubiquitination enzyme domain, TANK has been shown to negatively regulate the ubiquitination of TRAF proteins. We found TANK formed a complex with MCPIP1 (also known as ZC3H12A) and a deubiquitinase, USP10, which was essential for the USP10-dependent deubiquitination of TRAF6 and the resolution of genotoxic NF-κB activation upon DNA damage. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of TANK in human cells significantly enhanced NF-κB activation by genotoxic treatment, resulting in enhanced cell survival and increased inflammatory cytokine production. Furthermore, we found that the TANK-MCPIP1-USP10 complex also decreased TRAF6 ubiquitination in cells treated with IL-1β or LPS. In accordance, depletion of USP10 enhanced NF-κB activation induced by IL-1β or LPS. Collectively, our data demonstrate that TANK serves as an important negative regulator of NF-κB signaling cascades induced by genotoxic stress and IL-1R/Toll-like receptor stimulation in a manner dependent on MCPIP1/USP10-mediated TRAF6 deubiquitination. PMID:25861989

  18. Reduced cognitive capacity impairs the malleability of older adults' negative attitudes to stigmatized individuals.

    PubMed

    Krendl, Anne C

    2018-05-21

    Although engaging explicit regulatory strategies may reduce negative bias toward outgroup members, these strategies are cognitively demanding and thus may not be effective for older adults (OA) who have reduced cognitive resources. The current study therefore examines whether individual differences in cognitive capacity disrupt OA' ability to explicitly regulate their bias to stigmatized individuals. Young and OA were instructed to explicitly regulate their negative bias toward stigmatized individuals by using an explicit reappraisal strategy. Regulatory success was assessed as a function of age and individual differences in cognitive capacity (Experiment 1). In Experiment 2, the role of executive function in implementing cognitive reappraisal strategies was examined by using a divided attention manipulation. Results from Experiment 1 revealed that individual differences in OA' cognitive capacity disrupted their ability to regulate their negative emotional response to stigma. In Experiment 2, it was found that dividing attention in young adults (YA) significantly reduced their regulatory success as compared to YA' regulatory capacity in the full attention condition. As expected, dividing YA' attention made their performance similar to OA with relatively preserved cognitive capacity. Together, the results from this study demonstrated that individual differences in cognitive capacity predicted OA' ability to explicitly regulate their negative bias to a range of stigmatized individuals.

  19. fussel (fuss)--A negative regulator of BMP signaling in Drosophila melanogaster.

    PubMed

    Fischer, Susanne; Bayersdorfer, Florian; Harant, Eva; Reng, Renate; Arndt, Stephanie; Bosserhoff, Anja-Katrin; Schneuwly, Stephan

    2012-01-01

    The TGF-β/BMP signaling cascades control a wide range of developmental and physiological functions in vertebrates and invertebrates. In Drosophila melanogaster, members of this pathway can be divided into a Bone Morphogenic Protein (BMP) and an Activin-ß (Act-ß) branch, where Decapentaplegic (Dpp), a member of the BMP family has been most intensively studied. They differ in ligands, receptors and transmitting proteins, but also share some components, such as the Co-Smad Medea (Med). The essential role of Med is to form a complex with one of the two activating Smads, mothers against decapentaplegic (Mad) or dSmad, and to translocate together to the nucleus where they can function as transcriptional regulators of downstream target genes. This signaling cascade underlies different mechanisms of negative regulation, which can be exerted by inhibitory Smads, such as daughters against decapentaplegic (dad), but also by the Ski-Sno family. In this work we identified and functionally analyzed a new member of the Ski/Sno-family, fussel (fuss), the Drosophila homolog of the human functional suppressing element 15 (fussel-15). fuss codes for two differentially spliced transcripts with a neuronal expression pattern. The proteins are characterized by a Ski-Sno and a SAND homology domain. Overexpression studies and genetic interaction experiments clearly reveal an interaction of fuss with members of the BMP pathway, leading to a strong repression of BMP-signaling. The protein interacts directly with Medea and seems to reprogram the Smad pathway through its influence upon the formation of functional Mad/Medea complexes. This leads amongst others to a repression of downstream target genes of the Dpp pathway, such as optomotor blind (omb). Taken together we could show that fuss exerts a pivotal role as an antagonist of BMP signaling in Drosophila melanogaster.

  20. A Steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs.

    PubMed

    Lu, Mingjian; Kinchen, Jason M; Rossman, Kent L; Grimsley, Cynthia; Hall, Matthew; Sondek, John; Hengartner, Michael O; Yajnik, Vijay; Ravichandran, Kodi S

    2005-02-22

    CDM (CED-5, Dock180, Myoblast city) family members have been recently identified as novel, evolutionarily conserved guanine nucleotide exchange factors (GEFs) for Rho-family GTPases . They regulate multiple processes, including embryonic development, cell migration, apoptotic-cell engulfment, tumor invasion, and HIV-1 infection, in diverse model systems . However, the mechanism(s) of regulation of CDM proteins has not been well understood. Here, our studies on the prototype member Dock180 reveal a steric-inhibition model for regulating the Dock180 family of GEFs. At basal state, the N-terminal SH3 domain of Dock180 binds to the distant catalytic Docker domain and negatively regulates the function of Dock180. Further studies revealed that the SH3:Docker interaction sterically blocks Rac access to the Docker domain. Interestingly, ELMO binding to the SH3 domain of Dock180 disrupted the SH3:Docker interaction, facilitated Rac access to the Docker domain, and contributed to the GEF activity of the Dock180/ELMO complex. Additional genetic rescue studies in C. elegans suggested that the regulation of the Docker-domain-mediated GEF activity by the SH3 domain and its adjoining region is evolutionarily conserved. This steric-inhibition model may be a general mechanism for regulating multiple SH3-domain-containing Dock180 family members and may have implications for a variety of biological processes.

  1. Mirtron microRNA-1236 inhibits VEGFR-3 signaling during inflammatory lymphangiogenesis.

    PubMed

    Jones, Dennis; Li, Yonghao; He, Yun; Xu, Zhe; Chen, Hong; Min, Wang

    2012-03-01

    Vascular endothelial growth factor receptor(VEGFR)-3 is a critical regulator of developmental and adult vasculogenesis and lymphangiogenesis through its interactions with select members of the VEGF family. The goal of this study was to investigate how VEGFR-3 expression is regulated during inflammatory lymphangiogenesis. In this study, we present for the first time evidence that VEGFR-3 can be negatively regulated by a mirtron, hsa-miR-1236 (miR-1236), which is expressed in primary human lymphatic endothelial cells. In human lymphatic endothelial cells, miR-1236 is upregulated in response to IL-1β, a negative regulator of VEGFR-3. miR-1236 binds the 3' untranslated region of Vegfr3, resulting in translational inhibition. Overexpression of miR-1236 significantly decreased expression of VEGFR-3, but not VEGFR-2, in human lymphatic endothelial cells. Compared to a control miR, overexpression of miR-1236 also led to decreased VEGFR-3 signaling. However, VEGFR-2-specific signaling was not affected. miR-1236 can attenuate human lymphatic endothelial cell migration and tube formation, as well as in vivo lymphangiogenesis. Our data suggest that miR-1236 may function as a negative regulator of VEGFR-3 signaling during inflammatory lymphangiogenesis.

  2. Modulating inflammation through the negative regulation of NF-κB signaling.

    PubMed

    Rothschild, Daniel E; McDaniel, Dylan K; Ringel-Scaia, Veronica M; Allen, Irving C

    2018-02-01

    Immune system activation is essential to thwart the invasion of pathogens and respond appropriately to tissue damage. However, uncontrolled inflammation can result in extensive collateral damage underlying a diverse range of auto-inflammatory, hyper-inflammatory, and neoplastic diseases. The NF-κB signaling pathway lies at the heart of the immune system and functions as a master regulator of gene transcription. Thus, this signaling cascade is heavily targeted by mechanisms designed to attenuate overzealous inflammation and promote resolution. Mechanisms associated with the negative regulation of NF-κB signaling are currently under intense investigation and have yet to be fully elucidated. Here, we provide an overview of mechanisms that negatively regulate NF-κB signaling through either attenuation of signal transduction, inhibition of posttranscriptional signaling, or interference with posttranslational modifications of key pathway components. While the regulators discussed for each group are far from comprehensive, they exemplify common mechanistic approaches that inhibit this critical biochemical signaling cascade. Despite their diversity, a commonality among these regulators is their selection of specific targets at key inflection points in the pathway, such as TNF-receptor-associated factor family members or essential kinases. A better understanding of these negative regulatory mechanisms will be essential to gain greater insight related to the maintenance of immune system homeostasis and inflammation resolution. These processes are vital elements of disease pathology and have important implications for targeted therapeutic strategies. ©2018 Society for Leukocyte Biology.

  3. The BBX subfamily IV: additional cogs and sprockets to fine-tune light-dependent development.

    PubMed

    Sarmiento, Felipe

    2013-04-01

    Plants depend on light during all phases of its life cycle, and have evolved a complex signaling network to constantly monitor its surroundings. Photomorphogenesis, a process during which the plant reprograms itself in order to dwell life in presence of light is one of the most studied phenomena in plants. Recent mutant analyses using model plant Arabidopsis thaliana and protein interaction assays have unraveled a new set of players, an 8-member subfamily of B-box proteins, known as BBX subfamily IV. For the members of this subfamily, positive (BBX21, BBX22) as well as negative (BBX24) functions have been described for its members, showing a strong association to two major players of the photomorphogenic cascade, HY5 and COP1. The roles of these new BBX regulators are not restricted to photomorphogenesis, but also have functions in other facets of light-dependent development. Therefore this newly identified set of regulators has opened up new insights into the understanding of the fine-tuning of this complex process.

  4. Genome walk of an unknown upstream region of myostatin gene in Spanish goats

    USDA-ARS?s Scientific Manuscript database

    Myostatin (MSTN) gene product also known as growth differentiation factor (GDF8) is a member of the TGF-ß family of secreted proteins. It is shown to be a negative regulator of muscle mass development. Mutations in the MSTN gene have been reported in mice, cattle and humans that lead to muscular hyp...

  5. TRAF Family Member-associated NF-κB Activator (TANK) Inhibits Genotoxic Nuclear Factor κB Activation by Facilitating Deubiquitinase USP10-dependent Deubiquitination of TRAF6 Ligase.

    PubMed

    Wang, Wei; Huang, Xuan; Xin, Hong-Bo; Fu, Mingui; Xue, Aimin; Wu, Zhao-Hui

    2015-05-22

    DNA damage-induced NF-κB activation plays a critical role in regulating cellular response to genotoxic stress. However, the molecular mechanisms controlling the magnitude and duration of this genotoxic NF-κB signaling cascade are poorly understood. We recently demonstrated that genotoxic NF-κB activation is regulated by reversible ubiquitination of several essential mediators involved in this signaling pathway. Here we show that TRAF family member-associated NF-κB activator (TANK) negatively regulates NF-κB activation by DNA damage via inhibiting ubiquitination of TRAF6. Despite the lack of a deubiquitination enzyme domain, TANK has been shown to negatively regulate the ubiquitination of TRAF proteins. We found TANK formed a complex with MCPIP1 (also known as ZC3H12A) and a deubiquitinase, USP10, which was essential for the USP10-dependent deubiquitination of TRAF6 and the resolution of genotoxic NF-κB activation upon DNA damage. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of TANK in human cells significantly enhanced NF-κB activation by genotoxic treatment, resulting in enhanced cell survival and increased inflammatory cytokine production. Furthermore, we found that the TANK-MCPIP1-USP10 complex also decreased TRAF6 ubiquitination in cells treated with IL-1β or LPS. In accordance, depletion of USP10 enhanced NF-κB activation induced by IL-1β or LPS. Collectively, our data demonstrate that TANK serves as an important negative regulator of NF-κB signaling cascades induced by genotoxic stress and IL-1R/Toll-like receptor stimulation in a manner dependent on MCPIP1/USP10-mediated TRAF6 deubiquitination. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Choir singing and creative writing enhance emotion regulation in adults with chronic mental health conditions.

    PubMed

    Dingle, Genevieve A; Williams, Elyse; Jetten, Jolanda; Welch, Jonathon

    2017-11-01

    Adults with mental health conditions commonly experience difficulties with emotion regulation which affect their social functioning. Arts-based groups provide opportunities for shared emotional experiences and emotion regulation. This study explores emotion regulation strategies and the emotional effects of arts-based group participation in adults with mental health problems and in controls. The 62 participants included 39 adults with chronic mental health problems who were members of arts-based groups (ABG) and 23 comparison choir (CC) members who were not specifically experiencing mental health problems. The repeated measures design included self-reports of emotion upon waking (T1), the hour before group (T2), end of the group (T3), and evening (T4), as well as participant notes to explain their emotion ratings at each time. They also completed measures of individual and interpersonal emotion regulation. The ABG participants engaged marginally more in affect worsening strategies than CC (p = .057 and .08), but there were no other group differences. All participants reported a significant increase in positive emotions, F (3, 180) = 28.044, p < .001, np2 = .319; and a decrease in negative emotions during the arts-based activity: F (2.637, 155.597) = 21.09, p < .001, np2 = .263. The influence on positive emotions was short-lived, while the effect on negative emotions lasted until evening. Findings show that participation in arts-based groups benefits the emotions of both healthy adults and those experiencing mental health conditions through individual and interpersonal processes. Individuals with chronic mental health conditions often experience difficulties in emotion processing Participation in arts-based groups was associated with significant increases in positive emotions although these were short-lived Negative emotion was significantly decreased during arts-based group activities, and sustained to the evening assessment Adults with chronic mental health conditions were equally able to derive emotional benefits as healthy adults. © 2017 The British Psychological Society.

  7. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    PubMed

    Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2010-11-01

    MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  8. LINE1 family member is negative regulator of HLA-G expression.

    PubMed

    Ikeno, Masashi; Suzuki, Nobutaka; Kamiya, Megumi; Takahashi, Yuji; Kudoh, Jun; Okazaki, Tsuneko

    2012-11-01

    Class Ia molecules of human leucocyte antigen (HLA-A, -B and -C) are widely expressed and play a central role in the immune system by presenting peptides derived from the lumen of the endoplasmic reticulum. In contrast, class Ib molecules such as HLA-G serve novel functions. The distribution of HLA-G is mostly limited to foetal trophoblastic tissues and some tumour tissues. The mechanism required for the tissue-specific regulation of the HLA-G gene has not been well understood. Here, we investigated the genomic regulation of HLA-G by manipulating one copy of a genomic DNA fragment on a human artificial chromosome. We identified a potential negative regulator of gene expression in a sequence upstream of HLA-G that overlapped with the long interspersed element (LINE1); silencing of HLA-G involved a DNA secondary structure generated in LINE1. The presence of a LINE1 gene silencer may explain the limited expression of HLA-G compared with other class I genes.

  9. Indispensable roles of mammalian Cbl family proteins as negative regulators of protein tyrosine kinase signaling

    PubMed Central

    Band, Vimla

    2011-01-01

    All higher eukaryotes utilize protein tyrosine kinases (PTKs) as molecular switches to control a variety of cellular signals. Notably, many PTKs have been identified as proto-oncogenes whose aberrant expression, mutations or co-option by pathogens can lead to human malignancies. Thus, it is obvious that PTK functions must be precisely regulated in order to maintain homeostasis of an organism. Investigations over the past fifteen years have revealed that members of the Cbl family proteins can serve as negative regulators of PTK signaling, and biochemical and cell biological studies have unraveled the mechanistic basis of this regulation. Yet, it is only recently that the field has begun to appreciate the real significance of this novel regulatory apparatus in shaping PTK-mediated signaling in organismic contexts and in human diseases. Here, we discuss recent progress in murine models that are beginning to provide insights into the critical roles of Cbl proteins in physiological pathways, with important implications in understanding how aberrations of Cbl proteins contribute to oncogenesis. PMID:21655429

  10. Transcription of two adjacent carbohydrate utilization gene clusters in Bifidobacterium breve UCC2003 is controlled by LacI- and repressor open reading frame kinase (ROK)-type regulators.

    PubMed

    O'Connell, Kerry Joan; Motherway, Mary O'Connell; Liedtke, Andrea; Fitzgerald, Gerald F; Paul Ross, R; Stanton, Catherine; Zomer, Aldert; van Sinderen, Douwe

    2014-06-01

    Members of the genus Bifidobacterium are commonly found in the gastrointestinal tracts of mammals, including humans, where their growth is presumed to be dependent on various diet- and/or host-derived carbohydrates. To understand transcriptional control of bifidobacterial carbohydrate metabolism, we investigated two genetic carbohydrate utilization clusters dedicated to the metabolism of raffinose-type sugars and melezitose. Transcriptomic and gene inactivation approaches revealed that the raffinose utilization system is positively regulated by an activator protein, designated RafR. The gene cluster associated with melezitose metabolism was shown to be subject to direct negative control by a LacI-type transcriptional regulator, designated MelR1, in addition to apparent indirect negative control by means of a second LacI-type regulator, MelR2. In silico analysis, DNA-protein interaction, and primer extension studies revealed the MelR1 and MelR2 operator sequences, each of which is positioned just upstream of or overlapping the correspondingly regulated promoter sequences. Similar analyses identified the RafR binding operator sequence located upstream of the rafB promoter. This study indicates that transcriptional control of gene clusters involved in carbohydrate metabolism in bifidobacteria is subject to conserved regulatory systems, representing either positive or negative control.

  11. Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU).

    PubMed

    Reddy, Vaishnavi Amarr; Wang, Qian; Dhar, Niha; Kumar, Nadimuthu; Venkatesh, Prasanna Nori; Rajan, Chakravarthy; Panicker, Deepa; Sridhar, Vishweshwaran; Mao, Hui-Zhu; Sarojam, Rajani

    2017-09-01

    Many aromatic plants, such as spearmint, produce valuable essential oils in specialized structures called peltate glandular trichomes (PGTs). Understanding the regulatory mechanisms behind the production of these important secondary metabolites will help design new approaches to engineer them. Here, we identified a PGT-specific R2R3-MYB gene, MsMYB, from comparative RNA-Seq data of spearmint and functionally characterized it. Analysis of MsMYB-RNAi transgenic lines showed increased levels of monoterpenes, and MsMYB-overexpressing lines exhibited decreased levels of monoterpenes. These results suggest that MsMYB is a novel negative regulator of monoterpene biosynthesis. Ectopic expression of MsMYB, in sweet basil and tobacco, perturbed sesquiterpene- and diterpene-derived metabolite production. In addition, we found that MsMYB binds to cis-elements of MsGPPS.LSU and suppresses its expression. Phylogenetic analysis placed MsMYB in subgroup 7 of R2R3-MYBs whose members govern phenylpropanoid pathway and are regulated by miR858. Analysis of transgenic lines showed that MsMYB is more specific to terpene biosynthesis as it did not affect metabolites derived from phenylpropanoid pathway. Further, our results indicate that MsMYB is probably not regulated by miR858, like other members of subgroup 7. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. The Enforcement of Moral Boundaries Promotes Cooperation and Prosocial Behavior in Groups

    PubMed Central

    Simpson, Brent; Willer, Robb; Harrell, Ashley

    2017-01-01

    The threat of free-riding makes the marshalling of cooperation from group members a fundamental challenge of social life. Where classical social science theory saw the enforcement of moral boundaries as a critical way by which group members regulate one another’s self-interest and build cooperation, moral judgments have most often been studied as processes internal to individuals. Here we investigate how the interpersonal expression of positive and negative moral judgments encourages cooperation in groups and prosocial behavior between group members. In a laboratory experiment, groups whose members could make moral judgments achieved greater cooperation than groups with no capacity to sanction, levels comparable to those of groups featuring costly material sanctions. In addition, members of moral judgment groups subsequently showed more interpersonal trust, trustworthiness, and generosity than all other groups. These findings extend prior work on peer enforcement, highlighting how the enforcement of moral boundaries offers an efficient solution to cooperation problems and promotes prosocial behavior between group members. PMID:28211503

  13. Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis.

    PubMed

    Couzigou, Jean-Malo; Lauressergues, Dominique; André, Olivier; Gutjahr, Caroline; Guillotin, Bruno; Bécard, Guillaume; Combier, Jean-Philippe

    2017-01-11

    Arbuscular mycorrhizal (AM) symbiosis associates most plants with fungi of the phylum Glomeromycota. The fungus penetrates into roots and forms within cortical cell branched structures called arbuscules for nutrient exchange. We discovered that miR171b has a mismatched cleavage site and is unable to downregulate the miR171 family target gene, LOM1 (LOST MERISTEMS 1). This mismatched cleavage site is conserved among plants that establish AM symbiosis, but not in non-mycotrophic plants. Unlike other members of the miR171 family, miR171b stimulates AM symbiosis and is expressed specifically in root cells that contain arbuscules. MiR171b protects LOM1 from negative regulation by other miR171 family members. These findings uncover a unique mechanism of positive post-transcriptional regulation of gene expression by miRNAs and demonstrate its relevance for the establishment of AM symbiosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Suppression of CYP1 members of the AHR response by pathogen-associated molecular patterns.

    PubMed

    Peres, Adam G; Zamboni, Robert; King, Irah L; Madrenas, Joaquín

    2017-12-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that triggers a broad response, which includes the regulation of proinflammatory cytokine production by monocytes and macrophages. AHR is negatively regulated by a set of genes that it transcriptionally activates, including the AHR repressor ( Ahrr ) and the cytochrome P450 1 ( Cyp1 ) family, which are critical for preventing exacerbated AHR activity. An imbalance in these regulatory mechanisms has been shown to cause severe defects in lymphoid cells. Therefore, we wanted to assess how AHR activation is regulated in monocytes and macrophages in the context of innate immune responses induced by pathogen-associated molecular patterns (PAMPs). We found that concomitant stimulation of primary human monocytes with PAMPs and the AHR agonist 6-formylindolo(3,2-b)carbazole (FICZ) led to a selective dose-dependent inhibition of Cyp1 family members induction. Two other AHR-dependent genes [ Ahrr and NADPH quinone dehydrogenase 1 ( Nqo1 )] were not affected under these conditions, suggesting a split in the AHR regulation by PAMPs. This down-regulation of Cyp1 family members did not require de novo protein production nor signaling through p38, ERK, or PI3K-Akt-mammalian target of rapamycin (mTOR) pathways. Furthermore, such a split regulation of the AHR response was more apparent in GM-CSF-derived macrophages, a finding corroborated at the functional level by decreased CYP1 activity and decreased proinflammatory cytokine production in response to FICZ and LPS. Collectively, our findings identify a role for pattern recognition receptor (PRR) signaling in regulating the AHR response through selective down-regulation of Cyp1 expression in human monocytes and macrophages. © Society for Leukocyte Biology.

  15. Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer.

    PubMed

    Lin, Meng-Lay; Patel, Hetal; Remenyi, Judit; Banerji, Christopher R S; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R; Purdie, Colin A; Jordan, Lee B; Thompson, Alastair M; Finn, Richard S; Rueda, Oscar M; Caldas, Carlos; Gil, Jesus; Coombes, R Charles; Fuller-Pace, Frances V; Teschendorff, Andrew E; Buluwela, Laki; Ali, Simak

    2015-08-28

    The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells.

  16. miR-133 is a key negative regulator of CDC42-PAK pathway in gastric cancer.

    PubMed

    Cheng, Zhenguo; Liu, Funan; Wang, Guanqiao; Li, Yanshu; Zhang, Hongyan; Li, Feng

    2014-12-01

    Cell division cycle 42 (CDC42), an important member of the Ras homolog (Rho) family, plays a key role in regulating multiple cellular processes such as cell cycle progression, migration, cell cytoskeleton organization, cell fate determination and differentiation. Among the downstream effectors of CDC42, P21-activated kinases (PAKs) obtain the most attention. Although a large body of evidence indicates that CDC42/PAKs pathway plays important role in tumor growth, invasion and metastasis, the mechanism of their negative regulation remains unclear. Here, we identified CDC42, a PAKs activating factor, was a target of miR-133. Ectopic overexpression of miRNAs not only downregulated CDC42 expression and PAKs activation, but also inhibited cancer cell proliferation and migration. We also found that miR-133 was down-regulated in 180 pairs gastric cancer tissues. miR-133 expression was negatively associated with tumor size, invasion depth and peripheral organ metastasis. Besides, dysfunction of miR-133 was an independent prognosis factor for overall survival. Our findings could provide new insights into the molecular mechanisms of gastric carcinogenesis, and may help facilitating development of CDC42/PAK-based therapies for human cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Transcription of Two Adjacent Carbohydrate Utilization Gene Clusters in Bifidobacterium breve UCC2003 Is Controlled by LacI- and Repressor Open Reading Frame Kinase (ROK)-Type Regulators

    PubMed Central

    O'Connell, Kerry Joan; O'Connell Motherway, Mary; Liedtke, Andrea; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; Zomer, Aldert

    2014-01-01

    Members of the genus Bifidobacterium are commonly found in the gastrointestinal tracts of mammals, including humans, where their growth is presumed to be dependent on various diet- and/or host-derived carbohydrates. To understand transcriptional control of bifidobacterial carbohydrate metabolism, we investigated two genetic carbohydrate utilization clusters dedicated to the metabolism of raffinose-type sugars and melezitose. Transcriptomic and gene inactivation approaches revealed that the raffinose utilization system is positively regulated by an activator protein, designated RafR. The gene cluster associated with melezitose metabolism was shown to be subject to direct negative control by a LacI-type transcriptional regulator, designated MelR1, in addition to apparent indirect negative control by means of a second LacI-type regulator, MelR2. In silico analysis, DNA-protein interaction, and primer extension studies revealed the MelR1 and MelR2 operator sequences, each of which is positioned just upstream of or overlapping the correspondingly regulated promoter sequences. Similar analyses identified the RafR binding operator sequence located upstream of the rafB promoter. This study indicates that transcriptional control of gene clusters involved in carbohydrate metabolism in bifidobacteria is subject to conserved regulatory systems, representing either positive or negative control. PMID:24705323

  18. The oncogenic tyrosine kinase Lyn impairs the pro-apoptotic function of Bim.

    PubMed

    Aira, Lazaro E; Villa, Elodie; Colosetti, Pascal; Gamas, Parvati; Signetti, Laurie; Obba, Sandrine; Proics, Emma; Gautier, Fabien; Bailly-Maitre, Béatrice; Jacquel, Arnaud; Robert, Guillaume; Luciano, Frédéric; Juin, Philippe P; Ricci, Jean-Ehrland; Auberger, Patrick; Marchetti, Sandrine

    2018-04-01

    Phosphorylation of Ser/Thr residues is a well-established modulating mechanism of the pro-apoptotic function of the BH3-only protein Bim. However, nothing is known about the putative tyrosine phosphorylation of this Bcl-2 family member and its potential impact on Bim function and subsequent Bax/Bak-mediated cytochrome c release and apoptosis. As we have previously shown that the tyrosine kinase Lyn could behave as an anti-apoptotic molecule, we investigated whether this Src family member could directly regulate the pro-apoptotic function of Bim. In the present study, we show that Bim is phosphorylated onto tyrosine residues 92 and 161 by Lyn, which results in an inhibition of its pro-apoptotic function. Mechanistically, we show that Lyn-dependent tyrosine phosphorylation of Bim increases its interaction with anti-apoptotic members such as Bcl-xL, therefore limiting mitochondrial outer membrane permeabilization and subsequent apoptosis. Collectively, our data uncover one molecular mechanism through which the oncogenic tyrosine kinase Lyn negatively regulates the mitochondrial apoptotic pathway, which may contribute to the transformation and/or the chemotherapeutic resistance of cancer cells.

  19. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication

    PubMed Central

    Morosky, Stefanie; Lennemann, Nicholas J.

    2016-01-01

    ABSTRACT Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. IMPORTANCE Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of BPIFB6 expression correlates with pronounced defects in the secretory pathway and greatly reduces the replication of CVB, PV, and EV71. Our results thus identify a novel host cell therapeutic target whose function could be targeted to alter enterovirus replication. PMID:26962226

  20. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication.

    PubMed

    Morosky, Stefanie; Lennemann, Nicholas J; Coyne, Carolyn B

    2016-05-15

    Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of BPIFB6 expression correlates with pronounced defects in the secretory pathway and greatly reduces the replication of CVB, PV, and EV71. Our results thus identify a novel host cell therapeutic target whose function could be targeted to alter enterovirus replication. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. DAX1 suppresses FXR transactivity as a novel co-repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jin; Lu, Yan; Liu, Ruya

    2011-09-09

    Highlights: {yields} DAX1 is co-localized with FXR and interacts with FXR. {yields} DAX1 acts as a negative regulator of FXR. {yields} Three LXXLL motifs in the N-terminus of DAX1 were required. {yields} DAX1 suppresses FXR transactivation by competing with co-activators. -- Abstract: Bile acid receptor FXR (farnesoid X receptor) is a key regulator of hepatic bile acid, glucose and lipid homeostasis through regulation of numerous genes involved in the process of bile acid, triglyceride and glucose metabolism. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is an atypical member of the nuclear receptor familymore » due to lack of classical DNA-binding domains and acts primarily as a co-repressor of many nuclear receptors. Here, we demonstrated that DAX1 is co-localized with FXR in the nucleus and acted as a negative regulator of FXR through a physical interaction with FXR. Our study showed that over-expression of DAX1 down-regulated the expression of FXR target genes, whereas knockdown of DAX1 led to their up-regulation. Furthermore, three LXXLL motifs in the N-terminus of DAX1 were required for the full repression of FXR transactivation. In addition, our study characterized that DAX1 suppresses FXR transactivation via competing with co-activators such as SRC-1 and PGC-1{alpha}. In conclusion, DAX1 acts as a co-repressor to negatively modulate FXR transactivity.« less

  2. [Medical and sanitary conditions of life activities of sea craft crew (review of literature)].

    PubMed

    Kubasov, R V; Lupachev, V V; Kubasova, E D

    2016-08-01

    The article characterizes sea work conditions under which crew-members carry occupational activitie's during the sail. Negative factors influencing health of crew members are listed. Among these factors, the major influence is caused by physical (noise, vibration, mechanical impacts, ionizing radiation varying in frequency), chemical, climate and.geographic, social an psychologic factors. Conclusion is that extreme work conditions of sailing staffers cause overstrain of adaptation systems, disorders of regulation fuctions, worsen health state and induce disablement. Within a system of medical care.for water transport workers, necessity is to have complex accounting of occupational hazards for more qualitative and safe work conditions.

  3. ERRα negatively regulates type I interferon induction by inhibiting TBK1-IRF3 interaction

    PubMed Central

    Tian, Yinyin; Wei, Congwen; Zhu, Yongjie; Li, Feng; Zhang, Pingping; Wang, Penghao; Zhang, Yanhong

    2017-01-01

    Estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily controlling energy homeostasis; however, its precise role in regulating antiviral innate immunity remains to be clarified. Here, we showed that ERRα deficiency conferred resistance to viral infection both in vivo and in vitro. Mechanistically, ERRα inhibited the production of type-I interferon (IFN-I) and the expression of multiple interferon-stimulated genes (ISGs). Furthermore, we found that viral infection induced TBK1-dependent ERRα stabilization, which in turn associated with TBK1 and IRF3 to impede the formation of TBK1-IRF3, IRF3 phosphorylation, IRF3 dimerization, and the DNA binding affinity of IRF3. The effect of ERRα on IFN-I production was independent of its transcriptional activity and PCG-1α. Notably, ERRα chemical inhibitor XCT790 has broad antiviral potency. This work not only identifies ERRα as a critical negative regulator of antiviral signaling, but also provides a potential target for future antiviral therapy. PMID:28591144

  4. Promoter-level expression clustering identifies time development of transcriptional regulatory cascades initiated by ErbB receptors in breast cancer cells.

    PubMed

    Mina, Marco; Magi, Shigeyuki; Jurman, Giuseppe; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Carninci, Piero; Hayashizaki, Yoshihide; Daub, Carsten O; Okada-Hatakeyama, Mariko; Furlanello, Cesare

    2015-07-16

    The analysis of CAGE (Cap Analysis of Gene Expression) time-course has been proposed by the FANTOM5 Consortium to extend the understanding of the sequence of events facilitating cell state transition at the level of promoter regulation. To identify the most prominent transcriptional regulations induced by growth factors in human breast cancer, we apply here the Complexity Invariant Dynamic Time Warping motif EnRichment (CIDER) analysis approach to the CAGE time-course datasets of MCF-7 cells stimulated by epidermal growth factor (EGF) or heregulin (HRG). We identify a multi-level cascade of regulations rooted by the Serum Response Factor (SRF) transcription factor, connecting the MAPK-mediated transduction of the HRG stimulus to the negative regulation of the MAPK pathway by the members of the DUSP family phosphatases. The finding confirms the known primary role of FOS and FOSL1, members of AP-1 family, in shaping gene expression in response to HRG induction. Moreover, we identify a new potential regulation of DUSP5 and RARA (known to antagonize the transcriptional regulation induced by the estrogen receptors) by the activity of the AP-1 complex, specific to HRG response. The results indicate that a divergence in AP-1 regulation determines cellular changes of breast cancer cells stimulated by ErbB receptors.

  5. Human myostatin negatively regulates human myoblast growth and differentiation

    PubMed Central

    McFarlane, Craig; Hui, Gu Zi; Amanda, Wong Zhi Wei; Lau, Hiu Yeung; Lokireddy, Sudarsanareddy; XiaoJia, Ge; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D.; Sharma, Mridula

    2011-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway. PMID:21508334

  6. Human myostatin negatively regulates human myoblast growth and differentiation.

    PubMed

    McFarlane, Craig; Hui, Gu Zi; Amanda, Wong Zhi Wei; Lau, Hiu Yeung; Lokireddy, Sudarsanareddy; Xiaojia, Ge; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D; Sharma, Mridula; Kambadur, Ravi

    2011-07-01

    Myostatin, a member of the transforming growth factor-β superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway.

  7. Alignment of Family and Work Roles.

    ERIC Educational Resources Information Center

    Zimmerman, Jill; Cochran, Larry

    1993-01-01

    Human service workers (n=75) each rated positive and negative family members and positive and negative co-workers on six dimensions drawn from Holland's vocational types. Positive family members were significantly more similar to positive co-workers than were negative co-workers. Negative family members were significantly more similar to negative…

  8. [The role of bioethics committees in the systems protecting scientific biomedical research participants in France and in Poland].

    PubMed

    Czarkowski, Marek; Sieczych, Alicja

    2013-08-01

    Bioethics committees are along with ethic regulations and rules of law one of three main pillars in the system of protection of scientific biomedical research participants. Although principal directives for bioethics committees are established by international guidelines, detailed regulations may differ in particular states. The aim of this article was to compare two bioethic committees systems: French and Polish one. Historical beginnings of the bioethics committees system in France and in Poland are briefly mentioned, Subsequently, the networks of bioethics committees in both countries are compared. Although the number of bioethics committees (Research Ethic Committees) in both countries is comparable, the procedure of their establishment varies. French committees are based on administrative division of the country and divide on regional and interregional committees. In Poland, bioethics committees are established by medical universities, medical research and development units or regional chambers of physicians and dentists. In France there is no equivalent of Appeal Bioethics Committee, however one could appeal from the negative bioethics committee's opinion. The composition of French bioethics committees is more diverse and half of the members are not related to medical professions. Members of French committees are named on indefinite term by headmaster of Regional Health Agency after having been chosen in competition for the post. In Poland members are called on three-year-term but the rotation of members is not overwhelming since there is no limit of terms for one member. French legal solutions seems more secure for scientific bioethics research participants. For this reason, a detailed research on legislation in other countries is necessary before introducing any new regulations in Polish law.

  9. A Micro-Developmental View of Parental Well-being in Families Coping with Chronic Illness

    PubMed Central

    Queen, Tara L.; Butner, Jonathan; Wiebe, Deborah J.; Berg, Cynthia A.

    2016-01-01

    Families are co-regulating systems in which the daily experiences of one member affect the well-being of another member of the family. We examined daily, micro-developmental processes by modeling the associations between adolescents’ daily problems and emotional experiences in managing type 1 diabetes and changes in parental negative and positive affect surrounding the illness. Using a daily diary method, 161 mothers (M age=40 years), fathers (M age=42 years), and early adolescents (M age=12.4 years) rated their negative and positive emotions surrounding diabetes for 14 days. Adolescents reported, via a checklist, the number of problems they experienced in managing diabetes each day. Using dynamical systems modeling, we found that adolescents’ problems and emotions were related to changes in their parents’ reports of negative affect, though differently for mothers and fathers. On days when adolescents reported more problems, fathers’ affect changed more slowly back to homeostasis. Adolescents’ problems were not associated with change in mothers’ negative affect, but when adolescents reported greater negative daily affect, mothers were drawn to greater negative affect, displaying a higher set point. Models accounting for parental coupling effects suggested that when adolescents reported more negative affect, mothers’ affect changed more slowly back to homeostasis. Neither adolescents’ problems nor their emotions were associated with changes in mothers’ or fathers’ reports of daily positive affect. These results indicate different temporal patterns in mothers’ and fathers’ negative affect that illustrate how mothers, fathers, and adolescents react differently to chronic illness within the family system. PMID:27148935

  10. Expression profiling of nuclear receptors in breast cancer identifies TLX as a mediator of growth and invasion in triple-negative breast cancer

    PubMed Central

    Remenyi, Judit; Banerji, Christopher R.S.; Lai, Chun-Fui; Periyasamy, Manikandan; Lombardo, Ylenia; Busonero, Claudia; Ottaviani, Silvia; Passey, Alun; Quinlan, Philip R.; Purdie, Colin A.; Jordan, Lee B.; Thompson, Alastair M.; Finn, Richard S.; Rueda, Oscar M.; Caldas, Carlos; Gil, Jesus; Coombes, R. Charles; Fuller-Pace, Frances V.; Teschendorff, Andrew E.; Buluwela, Laki; Ali, Simak

    2015-01-01

    The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells. PMID:26280373

  11. Osa-miR169 Negatively Regulates Rice Immunity against the Blast Fungus Magnaporthe oryzae

    PubMed Central

    Li, Yan; Zhao, Sheng-Li; Li, Jin-Lu; Hu, Xiao-Hong; Wang, He; Cao, Xiao-Long; Xu, Yong-Ju; Zhao, Zhi-Xue; Xiao, Zhi-Yuan; Yang, Nan; Fan, Jing; Huang, Fu; Wang, Wen-Ming

    2017-01-01

    miR169 is a conserved microRNA (miRNA) family involved in plant development and stress-induced responses. However, how miR169 functions in rice immunity remains unclear. Here, we show that miR169 acts as a negative regulator in rice immunity against the blast fungus Magnaporthe oryzae by repressing the expression of nuclear factor Y-A (NF-YA) genes. The accumulation of miR169 was significantly increased in a susceptible accession but slightly fluctuated in a resistant accession upon M. oryzae infection. Consistently, the transgenic lines overexpressing miR169a became hyper-susceptible to different M. oryzae strains associated with reduced expression of defense-related genes and lack of hydrogen peroxide accumulation at the infection site. Consequently, the expression of its target genes, the NF-YA family members, was down-regulated by the overexpression of miR169a at either transcriptional or translational level. On the contrary, overexpression of a target mimicry that acts as a sponge to trap miR169a led to enhanced resistance to M. oryzae. In addition, three of miR169’s target genes were also differentially up-regulated in the resistant accession upon M. oryzae infection. Taken together, our data indicate that miR169 negatively regulates rice immunity against M. oryzae by differentially repressing its target genes and provide the potential to engineer rice blast resistance via a miRNA. PMID:28144248

  12. A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha

    PubMed Central

    Flores-Sandoval, Eduardo; Eklund, D. Magnus; Bowman, John L.

    2015-01-01

    In land plants comparative genomics has revealed that members of basal lineages share a common set of transcription factors with the derived flowering plants, despite sharing few homologous structures. The plant hormone auxin has been implicated in many facets of development in both basal and derived lineages of land plants. We functionally characterized the auxin transcriptional response machinery in the liverwort Marchantia polymorpha, a member of the basal lineage of extant land plants. All components known from flowering plant systems are present in M. polymorpha, but they exist as single orthologs: a single MpTOPLESS (TPL) corepressor, a single MpTRANSPORT INHIBITOR RESPONSE 1 auxin receptor, single orthologs of each class of AUXIN RESPONSE FACTOR (ARF; MpARF1, MpARF2, MpARF3), and a single negative regulator AUXIN/INDOLE-3-ACETIC ACID (MpIAA). Phylogenetic analyses suggest this simple system is the ancestral condition for land plants. We experimentally demonstrate that these genes act in an auxin response pathway — chimeric fusions of the MpTPL corepressor with heterodimerization domains of MpARF1, MpARF2, or their negative regulator, MpIAA, generate auxin insensitive plants that lack the capacity to pattern and transition into mature stages of development. Our results indicate auxin mediated transcriptional regulation acts as a facilitator of branching, differentiation and growth, rather than acting to determine or specify tissues during the haploid stage of the M. polymorpha life cycle. We hypothesize that the ancestral role of auxin is to modulate a balance of differentiated and pluri- or totipotent cell states, whose fates are determined by interactions with combinations of unrelated transcription factors. PMID:26020649

  13. Transcription factor HAT1 is a substrate of SnRK2.3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought.

    PubMed

    Tan, Wenrong; Zhang, Dawei; Zhou, Huapeng; Zheng, Ting; Yin, Yanhai; Lin, Honghui

    2018-04-01

    Drought is a major threat to plant growth and crop productivity. The phytohormone abscisic acid (ABA) plays a critical role in plant response to drought stress. Although ABA signaling-mediated drought tolerance has been widely investigated in Arabidopsis thaliana, the feedback mechanism and components negatively regulating this pathway are less well understood. Here we identified a member of Arabidopsis HD-ZIP transcription factors HAT1 which can interacts with and be phosphorylated by SnRK2s. hat1hat3, loss-of-function mutant of HAT1 and its homolog HAT3, was hypersensitive to ABA in primary root inhibition, ABA-responsive genes expression, and displayed enhanced drought tolerance, whereas HAT1 overexpressing lines were hyposensitive to ABA and less tolerant to drought stress, suggesting that HAT1 functions as a negative regulator in ABA signaling-mediated drought response. Furthermore, expression levels of ABA biosynthesis genes ABA3 and NCED3 were repressed by HAT1 directly binding to their promoters, resulting in the ABA level was increased in hat1hat3 and reduced in HAT1OX lines. Further evidence showed that both protein stability and binding activity of HAT1 was repressed by SnRK2.3 phosphorylation. Overexpressing SnRK2.3 in HAT1OX transgenic plant made a reduced HAT1 protein level and suppressed the HAT1OX phenotypes in ABA and drought response. Our results thus establish a new negative regulation mechanism of HAT1 which helps plants fine-tune their drought responses.

  14. UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer.

    PubMed

    Rezvani, Khosrow

    2016-10-14

    The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth.

  15. Diverse correlation patterns between microRNAs and their targets during tomato fruit development indicates different modes of microRNA actions.

    PubMed

    Lopez-Gomollon, Sara; Mohorianu, Irina; Szittya, Gyorgy; Moulton, Vincent; Dalmay, Tamas

    2012-12-01

    MicroRNAs negatively regulate the accumulation of mRNAs therefore when they are expressed in the same cells their expression profiles show an inverse correlation. We previously described one positively correlated miRNA/target pair, but it is not known how widespread this phenomenon is. Here, we investigated the correlation between the expression profiles of differentially expressed miRNAs and their targets during tomato fruit development using deep sequencing, Northern blot and RT-qPCR. We found an equal number of positively and negatively correlated miRNA/target pairs indicating that positive correlation is more frequent than previously thought. We also found that the correlation between microRNA and target expression profiles can vary between mRNAs belonging to the same gene family and even for the same target mRNA at different developmental stages. Since microRNAs always negatively regulate their targets, the high number of positively correlated microRNA/target pairs suggests that mutual exclusion could be as widespread as temporal regulation. The change of correlation during development suggests that the type of regulatory circuit directed by a microRNA can change over time and can be different for individual gene family members. Our results also highlight potential problems for expression profiling-based microRNA target identification/validation.

  16. Leader-member exchange and member performance: a new look at individual-level negative feedback-seeking behavior and team-level empowerment climate.

    PubMed

    Chen, Ziguang; Lam, Wing; Zhong, Jian An

    2007-01-01

    From a basis in social exchange theory, the authors investigated whether, and how, negative feedback-seeking behavior and a team empowerment climate affect the relationship between leader-member exchange (LMX) and member performance. Results showed that subordinates' negative feedback-seeking behavior mediated the relationship between LMX and both objective and subjective in-role performance. In addition, the level of a team's empowerment climate was positively related to subordinates' own sense of empowerment, which in turn negatively moderated the effects of LMX on negative feedback-seeking behavior. 2007 APA, all rights reserved

  17. Effects of c-Jun N-terminal kinase on Activin A/Smads signaling in PC12 cell suffered from oxygen-glucose deprivation.

    PubMed

    Wang, J Q; Xu, Z H; Liang, W Z; He, J T; Cui, Y; Liu, H Y; Xue, L X; Shi, W; Shao, Y K; Mang, J; Xu, Z X

    2016-02-29

    Activin A (Act A), a member of transforming growth factor-β (TGF-β) superfamily, is an early gene in response to cerebral ischemia. Growing evidences confirm the neuroprotective effect of Act A in ischemic injury through Act A/Smads signal activation. In this process, regulation networks are involved in modulating the outcomes of Smads signaling. Among these regulators, crosstalk between c-Jun N-terminal kinase (JNK) and Smads signaling has been found in the TGF-β induced epithelial-mesenchymal transition. However, in neural ischemia, the speculative regulation between JNK and Act A/Smads signaling pathways has not been clarified. To explore this issue, an Oxygen Glucose Deprivation (OGD) model was introduced to nerve-like PC12 cells. We found that JNK signal activation occurred at the early time of OGD injury (1 h). Act A administration suppressed JNK phosphorylation. In addition, JNK inhibition could elevate the strength of Smads signaling and attenuate neural apoptosis after OGD injury. Our results indicated a negative regulation effect of JNK on Smads signaling in ischemic injury. Taken together, JNK, as a critical site for neural apoptosis and negative regulator for Act A/Smads signaling, was presumed to be a molecular therapeutic target for ischemia.

  18. A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory

    PubMed Central

    Mathew, Rebecca S; Tatarakis, Antonis; Rudenko, Andrii; Johnson-Venkatesh, Erin M; Yang, Yawei J; Murphy, Elisabeth A; Todd, Travis P; Schepers, Scott T; Siuti, Nertila; Martorell, Anthony J; Falls, William A; Hammack, Sayamwong E; Walsh, Christopher A; Tsai, Li-Huei; Umemori, Hisashi; Bouton, Mark E; Moazed, Danesh

    2016-01-01

    The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway. DOI: http://dx.doi.org/10.7554/eLife.22467.001 PMID:28001126

  19. Encephalomyocarditis Virus 3C Protease Relieves TRAF Family Member-associated NF-κB Activator (TANK) Inhibitory Effect on TRAF6-mediated NF-κB Signaling through Cleavage of TANK*

    PubMed Central

    Huang, Li; Liu, Qinfang; Zhang, Lijie; Zhang, Quan; Hu, Liang; Li, Changyao; Wang, Shengnan; Li, Jiangnan; Zhang, Yuanfeng; Yu, Huibin; Wang, Yan; Zhong, Zhaohua; Xiong, Tao; Xia, Xueshan; Wang, Xiaojun; Yu, Li; Deng, Guohua; Cai, Xuehui; Cui, Shangjin; Weng, Changjiang

    2015-01-01

    TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation. PMID:26363073

  20. Nuclear hormone retinoid X receptor (RXR) negatively regulates the glucose-stimulated insulin secretion of pancreatic ß-cells.

    PubMed

    Miyazaki, Satsuki; Taniguchi, Hidenori; Moritoh, Yusuke; Tashiro, Fumi; Yamamoto, Tsunehiko; Yamato, Eiji; Ikegami, Hiroshi; Ozato, Keiko; Miyazaki, Jun-ichi

    2010-11-01

    Retinoid X receptors (RXRs) are members of the nuclear hormone receptor superfamily and are thought to be key regulators in differentiation, cellular growth, and gene expression. Although several experiments using pancreatic β-cell lines have shown that the ligands of nuclear hormone receptors modulate insulin secretion, it is not clear whether RXRs have any role in insulin secretion. To elucidate the function of RXRs in pancreatic β-cells, we generated a double-transgenic mouse in which a dominant-negative form of RXRβ was inducibly expressed in pancreatic β-cells using the Tet-On system. We also established a pancreatic β-cell line from an insulinoma caused by the β-cell-specific expression of simian virus 40 T antigen in the above transgenic mouse. In the transgenic mouse, expression of the dominant-negative RXR enhanced the insulin secretion with high glucose stimulation. In the pancreatic β-cell line, the suppression of RXRs also enhanced glucose-stimulated insulin secretion at a high glucose concentration, while 9-cis-retinoic acid, an RXR agonist, repressed it. High-density oligonucleotide microarray analysis showed that expression of the dominant-negative RXR affected the expression levels of a number of genes, some of which have been implicated in the function and/or differentiation of β-cells. These results suggest that endogenous RXR negatively regulates the glucose-stimulated insulin secretion. Given these findings, we propose that the modulation of endogenous RXR in β-cells may be a new therapeutic approach for improving impaired insulin secretion in type 2 diabetes.

  1. Identification of a novel human kinase supporter of Ras (hKSR-2) that functions as a negative regulator of Cot (Tpl2) signaling.

    PubMed

    Channavajhala, Padma L; Wu, Leeying; Cuozzo, John W; Hall, J Perry; Liu, Wei; Lin, Lih-Ling; Zhang, Yuhua

    2003-11-21

    Kinase suppressor of Ras (KSR) is an integral and conserved component of the Ras signaling pathway. Although KSR is a positive regulator of the Ras/mitogen-activated protein (MAP) kinase pathway, the role of KSR in Cot-mediated MAPK activation has not been identified. The serine/threonine kinase Cot (also known as Tpl2) is a member of the MAP kinase kinase kinase (MAP3K) family that is known to regulate oncogenic and inflammatory pathways; however, the mechanism(s) of its regulation are not precisely known. In this report, we identify an 830-amino acid novel human KSR, designated hKSR-2, using predictions from genomic data base mining based on the structural profile of the KSR kinase domain. We show that, similar to the known human KSR, hKSR-2 co-immunoprecipitates with many signaling components of the Ras/MAPK pathway, including Ras, Raf, MEK-1, and ERK-1/2. In addition, we demonstrate that hKSR-2 co-immunoprecipitates with Cot and that co-expression of hKSR-2 with Cot significantly reduces Cot-mediated MAPK and NF-kappaB activation. This inhibition is specific to Cot, because Ras-induced ERK and IkappaB kinase-induced NF-kappaB activation are not significantly affected by hKSR-2 co-expression. Moreover, Cot-induced interleukin-8 production in HeLa cells is almost completely inhibited by the concurrent expression of hKSR-2, whereas transforming growth factor beta-activated kinase 1 (TAK1)/TAK1-binding protein 1 (TAB1)-induced interleukin-8 production is not affected by hKSR-2 co-expression. Taken together, these results indicate that hKSR-2, a new member of the KSR family, negatively regulates Cot-mediated MAP kinase and NF-kappaB pathway signaling.

  2. Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation.

    PubMed

    Chan, Siew Wee; Lim, Chun Jye; Guo, Fusheng; Tan, Ivan; Leung, Thomas; Hong, Wanjin

    2013-12-27

    Whether the Hippo pathway has downstream targets other than YAP and TAZ is unknown. In this report, we have identified angiomotin (Amot) family members as novel substrates of Hippo core kinases. The N-terminal regions of Amot proteins contain a conserved HXRXXS consensus site for LATS1/2-mediated phosphorylation. Phospho-specific antibodies showed that Hippo core kinases could mediate phosphorylation of endogenous as well as exogenous Amot family members. Knockdown of LATS1 and LATS2 endogenously reduced the phosphorylation of Amots detected by the phospho-specific antibodies. Mutation of the serine to alanine within this HXRXXS site in Amot and AmotL2 established that this site was essential for Hippo core kinase-mediated phosphorylation. Wild-type and non-phosphorylated Amot (Amot-S175A) were targeted to actin filaments, whereas phospho-mimic Amot (Amot-S175D) failed to be localized with actin. Overexpression of LATS2 caused dissociation of Amot from actin but not Amot-S175A. Mapping of the actin-binding site of Amot showed that serine 175 of Amot was important for the actin-binding activity. Amot-S175A promoted, whereas Amot and Amot-S175D inhibited, cell proliferation. These results collectively suggest that the Hippo pathway negatively regulates the actin-binding activity of Amot family members through direct phosphorylation.

  3. PpHB22, a member of HD-Zip proteins, activates PpDAM1 to regulate bud dormancy transition in 'Suli' pear (Pyrus pyrifolia White Pear Group).

    PubMed

    Yang, Qinsong; Niu, Qingfeng; Li, Jianzhao; Zheng, Xiaoyan; Ma, Yunjing; Bai, Songling; Teng, Yuanwen

    2018-06-01

    Homeodomain-leucine zipper (HD-Zip) proteins, which form one of the largest and most diverse families, regulate many biological processes in plants, including differentiation, flowering, vascular development, and stress signaling. Abscisic acid (ABA) has been proved to be one of the key regulators of bud dormancy and to influence several HD-Zip genes expression. However, the role of HD-Zip genes in regulating bud dormancy remains unclear. We identified 47 pear (P. pyrifolia White Pear Group) HD-Zip genes, which were classified into four subfamilies (HD-Zip I-IV). We further revealed that gene expression levels of some HD-Zip members were closely related to ABA concentrations in flower buds during dormancy transition. Exogenous ABA treatment confirmed that PpHB22 and several other HD-Zip genes responded to ABA. Yeast one-hybrid and dual luciferase assay results combining subcellular localization showed that PpHB22 was present in nucleus and directly induced PpDAM1 (dormancy associated MADS-box 1) expression. Thus, PpHB22 is a negative regulator of plant growth associated with the ABA response pathway and functions upstream of PpDAM1. These findings enrich our understanding of the function of HD-Zip genes related to the bud dormancy transition. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. XEDAR activates the non-canonical NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhelst, Kelly, E-mail: Kelly.Verhelst@irc.VIB-UGent.be; Department of Biomedical Molecular Biology, Ghent University, Ghent; Gardam, Sandra, E-mail: s.gardam@garvan.org.au

    2015-09-18

    Members of the tumor necrosis factor receptor (TNFR) superfamily are involved in a number of physiological and pathological responses by activating a wide variety of intracellular signaling pathways. The X-linked ectodermal dysplasia receptor (XEDAR; also known as EDA2R or TNFRSF27) is a member of the TNFR superfamily that is highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2), a member of the TNF family that is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Although XEDAR was first described in the year 2000, its function and molecular mechanism of action is still largely unclear. XEDAR hasmore » been reported to activate canonical nuclear factor κB (NF-κB) signaling and mitogen-activated protein (MAP) kinases. Here we report that XEDAR is also able to trigger the non-canonical NF-κB pathway, characterized by the processing of p100 (NF-κB2) into p52, followed by nuclear translocation of p52 and RelB. We provide evidence that XEDAR-induced p100 processing relies on the binding of XEDAR to TRAF3 and TRAF6, and requires the kinase activity of NIK and IKKα. We also show that XEDAR stimulation results in NIK accumulation and that p100 processing is negatively regulated by TRAF3, cIAP1 and A20. - Highlights: • XEDAR activates the non-canonical NF-κB pathway. • XEDAR-induced processing of p100 depends on XEDAR interaction with TRAF3 and TRAF6. • XEDAR-induced processing of p100 depends on NIK and IKKα activity. • Overexpression of XEDAR leads to NIK accumulation. • XEDAR-induced processing of p100 is negatively regulated by TRAF3 cIAP1 and A20.« less

  5. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress

    PubMed Central

    Prasad, Kasavajhala V. S. K.; Abdel-Hameed, Amira A. E.; Xing, Denghui; Reddy, Anireddy S. N.

    2016-01-01

    Abiotic and biotic stresses cause significant yield losses in all crops. Acquisition of stress tolerance in plants requires rapid reprogramming of gene expression. SR1/CAMTA3, a member of signal responsive transcription factors (TFs), functions both as a positive and a negative regulator of biotic stress responses and as a positive regulator of cold stress-induced gene expression. Using high throughput RNA-seq, we identified ~3000 SR1-regulated genes. Promoters of about 60% of the differentially expressed genes have a known DNA binding site for SR1, suggesting that they are likely direct targets. Gene ontology analysis of SR1-regulated genes confirmed previously known functions of SR1 and uncovered a potential role for this TF in salt stress. Our results showed that SR1 mutant is more tolerant to salt stress than the wild type and complemented line. Improved tolerance of sr1 seedlings to salt is accompanied with the induction of salt-responsive genes. Furthermore, ChIP-PCR results showed that SR1 binds to promoters of several salt-responsive genes. These results suggest that SR1 acts as a negative regulator of salt tolerance by directly repressing the expression of salt-responsive genes. Overall, this study identified SR1-regulated genes globally and uncovered a previously uncharacterized role for SR1 in salt stress response. PMID:27251464

  6. Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape (Brassica napus L.).

    PubMed

    Ma, Jin-Qi; Jian, Hong-Ju; Yang, Bo; Lu, Kun; Zhang, Ao-Xiang; Liu, Pu; Li, Jia-Na

    2017-07-15

    Growth regulating-factors (GRFs) are plant-specific transcription factors that help regulate plant growth and development. Genome-wide identification and evolutionary analyses of GRF gene families have been performed in Arabidopsis thaliana, Zea mays, Oryza sativa, and Brassica rapa, but a comprehensive analysis of the GRF gene family in oilseed rape (Brassica napus) has not yet been reported. In the current study, we identified 35 members of the BnGRF family in B. napus. We analyzed the chromosomal distribution, phylogenetic relationships (Bayesian Inference and Neighbor Joining method), gene structures, and motifs of the BnGRF family members, as well as the cis-acting regulatory elements in their promoters. We also analyzed the expression patterns of 15 randomly selected BnGRF genes in various tissues and in plant varieties with different harvest indices and gibberellic acid (GA) responses. The expression levels of BnGRFs under GA treatment suggested the presence of possible negative feedback regulation. The evolutionary patterns and expression profiles of BnGRFs uncovered in this study increase our understanding of the important roles played by these genes in oilseed rape. Copyright © 2017. Published by Elsevier B.V.

  7. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin.

    PubMed

    Li, Yao; Li, Shengjie; Li, Ruimin; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei

    2017-03-01

    Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Arabidopsis ESK1 encodes a novel regulator of freezing tolerance.

    PubMed

    Xin, Zhanguo; Mandaokar, Ajin; Chen, Junping; Last, Robert L; Browse, John

    2007-03-01

    The eskimo1 (esk1) mutation of Arabidopsis resulted in a 5.5 degrees C improvement in freezing tolerance in the absence of cold acclimation. Here we show that the increase in freezing tolerance is not associated with any increase in the ability to survive drought or salt stresses, which are similar to freezing in their induction of cellular dehydration. Genome-wide comparisons of gene expression between esk1-1 and wild type indicate that mutations at esk1 result in altered expression of transcription factors and signaling components and of a set of stress-responsive genes. Interestingly, the list of 312 genes regulated by ESK1 shows greater overlap with sets of genes regulated by salt, osmotic and abscisic acid treatments than with genes regulated by cold acclimation or by the transcription factors CBF3 and ICE1, which have been shown to control genetic pathways for freezing tolerance. Map-based cloning identified the esk1 locus as At3g55990. The wild-type ESK1 gene encodes a 57-kDa protein and is a member of a large gene family of DUF231 domain proteins whose members encode a total of 45 proteins of unknown function. Our results indicate that ESK1 is a novel negative regulator of cold acclimation. Mutations in the ESK1 gene provide strong freezing tolerance through genetic regulation that is apparently very different from previously described genetic mechanisms of cold acclimation.

  9. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  10. 12 CFR 723.20 - How can a state supervisory authority develop and enforce a member business loan regulation?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... state regulation minimizes the risk and accomplishes the overall objectives of NCUA's member business... and enforce a member business loan regulation? 723.20 Section 723.20 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS MEMBER BUSINESS LOANS § 723.20 How can a state...

  11. Examination of the heterogeneity in PTSD and impulsivity facets: A latent profile analysis.

    PubMed

    Contractor, Ateka A; Caldas, Stephanie; Weiss, Nicole H; Armour, Cherie

    2018-04-15

    The experience of traumatizing events and resulting posttraumatic stress disorder (PTSD) symptomology relates to a range of impulsive behaviors. While both PTSD and impulsivity are heterogeneous and multidimensional constructs, no research has used person-centered approaches to examine subgroups of individuals based on these response endorsements. Hence, our study examined PTSD-impulsivity typologies and their construct validity in two samples: university students ( n = 412) and community participants recruited through Amazon's MTurk ( n = 346). Measures included the Stressful Life Events Screening Questionnaire (PTEs), PTSD Checklist for DSM-5 (PTSD severity), UPPS Impulsive Behavior Scale (negative urgency, lack of premeditation, lack of perseverance, sensation seeking). Dimensions of Anger Reaction Scale (anger), and the Patient Health Questionnaire-9 (depression). For both samples, results of latent profile analyses indicated a best-fitting 3-class solution: High, Moderate, and Low PTSD-Negative Urgency. Negative urgency was the most distinguishing impulsivity facet. Anger and depression severity significantly predicted membership in the more severe symptomatology classes. Thus, individuals can be meaningfully categorized into three subgroups based on PTSD and impulsivity item endorsements. We provide some preliminary evidence for a negative urgency subtype of PTSD characterized by greater depression and anger regulation difficulties; and underscore addressing emotional regulation skills for these subgroup members.

  12. 12 CFR 723.4 - What other regulations apply to member business lending?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false What other regulations apply to member business... CREDIT UNIONS MEMBER BUSINESS LOANS § 723.4 What other regulations apply to member business lending? (a) The provisions of § 701.21(a) through (g) and part 702 of this chapter apply to member business loans...

  13. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress

    PubMed Central

    Liang, Jingjing; Sagum, Cari A.; Bedford, Mark T.; Sudol, Marius; Han, Ziying

    2017-01-01

    Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles. PMID:28076420

  14. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    PubMed

    Liang, Jingjing; Sagum, Cari A; Bedford, Mark T; Sidhu, Sachdev S; Sudol, Marius; Han, Ziying; Harty, Ronald N

    2017-01-01

    Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  15. Regulation of Bacteria-Induced Intercellular Adhesion Molecule-1 by CCAAT/Enhancer Binding Proteins

    PubMed Central

    Manzel, Lori J.; Chin, Cecilia L.; Behlke, Mark A.; Look, Dwight C.

    2009-01-01

    Direct interaction between bacteria and epithelial cells may initiate or amplify the airway response through induction of epithelial defense gene expression by nuclear factor-κB (NF-κB). However, multiple signaling pathways modify NF-κB effects to modulate gene expression. In this study, the effects of CCAAT/enhancer binding protein (C/EBP) family members on induction of the leukocyte adhesion glycoprotein intercellular adhesion molecule-1 (ICAM-1) was examined in primary cultures of human tracheobronchial epithelial cells incubated with nontypeable Haemophilus influenzae. Increased ICAM-1 gene transcription in response to H. influenzae required gene sequences located at −200 to −135 in the 5′-flanking region that contain a C/EBP-binding sequence immediately upstream of the NF-κB enhancer site. Constitutive C/EBPβ was found to have an important role in epithelial cell ICAM-1 regulation, while the adjacent NF-κB sequence binds the RelA/p65 and NF-κB1/p50 members of the NF-κB family to induce ICAM-1 expression in response to H. influenzae. The expression of C/EBP proteins is not regulated by p38 mitogen-activated protein kinase activation, but p38 affects gene transcription by increasing the binding of TATA-binding protein to TATA-box–containing gene sequences. Epithelial cell ICAM-1 expression in response to H. influenzae was decreased by expressing dominant-negative protein or RNA interference against C/EBPβ, confirming its role in ICAM-1 regulation. Although airway epithelial cells express multiple constitutive and inducible C/EBP family members that bind C/EBP sequences, the results indicate that C/EBPβ plays a central role in modulation of NF-κB–dependent defense gene expression in human airway epithelial cells after exposure to H. influenzae. PMID:18703796

  16. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling

    PubMed Central

    Klein, Theo; Fung, Shan-Yu; Renner, Florian; Blank, Michael A.; Dufour, Antoine; Kang, Sohyeong; Bolger-Munro, Madison; Scurll, Joshua M.; Priatel, John J.; Schweigler, Patrick; Melkko, Samu; Gold, Michael R.; Viner, Rosa I.; Régnier, Catherine H.; Turvey, Stuart E.; Overall, Christopher M.

    2015-01-01

    Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1mut/mut patient with healthy MALT1+/mut family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway—first promoting activation via the CBM—then triggering HOIL1-dependent negative-feedback termination, preventing reactivation. PMID:26525107

  17. p27Kip1 regulates alpha-synuclein expression

    PubMed Central

    Gallastegui, Edurne; Domuro, Carla; Serratosa, Joan; Larrieux, Alejandra; Sin, Laura; Martinez, Jonatan; Besson, Arnaud; Morante-Redolat, José Manuel; Orlando, Serena; Aligue, Rosa; Fariñas, Isabel; Pujol, María Jesús; Bachs, Oriol

    2018-01-01

    Alpha-synuclein (α-SYN) is the main component of anomalous protein aggregates (Lewy bodies) that play a crucial role in several neurodegenerative diseases (synucleinopathies) like Parkinson’s disease and multiple system atrophy. However, the mechanisms involved in its transcriptional regulation are poorly understood. We investigated here the role of the cyclin-dependent kinase (Cdk) inhibitor and transcriptional regulator p27Kip1 (p27) in the regulation of α-SYN expression. We observed that selective deletion of p27 by CRISPR/Cas9 technology in neural cells resulted in increased levels of α-SYN. Knock-down of the member of the same family p21Cip1 (p21) also led to increased α-SYN levels, indicating that p27 and p21 collaborate in the repression of α-SYN transcription. We demonstrated that this repression is mediated by the transcription factor E2F4 and the member of the retinoblastoma protein family p130 and that it is dependent of Cdk activity. Chromatin immunoprecipitation analysis revealed specific binding sites for p27, p21 and E2F4 in the proximal α-SYN gene promoter. Finally, luciferase assays revealed a direct action of p27, p21 and E2F4 in α-SYN gene expression. Our findings reveal for the first time a negative regulatory mechanism of α-SYN expression, suggesting a putative role for cell cycle regulators in the etiology of synucleinopathies. PMID:29662651

  18. MicroRNA-424/503 cluster members regulate bovine granulosa cell proliferation and cell cycle progression by targeting SMAD7 gene through activin signalling pathway.

    PubMed

    Pande, Hari Om; Tesfaye, Dawit; Hoelker, Michael; Gebremedhn, Samuel; Held, Eva; Neuhoff, Christiane; Tholen, Ernst; Schellander, Karl; Wondim, Dessie Salilew

    2018-05-01

    The granulosa cells are indispensable for follicular development and its function is orchestrated by several genes, which in turn posttranscriptionally regulated by microRNAs (miRNA). In our previous study, the miRRNA-424/503 cluster was found to be highly abundant in bovine granulosa cells (bGCs) of preovulatory dominant follicle compared to subordinate counterpart at day 19 of the bovine estrous cycle. Other study also indicated the involvement of miR-424/503 cluster in tumour cell resistance to apoptosis suggesting this miRNA cluster may involve in cell survival. However, the role of miR-424/503 cluster in granulosa cell function remains elusive Therefore, this study aimed to investigate the role of miRNA-424/503 cluster in bGCs function using microRNA gain- and loss-of-function approaches. The role of miR-424/503 cluster members in granulosa cell function was investigated by overexpressing or inhibiting its activity in vitro cultured granulosa cells using miR-424/503 mimic or inhibitor, respectively. Luciferase reporter assay showed that SMAD7 and ACVR2A are the direct targets of the miRNA-424/503 cluster members. In line with this, overexpression of miRNA-424/503 cluster members using its mimic and inhibition of its activity by its inhibitor reduced and increased, respectively the expression of SMAD7 and ACVR2A. Furthermore, flow cytometric analysis indicated that overexpression of miRNA-424/503 cluster members enhanced bGCs proliferation by promoting G1- to S- phase cell cycle transition. Modulation of miRNA-424/503 cluster members tended to increase phosphorylation of SMAD2/3 in the Activin signalling pathway. Moreover, sequence specific knockdown of SMAD7, the target gene of miRNA-424/503 cluster members, using small interfering RNA also revealed similar phenotypic and molecular alterations observed when miRNA-424/503 cluster members were overexpressed. Similarly, to get more insight about the role of miRNA-424/503 cluster members in activin signalling pathway, granulosa cells were treated with activin A. Activin A treatment increased cell proliferation and downregulation of both miRNA-424/503 members and its target gene, indicated the presence of negative feedback loop between activin A and the expression of miRNA-424/503. This study suggests that the miRNA-424/503 cluster members are involved in regulating bovine granulosa cell proliferation and cell cycle progression. Further, miRNA-424/503 cluster members target the SMAD7 and ACVR2A genes which are involved in the activin signalling pathway.

  19. HDAC3 Is a Critical Negative Regulator of Long-Term Memory Formation

    PubMed Central

    McQuown, Susan C.; Barrett, Ruth M.; Matheos, Dina P.; Post, Rebecca J.; Rogge, George A.; Alenghat, Theresa; Mullican, Shannon E.; Jones, Steven; Rusche, James R.; Lazar, Mitchell A.; Wood, Marcelo A.

    2011-01-01

    Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyl-transerases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3–FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3–FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3–FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation. PMID:21228185

  20. Los1p, involved in yeast pre-tRNA splicing, positively regulates members of the SOL gene family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, W.C.; Stanford, D.R.; Hopper, A.K.

    1996-06-01

    To understand the role of Los1p in pre-tRNA splicing, we sought los1 multicopy suppressors. We found SOL1 that suppresses both point and null LOS1 mutations. Since, when fused to the Gal4p DNA-binding domain, Los1p activates transcription, we tested whether Los1p regulates SOL1. We found that los1 mutants have depleted levels of SOL1 mRNA and Sol1p. Thus, LOS1 appears to positively regulate SOL1. SOL1 belongs to a multigene family with at least two additional members, SOL2 and SOL3. Sol proteins have extensive similarity to an unusual group of glucose-6-phosphate dehydrogenases (G6PDs). As the similarities are restricted to areas separate from themore » catalytic domain, these G6PDs may have more than one function. The SOL gene disruptions negatively affect tRNA-mediated nonsense suppression and the severity increases with the number of mutant SOL genes. However, tRNA levels do not vary with either multicopy SOL genes or with SOL disruptions. Therefore, the Sol proteins affect tRNA expression/function at steps other than transcription or splicing. We propose that LOS1 regulates gene products involved in tRNA expression/function as well as pre-tRNA splicing. 64 refs., 6 figs., 6 tabs.« less

  1. The rice F-box protein KISS ME DEADLY2 functions as a negative regulator of cytokinin signalling.

    PubMed

    Kim, Hyo Jung; Kieber, Joseph J; Schaller, G Eric

    2013-01-01

    Cytokinins are plant hormones that play critical roles in growth and development. We recently determined that the transcriptional response to cytokinin of Arabidopsis is modulated by the KISS ME DEADLY (KMD) family of F-box proteins. Here we demonstrate a conserved function for a member of the rice KMD family. Ectopic overexpression of OsKMD2 in Arabidopsis results in decreased cytokinin sensitivity based on a hypocotyl growth response assay, the decrease in sensitivity correlating with a decrease in the levels of the transcriptional regulator AtARR12. Furthermore, OsKMD2 directly interacts with AtARR12 based on yeast two-hybrid and co-immunoprecipitation assays. These results indicate that both monocots and dicots employ a similar KMD-dependent mechanism to regulate the transcriptional response to cytokinin.

  2. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages.

    PubMed

    Xia, Yin; Cortez-Retamozo, Virna; Niederkofler, Vera; Salie, Rishard; Chen, Shanzhuo; Samad, Tarek A; Hong, Charles C; Arber, Silvia; Vyas, Jatin M; Weissleder, Ralph; Pittet, Mikael J; Lin, Herbert Y

    2011-02-01

    Repulsive guidance molecule (RGM) family members RGMa, RGMb/Dragon, and RGMc/hemojuvelin were found recently to act as bone morphogenetic protein (BMP) coreceptors that enhance BMP signaling activity. Although our previous studies have shown that hemojuvelin regulates hepcidin expression and iron metabolism through the BMP pathway, the role of the BMP signaling mediated by Dragon remains largely unknown. We have shown previously that Dragon is expressed in neural cells, germ cells, and renal epithelial cells. In this study, we demonstrate that Dragon is highly expressed in macrophages. Studies with RAW264.7 and J774 macrophage cell lines reveal that Dragon negatively regulates IL-6 expression in a BMP ligand-dependent manner via the p38 MAPK and Erk1/2 pathways but not the Smad1/5/8 pathway. We also generated Dragon knockout mice and found that IL-6 is upregulated in macrophages and dendritic cells derived from whole lung tissue of these mice compared with that in respective cells derived from wild-type littermates. These results indicate that Dragon is an important negative regulator of IL-6 expression in immune cells and that Dragon-deficient mice may be a useful model for studying immune and inflammatory disorders.

  3. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways.

    PubMed

    Rodriguez, J; Vernus, B; Chelh, I; Cassar-Malek, I; Gabillard, J C; Hadj Sassi, A; Seiliez, I; Picard, B; Bonnieu, A

    2014-11-01

    Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin-proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin-proteasome and the autophagy-lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin.

  4. Canonical Transient Receptor Potential (TRPC) 1 Acts as a Negative Regulator for Vanilloid TRPV6-mediated Ca2+ Influx*

    PubMed Central

    Schindl, Rainer; Fritsch, Reinhard; Jardin, Isaac; Frischauf, Irene; Kahr, Heike; Muik, Martin; Riedl, Maria Christine; Groschner, Klaus; Romanin, Christoph

    2012-01-01

    TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca2+ and Na+ currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca2+ influx in HEK293 cells. PMID:22932896

  5. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana

    DOE PAGES

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; ...

    2015-03-26

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analysesmore » support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Lastly, we discuss implications of this model for ethylene signaling.« less

  6. Encephalomyocarditis Virus 3C Protease Relieves TRAF Family Member-associated NF-κB Activator (TANK) Inhibitory Effect on TRAF6-mediated NF-κB Signaling through Cleavage of TANK.

    PubMed

    Huang, Li; Liu, Qinfang; Zhang, Lijie; Zhang, Quan; Hu, Liang; Li, Changyao; Wang, Shengnan; Li, Jiangnan; Zhang, Yuanfeng; Yu, Huibin; Wang, Yan; Zhong, Zhaohua; Xiong, Tao; Xia, Xueshan; Wang, Xiaojun; Yu, Li; Deng, Guohua; Cai, Xuehui; Cui, Shangjin; Weng, Changjiang

    2015-11-13

    TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana*

    PubMed Central

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; Chen, Yi-Feng; Rai, Muneeza Iqbal; Haq, Noor Ul; Schaller, G. Eric

    2015-01-01

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Implications of this model for ethylene signaling are discussed. PMID:25814663

  8. Grapevine MLO candidates required for powdery mildew pathogenicity?

    PubMed Central

    Feechan, Angela; Jermakow, Angelica M

    2009-01-01

    MLOs belong to the largest family of seven-transmembrane (7TM) domain proteins found in plants. The Arabidopsis and rice genomes contain 15 and 12 MLO family members, respectively. Although the biological function of most MLO family members remains elusive, a select group of MLO proteins have been demonstrated to negatively regulate defence responses to the obligate biotrophic pathogen, powdery mildew, thereby acting as “susceptibility” genes. Recently we identified a family of 17 putative VvMLO genes in the genome of the cultivated winegrape species, Vitis vinifera. Expression analysis indicated that the VvMLO family members respond differently to biotic and abiotic stimuli. Infection of V. vinifera by grape powdery mildew (Erysiphe necator) specifically upregulates four VvMLO genes that are orthologous to the Arabidopsis and tomato MLOs previously demonstrated to be required for powdery mildew susceptibility. We postulate that one or more of these E. necator responsive VvMLOs may have a role in the powdery mildew susceptibility of grapevine. PMID:19816131

  9. Task versus relationship conflict, team performance, and team member satisfaction: a meta-analysis.

    PubMed

    De Dreu, Carsten K W; Weingart, Laurie R

    2003-08-01

    This study provides a meta-analysis of research on the associations between relationship conflict, task conflict, team performance, and team member satisfaction. Consistent with past theorizing, results revealed strong and negative correlations between relationship conflict, team performance, and team member satisfaction. In contrast to what has been suggested in both academic research and introductory textbooks, however, results also revealed strong and negative (instead of the predicted positive) correlations between task conflict team performance, and team member satisfaction. As predicted, conflict had stronger negative relations with team performance in highly complex (decision making, project, mixed) than in less complex (production) tasks. Finally, task conflict was less negatively related to team performance when task conflict and relationship conflict were weakly, rather than strongly, correlated.

  10. Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing

    PubMed Central

    Feng, Yi; Sanders, Andrew J.; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G.; Jiang, Wen G.

    2016-01-01

    Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound-healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine-induced signalling in the chronic wound-healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds. PMID:27635428

  11. Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing.

    PubMed

    Feng, Yi; Sanders, Andrew J; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G; Jiang, Wen G

    2016-11-01

    Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound‑healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine‑induced signalling in the chronic wound‑healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds.

  12. The opiorphin gene (ProL1) and its homologues function in erectile physiology.

    PubMed

    Tong, Yuehong; Tar, Moses; Melman, Arnold; Davies, Kelvin

    2008-09-01

    To determine if ProL1, a member of the opiorphin family of genes, can modulate erectile physiology, as it encodes a peptide which acts as a neutral endopeptidase inhibitor, other examples of which (Vcsa1, hSMR3A) modulate erectile physiology. We cloned members of the opiorphin family of genes into the same mammalian expression backbone (pVAX); 100 microg of these plasmids (pVAX-Vcsa1, -hSMR3A, -hSMR3B and -ProL1) were injected intracorporally into retired breeder rats and the affect on erectile physiology assessed visually, by histology and by measuring the intracavernous pressure (ICP) and blood pressure (BP). As a positive control, rats were treated with pVAX-hSlo (expressing the MaxiK potassium channel) and as a negative control the empty backbone plasmid was injected (pVAX). We also compared the level of expression of ProL1 in corporal tissue of patients not reporting erectile dysfunction (ED), ED associated with diabetes and ED not caused by diabetes. Gene transfer of plasmids expressing all members of the opiorphin family had a similar and significant effect on erectile physiology. At the concentration used in these experiments (100 microg) they resulted in higher resting ICP, and histological and visual analysis showed evidence of a priapic-like condition. After electrostimulation of the cavernous nerve, rats had significantly better ICP/BP than the negative control (pVAX). Gene transfer of pVAX-hSlo increased the ICP/BP ratio to a similar extent to the opiorphin homologues, but with no evidence for a priapic-like condition. Corpora cavernosa tissue samples obtained from men with ED, regardless of underlying causes, had significant down-regulation of both hSMR3A and ProL1. All members of the human opiorphin family of genes can potentially modulate erectile physiology. Both hSMR3 and ProL1 are down-regulated in the corpora of men with ED, and therefore both genes can potentially act as markers of ED.

  13. The opiorphin gene (ProL1) and its homologues function in erectile physiology

    PubMed Central

    Tong, Yuehong; Tar, Moses; Melman, Arnold; Davies, Kelvin

    2010-01-01

    OBJECTIVE To determine if ProL1, a member of the opiorphin family of genes, can modulate erectile physiology, as it encodes a peptide which acts as a neutral endopeptidase inhibitor, other examples of which (Vcsa1, hSMR3A) modulate erectile physiology. MATERIALS AND METHODS We cloned members of the opiorphin family of genes into the same mammalian expression backbone (pVAX); 100 μg of these plasmids (pVAX-Vcsa1, -hSMR3A, -hSMR3B and -ProL1) were injected intracorporally into retired breeder rats and the affect on erectile physiology assessed visually, by histology and by measuring the intracavernous pressure (ICP) and blood pressure (BP). As a positive control, rats were treated with pVAX-hSlo (expressing the MaxiK potassium channel) and as a negative control the empty backbone plasmid was injected (pVAX). We also compared the level of expression of ProL1 in corporal tissue of patients not reporting erectile dysfunction (ED), ED associated with diabetes and ED not caused by diabetes. RESULTS Gene transfer of plasmids expressing all members of the opiorphin family had a similar and significant effect on erectile physiology. At the concentration used in these experiments (100 μg) they resulted in higher resting ICP, and histological and visual analysis showed evidence of a priapiclike condition. After electrostimulation of the cavernous nerve, rats had significantly better ICP/BP than the negative control (pVAX). Gene transfer of pVAX-hSlo increased the ICP/BP ratio to a similar extent to the opiorphin homologues, but with no evidence for a priapic-like condition. Corpora cavernosa tissue samples obtained from men with ED, regardless of underlying causes, had significant down-regulation of both hSMR3A and ProL1. CONCLUSION All members of the human opiorphin family of genes can potentially modulate erectile physiology. Both hSMR3 and ProL1 are down-regulated in the corpora of men with ED, and therefore both genes can potentially act as markers of ED. PMID:18410445

  14. Functional Characterization of Tea (Camellia sinensis) MYB4a Transcription Factor Using an Integrative Approach

    PubMed Central

    Li, Mingzhuo; Li, Yanzhi; Guo, Lili; Gong, Niandi; Pang, Yongzheng; Jiang, Wenbo; Liu, Yajun; Jiang, Xiaolan; Zhao, Lei; Wang, Yunsheng; Xie, De-Yu; Gao, Liping; Xia, Tao

    2017-01-01

    Green tea (Camellia sinensis, Cs) abundantly produces a diverse array of phenylpropanoid compounds benefiting human health. To date, the regulation of the phenylpropanoid biosynthesis in tea remains to be investigated. Here, we report a cDNA isolated from leaf tissues, which encodes a R2R3-MYB transcription factor. Amino acid sequence alignment and phylogenetic analysis indicate that it is a member of the MYB4-subgroup and named as CsMYB4a. Transcriptional and metabolic analyses show that the expression profile of CsMYB4a is negatively correlated to the accumulation of six flavan-3-ols and other phenolic acids. GFP fusion analysis shows CsMYB4a’s localization in the nucleus. Promoters of five tea phenylpropanoid pathway genes are isolated and characterized to contain four types of AC-elements, which are targets of MYB4 members. Interaction of CsMYB4a and five promoters shows that CsMYB4a decreases all five promoters’ activity. To further characterize its function, CsMYB4a is overexpressed in tobacco plants. The resulting transgenic plants show dwarf, shrinking and yellowish leaf, and early senescence phenotypes. A further genome-wide transcriptomic analysis reveals that the expression levels of 20 tobacco genes involved in the shikimate and the phenylpropanoid pathways are significantly downregulated in transgenic tobacco plants. UPLC-MS and HPLC based metabolic profiling reveals significant reduction of total lignin content, rutin, chlorogenic acid, and phenylalanine in CsMYB4a transgenic tobacco plants. Promoter sequence analysis of the 20 tobacco genes characterizes four types of AC-elements. Further CsMYB4a-AC element and CsMYB4a-promoter interaction analyses indicate that the negative regulation of CsMYB4a on the shikimate and phenylpropanoid pathways in tobacco is via reducing promoter activity. Taken together, all data indicate that CsMYB4a negatively regulates the phenylpropanoid and shikimate pathways. Highlight: A tea (Camellia sinensis) MYB4a is characterized to encode a R2R3-MYB transcription factor. It is shown to repressively control the phenylpropanoid and shikimate pathway. PMID:28659938

  15. The Role of Suppressors of Cytokine Signalling in Human Neoplasms

    PubMed Central

    Sharma, Anup K.; Mokbel, Kefah

    2014-01-01

    Suppressors of cytokine signalling 1–7 (SOCS1–7) and cytokine-inducible SH2-containing protein (CIS) are a group of intracellular proteins that are well known as JAK-STAT and several other signalling pathways negative feedback regulators. More recently several members have been identified as tumour suppressors and dysregulation of their biological roles in controlling cytokine and growth factor signalling may contribute to the development of many solid organ and haematological malignancies. This review explores their biological functions and their possible tumour suppressing role in human neoplasms. PMID:24757565

  16. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.

    PubMed

    Delay, Christina; Imin, Nijat; Djordjevic, Michael A

    2013-12-01

    The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.

  17. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice.

    PubMed

    Ding, Bo; Bellizzi, Maria del Rosario; Ning, Yuese; Meyers, Blake C; Wang, Guo-Liang

    2012-09-01

    Histone acetylation and deacetylation play an important role in the modification of chromatin structure and regulation of gene expression in eukaryotes. Chromatin acetylation status is modulated antagonistically by histone acetyltransferases and histone deacetylases (HDACs). In this study, we characterized the function of histone deacetylase701 (HDT701), a member of the plant-specific HD2 subfamily of HDACs, in rice (Oryza sativa) innate immunity. Transcription of HDT701 is increased in the compatible reaction and decreased in the incompatible reaction after infection by the fungal pathogen Magnaporthe oryzae. Overexpression of HDT701 in transgenic rice leads to decreased levels of histone H4 acetylation and enhanced susceptibility to the rice pathogens M. oryzae and Xanthomonas oryzae pv oryzae (Xoo). By contrast, silencing of HDT701 in transgenic rice causes elevated levels of histone H4 acetylation and elevated transcription of pattern recognition receptor (PRR) and defense-related genes, increased generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, as well as enhanced resistance to both M. oryzae and Xoo. We also found that HDT701 can bind to defense-related genes to regulate their expression. Taken together, these results demonstrate that HDT701 negatively regulates innate immunity by modulating the levels of histone H4 acetylation of PRR and defense-related genes in rice.

  18. Myostatin signals through Pax7 to regulate satellite cell self-renewal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarlane, Craig; Department of Biological Sciences, University of Waikato, Hamilton; Hennebry, Alex

    2008-01-15

    Myostatin, a Transforming Growth Factor-beta (TGF-{beta}) super-family member, has previously been shown to negatively regulate satellite cell activation and self-renewal. However, to date the mechanism behind Myostatin function in satellite cell biology is not known. Here we show that Myostatin signals via a Pax7-dependent mechanism to regulate satellite cell self-renewal. While excess Myostatin inhibited Pax7 expression via ERK1/2 signaling, an increase in Pax7 expression was observed following both genetic inactivation and functional antagonism of Myostatin. As a result, we show that either blocking or inactivating Myostatin enhances the partitioning of the fusion-incompetent self-renewed satellite cell lineage (high Pax7 expression, lowmore » MyoD expression) from the pool of actively proliferating myogenic precursor cells. Consistent with this result, over-expression of Pax7 in C2C12 myogenic cells resulted in increased self-renewal through a mechanism which slowed both myogenic proliferation and differentiation. Taken together, these results suggest that increased expression of Pax7 promotes satellite cell self-renewal, and furthermore Myostatin may control the process of satellite cell self-renewal through regulation of Pax7. Thus we speculate that, in addition to the intrinsic factors (such as Pax7), extrinsic factors both positive and negative in nature, will play a major role in determining the stemness of skeletal muscle satellite cells.« less

  19. A Genome-Wide Identification of Basic Helix-Loop-Helix Motifs in Pediculus humanus corporis (Phthiraptera: Pediculidae)

    PubMed Central

    Wang, Xu-Hua; Wang, Yong; Zhang, De-Bao; Liu, A-Ke; Yao, Qin; Chen, Ke-Ping

    2014-01-01

    Abstract Basic helix-loop-helix (bHLH) proteins comprise a large superfamily of transcription factors, which are involved in the regulation of various developmental processes. bHLH family members are widely distributed in various eukaryotes including yeast, fruit fly, zebrafish, mouse, and human. In this study, we identified 55 bHLH motifs encoded in genome sequence of the human body louse, Pediculus humanus corporis (Phthiraptera: Pediculidae). Phylogenetic analyses of the identified P. humanus corporis bHLH (PhcbHLH) motifs revealed that there are 23, 11, 9, 1, 10, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Examination to GenBank annotations of the 55 PhcbHLH members indicated that 29 PhcbHLH proteins were annotated in consistence with our analytical result, 8 were annotated different with our analytical result, 12 were merely annotated as hypothetical protein, and the rest 6 were not deposited in GenBank. A comparison on insect bHLH gene composition revealed that human body louse possibly has more hairy and E(spl) genes than other insect species. Because hairy and E(spl) genes have been found to negatively regulate the differentiation of insect preneural cells, it is suggested that the existence of additional hairy and E(spl) genes in human body louse is probably the consequence of its long period adaptation to the relatively dark and stable environment. These data provide good references for further studies on regulatory functions of bHLH proteins in the growth and development of human body louse. PMID:25434030

  20. OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice.

    PubMed

    Liu, Yaju; Xu, Yunyuan; Xiao, Jun; Ma, Qibin; Li, Dan; Xue, Zhen; Chong, Kang

    2011-07-01

    The A20/AN1 zinc-finger proteins (ZFPs) play pivotal roles in animal immune responses and plant stress responses. From previous gibberellin (GA) microarray data and A20/AN1 ZFP family member association, we chose Oryza sativa dwarf rice with overexpression of gibberellin-induced gene (OsDOG) to examine its function in the GA pathway. OsDOG was induced by gibberellic acid (GA(3)) and repressed by the GA-synthesis inhibitor paclobutrazol. Different transgenic lines with constitutive expression of OsDOG showed dwarf phenotypes due to deficiency of cell elongation. Additional GA(1) and real-time PCR quantitative assay analyses confirmed that the decrease of GA(1) in the overexpression lines resulted from reduced expression of GA3ox2 and enhanced expression of GA2ox1 and GA2ox3. Adding exogenous GA rescued the constitutive expression phenotypes of the transgenic lines. OsDOG has a novel function in regulating GA homeostasis and in negative maintenance of plant cell elongation in rice. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Striated muscle activator of Rho signalling (STARS) is reduced in ageing human skeletal muscle and targeted by miR-628-5p.

    PubMed

    Russell, A P; Wallace, M A; Kalanon, M; Zacharewicz, E; Della Gatta, P A; Garnham, A; Lamon, S

    2017-06-01

    The striated muscle activator of Rho signalling (STARS) is a muscle-specific actin-binding protein. The STARS signalling pathway is activated by resistance exercise and is anticipated to play a role in signal mechanotransduction. Animal studies have reported a negative regulation of STARS signalling with age, but such regulation has not been investigated in humans. Ten young (18-30 years) and 10 older (60-75 years) subjects completed an acute bout of resistance exercise. Gene and protein expression of members of the STARS signalling pathway and miRNA expression of a subset of miRNAs, predicted or known to target members of STARS signalling pathway, were measured in muscle biopsies collected pre-exercise and 2 h post-exercise. For the first time, we report a significant downregulation of the STARS protein in older subjects. However, there was no effect of age on the magnitude of STARS activation in response to an acute bout of exercise. Finally, we established that miR-628-5p, a miRNA regulated by age and exercise, binds to the STARS 3'UTR to directly downregulate its transcription. This study describes for the first time the resistance exercise-induced regulation of STARS signalling in skeletal muscle from older humans and identifies a new miRNA involved in the transcriptional control of STARS. © 2016 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.

  2. Los1p, involved in yeast pre-tRNA splicing, positively regulates members of the SOL gene family.

    PubMed

    Shen, W C; Stanford, D R; Hopper, A K

    1996-06-01

    To understand the role of Los1p in pre-tRNA splicing, we sought los1 multicopy suppressors. We found SOL1 that suppresses both point and null LOS1 mutations. Since, when fused to the Ga14p DNA-binding domain, Los1p activates transcription, we tested whether Los1p regulates SOL1. We found that las1 mutants have depleted levels of SOL1 mRNA and Sol1p. Thus, LOS1 appears to positively regulate SOL1. SOL1 belongs to a multigene family with at least two additional members, SOL2 and SOL3. Sol proteins have extensive similarity to an unusual group of glucose-6-phosphate dehydrogenases. As the similarities are restricted to areas separate from the catalytic domain, these G6PDs may have more than one function. The SOL family appears to be unessential since cells with a triple disruption of all three SOL genes are viable. SOL gene disruptions negatively affect tRNA-mediated nonsense suppression and the severity increases with the number of mutant SOL genes. However, tRNA levels do not vary with either multicopy SOL genes or with SOL disruptions. Therefore, the Sol proteins affect tRNA expression/ function at steps other than transcription or splicing. We propose that LOS1 regulates gene products involved in tRNA expression/function as well as pre-tRNA splicing.

  3. FADD and the NF-κB family member Bcl-3 regulate complementary pathways to control T-cell survival and proliferation

    PubMed Central

    Rangelova, Svetla; Kirschnek, Susanne; Strasser, Andreas; Häcker, Georg

    2008-01-01

    Fas-associated protein with death domain/mediator of receptor induced toxicity (FADD/MORT1) was first described as a transducer of death receptor signalling but was later recognized also to be important for proliferation of T cells. B-cell lymphoma 3 (Bcl-3) is a relatively little understood member of the nuclear factor (NF)-κB family of transcription factors. We recently found that Bcl-3 is up-regulated in T cells from mice where FADD function is blocked by a dominant negative transgene (FADD-DN). To understand the importance of this, we generated FADD-DN/bcl-3−/− mice. Here, we report that T cells from these mice show massive cell death and severely reduced proliferation in response to T-cell receptor (TCR) stimulation in vitro. Transgenic co-expression of Bcl-2 (FADD-DN/bcl-3−/−/vav-bcl-2 mice) rescued the survival but not the proliferation of T cells. FADD-DN/bcl-3−/− mice had normal thymocyte numbers but reduced numbers of peripheral T cells despite an increase in cycling T cells in vivo. However, activation of the classical NF-κB and extracellular regulated kinase (ERK) pathways and expression of interleukin (IL)-2 mRNA upon stimulation were normal in T cells from FADD-DN/bcl-3−/− mice. These data suggest that FADD and Bcl-3 regulate separate pathways that both contribute to survival and proliferation in mouse T cells. PMID:18557791

  4. Multiple UBXN family members inhibit retrovirus and lentivirus production and canonical NFκΒ signaling by stabilizing IκBα.

    PubMed

    Hu, Yani; O'Boyle, Kaitlin; Auer, Jim; Raju, Sagar; You, Fuping; Wang, Penghua; Fikrig, Erol; Sutton, Richard E

    2017-02-01

    UBXN proteins likely participate in the global regulation of protein turnover, and we have shown that UBXN1 interferes with RIG-I-like receptor (RLR) signaling by interacting with MAVS and impeding its downstream effector functions. Here we demonstrate that over-expression of multiple UBXN family members decreased lentivirus and retrovirus production by several orders-of-magnitude in single cycle assays, at the level of long terminal repeat-driven transcription, and three family members, UBXN1, N9, and N11 blocked the canonical NFκB pathway by binding to Cullin1 (Cul1), inhibiting IκBα degradation. Multiple regions of UBXN1, including its UBA domain, were critical for its activity. Elimination of UBXN1 resulted in early murine embryonic lethality. shRNA-mediated knockdown of UBXN1 enhanced human immunodeficiency virus type 1 (HIV) production up to 10-fold in single cycle assays. In primary human fibroblasts, knockdown of UBXN1 caused prolonged degradation of IκBα and enhanced NFκB signaling, which was also observed after CRISPR-mediated knockout of UBXN1 in mouse embryo fibroblasts. Knockout of UBXN1 significantly up- and down-regulated hundreds of genes, notably those of several cell adhesion and immune signaling pathways. Reduction in UBXN1 gene expression in Jurkat T cells latently infected with HIV resulted in enhanced HIV gene expression, consistent with the role of UBXN1 in modulating the NFκB pathway. Based upon co-immunoprecipitation studies with host factors known to bind Cul1, models are presented as to how UBXN1 could be inhibiting Cul1 activity. The ability of UBXN1 and other family members to negatively regulate the NFκB pathway may be important for dampening the host immune response in disease processes and also re-activating quiescent HIV from latent viral reservoirs in chronically infected individuals.

  5. Redox Activation of the Universally Conserved ATPase YchF by Thioredoxin 1.

    PubMed

    Hannemann, Liya; Suppanz, Ida; Ba, Qiaorui; MacInnes, Katherine; Drepper, Friedel; Warscheid, Bettina; Koch, Hans-Georg

    2016-01-20

    YchF/Ola1 are unconventional members of the universally conserved GTPase family because they preferentially hydrolyze ATP rather than GTP. These ATPases have been associated with various cellular processes and pathologies, including DNA repair, tumorigenesis, and apoptosis. In particular, a possible role in regulating the oxidative stress response has been suggested for both bacterial and human YchF/Ola1. In this study, we analyzed how YchF responds to oxidative stress and how it potentially regulates the antioxidant response. Our data identify a redox-regulated monomer-dimer equilibrium of YchF as a key event in the functional cycle of YchF. Upon oxidative stress, the oxidation of a conserved and surface-exposed cysteine residue promotes YchF dimerization, which is accompanied by inhibition of the ATPase activity. No dimers were observed in a YchF mutant lacking this cysteine. In vitro, the YchF dimer is dissociated by thioredoxin 1 (TrxA) and this stimulates the ATPase activity. The physiological significance of the YchF-thioredoxin 1 interaction was demonstrated by in vivo cross-linking, which validated this interaction in living cells. This approach also revealed that both the ATPase domain and the helical domain of YchF are in contact with TrxA. YchF/Ola1 are the first redox-regulated members of the universally conserved GTPase family and are inactivated by oxidation of a conserved cysteine residue within the nucleotide-binding motif. Our data provide novel insights into the regulation of the so far ill-defined YchF/Ola1 family of proteins and stipulate their role as negative regulators of the oxidative stress response.

  6. Redox Activation of the Universally Conserved ATPase YchF by Thioredoxin 1

    PubMed Central

    Hannemann, Liya; Suppanz, Ida; Ba, Qiaorui; MacInnes, Katherine; Drepper, Friedel; Warscheid, Bettina

    2016-01-01

    Abstract Aims: YchF/Ola1 are unconventional members of the universally conserved GTPase family because they preferentially hydrolyze ATP rather than GTP. These ATPases have been associated with various cellular processes and pathologies, including DNA repair, tumorigenesis, and apoptosis. In particular, a possible role in regulating the oxidative stress response has been suggested for both bacterial and human YchF/Ola1. In this study, we analyzed how YchF responds to oxidative stress and how it potentially regulates the antioxidant response. Results: Our data identify a redox-regulated monomer–dimer equilibrium of YchF as a key event in the functional cycle of YchF. Upon oxidative stress, the oxidation of a conserved and surface-exposed cysteine residue promotes YchF dimerization, which is accompanied by inhibition of the ATPase activity. No dimers were observed in a YchF mutant lacking this cysteine. In vitro, the YchF dimer is dissociated by thioredoxin 1 (TrxA) and this stimulates the ATPase activity. The physiological significance of the YchF-thioredoxin 1 interaction was demonstrated by in vivo cross-linking, which validated this interaction in living cells. This approach also revealed that both the ATPase domain and the helical domain of YchF are in contact with TrxA. Innovation: YchF/Ola1 are the first redox-regulated members of the universally conserved GTPase family and are inactivated by oxidation of a conserved cysteine residue within the nucleotide-binding motif. Conclusion: Our data provide novel insights into the regulation of the so far ill-defined YchF/Ola1 family of proteins and stipulate their role as negative regulators of the oxidative stress response. Antioxid. Redox Signal. 24, 141–156. PMID:26160547

  7. RpiRc Is a Pleiotropic Effector of Virulence Determinant Synthesis and Attenuates Pathogenicity in Staphylococcus aureus

    PubMed Central

    Wirf, Jessica; Wonnenberg, B.; Biegel, Tanja; Eisenbeis, J.; Graham, J.; Herrmann, M.; Lee, C. Y.; Beisswenger, C.; Wolz, C.; Tschernig, T.; Bischoff, M.; Somerville, G. A.

    2016-01-01

    In Staphylococcus aureus, metabolism is intimately linked with virulence determinant biosynthesis, and several metabolite-responsive regulators have been reported to mediate this linkage. S. aureus possesses at least three members of the RpiR family of transcriptional regulators. Of the three RpiR homologs, RpiRc is a potential regulator of the pentose phosphate pathway, which also regulates RNAIII levels. RNAIII is the regulatory RNA of the agr quorum-sensing system that controls virulence determinant synthesis. The effect of RpiRc on RNAIII likely involves other regulators, as the regulators that bind the RNAIII promoter have been intensely studied. To determine which regulators might bridge the gap between RpiRc and RNAIII, sarA, sigB, mgrA, and acnA mutations were introduced into an rpiRc mutant background, and the effects on RNAIII were determined. Additionally, phenotypic and genotypic differences were examined in the single and double mutant strains, and the virulence of select strains was examined using two different murine infection models. The data suggest that RpiRc affects RNAIII transcription and the synthesis of virulence determinants in concert with σB, SarA, and the bacterial metabolic status to negatively affect virulence. PMID:27113358

  8. Cloning and characterization of a novel Gladiolus hybridus AFP family gene (GhAFP-like) related to corm dormancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Seng, Shanshan; Carianopol, Carina

    Abscisic acid (ABA) is an important phytohormone controlling seed dormancy. AFPs (ABA INSENSITIVE FIVE BINDING PROTEINS) are reported to be negative regulators of the ABA signaling pathway. The involvement of AFPs in dormant vegetative organs remains poorly understood. Here, we isolated and characterized a novel AFP family member from Gladiolus dormant cormels, GhAFP-like, containing three conserved domains of the AFP family. Quantitative PCR analysis revealed that GhAFP-like was expressed in dormant organs and its expression was down-regulated along with corm storage. GhAFP-like was verified to be a nuclear-localized protein. Overexpressing GhAFP-like in Arabidopsis thaliana not only showed weaker seed dormancymore » with insensitivity to ABA, but also changed the expression of some ABA related genes. In addition, a primary root elongation assay showed GhAFP-like may involve in auxin signaling response. The results in this study indicate that GhAFP-like acts as a negative regulator in ABA signaling and is related to dormancy. - Highlights: • GhAFP-like is expessed in dormant corm. • Overexpressing GhAFP-like showed early germination and insensitivity to ABA. • Overexpressing GhAFP-like changed ABI5 downstream genes expression.« less

  9. Plant twitter: ligands under 140 amino acids enforcing stomatal patterning.

    PubMed

    Rychel, Amanda L; Peterson, Kylee M; Torii, Keiko U

    2010-05-01

    Stomata are an essential land plant innovation whose patterning and density are under genetic and environmental control. Recently, several putative ligands have been discovered that influence stomatal density, and they all belong to the epidermal patterning factor-like family of secreted cysteine-rich peptides. Two of these putative ligands, EPF1 and EPF2, are expressed exclusively in the stomatal lineage cells and negatively regulate stomatal density. A third, EPFL6 or CHALLAH, is also a negative regulator of density, but is expressed subepidermally in the hypocotyl. A fourth, EPFL9 or STOMAGEN, is expressed in the mesophyll tissues and is a positive regulator of density. Genetic evidence suggests that these ligands may compete for the same receptor complex. Proper stomatal patterning is likely to be an intricate process involving ligand competition, regional specificity, and communication between tissue layers. EPFL-family genes exist in the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, and rice, Oryza sativa, and their sequence analysis yields several genes some of which are related to EPF1, EPF2, EPFL6, and EPFL9. Presence of these EPFL family members in the basal land plants suggests an exciting hypothesis that the genetic components for stomatal patterning originated early in land plant evolution.

  10. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility

    PubMed Central

    Ahmed, Kashan; LaPierre, Mary P.; Denzler, Rémy; Yang, Yinjie; Rülicke, Thomas; Latreille, Mathieu

    2017-01-01

    MicroRNAs (miRNAs) are negative modulators of gene expression that fine-tune numerous biological processes. miRNA loss-of-function rarely results in highly penetrant phenotypes, but rather, influences cellular responses to physiologic and pathophysiologic stresses. Here, we have reported that a single member of the evolutionarily conserved miR-7 family, miR-7a2, is essential for normal pituitary development and hypothalamic-pituitary-gonadal (HPG) function in adulthood. Genetic deletion of mir-7a2 causes infertility, with low levels of gonadotropic and sex steroid hormones, small testes or ovaries, impaired spermatogenesis, and lack of ovulation in male and female mice, respectively. We found that miR-7a2 is highly expressed in the pituitary, where it suppresses golgi glycoprotein 1 (GLG1) expression and downstream bone morphogenetic protein 4 (BMP4) signaling and also reduces expression of the prostaglandin F2a receptor negative regulator (PTGFRN), an inhibitor of prostaglandin signaling and follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion. Our results reveal that miR-7a2 critically regulates sexual maturation and reproductive function by interconnecting miR-7 genomic circuits that regulate FSH and LH synthesis and secretion through their effects on pituitary prostaglandin and BMP4 signaling. PMID:28218624

  11. A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation

    PubMed Central

    Feng, Y; Niu, L-L; Wei, W; Zhang, W-Y; Li, X-Y; Cao, J-H; Zhao, S-H

    2013-01-01

    MiR-133 was found to be specifically expressed in cardiac and skeletal muscle in previous studies. There are two members in the miR-133 family: miR-133a and miR-133b. Although previous studies indicated that miR-133a was related to myogenesis, the signaling pathways regulated by miR-133 were still not very clear. In this study, we showed that both miR-133a and miR-133b were upregulated during myogenesis through Solexa sequencing. We confirmed that miR-133 could promote myoblast differentiation and inhibit cell proliferation through the regulation of the extracellular signal-regulated kinase (ERK) signaling pathway in C2C12 cells. FGFR1 and PP2AC, which both participate in signal transduction of the ERK1/2 pathway, were found to be negatively regulated by miR-133a and miR-133b at the post-transcriptional level. Also, downregulation of ERK1/2 phosphorylation by miR-133 was detected. FGFR1 and PP2AC were also found to repress C2C12 differentiation by specific siRNAs. In addition, we found that inhibition of ERK1/2 pathway activity can inhibit C2C12 cell proliferation and promote the initiation of differentiation but form short and small myotubes. Furthermore, we found that the expression of miR-133 was negatively regulated by ERK1/2 signaling pathway. In summary, we demonstrated the role of miR-133 in myoblast and further revealed a new feedback loop between miR-133 and the ERK1/2 signaling pathway involving an exquisite mechanism for regulating myogenesis. PMID:24287695

  12. A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation.

    PubMed

    Feng, Y; Niu, L-L; Wei, W; Zhang, W-Y; Li, X-Y; Cao, J-H; Zhao, S-H

    2013-11-28

    MiR-133 was found to be specifically expressed in cardiac and skeletal muscle in previous studies. There are two members in the miR-133 family: miR-133a and miR-133b. Although previous studies indicated that miR-133a was related to myogenesis, the signaling pathways regulated by miR-133 were still not very clear. In this study, we showed that both miR-133a and miR-133b were upregulated during myogenesis through Solexa sequencing. We confirmed that miR-133 could promote myoblast differentiation and inhibit cell proliferation through the regulation of the extracellular signal-regulated kinase (ERK) signaling pathway in C2C12 cells. FGFR1 and PP2AC, which both participate in signal transduction of the ERK1/2 pathway, were found to be negatively regulated by miR-133a and miR-133b at the post-transcriptional level. Also, downregulation of ERK1/2 phosphorylation by miR-133 was detected. FGFR1 and PP2AC were also found to repress C2C12 differentiation by specific siRNAs. In addition, we found that inhibition of ERK1/2 pathway activity can inhibit C2C12 cell proliferation and promote the initiation of differentiation but form short and small myotubes. Furthermore, we found that the expression of miR-133 was negatively regulated by ERK1/2 signaling pathway. In summary, we demonstrated the role of miR-133 in myoblast and further revealed a new feedback loop between miR-133 and the ERK1/2 signaling pathway involving an exquisite mechanism for regulating myogenesis.

  13. Orphan Nuclear Receptor Small Heterodimer Partner Negatively Regulates Growth Hormone-mediated Induction of Hepatic Gluconeogenesis through Inhibition of Signal Transducer and Activator of Transcription 5 (STAT5) Transactivation*

    PubMed Central

    Kim, Yong Deuk; Li, Tiangang; Ahn, Seung-Won; Kim, Don-Kyu; Lee, Ji-Min; Hwang, Seung-Lark; Kim, Yong-Hoon; Lee, Chul-Ho; Lee, In-Kyu; Chiang, John Y. L.; Choi, Hueng-Sik

    2012-01-01

    Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent regulation of hepatic gluconeogenesis in the liver. GH induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase gene expression in primary hepatocytes. GH treatment and adenovirus-mediated STAT5 overexpression in hepatocytes increased glucose production, which was blocked by a JAK2 inhibitor, AG490, dominant negative STAT5, and STAT5 knockdown. We identified a STAT5 binding site on the PEPCK gene promoter using reporter assays and point mutation analysis. Up-regulation of SHP by metformin-mediated activation of the ATM-AMP-activated protein kinase pathway led to inhibition of GH-mediated induction of hepatic gluconeogenesis, which was abolished by an ATM inhibitor, KU-55933. Immunoprecipitation studies showed that SHP physically interacted with STAT5 and inhibited STAT5 recruitment on the PEPCK gene promoter. GH-induced hepatic gluconeogenesis was decreased by either metformin or Ad-SHP, whereas the inhibition by metformin was abolished by SHP knockdown. Finally, the increase of hepatic gluconeogenesis following GH treatment was significantly higher in the liver of SHP null mice compared with that of wild-type mice. Overall, our results suggest that the ATM-AMP-activated protein kinase-SHP network, as a novel mechanism for regulating hepatic glucose homeostasis via a GH-dependent pathway, may be a potential therapeutic target for insulin resistance. PMID:22977252

  14. Recklessness as a hallmark of aggressive cancer.

    PubMed

    Noda, Makoto; Takahashi, Chiaki

    2007-11-01

    Cancer recurrence after surgical treatment is a major concern for patients and doctors. Understanding what makes tumors prone to recurrence would be an important step toward its prevention. Accumulating evidence indicates that the level of membrane-associated protease regulator reversion-inducing cysteine-rich protein with Kazal motifs (RECK) expressed in tumor tissue is a good prognostic indicator in several common cancers. Certain members of the matrix metalloproteinase family are often upregulated in advanced cancers and are known to play important roles in tumor angiogenesis, invasion and metastasis. RECK negatively regulates several matrix metalloproteinases. Therefore, RECK itself may well be considered a promising tool or target molecule to be activated in cancer therapy. Here we review the recent advances in RECK research and discuss some of the important issues to be addressed in future studies.

  15. Phylogenetic analysis reveals conservation and diversification of micro RNA166 genes among diverse plant species.

    PubMed

    Barik, Suvakanta; SarkarDas, Shabari; Singh, Archita; Gautam, Vibhav; Kumar, Pramod; Majee, Manoj; Sarkar, Ananda K

    2014-01-01

    Similar to the majority of the microRNAs, mature miR166s are derived from multiple members of MIR166 genes (precursors) and regulate various aspects of plant development by negatively regulating their target genes (Class III HD-ZIP). The evolutionary conservation or functional diversification of miRNA166 family members remains elusive. Here, we show the phylogenetic relationships among MIR166 precursor and mature sequences from three diverse model plant species. Despite strong conservation, some mature miR166 sequences, such as ppt-miR166m, have undergone sequence variation. Critical sequence variation in ppt-miR166m has led to functional diversification, as it targets non-HD-ZIPIII gene transcript (s). MIR166 precursor sequences have diverged in a lineage specific manner, and both precursors and mature osa-miR166i/j are highly conserved. Interestingly, polycistronic MIR166s were present in Physcomitrella and Oryza but not in Arabidopsis. The nature of cis-regulatory motifs on the upstream promoter sequences of MIR166 genes indicates their possible contribution to the functional variation observed among miR166 species. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Forkhead, a new cross regulator of metabolism and innate immunity downstream of TOR in Drosophila.

    PubMed

    Varma, Disha; Bülow, Margret H; Pesch, Yanina-Yasmin; Loch, Gerrit; Hoch, Michael

    2014-10-01

    Antimicrobial peptides (AMPs) are conserved cationic peptides which act both as defense molecules of the host immune system and as regulators of the commensal microbiome. Expression of AMPs is induced in response to infection by the Toll and Imd pathway. Under non-infected conditions, the transcription factor dFOXO directly regulates a set of AMP expression at low levels when nutrients are limited. Here we have analyzed whether target of rapamycin (TOR), another major regulator of growth and metabolism, also modulates AMP responses in Drosophila. We found that downregulation of TOR by feeding the drug rapamycin or by overexpressing the negative TOR regulators TSC1/TSC2, resulted in a specific induction of the AMPs Diptericin (Dpt) and Metchnikowin (Mtk). In contrast, overexpression of Rheb, which positively regulates TOR led to a repression of the two AMPs. Genetic and pharmacological experiments indicate that Dpt and Mtk activation is controlled by the transcription factor Forkhead (FKH), the founding member of the FoxO family. Shuttling of FKH from the cytoplasm to the nucleus is induced in the fat body and in the posterior midgut in response to TOR downregulation. The FKH-dependent induction of Dpt and Mtk can be triggered in dFOXO null mutants and in immune-compromised Toll and IMD pathway mutants indicating that FKH acts in parallel to these regulators. Together, we have discovered that FKH is the second conserved member of the FoxO family cross-regulating metabolism and innate immunity. dFOXO and FKH, which are activated upon downregulation of insulin or TOR activities, respectively, act in parallel to induce different sets of AMPs, thereby modulating the immune status of metabolic tissues such as the fat body or the gut in response to the oscillating energy status of the organism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Relation between premorbid personality and patterns of emotion expression in mid- to late-stage dementia.

    PubMed

    Magai, C; Cohen, C I; Culver, C; Gomberg, D; Malatesta, C

    1997-11-01

    Twenty-seven nursing home patients with mid- to late-stage dementia participated in a study of the relation between preillness personality, as indexed by attachment and emotion regulation style, and current emotional behavior. Preillness measures were completed by family members and current assessments of emotion were supplied by nursing home aides and family members; in addition, emotion was coded during a family visit using an objective coding system for facial emotion expressions. Attachment style was found to be related to the expression of positive affect, with securely attached individuals displaying more positive affect than avoidantly attached individuals. In addition, high ratings on premorbid hostility were associated with higher rates of negative affect and lower rates of positive affect. These findings indicate that premorbid aspects of personality show continuity over time, even in mid- to late-stage dementia.

  18. The Impact Of Dispositional Variables Of Elders, Relatives, And Paid Caregivers On Elders' Empowerment And Life Satisfaction.

    PubMed

    Tomai, Manuela; Pezzuti, Lina; Mebane, Minou; Benedetti, Maura; Moro, Annalisa

    2017-01-01

    Background/Study Context: The impact of dispositional characteristic of elders' closest network members on elders' life satisfaction and empowerment has remained largely unexplored. This innovative study aimed to assess the impact of dispositional variables of elders, relatives, and paid caregivers on life satisfaction and empowerment of elders. One hundred forty-three triads (one elder, one paid caregiver, and one relative) completed six scales measuring modifiable personality characteristics (loneliness, optimism, regulation of positive and negative emotions), life satisfaction, and sense of empowerment. Two dispositional variables of relatives (positivity and ability to set goals) and one dispositional variable of care workers (self-satisfaction) were significantly related to life satisfaction of elders. Positivity of elders and the capacity to set objectives of the family members affected empowerment of elders. Future interventions aiming to improve life satisfaction and empowerment of elders should focus on these modifiable dispositional variables.

  19. Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-family ubiquitin ligases

    PubMed Central

    Mohapatra, Bhopal; Ahmad, Gulzar; Nadeau, Scott; Zutshi, Neha; An, Wei; Scheffe, Sarah; Dong, Lin; Feng, Dan; Goetz, Benjamin; Arya, Priyanka; Bailey, Tameka A.; Palermo, Nicholas; Borgstahl, Gloria E.O.; Natarajan, Amarnath; Raja, Srikumar M.; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2012-01-01

    Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell–cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant “activated PTK-selective” ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease. PMID:23085373

  20. 7 CFR 985.23 - Nominations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE MARKETING ORDER REGULATING THE... public member and alternate and member at the first meeting following the selection of members for a new...

  1. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis.

    PubMed

    Deng, Zhao; Luo, Pei; Lai, Wen; Song, Tongxing; Peng, Jian; Wei, Hong-Kui

    2017-12-09

    Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 μg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 μg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 μg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy. Copyright © 2017. Published by Elsevier Inc.

  2. The concept of the CCN protein family revisited: a centralized coordination network.

    PubMed

    Perbal, Bernard

    2018-03-01

    The wide array of biological properties attributed to the CCN family of proteins (Perbal in Lancet 363(9402):62-64, 2004) led me to reconsider the possible relationship and roles that these proteins may play as a team, instead of acting on their own as individual regulators in various signaling pathways. The dynamic model which I present in this review stems from the contribution of the biological properties that we established for CCN3, one of the three founding members of the CCN family, which was identified by our group as the first CCN protein showing growth inhibitory properties (1992), expressed mainly in quiescent cells (1996), and showing anti-tumor activities in several cellular models both ex vivo and in vivo. At the present time CCN3 is the only member of the family that has been reported to negatively act on the progression of the cell cycle. The unique dual localisation of CCN3 in the nucleus and outside cells, either at the membrane or in the extracellular matrix, that I first established in 1999, and that now appears to be shared by several other CCN proteins, is a unique essential feature which can no longer be ignored. Based on the structural and functional properties of CCN3, shared by most of the CCN family members, I propose an « all in one » concept in which CCN proteins are team members with specific functions that are aimed at the same goal. This model accounts both for the functional specificity of the various CCN proteins, their sequential and opposite or complementary effects in various biological context, and for the biological consequences of their physical interaction and biological cross-regulation.

  3. A genome-wide identification of basic helix-loop-helix motifs in Pediculus humanus corporis (Phthiraptera: Pediculidae).

    PubMed

    Wang, Xu-Hua; Wang, Yong; Zhang, De-Bao; Liu, A-Ke; Yao, Qin; Chen, Ke-Ping

    2014-01-01

    Basic helix-loop-helix (bHLH) proteins comprise a large superfamily of transcription factors, which are involved in the regulation of various developmental processes. bHLH family members are widely distributed in various eukaryotes including yeast, fruit fly, zebrafish, mouse, and human. In this study, we identified 55 bHLH motifs encoded in genome sequence of the human body louse, Pediculus humanus corporis (Phthiraptera: Pediculidae). Phylogenetic analyses of the identified P. humanus corporis bHLH (PhcbHLH) motifs revealed that there are 23, 11, 9, 1, 10, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Examination to GenBank annotations of the 55 PhcbHLH members indicated that 29 PhcbHLH proteins were annotated in consistence with our analytical result, 8 were annotated different with our analytical result, 12 were merely annotated as hypothetical protein, and the rest 6 were not deposited in GenBank. A comparison on insect bHLH gene composition revealed that human body louse possibly has more hairy and E(spl) genes than other insect species. Because hairy and E(spl) genes have been found to negatively regulate the differentiation of insect preneural cells, it is suggested that the existence of additional hairy and E(spl) genes in human body louse is probably the consequence of its long period adaptation to the relatively dark and stable environment. These data provide good references for further studies on regulatory functions of bHLH proteins in the growth and development of human body louse. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  4. Micro124-mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps.

    PubMed

    Liu, C C; Xia, M; Zhang, Y J; Jin, P; Zhao, L; Zhang, J; Li, T; Zhou, X M; Tu, Y Y; Kong, F; Sun, C; Shi, L; Zhao, M Q

    2018-06-02

    MicroRNAs represent a component of the innate immune responses that can restrain inflammatory signaling, miR124 is an important member of inflammation-associated miRNAs, and abnormal miR124 expression is observed in many inflammatory diseases and immune disorders. However, the role and signaling pathways of miR124 in chronic rhinosinusitis with nasal polyps (CRSwNPs) have not been studied in detail. The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that is highly conserved in evolution and plays important roles in the inflammatory response process. In our study, we describe the role of miR124 in the inflammatory response of CRS with nasal polyps. We found that the expression of miR124 was decreased in nasal polyps, and negatively correlated with the expression of AHR. MiR124 can inhibit AHR expression by directly target 3' untranslated region (3'-UTR) of AHR. To further investigate the relationship between miR124, AHR and CRS inflammatory response, we transfect HNEpC cells with miR124 mimic, miR124 inhibitors or siRNA of AHR, then all the results showed that miR124 could regulates cellular inflammatory response through negatively regulating AHR expression. This study demonstrated that the regulation of AHR expression by miR124 is critical to the development of inflammatory response in CRSwNPs. Copyright © 2018. Published by Elsevier Inc.

  5. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato

    PubMed Central

    Zhou, Xiangjun; Zha, Manrong; Huang, Jing; Li, Li; Imran, Muhammad

    2017-01-01

    Abstract Phosphorus is an important macronutrient for plant growth, but often deficient in soil. To understand the molecular basis of the complex responses of potato (Solanum tuberosum L.) to phosphate (Pi) deficiency stress, the RNA-Seq approach was taken to identify genes responding to Pi starvation in potato roots. A total of 359 differentially expressed genes were identified, among which the Solanum tuberosum transcription factor gene MYB44 (StMYB44) was found to be down-regulated by Pi starvation. StMYB44 was ubiquitously expressed in potato tissues and organs, and StMYB44 protein was exclusively localized in the nucleus. Overexpression of StMYB44 in potato resulted in lower accumulation of Pi in shoots. Transcriptomic analysis indicated that the abundance of S. tuberosum PHOSPHATE1 (StPHO1), a Pi transport-related gene, was reduced in StMYB44 overexpression lines. In contrast, knock-out of StMYB44 by a CRISPR/Cas9 system failed to increase transcription of StPHO1. Moreover, StMYB44 was found to interact in the nucleus with AtWRKY6, a known Arabidopsis transcription factor directly regulating PHO1 expression, and StWRKY6, indicating that StMYB44 could be a member of the regulatory complex controlling transcription of StPHO1. Taken together, our study demonstrates that StMYB44 negatively regulates Pi transport in potato by suppressing StPHO1 expression. PMID:28338870

  6. Fibroblast growth factor 9 is a novel modulator of negative affect

    PubMed Central

    Aurbach, Elyse L.; Inui, Edny Gula; Turner, Cortney A.; Hagenauer, Megan H.; Prater, Katherine E.; Li, Jun Z.; Absher, Devin; Shah, Najmul; Blandino, Peter; Bunney, William E.; Myers, Richard M.; Barchas, Jack D.; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda

    2015-01-01

    Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9’s function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders. PMID:26351673

  7. Developmental delays in emotion regulation strategies in preschoolers with autism.

    PubMed

    Nuske, Heather J; Hedley, Darren; Woollacott, Alexandra; Thomson, Phoebe; Macari, Suzanne; Dissanayake, Cheryl

    2017-11-01

    Children with autism spectrum disorder (ASD) commonly present with difficulty regulating negative emotions, which has been found to impact their behavioral and mental health. Little research has documented the strategies that children with ASD use to regulate their emotion to understand whether they use qualitatively different strategies to children without ASD, whether these are developmentally delayed, or both. Forty-four children with ASD and 29 typically-developing children (2-4 years) were given tasks designed to mimic everyday life experiences requiring children to manage low-level stress (e.g., waiting for a snack) and children's emotion regulation strategies were coded. Parents reported on their child's mental health, wellbeing, and self-development. The results suggest differences in using emotion regulation strategies in children with ASD, reflecting a delay, rather than a deviance when compared to those used by children without ASD. Only children with ASD relied on their family members for physical and communicative soothing; the typically developing children relied on people outside of their family for help regulating their emotion. More frequent approach/less frequent avoidance was related to a higher self-evaluation in both groups, but was only additionally related to higher self-recognition and autonomy in the ASD group. These findings help to identify important emotion regulation intervention targets for this population, including supporting communication with people outside of the family and independence. Autism Res 2017, 10: 1808-1822. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Results suggest that children with autism had more difficulty using communication strategies to manage stress only with people outside the family; they used these strategies with family members as often as children without autism. For all children, more task approach/less avoidance was related to children's higher self-evaluation. These findings suggest targeting communication with people outside of the family and personality development as appropriate intervention goals. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  8. Decoy receptor 3 regulates the expression of various genes in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Fukuda, Koji; Miura, Yasushi; Maeda, Toshihisa; Takahashi, Masayasu; Hayashi, Shinya; Kurosaka, Masahiro

    2013-10-01

    Decoy receptor 3 (DcR3), a member of the tumor necrosis factor (TNF) receptor (TNFR) superfamily, lacks the transmembrane domain of conventional TNFRs in order to be a secreted protein. DcR3 competitively binds and inhibits members of the TNF family, including Fas ligand (FasL), LIGHT and TNF-like ligand 1A (TL1A). We previously reported that TNFα-induced DcR3 overexpression in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) protects cells from Fas-induced apoptosis. Previous studies have suggested that DcR3 acting as a ligand directly induces the differentiation of macrophages into osteoclasts. Furthermore, we reported that DcR3 induces very late antigen-4 (VLA--4) expression in THP-1 macrophages, inhibiting cycloheximide-induced apoptosis and that DcR3 binds to membrane-bound TL1A expressed on RA-FLS, resulting in the negative regulation of cell proliferation induced by inflammatory cytokines. In the current study, we used cDNA microarray to search for genes in RA-FLS whose expression was regulated by the ligation of DcR3. The experiments revealed the expression profiles of genes in RA-FLS regulated by DcR3. The profiles showed that among the 100 genes most significantly regulated by DcR3, 45 were upregulated and 55 were downregulated. The upregulated genes were associated with protein complex assembly, cell motility, regulation of transcription, cellular protein catabolic processes, cell membrane, nucleotide binding and glycosylation. The downregulated genes were associated with transcription regulator activity, RNA biosynthetic processes, cytoskeleton, zinc finger region, protein complex assembly, phosphate metabolic processes, mitochondrion, ion transport, nucleotide binding and cell fractionation. Further study of the genes detected in the current study may provide insight into the pathogenesis and treatment of rheumatoid arthritis by DcR3-TL1A signaling.

  9. Aberrant expression of CKLF-like MARVEL transmembrane member 5 (CMTM5) by promoter methylation in myeloid leukemia.

    PubMed

    Niu, Jihong; Li, Henan; Zhang, Yao; Li, Jinlan; Xie, Min; Li, Lingdi; Qin, Xiaoying; Qin, Yazhen; Guo, Xiaohuan; Jiang, Qian; Liu, Yanrong; Chen, Shanshan; Huang, Xiaojun; Han, Wenling; Ruan, Guorui

    2011-06-01

    CMTM5 has been shown to exhibit tumor suppressor activities, however, its role in leukemia is unclear. Herein we firstly reported the expression and function of CMTM5 in myeloid leukemia. CMTM5 was down-regulated, or undetectable, in leukemia cell lines and bone marrow cells from leukemia patients with promoter methylation. Ectopic expression of CMTM5-v1 strongly inhibited the proliferation of K562 and MEG-01 cells. In addition, significant negative correlations were observed between CMTM5 and three leukemia-specific fusion genes (AML1-ETO, PML-RARα and BCR/ABL1). CMTM5 expression was up-regulated in patients who had undergone treatment. Therefore, CMTM5 may be involved in the pathomechanism of myeloid leukemias. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Kostin, Sawa; Wietelmann, Astrid; Borchardt, Thilo; Braun, Thomas

    2015-09-01

    Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.

  11. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation.

    PubMed

    Walker, Ryan G; Poggioli, Tommaso; Katsimpardi, Lida; Buchanan, Sean M; Oh, Juhyun; Wattrus, Sam; Heidecker, Bettina; Fong, Yick W; Rubin, Lee L; Ganz, Peter; Thompson, Thomas B; Wagers, Amy J; Lee, Richard T

    2016-04-01

    Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging. © 2016 American Heart Association, Inc.

  12. The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N′ and Regulates Light-Dependent Cell Death1[OPEN

    PubMed Central

    Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei

    2016-01-01

    One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N′, which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N′ results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N′ is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. PMID:26951433

  13. p53 mediates bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway.

    PubMed

    Thomas, A; Giesler, T; White, E

    2000-11-02

    A member of the small G protein family, cdc42, was isolated from a screen undertaken to identify p53-inducible genes during apoptosis in primary baby rat kidney (BRK) cells transformed with E1A and a temperature-sensitive mutant p53 using a PCR-based subtractive hybridization method. Cdc42 is a GTPase that belongs to the Rho/Rac subfamily of Ras-like GTPases. In response to external stimuli, Cdc42 is known to transduce signals to regulate the organization of the actin cytoskeleton, induce DNA synthesis in quiescent fibroblasts, and promote apoptosis in neuronal and immune cells. In this study, we have demonstrated that cdc42 mRNA and protein were up-regulated in the presence of wild-type p53 in BRK cells, followed by cytoplasmic to plasma membrane translocation of Cdc42. Overexpression of Cdc42 in the presence of a dominant-negative mutant p53 induced apoptosis rapidly, indicating that Cdc42 functions downstream of p53. Furthermore, stable expression of a dominant-negative mutant of Cdc42 partially inhibited p53-mediated apoptosis. The Bcl-2 family members Bcl-xL, and the adenovirus protein E1B 19K, inhibited Cdc42-mediated apoptosis, whereas Bcl-2 did not. We provide evidence that PAK1 and JNK1 may play a role downstream of Cdc42 to transduce its apoptotic signal. Cdc42/PAK1 activates JNK1-induced phosphorylation of Bcl-2, thereby inactivating its function, and that a phosphorylation resistant mutant (Bcl-2S70,87A,T56,74A) gains the ability to inhibit Cdc42- and p53-mediated apoptosis. Thus, one mechanism by which p53 promotes apoptosis is through activation of Cdc42 and inactivation of Bcl-2.

  14. Identification, Characterization, and Functional Validation of Drought-responsive MicroRNAs in Subtropical Maize Inbreds

    PubMed Central

    Aravind, Jayaraman; Rinku, Sharma; Pooja, Banduni; Shikha, Mittal; Kaliyugam, Shiriga; Mallikarjuna, Mallana Gowdra; Kumar, Arun; Rao, Atmakuri Ramakrishna; Nepolean, Thirunavukkarasu

    2017-01-01

    MicroRNA-mediated gene regulation plays a crucial role in controlling drought tolerance. In the present investigation, 13 drought-associated miRNA families consisting of 65 members and regulating 42 unique target mRNAs were identified from drought-associated microarray expression data in maize and were subjected to structural and functional characterization. The largest number of members (14) was found in the zma-miR166 and zma-miR395 families, with several targets. However, zma-miR160, zma-miR390, zma-miR393, and zma-miR2275 each showed a single target. Twenty-three major drought-responsive cis-regulatory elements were found in the upstream regions of miRNAs. Many drought-related transcription factors, such as GAMYB, HD-Zip III, and NAC, were associated with the target mRNAs. Furthermore, two contrasting subtropical maize genotypes (tolerant: HKI-1532 and sensitive: V-372) were used to understand the miRNA-assisted regulation of target mRNA under drought stress. Approximately 35 and 31% of miRNAs were up-regulated in HKI-1532 and V-372, respectively. The up-regulation of target mRNAs was as high as 14.2% in HKI-1532 but was only 2.38% in V-372. The expression patterns of miRNA-target mRNA pairs were classified into four different types: Type I- up-regulation, Type II- down-regulation, Type III- neutral regulation, and Type IV- opposite regulation. HKI-1532 displayed 46 Type I, 13 Type II, and 23 Type III patterns, whereas V-372 had mostly Type IV interactions (151). A low level of negative regulations of miRNA associated with a higher level of mRNA activity in the tolerant genotype helped to maintain crucial biological functions such as ABA signaling, the auxin response pathway, the light-responsive pathway and endosperm expression under stress conditions, thereby leading to drought tolerance. Our study identified candidate miRNAs and mRNAs operating in important pathways under drought stress conditions, and these candidates will be useful in the development of drought-tolerant maize hybrids. PMID:28626466

  15. Automatic stereotyping against people with schizophrenia, schizoaffective and affective disorders

    PubMed Central

    Rüsch, Nicolas; Corrigan, Patrick W.; Todd, Andrew R.; Bodenhausen, Galen V.

    2010-01-01

    Similar to members of the public, people with mental illness may exhibit general negative automatic prejudice against their own group. However, it is unclear whether more specific negative stereotypes are automatically activated among diagnosed individuals and how such automatic stereotyping may be related to self-reported attitudes and emotional reactions. We therefore studied automatically activated reactions toward mental illness among 85 people with schizophrenia, schizoaffective or affective disorders as well as among 50 members of the general public, using a Lexical Decision Task to measure automatic stereotyping. Deliberately endorsed attitudes and emotional reactions were assessed by self-report. Independent of diagnosis, people with mental illness showed less negative automatic stereotyping than did members of the public. Among members of the public, stronger automatic stereotyping was associated with more self-reported shame about a potential mental illness and more anger toward stigmatized individuals. Reduced automatic stereotyping in the diagnosed group suggests that people with mental illness might not entirely internalize societal stigma. Among members of the public, automatic stereotyping predicted negative emotional reactions to people with mental illness. Initiatives to reduce the impact of public stigma and internalized stigma should take automatic stereotyping and related emotional aspects of stigma into account. PMID:20843560

  16. A novel mode of regulation of the Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR mediated by Stk1 protein phosphorylation.

    PubMed

    Canova, Marc J; Baronian, Grégory; Brelle, Solène; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie

    2014-04-25

    The Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR is known as an important response regulator, member of the VraTSR three-component signal transduction system that modulates the expression of the cell wall stress stimulon in response to a number of different cell wall active antibiotics. Given its crucial role in regulating gene expression in response to antibiotic challenges, VraR must be tightly regulated. We report here for the first time in S. aureus convergence of two major signal transduction systems, serine/threonine protein kinase and two (three)-component systems. We demonstrate that VraR can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation negatively affects its DNA-binding properties. Mass spectrometric analyses and site-directed mutagenesis identified Thr106, Thr119, Thr175 and Thr178 as phosphoacceptors. A S. aureus ΔvraR mutant expressing a VraR derivative that mimics constitutive phosphorylation, VraR_Asp, still exhibited markedly decreased antibiotic resistance against different cell wall active antibiotics, when compared to the wild-type, suggesting that VraR phosphorylation may represent a novel and presumably more general mechanism of regulation of the two (three)-component systems in staphylococci. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. 48 CFR 9.703 - Contracting with individual pool members.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Contracting with individual pool members. 9.703 Section 9.703 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Defense Production Pools and Research and...

  18. 48 CFR 9.703 - Contracting with individual pool members.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Contracting with individual pool members. 9.703 Section 9.703 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Defense Production Pools and Research and...

  19. 48 CFR 9.703 - Contracting with individual pool members.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Contracting with individual pool members. 9.703 Section 9.703 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Defense Production Pools and Research and...

  20. 48 CFR 9.703 - Contracting with individual pool members.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Contracting with individual pool members. 9.703 Section 9.703 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Defense Production Pools and Research and...

  1. 48 CFR 9.703 - Contracting with individual pool members.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Contracting with individual pool members. 9.703 Section 9.703 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Defense Production Pools and Research and...

  2. The Effect of Socially Shared Regulation Approach on Learning Performance in Computer-Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Zheng, Lanqin; Li, Xin; Huang, Ronghuai

    2017-01-01

    Students' abilities to socially shared regulation of their learning are crucial to productive and successful collaborative learning. However, how group members sustain and regulate collaborative processes is a neglected area in the field of collaborative learning. Furthermore, how group members engage in socially shared regulation still remains to…

  3. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa.

    PubMed

    Yang, Li; Zhao, Xin; Yang, Fan; Fan, Di; Jiang, Yuanzhong; Luo, Keming

    2016-01-28

    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar.

  4. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance.

    PubMed

    Doherty, Colleen J; Van Buskirk, Heather A; Myers, Susan J; Thomashow, Michael F

    2009-03-01

    The Arabidopsis thaliana CBF cold response pathway plays a central role in cold acclimation. It is characterized by rapid cold induction of genes encoding the CBF1-3 transcription factors, followed by expression of the CBF gene regulon, which imparts freezing tolerance. Our goal was to further the understanding of the cis-acting elements and trans-acting factors involved in expression of CBF2. We identified seven conserved DNA motifs (CM), CM1 to 7, that are present in the promoters of CBF2 and another rapidly cold-induced gene encoding a transcription factor, ZAT12. The results presented indicate that in the CBF2 promoter, CM4 and CM6 have negative regulatory activity and that CM2 has both negative and positive activity. A Myc binding site in the CBF2 promoter was also found to have positive regulatory effects. Moreover, our results indicate that members of the calmodulin binding transcription activator (CAMTA) family of transcription factors bind to the CM2 motif, that CAMTA3 is a positive regulator of CBF2 expression, and that double camta1 camta3 mutant plants are impaired in freezing tolerance. These results establish a role for CAMTA proteins in cold acclimation and provide a possible point of integrating low-temperature calcium and calmodulin signaling with cold-regulated gene expression.

  5. Calcineurin mediates AKT dephosphorylation in the ischemic rat retina.

    PubMed

    Park, Chang Hwan; Kim, Yoon Sook; Kim, Young Hee; Choi, Mee Young; Yoo, Ji Myong; Kang, Sang Soo; Choi, Wan Sung; Cho, Gyeong Jae

    2008-10-09

    Calcineurin (CaN) is a calcium/calmodulin-dependent protein phosphatase that has an important role in ischemia-induced apoptosis. The serine/threonine kinase, Akt, which is also known as protein kinase B, has an important role in the cell death/survival pathways. Akt is activated by its phosphorylation, which is positively regulated by phosphatidylinositol 3-kinase (PI3K) and negatively regulated by a class of protein phosphatases (PPs) in tissue. However, the relationship between CaN and Akt after transient ischemia remains unclear. In the present study, we investigated whether CaN is involved in neuronal cell apoptosis and Akt dephosphorylation that occur during ischemic injury. We examined the interdependence between CaN and Akt/protein kinase B (PKB) in the rat retina after transient ischemia. After ischemic damage, we detected changes in levels of CaN, Akt and Bad in rats in the presence or absence FK506, CaN inhibitor. Our results show that CaN cleavage reduced Akt phosphorylation at Thr308 and Ser473, and led to apoptosis via dephosphorylation of the proapoptotic Bcl-2 family member Bad. After treatment with FK506, Akt and Bad dephosphorylation was greatly reduced. The total number of TUNEL-positive neurons was reduced by intravitreal injection of FK506 after transient ischemia. These results indicate that CaN cleavage negatively regulates Akt phosphorylation and is involved in retinal cell apoptosis after transient ischemia.

  6. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus

    PubMed Central

    Villanueva, Maite; Renzoni, Adriana; Monod, Antoinette; Barras, Christine; Rodriguez, Natalia; Kelley, William L.

    2015-01-01

    Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression. PMID:26275216

  7. Thyroid hormone regulates muscle fiber type conversion via miR-133a1.

    PubMed

    Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-Cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua; Ying, Hao

    2014-12-22

    It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. © 2014 Zhang et al.

  8. Thyroid hormone regulates muscle fiber type conversion via miR-133a1

    PubMed Central

    Zhang, Duo; Wang, Xiaoyun; Li, Yuying; Zhao, Lei; Lu, Minghua; Yao, Xuan; Xia, Hongfeng; Wang, Yu-cheng; Liu, Mo-Fang; Jiang, Jingjing; Li, Xihua

    2014-01-01

    It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities. PMID:25512392

  9. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator

    PubMed Central

    Jung, Jennifer; Nayak, Arnab; Schaeffer, Véronique; Starzetz, Tatjana; Kirsch, Achim K; Müller, Stefan; Dikic, Ivan; Mittelbronn, Michel; Behrends, Christian

    2017-01-01

    Autophagy is an intracellular recycling and degradation pathway that depends on membrane trafficking. Rab GTPases are central for autophagy but their regulation especially through the activity of Rab GEFs remains largely elusive. We employed a RNAi screen simultaneously monitoring different populations of autophagosomes and identified 34 out of 186 Rab GTPase, GAP and GEF family members as potential autophagy regulators, amongst them SMCR8. SMCR8 uses overlapping binding regions to associate with C9ORF72 or with a C9ORF72-ULK1 kinase complex holo-assembly, which function in maturation and formation of autophagosomes, respectively. While focusing on the role of SMCR8 during autophagy initiation, we found that kinase activity and gene expression of ULK1 are increased upon SMCR8 depletion. The latter phenotype involved association of SMCR8 with the ULK1 gene locus. Global mRNA expression analysis revealed that SMCR8 regulates transcription of several other autophagy genes including WIPI2. Collectively, we established SMCR8 as multifaceted negative autophagy regulator. DOI: http://dx.doi.org/10.7554/eLife.23063.001 PMID:28195531

  10. Cultural differences in hedonic emotion regulation after a negative event.

    PubMed

    Miyamoto, Yuri; Ma, Xiaoming; Petermann, Amelia G

    2014-08-01

    Beliefs about emotions can influence how people regulate their emotions. The present research examined whether Eastern dialectical beliefs about negative emotions lead to cultural differences in how people regulate their emotions after experiencing a negative event. We hypothesized that, because of dialectical beliefs about negative emotions prevalent in Eastern culture, Easterners are less motivated than Westerners to engage in hedonic emotion regulation-up-regulation of positive emotions and down-regulation of negative emotions. By assessing online reactions to a recent negative event, Study 1 found that European Americans are more motivated to engage in hedonic emotion regulation. Furthermore, consistent with the reported motivation to regulate emotion hedonically, European Americans show a steeper decline in negative emotions 1 day later than do Asians. By examining retrospective memory of reactions to a past negative event, Study 2 further showed that cultural differences in hedonic emotion regulation are mediated by cultural differences in dialectical beliefs about motivational and cognitive utility of negative emotions, but not by personal deservingness or self-efficacy beliefs. These findings demonstrate the role of cultural beliefs in shaping emotion regulation and emotional experiences.

  11. 7 CFR 905.114 - Redistricting of citrus districts and reapportionment of grower members.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Redistricting of citrus districts and reapportionment of grower members. 905.114 Section 905.114 Agriculture Regulations of the Department of Agriculture... Regulations § 905.114 Redistricting of citrus districts and reapportionment of grower members. Pursuant to...

  12. 7 CFR 905.114 - Redistricting of citrus districts and reapportionment of grower members.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Redistricting of citrus districts and reapportionment of grower members. 905.114 Section 905.114 Agriculture Regulations of the Department of Agriculture... Regulations § 905.114 Redistricting of citrus districts and reapportionment of grower members. Pursuant to...

  13. 48 CFR 5.403 - Requests from Members of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., business confidential information, or information prejudicial to competitive acquisition, the contracting... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Requests from Members of Congress. 5.403 Section 5.403 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION...

  14. Inhibition of histone deacetylases 1 and 6 enhances cytarabine-induced apoptosis in pediatric acute myeloid leukemia cells.

    PubMed

    Xu, Xuelian; Xie, Chengzhi; Edwards, Holly; Zhou, Hui; Buck, Steven A; Ge, Yubin

    2011-02-16

    Pediatric acute myeloid leukemia (AML) remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs) have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML. Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis. Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis. Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs.

  15. The role of MDM2 and MDM4 in breast cancer development and prevention.

    PubMed

    Haupt, Sue; Vijayakumaran, Reshma; Miranda, Panimaya Jeffreena; Burgess, Andrew; Lim, Elgene; Haupt, Ygal

    2017-02-01

    The major cause of death from breast cancer is not the primary tumour, but relapsing, drug-resistant, metastatic disease. Identifying factors that contribute to aggressive cancer offers important leads for therapy. Inherent defence against carcinogens depends on the individual molecular make-up of each person. Important molecular determinants of these responses are under the control of the mouse double minute (MDM) family: comprised of the proteins MDM2 and MDM4. In normal, healthy adult cells, the MDM family functions to critically regulate measured, cellular responses to stress and subsequent recovery. Proper function of the MDM family is vital for normal breast development, but also for preserving genomic fidelity. The MDM family members are best characterized for their negative regulation of the major tumour suppressor p53 to modulate stress responses. Their impact on other cellular regulators is emerging. Inappropriately elevated protein levels of the MDM family are highly associated with an increased risk of cancer incidence. Exploration of the MDM family members as cancer therapeutic targets is relevant for designing tailored anti-cancer treatments, but successful approaches must strategically consider the impact on both the target cancer and adjacent healthy cells and tissues. This review focuses on recent findings pertaining to the role of the MDM family in normal and malignant breast cells. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  16. Shape memory thermal conduction switch

    NASA Technical Reports Server (NTRS)

    Krishnan, Vinu (Inventor); Vaidyanathan, Rajan (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  17. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana.

    PubMed

    Li, Shutian; Zachgo, Sabine

    2013-12-01

    TCP proteins belong to the plant-specific bHLH transcription factor family, and function as key regulators of diverse developmental processes. Functional redundancy amongst family members and post-transcriptional down-regulation by miRJAW of several TCP genes complicate their functional characterization. Here, we explore the role of TCP3 by analyzing transgenic plants expressing miRJAW-resistant mTCP3 and dominant-negative TCP3SRDX. Seedlings and seeds of mTCP3 plants were found to hyper-accumulate flavonols, anthocyanins and proanthocyanidins, whereas levels of proanthocyanidins were slightly reduced in TCP3SRDX plants. R2R3-MYB proteins control not only early flavonoid biosynthetic steps but also activate late flavonoid biosynthetic genes by forming ternary R2R3-MYB/bHLH/WD40 (MBW) complexes. TCP3 interacted in yeast with R2R3-MYB proteins, which was further confirmed in planta using BiFC experiments. Yeast three-hybrid assays revealed that TCP3 significantly strengthened the transcriptional activation capacity of R2R3-MYBs bound by the bHLH protein TT8. Transcriptome analysis of mTCP3 and TCP3SRDX plants supported a role for TCP3 in enhancing flavonoid biosynthesis. Moreover, several auxin-related developmental abnormalities were observed in mTCP3 plants. Transcriptome data coupled with studies of an auxin response reporter and auxin efflux carriers showed that TCP3 negatively modulates the auxin response, probably by compromising auxin transport capacity. Genetic experiments revealed that the chalcone synthase mutant tt4-11 lacking flavonoid biosynthesis abrogated the auxin-related defects caused by mTCP3. Together, these data suggest that TCP3 interactions with R2R3-MYBs lead to enhanced flavonoid production, which further negatively modulates the auxin response. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  18. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity.

    PubMed

    Kim, Sang Hee; Son, Geon Hui; Bhattacharjee, Saikat; Kim, Hye Jin; Nam, Ji Chul; Nguyen, Phuong Dung T; Hong, Jong Chan; Gassmann, Walter

    2014-06-01

    The plant immune system must be tightly controlled both positively and negatively to maintain normal plant growth and health. We previously identified SUPPRESSOR OF rps4-RLD1 (SRFR1) as a negative regulator specifically of effector-triggered immunity. SRFR1 is localized in both a cytoplasmic microsomal compartment and in the nucleus. Its TPR domain has sequence similarity to TPR domains of transcriptional repressors in other organisms, suggesting that SRFR1 may negatively regulate effector-triggered immunity via transcriptional control. We show here that excluding SRFR1 from the nucleus prevented complementation of the srfr1 phenotype. To identify transcription factors that interact with SRFR1, we screened an Arabidopsis transcription factor prey library by yeast two-hybrid assay and isolated six class I members of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor family. Specific interactions were verified in planta. Although single or double T-DNA mutant tcp8, tcp14 or tcp15 lines were not more susceptible to bacteria expressing AvrRps4, the triple tcp8 tcp14 tcp15 mutant displayed decreased effector-triggered immunity mediated by the resistance genes RPS2, RPS4, RPS6 and RPM1. In addition, expression of PATHOGENESIS-RELATED PROTEIN2 was attenuated in srfr1-4 tcp8-1 tcp14-5 tcp15-3 plants compared to srfr1-4 plants. To date, TCP transcription factors have been implicated mostly in developmental processes. Our data indicate that one function of a subset of TCP proteins is to regulate defense gene expression in antagonism to SRFR1, and suggest a mechanism for an intimate connection between plant development and immunity. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  19. gp49B-mediated negative regulation of antibody production by memory and marginal zone B cells.

    PubMed

    Fukao, Saori; Haniuda, Kei; Nojima, Takuya; Takai, Toshiyuki; Kitamura, Daisuke

    2014-07-15

    The rapid Ab responses observed after primary and secondary immunizations are mainly derived from marginal zone (MZ) and memory B cells, respectively, but it is largely unknown how these responses are negatively regulated. Several inhibitory receptors have been identified and their roles have been studied, but mainly on follicular B cells and much less so on MZ B, and never on memory B cells. gp49B is an Ig superfamily member that contains two ITIMs in its cytoplasmic tail, and it has been shown to negatively regulate mast cell, macrophage, and NK cell responses. In this study, we demonstrate that gp49B is preferentially expressed on memory and MZ B cells. We show that gp49B(-/-) mice produce more IgM after a primary immunization and more IgM and IgG1 after a secondary immunization than gp49B(+/+) mice in T cell-dependent immune responses. Memory and MZ B cells from gp49B(-/-) mice also produce more Abs upon in vitro stimulation with CD40 than those from gp49B(+/+) mice. The in vitro IgM production by MZ B cells from gp49B(+/+), but not gp49B(-/-), mice is suppressed by interaction with a putative gp49B ligand, the integrin αvβ3 heterodimer. In addition, gp49B(-/-) mice exhibited exaggerated IgE production in the memory recall response. These results suggest that plasma cell development from memory and MZ B cells, as well as subsequent Ab production, are suppressed via gp49B. In memory B cells, this suppression also prevents excessive IgE production, thus curtailing allergic diseases. Copyright © 2014 by The American Association of Immunologists, Inc.

  20. CCN3 (NOV) Is a Negative Regulator of CCN2 (CTGF) and a Novel Endogenous Inhibitor of the Fibrotic Pathway in an in Vitro Model of Renal Disease

    PubMed Central

    Riser, Bruce L.; Najmabadi, Feridoon; Perbal, Bernard; Peterson, Darryl R.; Rambow, Jo Ann; Riser, Melisa L.; Sukowski, Ernest; Yeger, Herman; Riser, Sarah C.

    2009-01-01

    Fibrosis is a major cause of end-stage renal disease, and although initiation factors have been elucidated, uncertainty concerning the downstream pathways has hampered the development of anti-fibrotic therapies. CCN2 (CTGF) functions downstream of transforming growth factor (TGF)-β, driving increased extracellular matrix (ECM) accumulation and fibrosis. We examined the possibility that CCN3 (NOV), another CCN family member with reported biological activities that differ from CCN2, might act as an endogenous negative regulator of ECM and fibrosis. We show that cultured rat mesangial cells express CCN3 mRNA and protein, and that TGF-β treatment reduced CCN3 expression levels while increasing CCN2 and collagen type I activities. Conversely, either the addition of CCN3 or CCN3 overexpression produced a marked down-regulation of CCN2 followed by virtual blockade of both collagen type I transcription and its accumulation. This finding occurred in both growth-arrested and CCN3-transfected cells under normal growth conditions after TGF-β treatment. These effects were not attributable to altered cellular proliferation as determined by cell cycle analysis, nor were they attributable to interference of Smad signaling as shown by analysis of phosphorylated Smad3 levels. In conclusion, both CCN2 and CCN3 appear to act in a yin/yang manner to regulate ECM metabolism. CCN3, acting downstream of TGF-β to block CCN2 and the up-regulation of ECM, may therefore serve to naturally limit fibrosis in vivo and provide opportunities for novel, endogenous-based therapeutic treatments. PMID:19359517

  1. CCN3 (NOV) is a negative regulator of CCN2 (CTGF) and a novel endogenous inhibitor of the fibrotic pathway in an in vitro model of renal disease.

    PubMed

    Riser, Bruce L; Najmabadi, Feridoon; Perbal, Bernard; Peterson, Darryl R; Rambow, Jo Ann; Riser, Melisa L; Sukowski, Ernest; Yeger, Herman; Riser, Sarah C

    2009-05-01

    Fibrosis is a major cause of end-stage renal disease, and although initiation factors have been elucidated, uncertainty concerning the downstream pathways has hampered the development of anti-fibrotic therapies. CCN2 (CTGF) functions downstream of transforming growth factor (TGF)-beta, driving increased extracellular matrix (ECM) accumulation and fibrosis. We examined the possibility that CCN3 (NOV), another CCN family member with reported biological activities that differ from CCN2, might act as an endogenous negative regulator of ECM and fibrosis. We show that cultured rat mesangial cells express CCN3 mRNA and protein, and that TGF-beta treatment reduced CCN3 expression levels while increasing CCN2 and collagen type I activities. Conversely, either the addition of CCN3 or CCN3 overexpression produced a marked down-regulation of CCN2 followed by virtual blockade of both collagen type I transcription and its accumulation. This finding occurred in both growth-arrested and CCN3-transfected cells under normal growth conditions after TGF-beta treatment. These effects were not attributable to altered cellular proliferation as determined by cell cycle analysis, nor were they attributable to interference of Smad signaling as shown by analysis of phosphorylated Smad3 levels. In conclusion, both CCN2 and CCN3 appear to act in a yin/yang manner to regulate ECM metabolism. CCN3, acting downstream of TGF-beta to block CCN2 and the up-regulation of ECM, may therefore serve to naturally limit fibrosis in vivo and provide opportunities for novel, endogenous-based therapeutic treatments.

  2. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis

    PubMed Central

    Xu, Fengyun; Liu, Changwei; Zhou, Dandan; Zhang, Lei

    2016-01-01

    Transforming growth factor-beta1 (TGF-β1), a key member in the TGF-β superfamily, plays a critical role in the development of hepatic fibrosis. Its expression is consistently elevated in affected organs, which correlates with increased extracellular matrix deposition. SMAD proteins have been studied extensively as pivotal intracellular effectors of TGF-β1, acting as transcription factors. In the context of hepatic fibrosis, SMAD3 and SMAD4 are pro-fibrotic, whereas SMAD2 and SMAD7 are protective. Deletion of SMAD3 inhibits type I collagen expression and blocks epithelial-myofibroblast transition. In contrast, disruption of SMAD2 upregulates type I collagen expression. SMAD4 plays an essential role in fibrosis disease by enhancing SMAD3 responsive promoter activity, whereas SMAD7 negatively mediates SMAD3-induced fibrogenesis. Accumulating evidence suggests that divergent miRNAs participate in the liver fibrotic process, which partially regulates members of the TGF-β/SMAD signaling pathway. In this review, we focus on the TGF-β/SMAD and other relative signaling pathways, and discussed the role and molecular mechanisms of TGF-β/SMAD in the pathogenesis of hepatic fibrosis. Moreover, we address the possibility of novel therapeutic approaches to hepatic fibrosis by targeting to TGF-β/SMAD signaling. PMID:26747705

  3. Crystallization and preliminary X-ray analysis of the N-terminal domain of human thioredoxin-interacting protein.

    PubMed

    Polekhina, Galina; Ascher, David Benjamin; Kok, Shie Foong; Waltham, Mark

    2011-05-01

    Thioredoxin-interacting protein (TXNIP) is a negative regulator of thioredoxin and its roles in the pathologies of diabetes and cardiovascular diseases have marked it out as a potential drug target. Expression of TXNIP is robustly induced under various stress conditions such as high glucose, heat shock, UV, H(2)O(2) and mechanical stress amongst others. Elevated levels of TXNIP result in the sequestration and inactivation of thioredoxin, leading to cellular oxidative stress. For some time, this was the only known function of TXNIP; however, more recently the protein has been shown to play a role in regulation of glucose uptake and activation of the inflammasome. Based on the primary sequence, TXNIP is remotely related to β-arrestins, which include the visual arrestins. TXNIP has thus been classified as a member of the α-arrestin family, which to date includes five other members. None of the other α-arrestins are known to interact with thioredoxin, although curiously one has been implicated in glucose uptake. In order to gain insight into the structure-function relationships of the α-arrestin protein family, and particularly that of TXNIP, the N-terminal domain of TXNIP has been crystallized. The crystals belonged to a monoclinic space group and diffracted to 3 Å resolution using synchrotron radiation.

  4. Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells

    PubMed Central

    Zhu, Qingsong; Jin, Lihua; Casero, Robert A.

    2013-01-01

    Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ERα) in human breast cancer cells. However, the mechanism underlying the potential regulation of ERα expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, and hindered growth in ERα-positive MCF7 and T47D and ERα-negative MDA-MB-231 breast cancer cells. ODC KD significantly induced the expression and activity of the key polyamine catabolism enzymes, spermine oxidase (SMO) and spermidine/spermine N1-acetyltransferase (SSAT). However, ODC KD-induced growth inhibition could not be reversed by exogenous spermidine or overexpression of antizyme inhibitor (AZI), suggesting that regulation of ODC on cell proliferation may involve the signaling pathways independent of polyamine metabolism. In MCF7 and T47D cells, ODC KD, but not DFMO treatment, diminished the mRNA and protein expression of ERα. Overexpression of antizyme (AZ), an ODC inhibitory protein, suppressed ERα expression, suggesting that ODC plays an important role in regulation of ERα expression. Decrease of ERα expression by ODC siRNA altered the mRNA expression of a subset of ERα response genes. Our previous analysis showed that oligoamines disrupt the binding of Sp1 family members to an ERα minimal promoter element containing GC/CA-rich boxes. By using DNA affinity precipitation and mass spectrometry analysis, we identified ZBTB7A, MeCP2, PARP-1, AP2, and MAZ as co-factors of Sp1 family members that are associated with the ERα minimal promoter element. Taken together, these data provide insight into a novel antiestrogenic mechanism for polyamine biosynthesis enzymes in breast cancer. PMID:22976807

  5. Nogo-B (Reticulon-4B) functions as a negative regulator of the apoptotic pathway through the interaction with c-FLIP in colorectal cancer cells.

    PubMed

    Kawaguchi, Nao; Tashiro, Keitaro; Taniguchi, Kohei; Kawai, Masaru; Tanaka, Keitaro; Okuda, Junji; Hayashi, Michihiro; Uchiyama, Kazuhisa

    2018-08-01

    Nogo-B is a member of the Nogo/Reticulon-4 family and has been reported to be an inducer of apoptosis in certain types of cancer cells. However, the role of Nogo-B in human cancer remains less understood. Here, we demonstrated the functions of Nogo-B in colorectal cancer cells. In clinical colorectal cancer specimens, Nogo-B was obviously overexpressed, as determined by immunohistochemistry; and Western blot analysis showed its expression level to be significantly up-regulated. Furthermore, knockdown of Nogo-B in two colorectal cancer cell lines, SW480 and DLD-1, by transfection with si-RNA (siR) resulted in significantly reduced cell viability and a dramatic increase in apoptosis with insistent overexpression of cleaved caspase-8 and cleaved PARP. The transfection with Nogo-B plasmid cancelled that apoptosis induced by siRNogoB in SW480 cells. Besides, combinatory treatment with siR-Nogo-B/staurosporine (STS) or siR-Nogo-B/Fas ligand (FasL) synergistically reduced cell viability and increased the expression of apoptotic signaling proteins in colorectal cancer cells. These results strongly support our contention that Nogo-B most likely played an oncogenic role in colorectal cancer cells, mainly by negatively regulating the extrinsic apoptotic pathway in them. Finally, we revealed that suppression of Nogo-B caused down-regulation of c-FLIP, known as a major anti-apoptotic protein, and activation of caspase-8 in the death receptor pathway. Interaction between Nogo-B and c-FLIP was shown by immunoprecipitation and immunofluorescence studies. In conclusion, Nogo-B was shown to play an important negative role in apoptotic signaling through its interaction with c-FLIP in colorectal cancer cells, and may thus become a novel therapeutic target for colorectal cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Family and Friendship Networks and Obsessive-Compulsive Disorder Among African Americans and Black Caribbeans.

    PubMed

    Himle, Joseph A; Taylor, Robert Joseph; Nguyen, Ann W; Williams, Monnica T; Lincoln, Karen D; Taylor, Harry Owen; Chatters, Linda M

    2017-03-01

    Although there is a large literature on the influence of social support on mental health there is limited research on social support and OCD. This is especially the case for African Americans and Black Caribbeans. This study examines the relationship between family and friendship networks and the prevalence of OCD. The analysis is based on the National Survey of American Life a nationally representative sample of African Americans and Black Caribbeans. Variables included frequency of contact with family and friends, subjective closeness with family and friends, and negative interactions (conflict, criticisms) with family members. The results indicated that only negative interaction with family members was significantly associated with OCD prevalence. African Americans and Black Caribbeans with more frequent negative interactions with family members had a higher likelihood of having OCD. Subjective closeness and frequency of contact with family and friends was not protective of OCD. Overall the findings are consistent with previous work which finds that social support is an inconsistent protective factor of psychiatric disorders, but negative interactions with support network members is more consistently associated with mental health problems.

  7. Family and Friendship Networks and Obsessive-Compulsive Disorder Among African Americans and Black Caribbeans

    PubMed Central

    Himle, Joseph A.; Taylor, Robert Joseph; Nguyen, Ann W.; Williams, Monnica T.; Lincoln, Karen D.; Taylor, Harry Owen; Chatters, Linda M.

    2017-01-01

    Although there is a large literature on the influence of social support on mental health there is limited research on social support and OCD. This is especially the case for African Americans and Black Caribbeans. This study examines the relationship between family and friendship networks and the prevalence of OCD. The analysis is based on the National Survey of American Life a nationally representative sample of African Americans and Black Caribbeans. Variables included frequency of contact with family and friends, subjective closeness with family and friends, and negative interactions (conflict, criticisms) with family members. The results indicated that only negative interaction with family members was significantly associated with OCD prevalence. African Americans and Black Caribbeans with more frequent negative interactions with family members had a higher likelihood of having OCD. Subjective closeness and frequency of contact with family and friends was not protective of OCD. Overall the findings are consistent with previous work which finds that social support is an inconsistent protective factor of psychiatric disorders, but negative interactions with support network members is more consistently associated with mental health problems. PMID:28321149

  8. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Hong, E-mail: Zhai.h@hotmail.com; Bai, Xi, E-mail: baixi@neau.edu.cn; Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn

    2010-04-16

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not alteredmore » in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven {beta}-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.« less

  9. IGF and myostatin pathways are respectively induced during the earlier and the later stages of skeletal muscle hypertrophy induced by clenbuterol, a β₂-adrenergic agonist.

    PubMed

    Abo, Tokuhisa; Iida, Ryo-Hei; Kaneko, Syuhei; Suga, Takeo; Yamada, Hiroyuki; Hamada, Yoshiki; Yamane, Akira

    2012-12-01

    Clenbuterol, a β₂-adrenergic agonist, increases the hypertrophy of skeletal muscle. Insulin-like growth factor (IGF) is reported to work as a potent positive regulator in the clenbuterol-induced hypertrophy of skeletal muscles. However, the precise regulatory mechanism for the hypertrophy of skeletal muscle induced by clenbuterol is unknown. Myostatin, a member of the TGFβ super family, is a negative regulator of muscle growth. The aim of the present study is to elucidate the function of myostatin and IGF in the hypertrophy of rat masseter muscle induced by clenbuterol. To investigate the function of myostatin and IGF in regulatory mechanism for the clenbuterol-induced hypertrophy of skeletal muscles, we analysed the expression of myostatin and phosphorylation levels of myostatin and IGF signaling components in the masseter muscle of rat to which clenbuterol was orally administered for 21 days. Hypertrophy of the rat masseter muscle was induced between 3 and 14 days of oral administration of clenbuterol and was terminated at 21 days. The expression of myostatin and the phosphorylation of smad2/3 were elevated at 21 days. The phosphorylation of IGF receptor 1 (IGFR1) and akt1 was elevated at 3 and 7 days. These results suggest that myostatin functions as a negative regulator in the later stages in the hypertrophy of rat masseter muscle induced by clenbuterol, whereas IGF works as a positive regulator in the earlier stages. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members.

    PubMed

    Leyva-González, Marco Antonio; Ibarra-Laclette, Enrique; Cruz-Ramírez, Alfredo; Herrera-Estrella, Luis

    2012-01-01

    Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role.

  11. Functional and Transcriptome Analysis Reveals an Acclimatization Strategy for Abiotic Stress Tolerance Mediated by Arabidopsis NF-YA Family Members

    PubMed Central

    Leyva-González, Marco Antonio; Ibarra-Laclette, Enrique; Cruz-Ramírez, Alfredo; Herrera-Estrella, Luis

    2012-01-01

    Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role. PMID:23118940

  12. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response.

    PubMed Central

    Heppner, K. J.; Matrisian, L. M.; Jensen, R. A.; Rodgers, W. H.

    1996-01-01

    Matrix metalloproteinase (MMP) family members have been associated with advanced-stage cancer and contribute to tumor progression, invasion, and metastasis as determined by inhibitor studies. In situ hybridization was performed to analyze the expression and localization of all known MMPs in a series of human breast cancer biopsy specimens. Most MMPs were localized to tumor stroma, and all MMPs had very distinct expression patterns. Matrilysin was expressed by morphologically normal epithelial ducts within tumors and in tissue from reduction mammoplasties, and by epithelial-derived tumor cells. Many family members, including stromelysin-3, gelatinase A, MT-MMP, interstitial collagenase, and stromelysin-1 were localized to fibroblasts of tumor stroma of invasive cancers but in quite distinct, and generally widespread, patterns. Gelatinase B, collagenase-3, and metalloelastase expression were more focal; gelatinase B was primarily localized to endothelial cells, collagenase-3 to isolated tumor cells, and metalloelastase to cytokeratin-negative, macrophage-like cells. The MMP inhibitor, TIMP-1, was expressed in both stromal and tumor components in most tumors, and neither stromelysin-2 nor neutrophil collagenase were detected in any of the tumors. These results indicate that there is very tight and complex regulation in the expression of MMP family members in breast cancer that generally represents a host response to the tumor and emphasize the need to further evaluate differential functions for MMP family members in breast tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8686751

  13. A gibberellin-stimulated transcript, OsGASR1, controls seedling growth and α-amylase expression in rice.

    PubMed

    Lee, Sang-Choon; Kim, Soo-Jin; Han, Soon-Ki; An, Gynheung; Kim, Seong-Ryong

    2017-07-01

    From a T-DNA-tagging population in rice, we identified OsGASR1 (LOC_Os03g55290), a member of the GAST (gibberellin (GA)-Stimulated Transcript) family that is induced by salt stress and ABA treatment. This gene was highly expressed in the regions of cell proliferation and panicle development, as revealed by a GUS assay of the mutant line. In the osgasr1 mutants, the second leaf blades were much longer than those of the segregating wild type due to an increase in cell length. In addition, five α-amylase genes were up-regulated in the mutants, implying that OsGASR1 is a negative regulator of those genes. These results suggest that OsGASR1 plays important roles in seedling growth and α-amylase gene expression. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Reciprocal regulation by hypoxia-inducible factor-2α and the NAMPT-NAD(+)-SIRT axis in articular chondrocytes is involved in osteoarthritis.

    PubMed

    Oh, H; Kwak, J-S; Yang, S; Gong, M-K; Kim, J-H; Rhee, J; Kim, S K; Kim, H-E; Ryu, J-H; Chun, J-S

    2015-12-01

    Hypoxia-inducible factor-2α (HIF-2α) transcriptionally upregulates Nampt in articular chondrocytes. NAMPT, which exhibits nicotinamide phosphoribosyltransferase activity, in turn causes osteoarthritis (OA) in mice by stimulating the expression of matrix-degrading enzymes. Here, we sought to elucidate whether HIF-2α activates the NAMPT-NAD(+)-SIRT axis in chondrocytes and thereby contributes to the pathogenesis of OA. Assays of NAD levels, SIRT activity, reporter gene activity, mRNA, and protein levels were conducted in primary cultured mouse articular chondrocytes. Experimental OA in mice was induced by intra-articular (IA) injection of adenovirus expressing HIF-2α (Ad-Epas1) or NAMPT (Ad-Nampt). The functions of SIRT in OA were examined by IA co-injection of SIRT inhibitors or adenovirus expressing individual SIRT isoforms or shRNA targeting specific SIRT isoforms. HIF-2α activated the NAMPT-NAD(+)-SIRT axis in chondrocytes by upregulating NAMPT, which stimulated NAD(+) synthesis and thereby activated SIRT family members. The activated NAMPT-SIRT pathway, in turn, promoted HIF-2α protein stability by negatively regulating its hydroxylation and 26S proteasome-mediated degradation, resulting in increased HIF-2α transcriptional activity. Among SIRT family members (SIRT1-7), SIRT2 and SIRT4 were positively associated with HIF-2α stability and transcriptional activity in chondrocytes. This reciprocal regulation was required for the expression of catabolic matrix metalloproteinases (MMP3, MMP12, and MMP13) and OA cartilage destruction caused by IA injection of Ad-Epas1 Ad-Nampt. The reciprocal regulation of HIF-2α and the NAMPT-NAD(+)-SIRT axis in articular chondrocytes is involved in OA cartilage destruction caused by HIF-2α or NAMPT. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Short germ insects utilize both the ancestral and derived mode of Polycomb group-mediated epigenetic silencing of Hox genes

    PubMed Central

    Matsuoka, Yuji; Bando, Tetsuya; Watanabe, Takahito; Ishimaru, Yoshiyasu; Noji, Sumihare; Popadić, Aleksandar; Mito, Taro

    2015-01-01

    In insect species that undergo long germ segmentation, such as Drosophila, all segments are specified simultaneously at the early blastoderm stage. As embryogenesis progresses, the expression boundaries of Hox genes are established by repression of gap genes, which is subsequently replaced by Polycomb group (PcG) silencing. At present, however, it is not known whether patterning occurs this way in a more ancestral (short germ) mode of embryogenesis, where segments are added gradually during posterior elongation. In this study, two members of the PcG family, Enhancer of zeste (E(z)) and Suppressor of zeste 12 (Su(z)12), were analyzed in the short germ cricket, Gryllus bimaculatus. Results suggest that although stepwise negative regulation by gap and PcG genes is present in anterior members of the Hox cluster, it does not account for regulation of two posterior Hox genes, abdominal-A (abd-A) and Abdominal-B (Abd-B). Instead, abd-A and Abd-B are predominantly regulated by PcG genes, which is the mode present in vertebrates. These findings suggest that an intriguing transition of the PcG-mediated silencing of Hox genes may have occurred during animal evolution. The ancestral bilaterian state may have resembled the current vertebrate mode of regulation, where PcG-mediated silencing of Hox genes occurs before their expression is initiated and is responsible for the establishment of individual expression domains. Then, during insect evolution, the repression by transcription factors may have been acquired in anterior Hox genes of short germ insects, while PcG silencing was maintained in posterior Hox genes. PMID:25948756

  16. Transcriptional regulation of genes related to progesterone production.

    PubMed

    Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru

    2015-01-01

    Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.

  17. Negative ageing stereotypes in students and faculty members from three health science schools.

    PubMed

    León, Soraya; Correa-Beltrán, Gloria; Giacaman, Rodrigo A

    2015-06-01

    To explore the ageing stereotypes held by health students and faculty members in three health science schools in Chile. This cross-sectional study surveyed 284 students and faculty members from the dental, physical therapy and speech therapy schools of the University of Talca, Chile. A validated 15-question questionnaire about negative stereotypes was used (CENVE). The questions were divided into three categories: (i) health, (ii) social factors and motivation and (iii) character and personality. The scores for each category were grouped into the following categories: (i) positive, (ii) neutral and (iii) negative. Negative stereotypes were compared across genders, socio-economic status levels, classes, positions (student or faculty member) and schools. The majority of the participants held neutral stereotypes towards ageing, followed by positive perceptions. No differences were detected between the genders, schools or classes. While most of the students had neutral perceptions about ageing, the faculty's perceptions were rather positive (p = 0.0182). In addition, people of lower-middle socio-economic status held more positive stereotypes about ageing than the participants of high and middle status (p = 0.0496). Stereotypes about ageing held by health-related students and faculty members appear to be rather neutral. The stereotypes seem to be better among students with some clinical experience, students of lower socio-economic status and faculty members. © 2013 John Wiley & Sons A/S and The Gerodontology Society. Published by John Wiley & Sons Ltd.

  18. Two highly-related regulatory subunits of PP2A exert opposite effects on TGF-β/Activin/Nodal signalling

    PubMed Central

    Batut, Julie; Schmierer, Bernhard; Cao, Jing; Raftery, Laurel A.; Hill, Caroline S.; Howell, Michael

    2016-01-01

    Summary We identify Bα (PPP2R2A) and Bδ (PPP2R2D), two highly-related members of the B family of regulatory subunits of the protein phosphatase PP2A, as important modulators of TGF-β/Activin/Nodal signalling, which affect the pathway in opposite ways. Knockdown of Bα in Xenopus embryos or mammalian tissue culture cells suppresses TGF-β/Activin/Nodal-dependent responses, whereas knockdown of Bδ enhances these responses. Moreover, in Drosophila, overexpression of Smad2 rescues a severe wing phenotype caused by overexpression of the single Drosophila PP2A B subunit, Twins. We show that in vertebrates Bα enhances TGF-β/Activin/Nodal signalling by stabilising the basal levels of type I receptor, whereas Bδ negatively modulates these pathways by restricting receptor activity. Thus, these highly-related members of the same subfamily of PP2A regulatory subunits differentially regulate TGF-β/Activin/Nodal signalling to elicit opposing biological outcomes. PMID:18697906

  19. Opposite nuclear level and binding activity of STAT5B and STAT3 proteins with rat haptoglobin gene under normal and turpentine induced acute phase conditions.

    PubMed

    Grigorov, I; Lazić, T; Cvetković, I; Milosavljević, T; Petrović, M

    2001-01-01

    Transcription of the rat gene encoding haptoglobin (Hp) is highly induced during acute phase (AP) response which has been previously shown to be mediated by inducible STAT3 member of the Signal Transducer and Activators of Transcription (STATs) family proteins. In this study, we observed that under normal but not in the turpentine induced AP conditions, another member of the STAT family proteins, STAT5b is expressed and binds to the hormone regulatory element (HRE) of the rat Hp gene. We found that the nuclear amounts of constitutively active STAT5b in rat liver decreased significantly with time of turpentine treatment as opposed to that of cytosol STAT5b, suggesting possible export of constitutive STAT5b from the nucleus. Nuclear accumulation and binding of inducible STAT3 proteins to the rat Hp gene HRE following turpentine treatment implicated that STAT5b negatively regulates Hp gene expression during normal conditions.

  20. Legal frameworks and key concepts regulating diversion and treatment of mentally disordered offenders in European Union member states.

    PubMed

    Dressing, Harald; Salize, Hans Joachim; Gordon, Harvey

    2007-10-01

    There is only limited research on the various legal regulations governing assessment, placement and treatment of mentally ill offenders in European Union member states (EU-member states). To provide a structured description and cross-boundary comparison of legal frameworks regulating diversion and treatment of mentally disordered offenders in EU-member states before the extension in May 2004. A special focus is on the concept of criminal responsibility. Information on legislation and practice concerning the assessment, placement and treatment of mentally ill offenders was gathered by means of a detailed, structured questionnaire which was filled in by national experts. The legal regulations relevant for forensic psychiatry in EU-member states are outlined. Definitions of mental disorders given within these acts are introduced and compared with ICD-10 diagnoses. Finally the application of the concept of criminal responsibility by the law and in routine practice is presented. Legal frameworks for the processing and placement of mentally disordered offenders varied markedly across EU-member states. Since May 2004 the European Union has expanded to 25 member states and in January 2007 it will reach 27. With increasing mobility across Europe, the need for increasing trans-national co-operation is becoming apparent in which great variation in legal tradition pertains.

  1. 76 FR 67363 - Extending Religious and Family Member FICA and FUTA Exceptions to Disregarded Entities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ...-BJ07 Extending Religious and Family Member FICA and FUTA Exceptions to Disregarded Entities AGENCY... contains final and temporary regulations amending 26 CFR parts 31 and 301. These regulations extend the... Procedure and Administration Regulations (26 CFR part 301) to extend the FICA and FUTA exceptions for family...

  2. Leptin Reduces the Expression and Increases the Phosphorylation of the Negative Regulators of GLUT4 Traffic TBC1D1 and TBC1D4 in Muscle of ob/ob Mice

    PubMed Central

    Sáinz, Neira; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Ramírez, Beatriz; Lancha, Andoni; Burgos-Ramos, Emma; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2012-01-01

    Leptin improves insulin sensitivity in skeletal muscle. Our goal was to determine whether proteins controlling GLUT4 traffic are altered by leptin deficiency and in vivo leptin administration in skeletal muscle of wild type and ob/ob mice. Leptin-deficient ob/ob mice were divided in three groups: control, leptin-treated (1 mg/kg/d) and leptin pair-fed ob/ob mice. Microarray analysis revealed that 1,546 and 1,127 genes were regulated by leptin deficiency and leptin treatment, respectively. Among these, we identified 24 genes involved in intracellular vesicle-mediated transport in ob/ob mice. TBC1 domain family, member 1 (Tbc1d1), a negative regulator of GLUT4 translocation, was up-regulated (P = 0.001) in ob/ob mice as compared to wild types. Importantly, leptin treatment reduced the transcript levels of Tbc1d1 (P<0.001) and Tbc1d4 (P = 0.004) in the leptin-treated ob/ob as compared to pair-fed ob/ob animals. In addition, phosphorylation levels of TBC1D1 and TBC1D4 were enhanced in leptin-treated ob/ob as compared to control ob/ob (P = 0.015 and P = 0.023, respectively) and pair-fed ob/ob (P = 0.036 and P = 0.034, respectively) mice. Despite similar GLUT4 protein expression in wild type and ob/ob groups a different immunolocalization of this protein was evidenced in muscle sections. Leptin treatment increased GLUT4 immunoreactivity in gastrocnemius and extensor digitorum longus sections of leptin-treated ob/ob mice. Moreover, GLUT4 protein detected in immunoprecipitates from TBC1D4 was reduced by leptin replacement compared to control ob/ob (P = 0.013) and pair-fed ob/ob (P = 0.037) mice. Our findings suggest that leptin enhances the intracellular GLUT4 transport in skeletal muscle of ob/ob animals by reducing the expression and activity of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4. PMID:22253718

  3. Characteristics of expression and regulation of sirtuins in chicken (Gallus gallus).

    PubMed

    Ren, Junxiao; Xu, Naiyi; Ma, Zheng; Li, Yanmin; Li, Cuicui; Wang, Yanbin; Tian, Yadong; Liu, Xiaojun; Kang, Xiangtao

    2017-05-01

    Sirtuins (SIRT1-SIRT7) are a family of NAD + -dependent protein deacetylases that are linked to post-translational regulation of many metabolic processes. There are few reports available for chicken sirtuins (designated cSIRT1-cSIRT7), whose expression and regulation in the liver have yet to be explored. In the present study, we characterized the expression and regulation of sirtuin family members in chicken liver. The results showed that the sirtuin family members in chicken share the same conserved functional SIR2 domains. All the sirtuin family members were expressed extensively in all tissues examined, and the expression levels of cSIRT1, cSIRT2, cSIRT4, cSIRT6, and cSIRT7 in the liver increased significantly with sexual maturity. However, all sirtuin family members were downregulated (P < 0.05) in chicken livers and cultured primary hepatocytes treated with 17β-estradiol. We concluded that the expression levels of some chicken sirtuin family members in the liver were upregulated with sexual maturation, but might not be regulated directly by estrogen. Whereas estrogen could be used as an inhibitor of all sirtuins, both in vivo and in vitro.

  4. Becoming popular: interpersonal emotion regulation predicts relationship formation in real life social networks.

    PubMed

    Niven, Karen; Garcia, David; van der Löwe, Ilmo; Holman, David; Mansell, Warren

    2015-01-01

    Building relationships is crucial for satisfaction and success, especially when entering new social contexts. In the present paper, we investigate whether attempting to improve others' feelings helps people to make connections in new networks. In Study 1, a social network study following new networks of people for a 12-week period indicated that use of interpersonal emotion regulation (IER) strategies predicted growth in popularity, as indicated by other network members' reports of spending time with the person, in work and non-work interactions. In Study 2, linguistic analysis of the tweets from over 8000 Twitter users from formation of their accounts revealed that use of IER predicted greater popularity in terms of the number of followers gained. However, not all types of IER had positive effects. Behavioral IER strategies (which use behavior to reassure or comfort in order to regulate affect) were associated with greater popularity, while cognitive strategies (which change a person's thoughts about his or her situation or feelings in order to regulate affect) were negatively associated with popularity. Our findings have implications for our understanding of how new relationships are formed, highlighting the important the role played by intentional emotion regulatory processes.

  5. The Agrobacterium tumefaciens Transcription Factor BlcR Is Regulated via Oligomerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yi; Fiscus, Valena; Meng, Wuyi

    2012-02-08

    The Agrobacterium tumefaciens BlcR is a member of the emerging isocitrate lyase transcription regulators that negatively regulates metabolism of {gamma}-butyrolactone, and its repressing function is relieved by succinate semialdehyde (SSA). Our crystal structure showed that BlcR folded into the DNA- and SSA-binding domains and dimerized via the DNA-binding domains. Mutational analysis identified residues, including Phe{sup 147}, that are important for SSA association; BlcR{sup F147A} existed as tetramer. Two BlcR dimers bound to target DNA and in a cooperative manner, and the distance between the two BlcR-binding sequences in DNA was critical for BlcR-DNA association. Tetrameric BlcR{sup F147A} retained DNA bindingmore » activity, and importantly, this activity was not affected by the distance separating the BlcR-binding sequences in DNA. SSA did not dissociate tetrameric BlcR{sup F147A} or BlcR{sup F147A}-DNA. As well as in the SSA-binding site, Phe{sup 147} is located in a structurally flexible loop that may be involved in BlcR oligomerization. We propose that SSA regulates BlcR DNA-binding function via oligomerization.« less

  6. OsSLI1, a homeodomain containing transcription activator, involves abscisic acid related stress response in rice (Oryza sativa L.).

    PubMed

    Huang, Xi; Duan, Min; Liao, Jiakai; Yuan, Xi; Chen, Hui; Feng, Jiejie; Huang, Ji; Zhang, Hong-Sheng

    2014-01-01

    Homeodomain-leucine zipper type I (HD-Zip I) proteins are involved in the regulation of plant development and response to environmental stresses. In this study, OsSLI1 (Oryza sativa stress largely induced 1), encoding a member of the HD-Zip I subfamily, was isolated from rice. The expression of OsSLI1 was dramatically induced by multiple abiotic stresses and exogenous abscisic acid (ABA). In silico sequence analysis discovered several cis-acting elements including multiple ABREs (ABA-responsive element binding factors) in the upstream promoter region of OsSLI1. The OsSLI1-GFP fusion protein was localized in the nucleus of rice protoplast cells and the transcriptional activity of OsSLI1 was confirmed by the yeast hybrid system. Further, it was found that OsSLI1 expression was enhanced in an ABI5-Like1 (ABL1) deficiency rice mutant abl1 under stress conditions, suggesting that ABL1 probably negatively regulates OsSLI1 gene expression. Moreover, it was found that OsSLI1 was regulated in panicle development. Taken together, OsSLI1 may be a transcriptional activator regulating stress-responsive gene expression and panicle development in rice.

  7. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis.

    PubMed

    Kim, Woohyun; Lee, Yeon; Park, Jeongmoo; Lee, Nayoung; Choi, Giltsu

    2013-04-01

    Seed dormancy, a seed status that prohibits germination even in the presence of inductive germination signals, is a poorly understood process. To identify molecular components that regulate seed dormancy, we screened T-DNA insertion lines and identified a mutant designated honsu (hon). HON loss-of-function mutants display deep seed dormancy, whereas HON-overexpressing lines display shallow seed dormancy. HON encodes a seed-specific group A phosphatase 2C (PP2C) and is one of the major negative regulators of seed dormancy among group A PP2Cs. Like other PP2C family members, HON interacts with PYR1/RCAR11 in the presence of ABA. Our analysis indicates that HON inhibits ABA signaling and activates gibberellic acid signaling, and both of these conditions must be satisfied to promote the release of seed dormancy. However, HON mRNA levels are increased in mutants displaying deep seed dormancy or under conditions that deepen seed dormancy, and decreased in mutants displaying shallow seed dormancy or under conditions that promote the release of seed dormancy. Taken together, our results indicate that the expression of HON mRNA is homeostatically regulated by seed dormancy.

  8. V-set and Ig domain-containing 4 (VSIG4)-expressing hepatic F4/80+ cells regulate oral antigen-specific responses in mouse.

    PubMed

    Shin, Wonhwa; Jeon, Youkyoung; Choi, Inhak; Kim, Yeon-Jeong

    2018-04-01

    Oral tolerance can prevent unnecessary immune responses against dietary antigens. Members of the B7 protein family play critical roles in the positive and/or negative regulation of T cell responses to interactions between APCs and T cells. V-set and Ig domain-containing 4 (VSIG4), a B7-related co-signaling molecule, has been known to act as a co-inhibitory ligand and may be critical in establishing immune tolerance. Therefore, we investigated the regulation of VSIG4 signaling in a food allergy and experimental oral tolerance murine models. We analyzed the contributions of the two main sites involved in oral tolerance, the mesenteric lymph node (MLN) and the liver, in VSIG4-mediated oral tolerance induction. Through the comparative analysis of major APCs, dendritic cells (DCs) and macrophages, we found that Kupffer cells play a critical role in inducing regulatory T cells (Tregs) and establishing immune tolerance against oral antigens via VSIG4 signaling. Taken together, these results suggest the possibility of VSIG4 signaling-based regulation of orally administered antigens. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Advanced Therapy Medicinal Products for Rare Diseases: State of Play of Incentives Supporting Development in Europe

    PubMed Central

    Farkas, Andreas M.; Mariz, Segundo; Stoyanova-Beninska, Violeta; Celis, Patrick; Vamvakas, Spiros; Larsson, Kristina; Sepodes, Bruno

    2017-01-01

    In 2008, the European Union introduced the Advanced Medicines Regulation aiming to improve regulation of advanced therapy medicinal products (ATMPs). We applied the ATMPs classification definitions in this Regulation to understand the link of this emerging group of medicinal products and the use of the Orphan Regulation. A total of 185 products that can be classified as ATMPs based on this Regulation have been submitted for orphan designation. Prior to its introduction in 2008, 4.5% of the products submitted for orphan designation met these criteria. This percentage went up to 15% after 2008. We analyzed several parameters associated with active ATMP ODDs focusing on sponsor type and EU-Member State origin, therapeutic area targeted, and ATMP classification [i.e., somatic cell therapy medicinal product, tissue-engineered product (TEP), or gene therapy medicinal product (GTMP)] and the use of regulatory services linked to incentives such as the use of protocol assistance (PA) and other Committees [Committee for Advanced Therapies (CAT) and the Pediatric Committee]. The aim here was to gain insight on the use of different services. The UK submits the largest number of ATMPs for ODD representing ~30% of the total to date. Few submissions have been received from central and Eastern European Member States as well as some of the larger Member States such as Germany (3.6%). ATMPs ODDs were primarily GTMPs (48.7%) and SCTMPs (43.3%). TEPs only represented 8% of all submissions for this medicinal class. This is different from non-ODDs ATMPs where GTMPs make only 20% of ATMPs. A total of 11.7% of ATMP ODDs had received formal CAT classification. A total of 29.8% of all orphan drug (OD) ATMPs requested PA. A total of 71.8% did not have an agreed pediatric investigation plan (PIP). Four products (Glybera one PA; Zalmoxis two; Holoclar one; Strimvelis three) have received a marketing authorization (MAA) and a 10-year market exclusivity. Strimvelis also completed their PIP, which was compliant and received the additional 2-year extension to their 10-year market exclusivity. One OD ATMP (Cerepro) received a negative opinion for MAA. The use of services linked to incentives offered by different legislations for ATMP ODDs is low, indicating a need for increasing awareness. PMID:28560211

  10. Advanced Therapy Medicinal Products for Rare Diseases: State of Play of Incentives Supporting Development in Europe.

    PubMed

    Farkas, Andreas M; Mariz, Segundo; Stoyanova-Beninska, Violeta; Celis, Patrick; Vamvakas, Spiros; Larsson, Kristina; Sepodes, Bruno

    2017-01-01

    In 2008, the European Union introduced the Advanced Medicines Regulation aiming to improve regulation of advanced therapy medicinal products (ATMPs). We applied the ATMPs classification definitions in this Regulation to understand the link of this emerging group of medicinal products and the use of the Orphan Regulation. A total of 185 products that can be classified as ATMPs based on this Regulation have been submitted for orphan designation. Prior to its introduction in 2008, 4.5% of the products submitted for orphan designation met these criteria. This percentage went up to 15% after 2008. We analyzed several parameters associated with active ATMP ODDs focusing on sponsor type and EU-Member State origin, therapeutic area targeted, and ATMP classification [i.e., somatic cell therapy medicinal product, tissue-engineered product (TEP), or gene therapy medicinal product (GTMP)] and the use of regulatory services linked to incentives such as the use of protocol assistance (PA) and other Committees [Committee for Advanced Therapies (CAT) and the Pediatric Committee]. The aim here was to gain insight on the use of different services. The UK submits the largest number of ATMPs for ODD representing ~30% of the total to date. Few submissions have been received from central and Eastern European Member States as well as some of the larger Member States such as Germany (3.6%). ATMPs ODDs were primarily GTMPs (48.7%) and SCTMPs (43.3%). TEPs only represented 8% of all submissions for this medicinal class. This is different from non-ODDs ATMPs where GTMPs make only 20% of ATMPs. A total of 11.7% of ATMP ODDs had received formal CAT classification. A total of 29.8% of all orphan drug (OD) ATMPs requested PA. A total of 71.8% did not have an agreed pediatric investigation plan (PIP). Four products (Glybera one PA; Zalmoxis two; Holoclar one; Strimvelis three) have received a marketing authorization (MAA) and a 10-year market exclusivity. Strimvelis also completed their PIP, which was compliant and received the additional 2-year extension to their 10-year market exclusivity. One OD ATMP (Cerepro) received a negative opinion for MAA. The use of services linked to incentives offered by different legislations for ATMP ODDs is low, indicating a need for increasing awareness.

  11. LhnR and upstream operon LhnABC in Agrobacterium vitis regulate the induction of tobacco hypersensitive responses, grape necrosis and swarming motility.

    PubMed

    Zheng, Desen; Hao, Guixia; Cursino, Luciana; Zhang, Hongsheng; Burr, Thomas J

    2012-09-01

    The characterization of Tn5 transposon insertional mutants of Agrobacterium vitis strain F2/5 revealed a gene encoding a predicted LysR-type transcriptional regulator, lhnR (for 'LysR-type regulator associated with HR and necrosis'), and an immediate upstream operon consisting of three open reading frames (lhnABC) required for swarming motility, surfactant production and the induction of a hypersensitive response (HR) on tobacco and necrosis on grape. The operon lhnABC is unique to A. vitis among the sequenced members in Rhizobiaceae. Mutagenesis of lhnR and lhnABC by gene disruption and complementation of ΔlhnR and ΔlhnABC confirmed their roles in the expression of these phenotypes. Mutation of lhnR resulted in complete loss of HR, swarming motility, surfactant production and reduced necrosis, whereas mutation of lhnABC resulted in loss of swarming motility, delayed and reduced HR development and reduced surfactant production and necrosis. The data from promoter-green fluorescent protein (gfp) fusions showed that lhnR suppresses the expression of lhnABC and negatively autoregulates its own expression. It was also shown that lhnABC negatively affects its own expression and positively affects the transcription of lhnR. lhnR and lhnABC constitute a regulatory circuit that coordinates the transcription level of lhnR, resulting in the expression of swarming, surfactant, HR and necrosis phenotypes. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  12. Galectin-3 Negatively Regulates Hippocampus-Dependent Memory Formation through Inhibition of Integrin Signaling and Galectin-3 Phosphorylation

    PubMed Central

    Chen, Yan-Chu; Ma, Yun-Li; Lin, Cheng-Hsiung; Cheng, Sin-Jhong; Hsu, Wei-Lun; Lee, Eminy H.-Y.

    2017-01-01

    Galectin-3, a member of the galectin protein family, has been found to regulate cell proliferation, inhibit apoptosis and promote inflammatory responses. Galectin-3 is also expressed in the adult rat hippocampus, but its role in learning and memory function is not known. Here, we found that contextual fear-conditioning training, spatial training or injection of NMDA into the rat CA1 area each dramatically decreased the level of endogenous galectin-3 expression. Overexpression of galectin-3 impaired fear memory, whereas galectin-3 knockout (KO) enhanced fear retention, spatial memory and hippocampal long-term potentiation. Galectin-3 was further found to associate with integrin α3, an association that was decreased after fear-conditioning training. Transfection of the rat CA1 area with small interfering RNA against galectin-3 facilitated fear memory and increased phosphorylated focal adhesion kinase (FAK) levels, effects that were blocked by co-transfection of the FAK phosphorylation-defective mutant Flag-FAKY397F. Notably, levels of serine-phosphorylated galectin-3 were decreased by fear conditioning training. In addition, blockade of galectin-3 phosphorylation at Ser-6 facilitated fear memory, whereas constitutive activation of galectin-3 at Ser-6 impaired fear memory. Interestingly galectin-1 plays a role in fear-memory formation similar to that of galectin-3. Collectively, our data provide the first demonstration that galectin-3 is a novel negative regulator of memory formation that exerts its effects through both extracellular and intracellular mechanisms. PMID:28744198

  13. Intracellular TLR22 acts as an inflammation equalizer via suppression of NF-κB and selective activation of MAPK pathway in fish.

    PubMed

    Ding, Xu; Liang, Yaosi; Peng, Wan; Li, Ruozhu; Lin, Haoran; Zhang, Yong; Lu, Danqi

    2018-01-01

    TLR22, a typical member of the fish-specific TLRs, is a crucial sensor in virally triggered innate immune signalling retained from natural selection. To elucidate the role of the TLR22-specific signalling cascade mechanism, we provide evidence that the double-stranded (ds) RNA-sensor TLR22 positively regulates the ERK pathway and negatively regulates the JNK, p38 MAP kinase and NF-κB pathway. Here, we show that TLR22 restrains NF-κB activation and IFN (interferon) β and AP-1 (activator protein-1) promoter binding (impairing "primary response" genes (TNF and IL-1)), induces "secondary response" genes (IL-12 and IL-6) and mediates the irregular expression of inflammatory genes. Therefore, TLR22 promotes ERK phosphorylation but impairs the JNK and p38 MAP kinases and IκB phosphorylation. Additionally, TLR22 controls the excessive generation of reactive oxygen species (ROS) to avoid damaging the organism. The specific kinetics of TLR22 depends on its distinct cellular localization. We demonstrate that TLR22 is an intracellular receptor localized in the endosome, and the TLR22-TIR domain is the functional structure inducing the signalling cascade post-viral replication in the body. As mentioned above, our data reveal a novel mechanism whereby TLR22-induced positive adjustment and negative regulation evolved independently to avoid harmful and inappropriate inflammatory responses. Copyright © 2017. Published by Elsevier Ltd.

  14. The effect of myostatin silencing by lentiviral-mediated RNA interference on goat fetal fibroblasts.

    PubMed

    Lu, Jian; Wei, Caihong; Zhang, Xiaoning; Xu, Lingyang; Zhang, Shifang; Liu, Jiasen; Cao, Jiaxue; Zhao, Fuping; Zhang, Li; Li, Bichun; Du, Lixin

    2013-06-01

    Myostatin is a transforming growth factor-β family member that acts as a negative regulator of skeletal muscle mass. To identify possible myostatin inhibitors that may promote muscle growth, we used RNA interference mediated by a lentiviral vector to knockdown myostatin in goat fetal fibroblast cells. We also investigated the expression changes in relevant myogenic regulatory factors (MRFs) and adipogenic regulatory factors in the absence of myostatin in goat fetal fibroblasts. Quantitative RT-PCR revealed that myostatin transcripts were significantly reduced by 75 % (P < 0.01). Western blot showed that myostatin protein expression was reduced by 95 % (P < 0.01). We also found that the mRNA expression of activin receptor IIB (ACVR2B) significantly increased by 350 % (P < 0.01), and p21 increased 172 % (P < 0.01). Furthermore, myostatin inhibition decreased Myf5 and increased MEF2C mRNA expression in goat fetal fibroblasts, suggesting that myostatin regulates MRFs differently in fibroblasts compared to muscle. In addition, the expression of adipocyte marker genes peroxisome proliferator-activated receptor (PPAR) γ and leptin, but not CCAAT/enhance-binding protein (C/EBP) α and C/EBPβ, were upregulated at the transcript level after myostatin silencing. These results suggest that we have generated a novel way to block myostatin in vitro, which could be used to improve livestock meat production and gene therapy of musculoskeletal diseases. This also suggests that myostatin plays a negative role in regulating the expression of adipogenesis related genes in goat fetal fibroblasts.

  15. The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation

    PubMed Central

    Shi, Song-Hai; Cheng, Tong; Jan, Lily Yeh; Jan, Yuh-Nung

    2004-01-01

    In the developing mammalian brain, a large fraction of excitatory synapses initially contain only N-methyl-d-aspartate receptor and thus are “silent” at the resting membrane potential. As development progresses, synapses acquire α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs). Although this maturation of excitatory synapses has been well characterized, the molecular basis for this developmental change is not known. Here, we report that dendrite arborization and synapse maturation 1 (Dasm1), an Ig superfamily member, controls excitatory synapse maturation. Dasm1 is localized at the excitatory synapses. Suppression of Dasm1 expression by using RNA interference or expression of dominant negative deletion mutants of Dasm1 in hippocampal neurons at late developmental stage specifically impairs AMPA-R-mediated, but not N-methyl-d-aspartate receptor-mediated, synaptic transmission. The ability of Dasm1 to regulate synaptic AMPA-Rs requires its intracellular C-terminal PDZ domain-binding motif, which interacts with two synaptic PDZ domain-containing proteins involved in spine/synapse maturation, Shank and S-SCAM. Moreover, expression of dominant negative deletion mutants of Dasm1 leads to more immature silent synapses. These results suggest that Dasm1, as a transmembrane molecule, likely provides a link to bridge extracellular signals and intracellular signaling complexes in controlling excitatory synapse maturation. PMID:15340156

  16. The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells

    PubMed Central

    Grötsch, Bettina; Brachs, Sebastian; Lang, Christiane; Luther, Julia; Derer, Anja; Schlötzer-Schrehardt, Ursula; Bozec, Aline; Fillatreau, Simon; Berberich, Ingolf; Hobeika, Elias; Reth, Michael; Wagner, Erwin F.; Schett, Georg

    2014-01-01

    The cornerstone of humoral immunity is the differentiation of B cells into antibody-secreting plasma cells. This process is tightly controlled by a regulatory gene network centered on the transcriptional repressor B lymphocyte–induced maturation protein 1 (Blimp1). Proliferation of activated B cells is required to foster Blimp1 expression but needs to be terminated to avoid overshooting immune reactions. Activator protein 1 (AP-1) transcription factors become quickly up-regulated upon B cell activation. We demonstrate that Fra1, a Fos member of AP-1, enhances activation-induced cell death upon induction in activated B cells. Moreover, mice with B cell–specific deletion of Fra1 show enhanced plasma cell differentiation and exacerbated antibody responses. In contrast, transgenic overexpression of Fra1 blocks plasma cell differentiation and immunoglobulin production, which cannot be rescued by Bcl2. On the molecular level, Fra1 represses Blimp1 expression and interferes with binding of the activating AP-1 member c-Fos to the Blimp1 promoter. Conversely, overexpression of c-Fos in Fra1 transgenic B cells releases Blimp1 repression. As Fra1 lacks transcriptional transactivation domains, we propose that Fra1 inhibits Blimp1 expression and negatively controls plasma cell differentiation through binding to the Blimp1 promoter. In summary, we demonstrate that Fra1 negatively controls plasma cell differentiation by repressing Blimp1 expression. PMID:25288397

  17. A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition.

    PubMed

    Stewart, Teneale A; Azimi, Iman; Thompson, Erik W; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2015-03-13

    Epithelial-mesenchymal transition (EMT), a process implicated in cancer metastasis, is associated with the transcriptional regulation of members of the ATP-binding cassette superfamily of efflux pumps, and drug resistance in breast cancer cells. Epidermal growth factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells is calcium signal dependent. In this study induction of EMT was shown to result in the transcriptional up-regulation of ATP-binding cassette, subfamily C, member 3 (ABCC3), a member of the ABC transporter superfamily, which has a recognized role in multidrug resistance. Buffering of cytosolic free calcium inhibited EGF-mediated ABCC3 increases, indicating a calcium-dependent mode of regulation. Silencing of TRPM7 (an ion channel involved in EMT associated vimentin induction) did not inhibit ABCC3 up-regulation. Silencing of the store operated calcium entry (SOCE) pathway components ORAI1 and STIM1 also did not alter ABCC3 induction by EGF. However, the calcium permeable ion channel transient receptor potential cation channel, subfamily C, member 1 (TRPC1) appears to contribute to the regulation of both basal and EGF-induced ABCC3 mRNA. Improved understanding of the relationship between calcium signaling, EMT and the regulation of genes important in therapeutic resistance may help identify novel therapeutic targets for breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. AJUBA LIM Proteins Limit Hippo Activity in Proliferating Cells by Sequestering the Hippo Core Kinase Complex in the Cytosol.

    PubMed

    Jagannathan, Radhika; Schimizzi, Gregory V; Zhang, Kun; Loza, Andrew J; Yabuta, Norikazu; Nojima, Hitoshi; Longmore, Gregory D

    2016-10-15

    The Hippo pathway controls organ growth and is implicated in cancer development. Whether and how Hippo pathway activity is limited to sustain or initiate cell growth when needed is not understood. The members of the AJUBA family of LIM proteins are negative regulators of the Hippo pathway. In mammalian epithelial cells, we found that AJUBA LIM proteins limit Hippo regulation of YAP, in proliferating cells only, by sequestering a cytosolic Hippo kinase complex in which LATS kinase is inhibited. At the plasma membranes of growth-arrested cells, AJUBA LIM proteins do not inhibit or associate with the Hippo kinase complex. The ability of AJUBA LIM proteins to inhibit YAP regulation by Hippo and to associate with the kinase complex directly correlate with their capacity to limit Hippo signaling during Drosophila wing development. AJUBA LIM proteins did not influence YAP activity in response to cell-extrinsic or cell-intrinsic mechanical signals. Thus, AJUBA LIM proteins limit Hippo pathway activity in contexts where cell proliferation is needed. Copyright © 2016 Jagannathan et al.

  19. AJUBA LIM Proteins Limit Hippo Activity in Proliferating Cells by Sequestering the Hippo Core Kinase Complex in the Cytosol

    PubMed Central

    Jagannathan, Radhika; Schimizzi, Gregory V.; Zhang, Kun; Loza, Andrew J.; Yabuta, Norikazu; Nojima, Hitoshi

    2016-01-01

    The Hippo pathway controls organ growth and is implicated in cancer development. Whether and how Hippo pathway activity is limited to sustain or initiate cell growth when needed is not understood. The members of the AJUBA family of LIM proteins are negative regulators of the Hippo pathway. In mammalian epithelial cells, we found that AJUBA LIM proteins limit Hippo regulation of YAP, in proliferating cells only, by sequestering a cytosolic Hippo kinase complex in which LATS kinase is inhibited. At the plasma membranes of growth-arrested cells, AJUBA LIM proteins do not inhibit or associate with the Hippo kinase complex. The ability of AJUBA LIM proteins to inhibit YAP regulation by Hippo and to associate with the kinase complex directly correlate with their capacity to limit Hippo signaling during Drosophila wing development. AJUBA LIM proteins did not influence YAP activity in response to cell-extrinsic or cell-intrinsic mechanical signals. Thus, AJUBA LIM proteins limit Hippo pathway activity in contexts where cell proliferation is needed. PMID:27457617

  20. Ski represses BMP signaling in Xenopus and mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    kluo@lbl.gov

    2001-05-16

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells bymore » directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-{beta} family members.« less

  1. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells

    PubMed Central

    Wang, Wei; Mariani, Francesca V.; Harland, Richard M.; Luo, Kunxin

    2000-01-01

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-β family members. PMID:11121043

  2. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells.

    PubMed

    Wang, W; Mariani, F V; Harland, R M; Luo, K

    2000-12-19

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-beta family members.

  3. Emotion-related regulatory difficulties contribute to negative psychological outcomes in active-duty Iraq war soldiers with and without posttraumatic stress disorder.

    PubMed

    Klemanski, David H; Mennin, Douglas S; Borelli, Jessica L; Morrissey, Paul M; Aikins, Deane E

    2012-07-01

    Data suggest military personnel involved in U.S. military initiatives in Iraq and Afghanistan are returning from deployment with elevated rates of mental health diagnoses, including posttraumatic stress disorder (PTSD). The aim of this study was to examine difficulties with emotion regulation as a potential contributory mechanism by which soldiers have poorer psychological outcomes, such as depression, dissociation, alcohol abuse, and interpersonal difficulties. Participants were 44 active-duty male service members who comprised three groups, including those deployed with and without diagnosed PTSD and those prior to deployment. Participants in the PTSD group scored significantly higher on measures of self-reported depression, trauma-related dissociation, alcohol misuse, and social adjustment difficulties than did comparison groups. Importantly, difficulties with emotion regulation were found to partially mediate the relationship between PTSD and depression, poor social adjustment, and trauma-related depersonalization but not alcohol misuse. Emotion-regulation difficulties are important to consider in the relationship between PTSD and additional psychological outcomes in recently deployed personnel. Implications for treatment are briefly discussed. © 2012 Wiley Periodicals, Inc.

  4. Ethylene Responsive Factor MeERF72 Negatively Regulates Sucrose synthase 1 Gene in Cassava.

    PubMed

    Liu, Chen; Chen, Xin; Ma, Ping'an; Zhang, Shengkui; Zeng, Changying; Jiang, Xingyu; Wang, Wenquan

    2018-04-25

    Cassava, an important food and industrial crop globally, is characterized by its powerful starch accumulation in its storage root. However, the underlying molecular mechanism for this feature remains unclear. Sucrose synthase initializes the conversion of sucrose to starch, and, to a certain extent, its enzyme activity can represent sink strength. To understand the modulation of MeSus gene family, the relatively high expressed member in storage root, MeSus1 , its promoter was used as bait to screen cassava storage root full-length cDNA library through a yeast one-hybrid system. An ethylene responsive factor cDNA, designated as MeERF72 according to its homolog in Arabidopsis , was screened out. The transcript level of MeERF72 was induced by ethylene, drought, and salt treatments and repressed by abscisic acid, Auxin, gibberellin, salicylic acid, and low and high temperatures. The MeERF72 protein has a conserved APETALA2 domain in its N-terminus and an activated domain of 30 amino acids in its C-terminus, can bind to MeSus1 promoter in vitro and in vivo, and represses the promoter activity of MeSus1 . MeERF72 is a transcription factor that can negatively regulate the expression level of MeSus1 in cassava.

  5. Inhibition of Histone Deacetylases 1 and 6 Enhances Cytarabine-Induced Apoptosis in Pediatric Acute Myeloid Leukemia Cells

    PubMed Central

    Xu, Xuelian; Xie, Chengzhi; Edwards, Holly; Zhou, Hui; Buck, Steven A.; Ge, Yubin

    2011-01-01

    Background Pediatric acute myeloid leukemia (AML) remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs) have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML. Methodology Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis. Results Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis. Conclusion Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs. PMID:21359182

  6. Signaling in the plant cytosol: cysteine or sulfide?

    PubMed

    Gotor, Cecilia; Laureano-Marín, Ana M; Moreno, Inmaculada; Aroca, Ángeles; García, Irene; Romero, Luis C

    2015-10-01

    Cysteine (Cys) is the first organic compound containing reduced sulfur that is synthesized in the last stage of plant photosynthetic assimilation of sulfate. It is a very important metabolite not only because it is crucial for the structure, function and regulation of proteins but also because it is the precursor molecule of an enormous number of sulfur-containing metabolites essential for plant health and development. The biosynthesis of Cys is accomplished by the sequential reaction of serine acetyltransferase (SAT) and O-acetylserine(thiol)synthase (OASTL). In Arabidopsis thaliana, the analysis of specific mutants of members of the SAT and OASTL families has demonstrated that the cytosol is the compartment where the bulk of Cys synthesis takes place and that the cytosolic OASTL enzyme OAS-A1 is the responsible enzyme. Another member of the OASTL family is DES1, a novel L-cysteine desulfhydrase that catalyzes the desulfuration of Cys to produce sulfide, thus acting in a manner opposite to that of OAS-A1. Detailed studies of the oas-a1 and des1 null mutants have revealed the involvement of the DES1 and OAS-A1 proteins in coordinate regulation of Cys homeostasis and the generation of sulfide in the cytosol for signaling purposes. Thus, the levels of Cys in the cytosol strongly affect plant responses to both abiotic and biotic stress conditions, while sulfide specifically generated from the degradation of Cys negatively regulates autophagy induced in different situations. In conclusion, modulation of the levels of Cys and sulfide is likely critical for plant performance.

  7. Judgments about Cooperators and Freeriders on a Shuar Work Team: An Evolutionary Psychological Perspective

    ERIC Educational Resources Information Center

    Price, Michael E.

    2006-01-01

    Evolutionary biological theories of group cooperation predict that (1) group members will tend to judge cooperative co-members favorably, and freeriding co-members negatively and (2) members who themselves cooperate more frequently will be especially likely to make these social judgments. An experiment tested these predictions among Shuar…

  8. Positive Peer Support or Negative Peer Influence? The Role of Peers among Adolescents in Recovery High Schools.

    PubMed

    Karakos, Holly

    2014-01-01

    Evidence from previous research suggests that peers at times exert negative influence and at other times exert positive influence on drug and alcohol use among adolescents in recovery. This study explores recovery high school staff members' perceptions of peer support among students in recovery high schools using qualitative interview data. Themes of peer support are discussed in terms of positive peer support, negative peer influence, peer relationships, and sense of community. In general, recovery school staff members discuss peers in the school as sources of positive support and peers outside the schools as sources of risky influence. Themes and quotes are presented to highlight the diverse ways that staff members discussed peer influence. Limitations of this study and suggestions for future research are discussed.

  9. Role of commitment to the supervisor, leader-member exchange, and supervisor-based self-esteem in employee-supervisor conflicts.

    PubMed

    Landry, Guylaine; Vandenberghe, Christian

    2009-02-01

    Using survey data from 240 employees working in a variety of organizations, the authors examined the relations among commitment to the supervisor, leader-member exchange, supervisor-based self-esteem (SBSE), and relationship and substantive supervisor-subordinate conflicts. They found affective commitment was negatively related to both types of conflicts; perceived lack of alternatives commitment was positively related to relationship conflicts; and leader-member exchange was negatively related to substantive conflicts. SBSE was negatively associated with both types of conflicts. In addition, when SBSE was low, affective commitment was more strongly related to both types of conflicts, and normative commitment more strongly and positively related to substantive conflicts. The authors discuss the implications of these findings for the understanding of employee-supervisor conflicts.

  10. 7 CFR 905.114 - Redistricting of citrus districts and reapportionment of grower members.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Palm Beach and Martin not included in Regulation Area II. This district shall have three grower members... Counties of Brevard, Indian River, Martin, and Palm Beach described as lying within Regulation Area II, and...

  11. 7 CFR 905.114 - Redistricting of citrus districts and reapportionment of grower members.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Palm Beach and Martin not included in Regulation Area II. This district shall have three grower members... Counties of Brevard, Indian River, Martin, and Palm Beach described as lying within Regulation Area II, and...

  12. SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.

    PubMed

    Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna

    2011-02-04

    SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.

  13. Child Temperament Moderates Effects of Parent-Child Mutuality on Self-Regulation: A Relationship-Based Path for Emotionally Negative Infants

    PubMed Central

    Kim, Sanghag; Kochanska, Grazyna

    2012-01-01

    This study examined infants’ negative emotionality as moderating the effect of parent-child Mutually Responsive Orientation (MRO) on children’s self-regulation (N=102). Negative emotionality was observed in anger-eliciting episodes and in interactions with parents at 7 months. MRO was coded in naturalistic interactions at 15 months. Self-regulation was measured at 25 months in effortful control battery and as self-regulated compliance to parental requests and prohibitions. Negative emotionality moderated the effects of mother-child MRO. Highly negative infants were less self-regulated when they were in unresponsive relationships (low MRO), but more self-regulated when in responsive relationships (high MRO). For infants not prone to negative emotionality, there was no link between MRO and self-regulation. The “regions-of-significance” analysis supported the differential susceptibility model not the diathesis-stress model. PMID:22670684

  14. The neurite growth inhibitory effects of soluble TNFα on developing sympathetic neurons are dependent on developmental age.

    PubMed

    Nolan, Aoife M; Collins, Louise M; Wyatt, Sean L; Gutierrez, Humberto; O'Keeffe, Gerard W

    2014-01-01

    During development, the growth of neural processes is regulated by an array of cellular and molecular mechanisms which influence growth rate, direction and branching. Recently, many members of the TNF superfamily have been shown to be key regulators of neurite growth during development. The founder member of this family, TNFα can both promote and inhibit neurite growth depending on the cellular context. Specifically, transmembrane TNFα promotes neurite growth, while soluble TNFα inhibits it. While the growth promoting effects of TNFα are restricted to a defined developmental window of early postnatal development, whether the growth inhibitory effects of soluble TNFα occur throughout development is unknown. In this study we used the extensively studied, well characterised neurons of the superior cervical ganglion to show that the growth inhibitory effects of soluble TNFα are restricted to a specific period of late embryonic and early postnatal development. Furthermore, we show that this growth inhibitory effect of soluble TNFα requires NF-κB signalling at all developmental stages at which soluble TNFα inhibits neurite growth. These findings raise the possibility that increases in the amount of soluble TNFα in vivo, for example as a result of maternal inflammation, could negatively affect neurite growth in developing neurons at specific stages of development. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  15. MiR-29 family members interact with SPARC to regulate glucose metabolism.

    PubMed

    Song, Haiyan; Ding, Lei; Zhang, Shuang; Wang, Wei

    2018-03-04

    MicroRNA (miR)-29 family members have been reported to play important regulatory roles in metabolic disease. We used TargetScan to show that "secreted protein acidic rich in cysteine" (SPARC) is a target of the miR-29s. SPARC is a multifunctional secretory protein involved in a variety of biological activities, and SPARC dysregulation is associated with a wide range of obesity-related disorders, including type 2 diabetes mellitus (T2DM). We explored whether miR-29s played roles in glucose metabolism and whether miR-29s directly targeted SPARC. We also examined the effect of SPARC on glucose metabolism and how the association of miR-29s with SPARC affected glucose metabolism. We found that overexpression of miR-29s reduced glucose uptake and GLUT4 levels; that miR-29 directly targeted SPARC, resulting in degradation of SPARC-encoding mRNA and reduction in the SPARC protein level; that SPARC increased glucose uptake and GLUT4 levels; that shRNA-mediated knockdown of SPARC reduced GLUT4 protein levels in 3T3-L1 adipocytes; that miR-29s reduced glucose uptake and GLUT4 levels; and that miR-29s inhibited glucose uptake by suppressing SPARC synthesis. Thus, the miR-29 family negatively regulates glucose metabolism by inhibiting SPARC expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation.

    PubMed

    Shaw, Lindsay M; McIntyre, C Lynne; Gresshoff, Peter M; Xue, Gang-Ping

    2009-11-01

    DNA binding with One Finger (Dof) protein is a plant-specific transcription factor implicated in the regulation of many important plant-specific processes, including photosynthesis and carbohydrate metabolism. This study has identified 31 Dof genes (TaDof) in bread wheat through extensive analysis of current nucleotide databases. Phylogenetic analysis suggests that the TaDof family can be divided into four clades. Expression analysis of the TaDof family across all major organs using quantitative RT-PCR and searches of the wheat genome array database revealed that the majority of TaDof members were predominately expressed in vegetative organs. A large number of TaDof members were down-regulated by drought and/or were responsive to the light and dark cycle. Further expression analysis revealed that light up-regulated TaDof members were highly correlated in expression with a number of genes that are involved in photosynthesis or sucrose transport. These data suggest that the TaDof family may have an important role in light-mediated gene regulation, including involvement in the photosynthetic process.

  17. Adapter molecule Grb2-associated binder 1 is specifically expressed in marginal zone B cells and negatively regulates thymus-independent antigen-2 responses.

    PubMed

    Itoh, Shousaku; Itoh, Motoyuki; Nishida, Keigo; Yamasaki, Satoru; Yoshida, Yuichi; Narimatsu, Masahiro; Park, Sung Joo; Hibi, Masahiko; Ishihara, Katsuhiko; Hirano, Toshio

    2002-05-15

    Grb2-associated binder 1 (Gab1) is a member of the Gab/daughter of sevenless family of adapter molecules involved in the signal transduction pathways of a variety of growth factors, cytokines, and Ag receptors. To know the role for Gab1 in hematopoiesis and immune responses in vivo, we analyzed radiation chimeras reconstituted with fetal liver (FL) cells of Gab1(-/-) mice, because Gab1(-/-) mice are lethal to embryos. Transfer of Gab1(-/-) FL cells of 14.5 days post-coitum rescued lethally irradiated mice, indicating that Gab1 is not essential for hematopoiesis. Although mature T and B cell subsets developed normally in the peripheral lymphoid organs, reduction of pre-B cells and increase of myeloid cells in the Gab1(-/-) FL chimeras suggested the regulatory roles for Gab1 in hematopoiesis. The chimera showed augmented IgM and IgG1 production to thymus-independent (TI)-2 Ag, although they showed normal responses for thymus-dependent and TI-1 Ags, indicating its negative role specific to TI-2 response. Gab1(-/-) splenic B cells stimulated with anti-delta-dextran plus IL-4 plus IL-5 showed augmented IgM and IgG1 production in vitro that was corrected by the retrovirus-mediated transfection of the wild-type Gab1 gene, clearly demonstrating the cell-autonomous, negative role of Gab1. Furthermore, we showed that the negative role of Gab1 required its Src homology 2-containing tyrosine phosphatase-2 binding sites. Cell fractionation analysis revealed that nonfollicular B cells were responsible for the augmented Ab production in vitro. Consistent with these results, the Gab1 gene was expressed in marginal zone B cells but not follicular B cells. These results indicated that Gab1 is a unique negative regulator specific for TI-2 responses.

  18. Measuring Generalized Expectancies for Negative Mood Regulation.

    ERIC Educational Resources Information Center

    Catanzaro, Salvatore J.; Mearns, Jack

    Research has suggested the utility of studying individual differences in the regulation of negative mood states. Generalized response expectancies for negative mood regulation were defined as expectancies that some overt behavior or cognition would alleviate negative mood states as they occur across situations. The Generalized Expectancy for…

  19. Repression of osteoblast maturation by ERRα accounts for bone loss induced by estrogen deficiency.

    PubMed

    Gallet, Marlène; Saïdi, Soraya; Haÿ, Eric; Photsavang, Johann; Marty, Caroline; Sailland, Juliette; Carnesecchi, Julie; Tribollet, Violaine; Barenton, Bruno; Forcet, Christelle; Birling, Marie-Christine; Sorg, Tania; Chassande, Olivier; Cohen-Solal, Martine; Vanacker, Jean-Marc

    2013-01-01

    ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency.

  20. Detection of negative and positive audience behaviours by socially anxious subjects.

    PubMed

    Veljaca, K A; Rapee, R M

    1998-03-01

    Nineteen subjects high in social anxiety and 20 subjects low in social anxiety were asked to give a 5-min speech in front of three audience members. Audience members were trained to provide indicators of positive evaluation (e.g., smiles) and negative evaluation (e.g. frowns) at irregular intervals during the speech. Subjects were instructed to indicate, by depressing one of two buttons, when they detected either positive or negative behaviours. Results indicated that subjects high in social anxiety were both more accurate at, and had a more liberal criterion for, detecting negative audience behaviours while subjects low in social anxiety were more accurate at detecting positive audience behaviours.

  1. Emotion dysregulation and negative affect: Laboratory and EMA investigations in smokers.

    PubMed

    MacIntyre, Jessica M; Ruscio, Aimee C; Brede, Emily; Waters, Andrew J

    2018-06-01

    Difficulties in emotion regulation are associated with addictive behaviors, including smoking. Difficulties in emotion regulation may underlie large, rapid changes in negative affect that can increase likelihood of relapse. We investigated the association between emotion regulation ability and negative affect in smokers assessed both in the laboratory and in the field using Ecological Momentary Assessment. Adult community smokers ( N  = 44) carried a personal digital assistant (PDA) for two weeks and were instructed to complete assessments of negative affect multiple times per day. Participants were instructed that they could smoke as much or as little as they liked. The Difficulties in Emotion Regulation Scale (DERS) and the Positive and Negative Affect Schedule (PANAS) were completed at three lab visits. Participants with higher average DERS scores reported greater negative affect at lab visits. When a participant reported a DERS score at a lab visit higher than their individual average, they also reported higher negative affect at that lab visit. Participants with higher baseline DERS scores reported more labile negative affect during EMA than those with lower baseline DERS scores, and they also reported a higher maximum level of negative affect during EMA. Overall, the findings suggest that changes in emotion regulation are associated with negative affect and that emotion regulation ability is related to both the intensity and lability of negative affect. A better understanding of momentary changes in emotion regulation and negative affect may lead to improved interventions for preventing substance use relapse.

  2. 7 CFR 915.160 - Public member eligibility requirements and nomination procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE AVOCADOS GROWN IN SOUTH FLORIDA Rules and Regulations § 915.160 Public member eligibility... production, processing, financing, or marketing of avocados. (b) Public member and alternate member... familiarize themselves with the background and economics of the avocado industry. (c) The public member and...

  3. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum.

    PubMed

    Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio

    2017-01-01

    In Chromobacteium violaceum , the purple pigment violacein is under positive regulation by the N -acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control.

  4. Keeping up appearances: Strategic information exchange by disidentified group members

    PubMed Central

    Matschke, Christina

    2017-01-01

    Information exchange is a crucial process in groups, but to date, no one has systematically examined how a group member’s relationship with a group can undermine this process. The current research examined whether disidentified group members (i.e., members who have a negative relationship with their group) strategically undermine the group outcome in information exchange. Disidentification has been found to predict negative group-directed behaviour, but at the same time disidentified members run the risk of being punished or excluded from the group when displaying destructive behaviour. In three studies we expected and found that disidentified group members subtly act against the interest of the group by withholding important private information, while at the same time they keep up appearances by sharing important information that is already known by the other group members. These findings stress the importance of taking a group member’s relationship with a group into account when considering the process of information exchange. PMID:28384322

  5. Functional binding interaction identified between the axonal CAM L1 and members of the ERM family

    PubMed Central

    Dickson, Tracey C.; Mintz, C. David; Benson, Deanna L.; Salton, Stephen R.J.

    2002-01-01

    Ayeast two-hybrid library was screened using the cytoplasmic domain of the axonal cell adhesion molecule L1 to identify binding partners that may be involved in the regulation of L1 function. The intracellular domain of L1 bound to ezrin, a member of the ezrin, radixin, and moesin (ERM) family of membrane–cytoskeleton linking proteins, at a site overlapping that for AP2, a clathrin adaptor. Binding of bacterial fusion proteins confirmed this interaction. To determine whether ERM proteins interact with L1 in vivo, extracellular antibodies to L1 were used to force cluster the protein on cultured hippocampal neurons and PC12 cells, which were then immunolabeled for ERM proteins. Confocal analysis revealed a precise pattern of codistribution between ERMs and L1 clusters in axons and PC12 neurites, whereas ERMs in dendrites and spectrin labeling remained evenly distributed. Transfection of hippocampal neurons grown on an L1 substrate with a dominant negative ERM construct resulted in extensive and abnormal elaboration of membrane protrusions and an increase in axon branching, highlighting the importance of the ERM–actin interaction in axon development. Together, our data indicate that L1 binds directly to members of the ERM family and suggest this association may coordinate aspects of axonal morphogenesis. PMID:12070130

  6. Functional binding interaction identified between the axonal CAM L1 and members of the ERM family.

    PubMed

    Dickson, Tracey C; Mintz, C David; Benson, Deanna L; Salton, Stephen R J

    2002-06-24

    A yeast two-hybrid library was screened using the cytoplasmic domain of the axonal cell adhesion molecule L1 to identify binding partners that may be involved in the regulation of L1 function. The intracellular domain of L1 bound to ezrin, a member of the ezrin, radixin, and moesin (ERM) family of membrane-cytoskeleton linking proteins, at a site overlapping that for AP2, a clathrin adaptor. Binding of bacterial fusion proteins confirmed this interaction. To determine whether ERM proteins interact with L1 in vivo, extracellular antibodies to L1 were used to force cluster the protein on cultured hippocampal neurons and PC12 cells, which were then immunolabeled for ERM proteins. Confocal analysis revealed a precise pattern of codistribution between ERMs and L1 clusters in axons and PC12 neurites, whereas ERMs in dendrites and spectrin labeling remained evenly distributed. Transfection of hippocampal neurons grown on an L1 substrate with a dominant negative ERM construct resulted in extensive and abnormal elaboration of membrane protrusions and an increase in axon branching, highlighting the importance of the ERM-actin interaction in axon development. Together, our data indicate that L1 binds directly to members of the ERM family and suggest this association may coordinate aspects of axonal morphogenesis.

  7. A Longitudinal Study of Emotion Regulation, Emotion Lability/Negativity, and Internalizing Symptomatology in Maltreated and Nonmaltreated Children

    PubMed Central

    Kim-Spoon, Jungmeen; Cicchetti, Dante; Rogosch, Fred A.

    2013-01-01

    The longitudinal contributions of emotion regulation and emotion lability/negativity to internalizing symptomatology were examined in a low-income sample (171 maltreated and 151 nonmaltreated children, from age 7 to 10 years). Latent difference score models indicated that, for both maltreated and nonmaltreated children, emotion regulation was a mediator between emotion lability/negativity and internalizing symptomatology, whereas emotion lability/negativity was not a mediator between emotion regulation and internalizing symptomatology. Early maltreatment was associated with high emotion lability/negativity (age 7) that contributed to poor emotion regulation (age 8), which in turn was predictive of increases in internalizing symptomatology (from age 8 to 9). The results imply important roles of emotion regulation in the development of internalizing symptomatology, especially for children with high emotion lability/negativity. PMID:23034132

  8. We'll never get past the glass ceiling! Meta-stereotyping, world-views and perceived relative group-worth.

    PubMed

    Owuamalam, Chuma; Zagefka, Hanna

    2013-11-01

    This article examines the implications of perceived negativity from members of a dominant outgroup on the world views and perceived relative group worth of members of disadvantaged groups. We hypothesized that concerns about the negative opinions a dominant outgroup is perceived to hold of the ingroup (i.e., meta-stereotypes) would undermine group members' views about societal fairness. We expected this trend to be mediated by recall of previous personal experiences of discrimination. We further hypothesized that members' views about societal fairness would predict their perception of the ingroup's worth relative to the outgroup - such that undermined views about societal fairness would be associated with lower perceived ingroup worth relative to the outgroup. Taken jointly, results from two studies using two real intergroup contexts support these hypotheses and are discussed in terms of their implications for the social mobility of members of disadvantaged groups. © 2012 The British Psychological Society.

  9. 22 CFR 901.18 - Grievance.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... authorized by law or regulation or is otherwise a source of concern or dissatisfaction to the member, including but not limited to: (1) Complaints against separation of a member allegedly contrary to law or..., misinterpretation or misapplication of applicable law, regulation, collective bargaining agreement or published post...

  10. The Role of Natural Support Systems in the Post-deployment Adjustment of Active Duty Military Personnel.

    PubMed

    Welsh, Janet A; Olson, Jonathan; Perkins, Daniel F; Travis, Wendy J; Ormsby, LaJuana

    2015-09-01

    This study examined the relations among three different types of naturally occurring social support (from romantic partners, friends and neighbors, and unit leaders) and three indices of service member well-being (self reports of depressive symptoms, satisfaction with military life, and perceptions of unit readiness) for service members who did and did not report negative experiences associated with military deployment. Data were drawn from the 2011 Community Assessment completed anonymously by more than 63,000 USAF personnel. Regression analyses revealed that higher levels of social support was associated with better outcomes regardless of negative deployment experiences. Evidence of moderation was also noted, with all forms of social support moderating the impact of negative deployment experiences on depressive symptoms and support from unit leaders moderating the impact of negative deployment experience on satisfaction with military life. No moderation was found for perceptions of unit readiness. Subgroup analyses revealed slightly different patterns for male and female service members, with support providing fewer moderation effects for women. These findings may have value for military leaders and mental health professionals working to harness the power of naturally occurring relationships to maximize the positive adjustment of service members and their families. Implications for practices related to re-integration of post-deployment military personnel are discussed.

  11. Identification of distal silencing elements in the murine interferon-A11 gene promoter.

    PubMed

    Roffet, P; Lopez, S; Navarro, S; Bandu, M T; Coulombel, C; Vignal, M; Doly, J; Vodjdani, G

    1996-08-01

    The murine interferon-A11 (Mu IFN-A11) gene is a member of the IFN-A multigenic family. In mouse L929 cells, the weak response of the gene's promoter to viral induction is due to a combination of both a point mutation in the virus responsive element (VRE) and the presence of negatively regulating sequences surrounding the VRE. In the distal part of the promoter, the negatively acting E1E2 sequence was delimited. This sequence displays an inhibitory effect in either orientation or position on the inducibility of a virus-responsive heterologous promoter. It selectively represses VRE-dependent transcription but is not able to reduce the transcriptional activity of a VRE-lacking promoter. In a transient transfection assay, an E1E2-containing DNA competitor was able to derepress the native Mu IFN-A11 promoter. Specific nuclear factors bind to this sequence; thus the binding of trans-regulators participates in the repression of the Mu IFN-A11 gene. The E1E2 sequence contains an IFN regulatory factor (IRF)-binding site. Recombinant IRF2 binds this sequence and anti-IRF2 antibodies supershift a major complex formed with nuclear extracts. The protein composing the complex is 50 kDa in size, indicating the presence of IRF2 or antigenically related proteins in the complex. The Mu IFN-A11 gene is the first example within the murine IFN-A family, in which a distal promoter element has been identified that can negatively modulate the transcriptional response to viral induction.

  12. 77 FR 1114 - Self-Regulatory Organizations; Chicago Mercantile Exchange, Inc.; Notice of Filing and Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... intention to file such proceeding [for bankruptcy]. Nothing in this Rule shall limit or negate any other..., existing trades may be transferred either on the books of a clearing member or from one clearing member to... trades either on the books of the same clearing member, or from the books of one clearing member to the...

  13. Resilient family processes, personal reintegration, and subjective well-being outcomes for military personnel and their family members.

    PubMed

    Clark, Malissa A; O'Neal, Catherine W; Conley, Kate M; Mancini, Jay A

    2018-01-01

    Deployment affects not just the service members, but also their family members back home. Accordingly, this study examined how resilient family processes during a deployment (i.e., frequency of communication and household management) were related to the personal reintegration of each family member (i.e., how well each family member begins to "feel like oneself again" after a deployment), as well as several indicators of subjective well-being. Drawing from the family attachment network model (Riggs & Riggs, 2011), the present study collected survey data from 273 service members, their partners, and their adolescent children. Resilient family processes during the deployment itself (i.e., frequency of communication, household management), postdeployment positive and negative personal reintegration, and several indicators of well-being were assessed. Frequency of communication was related to personal reintegration for service members, while household management was related to personal reintegration for nondeployed partners; both factors were related to personal reintegration for adolescents. Negative and positive personal reintegration related to a variety of subjective well-being outcomes for each individual family member. Interindividual (i.e., crossover) effects were also found, particularly between adolescents and nondeployed partners. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. MicroRNA-146 inhibits thrombin-induced NF-κB activation and subsequent inflammatory responses in human retinal endothelial cells.

    PubMed

    Cowan, Colleen; Muraleedharan, Chithra K; O'Donnell, James J; Singh, Pawan K; Lum, Hazel; Kumar, Ashok; Xu, Shunbin

    2014-07-01

    Nuclear factor-κB (NF-κB), a key regulator of immune and inflammatory responses, plays important roles in diabetes-induced microvascular complications including diabetic retinopathy (DR). Thrombin activates NF-κB through protease-activated receptor (PAR)-1, a member of the G-protein-coupled receptor (GPCR) superfamily, and contributes to DR. The current study is to uncover the roles of microRNA (miRNA) in thrombin-induced NF-κB activation and retinal endothelial functions. Target prediction was performed using the TargetScan algorithm. Predicted target was experimentally validated by luciferase reporter assays. Human retinal endothelial cells (HRECs) were transfected with miRNA mimics or antimiRs and treated with thrombin. Expression levels of miR-146 and related protein-coding genes were analyzed by quantitative (q)RT-PCR. Functional changes of HRECs were analyzed by leukocyte adhesion assays. We identified that caspase-recruitment domain (CARD)-containing protein 10 (CARD10), an essential scaffold/adaptor protein of GPCR-mediated NF-κB activation pathway, is a direct target of miR-146. Thrombin treatment resulted in NF-κB-dependent upregulation of miR-146 in HRECs; while transfection of miR-146 mimics resulted in significant downregulation of CARD10 and prevented thrombin-induced NF-κB activation, suggest that a negative feedback regulation of miR-146 on thrombin-induced NF-κB through targeting CARD10. Furthermore, overexpression of miR-146 prevented thrombin-induced increased leukocyte adhesion to HRECs. We uncovered a novel negative feedback regulatory mechanism on thrombin-induced GPCR-mediated NF-κB activation by miR-146. In combination with the negative feedback regulation of miR-146 on the IL-1R/toll-like receptor (TLR)-mediated NF-κB activation in RECs that we reported previously, our results underscore a pivotal, negative regulatory role of miR-146 on multiple NF-κB activation pathways and related inflammatory processes in DR. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  15. How important is resilience among family members supporting relatives with traumatic brain injury or spinal cord injury?

    PubMed

    Simpson, Grahame; Jones, Kate

    2013-04-01

    To investigate the relationship between resilience and affective state, caregiver burden and caregiving strategies among family members of people with traumatic brain or spinal cord injury. An observational prospective cross-sectional study. Inpatient and community rehabilitation services. Convenience sample of 61 family respondents aged 18 years or older at the time of the study and supporting a relative with severe traumatic brain injury (n = 30) or spinal cord injury (n= 31). Resilience Scale, Positive And Negative Affect Schedule, Caregiver Burden Scale, Functional Independence Measure, Carer's Assessment of Managing Index. Correlational analyses found a significant positive association between family resilience scores and positive affect (r(s) = 0.67), and a significant negative association with negative affect (r(s) = -0.47) and caregiver burden scores (r(s) = -0.47). No association was found between family resilience scores and their relative's severity of functional impairment. Family members with high resilience scores rated four carer strategies as significantly more helpful than family members with low resilience scores. Between-groups analyses (families supporting relative with traumatic brain injury vs. spinal cord injury) found no significant differences in ratings of the perceived helpfulness of carer strategies once Bonferroni correction for multiple tests was applied. Self-rated resilience correlated positively with positive affect, and negatively with negative affect and caregiver burden. These results are consistent with resilience theories which propose that people with high resilience are more likely to display positive adaptation when faced by significant adversity.

  16. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum

    PubMed Central

    Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio

    2017-01-01

    In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control. PMID:28326068

  17. Emotional Support, Negative Interaction and DSM IV Lifetime Disorders among Older African Americans: Findings from the National Survey of American Life (NSAL)

    PubMed Central

    Lincoln, Karen D.; Taylor, Robert Joseph; Bullard, Kai McKeever; Chatters, Linda M.; Himle, Joseph A.; Woodward, Amanda Toler; Jackson, James S.

    2010-01-01

    Objectives Both emotional support and negative interaction with family members have been linked to mental health. However, few studies have examined the associations between emotional support and negative interaction and psychiatric disorders in late life. This study investigated the relationship between emotional support and negative interaction on lifetime prevalence of mood and anxiety disorders among older African Americans. Design The analyses utilized the National Survey of American Life. Methods Logistic regression and negative binomial regression analyses were used to examine the effect of emotional support and negative interaction with family members on the prevalence of lifetime DSM-IV mood and anxiety disorders. Participants Data from 786 African Americans aged 55 years and older were used. Measurement The DSM-IV World Mental Health Composite International Diagnostic Interview (WMH-CIDI) was used to assess mental disorders. Three dependent variables were investigated: the prevalence of lifetime mood disorders, the prevalence of lifetime anxiety disorders, and the total number of lifetime mood and anxiety disorders. Results Multivariate analysis found that emotional support was not associated with any of the three dependent variables. Negative interaction was significantly and positively associated with the odds of having a lifetime mood disorder, a lifetime anxiety disorder and the number of lifetime mood and anxiety disorders. Conclusions This is the first study to investigate the relationship between emotional support, negative interaction with family members and psychiatric disorders among older African Americans. Negative interaction was a risk factor for mood and anxiety disorders among older African Americans, whereas emotional support was not significant. PMID:20157904

  18. Responses to Cytokines and Interferons that Depend upon JAKs and STATs.

    PubMed

    Stark, George R; Cheon, HyeonJoo; Wang, Yuxin

    2018-01-02

    Many cytokines and all interferons activate members of a small family of kinases (the Janus kinases [JAKs]) and a slightly larger family of transcription factors (the signal transducers and activators of transcription [STATs]), which are essential components of pathways that induce the expression of specific sets of genes in susceptible cells. JAK-STAT pathways are required for many innate and acquired immune responses, and the activities of these pathways must be finely regulated to avoid major immune dysfunctions. Regulation is achieved through mechanisms that include the activation or induction of potent negative regulatory proteins, posttranslational modification of the STATs, and other modulatory effects that are cell-type specific. Mutations of JAKs and STATs can result in gains or losses of function and can predispose affected individuals to autoimmune disease, susceptibility to a variety of infections, or cancer. Here we review recent developments in the biochemistry, genetics, and biology of JAKs and STATs. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Financial resources, parent psychological functioning, parent co-caregiving, and early adolescent competence in rural two-parent African-American families.

    PubMed

    Brody, G H; Stoneman, Z; Flor, D; McCrary, C; Hastings, L; Conyers, O

    1994-04-01

    We proposed a family process model that links family financial resources to academic competence and socioemotional adjustment during early adolescence. The sample included 90 9-12-year old African-American youths and their married parents who lived in the rural South. The theoretical constructs in the model were measured via a multimethod, multi-informant design. Rural African-American community members participated in the development of the self-report instruments and observational research methods. The results largely supported the hypotheses. Lack of family financial resources led to greater depression and less optimism in mothers and fathers, which in turn were linked with co-caregiving support and conflict. The associations among the co-caregiving processes and youth academic and socioemotional competence were mediated by the development of youth self-regulations. Disruptions in parental co-caregiving interfered with the development of self-regulation. This interference negatively influenced youths' academic competence and socioemotional adjustment.

  20. Knock your SOCS off!

    PubMed Central

    LeRoith, Derek; Nissley, Peter

    2005-01-01

    The growth hormone/IGF-1–signaling (GH/IGF-1–signaling) system is involved in numerous physiological processes during normal growth and development and also in the aging process. Understanding the regulation of this system is therefore of importance to the biologist. Studies conducted over the past decade have shown that the JAK/STAT pathways are involved in GH signaling to the nucleus. More recently, evidence has been presented that a member of the SOCS family, SOCS2, is a negative regulator of GH signaling. This story began several years ago with the dramatic demonstration of gigantism in the SOCS2-knockout mouse. A more specific definition of the role of SOCS2 in GH signaling is provided in this issue of the JCI by the demonstration that the overgrowth phenotype of the SOCS2–/– mouse is dependent upon the presence of endogenous GH and that administration of GH to mice lacking both endogenous GH and SOCS2 produced excessive growth. PMID:15690080

  1. Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies.

    PubMed

    Giuffre, Anthony J; Hamm, Laura M; Han, Nizhou; De Yoreo, James J; Dove, Patricia M

    2013-06-04

    Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate-crystal and substrate-liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate-crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate-crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate-crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.

  2. Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies

    PubMed Central

    Hamm, Laura M.; Han, Nizhou; De Yoreo, James J.; Dove, Patricia M.

    2013-01-01

    Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation. PMID:23690577

  3. DAP1 high expression increases risk of lymph node metastases in squamous cell carcinoma of the oral cavity.

    PubMed

    Santos, M; Maia, L L; Silva, C V M; Peterle, G T; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-09-08

    Death-associated protein 1 (DAP1) is a member of the DAP family. Its expression is associated with cell growth and normal death of the neoplastic cells, regulated by the mammalian target of the rapamycin protein. Activated DAP1 negatively regulates autophagy, which has been associated with the development and progression of several diseases, such as cancer, and with prognosis and survival of diverse tumor types. Therefore, in this study we analyzed DAP1 expression in 54 oral squamous cell carcinoma tumor samples and in 20 non-tumoral margins by immunohistochemistry. The results showed that DAP1 is more frequently expressed in tumor tissues compared with marginal non-tumoral cells. Additionally, high DAP1 expression is associated with a 4-fold increase in the risk of lymph node metastases. Our results suggest that the DAP1 protein can be used as a potential marker of lymph node metastases predisposition, helping define the best therapy for each patient to minimize risk of developing metastases.

  4. SnoN Stabilizes the SMAD3/SMAD4 Protein Complex

    PubMed Central

    Walldén, Karin; Nyman, Tomas; Hällberg, B. Martin

    2017-01-01

    TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling. PMID:28397834

  5. SnoN Stabilizes the SMAD3/SMAD4 Protein Complex.

    PubMed

    Walldén, Karin; Nyman, Tomas; Hällberg, B Martin

    2017-04-11

    TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling.

  6. Coping with Malcontents.

    ERIC Educational Resources Information Center

    Weber, Michael R.

    2003-01-01

    Superintendent offers several practical suggestions for dealing more effectively with negative school personnel and situations: Visualize success, know the realities, appreciate humor, surround negative people with positive staff members, be an absolute role model, understand psychology, reframe negative into positive energy, and use your…

  7. The relations of children's dispositional prosocial behavior to emotionality, regulation, and social functioning.

    PubMed

    Eisenberg, N; Fabes, R A; Karbon, M; Murphy, B C; Wosinski, M; Polazzi, L; Carlo, G; Juhnke, C

    1996-06-01

    The purpose of this study was to examine the relations of a measure of children's dispositional prosocial behavior (i.e., peer nominations) to individual differences in children's negative emotionality, regulation, and social functioning. Children with prosocial reputations tended to be high in constructive social skills (i.e., socially appropriate behavior and constructive coping) and attentional regulation, and low in negative emotionality. The relations of children's negative emotionality to prosocial reputation were moderated by level of dispositional attentional regulation. In addition, the relations of prosocial reputation to constructive social skills and parent-reported negative emotionality (for girls) increased with age. Vagal tone, a marker of physiological regulation, was negatively related to girls' prosocial reputation.

  8. Effects of continued psychological care toward brain tumor patients and their family members' negative emotions.

    PubMed

    Xiao, Ning; Zhu, Dan; Xiao, Shuiyuan

    2018-01-01

    Numerous studies have confirmed that brain tumor patients and their family members frequently exhibit negative emotional reactions, such as anxiety and depression, during diagnosis and treatment of the disease. Family members experience increasing pressure as the year of survival of patient progress. The aim of this study was to investigate the effects of the continued psychological care (CPC) toward the brain tumor patients and their family members' emotions. The asynchronous clinical control trial was performed, and 162 brain tumor patients and their family members were divided into the control group and the intervention group. The control group was only performed the telephone follow-up toward the patients. Beside this way, the intervention group was performed the CPC toward the patients and their family member. The self-rating anxiety scale (SAS) and the self-rating depression scale (SDS) were used to measure the negative emotions of the patients and their family members, and the patients' treatment compliance and the incidence of seizures were compared. The SAS and SDS scores of the intervention group on the 14 days, 28 days and 3 months of the CPC were significantly lower than the control group (P < 0.05); the SAS and SDS scores of the intervention group after the intervention were significantly lower than those at the discharging (P < 0.05), the treatment compliance of the intervention group was significantly higher than the control group (P < 0.05), and the seizure incidence of the intervention group was significantly lower than the control group (P < 0.05). The CPC could effectively reduce the anxiety and depression among the brain tumor patients and their family members.

  9. Current Commitments under the GATS in Educational Services. Background Document.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France). Centre for Educational Research and Innovation.

    The GATS is a multilateral, legally enforceable agreement among members of the World Trade Organization (WTO) that regulates international trade services. Rules regulating internationally traded educational services, which include various types of exchange programs, are part of the agreement. Among the 42 member countries that have made…

  10. Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings

    USDA-ARS?s Scientific Manuscript database

    Members of the fungal-specific velvet protein family regulate sexual and asexual spore production in the Ascomycota. We predicted, therefore, that velvet homologs in the basidiomycetous plant pathogen Ustilago maydis would regulate sexual spore development, which is also associated with plant disea...

  11. 77 FR 42901 - Noncompetitive Appointment of Certain Former Overseas Employees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ..., 591, et al. Same-Sex Domestic Partners: Noncompetitive Appointment of Certain Former Overseas... final regulations to establish that an employee's same-sex domestic partner qualifies as a family member... effect of this regulation is to ensure same-sex domestic partners are treated as family members. DATES...

  12. Profiling analysis of FOX gene family members identified FOXE1 as potential regulator of NSCLC development.

    PubMed

    Ji, G H; Cui, Y; Yu, H; Cui, X B

    2016-09-30

    Lung cancer is one of the most malignant tumors worldwide with a high mortality rate, which has not been improved since several decades ago. FOX gene family members have been reported to play extensive roles in regulating many biological processes and disorders. In order to clarify the contribution of FOX gene family members in lung cancer biology, we performed expression profiling analysis of FOX gene family members from FOXA to FOXR in lung cancer cell lines and tissue specimens by Real-time PCR, western blot and immunohistochemistry analysis. We found that FOXE1 was the only gene which was over-expressed in six out of eight lung cancer cell lines and human cancer tissue specimens (28 out of 35 cases with higher expression and 7 out of 35 cases with moderate expression). Further investigation showed that MMP2 gene was up-regulated, and autophagy markers such as LC3B, ATG5, ATG12 and BECLIN1, were down-regulated concomitant with the increase of FOXE1. These results implicated that FOXE1 may be an important regulator by targeting autophagy and MMPs pathways in lung cancer development.

  13. The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cash, Jennifer N.; Rejon, Carlis A.; McPherron, Alexandra C.

    2009-09-29

    Myostatin is a member of the transforming growth factor-{beta} (TGF-{beta}) family and a strong negative regulator of muscle growth. Here, we present the crystal structure of myostatin in complex with the antagonist follistatin 288 (Fst288). We find that the prehelix region of myostatin very closely resembles that of TGF-{beta} class members and that this region alone can be swapped into activin A to confer signalling through the non-canonical type I receptor Alk5. Furthermore, the N-terminal domain of Fst288 undergoes conformational rearrangements to bind myostatin and likely acts as a site of specificity for the antagonist. In addition, a unique continuousmore » electropositive surface is created when myostatin binds Fst288, which significantly increases the affinity for heparin. This translates into stronger interactions with the cell surface and enhanced myostatin degradation in the presence of either Fst288 or Fst315. Overall, we have identified several characteristics unique to myostatin that will be paramount to the rational design of myostatin inhibitors that could be used in the treatment of muscle-wasting disorders.« less

  14. Asparatic acid 221 is critical in the calcium-induced modulation of the enzymatic activity of human aminopeptidase A.

    PubMed

    Goto, Yoshikuni; Hattori, Akira; Mizutani, Shigehiko; Tsujimoto, Masafumi

    2007-12-21

    Aminopeptidase A (APA) plays an important role in the regulation of blood pressure by mediating angiotensin II degradation in the renin-angiotensin system. The Ca2+-induced modulation of enzymatic activity is the most characteristic feature of APA among the M1 family of aminopeptidases. In this study, we used site-directed mutagenesis for any residues responsible for the Ca2+ modulation of human APA. Alignment of sequences of the M1 family members led to the identification of Asp-221 as a significant residue of APA among the family members. Replacement of Asp-221 with Asn or Gln resulted in a loss of Ca2+ responsiveness toward synthetic substrates. These enzymes were also unresponsive to Ca2+ when peptide hormones, such as angiotensin II, cholecystokinin-8, neurokinin B, and kallidin, were employed as substrates. These results suggest that the negative charge of Asp-221 is essential for Ca2+ modulation of the enzymatic activity of APA and causes preferential cleavage of acidic amino acid at the N-terminal end of substrate peptides.

  15. The UbL-UBA Ubiquilin4 protein functions as a tumor suppressor in gastric cancer by p53-dependent and p53-independent regulation of p21.

    PubMed

    Huang, Shengkai; Li, Yan; Yuan, Xinghua; Zhao, Mei; Wang, Jia; Li, You; Li, Yuan; Lin, Hong; Zhang, Qiao; Wang, Wenjie; Li, Dongdong; Dong, Xin; Li, Lanfen; Liu, Min; Huang, Weiyan; Huang, Changzhi

    2018-06-13

    Ubiquilin4 (Ubqln4), a member of the UbL-UBA protein family, serves as an adaptor in the degradation of specific substrates via the proteasomal pathway. However, the biological function of Ubqln4 remains largely unknown, especially in cancer. Here, we reported that Ubqln4 was downregulated in gastric cancer tissues and functioned as a tumor suppressor by inhibiting gastric cancer cell proliferation in vivo and in vitro. Overexpression of Ubqln4-induced cellular senescence and G1-S cell cycle arrest in gastric cancer cells and activated the p53/p21 axis. Moreover, Ubqln4 regulated p21 through both p53-dependent and p53-independent manners. Ubqln4 interacted with RNF114, an E3 ubiquitin ligase of p21, and negatively regulated its expression level, which in turn stabilized p21 by attenuating proteasomal degradation of p21. These effects of Ubqln4 were partly abrogated in gastric cancer cells upon silencing of p21. Our findings not only establish the anti-tumor potential of Ubqln4 in gastric cancer but also reveal a role for Ubqln4 in regulation of the cell cycle and cellular senescence via stabilizing p21.

  16. Myostatin: a novel insight into its role in metabolism, signal pathways, and expression regulation.

    PubMed

    Huang, Zhiqing; Chen, Xiaoling; Chen, Daiwen

    2011-09-01

    Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a critical autocrine/paracrine inhibitor of skeletal muscle growth. Since the first observed double-muscling phenotype was reported in myostatin-null animals, a functional role of myostatin has been demonstrated in the control of skeletal muscle development. However, beyond the confines of its traditional role in muscle growth inhibition, myostatin has recently been shown to play an important role in metabolism. During the past several years, it has been well established that Smads are canonical mediators of signals for myostatin from the receptors to the nucleus. However, growing evidence supports the notion that Non-Smad signal pathways also participate in myostatin signaling. Myostatin expression is increased in muscle atrophy and metabolic disorders, suggesting that changes in endogenous expression of myostatin may provide therapeutic benefit for these diseases. MicroRNAs (miRNAs) are a class of non-coding RNAs that negatively regulate gene expression and recent evidence has accumulated supporting a role for miRNAs in the regulation of myostatin expression. This review highlights some of these areas in myostatin research: a novel role in metabolism, signal pathways, and miRNA-mediated expression regulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice.

    PubMed

    Xu, Donglin; Mou, Guiping; Wang, Kang; Zhou, Guohui

    2014-09-22

    Southern rice black-streaked dwarf virus (SRBSDV) is a recently emerged rice virus that has spread across Asia. This devastating virus causes rice plants to produce a variety of symptoms during different growth stages. MicroRNAs (miRNAs) comprise a large group of 21-24-nt RNA molecules that are important regulators of plant development processes and stress responses. In this study, we used microarray profiling to investigate rice miRNAs responding to SRBSDV infection at 3, 9, 15, and 20 days post-inoculation (dpi). Expression levels of 56 miRNAs were altered in SRBSDV-infected rice plants, with these changes classified into eight different regulation patterns according to their temporal expression dynamics. Fourteen miRNAs belonging to six families (miR164, R396, R530, R1846, R1858, and R2097) were significantly regulated at 20 dpi. We used RT-qPCR to search for expression level correlations between members of these families and their putative targets at 3, 9, and 15 dpi. Some members of the miR164, R396, R530, and R1846 families were found to be positively or negatively correlated with their respective targets during 3-15 days after SRBSDV infection, whereas in more cases the rice miRNAs were not in correlation with their targets along the post-inoculation period, suggesting that some additional factors may be involved in rice miRNA-target interactions. The reported functions of rice genes targeted by the miR164, R396, R530, R1846, and R1858 families indicated that these genes are associated with symptom development. These results provide insights into miRNA-mediated SRBSDV-rice interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. CXCR4 Chemokine Receptor Signaling Induces Apoptosis in Acute Myeloid Leukemia Cells via Regulation of the Bcl-2 Family Members Bcl-XL, Noxa, and Bak*

    PubMed Central

    Kremer, Kimberly N.; Peterson, Kevin L.; Schneider, Paula A.; Meng, X. Wei; Dai, Haiming; Hess, Allan D.; Smith, B. Douglas; Rodriguez-Ramirez, Christie; Karp, Judith E.; Kaufmann, Scott H.; Hedin, Karen E.

    2013-01-01

    The CXCR4 chemokine receptor promotes survival of many different cell types. Here, we describe a previously unsuspected role for CXCR4 as a potent inducer of apoptosis in acute myeloid leukemia (AML) cell lines and a subset of clinical AML samples. We show that SDF-1, the sole ligand for CXCR4, induces the expected migration and ERK activation in the KG1a AML cell line transiently overexpressing CXCR4, but ERK activation did not lead to survival. Instead, SDF-1 treatment led via a CXCR4-dependent mechanism to apoptosis, as evidenced by increased annexin V staining, condensation of chromatin, and cleavage of both procaspase-3 and PARP. This SDF-1-induced death pathway was partially inhibited by hypoxia, which is often found in the bone marrow of AML patients. SDF-1-induced apoptosis was inhibited by dominant negative procaspase-9 but not by inhibition of caspase-8 activation, implicating the intrinsic apoptotic pathway. Further analysis showed that this pathway was activated by multiple mechanisms, including up-regulation of Bak at the level of mRNA and protein, stabilization of the Bak activator Noxa, and down-regulation of antiapoptotic Bcl-XL. Furthermore, adjusting expression levels of Bak, Bcl-XL, or Noxa individually altered the level of apoptosis in AML cells, suggesting that the combined modulation of these family members by SDF-1 coordinates their interplay to produce apoptosis. Thus, rather than mediating survival, SDF-1 may be a means to induce apoptosis of CXCR4-expressing AML cells directly in the SDF-1-rich bone marrow microenvironment if the survival cues of the bone marrow are disrupted. PMID:23798675

  19. A Comparison of Autonomous Regulation and Negative Self-Evaluative Emotions as Predictors of Smoking Behavior Change among College Students

    PubMed Central

    Lee, Hyoung S.; Catley, Delwyn; Harris, Kari Jo

    2011-01-01

    This study compared autonomous self-regulation and negative self-evaluative emotions as predictors of smoking behavior change in college student smokers (N=303) in a smoking cessation intervention study. Although the two constructs were moderately correlated, latent growth curve modeling revealed that only autonomous regulation, but not negative self-evaluative emotions, was negatively related to the number of days smoked. Results suggest that the two variables tap different aspects of motivation to change smoking behaviors, and that autonomous regulation predicts smoking behavior change better than negative self-evaluative emotions. PMID:21911436

  20. A comparison of autonomous regulation and negative self-evaluative emotions as predictors of smoking behavior change among college students.

    PubMed

    Lee, Hyoung S; Catley, Delwyn; Harris, Kari Jo

    2012-05-01

    This study compared autonomous self-regulation and negative self-evaluative emotions as predictors of smoking behavior change in college student smokers (N = 303) in a smoking cessation intervention study. Although the two constructs were moderately correlated, latent growth curve modeling revealed that only autonomous regulation, but not negative self-evaluative emotions, was negatively related to the number of days smoked. Results suggest that the two variables tap different aspects of motivation to change smoking behaviors, and that autonomous regulation predicts smoking behavior change better than negative self-evaluative emotions.

  1. Functional Role of the microRNA-200 Family in Breast Morphogenesis and Neoplasia

    PubMed Central

    Hilmarsdottir, Bylgja; Briem, Eirikur; Bergthorsson, Jon Thor; Magnusson, Magnus Karl; Gudjonsson, Thorarinn

    2014-01-01

    Branching epithelial morphogenesis is closely linked to epithelial-to-mesenchymal transition (EMT), a process important in normal development and cancer progression. The miR-200 family regulates epithelial morphogenesis and EMT through a negative feedback loop with the ZEB1 and ZEB2 transcription factors. miR-200 inhibits expression of ZEB1/2 mRNA, which in turn can down-regulate the miR-200 family that further results in down-regulation of E-cadherin and induction of a mesenchymal phenotype. Recent studies show that the expression of miR-200 genes is high during late pregnancy and lactation, thereby indicating that these miRs are important for breast epithelial morphogenesis and differentiation. miR-200 genes have been studied intensively in relation to breast cancer progression and metastasis, where it has been shown that miR-200 members are down-regulated in basal-like breast cancer where the EMT phenotype is prominent. There is growing evidence that the miR-200 family is up-regulated in distal breast metastasis indicating that these miRs are important for colonization of metastatic breast cancer cells through induction of mesenchymal to epithelial transition. The dual role of miR-200 in primary and metastatic breast cancer is of interest for future therapeutic interventions, making it important to understand its role and interacting partners in more detail. PMID:25216122

  2. ING2 (inhibitor of growth protein-2) plays a crucial role in preimplantation development.

    PubMed

    Zhou, Lin; Wang, Pei; Zhang, Juanjuan; Heng, Boon Chin; Tong, Guo Qing

    2016-02-01

    ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.

  3. Difficulties in emotion regulation mediate negative and positive affects and craving in alcoholic patients.

    PubMed

    Khosravani, Vahid; Sharifi Bastan, Farangis; Ghorbani, Fatemeh; Kamali, Zoleikha

    2017-08-01

    The aim of this study was to assess the mediating effects of difficulties in emotion regulation (DER) on the relations of negative and positive affects to craving in alcoholic patients. 205 treatment-seeking alcoholic outpatients were included. DER, positive and negative affects as well as craving were evaluated by the Difficulties in Emotion Regulation Scale (DERS), the Positive/Negative Affect Scales, and the Obsessive Compulsive Drinking Scale (OCDS) respectively. Clinical factors including depression and severity of alcohol dependence were investigated by the Alcohol Use Disorders Identification Test (AUDIT) and the Beck Depression Inventory-II (BDI-II) respectively. Results revealed that both increased negative affect and decreased positive affect indirectly influenced craving through limited access to emotion regulation strategies. It was concluded that limited access to emotion regulation strategies may be important in predicting craving for alcoholics who experience both increased negative affect and decreased positive affect. This suggests that treatment and prevention efforts focused on increasing positive affect, decreasing negative affect and teaching effective regulation strategies may be critical in reducing craving in alcoholic patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Polymorphisms of the myostatin gene and its relationship with reproduction traits in the Bian chicken.

    PubMed

    Zhang, Genxi; Zhang, Li; Wei, Yue; Wang, Jinyu; Ding, Fuxiang; Dai, Guojun; Xie, Kaizhou

    2012-01-01

    Myostatin, or growth and differentiation factor 8, is a member of the transforming growth factor-β superfamily; it functions as a negative regulator of skeletal muscle development and growth in mammals. In this study, single nucleotide polymorphisms in the 5' regulatory region and exon 1 of the myostatin gene were detected by PCR-SSCP in the Bian, Jinghai, Youxi, and Arbor Acre chickens, and the associations of the polymorphisms with reproduction traits were analyzed. Seven SNPs (A326G, C334G, C1346T, G1375A, A1473G, G1491A, and G2283A) were found in the myostatin gene. Association analysis showed that the G2283A were significantly associated with reproduction traits. Bian chickens of the GG genotype had a greater age at first egg than those of the GA and AA genotypes (P<0.01). Correspondingly, Bian chickens of the GA and AA genotypes had larger egg number at 300 days than those of the GG genotype (P<0.05 and P<0.01, respectively). Bian chickens of the AA genotype had significantly higher body weight at 300 days than those of the GG genotype (P<0.05). These results suggested that the myostatin gene may have certain effects on reproduction traits other than merely as a negative regulator of skeletal muscle development and growth in mammals previously reported.

  5. 32 CFR 53.2 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... UNIFORM § 53.2 Policy. (a) Members of the Armed Forces (including retired members and members of reserve... discredit upon the Armed Forces. (5) When specifically prohibited by regulations of the department concerned. (b) Former members of the Armed Forces. (1) Unless qualified under another provision of this part or...

  6. 32 CFR 53.2 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... UNIFORM § 53.2 Policy. (a) Members of the Armed Forces (including retired members and members of reserve... discredit upon the Armed Forces. (5) When specifically prohibited by regulations of the department concerned. (b) Former members of the Armed Forces. (1) Unless qualified under another provision of this part or...

  7. 17 CFR 240.11a2-2(T) - Transactions effected by exchange members through other members.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Transactions effected by exchange members through other members. 240.11a2-2(T) Section 240.11a2-2(T) Commodity and Securities... Regulation (rule 11a-1) § 240.11a2-2(T) Transactions effected by exchange members through other members. (a...

  8. 17 CFR 240.11a2-2(T) - Transactions effected by exchange members through other members.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Transactions effected by exchange members through other members. 240.11a2-2(T) Section 240.11a2-2(T) Commodity and Securities... Regulation (rule 11a-1) § 240.11a2-2(T) Transactions effected by exchange members through other members. (a...

  9. Diversification of MIF immune regulators in aphids: link with agonistic and antagonistic interactions.

    PubMed

    Dubreuil, Géraldine; Deleury, Emeline; Crochard, Didier; Simon, Jean-Christophe; Coustau, Christine

    2014-09-05

    The widespread use of genome sequencing provided evidences for the high degree of conservation in innate immunity signalling pathways across animal phyla. However, the functioning and evolutionary history of immune-related genes remains unknown for most invertebrate species. A striking observation coming from the analysis of the pea aphid Acyrthosiphon pisum genome is the absence of important conserved genes known to be involved in the antimicrobial responses of other insects. This reduction in antibacterial immune defences is thought to be related to their long-term association with beneficial symbiotic bacteria and to facilitate symbiont maintenance. An additional possibility to avoid elimination of mutualistic symbionts is a fine-tuning of the host immune response. To explore this hypothesis we investigated the existence and potential involvement of immune regulators in aphid agonistic and antagonistic interactions. In contrast to the limited antibacterial arsenal, we showed that the pea aphid Acyrthosiphon pisum expresses 5 members of Macrophage Migration Inhibitory Factors (ApMIF), known to be key regulators of the innate immune response. In silico searches for MIF members in insect genomes followed by phylogenetic reconstruction suggest that evolution of MIF genes in hemipteran species has been shaped both by differential losses and serial duplications, raising the question of the functional importance of these genes in aphid immune responses. Expression analyses of ApMIFs revealed reduced expression levels in the presence, or during the establishment of secondary symbionts. By contrast, ApMIFs expression levels significantly increased upon challenge with a parasitoid or a Gram-negative bacteria. This increased expression in the presence of a pathogen/parasitoid was reduced or missing, in the presence of facultative symbiotic bacteria. This work provides evidence that while aphid's antibacterial arsenal is reduced, other immune genes widely absent from insect genomes are present, diversified and differentially regulated during antagonistic or agonistic interactions.

  10. Characterization of a RacGTPase up-regulated in the large yellow croaker Pseudosciaena crocea immunity.

    PubMed

    Han, Fang; Wang, Xiaoqing; Yang, Qilian; Cai, Mingyi; Wang, Zhi Yong

    2011-02-01

    The Rac proteins are members of the Rho family of small G proteins and are implicated in the regulation of several pathways, including those leading to cytoskeleton reorganization, gene expression, cell proliferation, cell adhesion and cell migration and survival. In this investigation, a Rac gene (named as LycRac gene) was obtained from the large yellow croaker and it was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified fusion protein (GST-LycRac). Moreover, the GTP-binding assay showed that the LycRac protein had GTP-binding activity. The LycRac gene was ubiquitously transcribed and expressed in 9 tissues. Quantitative real-time RT-PCR and Western blot analysis revealed the highest expression in gill and the weakest expression in spleen. Time-course analysis revealed that LycRac expression was obviously up-regulated in blood, spleen and liver after immunization with polyinosinic polycytidynic acid (poly I:C), formalin-inactive Gram-negative bacterium Vibrio parahemolyticus and bacterial lipopolysaccharides (LPS). These results suggested that LycRac protein might play an important role in the immune response against microorganisms in large yellow croaker. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  11. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells

    PubMed Central

    Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D

    2013-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387

  12. 29 CFR 452.97 - Secret ballot.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 2 2014-07-01 2014-07-01 false Secret ballot. 452.97 Section 452.97 Labor Regulations... OF 1959 Election Procedures; Rights of Members § 452.97 Secret ballot. (a) A prime requisite of elections regulated by title IV is that they be held by secret ballot among the members or in appropriate...

  13. 29 CFR 452.97 - Secret ballot.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 2 2011-07-01 2011-07-01 false Secret ballot. 452.97 Section 452.97 Labor Regulations... OF 1959 Election Procedures; Rights of Members § 452.97 Secret ballot. (a) A prime requisite of elections regulated by title IV is that they be held by secret ballot among the members or in appropriate...

  14. 29 CFR 452.97 - Secret ballot.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Secret ballot. 452.97 Section 452.97 Labor Regulations... OF 1959 Election Procedures; Rights of Members § 452.97 Secret ballot. (a) A prime requisite of elections regulated by title IV is that they be held by secret ballot among the members or in appropriate...

  15. 29 CFR 452.97 - Secret ballot.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 2 2012-07-01 2012-07-01 false Secret ballot. 452.97 Section 452.97 Labor Regulations... OF 1959 Election Procedures; Rights of Members § 452.97 Secret ballot. (a) A prime requisite of elections regulated by title IV is that they be held by secret ballot among the members or in appropriate...

  16. 29 CFR 452.97 - Secret ballot.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 2 2013-07-01 2013-07-01 false Secret ballot. 452.97 Section 452.97 Labor Regulations... OF 1959 Election Procedures; Rights of Members § 452.97 Secret ballot. (a) A prime requisite of elections regulated by title IV is that they be held by secret ballot among the members or in appropriate...

  17. 17 CFR 240.15b9-1 - Exemption for certain exchange members.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Exemption for certain exchange members. 240.15b9-1 Section 240.15b9-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations...

  18. 17 CFR 200.59 - Relationship with persons subject to regulation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Relationship with persons... Relationship with persons subject to regulation. In all matters before him, a member should administer the law... must be taken by a member in his relationship with persons within or outside of the Commission to...

  19. Emotion regulation ability varies in relation to intrinsic functional brain architecture

    PubMed Central

    Uchida, Mai; Biederman, Joseph; Gabrieli, John D. E.; Micco, Jamie; de Los Angeles, Carlo; Brown, Ariel; Kenworthy, Tara; Kagan, Elana

    2015-01-01

    This study investigated the neural basis of individual variation in emotion regulation, specifically the ability to reappraise negative stimuli so as to down-regulate negative affect. Brain functions in young adults were measured with functional Magnetic Resonance Imaging during three conditions: (i) attending to neutral pictures; (ii) attending to negative pictures and (iii) reappraising negative pictures. Resting-state functional connectivity was measured with amygdala and dorsolateral prefrontal cortical (DLPFC) seed regions frequently associated with emotion regulation. Participants reported more negative affect after attending to negative than neutral pictures, and less negative affect following reappraisal. Both attending to negative vs neutral pictures and reappraising vs attending to negative pictures yielded widespread activations that were significantly right-lateralized for attending to negative pictures and left-lateralized for reappraising negative pictures. Across participants, more successful reappraisal correlated with less trait anxiety and more positive daily emotion, greater activation in medial and lateral prefrontal regions, and lesser resting-state functional connectivity between (a) right amygdala and both medial prefrontal and posterior cingulate cortices, and (b) bilateral DLPFC and posterior visual cortices. The ability to regulate emotion, a source of resilience or of risk for distress, appears to vary in relation to differences in intrinsic functional brain architecture. PMID:25999363

  20. Emotion regulation ability varies in relation to intrinsic functional brain architecture.

    PubMed

    Uchida, Mai; Biederman, Joseph; Gabrieli, John D E; Micco, Jamie; de Los Angeles, Carlo; Brown, Ariel; Kenworthy, Tara; Kagan, Elana; Whitfield-Gabrieli, Susan

    2015-12-01

    This study investigated the neural basis of individual variation in emotion regulation, specifically the ability to reappraise negative stimuli so as to down-regulate negative affect. Brain functions in young adults were measured with functional Magnetic Resonance Imaging during three conditions: (i) attending to neutral pictures; (ii) attending to negative pictures and (iii) reappraising negative pictures. Resting-state functional connectivity was measured with amygdala and dorsolateral prefrontal cortical (DLPFC) seed regions frequently associated with emotion regulation. Participants reported more negative affect after attending to negative than neutral pictures, and less negative affect following reappraisal. Both attending to negative vs neutral pictures and reappraising vs attending to negative pictures yielded widespread activations that were significantly right-lateralized for attending to negative pictures and left-lateralized for reappraising negative pictures. Across participants, more successful reappraisal correlated with less trait anxiety and more positive daily emotion, greater activation in medial and lateral prefrontal regions, and lesser resting-state functional connectivity between (a) right amygdala and both medial prefrontal and posterior cingulate cortices, and (b) bilateral DLPFC and posterior visual cortices. The ability to regulate emotion, a source of resilience or of risk for distress, appears to vary in relation to differences in intrinsic functional brain architecture. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Functional characterization of type-B response regulators in the Arabidopsis cytokinin response.

    PubMed

    Hill, Kristine; Mathews, Dennis E; Kim, Hyo Jung; Street, Ian H; Wildes, Sarah L; Chiang, Yi-Hsuan; Mason, Michael G; Alonso, Jose M; Ecker, Joseph R; Kieber, Joseph J; Schaller, G Eric

    2013-05-01

    Cytokinins play critical roles in plant growth and development, with the transcriptional response to cytokinin being mediated by the type-B response regulators. In Arabidopsis (Arabidopsis thaliana), type-B response regulators (ARABIDOPSIS RESPONSE REGULATORS [ARRs]) form three subfamilies based on phylogenic analysis, with subfamily 1 having seven members and subfamilies 2 and 3 each having two members. Cytokinin responses are predominantly mediated by subfamily 1 members, with cytokinin-mediated effects on root growth and root meristem size correlating with type-B ARR expression levels. To determine which type-B ARRs can functionally substitute for the subfamily 1 members ARR1 or ARR12, we expressed different type-B ARRs from the ARR1 promoter and assayed their ability to rescue arr1 arr12 double mutant phenotypes. ARR1, as well as a subset of other subfamily 1 type-B ARRs, restore the cytokinin sensitivity to arr1 arr12. Expression of ARR10 from the ARR1 promoter results in cytokinin hypersensitivity and enhances shoot regeneration from callus tissue, correlating with enhanced stability of the ARR10 protein compared with the ARR1 protein. Examination of transfer DNA insertion mutants in subfamilies 2 and 3 revealed little effect on several well-characterized cytokinin responses. However, a member of subfamily 2, ARR21, restores cytokinin sensitivity to arr1 arr12 roots when expressed from the ARR1 promoter, indicating functional conservation of this divergent family member. Our results indicate that the type-B ARRs have diverged in function, such that some, but not all, can complement the arr1 arr12 mutant. In addition, our results indicate that type-B ARR expression profiles in the plant, along with posttranscriptional regulation, play significant roles in modulating their contribution to cytokinin signaling.

  2. 5 CFR 890.302 - Coverage of family members.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Coverage of family members. 890.302... REGULATIONS (CONTINUED) FEDERAL EMPLOYEES HEALTH BENEFITS PROGRAM Enrollment § 890.302 Coverage of family members. (a)(1) An enrollment for self and family includes all family members who are eligible to be...

  3. 17 CFR 1.59 - Activities of self-regulatory organization employees, governing board members, committee members...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COMMODITY EXCHANGE ACT Miscellaneous § 1.59 Activities of self-regulatory organization employees, governing...) Self-regulatory organization means “self-regulatory organization,” as defined in Commission regulation... governors of a self-regulatory organization. (3) Committee member means a member, or functional equivalent...

  4. 17 CFR 1.59 - Activities of self-regulatory organization employees, governing board members, committee members...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COMMODITY EXCHANGE ACT Miscellaneous § 1.59 Activities of self-regulatory organization employees, governing...) Self-regulatory organization means “self-regulatory organization,” as defined in Commission regulation... governors of a self-regulatory organization. (3) Committee member means a member, or functional equivalent...

  5. 17 CFR 1.59 - Activities of self-regulatory organization employees, governing board members, committee members...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COMMODITY EXCHANGE ACT Miscellaneous § 1.59 Activities of self-regulatory organization employees, governing...) Self-regulatory organization means “self-regulatory organization,” as defined in Commission regulation... governors of a self-regulatory organization. (3) Committee member means a member, or functional equivalent...

  6. A contingency model of conflict and team effectiveness.

    PubMed

    Shaw, Jason D; Zhu, Jing; Duffy, Michelle K; Scott, Kristin L; Shih, Hsi-An; Susanto, Ely

    2011-03-01

    The authors develop and test theoretical extensions of the relationships of task conflict, relationship conflict, and 2 dimensions of team effectiveness (performance and team-member satisfaction) among 2 samples of work teams in Taiwan and Indonesia. Findings show that relationship conflict moderates the task conflict-team performance relationship. Specifically, the relationship is curvilinear in the shape of an inverted U when relationship conflict is low, but the relationship is linear and negative when relationship conflict is high. The results for team-member satisfaction are more equivocal, but the findings provide some evidence that relationship conflict exacerbates the negative relationship between task conflict and team-member satisfaction. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  7. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm

    PubMed Central

    Singh, Anupama; Kushwaha, Hemant R.; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  8. Members of the LATERAL ORGAN BOUNDARIES DOMAIN Transcription Factor Family Are Involved in the Regulation of Secondary Growth in Populus[W

    PubMed Central

    Yordanov, Yordan S.; Regan, Sharon; Busov, Victor

    2010-01-01

    Regulation of secondary (woody) growth is of substantial economic and environmental interest but is poorly understood. We identified and subsequently characterized an activation-tagged poplar (Populus tremula × Populus alba) mutant with enhanced woody growth and changes in bark texture caused primarily by increased secondary phloem production. Molecular characterization of the mutation through positioning of the tag and retransformation experiments shows that the phenotype is conditioned by activation of an uncharacterized gene that encodes a novel member of the LATERAL ORGAN BOUNDARIES DOMAIN (LBD) family of transcription factors. Homology analysis showed highest similarity to an uncharacterized LBD1 gene from Arabidopsis thaliana, and we consequently named it Populus tremula × Populus alba (Pta) LBD1. Dominant-negative suppression of Pta LBD1 via translational fusion with the repressor SRDX domain caused decreased diameter growth and suppressed and highly irregular phloem development. In wild-type plants, LBD1 was most highly expressed in the phloem and cambial zone. Two key Class I KNOTTED1-like homeobox genes that promote meristem identity in the cambium were downregulated, while an Altered Phloem Development gene that is known to promote phloem differentiation was upregulated in the mutant. A set of four LBD genes, including the LBD1 gene, was predominantly expressed in wood-forming tissues, suggesting a broader regulatory role of these transcription factors during secondary woody growth in poplar. PMID:21097711

  9. Sexual risk, substance use, mental health, and trauma experiences of gang-involved homeless youth.

    PubMed

    Petering, Robin

    2016-04-01

    This study examined the associations of sexual risk behaviors, substance use, mental health, and trauma with varying levels of gang involvement in a sample of Los Angeles-based homeless youths. Data were collected from 505 homeless youths who self-reported various health information and whether they have ever identified as or been closely affiliated with a gang member. Multivariable logistic regression assessed associations of lifetime gang involvement with risk taking behaviors and negative health outcomes. Results revealed seventeen percent of youths have ever identified as a gang member and 46% as gang affiliated. Both gang members and affiliates were at greater risk of many negative behaviors than non-gang involved youths. Gang members and affiliates were more likely to report recent methamphetamine use, cocaine use, chronic marijuana use, having sex while intoxicated, and symptoms of depression, symptoms of posttraumatic stress disorder. They were also more likely to have experienced childhood sexual abuse and witnessing family violence. Gang members were more likely to ever attempt suicide, experience recent partner violence, and report physical abuse during childhood. Results suggest that lifetime gang involvement is related to a trajectory of negative outcomes and amplified risk for youths experiencing homelessness. Additionally, being closely connected to a gang member appears to have just as much as an impact on risk as personally identifying as a gang member. Given the lack of knowledge regarding the intersection between youth homelessness and gang involvement, future research is needed to inform policies and programs that can address the specific needs of this population. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  10. The influence of mood on the perception of hearing-loss related quality of life in people with hearing loss and their significant others.

    PubMed

    Preminger, Jill E; Meeks, Suzanne

    2010-04-01

    The purpose of this research was to investigate the congruent/incongruent perceptions of hearing-loss related quality of life between members of couples and to determine how incongruence was affected by individual psychosocial characteristics, specifically measures of mood (negative affect and positive affect), stress, and communication in the marriage. An exploratory correlational analysis was performed on data for 52 couples in which only one member had a hearing loss. In the regression analyses the independent variables were hearing-loss related quality of life scores measured in people with hearing loss, measured in significant others, and differences in hearing-loss related quality of life among members of a couple. The results demonstrate that both in people with hearing loss and their significant others, perceptions of hearing-loss related quality of life is highly correlated with negative mood scores. Incongruence in hearing-loss related quality of life scores reported by members of a couple were highly correlated with negative affect measured within each individual. Future research evaluating the effectiveness of audiologic rehabilitation can use measures of mood as an outcome variable.

  11. The Family and Medical Leave Act. Final rule.

    PubMed

    2013-02-06

    This Final Rule amends certain regulations of the Family and Medical Leave Act of 1993 (the FMLA or the Act) to implement amendments to the military leave provisions of the Act made by the National Defense Authorization Act for Fiscal Year 2010, which extends the availability of FMLA leave to family members of members of the Regular Armed Forces for qualifying exigencies arising out of the servicemember's deployment; defines those deployments covered under these provisions; extends FMLA military caregiver leave for family members of current servicemembers to include an injury or illness that existed prior to service and was aggravated in the line of duty on active duty; and extends FMLA military caregiver leave to family members of certain veterans with serious injuries or illnesses. This Final Rule also amends the regulations to implement the Airline Flight Crew Technical Corrections Act, which establishes eligibility requirements specifically for airline flight crewmembers and flight attendants for FMLA leave and authorizes the Department to issue regulations regarding the calculation of leave for such employees as well as special recordkeeping requirements for their employers. In addition, the Final Rule includes clarifying changes concerning the calculation of intermittent or reduced schedule FMLA leave; reorganization of certain sections to enhance clarity; the removal of the forms from the regulations; and technical corrections to the current regulations.

  12. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  13. Members Matter in Team Training: Multilevel and Longitudinal Relationships between Goal Orientation, Self-Regulation, and Team Outcomes

    ERIC Educational Resources Information Center

    Dierdorff, Erich C.; Ellington, J. Kemp

    2012-01-01

    Longitudinal data from 338 individuals across 64 teams in a simulation-based team-training context were used to examine the effects of dispositional goal orientation on self-regulated learning (self-efficacy and metacognition). Team goal orientation compositions, as reflected by average goal orientations of team members, were examined for…

  14. 31 CFR 515.322 - Authorized trade territory; member of the authorized trade territory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Authorized trade territory; member of the authorized trade territory. 515.322 Section 515.322 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY CUBAN ASSETS CONTROL REGULATIONS General...

  15. 31 CFR 515.322 - Authorized trade territory; member of the authorized trade territory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Authorized trade territory; member of the authorized trade territory. 515.322 Section 515.322 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY CUBAN ASSETS CONTROL REGULATIONS General...

  16. 31 CFR 515.322 - Authorized trade territory; member of the authorized trade territory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Authorized trade territory; member of the authorized trade territory. 515.322 Section 515.322 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY CUBAN ASSETS CONTROL REGULATIONS General...

  17. 31 CFR 515.322 - Authorized trade territory; member of the authorized trade territory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Authorized trade territory; member of the authorized trade territory. 515.322 Section 515.322 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY CUBAN ASSETS CONTROL REGULATIONS General...

  18. 31 CFR 500.322 - Authorized trade territory; member of the authorized trade territory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Authorized trade territory; member of the authorized trade territory. 500.322 Section 500.322 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN ASSETS CONTROL REGULATIONS General...

  19. 31 CFR 515.322 - Authorized trade territory; member of the authorized trade territory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Authorized trade territory; member of the authorized trade territory. 515.322 Section 515.322 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY CUBAN ASSETS CONTROL REGULATIONS General...

  20. 76 FR 11956 - Guidance Under Section 1502; Amendment of Matching Rule for Certain Gains on Member Stock

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... excluded from gross income in certain transactions involving stock transfers between members of a... section but that are not being promulgated as final regulations at this time. These regulations affect... that was created by reason of an intercompany transfer of the stock, and that would not otherwise be...

  1. Hospital Exemption for Advanced Therapy Medicinal Products: Issue in Application in the European Union Member States.

    PubMed

    Ivaskiene, Tatjana; Mauricas, Mykolas; Ivaska, Justinas

    2017-01-01

    Regulation (EC) 1394/2007 of the European Parliament and the Council on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004 allowed the use of non - authorized advanced therapy medicinal products under the certain circumstances. This socalled hospital exemption rule needs to be applied in the each Member State of the European Union individually and for this purpose Member States should provide national procedures and control measures. The aim of this article is to clear up the criteria for hospital exemption listed in Regulation (EC) 1394/2007 and to contrast the difference in implementing hospital exemption rule into national legal regimes on examples of the United Kingdom, Lithuania and Poland.

  2. miRNAs in human subcutaneous adipose tissue: Effects of weight loss induced by hypocaloric diet and exercise.

    PubMed

    Kristensen, Malene M; Davidsen, Peter K; Vigelsø, Andreas; Hansen, Christina N; Jensen, Lars J; Jessen, Niels; Bruun, Jens M; Dela, Flemming; Helge, Jørn W

    2017-03-01

    Obesity is central in the development of insulin resistance. However, the underlying mechanisms still need elucidation. Dysregulated microRNAs (miRNAs; post-transcriptional regulators) in adipose tissue may present an important link. The miRNA expression in subcutaneous adipose tissue from 19 individuals with severe obesity (10 women and 9 men) before and after a 15-week weight loss intervention was studied using genome-wide microarray analysis. The microarray results were validated with RT-qPCR, and pathway enrichment analysis of in silico predicted targets was performed to elucidate the biological consequences of the miRNA dysregulation. Lastly, the messenger RNA (mRNA) and/or protein expression of multiple predicted targets as well as several proteins involved in lipolysis were investigated. The intervention led to upregulation of miR-29a-3p and miR-29a-5p and downregulation of miR-20b-5p. The mRNA and protein expression of predicted targets was not significantly affected by the intervention. However, negative correlations between miR-20b-5p and the protein levels of its predicted target, acyl-CoA synthetase long-chain family member 1, were observed. Several other miRNA-target relationships correlated negatively, indicating possible miRNA regulation, including miR-29a-3p and lipoprotein lipase mRNA levels. Proteins involved in lipolysis were not affected by the intervention. Weight loss influenced several miRNAs, some of which were negatively correlated with predicted targets. These dysregulated miRNAs may affect adipocytokine signaling and forkhead box protein O signaling. © 2017 The Obesity Society.

  3. Evolution of Fish Let-7 MicroRNAs and Their Expression Correlated to Growth Development in Blunt Snout Bream

    PubMed Central

    Zhao, Bo-Wen; Zhou, Lai-Fang; Liu, Yu-Long; Wan, Shi-Ming; Gao, Ze-Xia

    2017-01-01

    The lethal-7 (let-7) miRNA, known as one of the first founding miRNAs, is present in multiple copies in a genome and has diverse functions in animals. In this study, comparative genomic analysis of let-7 miRNAs members in fish species indicated that let-7 miRNA is a sequence conserved family in fish, while different species have the variable gene copy numbers. Among the ten members including let-7a/b/c/d/e/f/g/h/i/j, the let-7a precursor sequence was more similar to ancestral sequences, whereas other let-7 miRNA members were separate from the late differentiation of let-7a. The mostly predicted target genes of let-7 miRNAs are involved in biological process, especially developmental process and growth through Gene Ontology (GO) enrichment analysis. In order to identify the possible different functions of these ten miRNAs in fish growth development, their expression levels were quantified in adult males and females of Megalobrama amblycephala, as well as in 3-, 6-, and 12-months-old individuals with relatively slow- and fast-growth rates. These ten miRNAs had similar tissue expression patterns between males and females, with higher expression levels in the brain and pituitary than that in other tissues (p < 0.05). Among these miRNAs, the relative expression level of let-7a was the highest among almost all the tested tissues, followed by let-7b, let-7d and let-7c/e/f/g/h/i/j. As to the groups with different growth rates, the expression levels of let-7 miRNAs in pituitary and brain from the slow-growth group were always significantly higher than that in the fast-growth group (p < 0.05). These results suggest that let-7 miRNA members could play an important role in the regulation of growth development in M. amblycephala through negatively regulating expression of their target genes. PMID:28300776

  4. Emotional reactivity and emotion regulation among adults with a history of self-harm: laboratory self-report and functional MRI evidence.

    PubMed

    Davis, Tchiki S; Mauss, Iris B; Lumian, Daniel; Troy, Allison S; Shallcross, Amanda J; Zarolia, Paree; Ford, Brett Q; McRae, Kateri

    2014-08-01

    Intentionally hurting one's body (deliberate self-harm; DSH) is theorized to be associated with high negative emotional reactivity and poor emotion regulation ability. However, little research has assessed the relationship between these potential risk factors and DSH using laboratory measures. Therefore, we conducted 2 studies using laboratory measures of negative emotional reactivity and emotion regulation ability. Study 1 assessed self-reported negative emotions during a sad film clip (reactivity) and during a sad film clip for which participants were instructed to use reappraisal (regulation). Those with a history of DSH were compared with 2 control groups without a history of DSH matched on key demographics: 1 healthy group low in depression and anxiety symptoms and 1 group matched to the DSH group on depression and anxiety symptoms. Study 2 extended Study 1 by assessing neural responding to negative images (reactivity) and negative images for which participants were instructed to use reappraisal (regulation). Those with a history of DSH were compared with a control group matched to the DSH group on demographics, depression, and anxiety symptoms. Compared with control groups, participants with a history of DSH did not exhibit greater negative emotional reactivity but did exhibit lower ability to regulate emotion with reappraisal (greater self-reported negative emotions in Study 1 and greater amygdala activation in Study 2 during regulation). These results suggest that poor emotion regulation ability, but not necessarily greater negative emotional reactivity, is a correlate of and may be a risk factor for DSH, even when controlling for mood disorder symptoms. (c) 2014 APA, all rights reserved.

  5. Emotional Reactivity and Emotion Regulation among Adults with a History of Self-Harm: Laboratory Self-Report and fMRI Evidence

    PubMed Central

    Davis, Tchiki S.; Mauss, Iris B.; Lumian, Daniel; Troy, Allison S.; Shallcross, Amanda J.; Zarolia, Paree; Ford, Brett Q.; McRae, Kateri

    2014-01-01

    Intentionally hurting one’s own body (deliberate self-harm; DSH) is theorized to be associated with high negative emotional reactivity and poor emotion regulation ability. However, little research has assessed the relationship between these potential risk factors and DSH using laboratory measures. Therefore, we conducted two studies using laboratory measures of negative emotional reactivity and emotion regulation ability. Study 1 assessed self-reported negative emotions during a sad film clip (Reactivity) and during a sad film clip for which participants were instructed to use reappraisal (Regulation). Those with a history of DSH were compared to two control groups without a history of DSH matched on key demographics: one healthy group low in depression and anxiety symptoms and one group matched to the DSH group on depression and anxiety symptoms. Study 2 extended Study 1 by assessing neural responding to negative images (Reactivity) and negative images for which participants were instructed to use reappraisal (Regulation). Those with a history of DSH were compared to a control group matched to the DSH group on demographics, depression, and anxiety symptoms. Compared to control groups, participants with a history of DSH did not exhibit greater negative emotional reactivity but did exhibit lower ability to regulate emotion with reappraisal (greater self-reported negative emotions in Study 1 and greater amygdala activation in Study 2 during regulation). These results suggest that poor emotion regulation ability, but not necessarily greater negative emotional reactivity, is a correlate of and may be a risk factor for DSH, even when controlling for mood disorder symptoms. PMID:24865373

  6. Integrating Negative Affect Measures in a Measurement Model: Assessing the Function of Negative Affect as Interference to Self-Regulation

    ERIC Educational Resources Information Center

    Magno, Carlo

    2010-01-01

    The present study investigated the composition of negative affect and its function as inhibitory to thought processes such as self-regulation. Negative affect in the present study were composed of anxiety, worry, thought suppression, and fear of negative evaluation. These four factors were selected based on the criteria of negative affect by…

  7. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Record locator, if available; (xv) International Air Transport Association (IATA) departure port code... authorized by law. (f) Master crew member and non-crew member lists. Air carriers subject to the requirements... THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart...

  8. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Record locator, if available; (xv) International Air Transport Association (IATA) departure port code... authorized by law. (f) Master crew member and non-crew member lists. Air carriers subject to the requirements... THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart...

  9. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Record locator, if available; (xv) International Air Transport Association (IATA) departure port code... authorized by law. (f) Master crew member and non-crew member lists. Air carriers subject to the requirements... THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart...

  10. 19 CFR 122.49c - Master crew member list and master non-crew member list requirement for commercial aircraft...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard... sections, must electronically transmit to Customs and Border Protection (CBP), by means of an electronic...

  11. The alexithymia, emotion regulation, emotion regulation difficulties, positive and negative affects, and suicidal risk in alcohol-dependent outpatients.

    PubMed

    Ghorbani, Fatemeh; Khosravani, Vahid; Sharifi Bastan, Farangis; Jamaati Ardakani, Razieh

    2017-06-01

    The aim of this study was to evaluate the potential contributing factors such as alexithymia, emotion regulation and difficulties in emotion regulation, positive/negative affects and clinical factors including severity of alcohol dependence and depression connected to high suicidality in alcohol-dependent outpatients. 205 alcohol-dependent outpatients and 100 normal controls completed the demographic questionnaire, the Persian version of the Toronto Alexithymia Scale (FTAS-20), the Difficulties in Emotion Regulation Scale (DERS), the Emotion Regulation Questionnaire (ERQ), the Positive/Negative Affect Scales, the Alcohol Use Disorders Identification Test (AUDIT), and the Beck Depression Inventory-II (BDI-II). The suicidal risk was assessed using the Scale for Suicide Ideation (SSI) and history taking. Alcohol-dependent outpatients showed higher means in alexithymia, difficulties in emotion regulation, suppression subscale, negative affect, and suicide ideation than normal controls. Logistic regression analysis revealed that negative affect, duration of alcohol use, externally-oriented thinking, and severity of alcohol dependence explained lifetime suicide attempts. Depression, impulsivity, severity of alcohol dependence, reappraisal (reversely), externally-oriented thinking, difficulties engaging in goal-directed behaviors, and negative affect significantly predicted the suicidal risk. The findings may constitute useful evidence of the relevancies of alexithymia, emotion regulation, emotion regulation difficulties, and affects to suicidality in alcoholic patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  12. Children's Negative Emotionality Combined with Poor Self-Regulation Affects Allostatic Load in Adolescence

    ERIC Educational Resources Information Center

    Dich, Nadya; Doan, Stacey; Evans, Gary

    2015-01-01

    The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…

  13. Financial Incentives Differentially Regulate Neural Processing of Positive and Negative Emotions during Value-Based Decision-Making

    PubMed Central

    Farrell, Anne M.; Goh, Joshua O. S.; White, Brian J.

    2018-01-01

    Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI) study, we evaluated how fixed wage (FW) incentives and performance-based (PB) financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events. PMID:29487519

  14. Financial Incentives Differentially Regulate Neural Processing of Positive and Negative Emotions during Value-Based Decision-Making.

    PubMed

    Farrell, Anne M; Goh, Joshua O S; White, Brian J

    2018-01-01

    Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI) study, we evaluated how fixed wage (FW) incentives and performance-based (PB) financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events.

  15. Parental reactions to children's negative emotions: relationships with emotion regulation in children with an anxiety disorder.

    PubMed

    Hurrell, Katherine E; Hudson, Jennifer L; Schniering, Carolyn A

    2015-01-01

    Research has demonstrated that parental reactions to children's emotions play a significant role in the development of children's emotion regulation (ER) and adjustment. This study compared parent reactions to children's negative emotions between families of anxious and non-anxious children (aged 7-12) and examined associations between parent reactions and children's ER. Results indicated that children diagnosed with an anxiety disorder had significantly greater difficulty regulating a range of negative emotions and were regarded as more emotionally negative and labile by their parents. Results also suggested that mothers of anxious children espoused less supportive parental emotional styles when responding to their children's negative emotions. Supportive and non-supportive parenting reactions to children's negative emotions related to children's emotion regulation skills, with father's non-supportive parenting showing a unique relationship to children's negativity/lability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 'The stigma attached isn't true of real life': Challenging public perception of dementia through a participatory approach involving people with dementia (Innovative Practice).

    PubMed

    Reynolds, Laura; Innes, Anthea; Poyner, Christopher; Hambidge, Sarah

    2017-02-01

    This paper discusses the potential impact of viewing public performances of an orchestra comprising people with dementia, family members, student volunteers and professional symphony orchestra members in contributing to challenging negative perceptions of dementia. Negative perceptions of dementia abound despite recent policy attempts to challenge the stigma associated with the condition. This paper reports on the findings from the performance element of a music project for people with dementia, known as the BUDI Orchestra, designed to replicate the traditional rehearse and perform cycle of musicians. Data were collected via self-completion questionnaires from audience members ( N = 109) at three public performances. The performances exceeded the expectations of the general public, and findings suggest a positive impact on perceptions of dementia, demonstrating the power and potential of participatory approaches showcasing the achievements of those living with dementia when attempting to raise awareness of dementia and challenge negative perceptions.

  17. Repression of Osteoblast Maturation by ERRα Accounts for Bone Loss Induced by Estrogen Deficiency

    PubMed Central

    Gallet, Marlène; Saïdi, Soraya; Haÿ, Eric; Photsavang, Johann; Marty, Caroline; Sailland, Juliette; Carnesecchi, Julie; Tribollet, Violaine; Barenton, Bruno; Forcet, Christelle; Birling, Marie-Christine; Sorg, Tania; Chassande, Olivier; Cohen-Solal, Martine; Vanacker, Jean-Marc

    2013-01-01

    ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency. PMID:23359549

  18. Mitogen-activated protein kinase phosphatase-1: a critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (review).

    PubMed

    Li, Chang-Yi; Yang, Ling-Chao; Guo, Kai; Wang, Yue-Peng; Li, Yi-Gang

    2015-04-01

    Mitogen-activated protein kinase (MAPK) cascades are important players in the overall representation of cellular signal transduction pathways, and the deregulation of MAPKs is involved in a variety of diseases. The activation of MAPK signals occurs through phosphorylation by MAPK kinases at conserved threonine and tyrosine (Thr-Xaa-Tyr) residues. The mitogen-activated protein kinase phosphatases (MKPs) are a major part of the dual-specificity family of phosphatases and specifically inactivate MAPKs by dephosphorylating both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. MAPKs binding to MKPs can enhance MKP stability and activity, providing an important negative-feedback control mechanism that limits the MAPK cascades. In recent years, accumulating and compelling evidence from studies mainly employing cultured cells and mouse models has suggested that the archetypal MKP family member, MKP-1, plays a pivotal role in cardiovascular disease as a major negative modulator of MAPK signaling pathways. In the present review, we summarize the current knowledge on the pathological properties and the regulation of MKP-1 in cardiovascular disease, which may provide valuable therapeutic options.

  19. Longitudinal Changes in Psychological States in Online Health Community Members: Understanding the Long-Term Effects of Participating in an Online Depression Community.

    PubMed

    Park, Albert; Conway, Mike

    2017-03-20

    Major depression is a serious challenge at both the individual and population levels. Although online health communities have shown the potential to reduce the symptoms of depression, emotional contagion theory suggests that negative emotion can spread within a community, and prolonged interactions with other depressed individuals has potential to worsen the symptoms of depression. The goals of our study were to investigate longitudinal changes in psychological states that are manifested through linguistic changes in depression community members who are interacting with other depressed individuals. We examined emotion-related language usages using the Linguistic Inquiry and Word Count (LIWC) program for each member of a depression community from Reddit. To measure the changes, we applied linear least-squares regression to the LIWC scores against the interaction sequence for each member. We measured the differences in linguistic changes against three online health communities focusing on positive emotion, diabetes, and irritable bowel syndrome. On average, members of an online depression community showed improvement in 9 of 10 prespecified linguistic dimensions: "positive emotion," "negative emotion," "anxiety," "anger," "sadness," "first person singular," "negation," "swear words," and "death." Moreover, these members improved either significantly or at least as much as members of other online health communities. We provide new insights into the impact of prolonged participation in an online depression community and highlight the positive emotion change in members. The findings of this study should be interpreted with caution, because participating in an online depression community is not the sole factor for improvement or worsening of depressive symptoms. Still, the consistent statistical results including comparative analyses with different communities could indicate that the emotion-related language usage of depression community members are improving either significantly or at least as much as members of other online communities. On the basis of these findings, we contribute practical suggestions for designing online depression communities to enhance psychosocial benefit gains for members. We consider these results to be an important step toward a better understanding of the impact of prolonged participation in an online depression community, in addition to providing insights into the long-term psychosocial well-being of members. ©Albert Park, Mike Conway. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 20.03.2017.

  20. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH

    PubMed Central

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Paulais, Marc

    2016-01-01

    ClC-K2, a member of the ClC family of Cl− channels and transporters, forms the major basolateral Cl− conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl− absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl−, and Ca2+ on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca2+ strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl− has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl−/HCO3− exchange in type B intercalated cells. PMID:27574292

  1. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH.

    PubMed

    Pinelli, Laurent; Nissant, Antoine; Edwards, Aurélie; Lourdel, Stéphane; Teulon, Jacques; Paulais, Marc

    2016-09-01

    ClC-K2, a member of the ClC family of Cl(-) channels and transporters, forms the major basolateral Cl(-) conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl(-) absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl(-), and Ca(2+) on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca(2+) strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl(-) has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl(-)/HCO3 (-) exchange in type B intercalated cells. © 2016 Pinelli et al.

  2. Pacific white shrimp (Litopenaeus vannamei) vitellogenesis-inhibiting hormone (VIH) is predominantly expressed in the brain and negatively regulates hepatopancreatic vitellogenin (VTG) gene expression.

    PubMed

    Chen, Ting; Zhang, Lv-Ping; Wong, Nai-Kei; Zhong, Ming; Ren, Chun-Hua; Hu, Chao-Qun

    2014-03-01

    Ovarian maturation in crustaceans is temporally orchestrated by two processes: oogenesis and vitellogenesis. The peptide hormone vitellogenesis-inhibiting hormone (VIH), by far the most potent negative regulator of crustacean reproduction known, critically modulates crustacean ovarian maturation by suppressing vitellogenin (VTG) synthesis. In this study, cDNA encoding VIH was cloned from the eyestalk of Pacific white shrimp, Litopenaeus vannamei, a highly significant commercial culture species. Phylogenetic analysis suggests that L. vannamei VIH (lvVIH) can be classified as a member of the type II crustacean hyperglycemic hormone family. Northern blot and RT-PCR results reveal that both the brain and eyestalk were the major sources for lvVIH mRNA expression. In in vitro experiments on primary culture of shrimp hepatopancreatic cells, it was confirmed that some endogenous inhibitory factors existed in L. vannamei hemolymph, brain, and eyestalk that suppressed hepatopancreatic VTG gene expression. Purified recombinant lvVIH protein was effective in inhibiting VTG mRNA expression in both in vitro primary hepatopancreatic cell culture and in vivo injection experiments. Injection of recombinant VIH could also reverse ovarian growth induced by eyestalk ablation. Furthermore, unilateral eyestalk ablation reduced the mRNA level of lvVIH in the brain but not in the remaining contralateral eyestalk. Our study, as a whole, provides new insights on VIH regulation of shrimp reproduction: 1) the brain and eyestalk are both important sites of VIH expression and therefore possible coregulators of hepatopancreatic VTG mRNA expression and 2) eyestalk ablation could increase hepatopancreatic VTG expression by transcriptionally abolishing eyestalk-derived VIH and diminishing brain-derived VIH.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yong; Liu, Liguo; Fu, Hua

    Highlights: • We utilized mTRAQ-based quantification to study protein changes in Congo red-induced OMVs. • A total of 148 proteins were identified in S. flexneri-derived OMVs. • Twenty-eight and five proteins are significantly up- and down-regulated in the CR-induced OMV, respectively. • The result implied that a special sorting mechanism of particular proteins into OMVs may exist. • Key node proteins in the protein interaction network might be important for pathogenicity. - Abstract: The production of outer membrane vesicles (OMVs) is a common and regulated process of gram-negative bacteria. Nonetheless, the processes of Shigella flexneri OMV production still remain unclear.more » S. flexneri is the causative agent of endemic shigellosis in developing countries. The Congo red binding of strains is associated with increased infectivity of S. flexneri. Therefore, understanding the modulation pattern of OMV protein expression induced by Congo red will help to elucidate the bacterial pathogenesis. In the present study, we investigated the proteomic composition of OMVs and the change in OMV protein expression induced by Congo red using mTRAQ-based quantitative comparative proteomics. mTRAQ labelling increased the confidence in protein identification, and 148 total proteins were identified in S. flexneri-derived OMVs. These include a variety of important virulence factors, including Ipa proteins, TolC family, murein hydrolases, and members of the serine protease autotransporters of Enterobacteriaceae (SPATEs) family. Among the identified proteins, 28 and five proteins are significantly up- and down-regulated in the Congo red-induced OMV, respectively. Additionally, by comprehensive comparison with previous studies focused on DH5a-derived OMV, we identified some key node proteins in the protein–protein interaction network that may be involved in OMV biogenesis and are common to all gram-negative bacteria.« less

  4. Care and caring in the intensive care unit: Family members' distress and perceptions about staff skills, communication, and emotional support.

    PubMed

    Carlson, Eve B; Spain, David A; Muhtadie, Luma; McDade-Montez, Liz; Macia, Kathryn S

    2015-06-01

    Family members of intensive care unit (ICU) patients are sometimes highly distressed and report lower satisfaction with communication and emotional support from staff. Within a study of emotional responses to traumatic stress, associations between family distress and satisfaction with aspects of ICU care were investigated. In 29 family members of trauma patients who stayed in an ICU, we assessed symptoms of depression and posttraumatic stress disorder (PTSD) during ICU care. Later, family members rated staff communication, support, and skills and their overall satisfaction with ICU care. Ratings of staff competence and skills were significantly higher than ratings of frequency of communication, information needs being met, and support. Frequency of communication and information needs being met were strongly related to ratings of support (rs = .75-.77) and staff skills (rs = .77-.85), and aspects of satisfaction and communication showed negative relationships with symptoms of depression (rs = -.31 to -.55) and PTSD (rs = -.17 to -.43). Although satisfaction was fairly high, family member distress was negatively associated with several satisfaction variables. Increased understanding of the effects of traumatic stress on family members may help staff improve communication and increase satisfaction of highly distressed family members. Published by Elsevier Inc.

  5. Relationship of service members' deployment trauma, PTSD symptoms, and experiential avoidance to postdeployment family reengagement.

    PubMed

    Brockman, Callie; Snyder, James; Gewirtz, Abigail; Gird, Suzanne R; Quattlebaum, Jamie; Schmidt, Nicole; Pauldine, Michael R; Elish, Katie; Schrepferman, Lynn; Hayes, Charles; Zettle, Robert; DeGarmo, David

    2016-02-01

    This research examined whether military service members' deployment-related trauma exposure, posttraumatic stress disorder (PTSD) symptoms, and experiential avoidance are associated with their observed levels of positive social engagement, social withdrawal, reactivity-coercion, and distress avoidance during postdeployment family interaction. Self reports of deployment related trauma, postdeployment PTSD symptoms, and experiential avoidance were collected from 184 men who were deployed to the Middle East conflicts, were partnered, and had a child between 4 and 13 years of age. Video samples of parent-child and partner problem solving and conversations about deployment issues were collected, and were rated by trained observers to assess service members' positive engagement, social withdrawal, reactivity-coercion, and distress avoidance, as well as spouse and child negative affect and behavior. Service members' experiential avoidance was reliably associated with less observed positive engagement and more observed withdrawal and distress avoidance after controlling for spouse and child negative affect and behavior during ongoing interaction. Service members' experiential avoidance also diminished significant associations between service members' PTSD symptoms and their observed behavior. The results are discussed in terms of how service members' psychological acceptance promotes family resilience and adaption to the multiple contextual challenges and role transitions associated with military deployment. Implications for parenting and marital interventions are described. (c) 2016 APA, all rights reserved).

  6. Situation Selection and Modification for Emotion Regulation in Younger and Older Adults.

    PubMed

    Livingstone, Kimberly M; Isaacowitz, Derek M

    2015-11-01

    This research investigated age differences in use and effectiveness of situation selection and situation modification for emotion regulation. Socioemotional selectivity theory suggests stronger emotional well-being goals in older age; emotion regulation may support this goal. Younger and older adults assigned to an emotion regulation or "just view" condition first freely chose to engage with negative, neutral, or positive material (situation selection), then chose to view or skip negative and positive material (situation modification), rating affect after each experience. In both tasks, older adults in both goal conditions demonstrated pro-hedonic emotion regulation, spending less time with negative material compared to younger adults. Younger adults in the regulate condition also engaged in pro-hedonic situation selection, but not modification. Whereas situation selection was related to affect, modification of negative material was not. This research supports more frequent pro-hedonic motivation in older age, as well as age differences in use of early-stage emotion regulation.

  7. Analyzing Greek Members Alcohol Consumption by Gender and the Impact of Alcohol Education Interventions

    ERIC Educational Resources Information Center

    Brown-Rice, Kathleen A.; Furr, Susan; Jorgensen, Maribeth

    2015-01-01

    Members of the Greek community have been found to engage in riskier alcohol drinking behaviors and have higher alcohol- related negative consequences. A sample of Greek members were surveyed in Spring of 2013 (n = 372). It was found that The Alcohol Use Disorders Identification Test-Consumption (AUDIT-C) scores were significantly higher for male…

  8. Examining the Effects of Self-Reported Posttraumatic Stress Disorder Symptoms and Positive Relations with Others on Self-Regulated Learning for Student Service Members/Veterans

    ERIC Educational Resources Information Center

    Ness, Bryan M.; Middleton, Michael J.; Hildebrandt, Michael J.

    2015-01-01

    Objectives: To examine the relationships between self-reported posttraumatic stress disorder (PTSD) symptoms, perceived positive relations with others, self-regulation strategy use, and academic motivation among student service members/veterans (SSM/V) enrolled in postsecondary education. Participants: SSM/V (N = 214), defined as veterans, active…

  9. A Driving Bioinformatics Approach to Explore Co-regulation of AOX Gene Family Members During Growth and Development.

    PubMed

    Costa, José Hélio; Arnholdt-Schmitt, Birgit

    2017-01-01

    The alternative oxidase (AOX) gene family is a hot candidate for functional marker development that could help plant breeding on yield stability through more robust plants based on multi-stress tolerance. However, there is missing knowledge on the interplay between gene family members that might interfere with the efficiency of marker development. It is common view that AOX1 and AOX2 have different physiological roles. Nevertheless, both family member groups act in terms of molecular-biochemical function as "typical" alternative oxidases and co-regulation of AOX1 and AOX2 had been reported. Although conserved sequence differences had been identified, the basis for differential effects on physiology regulation is not sufficiently explored.This protocol gives instructions for a bioinformatics approach that supports discovering potential interaction of AOX family members in regulating growth and development. It further provides a strategy to elucidate the relevance of gene sequence diversity and copy number variation for final functionality in target tissues and finally the whole plant. Thus, overall this protocol provides the means for efficiently identifying plant AOX variants as functional marker candidates related to growth and development.

  10. Age Differences in Emotion Regulation Choice: Older Adults Use Distraction Less Than Younger Adults in High-Intensity Positive Contexts.

    PubMed

    Martins, Bruna; Sheppes, Gal; Gross, James J; Mather, Mara

    2018-04-16

    Previous research demonstrates that younger and older adults prefer distraction over engagement (reappraisal) when regulating high-intensity negative emotion. Older adults also demonstrate a greater bias for positive over negative information in attention and memory compared with younger adults. In this study, we investigated whether emotion regulation choice preferences may differ as a function of stimulus valence with age. The effect of stimulus intensity on negative and positive emotion regulation strategy preferences was investigated in younger and older men. Participants indicated whether they favored distraction or reappraisal to attenuate emotional reactions to negative and positive images that varied in intensity. Men in both age-groups preferred distraction over reappraisal when regulating high-intensity emotion. As no age-related strategic differences were found in negative emotion regulation preferences, older men chose to distract less from high-intensity positive images than did younger men. Older men demonstrated greater engagement with highly positive emotional contexts than did younger men. Thus, age differences in emotion regulation goals when faced with intense emotional stimuli depend on the valence of the emotional stimuli.

  11. MBSR vs aerobic exercise in social anxiety: fMRI of emotion regulation of negative self-beliefs

    PubMed Central

    Ziv, Michal; Jazaieri, Hooria; Hahn, Kevin; Gross, James J.

    2013-01-01

    Mindfulness-based stress reduction (MBSR) is thought to reduce emotional reactivity and enhance emotion regulation in patients with social anxiety disorder (SAD). The goal of this study was to examine the neural correlates of deploying attention to regulate responses to negative self-beliefs using functional magnetic resonance imaging. Participants were 56 patients with generalized SAD in a randomized controlled trial who were assigned to MBSR or a comparison aerobic exercise (AE) stress reduction program. Compared to AE, MBSR yielded greater (i) reductions in negative emotion when implementing regulation and (ii) increases in attention-related parietal cortical regions. Meditation practice was associated with decreases in negative emotion and social anxiety symptom severity, and increases in attention-related parietal cortex neural responses when implementing attention regulation of negative self-beliefs. Changes in attention regulation during MBSR may be an important psychological factor that helps to explain how mindfulness meditation training benefits patients with anxiety disorders. PMID:22586252

  12. Control your anger! The neural basis of aggression regulation in response to negative social feedback

    PubMed Central

    van Duijvenvoorde, Anna C. K.; Bakermans-Kranenburg, Marian J.; Crone, Eveline A.

    2016-01-01

    Abstract Negative social feedback often generates aggressive feelings and behavior. Prior studies have investigated the neural basis of negative social feedback, but the underlying neural mechanisms of aggression regulation following negative social feedback remain largely undiscovered. In the current study, participants viewed pictures of peers with feedback (positive, neutral or negative) to the participant’s personal profile. Next, participants responded to the peer feedback by pressing a button, thereby producing a loud noise toward the peer, as an index of aggression. Behavioral analyses showed that negative feedback led to more aggression (longer noise blasts). Conjunction neuroimaging analyses revealed that both positive and negative feedback were associated with increased activity in the medial prefrontal cortex (PFC) and bilateral insula. In addition, more activation in the right dorsal lateral PFC (dlPFC) during negative feedback vs neutral feedback was associated with shorter noise blasts in response to negative social feedback, suggesting a potential role of dlPFC in aggression regulation, or top-down control over affective impulsive actions. This study demonstrates a role of the dlPFC in the regulation of aggressive social behavior. PMID:26755768

  13. 29 CFR 458.2 - Bill of rights of members of labor organizations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Bill of rights of members of labor organizations. 458.2 Section 458.2 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF... § 458.2 Bill of rights of members of labor organizations. (a)(1) Equal rights. Every member of a labor...

  14. 29 CFR 458.2 - Bill of rights of members of labor organizations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 2 2011-07-01 2011-07-01 false Bill of rights of members of labor organizations. 458.2 Section 458.2 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF... § 458.2 Bill of rights of members of labor organizations. (a)(1) Equal rights. Every member of a labor...

  15. 26 CFR 53.4946-1 - Definitions and special rules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...)(4) shall be treated as though it provided that the members of the family of an individual are the... treated as though it provided that the members of the family of an individual are the members within the... foundation, as defined in section 507(d)(2) and the regulations thereunder, (iv) A member of the family, as...

  16. 26 CFR 53.4946-1 - Definitions and special rules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...)(4) shall be treated as though it provided that the members of the family of an individual are the... treated as though it provided that the members of the family of an individual are the members within the... foundation, as defined in section 507(d)(2) and the regulations thereunder, (iv) A member of the family, as...

  17. 26 CFR 53.4946-1 - Definitions and special rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...)(4) shall be treated as though it provided that the members of the family of an individual are the... treated as though it provided that the members of the family of an individual are the members within the... foundation, as defined in section 507(d)(2) and the regulations thereunder, (iv) A member of the family, as...

  18. 26 CFR 53.4946-1 - Definitions and special rules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...)(4) shall be treated as though it provided that the members of the family of an individual are the... treated as though it provided that the members of the family of an individual are the members within the... foundation, as defined in section 507(d)(2) and the regulations thereunder, (iv) A member of the family, as...

  19. OsRACK1 Is Involved in Abscisic Acid- and H2O2-Mediated Signaling to Regulate Seed Germination in Rice (Oryza sativa, L.)

    PubMed Central

    Zhang, Dongping; Chen, Li; Li, Dahong; Lv, Bing; Chen, Yun; Chen, Jingui; XuejiaoYan; Liang, Jiansheng

    2014-01-01

    The receptor for activated C kinase 1 (RACK1) is one member of the most important WD repeat–containing family of proteins found in all eukaryotes and is involved in multiple signaling pathways. However, compared with the progress in the area of mammalian RACK1, our understanding of the functions and molecular mechanisms of RACK1 in the regulation of plant growth and development is still in its infancy. In the present study, we investigated the roles of rice RACK1A gene (OsRACK1A) in controlling seed germination and its molecular mechanisms by generating a series of transgenic rice lines, of which OsRACK1A was either over-expressed or under-expressed. Our results showed that OsRACK1A positively regulated seed germination and negatively regulated the responses of seed germination to both exogenous ABA and H2O2. Inhibition of ABA biosynthesis had no enhancing effect on germination, whereas inhibition of ABA catabolism significantly suppressed germination. ABA inhibition on seed germination was almost fully recovered by exogenous H2O2 treatment. Quantitative analyses showed that endogenous ABA levels were significantly higher and H2O2 levels significantly lower in OsRACK1A-down regulated transgenic lines as compared with those in wildtype or OsRACK1A-up regulated lines. Quantitative real-time PCR analyses showed that the transcript levels of OsRbohs and amylase genes, RAmy1A and RAmy3D, were significantly lower in OsRACK1A-down regulated transgenic lines. It is concluded that OsRACK1A positively regulates seed germination by controlling endogenous levels of ABA and H2O2 and their interaction. PMID:24865690

  20. Structure and Function of the N-Terminal Domain of the Vesicular Stomatitis Virus RNA Polymerase

    PubMed Central

    Qiu, Shihong; Ogino, Minako; Luo, Ming

    2015-01-01

    ABSTRACT Viruses have various mechanisms to duplicate their genomes and produce virus-specific mRNAs. Negative-strand RNA viruses encode their own polymerases to perform each of these processes. For the nonsegmented negative-strand RNA viruses, the polymerase is comprised of the large polymerase subunit (L) and the phosphoprotein (P). L proteins from members of the Rhabdoviridae, Paramyxoviridae, and Filoviridae share sequence and predicted secondary structure homology. Here, we present the structure of the N-terminal domain (conserved region I) of the L protein from a rhabdovirus, vesicular stomatitis virus, at 1.8-Å resolution. The strictly and strongly conserved residues in this domain cluster in a single area of the protein. Serial mutation of these residues shows that many of the amino acids are essential for viral transcription but not for mRNA capping. Three-dimensional alignments show that this domain shares structural homology with polymerases from other viral families, including segmented negative-strand RNA and double-stranded RNA (dsRNA) viruses. IMPORTANCE Negative-strand RNA viruses include a diverse set of viral families that infect animals and plants, causing serious illness and economic impact. The members of this group of viruses share a set of functionally conserved proteins that are essential to their replication cycle. Among this set of proteins is the viral polymerase, which performs a unique set of reactions to produce genome- and subgenome-length RNA transcripts. In this article, we study the polymerase of vesicular stomatitis virus, a member of the rhabdoviruses, which has served in the past as a model to study negative-strand RNA virus replication. We have identified a site in the N-terminal domain of the polymerase that is essential to viral transcription and that shares sequence homology with members of the paramyxoviruses and the filoviruses. Newly identified sites such as that described here could prove to be useful targets in the design of new therapeutics against negative-strand RNA viruses. PMID:26512087

  1. Toddler Emotion Regulation with Mothers and Fathers: Temporal Associations Between Negative Affect and Behavioral Strategies

    PubMed Central

    Ekas, Naomi V.; Braungart-Rieker, Julia M.; Lickenbrock, Diane M.; Zentall, Shannon R.; Maxwell, Scott M.

    2010-01-01

    The present study investigated temporal associations between putative emotion regulation strategies and negative affect in 20-month-old toddlers. Toddlers’ parent-focused, self-distraction, and toy-focused strategies, as well as negative affect, were rated on a second-by-second basis during laboratory parent-toddler interactions. Longitudinal mixed-effects models were conducted to determine the degree to which behavioral strategy use predicts subsequent negative affect and negative affect predicts subsequent strategy use. Results with mother-toddler and father-toddler dyads indicated that parent-focused strategies with an unresponsive parent were followed by increases in negative affect, whereas toy-focused strategies were followed by decreases in negative affect. Results also indicated that toddler negative affect serves to regulate behavioral strategy use within both parent contexts. PMID:21552335

  2. The moderating role of internalising negative emotionality in the relation of self-regulation to social adjustment in Italian preschool-aged children.

    PubMed

    Pecora, Giulia; Sette, Stefania; Baumgartner, Emma; Laghi, Fiorenzo; Spinrad, Tracy L

    2015-08-28

    The purpose of this study was to examine the moderating role of internalising negative emotionality (i.e., anxious, concerned, and embarrassed displays) in the association between children's self-regulation and social adjustment. Seventy-four Italian children (44 girls, 30 boys; M age = 35.05 months, SD = 3.57) were assessed using two self-regulation tasks. Internalising negative emotionality was assessed through observations of children's emotion expressions during the tasks. Teachers evaluated children's social competence and internalising and externalising problems. Results demonstrated that among children who exhibited internalising negative emotionality, self-regulation was positively associated with social competence and negatively related to externalising problems. Our results suggest that self-regulation may play a crucial role for social adjustment when children show emotions such as anxiety and embarrassment during challenging situations.

  3. The Stress Protein BAG3 Stabilizes Mcl-1 Protein and Promotes Survival of Cancer Cells and Resistance to Antagonist ABT-737*

    PubMed Central

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D.; Marnett, Lawrence J.

    2013-01-01

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery. PMID:23341456

  4. The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737.

    PubMed

    Boiani, Mariana; Daniel, Cristina; Liu, Xueyuan; Hogarty, Michael D; Marnett, Lawrence J

    2013-03-08

    Members of the Bcl-2 family of proteins are important inhibitors of apoptosis in human cancer and are targets for novel anticancer agents such as the Bcl-2 antagonists, ABT-263 (Navitoclax), and its analog ABT-737. Unlike Bcl-2, Mcl-1 is not antagonized by ABT-263 or ABT-737 and is considered to be a major factor in resistance. Also, Mcl-1 exhibits differential regulation when compared with other Bcl-2 family members and is a target for anticancer drug discovery. Here, we demonstrate that BAG3, an Hsp70 co-chaperone, protects Mcl-1 from proteasomal degradation, thereby promoting its antiapoptotic activity. Using neuroblastoma cell lines, with a defined Bcl-2 family dependence, we found that BAG3 expression correlated with Mcl-1 dependence and ABT-737 resistance. RNA silencing of BAG3 led to a marked reduction in Mcl-1 protein levels and overcame ABT-737 resistance in Mcl-1-dependent cells. In ABT-737-resistant cells, Mcl-1 co-immunoprecipitated with BAG3, and loss of Mcl-1 after BAG3 silencing was prevented by proteasome inhibition. BAG3 and Mcl-1 were co-expressed in a panel of diverse cancer cell lines resistant to ABT-737. Silencing BAG3 reduced Mcl-1 protein levels and overcame ABT-737 resistance in several of the cell lines, including triple-negative breast cancer (MDA-MB231) and androgen receptor-negative prostate cancer (PC3) cells. These studies identify BAG3-mediated Mcl-1 stabilization as a potential target for cancer drug discovery.

  5. A myostatin and activin decoy receptor enhances bone formation in mice.

    PubMed

    Bialek, P; Parkington, J; Li, X; Gavin, D; Wallace, C; Zhang, J; Root, A; Yan, G; Warner, L; Seeherman, H J; Yaworsky, P J

    2014-03-01

    Myostatin is a member of the bone morphogenetic protein/transforming growth factor-β (BMP/TGFβ) super-family of secreted differentiation factors. Myostatin is a negative regulator of muscle mass as shown by increased muscle mass in myostatin deficient mice. Interestingly, these mice also exhibit increased bone mass suggesting that myostatin may also play a role in regulating bone mass. To investigate the role of myostatin in bone, young adult mice were administered with either a myostatin neutralizing antibody (Mstn-mAb), a soluble myostatin decoy receptor (ActRIIB-Fc) or vehicle. While both myostatin inhibitors increased muscle mass, only ActRIIB-Fc increased bone mass. Bone volume fraction (BV/TV), as determined by microCT, was increased by 132% and 27% in the distal femur and lumbar vertebrae, respectively. Histological evaluation demonstrated that increased BV/TV in both locations was attributed to increased trabecular thickness, trabecular number and bone formation rate. Increased BV/TV resulted in enhanced vertebral maximum compressive force compared to untreated animals. The fact that ActRIIB-Fc, but not Mstn-mAb, increased bone volume suggested that this soluble decoy receptor may be binding a ligand other than myostatin, that plays a role in regulating bone mass. This was confirmed by the significant increase in BV/TV in myostatin deficient mice treated with ActRIIB-Fc. Of the other known ActRIIB-Fc ligands, BMP3 has been identified as a negative regulator of bone mass. However, BMP3 deficient mice treated with ActRIIB-Fc showed similar increases in BV/TV as wild type (WT) littermates treated with ActRIIB-Fc. This result suggests that BMP3 neutralization is not the mechanism responsible for increased bone mass. The results of this study demonstrate that ActRIIB-Fc increases both muscle and bone mass in mice. Therefore, a therapeutic that has this dual activity represents a potential approach for the treatment of frailty. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Molecular cloning of the MARCH family in grass carp (Ctenopharyngodon idellus) and their response to grass carp reovirus challenge.

    PubMed

    Ou, Mi; Huang, Rong; Xiong, Lv; Luo, Lifei; Chen, Geng; Liao, Lanjie; Li, Yongming; He, Libo; Zhu, Zuoyan; Wang, Yaping

    2017-04-01

    Grass carp (Ctenopharyngodon idellus) is an economical aquaculture species in China, and the Grass Carp Reovirus (GCRV) that causes hemorrhagic disease seriously affects the grass carp cultivation industry. Substantial evidence indicates that there is an association between the membrane-associated RING-CH family of E3 ligase (MARCH) family and immune defense in mammals, while functional studies on non-mammalian MARCH proteins are limited. In order to know the characteristics of the MARCH genes in C. idellus, eight MARCH genes (MARCH1, 2, 5, 6, 7, 8, 9 and 11) were cloned and the open reading frames (ORF) were identified in grass carp. All MARCH proteins in grass carp contained an RING-CH domain, which is characteristic of the MARCH protein. The phylogenetic analysis revealed that different MARCH proteins gathered into their separate clusters. All eight members of the MARCH gene family were detected in all tissues sampled, but the relative expression level differed. In addition, the mRNA expression of all the MARCHs was regulated at different levels in the immune organs after a GCRV challenge, and they responded robustly in both the intestine and liver. The mRNA expression of MARCH8, MHC II, TfR, IL1RAP, EGR1, and DUSP1 in the intestine after GCRV infection was analyzed, and the results showed that MARCH8 could negatively regulate TfR, IL1RAP, EGR1, and DUSP1, which signaled via the MAPK or NF-κB-activation pathways that play vital roles in immunity. Our findings identified a novel gene family in C. idellus and provided novel evidence that MARCH genes are inducible and involved in the immune response. Moreover, MARCH8 might function to negatively regulate immune receptors in C. idellus. Therefore, the MARCH might play a vital role in regulating the immune response of C. idellus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The temporal deployment of emotion regulation strategies during negative emotional episodes.

    PubMed

    Kalokerinos, Elise K; Résibois, Maxime; Verduyn, Philippe; Kuppens, Peter

    2017-04-01

    Time is given a central place in theoretical models of emotion regulation (Gross, 1998, 2015), but key questions regarding the role of time remain unanswered. We investigated 2 such unanswered questions. First, we explored when different emotion regulation strategies were used within the course of an emotional episode in daily life. Second, we investigated the association between the temporal deployment of strategies and negative emotional experience. We conducted a daily diary study in which participants (N = 74) drew an intensity profile depicting the temporal unfolding of their negative emotional experience across daily events (N = 480), and mapped their usage of emotion regulation strategies onto this intensity profile. Strategies varied in their temporal deployment, with suppression and rumination occurring more at the beginning of the episode, and reappraisal and distraction occurring more toward the end of the episode. Strategies also varied in their association with negative emotion: rumination was positively associated with negative emotion, and reappraisal and distraction were negatively associated with negative emotion. Finally, both rumination and reappraisal interacted with time to predict negative emotional experience. Rumination was more strongly positively associated with negative emotions at the end of the episode than the beginning, but reappraisal was more strongly negatively associated with negative emotion at the beginning of the episode than the end. These findings highlight the importance of accounting for timing in the study of emotion regulation, as well as the necessity of studying these temporal processes in daily life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    PubMed

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-04-09

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Victorio, Carlos J.; Velez-delValle, Cristina; Beltrán-Langarica, Alicia

    Highlights: ► EDF-1 participates early adipogenesis in 3T3F442A cells induced with Staurosporine/Dexamethasone. ► EDF-1 associates with CaM and Cn, most likely inactivating Cn. ► EDF-1/CaM complex seems to prevent NFATc1 activation by Cn. ► EDF-1 regulates the Cn/CaM/NFATc1 pathway during adipogenesis. ► EDF-1 may regulate the activation of Cn through a complex formation with CaM. - Abstract: The endothelial differentiation factor-1 (EDF-1) is a calmodulin binding protein that regulates calmodulin-dependent enzymes. In endothelial cells, this factor can form a protein complex with calmodulin. We analyzed the relationship between this factor and the members of calmodulin/calcineurin/nuclear factor of activated T-cells (NFAT)more » signaling pathway during adipogenesis of 3T3-F442A cells. We found that the expression of edf1 is upregulated during early adipogenesis, whereas that of calcineurin gene is lowered, suggesting that this pathway should be downregulated to allow for adipogenesis to occur. We also found that EDF-1 associates with calmodulin and calcineurin, most likely inactivating calcineurin. Our results showed that EDF-1 inactivates the calmodulin/calcineurin/NFAT pathway via sequestration of calmodulin, during early adipogenesis, and we propose a mechanism that negatively regulates the activation of calcineurin through a complex formation between EDF-1 and calmodulin. This finding raises the possibility that modulating this pathway might offer some alternatives to regulate adipose biology.« less

  10. “Get Off Me”: Perceptions of Disrespectful Police Behavior among Ethnic Minority Youth Gang Members

    PubMed Central

    Novich, Madeleine; Hunt, Geoffrey

    2018-01-01

    Recent media accounts have highlighted issues of use and abuse of police force and policing practices targeted at ethnic minorities within inner city areas. To date, little research has focused specifically on the experiences and perceptions of youth gang members in dealing with police. Using data from 253 in-depth interviews with ethnic minority San Francisco-based youth gang members, we examine perceptions of respectful and disrespectful police behavior. Premised on a procedural justice model (Tyler, 2006), we explore how frequently disrespectful police behavior is reported and how these negative experiences shape gang members’ attitudes towards the police more generally. We refine our investigation by comparing adverse encounters to examples in which gang members are treated respectfully. Using a data-driven inductive and qualitative theory testing deductive approach, our data revealed that male and female gang members regularly experience disrespectful police behavior in terms of physical and verbal abuse. Our findings indicate that these exchanges contribute to negative attitudes, fear, and distrust of police, while respectful interactions are meaningful and can contribute to positive attitudes towards officers. PMID:29910539

  11. The zinc fingers of the Small Optic Lobes (SOL) calpain bind polyubiquitin.

    PubMed

    Hastings, Margaret H; Qiu, Alvin; Zha, Congyao; Farah, Carole A; Mahdid, Yacine; Ferguson, Larissa; Sossin, Wayne S

    2018-05-28

    The Small Optic Lobes (SOL) calpain is a highly conserved member of the calpain family expressed in the nervous system. A dominant negative form of the SOL calpain inhibited consolidation of one form of synaptic plasticity, non-associative facilitation, in sensory-motor neuronal cultures in Aplysia, presumably by inhibiting cleavage of protein kinase Cs (PKCs) into constitutively active protein kinase Ms (PKMs) (Hu et al, 2017a). SOL calpains have a conserved set of 5-6 N-terminal zinc fingers. Bioinformatic analysis suggests that these zinc fingers could bind to ubiquitin. In this study, we show that both the Aplysia and mouse SOL calpain (also known as Calpain 15) zinc fingers bind ubiquitinated proteins, and we confirm that Aplysia SOL binds poly- but not mono or di-ubiquitin. No specific zinc finger is required for polyubiquitin binding. Neither polyubiquitin nor calcium was sufficient to induce purified Aplysia SOL calpain to autolyse or to cleave the atypical PKC to PKM in vitro. In Aplysia, overexpression of the atypical PKC in sensory neurons leads to an activity-dependent cleavage event and an increase in nuclear ubiquitin staining. Activity-dependent cleavage is partially blocked by a dominant negative SOL calpain, but not by a dominant negative classical calpain. The cleaved PKM was stabilized by the dominant negative classical calpain and destabilized by a dominant negative form of the PKM stabilizing proteinKIdney/BRAin protein(KIBRA). These studies provide new insight into SOL calpain's function and regulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Identification of a negative element in the human vimentin promoter: modulation by the human T-cell leukemia virus type I Tax protein.

    PubMed Central

    Salvetti, A; Lilienbaum, A; Li, Z; Paulin, D; Gazzolo, L

    1993-01-01

    The vimentin gene is a member of the intermediate filament multigene family and encodes a protein expressed, in vivo, in all mesenchymal derivatives and, in vitro, in cell types of various origin. We have previously demonstrated that the expression of this growth-regulated gene could be trans activated by the 40-kDa Tax protein of HTLV-I (human T-cell leukemia virus type I) and that responsiveness to this viral protein was mediated by the presence of an NF-kappa B binding site located between -241 and -210 bp upstream of the mRNA cap site (A. Lilienbaum, M. Duc Dodon, C. Alexandre, L. Gazzolo, and D. Paulin, J. Virol. 64:256-263, 1990). These previous assays, performed with deletion mutants of the vimentin promoter linked to the chloramphenicol acetyltransferase gene, also revealed the presence of an upstream negative region between -529 and -241 bp. Interestingly, the inhibitory activity exerted by this negative region was overcome after cotransfection of a Tax-expressing plasmid. In this study, we further characterize the vimentin negative element and define the effect of the Tax protein on the inhibitory activity of this element. We first demonstrate that a 187-bp domain (-424 to -237 bp) behaves as a negative region when placed upstream either of the NF-kappa B binding site of vimentin or of a heterologous enhancer such as that present in the desmin gene promoter. The negative effect can be further assigned to a 32-bp element which is indeed shown to repress the basal or induced activity of the NF-kappa B binding site.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8417364

  13. Medical research in emergency research in the European Union member states: tensions between theory and practice.

    PubMed

    Kompanje, Erwin J O; Maas, Andrew I R; Menon, David K; Kesecioglu, Jozef

    2014-04-01

    In almost all of the European Union member states, prior consent by a legal representative is used as a substitute for informed patient consent for non-urgent medical research. Deferred (patient and/or proxy) consent is accepted as a substitute in acute emergency research in approximately half of the member states. In 12 European Union member states emergency research is not mentioned in national law. Medical research in the European Union is covered by the Clinical Trial Directive 2001/20/EC. A proposal for a regulation by the European Commission is currently being examined by the European Parliament and the Council and will replace Directive 2001/20/EC. Deferred patient and/or proxy consent is allowed in the proposed regulation, but does not fit completely in the practice of emergency research. For example, deferred consent is only possible when legal representatives are not available. This criterion will delay inclusion of patients in acute life-threatening conditions in short time frames. As the regulation shall be binding in its entirety in all member states, emergency research in acute situations is still not possible as it should be.

  14. Medicare Advantage Members' Expected Out-Of-Pocket Spending For Inpatient And Skilled Nursing Facility Services.

    PubMed

    Keohane, Laura M; Grebla, Regina C; Mor, Vincent; Trivedi, Amal N

    2015-06-01

    Inpatient and skilled nursing facility (SNF) cost sharing in Medicare Advantage (MA) plans may reduce unnecessary use of these services. However, large out-of-pocket expenses potentially limit access to care and encourage beneficiaries at high risk of needing inpatient and postacute care to avoid or leave MA plans. In 2011 new federal regulations restricted inpatient and skilled nursing facility cost sharing and mandated limits on out-of-pocket spending in MA plans. After these regulations, MA members in plans with low premiums averaged $1,758 in expected out-of-pocket spending for an episode of seven hospital days and twenty skilled nursing facility days. Among members with the same low-premium plan in 2010 and 2011, 36 percent of members belonged to plans that added an out-of-pocket spending limit in 2011. However, these members also had a $293 increase in average cost sharing for an inpatient and skilled nursing facility episode, possibly to offset plans' expenses in financing out-of-pocket limits. Some MA beneficiaries may still have difficulty affording acute and postacute care despite greater regulation of cost sharing. Project HOPE—The People-to-People Health Foundation, Inc.

  15. Transcriptional network systems in cartilage development and disease.

    PubMed

    Nishimura, Riko; Hata, Kenji; Nakamura, Eriko; Murakami, Tomohiko; Takahata, Yoshifumi

    2018-04-01

    Transcription factors play important roles in the regulation of cartilage development by controlling the expression of chondrogenic genes. Genetic studies have revealed that Sox9/Sox5/Sox6, Runx2/Runx3 and Osterix in particular are essential for the sequential steps of cartilage development. Importantly, these transcription factors form network systems that are also required for appropriate cartilage development. Molecular cloning approaches have largely contributed to the identification of several transcriptional partners for Sox9 and Runx2 during cartilage development. Although the importance of a negative-feedback loop between Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) in chondrocyte hypertrophy has been well established, recent studies indicate that several transcription factors interact with the Ihh-PTHrP loop and demonstrated that Ihh has multiple functions in the regulation of cartilage development. The most common cartilage disorder, osteoarthritis, has been reported to result from the pathological action of several transcription factors, including Runx2, C/EBPβ and HIF-2α. On the other hand, NFAT family members appear to play roles in the protection of cartilage from osteoarthritis. It is also becoming important to understand the homeostasis and regulation of articular chondrocytes, because they have different cellular and molecular features from chondrocytes of the growth plate. This review summarizes the regulation and roles of transcriptional network systems in cartilage development and their pathological roles in osteoarthritis.

  16. Prostaglandin reductase-3 negatively modulates adipogenesis through regulation of PPARγ activity[S

    PubMed Central

    Yu, Yu-Hsiang; Chang, Yi-Cheng; Su, Tseng-Hsiung; Nong, Jiun-Yi; Li, Chao-Chin; Chuang, Lee-Ming

    2013-01-01

    Adipocyte differentiation is a multistep program under regulation by several factors. Peroxisome proliferator-activated receptor γ (PPARγ) serves as a master regulator of adipogenesis. However, the endogenous ligand for PPARγ remained elusive until 15-keto-PGE2 was identified recently as an endogenous PPARγ ligand. In this study, we demonstrate that zinc-containing alcohol dehydrogenase 2 (ZADH2; here termed prostaglandin reductase-3, PTGR-3) is a new member of prostaglandin reductase family that converts 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. Adipogenesis is accelerated when endogenous PTGR-3 is silenced in 3T3-L1 preadipocytes, whereas forced expression of PTGR-3 significantly decreases adipogenesis. PTGR-3 expression decreased during adipocyte differentiation, accompanied by an increased level of 15-keto-PGE2. 15-keto-PGE2 exerts a potent proadipogenic effect by enhancing PPARγ activity, whereas overexpression of PTGR-3 in 3T3-L1 preadipocytes markedly suppressed the proadipogenic effect of 15-keto-PGE2 by repressing PPARγ activity. Taken together, these findings demonstrate for the first time that PTGR-3 is a novel 15-oxoprostaglandin-Δ13-reductase and plays a critical role in modulation of normal adipocyte differentiation via regulation of PPARγ activity. Thus, modulation of PTGR-3 might provide a novel avenue for treating obesity and related metabolic disorders. PMID:23821743

  17. Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism▿ †

    PubMed Central

    Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-01-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740

  18. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    PubMed

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  19. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice.

    PubMed

    Lo, Shuen-Fang; Yang, Show-Ya; Chen, Ku-Ting; Hsing, Yue-Ie; Zeevaart, Jan A D; Chen, Liang-Jwu; Yu, Su-May

    2008-10-01

    Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2beta-hydroxylation: a larger class of C(19) GA2oxs and a smaller class of C(20) GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination. Using mutant and transgenic analysis, C(20) GA2oxs were shown to play pleiotropic roles regulating rice growth and architecture. In particular, rice overexpressing these GA2oxs exhibited early and increased tillering and adventitious root growth. GA negatively regulated expression of two transcription factors, O. sativa homeobox 1 and TEOSINTE BRANCHED1, which control meristem initiation and axillary bud outgrowth, respectively, and that in turn inhibited tillering. One of three conserved motifs unique to the C(20) GA2oxs (motif III) was found to be important for activity of these GA2oxs. Moreover, C(20) GA2oxs were found to cause less severe GA-defective phenotypes than C(19) GA2oxs. Our studies demonstrate that improvements in plant architecture, such as semidwarfism, increased root systems and higher tiller numbers, could be induced by overexpression of wild-type or modified C(20) GA2oxs.

  20. Identification and analysis of evolutionary selection pressures acting at the molecular level in five forkhead subfamilies.

    PubMed

    Fetterman, Christina D; Rannala, Bruce; Walter, Michael A

    2008-09-24

    Members of the forkhead gene family act as transcription regulators in biological processes including development and metabolism. The evolution of forkhead genes has not been widely examined and selection pressures at the molecular level influencing subfamily evolution and differentiation have not been explored. Here, in silico methods were used to examine selection pressures acting on the coding sequence of five multi-species FOX protein subfamily clusters; FoxA, FoxD, FoxI, FoxO and FoxP. Application of site models, which estimate overall selection pressures on individual codons throughout the phylogeny, showed that the amino acid changes observed were either neutral or under negative selection. Branch-site models, which allow estimated selection pressures along specified lineages to vary as compared to the remaining phylogeny, identified positive selection along branches leading to the FoxA3 and Protostomia clades in the FoxA cluster and the branch leading to the FoxO3 clade in the FoxO cluster. Residues that may differentiate paralogs were identified in the FoxA and FoxO clusters and residues that differentiate orthologs were identified in the FoxA cluster. Neutral amino acid changes were identified in the forkhead domain of the FoxA, FoxD and FoxP clusters while positive selection was identified in the forkhead domain of the Protostomia lineage of the FoxA cluster. A series of residues under strong negative selection adjacent to the N- and C-termini of the forkhead domain were identified in all clusters analyzed suggesting a new method for refinement of domain boundaries. Extrapolation of domains among cluster members in conjunction with selection pressure information allowed prediction of residue function in the FoxA, FoxO and FoxP clusters and exclusion of known domain function in residues of the FoxA and FoxI clusters. Consideration of selection pressures observed in conjunction with known functional information allowed prediction of residue function and refinement of domain boundaries. Identification of residues that differentiate orthologs and paralogs provided insight into the development and functional consequences of paralogs and forkhead subfamily composition differences among species. Overall we found that after gene duplication of forkhead family members, rapid differentiation and subsequent fixation of amino acid changes through negative selection has occurred.

  1. Genomic identification, characterization and differential expression analysis of SBP-box gene family in Brassica napus.

    PubMed

    Cheng, Hongtao; Hao, Mengyu; Wang, Wenxiang; Mei, Desheng; Tong, Chaobo; Wang, Hui; Liu, Jia; Fu, Li; Hu, Qiong

    2016-09-08

    SBP-box genes belong to one of the largest families of transcription factors. Though members of this family have been characterized to be important regulators of diverse biological processes, information of SBP-box genes in the third most important oilseed crop Brassica napus is largely undefined. In the present study, by whole genome bioinformatics analysis and transcriptional profiling, 58 putative members of SBP-box gene family in oilseed rape (Brassica napus L.) were identified and their expression pattern in different tissues as well as possible interaction with miRNAs were analyzed. In addition, B. napus lines with contrasting branch angle were used for investigating the involvement of SBP-box genes in plant architecture regulation. Detailed gene information, including genomic organization, structural feature, conserved domain and phylogenetic relationship of the genes were systematically characterized. By phylogenetic analysis, BnaSBP proteins were classified into eight distinct groups representing the clear orthologous relationships to their family members in Arabidopsis and rice. Expression analysis in twelve tissues including vegetative and reproductive organs showed different expression patterns among the SBP-box genes and a number of the genes exhibit tissue specific expression, indicating their diverse functions involved in the developmental process. Forty-four SBP-box genes were ascertained to contain the putative miR156 binding site, with 30 and 14 of the genes targeted by miR156 at the coding and 3'UTR region, respectively. Relative expression level of miR156 is varied across tissues. Different expression pattern of some BnaSBP genes and the negative correlation of transcription levels between miR156 and its target BnaSBP gene were observed in lines with different branch angle. Taken together, this study represents the first systematic analysis of the SBP-box gene family in Brassica napus. The data presented here provides base foundation for understanding the crucial roles of BnaSBP genes in plant development and other biological processes.

  2. ERP, a new member of the ets transcription factor/oncoprotein family: cloning, characterization, and differential expression during B-lymphocyte development.

    PubMed

    Lopez, M; Oettgen, P; Akbarali, Y; Dendorfer, U; Libermann, T A

    1994-05-01

    The ets gene family encodes a group of proteins which function as transcription factors under physiological conditions and, if aberrantly expressed, can cause cellular transformation. We have recently identified two regulatory elements in the murine immunoglobulin heavy-chain (IgH) enhancer, pi and microB, which exhibit striking similarity to binding sites for ets-related proteins. To identify ets-related transcriptional regulators expressed in pre-B lymphocytes that may interact with either the pi or the microB site, we have used a PCR approach with degenerate oligonucleotides encoding conserved sequences in all members of the ets family. We have cloned the gene for a new ets-related transcription factor, ERP (ets-related protein), from the murine pre-B cell line BASC 6C2 and from mouse lung tissue. The ERP protein contains a region of high homology with the ETS DNA-binding domain common to all members of the ets transcription factor/oncoprotein family. Three additional smaller regions show homology to the ELK-1 and SAP-1 genes, a subgroup of the ets gene family that interacts with the serum response factor. Full-length ERP expresses only negligible DNA-binding activity by itself. Removal of the carboxy terminus enables ERP to interact with a variety of ets-binding sites including the E74 site, the IgH enhancer pi site, and the lck promoter ets site, suggesting a carboxy-terminal negative regulatory domain. At least three ERP-related transcripts are expressed in a variety of tissues. However, within the B-cell lineage, ERP is highly expressed primarily at early stages of B-lymphocyte development, and expression declines drastically upon B-cell maturation, correlating with the enhancer activity of the IgH pi site. These data suggest that ERP might play a role in B-cell development and in IgH gene regulation.

  3. Prefrontal and amygdala engagement during emotional reactivity and regulation in generalized anxiety disorder.

    PubMed

    Fitzgerald, Jacklynn M; Phan, K Luan; Kennedy, Amy E; Shankman, Stewart A; Langenecker, Scott A; Klumpp, Heide

    2017-08-15

    Emotion dysregulation is prominent in generalized anxiety disorder (GAD), characterized clinically by exaggerated reactivity to negative stimuli and difficulty in down-regulating this response. Although limited research implicates frontolimbic disturbances in GAD, whether neural aberrations occur during emotional reactivity, regulation, or both is not well understood. During functional magnetic resonance imaging (fMRI), 30 individuals with GAD and 30 healthy controls (HC) completed a well-validated explicit emotion regulation task designed to measure emotional reactivity and regulation of reactivity. During the task, participants viewed negative images ('Look-Negative' condition) and, on some trials, used a cognitive strategy to reduce negative affective response ('Reappraise' condition). Results from an Analysis of Variance corrected for whole brain multiple comparisons showed a significant group x condition interaction in the left amygdala and left inferior frontal gyrus (IFG). Results from post-hoc analyses showed that the GAD group engaged these regions to a greater extent than HCs during Look-Negative but not Reappraise. Behaviorally, the GAD group reported feeling more negative than the HC group in each condition, although both groups reported reduced negative affect following regulation. As comorbidity was permitted, the presence of concurrent disorders, like other anxiety disorders and depression, detracts our ability to classify neural engagement particular to GAD alone. Individuals with GAD exhibited over-engagement of amygdala and frontal regions during the viewing of negative images, compared to HCs. Together, these aberrations may indicate that deficits in emotional reactivity rather than regulation contribute to emotion dysregulation in those with GAD. Copyright © 2017. Published by Elsevier B.V.

  4. 7 CFR 958.20 - Establishment and membership.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Establishment and membership. 958.20 Section 958.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... producer members, four handler members, and one public member is hereby established. Each shall have an...

  5. 7 CFR 932.25 - Establishment and membership.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... representation of the producer members shall be two from District 1, four from District 2, and two from District 3. Allocation of the handler members shall be four members to represent cooperative marketing... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing...

  6. 12 CFR 1710.11 - Board of directors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... member may not vote by proxy. (4) Information. Management of an Enterprise shall provide a board member... time to time. (b) Meetings, quorum and proxies, information, and annual review—(1) Frequency of..., regulations, and guidelines. (2) Non-management board member meetings. Non-management directors of an...

  7. 12 CFR 1710.11 - Board of directors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... member may not vote by proxy. (4) Information. Management of an Enterprise shall provide a board member... time to time. (b) Meetings, quorum and proxies, information, and annual review—(1) Frequency of..., regulations, and guidelines. (2) Non-management board member meetings. Non-management directors of an...

  8. 12 CFR 1710.11 - Board of directors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... member may not vote by proxy. (4) Information. Management of an Enterprise shall provide a board member... time to time. (b) Meetings, quorum and proxies, information, and annual review—(1) Frequency of..., regulations, and guidelines. (2) Non-management board member meetings. Non-management directors of an...

  9. 12 CFR 1710.11 - Board of directors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... member may not vote by proxy. (4) Information. Management of an Enterprise shall provide a board member... time to time. (b) Meetings, quorum and proxies, information, and annual review—(1) Frequency of..., regulations, and guidelines. (2) Non-management board member meetings. Non-management directors of an...

  10. European emission, fuel quality regs tighten--

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-12-18

    Emission regulations and fuel quality requirements will tighten as Europe enters the 1990s. The stiffer emission regulations, particularly in those nations in the European Economic Community (EEC), will more closely resemble those already in effect in the U.S. and Japan. Nations not in the EEC, particularly Austria, Switzerland, Norway, Sweden, and Finland, are also formulating rules that adopt the 1983 U.S. emission standards. Rules and tax incentives have also been introduced to encourage the use of unleaded gasoline in EEC member countries. Details of some of the emission rules for both EEC member and non-member countries are discussed.

  11. Intergroup Contact and Social Change: Implications of Negative and Positive Contact for Collective Action in Advantaged and Disadvantaged Groups.

    PubMed

    Reimer, Nils Karl; Becker, Julia C; Benz, Angelika; Christ, Oliver; Dhont, Kristof; Klocke, Ulrich; Neji, Sybille; Rychlowska, Magdalena; Schmid, Katharina; Hewstone, Miles

    2017-01-01

    Previous research has shown that (a) positive intergroup contact with an advantaged group can discourage collective action among disadvantaged-group members and (b) positive intergroup contact can encourage advantaged-group members to take action on behalf of disadvantaged outgroups. Two studies investigated the effects of negative as well as positive intergroup contact. Study 1 ( n = 482) found that negative but not positive contact with heterosexual people was associated with sexual-minority students' engagement in collective action (via group identification and perceived discrimination). Among heterosexual students, positive and negative contacts were associated with, respectively, more and less LGB (lesbian, gay, bisexual) activism. Study 2 ( N = 1,469) found that only negative contact (via perceived discrimination) predicted LGBT (lesbian, gay, bisexual, and transgender) students' collective action intentions longitudinally while only positive contact predicted heterosexual/cisgender students' LGBT activism. Implications for the relationship between intergroup contact, collective action, and social change are discussed.

  12. Relationship between cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers: Exploring multiple mediation model.

    PubMed

    Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui

    2017-10-01

    The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Credit WCT. Original 2'" x 2'" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-'" x 2-'" color negative is housed in the JPL Photography Laboratory, Pasadena, California. View shows small autoclave demonstrated by JPL staff member Milton Clay (JPL negative no. JPL-10286AC, 27 January 1989). - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  14. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    DOEpatents

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  15. In vitro treatment with 17,20b-dihydroxy-4-pregnen-3-one regulates mRNA levels of transforming growth factor beta superfamily members in rainbow trout (Oncorhynchus mykiss) ovarian tissue

    USDA-ARS?s Scientific Manuscript database

    Transforming growth factor beta (TGFB) superfamily members are important paracrine/autocrine regulators of ovarian development and steroidogenesis in mammals, but their reproductive role in fishes is not well understood. Our objectives were 3-fold: to determine if key TGFB superfamily transcripts a...

  16. 26 CFR 1.1502-94A - Coordination with section 382 and the regulations thereunder when a corporation becomes a member...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...(d)(1). The testing period for L commences on May 1, Year 4. C's purchase of all the P stock causes... (CONTINUED) Regulations Applying Section 382 with Respect to Testing Dates (and Corporations Joining Or... allocation of income and loss). (2) Adjustment to value. The value of the new loss member is adjusted to the...

  17. NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING

    PubMed Central

    Zhang, Lu; Mo, Jinyao; Swanson, Karen V.; Wen, Haitao; Petrucelli, Alex; Gregory, Sean M.; Zhang, Zhigang; Schneider, Monika; Jiang, Yan; Fitzgerald, Katherine A.; Ouyang, Songying; Liu, Zhi-Jie; Damania, Blossom A; Shu, Hong-Bing; Duncan, Joseph A.; Ting, Jenny P-Y.

    2014-01-01

    SUMMARY Stimulator of interferon genes (STING, also named MITA, MYPS or ERIS) is an intracellular DNA sensor that induces type I interferon through its interaction with TANK-binding kinase 1 (TBK1). Here we found that the nucleotide-binding, leucine-rich repeat containing protein, NLRC3, reduced STING-dependent innate immune activation in response to cytosolic DNA, cyclic di-GMP (c-di-GMP) and DNA viruses. NLRC3 associated with both STING and TBK1, and impeded STING-TBK1 interaction and downstream type I interferon production. Using purified recombinant proteins NLRC3 was found to interact directly with STING. Furthermore, NLRC3 prevented proper trafficking of STING to perinuclear and punctated region, known to be important for its activation. In animals, herpes simplex virus 1 (HSV-1)-infected Nlrc3−/− mice exhibited enhanced innate immunity, reduced morbidity and viral load. This demonstrates the intersection of two key pathways of innate immune regulation, NLR and STING, to fine tune host response to intracellular DNA, DNA virus and c-di-GMP PMID:24560620

  18. The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis.

    PubMed

    Goetze, Bernhard; Tuebing, Fabian; Xie, Yunli; Dorostkar, Mario M; Thomas, Sabine; Pehl, Ulrich; Boehm, Stefan; Macchi, Paolo; Kiebler, Michael A

    2006-01-16

    Mammalian Staufen2 (Stau2) is a member of the double-stranded RNA-binding protein family. Its expression is largely restricted to the brain. It is thought to play a role in the delivery of RNA to dendrites of polarized neurons. To investigate the function of Stau2 in mature neurons, we interfered with Stau2 expression by RNA interference (RNAi). Mature neurons lacking Stau2 displayed a significant reduction in the number of dendritic spines and an increase in filopodia-like structures. The number of PSD95-positive synapses and miniature excitatory postsynaptic currents were markedly reduced in Stau2 down-regulated neurons. Akin effects were caused by overexpression of dominant-negative Stau2. The observed phenotype could be rescued by overexpression of two RNAi cleavage-resistant Stau2 isoforms. In situ hybridization revealed reduced expression levels of beta-actin mRNA and fewer dendritic beta-actin mRNPs in Stau2 down-regulated neurons. Thus, our data suggest an important role for Stau2 in the formation and maintenance of dendritic spines of hippocampal neurons.

  19. The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis

    PubMed Central

    Goetze, Bernhard; Tuebing, Fabian; Xie, Yunli; Dorostkar, Mario M.; Thomas, Sabine; Pehl, Ulrich; Boehm, Stefan; Macchi, Paolo; Kiebler, Michael A.

    2006-01-01

    Mammalian Staufen2 (Stau2) is a member of the double-stranded RNA-binding protein family. Its expression is largely restricted to the brain. It is thought to play a role in the delivery of RNA to dendrites of polarized neurons. To investigate the function of Stau2 in mature neurons, we interfered with Stau2 expression by RNA interference (RNAi). Mature neurons lacking Stau2 displayed a significant reduction in the number of dendritic spines and an increase in filopodia-like structures. The number of PSD95-positive synapses and miniature excitatory postsynaptic currents were markedly reduced in Stau2 down-regulated neurons. Akin effects were caused by overexpression of dominant-negative Stau2. The observed phenotype could be rescued by overexpression of two RNAi cleavage-resistant Stau2 isoforms. In situ hybridization revealed reduced expression levels of β-actin mRNA and fewer dendritic β-actin mRNPs in Stau2 down-regulated neurons. Thus, our data suggest an important role for Stau2 in the formation and maintenance of dendritic spines of hippocampal neurons. PMID:16418534

  20. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site

    PubMed Central

    Pan, Chang; Liu, Hong-Da; Gong, Zheng; Yu, Xiao; Hou, Xu-Ben; Xie, Di-Dong; Zhu, Xi-Bin; Li, Hao-Wen; Tang, Jun-Yi; Xu, Yun-Fei; Yu, Jia-Qi; Zhang, Lian-Ying; Fang, Hao; Xiao, Kun-Hong; Chen, Yu-Guo; Wang, Jiang-Yun; Pang, Qi; Chen, Wei; Sun, Jin-Peng

    2013-01-01

    The heavy metal cadmium is a non-degradable pollutant. By screening the effects of a panel of metal ions on the phosphatase activity, we unexpectedly identified cadmium as a potent inhibitor of PPM1A and PPM1G. In contrast, low micromolar concentrations of cadmium did not inhibit PP1 or tyrosine phosphatases. Kinetic studies revealed that cadmium inhibits PPM phosphatases through the M1 metal ion binding site. In particular, the negative charged D441 in PPM1G specific recognized cadmium. Our results suggest that cadmium is likely a potent inhibitor of most PPM family members except for PHLPPs. Furthermore, we demonstrated that cadmium inhibits PPM1A-regulated MAPK signaling and PPM1G-regulated AKT signaling potently in vivo. Cadmium reversed PPM1A-induced cell cycle arrest and cadmium insensitive PPM1A mutant rescued cadmium induced cell death. Taken together, these findings provide a better understanding of the effects of the toxicity of cadmium in the contexts of human physiology and pathology. PMID:23903585

  1. Dealing with the long-term social implications of research.

    PubMed

    Fleischman, Alan; Levine, Carol; Eckenwiler, Lisa; Grady, Christine; Hammerschmidt, Dale E; Sugarman, Jeremy

    2011-05-01

    Biomedical and behavioral research may affect strongly held social values and thereby create significant controversy over whether such research should be permitted in the first place. Institutional review boards (IRBs) responsible for protecting the rights and welfare of participants in research are sometimes faced with review of protocols that have significant implications for social policy and the potential for negative social consequences. Although IRB members often raise concerns about potential long-term social implications in protocol review, federal regulations strongly discourage IRBs from considering them in their decisions. Yet IRBs often do consider the social implications of research protocols and sometimes create significant delays in initiating or even prevent such research. The social implications of research are important topics for public scrutiny and professional discussion. This article examines the reasons that the federal regulations preclude IRBs from assessing the social risks of research, and examines alternative approaches that have been used with varying success by national advisory groups to provide such guidance. The article concludes with recommendations for characteristics of a national advisory group that could successfully fulfill this need, including sustainability, independence, diverse and relevant expertise, and public transparency.

  2. Allograft update: the current status of tissue regulation, procurement, processing, and sterilization.

    PubMed

    McAllister, David R; Joyce, Michael J; Mann, Barton J; Vangsness, C Thomas

    2007-12-01

    Allografts are commonly used during sports medicine surgical procedures in the United States, and their frequency of use is increasing. Based on surgeon reports, it is estimated that more than 60 000 allografts were used in knee surgeries by members of the American Orthopaedic Society for Sports Medicine in 2005. In the United States, there are governmental agencies and other regulatory bodies involved in the oversight of tissue banks. In 2005, the Food and Drug Administration finalized its requirements for current good tissue practice and has mandated new rules regarding the "manufacture" of allogenic tissue. In response to well-publicized infections associated with the implantation of allograft tissue, some tissue banks have developed methods to sterilize allograft tissue. Although many surgeons have significant concerns about the safety of allografts, the majority believe that sterilized allografts are safe but that the sterilization process negatively affects tissue biology and biomechanics. However, most know very little about the principles of sterilization and the proprietary processes currently used in tissue banking. This article will review the current status of allograft tissue regulation, procurement, processing, and sterilization in the United States.

  3. Brief report: Moving prevention into schools: The impact of a trauma-informed school-based intervention.

    PubMed

    Mendelson, Tamar; Tandon, S Darius; O'Brennan, Lindsey; Leaf, Philip J; Ialongo, Nicholas S

    2015-08-01

    Adolescents in disadvantaged communities have high rates of exposure to stress and trauma, which can negatively impact emotion regulation and executive functioning, increasing likelihood of school problems. This pilot study evaluated RAP Club, a 12-session school-based trauma-informed group intervention co-facilitated by a mental health counselor and young adult community member that utilizes evidence-based cognitive-behavioral and mindfulness strategies. Seventh and eighth graders at two urban public schools serving low-income communities were assigned to receive RAP Club (n = 29) or regular school programming (n = 20). RAP Club improved teacher-rated emotion regulation, social and academic competence, classroom behavior, and discipline. Higher program dose predicted improvements in several teacher-rated outcomes. Student self-report outcomes, however, did not vary by study group or dose. Even students with low baseline depression showed improvement in teacher-rated outcomes following program participation, supporting a model of universal program delivery to all students. Findings suggest RAP Club merits further study. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  4. Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation.

    PubMed

    Sadidi, Mahdieh; Lentz, Stephen I; Feldman, Eva L

    2009-05-01

    Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) are involved in many cellular processes that positively and negatively regulate cell fate. H(2)O(2), acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H(2)O(2) was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H(2)O(2)-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery.

  5. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage.

    PubMed

    Ye, Jing; Lenain, Christelle; Bauwens, Serge; Rizzo, Angela; Saint-Léger, Adelaïde; Poulet, Anaïs; Benarroch, Delphine; Magdinier, Frédérique; Morere, Julia; Amiard, Simon; Verhoeyen, Els; Britton, Sébastien; Calsou, Patrick; Salles, Bernard; Bizard, Anna; Nadal, Marc; Salvati, Erica; Sabatier, Laure; Wu, Yunlin; Biroccio, Annamaria; Londoño-Vallejo, Arturo; Giraud-Panis, Marie-Josèphe; Gilson, Eric

    2010-07-23

    Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres. Copyright 2010 Elsevier Inc. All rights reserved.

  6. A Phenomenological Study: The Identification of Faculty Member Characteristics and Environmental Factors That Influence the Reporting of Student Academic Misconduct at a Private Urban University

    ERIC Educational Resources Information Center

    Rupprecht, Stephen M.

    2016-01-01

    The issue of student academic misconduct, most often seen as cheating or plagiarism, has plagued higher education professionals and institutions for decades. Negative faculty member feelings associated with having to deal with incidents of student academic misconduct are well documented, and only serve to support reasons why faculty members might…

  7. 32 CFR 705.15 - Employment of Navy personnel as correspondents or staff members of civilian news media.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or staff members of civilian news media. 705.15 Section 705.15 National Defense Department of Defense... REGULATIONS § 705.15 Employment of Navy personnel as correspondents or staff members of civilian news media. (a) A member of the naval service on active duty or Navy civilian may act as correspondent for a news...

  8. 32 CFR 705.15 - Employment of Navy personnel as correspondents or staff members of civilian news media.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or staff members of civilian news media. 705.15 Section 705.15 National Defense Department of Defense... REGULATIONS § 705.15 Employment of Navy personnel as correspondents or staff members of civilian news media. (a) A member of the naval service on active duty or Navy civilian may act as correspondent for a news...

  9. Estrogen-related receptor alpha induces the expression of vascular endothelial growth factor in breast cancer cells

    PubMed Central

    Stein, Rebecca A.; Gaillard, Stéphanie; McDonnell, Donald P.

    2009-01-01

    Estrogen-related receptor alpha (ERRα) is an orphan member of the nuclear receptor family of transcription factors. In addition to its function as a metabolic regulator, ERRα has been implicated in the growth and progression of several malignancies. In the setting of breast cancer, not only is ERRα a putative negative prognostic factor, but we have recently found that knockdown of its expression retards tumor growth in a xenograft model of this disease. The specific aspects of ERRα function that are responsible for its actions in breast cancer, however, remain unclear. Using the coactivator PGC-1α as a protein ligand to regulate ERRα activity, we analyzed the effects of this receptor on gene expression in the ERα-positive MCF-7 cell line. This analysis led to the identification of a large number of potential ERRα target genes, many of which were subsequently validated in other breast cancer cell lines. Importantly, we demonstrate in this study that activation of ERRα in several different breast cancer cell lines leads to a significant increase in VEGF mRNA expression, an activity that translates into an increase in VEGF protein secretion. The induction of VEGF results from the interaction of ERRα with specific ERR-responsive elements within the VEGF promoter. These findings suggest that ERRα-dependent induction of VEGF may contribute to the overall negative phenotype observed in tumors in which ERRα is expressed and provide validation for its use as a therapeutic target in cancer. PMID:19429439

  10. Zebrafish grainyhead-like1 is a common marker of different non-keratinocyte epidermal cell lineages, which segregate from each other in a Foxi3-dependent manner

    PubMed Central

    JÄNICKE, MARTINA; RENISCH, BJÖRN; HAMMERSCHMIDT, MATTHIAS

    2012-01-01

    Grainyhead/CP2 transcription factor family members are widely conserved among the animal kingdom and have been implicated in different developmental processes. Thus far, nothing has been known about their roles in zebrafish. Here we identify seven zebrafish grainyhead-like (grhl) / cp2 genes, with focus on grhl1, which is expressed in the periderm and in epidermal ionocyte progenitors, but downregulated when ionocytes differentiate. In addition, expression was detected in other “non-keratinocyte” cell types of the epidermis, such as pvalb8-expressing cells, which according to our lineage tracing experiments are derived from the same pool of progenitor cells like keratinocytes and ionocytes. Antisense morpholino oligonucleotide-based loss-of-function analysis revealed that grhl1 is dispensable for the development and function of all investigated epidermal cell types, but required as a negative regulator of its own transcription during ionocyte differentiation. Knockdown of the transcription factor Foxi3a, which is expressed in a subset of the grhl1 population, caused a loss of ionocytes and a corresponding increase in the number of pvalb8-expressing cells, while leaving the number of grhl1-positive cells unaltered. We propose that grhl1 is a novel common marker of all or most “non-keratinocyte” epidermal progenitors, and that the sub-functionalisation of these cells is regulated by differential positive and negative effects of Foxi3 factors. PMID:19757382

  11. TLR10 is a Negative Regulator of Both MyD88-Dependent and Independent TLR Signaling

    PubMed Central

    Jiang, Song; Li, Xinyan; Hess, Nicholas J.; Guan, Yue; Tapping, Richard I.

    2016-01-01

    Toll-like receptors are central components of the innate immune system which, upon recognition of bacterial, fungal or viral components, activate intracellular signals that lead to protective inflammatory responses. Among the ten-member human TLR family, TLR10 is the only remaining orphan receptor without a known ligand or signaling function. Murine TLR10 is a disrupted pseudogene, which precludes investigation using classic gene knock-out approaches. We report here that TLR10 suppressed the production of an array of cytokines in stably transfected human myelomonocytic U937 cells in response to other TLR agonists. This broad TLR suppressive activity affects both MyD88 and TRIF-mediated signaling pathways upstream of IκB and MAPK activation. Compared to non-transgenic littermate controls, monocytes of TLR10 transgenic mice exhibited blunted IL-6 production following ex vivo blood stimulation with other TLR agonists. After intraperitoneal injection of LPS, lower levels of TNFα, IL-6 and Type 1 IFN was measured in the serum of TLR10 transgenic mice, compared to non-transgenic mice, but did not affect mouse survival in an LPS-induced septic shock model. Finally, treatment of human mononuclear cells with a monoclonal anti-TLR10 antibody suppressed pro-inflammatory cytokines released by LPS stimulation. These results demonstrate that TLR10 functions as a broad negative regulator of TLR signaling and suggests TLR10 may have a role in controlling immune responses in vivo. PMID:27022193

  12. 75 FR 73131 - Innovion Corporation, Gresham, OR; Notice of Negative Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... in the semiconductor industry. The initial investigation resulted in a negative determination based... a member of a domestic industry injured under a provision of the Tariff Act of 1930 [Section 222(f...

  13. Positive and negative mood trajectories and their relationship with work ability, self-rated health, and life satisfaction: a 13-year follow-up study.

    PubMed

    Airila, Auli; Hakanen, Jari J; Luukkonen, Ritva; Lusa, Sirpa; Punakallio, Anne

    2013-07-01

    To investigate the change trajectories of positive and negative moods and their relationship to work ability, self-rated health, and life satisfaction in a three-wave 13-year follow-up study. The data, consisting of Finnish firefighters (n = 360), were collected via questionnaires in 1996, 1999, and 2009. Four distinct mood trajectories were identified by latent class growth modeling: (1) high positive, (2) high positive but decreasing, (3) moderately positive, and (4) high negative. The trajectory groups were differentially related to well-being. Members of the high positive trajectory had better well-being than members of other latent mood trajectories. Different trajectories exist in positive and negative moods, and these trajectories are differentially related to well-being. Developing work environments in which a positive mood can flourish is beneficial in terms of better well-being among employees.

  14. Motivation alters impression formation and related neural systems

    PubMed Central

    Zaki, Jamil; Ambady, Nalini

    2017-01-01

    Abstract Observers frequently form impressions of other people based on complex or conflicting information. Rather than being objective, these impressions are often biased by observers’ motives. For instance, observers often downplay negative information they learn about ingroup members. Here, we characterize the neural systems associated with biased impression formation. Participants learned positive and negative information about ingroup and outgroup social targets. Following this information, participants worsened their impressions of outgroup, but not ingroup, targets. This tendency was associated with a failure to engage neural structures including lateral prefrontal cortex, dorsal anterior cingulate cortex, temporoparietal junction, Insula and Precuneus when processing negative information about ingroup (but not outgroup) targets. To the extent that participants engaged these regions while learning negative information about ingroup members, they exhibited less ingroup bias in their impressions. These data are consistent with a model of ‘effortless bias’, under which perceivers fail to process goal-inconsistent information in order to maintain desired conclusions. PMID:27798250

  15. Cognitive and physiological markers of emotional awareness in chimpanzees (Pan troglodytes).

    PubMed

    Parr, L A

    2001-11-01

    The ability to understand emotion in others is one of the most important factors involved in regulating social interactions in primates. Such emotional awareness functions to coordinate activity among group members, enable the formation of long-lasting individual relationships, and facilitate the pursuit of shared interests. Despite these important evolutionary implications, comparative studies of emotional processing in humans and great apes are practically nonexistent, constituting a major gap in our understanding of the extent to which emotional awareness has played an important role in shaping human behavior and societies. This paper presents the results of two experiments that examine chimpanzees' responses to emotional stimuli. First, changes in peripheral skin temperature were measured while subjects viewed three categories of emotionally negative video scenes; conspecifics being injected with needles (INJ), darts and needles alone (DART), and conspecific directing agonism towards the veterinarians (CHASE). Second, chimpanzees were required to use facial expressions to categorize emotional video scenes, i.e., favorite food and objects and veterinarian procedures, according to their positive and negative valence. With no prior training, subjects spontaneously matched the emotional videos to conspecific facial expressions according to their shared emotional meaning, indicating that chimpanzee facial expressions are processed emotionally, as are human expressions. Decreases in peripheral skin temperature, indicative of negative sympathetic arousal, were significantly lower when subjects viewed the INJ and DART videos, compared to the CHASE videos, indicating greater negative arousal when viewing conspecifics being injected with needles, and needles themselves, than when viewing conspecifics engaged in general agonism.

  16. 27 CFR 8.4 - Jurisdictional limits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... The regulations in this part apply where: (1) The industry member requires, by agreement or otherwise, a retailer to purchase distilled spirits, wine, or malt beverages from such industry member to the...) The industry member engages in the practice of using a requirement to such an extent as substantially...

  17. 7 CFR 1219.35 - Term of office.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... years, except the members of the initial Board shall serve terms as follows: Four members and four alternates shall serve for two-year terms; four members and four alternates shall serve for three-year terms...

  18. 19 CFR 122.79 - Shipments to U.S. possessions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial...

  19. 19 CFR 122.74 - Incomplete (pro forma) manifest.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial...

  20. Neural correlates of preparatory and regulatory control over positive and negative emotion.

    PubMed

    Seo, Dongju; Olman, Cheryl A; Haut, Kristen M; Sinha, Rajita; MacDonald, Angus W; Patrick, Christopher J

    2014-04-01

    This study used functional magnetic resonance imaging to investigate brain activation during preparatory and regulatory control while participants (N = 24) were instructed either to simply view or decrease their emotional response to, pleasant, neutral or unpleasant pictures. A main effect of emotional valence on brain activity was found in the right precentral gyrus, with greater activation during positive than negative emotion regulation. A main effect of regulation phase was evident in the bilateral anterior prefrontal cortex (PFC), precuneus, posterior cingulate cortex, right putamen and temporal and occipital lobes, with greater activity in these regions during preparatory than regulatory control. A valence X regulation interaction was evident in regions of ventromedial PFC and anterior cingulate cortex, reflecting greater activation while regulating negative than positive emotion, but only during active emotion regulation (not preparation). Conjunction analyses revealed common brain regions involved in differing types of emotion regulation including selected areas of left lateral PFC, inferior parietal lobe, temporal lobe, right cerebellum and bilateral dorsomedial PFC. The right lateral PFC was additionally activated during the modulation of both positive and negative valence. Findings demonstrate significant modulation of brain activity during both preparation for, and active regulation of positive and negative emotional states.

  1. Situation Selection and Modification for Emotion Regulation in Younger and Older Adults

    PubMed Central

    Livingstone, Kimberly M.; Isaacowitz, Derek M.

    2016-01-01

    This research investigated age differences in use and effectiveness of situation selection and situation modification for emotion regulation. Socioemotional selectivity theory suggests stronger emotional well-being goals in older age; emotion regulation may support this goal. Younger and older adults assigned to an emotion regulation or “just view” condition first freely chose to engage with negative, neutral, or positive material (situation selection), then chose to view or skip negative and positive material (situation modification), rating affect after each experience. In both tasks, older adults in both goal conditions demonstrated pro-hedonic emotion regulation, spending less time with negative material compared to younger adults. Younger adults in the regulate condition also engaged in pro-hedonic situation selection, but not modification. Whereas situation selection was related to affect, modification of negative material was not. This research supports more frequent pro-hedonic motivation in older age, as well as age differences in use of early-stage emotion regulation. PMID:26998196

  2. Mobile Phone Use, Emotion Regulation, and Well-Being.

    PubMed

    Hoffner, Cynthia A; Lee, Sangmi

    2015-07-01

    This study examined the use of mobile phones to regulate negative emotions, considering both the role of different aspects of phone use and individual differences in emotion regulation strategies. A total of 287 young adult smartphone users completed an online survey that addressed use of mobile phones for negative emotion regulation. They responded to a phone loss scenario by rating how much they would miss various uses/functions of the phone (which could be involved in emotion regulation). Habitual use of reappraisal to regulate emotion was associated with missing both interpersonal contact and social support, but not access to entertainment/information. In contrast, habitual use of emotion suppression was associated only with missing entertainment/information content. Regulating negative emotions via mobile phone was associated with missing all three uses/functions of the phone, but perception that the phone was effective in remediating negative emotion was associated only with missing social support. Well-being was related to greater use and perceived effectiveness of the mobile phone for emotion regulation. Overall, this study demonstrates that mobile phones can yield psychological benefits, depending on how they are used. Findings suggest that using the phone for social support is most likely to lead to effective remediation of negative emotion. Interpretations and implications of the findings are discussed.

  3. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival.

    PubMed

    Omori, Yoshihiro; Chaya, Taro; Katoh, Kimiko; Kajimura, Naoko; Sato, Shigeru; Muraoka, Koichiro; Ueno, Shinji; Koyasu, Toshiyuki; Kondo, Mineo; Furukawa, Takahisa

    2010-12-28

    Cilia function as cell sensors in many organs, and their disorders are referred to as "ciliopathies." Although ciliary components and transport machinery have been well studied, regulatory mechanisms of ciliary formation and maintenance are poorly understood. Here we show that male germ cell-associated kinase (Mak) regulates retinal photoreceptor ciliary length and subcompartmentalization. Mak was localized both in the connecting cilia and outer-segment axonemes of photoreceptor cells. In the Mak-null retina, photoreceptors exhibit elongated cilia and progressive degeneration. We observed accumulation of intraflagellar transport 88 (IFT88) and IFT57, expansion of kinesin family member 3A (Kif3a), and acetylated α-tubulin signals in the Mak-null photoreceptor cilia. We found abnormal rhodopsin accumulation in the Mak-null photoreceptor cell bodies at postnatal day 14. In addition, overexpression of retinitis pigmentosa 1 (RP1), a microtubule-associated protein localized in outer-segment axonemes, induced ciliary elongation, and Mak coexpression rescued excessive ciliary elongation by RP1. The RP1 N-terminal portion induces ciliary elongation and increased intensity of acetylated α-tubulin labeling in the cells and is phosphorylated by Mak. These results suggest that Mak is essential for the regulation of ciliary length and is required for the long-term survival of photoreceptors.

  4. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival

    PubMed Central

    Omori, Yoshihiro; Chaya, Taro; Katoh, Kimiko; Kajimura, Naoko; Sato, Shigeru; Muraoka, Koichiro; Ueno, Shinji; Koyasu, Toshiyuki; Kondo, Mineo; Furukawa, Takahisa

    2010-01-01

    Cilia function as cell sensors in many organs, and their disorders are referred to as “ciliopathies.” Although ciliary components and transport machinery have been well studied, regulatory mechanisms of ciliary formation and maintenance are poorly understood. Here we show that male germ cell-associated kinase (Mak) regulates retinal photoreceptor ciliary length and subcompartmentalization. Mak was localized both in the connecting cilia and outer-segment axonemes of photoreceptor cells. In the Mak-null retina, photoreceptors exhibit elongated cilia and progressive degeneration. We observed accumulation of intraflagellar transport 88 (IFT88) and IFT57, expansion of kinesin family member 3A (Kif3a), and acetylated α-tubulin signals in the Mak-null photoreceptor cilia. We found abnormal rhodopsin accumulation in the Mak-null photoreceptor cell bodies at postnatal day 14. In addition, overexpression of retinitis pigmentosa 1 (RP1), a microtubule-associated protein localized in outer-segment axonemes, induced ciliary elongation, and Mak coexpression rescued excessive ciliary elongation by RP1. The RP1 N-terminal portion induces ciliary elongation and increased intensity of acetylated α-tubulin labeling in the cells and is phosphorylated by Mak. These results suggest that Mak is essential for the regulation of ciliary length and is required for the long-term survival of photoreceptors. PMID:21148103

  5. ULK1 regulates melanin levels in MNT-1 cells independently of mTORC1.

    PubMed

    Kalie, Eyal; Razi, Minoo; Tooze, Sharon A

    2013-01-01

    Melanosomes are lysosome-related organelles that serve as specialized sites of melanin synthesis and storage in melanocytes. The progression of melanosomes through the different stages of their formation requires trafficking of specific proteins and membrane constituents in a sequential manner, which is likely to deploy ubiquitous cellular machinery along with melanocyte-specific proteins. Recent evidence revealed a connection between melanogenesis and the autophagy machinery, suggesting a novel role for members of the latter in melanocytes. Here we focused on ULK1, a key autophagy protein which is negatively regulated by mTORC1, to assess its potential role in melanogenesis in MNT-1 cells. We found that ULK1 depletion causes an increase in melanin levels, suggesting an inhibitory function for this protein in melanogenesis. Furthermore, this increase was accompanied by increased transcription of MITF (microphthalmia-associated transcription factor) and tyrosinase and by elevated protein levels of tyrosinase, the rate-limiting factor in melanin biogenesis. We also provide evidence to show that ULK1 function in this context is independent of the canonical ULK1 autophagy partners, ATG13 and FIP200. Furthermore we show that regulation of melanogenesis by ULK1 is independent of mTORC1 inhibition. Our data thus provide intriguing insights regarding the involvement of the key regulatory autophagy machinery in melanogenesis.

  6. The Protein Kinase CK2 Mediates Cross-Talk between Auxin- and Salicylic Acid-Signaling Pathways in the Regulation of PINOID Transcription

    PubMed Central

    Armengot, Laia; Caldarella, Eleonora; Marquès-Bueno, Maria Mar; Martínez, M. Carmen

    2016-01-01

    The protein kinase CK2 is a ubiquitous and highly conserved enzyme, the activity of which is vital for eukaryotic cells. We recently demonstrated that CK2 modulates salicylic acid (SA) homeostasis in Arabidopsis thaliana, and that functional interplay between CK2 and SA sustains transcriptional expression of PIN-FORMED (PIN) genes. In this work, we show that CK2 also plays a key role in the transcriptional regulation of PINOID (PID), an AGC protein kinase that modulates the apical/basal localization of auxin-efflux transporters. We show that PID transcription is up-regulated by auxin and by SA and that CK2 is involved in both pathways. On the one hand, CK2 activity is required for proteosome-dependent degradation of AXR3, a member of the AUX/IAA family of auxin transcriptional repressors that must be degraded to activate auxin-responsive gene expression. On the other hand, the role of CK2 in SA homeostasis and, indirectly, in SA-driven PID transcription, was confirmed by using Arabidopsis NahG transgenic plants, which cannot accumulate SA. In conclusion, our results evidence a role for CK2 as a functional link in the negative cross-talk between auxin- and SA-signaling. PMID:27275924

  7. Myostatin - From the Mighty Mouse to cardiovascular disease and cachexia.

    PubMed

    Dschietzig, Thomas Bernd

    2014-06-10

    In 1997, McPherron et al. created the so-called Mighty Mouse: owing to the knock-out of a new member of the TGF-β superfamily of peptides, this mouse line was extremely hypermuscular and also characterized by very low body fat. The new peptide, a powerful negative muscle regulator, was named myostatin. Apart from regulating skeletal muscle growth, myostatin has recently been reported to be significantly involved in different cardio-vascular and metabolic pathologies. This review is focused on these non-muscular myostatin actions. First, myostatin is intricately involved in regulating metabolism: it causes insulin resistance, and the advantageous metabolic profile achieved by myostatin inhibition is mainly attributable to its effects on skeletal muscle. Myostatin is further expressed in myocardium where it exerts anti-hypertrophic, but pro-fibrotic effects. Circulating and local myostatin is elevated in chronic heart failure and poses a major player in cardiac cachexia. Eventually, the current body of evidence regarding myostatin's significant involvement in different entities of the cachexia syndrome is summarized. Activin type-2 receptor antagonism and/or inhibitory myostatin antibodies have emerged as a promising therapeutic approach to treat the cachexia syndrome although the general applicability of this therapeutic approach to the human clinical situation has still to be demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Actin binding by Hip1 (huntingtin-interacting protein 1) and Hip1R (Hip1-related protein) is regulated by clathrin light chain.

    PubMed

    Wilbur, Jeremy D; Chen, Chih-Ying; Manalo, Venus; Hwang, Peter K; Fletterick, Robert J; Brodsky, Frances M

    2008-11-21

    The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function.

  9. Actin Binding by Hip1 (Huntingtin-interacting Protein 1) and Hip1R (Hip1-related Protein) Is Regulated by Clathrin Light Chain*S⃞

    PubMed Central

    Wilbur, Jeremy D.; Chen, Chih-Ying; Manalo, Venus; Hwang, Peter K.; Fletterick, Robert J.; Brodsky, Frances M.

    2008-01-01

    The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function. PMID:18790740

  10. A conformational change within the WAVE2 complex regulates its degradation following cellular activation

    PubMed Central

    Joseph, Noah; Biber, Guy; Fried, Sophia; Reicher, Barak; Levy, Omer; Sabag, Batel; Noy, Elad; Barda-Saad, Mira

    2017-01-01

    WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation. PMID:28332566

  11. A conformational change within the WAVE2 complex regulates its degradation following cellular activation.

    PubMed

    Joseph, Noah; Biber, Guy; Fried, Sophia; Reicher, Barak; Levy, Omer; Sabag, Batel; Noy, Elad; Barda-Saad, Mira

    2017-03-23

    WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation.

  12. The Process Model of Group-Based Emotion: Integrating Intergroup Emotion and Emotion Regulation Perspectives.

    PubMed

    Goldenberg, Amit; Halperin, Eran; van Zomeren, Martijn; Gross, James J

    2016-05-01

    Scholars interested in emotion regulation have documented the different goals and strategies individuals have for regulating their emotions. However, little attention has been paid to the regulation of group-based emotions, which are based on individuals' self-categorization as a group member and occur in response to situations perceived as relevant for that group. We propose a model for examining group-based emotion regulation that integrates intergroup emotions theory and the process model of emotion regulation. This synergy expands intergroup emotion theory by facilitating further investigation of different goals (i.e., hedonic or instrumental) and strategies (e.g., situation selection and modification strategies) used to regulate group-based emotions. It also expands emotion regulation research by emphasizing the role of self-categorization (e.g., as an individual or a group member) in the emotional process. Finally, we discuss the promise of this theoretical synergy and suggest several directions for future research on group-based emotion regulation. © 2015 by the Society for Personality and Social Psychology, Inc.

  13. TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies.

    PubMed

    Pike, Kelly A; Tremblay, Michel L

    2016-06-01

    Lymphoid malignancies are characterized by an accumulation of genetic lesions that act co-operatively to perturb signaling pathways and alter gene expression programs. The Janus kinases (JAK)-signal transducers and activators of transcription (STATs) pathway is one such pathway that is frequently mutated in leukemia and lymphoma. In response to cytokines and growth factors, a cascade of reversible tyrosine phosphorylation events propagates the JAK-STAT pathway from the cell surface to the nucleus. Activated STAT family members then play a fundamental role in establishing the transcriptional landscape of the cell. In leukemia and lymphoma, somatic mutations have been identified in JAK and STAT family members, as well as, negative regulators of the pathway. Most recently, inactivating mutations in the protein tyrosine phosphatase (PTP) genes PTPN1 (PTP1B) and PTPN2 (TC-PTP) were sequenced in B cell lymphoma and T cell acute lymphoblastic leukemia (T-ALL) respectively. The loss of PTP1B and TC-PTP phosphatase activity is associated with an increase in cytokine sensitivity, elevated JAK-STAT signaling, and changes in gene expression. As inactivation mutations in PTPN1 and PTPN2 are restricted to distinct subsets of leukemia and lymphoma, a future challenge will be to identify in which cellular contexts do they contributing to the initiation or maintenance of leukemogenesis or lymphomagenesis. As well, the molecular mechanisms by which PTP1B and TC-PTP loss co-operates with other genetic aberrations will need to be elucidated to design more effective therapeutic strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Knockdown of Indian hedgehog protein induces an inhibition of cell growth and differentiation in osteoblast MC3T3‑E1 cells.

    PubMed

    Deng, Ang; Zhang, Hongqi; Hu, Minyu; Liu, Shaohua; Gao, Qile; Wang, Yuxiang; Guo, Chaofeng

    2017-12-01

    Indian hedgehog protein (Ihh) is evolutionarily conserved and serves important roles in controlling the differentiation of progenitor cells into osteoblasts. Ihh null mutant mice exhibit a failure of osteoblast development in endochondral bone. Although studies have demonstrated that Ihh signaling is a potent local factor that regulates osteoblast differentiation, the specific transcription factors that determine osteoblast differentiation remain unclear. Further studies are required to determine the precise mechanism through which Ihh regulates osteoblast differentiation. In the present study, Ihh was knocked down in osteoblast MC3T3‑E1 cells using short hairpin RNA, to investigate the function of Ihh in osteoblast proliferation and differentiation and to examine the potential mechanism through which Ihh induces osteoblast apoptosis and cell cycle arrest. It was observed that the knockdown of Ihh induced a marked inhibition of cell growth and increased the apoptosis rate compared with the negative control osteoblasts. Downregulation of Ihh resulted in a cell cycle arrest at the G1 to S phase boundary in osteoblasts. In addition, the knockdown of Ihh decreased the alkaline phosphatase activity and mineral deposition of osteoblasts. The inhibitory roles of Ihh downregulation in osteoblast growth and differentiation may be associated with the transforming growth factor‑β/mothers against decapentaplegic homolog and tumor necrosis factor receptor superfamily member 11B/tumor necrosis factor ligand superfamily member 11 signaling pathways. Manipulating either Ihh expression or its signaling components may be of benefit for the treatment of skeletal diseases.

  15. When Teams Fail to Self-Regulate: Predictors and Outcomes of Team Procrastination Among Debating Teams.

    PubMed

    Van Hooft, Edwin A J; Van Mierlo, Heleen

    2018-01-01

    Models of team development have indicated that teams typically engage in task delay during the first stages of the team's life cycle. An important question is to what extent this equally applies to all teams, or whether there is variation across teams in the amount of task delay. The present study introduces the concept of team procrastination as a lens through which we can examine whether teams collectively engage in unplanned, voluntary, and irrational delay of team tasks. Based on theory and research on self-regulation, team processes, and team motivation we developed a conceptual multilevel model of predictors and outcomes of team procrastination. In a sample of 209 student debating teams, we investigated whether and why teams engage in collective procrastination as a team, and what consequences team procrastination has in terms of team member well-being and team performance. The results supported the existence of team procrastination as a team-level construct that has some stability over time. The teams' composition in terms of individual-level trait procrastination, as well as the teams' motivational states (i.e., team learning goal orientation, team performance-approach goal orientation in interaction with team efficacy) predicted team procrastination. Team procrastination related positively to team members' stress levels, especially for those low on trait procrastination. Furthermore, team procrastination had an indirect negative relationship with team performance, through teams' collective stress levels. These findings add to the theoretical understanding of self-regulatory processes of teams, and highlight the practical importance of paying attention to team-level states and processes such as team goal orientation and team procrastination.

  16. A Puzzle Unsolved: Failure to Observe Different Effects of God and Religion Primes on Intergroup Attitudes

    PubMed Central

    Ramsay, Jonathan E.; Tong, Eddie M. W.; Pang, Joyce S.; Chowdhury, Avijit

    2016-01-01

    Religious priming has been found to have both positive and negative consequences, and recent research suggests that the activation of God-related and community-related religious cognitions may cause outgroup prosociality and outgroup derogation respectively. The present research sought to examine whether reminders of God and religion have different effects on attitudes towards ingroup and outgroup members. Over two studies, little evidence was found for different effects of these two types of religious primes. In study 1, individuals primed with the words “religion”, “God” and a neutral control word evaluated both ingroup and outgroup members similarly, although a marginal tendency towards more negative evaluations of outgroup members by females exposed to religion primes was observed. In study 2, no significant differences in attitudes towards an outgroup member were observed between the God, religion, and neutral priming conditions. Furthermore, the gender effect observed in study 1 did not replicate in this second study. Possible explanations for these null effects are discussed. PMID:26812526

  17. A Puzzle Unsolved: Failure to Observe Different Effects of God and Religion Primes on Intergroup Attitudes.

    PubMed

    Ramsay, Jonathan E; Tong, Eddie M W; Pang, Joyce S; Chowdhury, Avijit

    2016-01-01

    Religious priming has been found to have both positive and negative consequences, and recent research suggests that the activation of God-related and community-related religious cognitions may cause outgroup prosociality and outgroup derogation respectively. The present research sought to examine whether reminders of God and religion have different effects on attitudes towards ingroup and outgroup members. Over two studies, little evidence was found for different effects of these two types of religious primes. In study 1, individuals primed with the words "religion", "God" and a neutral control word evaluated both ingroup and outgroup members similarly, although a marginal tendency towards more negative evaluations of outgroup members by females exposed to religion primes was observed. In study 2, no significant differences in attitudes towards an outgroup member were observed between the God, religion, and neutral priming conditions. Furthermore, the gender effect observed in study 1 did not replicate in this second study. Possible explanations for these null effects are discussed.

  18. Stigma by association and family burden among family members of people with mental illness: the mediating role of coping.

    PubMed

    van der Sanden, Remko L M; Pryor, John B; Stutterheim, Sarah E; Kok, Gerjo; Bos, Arjan E R

    2016-09-01

    When someone has a mental illness, family members may share the experience of stigma. Past research has established that family members' experiences of stigma by association predict psychological distress and lower quality-of-life. The present study, conducted with 503 family members of people with mental illness examined the prevalence of 14 different coping strategies. Of greater importance, we examined the role of these coping strategies as mediators of the relationships between stigma by association and family burden, on the one hand, and outcomes, such as psychological distress and quality-of-life, on the other. The results showed that both perceived stigma by association and family burden are associated with greater psychological distress and lower quality-of-life, and that most coping strategies mediate these relationships. Adaptive coping strategies were related to reduced negative outcomes, while most maladaptive coping strategies were related to enhanced negative outcomes. Implications for intervention development are discussed.

  19. (Net)Working out: social capital in a private health club.

    PubMed

    Crossley, Nick

    2008-09-01

    In Bowling Alone Robert Putnam considers the possibility that the growth of private health clubs and the rising rates of membership to such clubs might represent a counter-trend to his thesis on the decline in social capital. In this paper I explore this idea using ethnographic data and social network analysis. I show both that and how networks form in health clubs and I discuss the ways in which these networks constitute social capital for their members. In addition, however, I explore the 'dark side' of this form of social capital. I argue that high integration amongst some members of a fitness class can generate a power differential between those members and other, less integrated members who experience this negatively. Furthermore, with an eye on Burt's (2005) important thesis on brokerage and closure, I argue that brokerage between relatively closed clusters of agents can lead to inter-group rivalry and conflict, which, in turn, is experienced negatively by those involved.

  20. 27 CFR 10.4 - Jurisdictional limits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) General. The regulations in this part apply where: (1) The industry member induces a trade buyer to purchase distilled spirits, wine, or malt beverages from such industry member to the exclusion, in whole or... industry member engages in the practice of using an inducement to such an extent as substantially to...

  1. 34 CFR 300.308 - Additional group members.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Additional group members. 300.308 Section 300.308 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION... § 300.308 Additional group members. The determination of whether a child suspected of having a specific...

  2. 34 CFR 300.308 - Additional group members.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Additional group members. 300.308 Section 300.308 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION... § 300.308 Additional group members. The determination of whether a child suspected of having a specific...

  3. 34 CFR 300.308 - Additional group members.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Additional group members. 300.308 Section 300.308 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION... § 300.308 Additional group members. The determination of whether a child suspected of having a specific...

  4. 49 CFR 1544.230 - Fingerprint-based criminal history records checks (CHRC): Flightcrew members.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Fingerprint-based criminal history records checks (CHRC): Flightcrew members. 1544.230 Section 1544.230 Transportation Other Regulations Relating to... Fingerprint-based criminal history records checks (CHRC): Flightcrew members. (a) Scope. This section applies...

  5. 49 CFR 1544.230 - Fingerprint-based criminal history records checks (CHRC): Flightcrew members.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Fingerprint-based criminal history records checks (CHRC): Flightcrew members. 1544.230 Section 1544.230 Transportation Other Regulations Relating to... Fingerprint-based criminal history records checks (CHRC): Flightcrew members. (a) Scope. This section applies...

  6. 49 CFR 1544.230 - Fingerprint-based criminal history records checks (CHRC): Flightcrew members.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Fingerprint-based criminal history records checks (CHRC): Flightcrew members. 1544.230 Section 1544.230 Transportation Other Regulations Relating to... Fingerprint-based criminal history records checks (CHRC): Flightcrew members. (a) Scope. This section applies...

  7. 49 CFR 1544.230 - Fingerprint-based criminal history records checks (CHRC): Flightcrew members.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Fingerprint-based criminal history records checks (CHRC): Flightcrew members. 1544.230 Section 1544.230 Transportation Other Regulations Relating to... Fingerprint-based criminal history records checks (CHRC): Flightcrew members. (a) Scope. This section applies...

  8. 49 CFR 1544.230 - Fingerprint-based criminal history records checks (CHRC): Flightcrew members.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Fingerprint-based criminal history records checks (CHRC): Flightcrew members. 1544.230 Section 1544.230 Transportation Other Regulations Relating to... Fingerprint-based criminal history records checks (CHRC): Flightcrew members. (a) Scope. This section applies...

  9. The indirect effect of emotion dysregulation in terms of negative affect and smoking-related cognitive processes.

    PubMed

    Johnson, Adrienne L; McLeish, Alison C

    2016-02-01

    Although negative affect is associated with a number of smoking-related cognitive processes, the mechanisms underlying these associations have yet to be examined. The current study sought to examine the indirect effect of emotion regulation difficulties in terms of the association between negative affect and smoking-related cognitive processes (internal barriers to cessation, negative affect reduction smoking motives, negative affect reduction smoking outcome expectancies). Participants were 126 daily cigarette smokers (70.4% male, Mage=36.5years, SD=13.0; 69.8% Caucasian) who smoked an average of 18.5 (SD=8.7) cigarettes per day and reported moderate nicotine dependence. Formal mediation analyses were conducted using PROCESS to examine the indirect effect of negative affect on internal barriers to cessation and negative affect reduction smoking motives and outcome expectancies through emotion regulation difficulties. After accounting for the effects of gender, daily smoking rate, and anxiety sensitivity, negative affect was indirectly related to internal barriers to cessation and negative affect reduction smoking motives through emotion regulation difficulties. There was no significant indirect effect for negative affect reduction smoking outcome expectancies. These findings suggest that greater negative affect is associated with a desire to smoke to reduce this negative affect and perceptions that quitting smoking will be difficult due to negative emotions because of greater difficulties managing these negative emotions. Thus, emotion regulation difficulties may be an important target for smoking cessation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Concerns raised over new EPA members

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2017-12-01

    The Trump administration has nominated three new members of the Environmental Protection Agency (EPA) who critics say are undermining laws and “pampering” the industries they are supposed to regulate.

  11. Dispositional mindfulness and reward motivated eating: The role of emotion regulation and mental habit.

    PubMed

    Fisher, Naomi R; Mead, Bethan R; Lattimore, Paul; Malinowski, Peter

    2017-11-01

    Evidence regarding the effectiveness of mindfulness based interventions (MBIs) for eating disorders, weight management and food craving is emerging and further studies are required to understand the underlying mechanisms of MBIs in these domains. The current study was designed to establish the role of specific mechanisms underlying the putative relationship between mindfulness and reward motivated eating. We predicted that mindfulness would be negatively related to features of reward motivated eating and that this association would be mediated by emotion regulation and habitual negative self-thinking. A cross-sectional survey measuring uncontrolled and emotional eating, mindfulness, emotion regulation and habitual negative self-thinking was completed by female and male meditators and non-meditators (N = 632). Lower levels of dispositional mindfulness were associated with difficulties in emotion regulation, habitual negative self-thinking and both emotional and uncontrolled eating. Difficulties in emotion regulation significantly mediated the mindfulness-uncontrolled eating relationship. Habitual negative self-thinking significantly mediated the mindfulness-emotional eating relationship. Participants with meditation experience reported greater levels of dispositional mindfulness, fewer difficulties with emotion regulation and habitual negative self-thinking and reduced uncontrolled eating tendencies, compared to non-meditators. The findings suggest that MBIs designed to change reward motivated eating and weight control should focus on emotion regulation and mental habits as underlying mechanisms. Copyright © 2017. Published by Elsevier Ltd.

  12. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuloaga, R.; Fuentes, E.N.; Molina, A.

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1more » during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.« less

  13. Negative Treatment by Family as a Predictor of Depressive Symptoms, Life Satisfaction, Suicidality, and Tobacco/Alcohol Use in Vietnamese Sexual Minority Women.

    PubMed

    Nguyen, Trang Quynh; Bandeen-Roche, Karen; German, Danielle; Nguyen, Nam T T; Bass, Judith K; Knowlton, Amy R

    2016-10-01

    Research linking family rejection and health outcomes in sexual minority people is mostly limited to North America. We assessed the associations between negative treatment by family members and depressive symptoms, life satisfaction, suicidality, and tobacco/alcohol use in sexual minority women (SMW) in Viet Nam. Data were from an anonymous internet survey (n = 1936). Latent class analysis characterized patterns of negative treatment by family members experienced by respondents. Latent class with distal outcome modeling was used to regress depressive symptoms, life satisfaction, suicidality, and tobacco/alcohol use on family treatment class, controlling for predictors of family treatment and for two other types of sexual prejudice. Five latent family treatment classes were extracted, including four negative classes representing varying patterns of negative family treatment. Overall, more than one negative class predicted lower life satisfaction, more depressive symptoms, and higher odds of attempted suicide (relative to the non-negative class), supporting the minority stress hypothesis that negative family treatment is predictive of poorer outcomes. Only the most negative class had elevated alcohol use. The association between family treatment and smoking status was not statistically significant. The most negative class, unexpectedly, did not have the highest odds of having attempted suicide, raising a question about survivor bias. This population requires public health attention, with emphasis placed on interventions targeting the family to promote acceptance and to prevent negative treatment, and interventions supporting those SMW who encounter the worst types of negative family treatment.

  14. Special home adaptation grants for members of the Armed Forces and veterans with certain vision impairment. Final rule.

    PubMed

    2014-09-12

    The Department of Veterans Affairs (VA) is issuing a final rule to amend its adjudication regulations regarding special home adaptation grants for members of the Armed Forces and veterans with certain vision impairment. This regulatory amendment is necessary to conform the regulations to changes mandated in the Honoring America's Veterans and Caring for Camp Lejeune Families Act of 2012.

  15. 34 CFR 403.188 - What is a State's responsibility for the cost of services and activities for members of special...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... services and activities for members of special populations? 403.188 Section 403.188 Education Regulations... activities for members of special populations? A State is not required to use non-Federal funds to pay the cost of services and activities that it provides to members of special populations pursuant to § 403.32...

  16. 34 CFR 403.188 - What is a State's responsibility for the cost of services and activities for members of special...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... services and activities for members of special populations? 403.188 Section 403.188 Education Regulations... activities for members of special populations? A State is not required to use non-Federal funds to pay the cost of services and activities that it provides to members of special populations pursuant to § 403.32...

  17. 34 CFR 403.188 - What is a State's responsibility for the cost of services and activities for members of special...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... services and activities for members of special populations? 403.188 Section 403.188 Education Regulations... activities for members of special populations? A State is not required to use non-Federal funds to pay the cost of services and activities that it provides to members of special populations pursuant to § 403.32...

  18. 34 CFR 403.188 - What is a State's responsibility for the cost of services and activities for members of special...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... services and activities for members of special populations? 403.188 Section 403.188 Education Regulations... activities for members of special populations? A State is not required to use non-Federal funds to pay the cost of services and activities that it provides to members of special populations pursuant to § 403.32...

  19. Mood regulation and quality of life in social anxiety disorder: An examination of generalized expectancies for negative mood regulation

    PubMed Central

    Sung, Sharon C.; Porter, Eliora; Robinaugh, Donald J.; Marks, Elizabeth H.; Marques, Luana M.; Otto, Michael W.; Pollack, Mark H.; Simon, Naomi M.

    2014-01-01

    The present study examined negative mood regulation expectancies, anxiety symptom severity, and quality of life in a sample of 167 patients with social anxiety disorder (SAD) and 165 healthy controls with no DSM-IV Axis I disorders. Participants completed the Generalized Expectancies for Negative Mood Regulation Scale (NMR), the Beck Anxiety Inventory, and the Quality of Life Enjoyment and Satisfaction Questionnaire. SAD symptom severity was assessed using the Liebowitz Social Anxiety Scale. Individuals with SAD scored significantly lower than controls on the NMR. Among SAD participants, NMR scores were negatively correlated with anxiety symptoms and SAD severity, and positively correlated with quality of life. NMR expectancies positively predicted quality of life even after controlling for demographic variables, comorbid diagnoses, anxiety symptoms, and SAD severity. Individuals with SAD may be less likely to engage in emotion regulating strategies due to negative beliefs regarding their effectiveness, thereby contributing to poorer quality of life. PMID:22343166

  20. Exploring the role of cognitive and structural forms of social capital in HIV/AIDS trends in the Kagera region of Tanzania - a grounded theory study.

    PubMed

    Frumence, Gasto; Eriksson, Malin; Nystrom, Lennarth; Killewo, Japhet; Emmelin, Maria

    2011-04-01

    The article presents a synthesis of data from three village case studies focusing on how structural and cognitive social capital may have influenced the progression of the HIV epidemic in the Kagera region of Tanzania. Grounded theory was used to develop a theoretical model describing the possible links between structural and cognitive social capital and the impact on sexual health behaviours. Focus group discussions and key informant interviews were carried out to represent the range of experiences of existing social capital. Both structural and cognitive social capital were active avenues for community members to come together, empower each other, and develop norms, values, trust and reciprocal relations. This empowerment created an enabling environment in which members could adopt protective behaviours against HIV infection. On the one hand, we observed that involvement in formal and informal organisations resulted in a reduction of numbers of sexual partners, led people to demand abstinence from sexual relations until marriage, caused fewer opportunities for casual sex, and gave individuals the agency to demand the use of condoms. On the other hand, strict membership rules and regulations excluded some members, particularly excessive alcohol drinkers and debtors, from becoming members of the social groups, which increased their vulnerability in terms of exposure to HIV. Social gatherings (especially those organised during the night) were also found to increase youths' risk of HIV infection through instances of unsafe sex. We conclude that even though social capital may at times have negative effects on individuals' HIV-prevention efforts, this study provides initial evidence that social capital is largely protective through empowering vulnerable groups such as women and the poor to protect against HIV infection and by promoting protective sexual behaviours.

  1. When managers and their teams disagree: a longitudinal look at the consequences of differences in perceptions of organizational support.

    PubMed

    Bashshur, Michael R; Hernández, Ana; González-Romá, Vicente

    2011-05-01

    The authors argue that over time the difference between team members' perception of the organizational support received by the team (or team climate for organizational support) and their manager's perception of the organizational support received by the team has an effect on important outcomes and emergent states, such as team performance and team positive and negative affect above and beyond the main effects of climate perceptions themselves. With a longitudinal sample of 179 teams at Time 1 and 154 teams at Time 2, the authors tested their predictions using a combined polynomial regression and response surface analyses approach. The results supported the authors' predictions. When team managers and team members' perceptions of organizational support were high and in agreement, outcomes were maximized. When team managers and team members disagreed, team negative affect increased and team performance and team positive affect decreased. The negative effects of disagreement were most amplified when managers perceived that the team received higher levels of support than did the team itself.

  2. 19 CFR 122.76 - Shipper's Export Declarations and inspection certificates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members...

  3. 19 CFR 122.72 - Aircraft departing with commercial export cargo.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members...

  4. 7 CFR 927.20 - Establishment and membership.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... WASHINGTON Order Regulating Handling Administrative Bodies § 927.20 Establishment and membership. There are... members and alternates, and may change the composition by changing the ratio of members, including their...

  5. 7 CFR 927.20 - Establishment and membership.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... WASHINGTON Order Regulating Handling Administrative Bodies § 927.20 Establishment and membership. There are... members and alternates, and may change the composition by changing the ratio of members, including their...

  6. 7 CFR 927.20 - Establishment and membership.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... WASHINGTON Order Regulating Handling Administrative Bodies § 927.20 Establishment and membership. There are... members and alternates, and may change the composition by changing the ratio of members, including their...

  7. 7 CFR 927.20 - Establishment and membership.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... WASHINGTON Order Regulating Handling Administrative Bodies § 927.20 Establishment and membership. There are... members and alternates, and may change the composition by changing the ratio of members, including their...

  8. The neural correlates of regulating positive and negative emotions in medication-free major depression

    PubMed Central

    Greening, Steven G.; Osuch, Elizabeth A.; Williamson, Peter C.

    2014-01-01

    Depressive cognitive schemas play an important role in the emergence and persistence of major depressive disorder (MDD). The current study adapted emotion regulation techniques to reflect elements of cognitive behavioural therapy (CBT) and related psychotherapies to delineate neurocognitive abnormalities associated with modulating the negative cognitive style in MDD. Nineteen non-medicated patients with MDD and 19 matched controls reduced negative or enhanced positive feelings elicited by emotional scenes while undergoing functional magnetic resonance imaging. Although both groups showed significant emotion regulation success as measured by subjective ratings of affect, the controls were significantly better at modulating both negative and positive emotion. Both groups recruited regions of dorsolateral prefrontal cortex and ventrolateral prefrontal cortex (VLPFC) when regulating negative emotions. Only in controls was this accompanied by reduced activity in sensory cortices and amygdala. Similarly, both groups showed enhanced activity in VLPFC and ventral striatum when enhancing positive affect; however, only in controls was ventral striatum activity correlated with regulation efficacy. The results suggest that depression is associated with both a reduced capacity to achieve relief from negative affect despite recruitment of ventral and dorsal prefrontal cortical regions implicated in emotion regulation, coupled with a disconnect between activity in reward-related regions and subjective positive affect. PMID:23482626

  9. Inhibiting NANOG Enhances Efficacy of BH3 Mimetics | Center for Cancer Research

    Cancer.gov

    BCL-2 family proteins regulate cell fate. Some members promote cell survival while others induce programmed cell death. A third group, the BH3-only members, modulates the activities of the rest of the family. Some cancers, including those of the colon and rectum, express elevated levels of pro-survival BCL-2 members, which may protect cancer cells from chemotherapy. BH3 mimetics are novel therapies that target and inhibit these pro-survival family members. Two in particular, ABT-737 and ABT-199, have activity against multiple cancer types, though neither targets the protein MCL-1, which is related to the BCL-2 family and causes resistance to the BH3 mimetics. Recent studies have revealed that the embryonic regulator NANOG and the related gene NANOGP8 can indirectly regulate MCL-1 via the kinase AKT. Abid Mattoo, Ph.D., J. Milburn Jessup, M.D., and colleagues of CCR’s Laboratory of Experimental Carcinogenesis, hypothesized that combining NANOG or NANOGP8 inhibition with a BH3 mimetic would enhance the latter’s anticancer activity.

  10. Child cortisol moderates the association between family routines and emotion regulation in low-income children

    PubMed Central

    Miller, Alison L.; Song, Ju-Hyun; Sturza, Julie; Lumeng, Julie C.; Rosenblum, Katherine; Kaciroti, Niko; Vazquez, Delia M.

    2018-01-01

    Biological and social influences both shape emotion regulation. In 380 low-income children, we tested whether biological stress profile (cortisol) moderated the association among positive and negative home environment factors (routines; chaos) and emotion regulation (negative lability; positive regulation). Children (M age = 50.6, SD = 6.4 months) provided saliva samples to assess diurnal cortisol parameters across 3 days. Parents reported on home environment and child emotion regulation. Structural equation modeling was used to test whether cortisol parameters moderated associations between home environment and child emotion regulation. Results showed that home chaos was negatively associated with emotion regulation outcomes; cortisol did not moderate the association. Child cortisol level moderated the routines-emotion regulation association such that lack of routine was most strongly associated with poor emotion regulation among children with lower cortisol output. Findings suggest that underlying child stress biology may shape response to environmental influences. PMID:27594200

  11. The miR9863 Family Regulates Distinct Mla Alleles in Barley to Attenuate NLR Receptor-Triggered Disease Resistance and Cell-Death Signaling

    PubMed Central

    Liu, Jie; Cheng, Xiliu; Liu, Da; Xu, Weihui; Wise, Roger; Shen, Qian-Hua

    2014-01-01

    Barley (Hordeum vulgare L.) Mla alleles encode coiled-coil (CC), nucleotide binding, leucine-rich repeat (NB-LRR) receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP) in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs) and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley. PMID:25502438

  12. Children's Health Protection Advisory Committee (CHPAC)

    EPA Pesticide Factsheets

    Voluntary members are external researchers, academicians, health care providers, environmentalists, state or tribal government employees, and members of the public. They advise EPA on regulations, research, and communications related to children's health.

  13. 19 CFR 122.71 - Aircraft departing with no commercial export cargo.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members...

  14. 19 CFR 122.73 - General declaration and air cargo manifest.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial...

  15. Glycoprotein interactions in paramyxovirus fusion

    PubMed Central

    Iorio, Ronald M; Melanson, Vanessa R; Mahon, Paul J

    2009-01-01

    The Paramyxoviridae are enveloped, negative-stranded RNA viruses, some of which recognize sialic acid-containing receptors, while others recognize specific proteinaceous receptors. The major cytopathic effect of paramyxovirus infection is membrane fusion-induced syncytium formation. Paramyxoviruses are unusual in that the receptor-binding and fusion-promoting activities reside on two different spike structures, the attachment and fusion glycoproteins, respectively. For most paramyxoviruses, this distribution of functions requires a mechanism by which the two processes can be linked for the promotion of fusion. This is accomplished by a virus-specific interaction between the two proteins. An increasing body of evidence supports the notion that members of this family of viruses utilize this glycoprotein interaction in different ways in order to mediate the regulation of the fusion protein activation, depending on the type of receptor utilized by the virus. PMID:20161127

  16. Do intergroup conflicts necessarily result from outgroup hate?

    PubMed

    Mäs, Michael; Dijkstra, Jacob

    2014-01-01

    We developed a new experimental design to test whether or not individuals engage in conflict between social groups because they seek to harm outgroup members. Challenging prominent social psychological theories, we did not find support for such negative social preferences. Nevertheless, subjects heavily engaged in group conflict. Results support the argument that processes that act within social groups motivate engagement in conflict between groups even in the absence of negative social preferences. In particular, we found that "cheap talk" communication between group members fuels conflict. Analyses did not support the notion that the effect of communication results from guilt-aversion processes.

  17. 7 CFR 906.28 - Procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Committee § 906.28 Procedure. Ten members of the committee shall be necessary to constitute a quorum, six of whom shall be producer members. Ten affirmative...

  18. Children's Health Protection Advisory Committee Letters Table

    EPA Pesticide Factsheets

    Voluntary members are external researchers, academicians, health care providers, environmentalists, state or tribal government employees, and members of the public. They advise EPA on regulations, research, and communications related to children's health.

  19. 12 CFR 215.8 - Records of member banks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Records of member banks. 215.8 Section 215.8 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM LOANS TO EXECUTIVE OFFICERS, DIRECTORS, AND PRINCIPAL SHAREHOLDERS OF MEMBER BANKS (REGULATION O) § 215.8 Records of...

  20. 27 CFR 6.4 - Jurisdictional limits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... regulations in this part apply where: (1) The industry member induces a retailer to purchase distilled spirits, wine, or malt beverages from such industry member to the exclusion in whole or in part of products sold... inducement is made in the course of interstate or foreign commerce; or (ii) The industry member engages in...

  1. 45 CFR 73.735-506 - Gifts and decorations from foreign governments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... designee. (e) Members of an employee's family and household are also subject to the regulations in this section. A member of an employee's family and household is a relative by blood, marriage or adoption who is a resident of the household. However, if a member of an employee's family and household is...

  2. 45 CFR 73.735-506 - Gifts and decorations from foreign governments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... designee. (e) Members of an employee's family and household are also subject to the regulations in this section. A member of an employee's family and household is a relative by blood, marriage or adoption who is a resident of the household. However, if a member of an employee's family and household is...

  3. 45 CFR 73.735-506 - Gifts and decorations from foreign governments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... designee. (e) Members of an employee's family and household are also subject to the regulations in this section. A member of an employee's family and household is a relative by blood, marriage or adoption who is a resident of the household. However, if a member of an employee's family and household is...

  4. 45 CFR 73.735-506 - Gifts and decorations from foreign governments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... designee. (e) Members of an employee's family and household are also subject to the regulations in this section. A member of an employee's family and household is a relative by blood, marriage or adoption who is a resident of the household. However, if a member of an employee's family and household is...

  5. 45 CFR 73.735-506 - Gifts and decorations from foreign governments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... designee. (e) Members of an employee's family and household are also subject to the regulations in this section. A member of an employee's family and household is a relative by blood, marriage or adoption who is a resident of the household. However, if a member of an employee's family and household is...

  6. 76 FR 50328 - Request for Citizens Coinage Advisory Committee Membership Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... the CCAC. CCAC members are not paid for their time or services, but, consistent with Federal Travel Regulations, members are reimbursed for their travel and lodging expenses to attend meetings. Members are.... Meetings of the CCAC are open to the public and are held approximately six to eight times per year. The...

  7. 29 CFR 1202.14 - Labor members of Adjustment Board.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Labor members of Adjustment Board. 1202.14 Section 1202.14 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.14 Labor members of Adjustment Board. Section 3, First, (f) of title I of the Railway Labor Act relating to...

  8. 26 CFR 56.4911-10 - Members of a limited affiliated group of organizations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Thus, as modified by this section, the regulations under sections 501(h) and 4911 apply to electing... 501(h) and 4911 to controlling member organizations (within the meaning of paragraph (c) of this...) Grass roots expenditures. A controlling member organization for which the expenditure test election is...

  9. 26 CFR 56.4911-10 - Members of a limited affiliated group of organizations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Thus, as modified by this section, the regulations under sections 501(h) and 4911 apply to electing... 501(h) and 4911 to controlling member organizations (within the meaning of paragraph (c) of this...) Grass roots expenditures. A controlling member organization for which the expenditure test election is...

  10. 26 CFR 56.4911-10 - Members of a limited affiliated group of organizations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Thus, as modified by this section, the regulations under sections 501(h) and 4911 apply to electing... 501(h) and 4911 to controlling member organizations (within the meaning of paragraph (c) of this... controlling member organization that has the expenditure test election in effect for its taxable year. This...

  11. 26 CFR 56.4911-10 - Members of a limited affiliated group of organizations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Thus, as modified by this section, the regulations under sections 501(h) and 4911 apply to electing... 501(h) and 4911 to controlling member organizations (within the meaning of paragraph (c) of this... controlling member organization that has the expenditure test election in effect for its taxable year. This...

  12. 26 CFR 56.4911-10 - Members of a limited affiliated group of organizations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Thus, as modified by this section, the regulations under sections 501(h) and 4911 apply to electing... 501(h) and 4911 to controlling member organizations (within the meaning of paragraph (c) of this... controlling member organization that has the expenditure test election in effect for its taxable year. This...

  13. 76 FR 12109 - Federal Home Loan Bank Members Selected for Community Support Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... the 2010 second round review cycle under the FHFA's community support requirements regulation. This... Support Statements to FHFA. DATES: Bank members selected for the review cycle under the FHFA's community... April 18, 2011. ADDRESSES: Bank members selected for the 2010 second round review cycle under the FHFA's...

  14. 76 FR 35434 - Federal Home Loan Bank Members Selected for Community Support Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... the 2010 third round review cycle under the FHFA's community support requirements regulation. This... Support Statements to FHFA. DATES: Bank members selected for the review cycle under the FHFA's community... August 1, 2011. ADDRESSES: Bank members selected for the 2010 third round review cycle under the FHFA's...

  15. The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9.

    PubMed

    Bertrand, Carol A; Mitra, Shalini; Mishra, Sanjay K; Wang, Xiaohui; Zhao, Yu; Pilewski, Joseph M; Madden, Dean R; Frizzell, Raymond A

    2017-06-01

    Several members of the SLC26A family of anion transporters associate with CFTR, forming complexes in which CFTR and SLC26A functions are reciprocally regulated. These associations are thought to be facilitated by PDZ scaffolding interactions. CFTR has been shown to be positively regulated by NHERF-1, and negatively regulated by CAL in airway epithelia. However, it is unclear which PDZ-domain protein(s) interact with SLC26A9, a SLC26A family member found in airway epithelia. We have previously shown that primary, human bronchial epithelia (HBE) from non-CF donors exhibit constitutive anion secretion attributable to SLC26A9. However, constitutive anion secretion is absent in HBE from CF donors. We examined whether changes in SLC26A9 constitutive activity could be attributed to a loss of CFTR trafficking, and what role PDZ interactions played. HEK293 coexpressing SLC26A9 with the trafficking mutant F508del CFTR exhibited a significant reduction in constitutive current compared with cells coexpressing SLC26A9 and wt CFTR. We found that SLC26A9 exhibits complex glycosylation when coexpressed with F508del CFTR, but its expression at the plasma membrane is decreased. SLC26A9 interacted with both NHERF-1 and CAL, and its interaction with both significantly increased with coexpression of wt CFTR. However, coexpression with F508del CFTR only increased SLC26A9's interaction with CAL. Mutation of SLC26A9's PDZ motif decreased this association with CAL, and restored its constitutive activity. Correcting aberrant F508del CFTR trafficking in CF HBE with corrector VX-809 also restored SLC26A9 activity. We conclude that when SLC26A9 is coexpressed with F508del CFTR, its trafficking defect leads to a PDZ motif-sensitive intracellular retention of SLC26A9. Copyright © 2017 the American Physiological Society.

  16. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators.

    PubMed

    Le Mercier, Isabelle; Lines, J Louise; Noelle, Randolph J

    2015-01-01

    In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.

  17. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators

    PubMed Central

    Le Mercier, Isabelle; Lines, J. Louise; Noelle, Randolph J.

    2015-01-01

    In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy. PMID:26347741

  18. Up-regulation of heat shock proteins is essential for cold survival during insect diapause

    PubMed Central

    Rinehart, Joseph P.; Li, Aiqing; Yocum, George D.; Robich, Rebecca M.; Hayward, Scott A. L.; Denlinger, David L.

    2007-01-01

    Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly, most, but not all, of the fly's heat shock proteins (Hsps) are up-regulated. The diapause up-regulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TCP-1), at least four members of the small Hsp family, and a small Hsp pseudogene. Expression of an Hsp70 cognate, Hsc70, is uninfluenced by diapause, and Hsp90 is actually down-regulated during diapause, thus diapause differs from common stress responses that elicit synchronous up-regulation of all Hsps. Up-regulation of the Hsps begins at the onset of diapause, persists throughout the overwintering period, and ceases within hours after the fly receives the signal to reinitiate development. The up-regulation of Hsps appears to be common to diapause in species representing diverse insect orders including Diptera, Lepidoptera, Coleoptera, and Hymenoptera as well as in diapauses that occur in different developmental stages (embryo, larva, pupa, adult). Suppressing expression of Hsp23 and Hsp70 in flies by using RNAi did not alter the decision to enter diapause or the duration of diapause, but it had a profound effect on the pupa's ability to survive low temperatures. We thus propose that up-regulation of Hsps during diapause is a major factor contributing to cold-hardiness of overwintering insects. PMID:17522254

  19. The proposed EU-regulation on clinical trials on medicinal products: an unethical proposal?

    PubMed

    Heringa, Jilles; Dute, Joseph

    2013-09-01

    The Commission has proposed a regulation 'on clinical trials on medicinal products for human use' to introduce one regulatory framework for clinical trials in the European Union. This regulation should replace the current clinical trials directive (2001/20/EC). In this article we describe and critically review the main provisions of the proposed regulation. We assess the consequences for a sound authorisation procedure of clinical trials and the level of protection for human subjects. We note that the proposed regulation is inconsistent with applicable international legal documents, such as the Biomedicine Convention and the Declaration of Helsinki. We conclude that the proposed regulation does not ensure a "high level of human health protection"--required by its legal basis in the TFEU--because it may force Member States concerned to accept a reporting Member States' approval of--in their estimation--an unethical clinical trial.

  20. Blind Spots: Small Rural Communities and High Turnover in the Superintendency

    ERIC Educational Resources Information Center

    Kamrath, Barry; Brunner, C. Cryss

    2014-01-01

    This article examines high superintendency turnover through rural community members' perceptions of such attrition in their districts. Findings indicate that community members perceived high turnover as negative and believed that turnover was created by financial pressures, rural community resistance to educational trends, and bias against…

  1. Conducting an Academic Audit

    ERIC Educational Resources Information Center

    Knowles, Paul D.

    2010-01-01

    Frustrated with years of below-average performance on standardized tests, high dropout rates and a negative image of its schools, the board of education in Maine School Administrative District 11, a 2,200-student school district in central Maine, charged a 15-member committee of educators, school board members and community representatives to…

  2. The Effect of Mortality Salience on Implicit Bias

    ERIC Educational Resources Information Center

    Bradley, Kristopher I.; Kennison, Shelia M.; Burke, Amanda L.; Chaney, John M.

    2012-01-01

    Previous research in terror management theory has shown that when individuals are reminded of their mortality, negative evaluations of out-group members increase. This previous research has used a variety of methods to investigate the change in attitudes toward out-group members. These methods generally permit participants time to consciously…

  3. Good Silences, Bad Silences, Unforgivable Silences

    ERIC Educational Resources Information Center

    Onwuachi-Willig, Angela

    2012-01-01

    For an untenured faculty member, perception is everything. For outsiders, such as women of color, the task of negotiating and performing identity can prove rather burdensome because of the need to counter negative stereotypes based on race, gender, and class. For many junior faculty members, a recurring conflict is the longstanding tension between…

  4. Promotion of family integrity in the acute care setting: a review of the literature.

    PubMed

    Van Horn, Elizabeth R; Kautz, Donald

    2007-01-01

    The acute illness of 1 family member can then negatively affect all family members and lead to the disruption of family functioning and integrity. During the patient's hospitalization, nurses are in a key position to support family members, maintain family integrity, and ready them for assuming the role of caretaker during the patient's recovery and management of health at home. This article reviews current research findings that provide empirical support for activities that promote family integrity. Strategies for nurses to support family members during the hospitalization of an adult family member and suggestions for future research are provided.

  5. Targeted σ factor turnover inserts negative control into a positive feedback loop

    PubMed Central

    Donohue, Timothy J.

    2009-01-01

    Summary Since their classification as members of the σ70 super-family, Group IV alternative σ factors have been found to control gene expression in response to diverse environmental or stress signals. Activity of the Streptomyces coelicolor Group IV family member, σR (SigR), is increased by changes in the oxidation-reduction state of cytoplasmic disulphide bonds. Once released by its cognate anti-σ factor RsrA, σR activates expression of gene products that help cells reduce cytoplasmic disulphide bonds. In this issue of Molecular Microbiology, Kim and co-workers provide new insights into positive and negative control of σR activity. The authors show that a transcript derived from the inducible σR-dependent sigRrsrA p2 promoter operon encodes a σR protein of a higher molecular weight (termed σR′) than is found in uninduced cells. One major difference between σR′ and the smaller σR protein found in uninduced cells is the rapid proteolysis of σR′ by the ClpP1/P2 protease system. The genes for the ClpP1/ClpP2 protease subunits are themselves members of the σR regulon. The newly identified positive (σR′ synthesis) and negative control (selective σR′ turnover) aspects of this circuit are either found or predicted to exist in other related Group IV σ factor family members. PMID:19682265

  6. 7 CFR 989.29 - Initial members and nomination of successor members.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Order Regulating Handling Raisin Administrative... acquisitions during the preceding crop year must have produced grapes which were made into raisins in the...

  7. 7 CFR 989.29 - Initial members and nomination of successor members.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Order Regulating Handling Raisin Administrative... acquisitions during the preceding crop year must have produced grapes which were made into raisins in the...

  8. 7 CFR 989.29 - Initial members and nomination of successor members.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Order Regulating Handling Raisin Administrative... acquisitions during the preceding crop year must have produced grapes which were made into raisins in the...

  9. 7 CFR 989.29 - Initial members and nomination of successor members.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Order Regulating Handling Raisin Administrative... acquisitions during the preceding crop year must have produced grapes which were made into raisins in the...

  10. Mothers' responses to children's negative emotions and child emotion regulation: the moderating role of vagal suppression.

    PubMed

    Perry, Nicole B; Calkins, Susan D; Nelson, Jackie A; Leerkes, Esther M; Marcovitch, Stuart

    2012-07-01

    The current study examined the moderating effect of children's cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and nonsupportive responses) and children's emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children's negative emotions and children's regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children's vagal suppression moderated the association between mothers' nonsupportive emotion socialization and children's emotion regulation behaviors such that nonsupportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children's emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against nonsupportive emotion socialization. Copyright © 2011 Wiley Periodicals, Inc.

  11. Self-Compassion and the Self-Regulation of Exercise: Reactions to Recalled Exercise Setbacks.

    PubMed

    Semenchuk, Brittany N; Strachan, Shaelyn M; Fortier, Michelle

    2018-02-01

    Self-compassion facilitates health behavior self-regulation; few studies have examined self-compassion and exercise. This online, cross-sectional study investigated self-compassion's relationship with exercise self-regulation of an exercise setback. Adults (N = 105) who had experienced an exercise setback within the last 6 months completed baseline measures, recalled an exercise setback, and completed questionnaires assessing self-regulation in this context. Self-compassion associated with self-determined motivations and exercise goal reengagement, and negatively related to extrinsic motivations, state rumination, and negative affect. Self-compassion predicted unique variance, beyond self-esteem, in exercise goal reengagement, external regulation, state rumination, and negative affect experienced after an exercise setback. Self-compassion and self-esteem had unique relationships with goal reengagement, state rumination, and situational motivation, while having a complementary relationship with negative affect. This research adds to the few studies that examine the role of self-compassion in exercise self-regulation by examining how self-compassion and self-esteem relate to reactions to a recalled exercise setback.

  12. Mothers’ Responses to Children’s Negative Emotions and Child Emotion Regulation: The Moderating Role of Vagal Suppression

    PubMed Central

    Perry, Nicole B.; Calkins, Susan D.; Nelson, Jackie A.; Leerkes, Esther M.; Marcovitch, Stuart

    2011-01-01

    The current study examined the moderating effect of children’s cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and non-supportive responses) and children’s emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children’s negative emotions and children’s regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children’s vagal suppression moderated the association between mothers’ non-supportive emotion socialization and children’s emotion regulation behaviors such that non-supportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children’s emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against non-supportive emotion socialization. PMID:22072217

  13. Inhibition of PDE4B suppresses inflammation by increasing expression of the deubiquitinase CYLD

    PubMed Central

    Komatsu, Kensei; Lee, Ji-Yun; Miyata, Masanori; Hyang Lim, Jae; Jono, Hirofumi; Koga, Tomoaki; Xu, Haidong; Yan, Chen; Kai, Hirofumi; Li, Jian-Dong

    2013-01-01

    The deubiquitinase CYLD acts as a key negative regulator to tightly control overactive inflammation. Most anti-inflammatory strategies have focused on directly targeting the positive regulator, which often results in significant side effects such as suppression of the host defence response. Here, we show that inhibition of phosphodiesterase 4B (PDE4B) markedly enhances upregulation of CYLD expression in response to bacteria, thereby suggesting that PDE4B acts as a negative regulator for CYLD. Interestingly, in Cyld-deficient mice, inhibition of PDE4B no longer suppresses inflammation. Moreover, PDE4B negatively regulates CYLD via specific activation of JNK2 but not JNK1. Importantly, ototopical post-inoculation administration of a PDE4 inhibitor suppresses inflammation in this animal model, thus demonstrating the therapeutic potential of targeting PDE4. These studies provide insights into how inflammation is tightly regulated via the inhibition of its negative regulator and may also lead to the development of new anti-inflammatory therapeutics that upregulate CYLD expression. PMID:23575688

  14. Emotion Regulation Predicts Pain and Functioning in Children With Juvenile Idiopathic Arthritis: An Electronic Diary Study

    PubMed Central

    Bromberg, Maggie H.; Anthony, Kelly K.; Gil, Karen M.; Franks, Lindsey; Schanberg, Laura E.

    2012-01-01

    Objectives This study utilized e-diaries to evaluate whether components of emotion regulation predict daily pain and function in children with juvenile idiopathic arthritis (JIA). Methods 43 children ages 8–17 years and their caregivers provided baseline reports of child emotion regulation. Children then completed thrice daily e-diary assessments of emotion, pain, and activity involvement for 28 days. E-diary ratings of negative and positive emotions were used to calculate emotion variability and to infer adaptive emotion modulation following periods of high or low emotion intensity. Hierarchical linear models were used to evaluate how emotion regulation related to pain and function. Results The attenuation of negative emotion following a period of high negative emotion predicted reduced pain; greater variability of negative emotion predicted higher pain and increased activity limitation. Indices of positive emotion regulation also significantly predicted pain. Conclusions Components of emotion regulation as captured by e-diaries predict important health outcomes in children with JIA. PMID:22037006

  15. Flexible queers, serious bodies: transgender inclusion in queer spaces.

    PubMed

    Stone, Amy L

    2013-01-01

    Queer spaces are significant for understanding transgender inclusion as "queer spaces were places where individuals were expected to be attentive to or aware of alternative possibilities for being, including non-normative formulations of bodies, genders, desires and practices" ( Nash, 2011 , p. 203). Indeed, in this interview study of members of a queer leather group called the Club, members described a flexible "sexual landscape" that easily includes transgender members. However, these same queer spaces have been criticized for the way they regulate queer bodies and organize queer subjectivities. In this study, queer members of the Club also contrasted playful queer flexibility with serious transgender bodies. This article argues that, although there is a reiterative relation between transgender inclusion and queer spaces, the idealization of flexibility within queer spaces can also serve to marginalize and regulate transgender bodies.

  16. Proteomic Identification of Putative MicroRNA394 Target Genes in Arabidopsis thaliana Identifies Major Latex Protein Family Members Critical for Normal Development*

    PubMed Central

    Litholdo, Celso G.; Parker, Benjamin L.; Eamens, Andrew L.; Larsen, Martin R.; Cordwell, Stuart J.; Waterhouse, Peter M.

    2016-01-01

    Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem organization. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR. Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development. PMID:27067051

  17. Infertile Japanese women's perception of positive and negative social interactions within their social networks.

    PubMed

    Akizuki, Yuri; Kai, Ichiro

    2008-12-01

    The purpose of this study was to determine positive and negative social interactions experienced by infertile Japanese women. Semi-structured interviews were conducted with 24 infertile women. The informants were asked about their experiences of positive (helpful) and negative (unhelpful) social interactions with members of their social networks, excluding their partners, with regard to their infertility. Nine positive social interaction categories were clarified, including listening closely to the distress experienced in infertility and treatment, not prying or interfering with the topic of children and respecting the women's decision regarding fertility treatment and taking a wait-and-see attitude. Nine negative social interaction categories were also identified, including prying with the topic of children, showing a negative attitude toward infertility or reproductive medicine, being criticized for not having children and avoiding contact. The present findings systematically and qualitatively determined the positive and negative social interactions experienced by infertile Japanese women within their social networks. This is essential knowledge for medical staff to counsel patients and their family members. To form a supportive social environment for infertile women, we recommend practical measures for health workers and helpful advice with regard to interactions between infertile women and their social networks.

  18. Automatic control of negative emotions: evidence that structured practice increases the efficiency of emotion regulation.

    PubMed

    Christou-Champi, Spyros; Farrow, Tom F D; Webb, Thomas L

    2015-01-01

    Emotion regulation (ER) is vital to everyday functioning. However, the effortful nature of many forms of ER may lead to regulation being inefficient and potentially ineffective. The present research examined whether structured practice could increase the efficiency of ER. During three training sessions, comprising a total of 150 training trials, participants were presented with negatively valenced images and asked either to "attend" (control condition) or "reappraise" (ER condition). A further group of participants did not participate in training but only completed follow-up measures. Practice increased the efficiency of ER as indexed by decreased time required to regulate emotions and increased heart rate variability (HRV). Furthermore, participants in the ER condition spontaneously regulated their negative emotions two weeks later and reported being more habitual in their use of ER. These findings indicate that structured practice can facilitate the automatic control of negative emotions and that these effects persist beyond training.

  19. Metacognitive emotion regulation: children's awareness that changing thoughts and goals can alleviate negative emotions.

    PubMed

    Davis, Elizabeth L; Levine, Linda J; Lench, Heather C; Quas, Jodi A

    2010-08-01

    Metacognitive emotion regulation strategies involve deliberately changing thoughts or goals to alleviate negative emotions. Adults commonly engage in this type of emotion regulation, but little is known about the developmental roots of this ability. Two studies were designed to assess whether 5- and 6-year-old children can generate such strategies and, if so, the types of metacognitive strategies they use. In Study 1, children described how story protagonists could alleviate negative emotions. In Study 2, children recalled times that they personally had felt sad, angry, and scared and described how they had regulated their emotions. In contrast to research suggesting that young children cannot use metacognitive regulation strategies, the majority of children in both studies described such strategies. Children were surprisingly sophisticated in their suggestions for how to cope with negative emotions and tailored their regulatory responses to specific emotional situations. Copyright 2010 APA

  20. Metacognitive Emotion Regulation: Children’s Awareness that Changing Thoughts and Goals Can Alleviate Negative Emotions

    PubMed Central

    Davis, Elizabeth L.; Levine, Linda J.; Lench, Heather C.; Quas, Jodi A.

    2010-01-01

    Metacognitive emotion regulation strategies involve deliberately changing thoughts or goals to alleviate negative emotions. Adults commonly engage in this type of emotion regulation, but little is known about the developmental roots of this ability. Two studies were designed to assess whether 5- and 6-year-old children can generate such strategies and, if so, the types of metacognitive strategies they employ. In Study 1, children described how story protagonists could alleviate negative emotions. In Study 2, children recalled times that they personally had felt sad, angry, and scared, and described how they had regulated their emotions. In contrast to research suggesting that young children cannot use metacognitive regulation strategies, the majority of children in both studies described such strategies. Children were surprisingly sophisticated in their suggestions for how to cope with negative emotions and tailored their regulatory responses to specific emotional situations. PMID:20677867

Top