Sample records for membrane androgen binding

  1. Antagonizing effects of membrane-acting androgens on the eicosanoid receptor OXER1 in prostate cancer

    PubMed Central

    Kalyvianaki, Konstantina; Gebhart, Veronika; Peroulis, Nikolaos; Panagiotopoulou, Christina; Kiagiadaki, Fotini; Pediaditakis, Iosif; Aivaliotis, Michalis; Moustou, Eleni; Tzardi, Maria; Notas, George; Castanas, Elias; Kampa, Marilena

    2017-01-01

    Accumulating evidence during the last decades revealed that androgen can exert membrane initiated actions that involve signaling via specific kinases and the modulation of significant cellular processes, important for prostate cancer cell growth and metastasis. Results of the present work clearly show that androgens can specifically act at the membrane level via the GPCR oxoeicosanoid receptor 1 (OXER1) in prostate cancer cells. In fact, OXER1 expression parallels that of membrane androgen binding in prostate cancer cell lines and tumor specimens, while in silico docking simulation of OXER1 showed that testosterone could bind to OXER1 within the same grove as 5-OxoETE, the natural ligand of OXER1. Interestingly, testosterone antagonizes the effects of 5-oxoETE on specific signaling pathways and rapid effects such as actin cytoskeleton reorganization that ultimately can modulate cell migration and metastasis. These findings verify that membrane-acting androgens exert specific effects through an antagonistic interaction with OXER1. Additionally, this interaction between androgen and OXER1, which is an arachidonic acid metabolite receptor expressed in prostate cancer, provides a novel link between steroid and lipid actions and renders OXER1 as new player in the disease. These findings should be taken into account in the design of novel therapeutic approaches in prostate cancer. PMID:28290516

  2. Opposing effects of estradiol- and testosterone-membrane binding sites on T47D breast cancer cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kampa, Marilena; Nifli, Artemissia-Phoebe; Charalampopoulos, Ioannis

    Classical steroid mode of action involves binding to intracellular receptors, the later acting as ligand-activated nuclear transcription factors. Recently, membrane sites for different steroids have been also identified, mediating rapid, non-genomic, steroid actions. Membrane sites for estrogen and androgen have been found in a number of different cell types, bearing or not classical intracellular receptors. In the present study, with the use of radioligand binding, flow cytometry and confocal laser microscopy, we report that T47D human breast cancer cells express specific and saturable membrane receptors for both estrogen (K {sub D} 4.06 {+-} 3.31 nM) and androgen (K {sub D}more » 7.64 {+-} 3.15 nM). Upon activation with BSA-conjugated, non-permeable ligands (E{sub 2}-BSA and testosterone-BSA), membrane estrogen receptors protect cells from serum-deprivation-induced apoptosis, while androgen receptors induce apoptosis in serum-supplemented T47D cells. In addition, co-incubation of cells with a fixed concentration of one steroid and varying concentrations of the other reversed the abovementioned effect (apoptosis for androgen, and anti-apoptosis for E{sub 2}), suggesting that the fate of the cell depends on the relative concentration of either steroid in the culture medium. We also report the identification of membrane receptors for E{sub 2} and androgen in biopsy slides from breast cancer patients. Both sites are expressed, with the staining for membrane E{sub 2} being strongly present in ER-negative, less differentiated, more aggressive tumors. These findings suggest that aromatase inhibitors may exert their beneficial effects on breast cancer by also propagating the metabolism of local steroids towards androgen, inducing thus cell apoptosis through membrane androgen receptor activation.« less

  3. A substitutional mutation in the DNA binding domain of the androgen receptor causes complete androgen insensitivity syndrome.

    PubMed

    Komori, S; Sakata, K; Kasumi, H; Tsuji, Y; Hamada, K; Koyama, K

    1999-10-01

    DNA analysis of the androgen receptor gene in a patient with complete androgen insensitivity syndrome identified a substitutional mutation (tyrosine converted to cysteine at position 571) in the DNA binding domain. In vitro transfection experiments with the patients' androgen receptor gene, indicated normal expression of the androgen receptor in transfected COS-7 cells compared to the wild type gene. There was also no evidence of impaired thermal stability of the 5 alpha-dihydrotestosterone-androgen receptor complex. However, the capacity of the androgen receptor to activate target gene transcription was found to be completely disrupted in a luciferase assay. These results confirmed that only one substitutional mutation in the DNA binding domain was related to the pathogenesis of the complete androgen insensitivity syndrome.

  4. A comparison of progestin and androgen receptor binding using the CoMFA technique

    NASA Astrophysics Data System (ADS)

    Loughney, Deborah A.; Schwender, Charles F.

    1992-12-01

    A series of 48 steroids has been studied with the SYBYL QSAR module using Relative Binding Affinities (RBAs) to progesterone and androgen receptors obtained from the literature. Models for the progesterone and androgen data were developed. Both models show regions where sterics and electrostatics correlate to binding affinity but are different for androgen and progesterone which suggests differences possibly important for receptor selectivity. The progesterone model is more predictive than the androgen (predictive r2 of 0.725 vs. 0.545 for progesterone and androgen, respectively).

  5. Membrane androgen receptor characteristics of human ZIP9 (SLC39A) zinc transporter in prostate cancer cells: Androgen-specific activation and involvement of an inhibitory G protein in zinc and MAP kinase signaling.

    PubMed

    Thomas, Peter; Pang, Yefei; Dong, Jing

    2017-05-15

    Characteristics of novel human membrane androgen receptor (mAR), ZIP9 (SLC39A9), were investigated in ZIP9-transfected PC-3 cells (PC3-ZIP9). Ligand blot analysis showed plasma membrane [ 3 H]-T binding corresponds to the position of ZIP9 on Western blots which suggests ZIP9 can bind [ 3 H]-T alone, without a protein partner. Progesterone antagonized testosterone actions, blocking increases in zinc, Erk phosphorylation and apoptosis, further evidence that ZIP9 is specifically activated by androgens. Pre-treatment with GTPγS and pertussis toxin decreased plasma membrane [ 3 H]-T binding and blocked testosterone-induced increases in Erk phosphorylation and intracellular zinc, indicating ZIP9 is coupled to an inhibitory G protein (Gi) that mediates both MAP kinase and zinc signaling. Testosterone treatment of nuclei and mitochondria which express ZIP9 decreased their zinc contents, suggesting ZIP9 also regulates free zinc through releasing it from these intracellular organelles. The results show ZIP9 is a specific Gi coupled-mAR mediating testosterone-induced MAP kinase and zinc signaling in PC3-ZIP9 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In Silico and In Vitro Investigation of the Piperine's Male Contraceptive Effect: Docking and Molecular Dynamics Simulation Studies in Androgen-Binding Protein and Androgen Receptor.

    PubMed

    Chinta, Gopichand; Ramya Chandar Charles, Mariasoosai; Klopčič, Ivana; Sollner Dolenc, Marija; Periyasamy, Latha; Selvaraj Coumar, Mohane

    2015-07-01

    Understanding the molecular mechanism of action of traditional medicines is an important step towards developing marketable drugs from them. Piperine, an active constituent present in the Piper species, is used extensively in Ayurvedic medicines (practiced on the Indian subcontinent). Among others, piperine is known to possess a male contraceptive effect; however, the molecular mechanism of action for this effect is not very clear. In this regard, detailed docking and molecular dynamics simulation studies of piperine with the androgen-binding protein and androgen receptors were carried out. Androgen receptors control male sexual behavior and fertility, while the androgen-binding protein binds testosterone and maintains its concentration at optimal levels to stimulate spermatogenesis in the testis. It was found that piperine docks to the androgen-binding protein, similar to dihydrotestosterone, and to androgen receptors, similar to cyproterone acetate (antagonist). Also, the piperine-androgen-binding protein and piperine-androgen receptors interactions were found to be stable throughout 30 ns of molecular dynamics simulation. Further, two independent simulations for 10 ns each also confirmed the stability of these interactions. Detailed analysis of the piperine-androgen-binding protein interactions shows that piperine interacts with Ser42 of the androgen-binding protein and could block the binding with its natural ligands dihydrotestosterone/testosterone. Moreover, piperine interacts with Thr577 of the androgen receptors in a manner similar to the antagonist cyproterone acetate. Based on the in silico results, piperine was tested in the MDA-kb2 cell line using the luciferase reporter gene assay and was found to antagonize the effect of dihydrotestosterone at nanomolar concentrations. Further detailed biochemical experiments could help to develop piperine as an effective male contraceptive agent in the future. Georg Thieme Verlag KG Stuttgart · New York.

  7. Characterization of the Binding of a Potent Synthetic Androgen, Methyltrienolone, to Human Tissues

    PubMed Central

    Menon, Mani; Tananis, Catherine E.; Hicks, L. Louise; Hawkins, Edward F.; McLoughlin, Martin G.; Walsh, Patrick C.

    1978-01-01

    The potent synthetic androgen methytrienolone (R 1881), which does not bind to serum proteins, was utilized to characterize binding to receptors in human androgen responsive tissues. Cytosol extracts prepared from hypertrophic prostates (BPH) were utilized as the source of receptor for the initial studies. High affinity binding was detected in the cytosol of 29 of 30 samples of BPH (average number of binding sites, 45.8±4.7 fmol/mg of protein; dissociation constant, 0.9±0.2 nM). This binding had the characteristics of a receptor: heat lability, precipitability by 0-33% ammonium sulfate and by protamine sulfate, and 8S sedimentation coefficient. High affinity binding was also detected in cytosol prepared from seminal vesicle, epididymis, and genital skin but not in non-genital skin or muscle. However, similar binding was demonstrated in the cytosol of human uterus. The steroid specificities of binding to the cytosol of male tissues of accessory reproduction and of uterus were similar in that progestational agents were more effective competitors than natural androgens. Binding specificities in cytosol prepared from genital skin were distinctly different and were similar to those of ventral prostate from the castrated rat in that dihydrotestosterone was much more potent than progestins in competition. Thus binding of R 1881 to the cytosol of prostate, epididymis, and seminal vesicle has some characteristics of binding to a progesterone receptor. When the nuclear extract from BPH was analyzed, high affinity binding was demonstrated that conformed to the specificities of binding to an androgen receptor. Here dihydrotestosterone was a more potent competitor than progestational agents. Similar patterns of binding were detected in the crude nuclear extracts from seminal vesicle, epididymis, and genital skin but not in uterus, muscle, or non-genital skin. We conclude that the androgen receptor is not demonstrable in the cytosol of prostate, epididymis, or seminal vesicle

  8. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay
    Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. Wilson
    U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  9. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY.
    MC Cardon, PC Hartig,LE Gray, Jr. and VS Wilson.
    U.S. EPA, ORD, NHEERL, RTD, Research Triangle Park, NC, USA.
    Typically, in vitro hazard assessments for ...

  10. Single amino acid substitutions at 2 of 14 positions in an ultra-conserved region of the androgen receptor yield an androgen-binding domain that is reversibly thermolabile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliou, M.; Lumbroso, R.; Alvarado, C.

    1994-09-01

    The stereochemistry of the androgen receptor (AR) that is responsible for androgen-specific binding and for its contribution to the transregulatory attributes of an androgen-receptor complex are unknown. Our objective is to define structure-function relations of the human AR by correlating germline missense mutations at its X-linked locus with its resultant misbehavior. Subjects with Arg773Cys have complete androgen insensitivity. We and several other laboratories have reported that their genital skin fibroblasts (GSF) have negligible androgen-binding activity at 37{degrees}. We have found that Phe763Leu also causes CAI, but with approximately 10 fmol/mg protein androgen-binding activity at 37{degrees} (R-deficient). Within COS-1 cells transfectedmore » with each mutant AR cDNA, Phe763Leu and Arg773Cys androgen-binding activities are reversibly thermolabile, by a factor of 2, at 37{degrees} versus 22{degrees}, only in the presence of androgen; in the absence of androgen they are thermostable at 37{degrees}. We have discovered that (for a reason yet unknown) the GSF from a third family with Arg773Cys (and no other coding sequence mutation) have 20-40 mol/mg protein of androgen-binding activity at 37{degrees} when measured with 3-6 nFM androgen. This activity reversibly doubles at 22{degrees}. The reversible thermolability of an AR with Arg773Cys (and probably with Phe763Leu) is demonstrable within GSF. Ligand-dependence of this thermolability implies that ligand induces these mutant AR to undergo a deviant conformational change in, or near, a 14-aa region that shares 90% identity/similarity with its closest receptor relatives.« less

  11. Membrane receptor-independent inhibitory effect of melatonin on androgen production in porcine theca cells.

    PubMed

    Wang, Heng; Pu, Yong; Luo, Lei; Li, Yunsheng; Zhang, Yunhai; Cao, Zubing

    2018-06-01

    Excessive secretion of androgens including androstenedione and testosterone in theca cells frequently causes female infertility in mammals. Melatonin is a potent inhibitor of androgen production in gonadal cells of several species in a membrane receptor-dependent manner. However, the function of melatonin in steroidogenesis of porcine theca cells remains unclear. Here we report that melatonin inhibits androgen biosynthesis independently of its membrane receptors in pigs. Using flow cytometry, immunofluorescence and RT-PCR we showed that the vast majority of cells isolated from the theca layer of antral follicles are indeed theca cells. Furthermore, we demonstrated that of the two of melatonin membrane receptors encoded in the porcine genome, theca cells exclusively express melatonin receptor 1B. Cell counting analysis indicated that different concentrations of melatonin did not alter the normal viability and proliferation of theca cells. Additionally, hormone radioimmunoassay and qPCR respectively showed that a high concentration of melatonin significantly repressed both androgen production and expression of steroidogenic genes involving StAR, CYP11A1, HSD3β and SET (P < 0.05), but did not impair progesterone production. Interestingly, these effects were not reversed by N-acetyl-2-benzyltryptamin, a melatonin membrane receptor antagonist. Overall, these results demonstrate that melatonin inhibits androgen production in porcine theca cells independently of its membrane receptor. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer

    PubMed Central

    Blok, L J; Chang, G T G; Steenbeek-Slotboom, M; Weerden, W M van; Swarts, H G P; Pont, J J H H M De; Steenbrugge, G J van; Brinkmann, A O

    1999-01-01

    The β1-subunit of Na+,K+-ATPase was isolated and identified as an androgen down-regulated gene. Expression was observed at high levels in androgen-independent as compared to androgen-dependent (responsive) human prostate cancer cell lines and xenografts when grown in the presence of androgens. Down-regulation of the β1-subunit was initiated at concentrations between 0.01 nM and 0.03 nM of the synthetic androgen R1881 after relatively long incubation times (> 24 h). Using polyclonal antibodies, the concentration of β1-subunit protein, but not of the α1-subunit protein, was markedly reduced in androgen-dependent human prostate cancer cells (LNCaP-FGC) cultured in the presence of androgens. In line with these observations it was found that the protein expression of total Na+,K+-ATPase in the membrane (measured by 3H-ouabain binding) was also markedly decreased. The main function of Na+,K+-ATPase is to maintain sodium and potassium homeostasis in animal cells. The resulting electrochemical gradient is facilitative for transport of several compounds over the cell membrane (for example cisplatin, a chemotherapeutic agent experimentally used in the treatment of hormone-refractory prostate cancer). Here we observed that a ouabain-induced decrease of Na+,K+-ATPase activity in LNCaP-FGC cells results in reduced sensitivity of these cells to cisplatin-treatment. Surprisingly, androgen-induced decrease of Na+,K+-ATPase expression, did not result in significant protection against the chemotherapeutic agent. © 1999 Cancer Research Campaign PMID:10487609

  13. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.

    PubMed

    Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida

    2015-02-01

    One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered. Published by Oxford University Press on behalf of the Society of Toxicology 2014. This work is written by US Government employees and is in the public domain in the US.

  14. Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus

    PubMed Central

    Sakkiah, Sugunadevi; Wang, Tony; Zou, Wen; Wang, Yuping; Pan, Bohu; Tong, Weida; Hong, Huixiao

    2017-01-01

    Endocrine disrupting chemicals (EDCs) can mimic natural hormone to interact with receptors in the endocrine system and thus disrupt the functions of the endocrine system, raising concerns on the public health. In addition to disruption of the endocrine system, some EDCs have been found associated with many diseases such as breast cancer, prostate cancer, infertility, asthma, stroke, Alzheimer’s disease, obesity, and diabetes mellitus. EDCs that binding androgen receptor have been reported associated with diabetes mellitus in in vitro, animal, and clinical studies. In this review, we summarize the structural basis and interactions between androgen receptor and EDCs as well as the associations of various types of diabetes mellitus with the EDCs mediated through androgen receptor binding. We also discuss the perspective research for further understanding the impact and mechanisms of EDCs on the risk of diabetes mellitus. PMID:29295509

  15. Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloosterboer, H.J.; Vonk-Noordegraaf, C.A.; Turpijn, E.W.

    1988-09-01

    The relative binding affinities (RBAs) of four progestational compounds (norethisterone, levonorgestrel, 3-keto-desogestrel and gestodene) for the human progesterone and androgen receptors were measured in MCF-7 cytosol and intact MCF-7 cells. For the binding to the progesterone receptor, both Org 2058 and Org 3236 (or 3-keto-desogestrel) were used as labelled ligands. The following ranking (low to high) for the RBA of the nuclear (intact cells) progesterone receptor irrespective of the ligand used is found: norethisterone much less than levonorgestrel less than 3-keto-destogestrel less than gestodene. The difference between the various progestagens is significant with the exception of that between 3-keto-desogestrel andmore » gestodene, when Org 2058 is used as ligand. For the cytosolic progesterone receptor, the same order is found with the exception that similar RBAs are found for gestodene and 3-keto-desogestrel. The four progestagens clearly differ with respect to binding to the androgen receptor using dihydrotestosterone as labelled ligand in intact cells; the ranking (low to high) is: norethisterone less than 3 keto-desogestrel less than levonorgestrel and gestodene. The difference between 3-keto-desogestrel and levonorgestrel or gestodene is significant. The selectivity indices (ratio of the mean RBA for the progesterone receptor to that of androgen receptor) in intact cells are significantly higher for 3-keto-desogestrel and gestodene than for levonorgestrel and norethisterone. From these results we conclude that the introduction of the 18-methyl in norethisterone (levonorgestel) increases both the binding to the progesterone and androgen receptors.« less

  16. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.

    PubMed

    Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T

    2003-01-01

    The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.

  17. Amino acid substitutions in the hormone-binding domain of the human androgen receptor alter the stability of the hormone receptor complex.

    PubMed Central

    Marcelli, M; Zoppi, S; Wilson, C M; Griffin, J E; McPhaul, M J

    1994-01-01

    We have investigated the basis of androgen resistance in seven unrelated individuals with complete testicular feminization or Reifenstein syndrome caused by single amino acid substitutions in the hormone-binding domain of the androgen receptor. Monolayer-binding assays of cultured genital skin fibroblasts demonstrated absent ligand binding, qualitative abnormalities of androgen binding, or a decreased amount of qualitatively normal receptor. The consequences of these mutations were examined by introducing the mutations by site-directed mutagenesis into the androgen receptor cDNA sequence and expressing the mutant cDNAs in mammalian cells. The effects of the amino acid substitutions on the binding of different androgens and on the capacity of the ligand-bound receptors to activate a reporter gene were investigated. Substantial differences were found in the responses of the mutant androgen receptors to incubation with testosterone, 5 alpha-dihydrotestosterone, and mibolerone. In several instances, increased doses of hormone or increased frequency of hormone addition to the incubation medium resulted in normal or near normal activation of a reporter gene by cells expressing the mutant androgen receptors. These studies suggest that the stability of the hormone receptor complex is a major determinant of receptor function in vivo. Images PMID:7929841

  18. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators.

    PubMed

    Bohl, Casey E; Wu, Zengru; Chen, Jiyun; Mohler, Michael L; Yang, Jun; Hwang, Dong Jin; Mustafa, Suni; Miller, Duane D; Bell, Charles E; Dalton, James T

    2008-10-15

    Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. We found that hydrophilic B-ring para-substituted analogs exhibit an additional region of hydrogen bonding not seen with steroidal compounds and that multiple halogen substitutions affect the B-ring conformation and aromatic interactions with Trp741. This information elucidates interactions important for high AR binding affinity and provides new insight for structure-based drug design.

  19. Substitution of synthetic chimpanzee androgen receptor for human androgen receptor in competitive binding and transcriptional activation assays for EDC screening

    EPA Science Inventory

    The potential effect of receptor-mediated endocrine modulators across species is of increasing concern. In attempts to address these concerns we are developing androgen and estrogen receptor binding assays using recombinant hormone receptors from a number of species across differ...

  20. Expression of androgen-binding protein (ABP) in human cardiac myocytes.

    PubMed

    Schock, H W; Herbert, Z; Sigusch, H; Figulla, H R; Jirikowski, G F; Lotze, U

    2006-04-01

    Cardiomyocytes are known to be androgen targets. Changing systemic steroid levels are thought to be linked to various cardiac ailments, including dilated cardiomyopathy (DCM). The mode of action of gonadal steroid hormones on the human heart is unknown to date. In the present study, we used high-resolution immunocytochemistry on semithin sections (1 microm thick), IN SITU hybridization, and mass spectrometry to investigate the expression of androgen-binding protein (ABP) in human myocardial biopsies taken from male patients with DCM. We observed distinct cytoplasmic ABP immunoreactivity in a fraction of the myocytes. IN SITU hybridization with synthetic oligonucleotide probes revealed specific hybridization signals in these cells. A portion of the ABP-positive cells contained immunostaining for androgen receptor. With SELDI TOF mass spectrometry of affinity purified tissue extracts of human myocardium, we confirmed the presence of a 50 kDa protein similar to ABP. Our observations provide evidence of an intrinsic expression of ABP in human heart. ABP may be secreted from myocytes in a paracrine manner perhaps to influence the bioavailabity of gonadal steroids in myocardium.

  1. Regulation of Androgen Receptor-Mediated Transcription by RPB5 Binding Protein URI/RMP ▿

    PubMed Central

    Mita, Paolo; Savas, Jeffrey N.; Djouder, Nabil; Yates, John R.; Ha, Susan; Ruoff, Rachel; Schafler, Eric D.; Nwachukwu, Jerome C.; Tanese, Naoko; Cowan, Nicholas J.; Zavadil, Jiri; Garabedian, Michael J.; Logan, Susan K.

    2011-01-01

    Androgen receptor (AR)-mediated transcription is modulated by interaction with coregulatory proteins. We demonstrate that the unconventional prefoldin RPB5 interactor (URI) is a new regulator of AR transcription and is critical for antagonist (bicalutamide) action. URI is phosphorylated upon androgen treatment, suggesting communication between the URI and AR signaling pathways. Whereas depletion of URI enhances AR-mediated gene transcription, overexpression of URI suppresses AR transcriptional activation and anchorage-independent prostate cancer cell growth. Repression of AR-mediated transcription is achieved, in part, by URI binding and regulation of androgen receptor trapped clone 27 (Art-27), a previously characterized AR corepressor. Consistent with this idea, genome-wide expression profiling in prostate cancer cells upon depletion of URI or Art-27 reveals substantially overlapping patterns of gene expression. Further, depletion of URI increases the expression of the AR target gene NKX-3.1, decreases the recruitment of Art-27, and increases AR occupancy at the NKX-3.1 promoter. While Art-27 can bind AR directly, URI is bound to chromatin prior to hormone-dependent recruitment of AR, suggesting a role for URI in modulating AR recruitment to target genes. PMID:21730289

  2. Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications

    PubMed Central

    Lucas-Herald, Angela K.; Alves-Lopes, Rheure; Montezano, Augusto C.; Ahmed, S. Faisal

    2017-01-01

    The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function. PMID:28645930

  3. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: Evidence for further genetic heterogeneity in this syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.R.; Lubahn, D.B.; Wilson, E.M.

    1988-11-01

    The cloning of a cDNA for the human androgen receptor gene has resulted in the availability for cDNA probes that span various parts of the gene, including the entire steroid-binding domain and part of the DNA-binding domain, as well as part of the 5' region of the gene. The radiolabeled probes were used to screen for androgen receptor mutations on Southern blots prepared by restriction endonuclease digestion of genomic DNA from human subjects with complete androgen insensitivity syndrome (AIS). In this investigation, the authors considered only patients presenting complete AIS and with the androgen receptor (-) form as the mostmore » probably subjects to show a gene deletion. One subject from each of six unrelated families with the receptor (-) form of complete AIS and 10 normal subjects were studied. In the 10 normal subjects and in 5 of the 6 patients, identical DNA restriction fragment patterns were observed with EcoRI and BamHI. Analysis of other members of this family confirmed the apparent gene deletion. The data provide direct proof that complete AIS in some families can result from a deletion of the androgen receptor structural gene. However, other families do not demonstrate such a deletion, suggesting that point mutations may also result in the receptor (-) form of complete AIS, adding further to the genetic heterogeneity of this syndrome.« less

  4. [Modification of retinal photoreceptor membranes and Ca ion binding].

    PubMed

    Korchagin, V P; Berman, A L; Shukoliukov, S A; Rychkova, M P; Etingof, R N

    1978-10-01

    Calcium binding by modified photoreceptor membranes of cattle retina has been studied. Ca2+-binding the membranes significantly changes after C-phospholipase treatment, displaying the initial growth (less than 65% of lipid phosphorus removed) with subsequent decrease (more than 65% of phosphorus removed). Liposomes of the photoreceptor membranes lipids were found to bind more calcium than do the native photoreceptor membranes. Proteolytic enzymes (papaine, pronase) splitting some rhodopsin fragments do not affect the ability of the membrane to bind Ca2+. The increase of light-induced Ca-binding is observed only after the outer segments preincubation under conditions providing for rhodopsin phosphorylation. This effect was observed also after the splitting of the rhodopsin fragment by papaine. It is concluded that calcium binding in the photoreceptor membranes is mainly due to the phosphate groups of phospholipids.

  5. Androgens and bone health.

    PubMed

    Hansen, K A; Tho, S P

    1998-01-01

    Osteoporosis is one of the most common metabolic bone diseases in the adult population and its prevalence will continue to rise as our population grows older. In both sexes, hypogonadism is associated with accelerated loss of bone and development of osteoporosis. Adrenal and gonadal androgen levels decline with advancing age in both sexes. Androgens act by either directly binding to androgen receptors, or by aromatization of androgens to estrogens and subsequently interacting with estrogen receptors. Both pathways are important for skeletal health. Direct androgen binding to an androgen receptor may play a more important role in early skeletal development and determination of sexual dimorphic traits. While bone remodeling, which is important in maintaining healthy bone through life, is primarily stimulated by estrogen, studies in the rat and human support the complex action of androgens and estrogens in bone modeling and remodeling, and hence the development and maintenance of healthy bone. In postmenopausal females, the addition of androgens to hormone replacement therapy results in significant additional improvement in bone mineral density compared to estrogen replacement alone. Accumulating evidence indicate that androgens play an important role in the health of bone and the potential benefit of adding these agents to hormone replacement regimens.

  6. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Kenta; Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588; Hirata, Michiko

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as amore » pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. - Highlights: • A novel carborane compound BA321 binds to both AR and ERs, ERα and ERβ. • BA321 restores bone loss in orchidectomized mice without effects on sex organ. • BA321 acts as an estrogen agonist in bone and uterus in ovariectomized mice. • BA321 may be a new SARM to prevent the loss of musculoskeletal mass in elder men.« less

  7. Selective androgen receptor modulators: in pursuit of tissue-selective androgens.

    PubMed

    Omwancha, Josephat; Brown, Terry R

    2006-10-01

    The androgen receptor mediates the androgenic and anabolic activity of the endogenous steroids testosterone and 5alpha-dihydrotestosterone. Current knowledge of the androgen receptor protein structure, and the molecular mechanisms surrounding the binding properties and activities of agonists and antagonists has led to the design and development of novel nonsteroidal ligands with selected tissue-specific androgen receptor agonist and antagonist activities. The activity of these compounds, termed selective androgen receptor modulators (SARMs), is directed toward the maintenance or enhancement of anabolic effects on bone and muscle with minimal androgenic effects on prostate growth. SARMs are of potential therapeutic value in the treatment of male hypogonadism, osteoporosis, frailty and muscle wasting, burn injury and would healing, anemia, mood and depression, benign prostatic hyperplasia and prostate cancer.

  8. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.

    PubMed

    Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2013-09-17

    Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.

  9. Androgen-sensitive spermine-binding protein of rat ventral prostate. Purification of the protein and characterization of the hormonal effect.

    PubMed Central

    Mezzetti, G; Loor, R; Liao, S

    1979-01-01

    The rat ventral prostate contains a cytosol protein that can non-covalently bind spermine much more tightly than spermidine or other natural diamines. The protein has been purified to homogeneity, as judged by electrophoresis in urea- and sodium dodecyl sulphate-containing polyacrylamide gels. The protein, with or without spermine bound to it, sediments at 3 S in a sucrose gradient with or without 0.4 M-KCl. The molecular weight of the protein is about 30 000. Each molecule of the binding protein can bind one molecule of spermine. In the prostate of rats injected with cycloheximide, the protein appears to have a half-life of about 3.5 h. The spermine-binding activity of an acidic fraction obtained by DEAE-cellulose chromatography of the prostate cytosol proteins is reduced by about 40--60% within 20--40 h after castration. This effect is reversed very rapidly within 15--30 min by intraperitoneal injection of 5 alpha-dihydrotestosterone. The hormonal effect is androgen-specific and is not mimicked by dexamethasone or oestradiol-17 beta. The androgen effect was reduced significantly when rats were injected with cycloheximide or actinomycin D, suggesting that the acidic protein may be one of the earliest proteins induced by androgen in the rat ventral prostate. Images Fig. 1. PMID:534539

  10. Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications.

    PubMed

    Lucas-Herald, Angela K; Alves-Lopes, Rheure; Montezano, Augusto C; Ahmed, S Faisal; Touyz, Rhian M

    2017-07-01

    The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca 2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  11. How actin binds and assembles onto plasma membranes from Dictyostelium discoideum

    PubMed Central

    1988-01-01

    We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross- linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell. PMID:3392099

  12. STARD4 Membrane Interactions and Sterol Binding

    PubMed Central

    2016-01-01

    The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/β helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix. PMID:26168008

  13. Cd-binding to model membranes

    NASA Astrophysics Data System (ADS)

    Geszner, R.; Saibene, S.; Butz, T.; Lerf, A.

    1990-08-01

    The binding of Cd2+ to the model membranes Di-myristoyl L-α-phosphatidic acid (DMPA) and Di-myristoyl L-α-phosphatidylcholine (DMPC) was studied by time differential perturbed angular correlation (TDPAC) on111mCd, via its nuclear quadrupole interaction. Whereas Cd2+ does not bind to the neutral DMPC, it binds to charged DMPA up to a 0.8∶1 Cd/lipid ratio.

  14. Direct membrane binding by bacterial actin MreB.

    PubMed

    Salje, Jeanne; van den Ent, Fusinita; de Boer, Piet; Löwe, Jan

    2011-08-05

    Bacterial actin MreB is one of the key components of the bacterial cytoskeleton. It assembles into short filaments that lie just underneath the membrane and organize the cell wall synthesis machinery. Here we show that MreB from both T. maritima and E. coli binds directly to cell membranes. This function is essential for cell shape determination in E. coli and is proposed to be a general property of many, if not all, MreBs. We demonstrate that membrane binding is mediated by a membrane insertion loop in TmMreB and by an N-terminal amphipathic helix in EcMreB and show that purified TmMreB assembles into double filaments on a membrane surface that can induce curvature. This, the first example of a membrane-binding actin filament, prompts a fundamental rethink of the structure and dynamics of MreB filaments within cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L

    1996-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca).

  16. PTTG1, A novel androgen responsive gene is required for androgen-induced prostate cancer cell growth and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zheng; Jin, Bo; Jin, Yaqiong

    Androgens (AR) play an important role in initiation and progression of prostate cancer. It has been shown that AR exert their effects mainly through the androgen-activated AR which binds to androgen response elements (AREs) in the regulatory regions of target genes to regulate the transcription of androgen-responsive genes, thus, identification of AR downstream target gene is critical to understand androgen function in prostate cancer. In this study, our results showed that androgen treatment of LNCaP cells induced PTTG1 expression, which was blocked by the androgen receptor antagonist, Casodex. Bioinformatics analysis and experiments using PTTG1 promoter deletion mutants showed that themore » PTTG1 promoter contains a putative androgen response element (ARE), which localizes in the −851 to −836 region of the promoter. Androgen activated androgen receptor (AR) binding to this ARE was confirmed by Chromatin immunoprecipitation (ChIP) assay. Furthermore, Knockdown of PTTG1 expression using short hairpin RNA significantly reduced androgen-induced LNCaP cell growth and invasion. In addition, we showed PTTG1 is highly expressed in metastasis prostate cancer tissue. These results suggest that PTTG1 is a novel downstream target gene of androgen receptor and take part in prostate cancer proliferation and metastasis. - Highlights: • Androgen treatment of LNCaP cells induced PTTG1 expression. • Knockdown of PTTG1 expression significantly reduced androgen-induced LNCaP cell growth and invasion. • PTTG1 is highly expressed in metastasis prostate cancer tissue. • PTTG1 is a novel downstream target gene of androgen receptor.« less

  17. The role of androgens and polymorphisms in the androgen receptor in the epidemiology of breast cancer

    PubMed Central

    Lillie, Elizabeth O; Bernstein, Leslie; Ursin, Giske

    2003-01-01

    Testosterone binds to the androgen receptor in target tissue to mediate its effects. Variations in testosterone levels and androgen receptor activity may play a role in the etiology of breast cancer. Here, we review the epidemiologic evidence linking endogenous testosterone to breast cancer risk. Paradoxically, results from observational studies that have examined polymorphisms in the androgen receptor suggest that the low-activity androgen receptor increases breast cancer risk. We review the quality of this evidence and conclude with a discussion of how the androgen receptor and testosterone results coincide. PMID:12793900

  18. BINDING OF STEROIDS AND ENVIRONMENTAL CHEMICALS TO THE RAINBOW TROUT ANDROGEN RECEPTOR ALPHA EXPRESSED IN COS CELLS

    EPA Science Inventory

    Binding of Steroids and Environmental Chemicals to the Rainbow Trout Androgen Receptor Alpha Expressed in COS Cells.

    Mary C. Cardon, L. Earl Gray. Jr., Phillip C. Hartig and Vickie S. Wilson
    U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology...

  19. Cytosolic androgen receptor in regenerating rat levator ani muscle.

    PubMed Central

    Max, S R; Mufti, S; Carlson, B M

    1981-01-01

    The development of the cytosolic androgen receptor was studied after degeneration and regeneration of the rat levator ani muscle after a crush lesion. Muscle regeneration appears to recapitulate myogenesis in many respects. It therefore provides a model tissue in sufficiently in large quantity for investigating the ontogenesis of the androgen receptor. The receptor in the cytosol of the normal levator ani muscle has binding characteristics similar to those of the cytosolic receptor in other androgen-sensitive tissues. By day 3 after a crush lesion of the levator ani muscle, androgen binding decreased to 25% of control values. This decrease was followed by a 4-5 fold increase in hormone binding, which attained control values by day 7 after crush. Androgen binding remained stable at the control value up to day 60 after crushing. These results were correlated with the morphological development of the regenerating muscle after crushing. It is concluded that there is little, if any, androgen receptor present in the early myoblastic stages of regeneration; rather, synthesis of the receptor may occur after the fusion of myoblasts and during the differentiation of myotubes into cross-striated muscle fibres. Images PLATE 1 PLATE 2 PMID:6977357

  20. [Glutamate-binding membrane proteins from human platelets].

    PubMed

    Gurevich, V S; Popov, Iu G; Gorodinskiĭ, A I; Dambinova, S A

    1991-09-01

    Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.

  1. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    PubMed

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  2. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    PubMed

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  3. Sex hormone-binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis

    PubMed Central

    Laurent, Michaël R.; Hammond, Geoffrey L.; Blokland, Marco; Jardí, Ferran; Antonio, Leen; Dubois, Vanessa; Khalil, Rougin; Sterk, Saskia S.; Gielen, Evelien; Decallonne, Brigitte; Carmeliet, Geert; Kaufman, Jean-Marc; Fiers, Tom; Huhtaniemi, Ilpo T.; Vanderschueren, Dirk; Claessens, Frank

    2016-01-01

    Sex hormone-binding globulin (SHBG) is the high-affinity binding protein for androgens and estrogens. According to the free hormone hypothesis, SHBG modulates the bioactivity of sex steroids by limiting their diffusion into target tissues. Still, the in vivo physiological role of circulating SHBG remains unclear, especially since mice and rats lack circulating SHBG post-natally. To test the free hormone hypothesis in vivo, we examined total and free sex steroid concentrations and bioactivity on target organs in mice expressing a human SHBG transgene. SHBG increased total androgen and estrogen concentrations via hypothalamic-pituitary feedback regulation and prolonged ligand half-life. Despite markedly raised total sex steroid concentrations, free testosterone was unaffected while sex steroid bioactivity on male and female reproductive organs was attenuated. This occurred via a ligand-dependent, genotype-independent mechanism according to in vitro seminal vesicle organ cultures. These results provide compelling support for the determination of free or bioavailable sex steroid concentrations in medicine, and clarify important comparative differences between translational mouse models and human endocrinology. PMID:27748448

  4. Vitreoscilla hemoglobin. Intracellular localization and binding to membranes.

    PubMed

    Ramandeep; Hwang, K W; Raje, M; Kim, K J; Stark, B C; Dikshit, K L; Webster, D A

    2001-07-06

    The obligate aerobic bacterium, Vitreoscilla, synthesizes elevated quantities of a homodimeric hemoglobin (VHb) under hypoxic growth conditions. Expression of VHb in heterologous hosts often enhances growth and product formation. A role in facilitating oxygen transfer to the respiratory membranes is one explanation of its cellular function. Immunogold labeling of VHb in both Vitreoscilla and recombinant Escherichia coli bearing the VHb gene clearly indicated that VHb has a cytoplasmic (not periplasmic) localization and is concentrated near the periphery of the cytosolic face of the cell membrane. OmpA signal-peptide VHb fusions were transported into the periplasm in E. coli, but this did not confer any additional growth advantage. The interaction of VHb with respiratory membranes was also studied. The K(d) values for the binding of VHb to Vitreoscilla and E. coli cell membranes were approximately 5-6 microm, a 4-8-fold higher affinity than those of horse myoglobin and hemoglobin for these same membranes. VHb stimulated the ubiquinol-1 oxidase activity of inverted Vitreoscilla membranes by 68%. The inclusion of Vitreoscilla cytochrome bo in proteoliposomes led to 2.4- and 6-fold increases in VHb binding affinity and binding site number, respectively, relative to control liposomes, suggesting a direct interaction between VHb and cytochrome bo.

  5. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    PubMed

    Lopes, Jose L S; Beltramini, Leila M; Wallace, Bonnie A; Araujo, Ana P U

    2015-01-01

    Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  6. Determining the time androgens and sex hormone-binding globulin take to return to baseline after discontinuation of oral contraceptives in women with polycystic ovary syndrome: a prospective study.

    PubMed

    Sánchez, Luis A; Pérez, Marilda; Centeno, Indira; David, Marisa; Kahi, Doris; Gutierrez, Elizabeth

    2007-03-01

    In this study, discontinuation of oral contraceptive pills in women with polycystic ovary syndrome was followed by the return of all measured androgens and sex hormone-binding globulin levels to basal values after 8 weeks. These observations are pertinent to the measurement of androgens and sex hormone-binding globulin levels in subjects who currently are taking oral contraceptive pills and have symptoms that are related to polycystic ovary syndrome.

  7. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer.

    PubMed

    Biron, Eric; Bédard, François

    2016-07-01

    The androgen receptor (AR) is a key regulator for the growth, differentiation and survival of prostate cancer cells. Identified as a primary target for the treatment of prostate cancer, many therapeutic strategies have been developed to attenuate AR signaling in prostate cancer cells. While frontline androgen-deprivation therapies targeting either the production or action of androgens usually yield favorable responses in prostate cancer patients, a significant number acquire treatment resistance. Known as the castration-resistant prostate cancer (CRPC), the treatment options are limited for this advanced stage. It has been shown that AR signaling is restored in CRPC due to many aberrant mechanisms such as AR mutations, amplification or expression of constitutively active splice-variants. Coregulator recruitment is a crucial regulatory step in AR signaling and the direct blockade of coactivator binding to AR offers the opportunity to develop therapeutic agents that would remain effective in prostate cancer cells resistant to conventional endocrine therapies. Structural analyses of the AR have identified key surfaces involved in protein-protein interaction with coregulators that have been recently used to design and develop promising AR-coactivator binding inhibitors. In this review we will discuss the design and development of small-molecule inhibitors targeting the AR-coactivator interactions for the treatment of prostate cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Replacement of arginine 773 by cysteine or histidine in the human androgen receptor causes complete androgen insensitivity with different receptor phenotypes

    PubMed Central

    Prior, Lynn; Bordet, Sylvie; Trifiro, Mark A.; Mhatre, Anand; Kaufman, Morris; Pinsky, Leonard; Wrogeman, Klaus; Belsham, Denise D.; Pereira, Fred; Greenberg, Cheryl; Trapman, Jan; Brinkman, Albert O.; Chang, Chawnshang; Liao, Shutsung

    1992-01-01

    We have discovered two different point mutations in a single codon of the X-linked androgen-receptor (AR) gene in two pairs of unrelated families who have complete androgen insensitivity (resistance) associated with different AR phenotypes in their genital skin fibroblasts. One mutation is a C-to-T transition at a CpG sequence near the 5' terminus of exon 6; it changes the sense of codon 773 from arginine to cysteine, ablates specific androgen-binding activity at 37°C, and eliminates a unique KpnI site at the intron-exon boundary. The other mutation is a G-to-A transition that changes amino acid 773 to histidine and eliminates an SphI site. This mutant AR has a normal androgen-binding capacity at 37°C but has a reduced affinity for androgens and is thermolabile in their presence. Transient transfection of COS cells with cDNA expression vectors yielded little androgen-binding activity at 37°C from Arg773Cys and abundant activity with abnormal properties from Arg773His, thereby proving the pathogenicity of both sequence alterations. This conclusion coincides with the following facts about evolutionary preservation of the position homologous to Arg773 in the AR: it is occupied by Arg or lysine in the progesterone, glucocorticoid, and mineralocorticoid receptors, and it is within a 14-amino-acid region of their steroid-binding domains that share ∼85% amino acid identity. ImagesFigure 7Figure 2Figure 3Figure 5Figure 6Figure 8 PMID:1609793

  9. Putative Prostate Cancer Risk SNP in an Androgen Receptor‐Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites

    PubMed Central

    Bu, Huajie; Narisu, Narisu; Schlick, Bettina; Rainer, Johannes; Manke, Thomas; Schäfer, Georg; Pasqualini, Lorenza; Chines, Peter; Schweiger, Michal R.; Fuchsberger, Christian

    2015-01-01

    ABSTRACT Genome‐wide association studies have identified genomic loci, whose single‐nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the mechanisms of most of these variants are largely unknown. We integrated chromatin‐immunoprecipitation‐coupled sequencing and microarray expression profiling in TMPRSS2‐ERG gene rearrangement positive DUCaP cells with the GWAS PCa risk SNPs catalog to identify disease susceptibility SNPs localized within functional androgen receptor‐binding sites (ARBSs). Among the 48 GWAS index risk SNPs and 3,917 linked SNPs, 80 were found located in ARBSs. Of these, rs11891426:T>G in an intron of the melanophilin gene (MLPH) was within a novel putative auxiliary AR‐binding motif, which is enriched in the neighborhood of canonical androgen‐responsive elements. T→G exchange attenuated the transcriptional activity of the ARBS in an AR reporter gene assay. The expression of MLPH in primary prostate tumors was significantly lower in those with the G compared with the T allele and correlated significantly with AR protein. Higher melanophilin level in prostate tissue of patients with a favorable PCa risk profile points out a tumor‐suppressive effect. These results unravel a hidden link between AR and a functional putative PCa risk SNP, whose allele alteration affects androgen regulation of its host gene MLPH. PMID:26411452

  10. [3H]aniracetam binds to specific recognition sites in brain membranes.

    PubMed

    Fallarino, F; Genazzani, A A; Silla, S; L'Episcopo, M R; Camici, O; Corazzi, L; Nicoletti, F; Fioretti, M C

    1995-08-01

    [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4 degrees C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of approximately 70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37 degrees C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties.

    PubMed

    Putta, Priya; Rankenberg, Johanna; Korver, Ruud A; van Wijk, Ringo; Munnik, Teun; Testerink, Christa; Kooijman, Edgar E

    2016-11-01

    Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins. Copyright © 2016. Published by Elsevier B.V.

  12. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues.

    PubMed

    Schulz, Timothy A; Choi, Mal-Gi; Raychaudhuri, Sumana; Mears, Jason A; Ghirlando, Rodolfo; Hinshaw, Jenny E; Prinz, William A

    2009-12-14

    Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.

  13. Membrane-Protein Binding Measured with Solution-Phase Plasmonic Nanocube Sensors

    PubMed Central

    Wu, Hung-Jen; Henzie, Joel; Lin, Wan-Chen; Rhodes, Christopher; Li, Zhu; Sartorel, Elodie; Thorner, Jeremy; Yang, Peidong; Groves, Jay. T.

    2013-01-01

    We describe a solution-phase sensor of lipid-protein binding based on localized surface plasmon resonance (LSPR) of silver nanocubes. When silica-coated nanocubes are mixed into a suspension of lipid vesicles, supported membranes spontaneously assemble on their surfaces. Using a standard laboratory spectrophotometer, we calibrate the LSPR peak shift due to protein binding to the membrane surface and then characterize the lipid-binding specificity of a pleckstrin-homology domain protein. PMID:23085614

  14. Molecular mechanism of membrane binding of the GRP1 PH domain.

    PubMed

    Lai, Chun-Liang; Srivastava, Anand; Pilling, Carissa; Chase, Anna R; Falke, Joseph J; Voth, Gregory A

    2013-09-09

    The pleckstrin homology (PH) domain of the general receptor of phosphoinositides 1 (GRP1) protein selectively binds to a rare signaling phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), in the membrane. The specific PIP3 lipid docking of GRP1 PH domain is essential to protein cellular function and is believed to occur in a stepwise process, electrostatic-driven membrane association followed by the specific PIP3 binding. By a combination of all-atom molecular dynamics (MD) simulations, coarse-grained analysis, electron paramagnetic resonance (EPR) membrane docking geometry, and fluorescence resonance energy transfer (FRET) kinetic studies, we have investigated the search and bind process in the GRP1 PH domain at the molecular scale. We simulated the two membrane binding states of the GRP1 PH domain in the PIP3 search process, before and after the GRP1 PH domain docks with the PIP3 lipid. Our results suggest that the background anionic phosphatidylserine lipids, which constitute around one-fifth of the membrane by composition, play a critical role in the initial stages of recruiting protein to the membrane surface through non-specific electrostatic interactions. Our data also reveal a previously unseen transient membrane association mechanism that is proposed to enable a two-dimensional "hopping" search of the membrane surface for the rare PIP3 target lipid. We further modeled the PIP3-bound membrane-protein system using the EPR membrane docking structure for the MD simulations, quantitatively validating the EPR membrane docking structure and augmenting our understanding of the binding interface with atomic-level detail. Several observations and hypotheses reached from our MD simulations are also supported by experimental kinetic studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Structural Changes Due to Antagonist Binding in Ligand Binding Pocket of Androgen Receptor Elucidated Through Molecular Dynamics Simulations.

    PubMed

    Sakkiah, Sugunadevi; Kusko, Rebecca; Pan, Bohu; Guo, Wenjing; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2018-01-01

    When a small molecule binds to the androgen receptor (AR), a conformational change can occur which impacts subsequent binding of co-regulator proteins and DNA. In order to accurately study this mechanism, the scientific community needs a crystal structure of the Wild type AR (WT-AR) ligand binding domain, bound with antagonist. To address this open need, we leveraged molecular docking and molecular dynamics (MD) simulations to construct a structure of the WT-AR ligand binding domain bound with antagonist bicalutamide. The structure of mutant AR (Mut-AR) bound with this same antagonist informed this study. After molecular docking analysis pinpointed the suitable binding orientation of a ligand in AR, the model was further optimized through 1 μs of MD simulations. Using this approach, three molecular systems were studied: (1) WT-AR bound with agonist R1881, (2) WT-AR bound with antagonist bicalutamide, and (3) Mut-AR bound with bicalutamide. Our structures were very similar to the experimentally determined structures of both WT-AR with R1881 and Mut-AR with bicalutamide, demonstrating the trustworthiness of this approach. In our model, when WT-AR is bound with bicalutamide, Val716/Lys720/Gln733, or Met734/Gln738/Glu897 move and thus disturb the positive and negative charge clumps of the AF2 site. This disruption of the AF2 site is key for understanding the impact of antagonist binding on subsequent co-regulator binding. In conclusion, the antagonist induced structural changes in WT-AR detailed in this study will enable further AR research and will facilitate AR targeting drug discovery.

  16. Binding of anti-basement membrane antibody to alveolar basement membrane after intratracheal gasoline instillation in rabbits.

    PubMed Central

    Yamamoto, T.; Wilson, C. B.

    1987-01-01

    A possible causal relationship has been suggested between hydrocarbon (gasoline, solvents, etc.) exposure and development of anti-basement membrane antibody-associated Goodpasture's syndrome in man. The authors evaluated the effect of hydrocarbons on pulmonary capillary permeability and binding of heterologous anti-basement membrane antibodies in the lungs after intratracheal instillation of minute amounts of unleaded gasoline into rabbits. The anti-glomerular basement membrane (GBM) antibodies used reacted with the alveolar basement membrane (ABM) in vitro by indirect immunofluorescence. The gasoline treatment altered pulmonary capillary permeability, judging from the increased accumulation of systemically administered radioiodinated bovine serum albumin in the alveolar and extravascular spaces of lungs; it also induced focal macroscopic and microscopic pulmonary histologic lesions. The gasoline caused focal in vivo binding of the anti-GBM antibodies to the ABM detectable by immunofluorescence microscopy. No binding was observed in lungs from control rabbits given saline instillations when assayed by immunofluorescence. The paired label radioisotope technique confirmed the increased antibody binding to lungs injured with gasoline (1.08 +/- 0.03 micrograms) versus 0.37 +/- 0.07 microgram after saline (P less than 0.001). These results indicate that gasoline exposure damages a pulmonary barrier that normally prevents binding of anti-GBM/ABM antibody to ABM and suggest that hydrocarbon exposure may be one of perhaps several pneumotoxic events that contribute to the episodic pulmonary hemorrhage in Goodpasture's syndrome by temporarily allowing ABM binding of anti-basement membrane antibodies. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3548409

  17. Structural basis for androgen specificity and oestrogen synthesis in human aromatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debashis; Griswold, Jennifer; Erman, Mary

    2009-03-06

    Aromatase cytochrome P450 is the only enzyme in vertebrates known to catalyse the biosynthesis of all oestrogens from androgens. Aromatase inhibitors therefore constitute a frontline therapy for oestrogen-dependent breast cancer. In a three-step process, each step requiring 1 mol of O{sub 2}, 1 mol of NADPH, and coupling with its redox partner cytochrome P450 reductase, aromatase converts androstenedione, testosterone and 16{alpha}-hydroxytestosterone to oestrone, 17{beta}-oestradiol and 17{beta},16{alpha}-oestriol, respectively. The first two steps are C19-methyl hydroxylation steps, and the third involves the aromatization of the steroid A-ring, unique to aromatase. Whereas most P450s are not highly substrate selective, it is the hallmarkmore » androgenic specificity that sets aromatase apart. The structure of this enzyme of the endoplasmic reticulum membrane has remained unknown for decades, hindering elucidation of the biochemical mechanism. Here we present the crystal structure of human placental aromatase, the only natural mammalian, full-length P450 and P450 in hormone biosynthetic pathways to be crystallized so far. Unlike the active sites of many microsomal P450s that metabolize drugs and xenobiotics, aromatase has an androgen-specific cleft that binds the androstenedione molecule snugly. Hydrophobic and polar residues exquisitely complement the steroid backbone. The locations of catalytically important residues shed light on the reaction mechanism. The relative juxtaposition of the hydrophobic amino-terminal region and the opening to the catalytic cleft shows why membrane anchoring is necessary for the lipophilic substrates to gain access to the active site. The molecular basis for the enzyme's androgenic specificity and unique catalytic mechanism can be used for developing next-generation aromatase inhibitors.« less

  18. Membrane proteins bind lipids selectively to modulate their structure and function.

    PubMed

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  19. Modulation of the cytosolic androgen receptor in striated muscle by sex steroids

    NASA Technical Reports Server (NTRS)

    Rance, N. E.; Max, S. E.

    1982-01-01

    The influence of orchiectomy (GDX) and steroid administration on the level of the cytosolic androgen receptor in the rat levator ani muscle and in rat skeletal muscles (tibialis anterior and extensor digitorum longus) was studied. Androgen receptor binding to muscle cytosol was measured using H-3 methyltrienolone (R1881) as ligand, 100 fold molar excess unlabeled R1881 to assess nonspecific binding, and 500 fold molar excess of triamcinolone acetonide to prevent binding to glucocorticoid and progestin receptors. Results demonstrate that modification of the levels of sex steroids can alter the content of androgen receptors of rat striated muscle. Data suggest that: (1) cytosolic androgen receptor levels increase after orchiectomy in both levator ani muscle and skeletal muscle; (2) the acute increase in receptor levels is blocked by an inhibitor of protein synthesis; and (3) administration of estradiol-17 beta to castrated animals increases receptor binding in levator ani muscle but not in skeletal muscle.

  20. Rational design and synthesis of androgen receptor-targeted nonsteroidal anti-androgen ligands for the tumor-specific delivery of a doxorubicin-formaldehyde conjugate.

    PubMed

    Cogan, Peter S; Koch, Tad H

    2003-11-20

    The synthesis and preliminary evaluation of a doxorubicin-formaldehyde conjugate tethered to the nonsteroidal antiandrogen, cyanonilutamide (RU 56279), for the treatment of prostate cancer are reported. The relative ability of the targeting group to bind to the human androgen receptor was studied as a function of tether. The tether served to attach the antiandrogen to the doxorubicin-formaldehyde conjugate via an N-Mannich base of a salicylamide derivative. The salicylamide was selected to serve as a trigger release mechanism to separate the doxorubicin-formaldehyde conjugate from the targeting group after it has bound to the androgen receptor. The remaining part of the tether consisted of a linear group that spanned from the 5-position of the salicylamide to the 3'-position of cyanonilutamide. The structures explored for the linear region of the tether were derivatives of di(ethylene glycol), tri(ethylene glycol), N,N'-disubstituted-piperazine, and 2-butyne-1,4-diol. Relative binding affinity of the tethers bound to the targeting group for human androgen receptor were measured using a (3)H-Mibolerone competition assay and varied from 18% of nilutamide binding for the butynediol-based linear region to less than 1% for one of the piperazine derivatives. The complete targeted drug with the butynediol-based linear region has a relative binding affinity of 10%. This relative binding affinity is encouraging in light of the cocrystal structure of human androgen receptor ligand binding domain bound to the steroid Metribolone which predicts very limited space for a tether connecting the antiandrogen on the inside to the cytotoxin on the outside.

  1. Androgen receptor: structure, role in prostate cancer and drug discovery

    PubMed Central

    Tan, MH Eileen; Li, Jun; Xu, H Eric; Melcher, Karsten; Yong, Eu-leong

    2015-01-01

    Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2–3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein. PMID:24909511

  2. Synergistic co-targeting of prostate-specific membrane antigen and androgen receptor in prostate cancer.

    PubMed

    Murga, Jose D; Moorji, Sameer M; Han, Amy Q; Magargal, Wells W; DiPippo, Vincent A; Olson, William C

    2015-02-15

    Antibody-drug conjugates (ADCs) are an emerging class of cancer therapies that have demonstrated favorable activity both as single agents and as components of combination regimens. Phase 2 testing of an ADC targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer has shown antitumor activity. The present study examined PSMA ADC used in combination with potent antiandrogens (enzalutamide and abiraterone) and other compounds. Antiproliferative activity and expression of PSMA, prostate-specific antigen and androgen receptor were evaluated in the prostate cancer cell lines LNCaP and C4-2. Cells were tested for susceptibility to antiandrogens or other inhibitors, used alone and in combination with PSMA ADC. Potential drug synergy or antagonism was evaluated using the Bliss independence method. Enzalutamide and abiraterone demonstrated robust, statistically significant synergy when combined with PSMA ADC. Largely additive activity was observed between the antiandrogens and the individual components of the ADC (free drug and unmodified antibody). Rapamycin also synergized with PSMA ADC in certain settings. Synergy was linked in part to upregulation of PSMA expression. In androgen-dependent LNCaP cells, enzalutamide and abiraterone each inhibited proliferation, upregulated PSMA expression, and synergized with PSMA ADC. In androgen-independent C4-2 cells, enzalutamide and abiraterone showed no measurable antiproliferative activity on their own but increased PSMA expression and synergized with PSMA ADC nonetheless. PSMA expression increased progressively over 3 weeks with enzalutamide and returned to baseline levels 1 week after enzalutamide removal. The findings support exploration of clinical treatment regimens that combine potent antiandrogens and PSMA-targeted therapies for prostate cancer. © 2014 Wiley Periodicals, Inc.

  3. Characterization of Rose Bengal binding to sinusoidal and bile canalicular plasma membrane from rat liver.

    PubMed

    Yachi, K; Sugiyama, Y; Sawada, Y; Iga, T; Ikeda, Y; Toda, G; Hanano, M

    1989-01-16

    The binding of Rose bengal, a model organic anion, to sinusoidal and bile canalicular membrane fractions isolated from rat liver was compared. The fluorescence change of Rose bengal after being bound to liver plasma membranes was utilized for measuring the binding. The dissociation constants (Kd = 0.1-0.12 microM) and the binding capacities (n = 11-15 nmol/mg protein) for Rose bengal are comparable between the two membrane fractions, although the n value for sinusoidal membrane is somewhat larger than that for bile canalicular membrane. The Rose bengal binding to both membrane fractions was inhibited by various organic anions at relatively low concentrations, i.e., the half-inhibition concentrations (IC50) for Indocyanine green, sulfobromophthalein, Bromophenol blue and 1-anilino-8-naphthalene sulfonate were 0.1, 100, 1.5-2.5 and 100 microM, respectively, while taurocholate did not inhibit the Rose bengal binding to either membrane fraction at these low concentration ranges. The type of inhibition of sulfobromophthalein and Indocyanine green for Rose bengal binding is different between the two membrane domains. That is, in sinusoidal and bile canalicular membrane fractions, these organic anions exhibit mixed-type and competitive-type inhibition, respectively. It was suggested that the fluorescence method using Rose bengal may provide a simple method for detecting the specific organic anion binding protein(s) in the liver plasma membrane.

  4. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  5. α-Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane.

    PubMed

    Monsellier, Elodie; Bousset, Luc; Melki, Ronald

    2016-01-13

    Fibrillar aggregates involved in neurodegenerative diseases have the ability to spread from one cell to another in a prion-like manner. The underlying molecular mechanisms, in particular the binding mode of the fibrils to cell membranes, are poorly understood. In this work we decipher the modality by which aggregates bind to the cellular membrane, one of the obligatory steps of the propagation cycle. By characterizing the binding properties of aggregates made of α-synuclein or huntingtin exon 1 protein displaying similar composition and structure but different lengths to mammalian cells we demonstrate that in both cases aggregates bind laterally to the cellular membrane, with aggregates extremities displaying little or no role in membrane binding. Lateral binding to artificial liposomes was also observed by transmission electron microscopy. In addition we show that although α-synuclein and huntingtin exon 1 fibrils bind both laterally to the cellular membrane, their mechanisms of interaction differ. Our findings have important implications for the development of future therapeutic tools that aim to block protein aggregates propagation in the brain.

  6. α-Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane

    PubMed Central

    Monsellier, Elodie; Bousset, Luc; Melki, Ronald

    2016-01-01

    Fibrillar aggregates involved in neurodegenerative diseases have the ability to spread from one cell to another in a prion-like manner. The underlying molecular mechanisms, in particular the binding mode of the fibrils to cell membranes, are poorly understood. In this work we decipher the modality by which aggregates bind to the cellular membrane, one of the obligatory steps of the propagation cycle. By characterizing the binding properties of aggregates made of α-synuclein or huntingtin exon 1 protein displaying similar composition and structure but different lengths to mammalian cells we demonstrate that in both cases aggregates bind laterally to the cellular membrane, with aggregates extremities displaying little or no role in membrane binding. Lateral binding to artificial liposomes was also observed by transmission electron microscopy. In addition we show that although α-synuclein and huntingtin exon 1 fibrils bind both laterally to the cellular membrane, their mechanisms of interaction differ. Our findings have important implications for the development of future therapeutic tools that aim to block protein aggregates propagation in the brain. PMID:26757959

  7. External location of sites on pig erythrocyte membranes that bind nitrobenzylthioinosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agbanyo, F.R.; Cass, C.E.; Paterson, A.R.

    1988-03-01

    Nucleoside transport in erythrocytes of various species is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to high affinity sites associated with nucleoside transport elements of the plasma membrane. The present study examined binding of (/sup 3/H)NBMPR to unsealed ghosts and to sealed right-side-out vesicles (ROVs) and inside-out vesicles (IOVs) prepared from pig erythrocytes. Kd values for NBMPR dissociation from the ligand-site complex in unsealed ghosts, ROVs and IOVs were similar (1.6-2.4 nM), and Bmax values (mean +/- SD) were, respectively, 22.2 +/- 5.5, 25.8 +/- 6.4, and 37.3 +/- 4.0 molecules/fg of protein, reflecting differences in the protein content ofmore » the membrane preparations. When temperatures were decreased from 22 degrees to 4 degrees, NBMPR binding to erythrocyte membrane preparations was reduced in IOVs relative to that in unsealed ghosts and ROVs. At 22 degrees, the association of NBMPR molecules with IOVs was slower than with ROVs and unsealed ghosts, differences that were virtually eliminated by permeabilization of the membrane preparations with saponin. Thus, the binding sites were more accessible to external NBMPR in sealed ROVs and unsealed ghosts than in sealed IOVs, indicating that the NBMPR sites are located on the extracellular aspect of the membrane.« less

  8. Repair of Nerve Cell Membrance Damage by Calcium-Dependent, Membrane-Binding Proteins

    DTIC Science & Technology

    2013-09-01

    In acute spinal cord injury the plasma membranes of spinal neurons are torn allowing high concentrations of calcium to enter the cytoplasm, activating...repairing the cell membrane as soon as the increase in intracellular calcium is sensed by calcium -binding proteins. If these repair mechanisms can be...testing the hypothesis that the action of copine, a human calcium -dependent-membrane-binding protein, in model systems can promote a stable repair of

  9. CALCIUM BINDING TO INTESTINAL MEMBRANES

    PubMed Central

    Oschman, James L.; Wall, Betty J.

    1972-01-01

    Flame photometry reveals that glutaraldehyde and buffer solutions in routine use for electron microscopy contain varying amounts of calcium. The presence of electron-opaque deposits adjacent to membranes in a variety of tissues can be correlated with the presence of calcium in the fixative. In insect intestine (midgut), deposits occur adjacent to apical and lateral plasma membranes. The deposits are particularly evident in tissues fixed in glutaraldehyde without postosmication. They are also observed in osmicated tissue if calcium is added to wash and osmium solutions. Deposits are absent when calcium-free fixatives are used, but are present when traces of CaCl2 (as low as 5 x 10-5 M) are added. The deposits occur at regular intervals along junctional membranes, providing images strikingly similar to those obtained by other workers who have used pyroantimonate in an effort to localize sodium. Other divalent cations (Mg++, Sr++, Ba++, Mn++, Fe++) appear to substitute for calcium, while sodium, potassium, lanthanum, and mercury do not. After postfixing with osmium with calcium added, the deposits can be resolved as patches along the inner leaflet of apical and lateral plasma membranes. The dense regions may thus localize membrane constituents that bind calcium. The results are discussed in relation to the role of calcium in control of cell-to-cell communication, intestinal calcium uptake, and the pyroantimonate technique for ion localization. PMID:4569411

  10. Topographical analysis of the plasma membrane-associated sucrose binding protein from soybean.

    PubMed

    Overvoorde, P J; Grimes, H D

    1994-05-27

    Plasma membranes of soybean cells actively engaged in sucrose transport have a sucrose binding protein (SBP) that does not appear to be an integral membrane protein. Experiments were undertaken to analyze the topographical association of this protein with the membrane. Treatment of purified plasma membrane vesicles with either 1 M KCl or KI released less than 35% of the sucrose binding protein from the membrane whereas treatment with either 4 M urea or 0.1 M Na2CO3, pH 11.5, disassociated between 50 and 70%, respectively, of this protein from the membrane. SDS, at either 0.5x, 1x, or 10x of its critical micelle concentration, effectively solubilized the sucrose binding protein. The nonionic detergents Triton X-100 and CHAPS, at either 0.5x, 1x, or 10x of their critical micelle concentration, solubilized between 65 and 75% of this protein. When either native plasma membrane-associated or in vitro-transcribed and -translated SBP were subjected to Triton X-114 phase separation, 80% partitioned into the detergent-poor aqueous phase. These results indicate that the SBP is a peripheral membrane protein but also suggest that there is a population of this protein that is tethered to the membrane.

  11. Assessment of a recombinant androgen receptor binding assay: initial steps towards validation.

    PubMed

    Freyberger, Alexius; Weimer, Marc; Tran, Hoai-Son; Ahr, Hans-Jürgen

    2010-08-01

    Despite more than a decade of research in the field of endocrine active compounds with affinity for the androgen receptor (AR), still no validated recombinant AR binding assay is available, although recombinant AR can be obtained from several sources. With funding from the European Union (EU)-sponsored 6th framework project, ReProTect, we developed a model protocol for such an assay based on a simple AR binding assay recently developed at our institution. Important features of the protocol were the use of a rat recombinant fusion protein to thioredoxin containing both the hinge region and ligand binding domain (LBD) of the rat AR (which is identical to the human AR-LBD) and performance in a 96-well plate format. Besides two reference compounds [dihydrotestosterone (DHT), androstenedione] ten test compounds with different affinities for the AR [levonorgestrel, progesterone, prochloraz, 17alpha-methyltestosterone, flutamide, norethynodrel, o,p'-DDT, dibutylphthalate, vinclozolin, linuron] were used to explore the performance of the assay. At least three independent experiments per compound were performed. The AR binding properties of reference and test compounds were well detected, in terms of the relative ranking of binding affinities, there was good agreement with published data obtained from experiments using recombinant AR preparations. Irrespective of the chemical nature of the compound, individual IC(50)-values for a given compound varied by not more than a factor of 2.6. Our data demonstrate that the assay reliably ranked compounds with strong, weak, and no/marginal affinity for the AR with high accuracy. It avoids the manipulation and use of animals, as a recombinant protein is used and thus contributes to the 3R concept. On the whole, this assay is a promising candidate for further validation. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Non-classic androgen actions in Sertoli cell membrane in whole seminiferous tubules: effects of nandrolone decanoate and catechin.

    PubMed

    Cavalari, Fernanda Carvalho; de Castro, Alexandre Luz; Fracasso, Bianca de Moraes; Loss, Eloísa da Silveira

    2012-01-01

    Studies show a mechanism of action of testosterone, nandrolone and catechin as agonists of the membrane androgen receptor. The aim of this work is to investigate the non-classical effect of androgens and catechin in Sertoli cells from immature rats. The membrane potential of Sertoli cells in whole seminiferous tubules was recorded using a standard single microelectrode technique. It was performed a topical application of testosterone (1 μM), nandrolone (0.1, 0.5 and 1 μM) and the flavonoid catechin (0.1, 0.5 and 1 μM) alone and also after infusion with flutamide (1 μM), diazoxide (100 μM) or U73122 (1 μM). The immature testes were incubated for 5 min in KRb with (45)Ca(2+), with or without nandrolone (1 μM). The results were given as mean±SEM. The data were analyzed using ANOVA for repeated measures with Bonferroni post-test. Testosterone produces a depolarization in the membrane potential at 120 s after application. Catechin (1 μM) and nandrolone (1 μM) have shown a similar response to testosterone: depolarization at 120 s after the application. The same response of catechin and nandrolone was observed at different doses. The effects of testosterone, catechin and nandrolone were not affected after perfusion with flutamide. Perfusion with diazoxide and U73122 nullified the effect of nandrolone (1 μM) and catechin (1 μM). Nandrolone and testosterone increased (45)Ca(2+) uptake with or without flutamide within 5min. These results indicate that nandrolone and catechin act through a receptor on the plasmatic membrane, as well as testosterone, showing a non-classical pathway in Sertoli cells from immature rat testes. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Cooperative binding of Annexin A5 to phosphatidylserine on apoptotic cell membranes

    NASA Astrophysics Data System (ADS)

    Janko, Christina; Jeremic, Ivica; Biermann, Mona; Chaurio, Ricardo; Schorn, Christine; Muñoz, Luis E.; Herrmann, Martin

    2013-12-01

    Healthy cells exhibit an asymmetric plasma membrane with phosphatidylserine (PS) located on the cytoplasmic leaflet of the plasma membrane bilayer. Annexin A5-FITC, a PS binding protein, is commonly used to evaluate apoptosis in flow cytometry. PS exposed by apoptotic cells serves as a major ‘eat-me’ signal for phagocytes. Although exposition of PS has been observed after alternative stimuli, no clearance of viable, PS exposing cells has been detected. Thus, besides PS exposure, membranes of viable and apoptotic cells might exhibit specific characteristics. Here, we show that Annexin A5 binds in a cooperative manner to different types of dead cells. Shrunken apoptotic cells thereby showed the highest Hill coefficient values. Contrarily, parafomaldehyde fixation of apoptotic cells completely abrogates the cooperativity effect seen with dead and dying cells. We tend to speculate that the cooperative binding of Annexin A5 to the membranes of apoptotic cells reflects higher fluidity of the exposed membranes facilitating PS clustering.

  14. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells

    PubMed Central

    Ma, Yi; Yang, Hao-Zheng; Xu, Long-Mei; Huang, Yi-Ran; Dai, Hui-Li; Kang, Xiao-Nan

    2015-01-01

    Dysregulation of androgen-binding protein (ABP) is associated with a number of endocrine and andrology diseases. However, the ABP metabolism in Sertoli cells is largely unknown. We report that autophagy degrades ABP in rat Sertoli cells, and the autophagic clearance of ABP is regulated by testosterone, which prolongs the ABP biological half-life by inhibiting autophagy. Further studies identified that the autophagic clearance of ABP might be selectively regulated by testosterone, independent of stress (hypoxia)-induced autophagic degradation. These data demonstrate that testosterone up-regulates ABP expression at least partially by suppressing the autophagic degradation. We report a novel finding with respect to the mechanisms by which ABP is cleared, and by which the process is regulated in Sertoli cells. PMID:25745956

  15. [3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart.

    PubMed

    Matucci, R; Bennardini, F; Sciammarella, M L; Baccaro, C; Stendardi, I; Franconi, F; Giotti, A

    1987-04-01

    We compared the binding properties of [3H]-nitrendipine in heart membranes from normal guinea-pig heart and from hypoxic or hypoxic and reoxygenated heart. The [3H]-nitrendipine binds a single class of high capacity (Bmax 667.2 +/- 105.2) with high affinity (KD 0.14 +/- 0.02) binding sites. By contrast, in membranes of hypoxic and reoxygenated heart the Bmax decreases significantly while it remains unaffected during hypoxia. Xanthinoxidase activity is increased in hypoxic-reoxygenated hearts.

  16. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    PubMed

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  17. Atomistic models for free energy evaluation of drug binding to membrane proteins.

    PubMed

    Durdagi, S; Zhao, C; Cuervo, J E; Noskov, S Y

    2011-01-01

    The binding of various molecules to integral membrane proteins with optimal affinity and specificity is central to normal function of cell. While membrane proteins represent about one third of the whole cell proteome, they are a majority of common drug targets. The quest for the development of computational models capable of accurate evaluation of binding affinities, decomposition of the binding into its principal components and thus mapping molecular mechanisms of binding remains one of the main goals of modern computational biophysics and related drug development. The primary scope of this review will be on the recent extension of computational methods for the study of drug binding to membrane proteins. Several examples of such applications will be provided ranging from secondary transporters to voltage gated channels. In this mini-review, we will provide a short summary on the breadth of different methods for binding affinity evaluation. These methods include molecular docking with docking scoring functions, molecular dynamics (MD) simulations combined with post-processing analysis using Molecular Mechanics/Poisson Boltzmann (Generalized Born) Surface Area (MM/PB(GB)SA), as well as direct evaluation of free energies from Free Energy Perturbation (FEP) with constraining schemes, and Potential of Mean Force (PMF) computations. We will compare advantages and shortcomings of popular techniques and provide discussion on the integrative strategies for drug development aimed at targeting membrane proteins.

  18. Androgen responsiveness of the new human endometrial cancer cell line MFE-296.

    PubMed

    Hackenberg, R; Beck, S; Filmer, A; Hushmand Nia, A; Kunzmann, R; Koch, M; Slater, E P; Schulz, K D

    1994-04-01

    MFE-296 endometrial cancer cells express androgen receptors in vitro. These cells, which are tumorigenic in nude mice, are derived from a moderately differentiated human endometrial adenocarcinoma. They express vimentin and the cytokeratins 7, 8, 18, and 19. Karyotyping revealed near-tetraploidy for most of the cells. No marker chromosomes were observed. DNA analyses confirmed the genetic identity of the cell line and the patient from whom the cell line was derived. Proliferation of MFE-296 cells was inhibited by the progestin R5020 and the androgen dihydrotestosterone (DHT). The inhibition of proliferation by DHT was antagonized by the antiandrogen Casodex, demonstrating the involvement of the androgen receptor. Androgen binding was determined at 22,000 binding sites per cell using a whole-cell assay (KD = 0.05 nM) and 30 fmol/mg protein with the dextran charcoal method; 7 fmol/mg protein of progesterone receptors were found, whereas estrogen receptors were below 5 fmol/mg protein. The androgen receptor was functionally intact, as demonstrated by transfection experiments with a reporter-gene construct, containing an androgen-responsive element. In MFE-296 cells the content of the androgen receptor was up-regulated by its own ligand.

  19. Avidin/PSS membrane microcapsules with biotin-binding activity.

    PubMed

    Endo, Yoshihiro; Sato, Katsuhiko; Sugimoto, Kentaro; Anzai, Jun-ichi

    2011-08-15

    Polyelectrolyte microcapsules with avidin-poly(styrene sulfonate) (PSS) membrane were prepared by a layer-by-layer deposition technique. The uptake and release of biotin-labeled fluorescein (b-FITC) as well as immobilization of biotin-labeled glucose oxidase (b-GOx) to the microcapsule were studied. The polyelectrolyte microcapsules were prepared by coating the surface of calcium carbonate (CaCO(3)) microparticles with an avidin/PSS multilayer membrane, followed by dissolution of CaCO(3) core in an ethylenediaminetetraacetic acid solution. Inner and outer poly(allylamine)/PSS films were required to isolate the microcapsules, whereas microcapsules could not be formed without the support. The uptake of b-FITC into the microcapsule was highly enhanced through a strong binding of b-FITC to avidin as compared with the uptake of biotin-free FITC. Release of b-FITC from the microcapsule was accelerated upon addition of biotin due to a competitive binding of the added biotin to the binding site of avidin. Similarly, the surface of microcapsule was modified with b-GOx with retaining its catalytic activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Sex hormone-binding globulin is associated with androgen deficiency features independently of total testosterone.

    PubMed

    Rastrelli, Giulia; Corona, Giovanni; Cipriani, Sarah; Mannucci, Edoardo; Maggi, Mario

    2018-04-01

    It is recognized that total testosterone (TT) does not sufficiently describe androgen status when sex hormone-binding globulin (SHBG) is altered. However, in humans, evidence supporting the existence of a hypogonadism due to low T bioactivity is scanty. The aim of the study was to assess whether changes in SHBG levels, independently of TT, are associated with subjective and objective androgen-dependent parameters. Cross-sectional observation. Two thousand six hundred and twenty-two men (aged 51.1 ± 13.5 years) attending a Sexual Medicine and Andrology Outpatient Clinic for sexual dysfunctions. All patients underwent a standardized diagnostic protocol before starting any treatment. Clinical and biochemical parameters have been collected. Higher ANDROTEST score has been used as a comprehensive marker of more severe hypogonadal symptoms. Prostate-specific antigen (PSA) and haematocrit have been used as objective surrogate markers of T bioactivity. After adjusting for TT and lifestyle, SHBG showed a significant positive association with ANDROTEST score (B = 0.79 [0.61; 0.96], P < .0001). Conversely, higher SHBG, independently of TT, was negatively related to PSA (B = -0.86 [-0.83; -0.89]; P < .0001) and haematocrit (B = -0.64 [-0.88; -0.40]; P < .0001), after adjustment for the aforementioned confounders along with age and body mass index. Furthermore, a relationship between SHBG and lipids or blood pressure was found, with lower SHBG levels associated with a worse metabolic profile, independently of TT. Higher SHBG, independently of TT, is associated with either subjective or objective androgen deficiency features. This indicates that besides a hypogonadism due to an impaired T production, a hypogonadism due to a lower biological activity of T does exist. © 2017 John Wiley & Sons Ltd.

  1. Characterization of auxin-binding proteins from zucchini plasma membrane

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  2. Characterization of auxin-binding proteins from zucchini plasma membrane.

    PubMed

    Hicks, G R; Rice, M S; Lomax, T L

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  3. Two nucleotide binding sites modulate ( sup 3 H) glyburide binding to rat cortex membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.E.; Gopalakrishnan, M.; Triggle, D.J.

    1991-03-11

    The effects of nucleotides on the binding of the ATP-dependent K{sup +}-channel antagonist ({sup 3}H)glyburide (GLB) to rat cortex membranes were examined. Nucleotide triphosphates (NTPs) and nucleotide diphosphate (NDPs) inhibited the binding of GLB. This effect was dependent on the presence of dithiothreitol (DTT). Inhibition of binding by NTPs, with the exception of ATP{gamma}S, was dependent on the presence of Mg{sup 2+}. GLB binding showed a biphasic response to ADP: up to 3 mM, ADP inhibited binding, and above this concentration GLB binding increased rapidly, and was restored to normal levels by 10 mM ADP. In the presence of Mg{supmore » 2+}, ADP did not stimulate binding. Saturation analysis in the presence of Mg{sup 2+} and increasing concentrations of ADP showed that ADP results primarily in a change of the B{sub max} for GLB binding. The differential effects of NTPS and NDPs indicate that two nucleotide binding sites regulate GLB binding.« less

  4. Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism.

    PubMed Central

    Spearman, P; Horton, R; Ratner, L; Kuli-Zade, I

    1997-01-01

    The interaction of the human immunodeficiency virus (HIV) Gag protein with the plasma membrane of a cell is a critical event in the assembly of HIV particles. The matrix protein region (MA) of HIV type 1 (HIV-1) Pr55Gag has previously been demonstrated to confer membrane-binding properties on the precursor polyprotein. Both the myristic acid moiety and additional determinants within MA are essential for plasma membrane binding and subsequent particle formation. In this study, we demonstrated the myristylation-dependent membrane interaction of MA in an in vivo membrane-binding assay. When expressed within mammalian cells, MA was found both in association with cellular membranes and in a membrane-free form. In contrast, the intact precursor Pr55Gag molecule analyzed in an identical manner was found almost exclusively bound to membranes. Both membrane-bound and membrane-free forms of MA were myristylated and phosphorylated. Differential membrane binding was not due to the formation of multimers, as dimeric and trimeric forms of MA were also found in both membrane-bound and membrane-free fractions. To define the requirements for membrane binding of MA, we analyzed the membrane binding of a series of MA deletion mutants. Surprisingly, deletions within alpha-helical regions forming the globular head of MA led to a dramatic increase in overall membrane binding. The stability of the MA-membrane interaction was not affected by these deletions, and no deletion eliminated membrane binding of the molecule. These results establish that myristic acid is a primary determinant of the stability of the Gag protein-membrane interaction and provide support for the hypothesis that a significant proportion of HIV-1 MA molecules may adopt a conformation in which myristic acid is hidden and unavailable for membrane interaction. PMID:9261380

  5. TET2 binds the androgen receptor and loss is associated with prostate cancer

    PubMed Central

    Nickerson, ML; Das, S; Im, KM; Turan, S; Berndt, SI; Li, H; Lou, H; Brodie, SA; Billaud, JN; Zhang, T; Bouk, AJ; Butcher, D; Wang, Z; Sun, L; Misner, K; Tan, W; Esnakula, A; Esposito, D; Huang, WY; Hoover, RN; Tucker, MA; Keller, JR; Boland, J; Brown, K; Anderson, SK; Moore, LE; Isaacs, WB; Chanock, SJ; Yeager, M; Dean, M; Andresson, T

    2016-01-01

    Genetic alterations associated with prostate cancer (PCa) may be identified by sequencing metastatic tumor genomes to identify molecular markers at this lethal stage of disease. Previously, we characterized somatic alterations in metastatic tumors in the methylcytosine dioxygenase ten-eleven translocation 2 (TET2), which is altered in 5–15% of myeloid, kidney, colon and prostate cancers. Genome-wide association studies previously identified non-coding risk variants associated with PCa and melanoma. We performed fine-mapping of PCa risk across TET2 using genotypes from the PEGASUS case-control cohort and identified six new risk variants in introns 1 and 2. Oligonucleotides containing two risk variants were bound by the transcription factor octamer-binding protein 1 (Oct1/POU2F1) and TET2 and Oct1 expression were positively correlated in prostate tumors. TET2 is expressed in normal prostate tissue and reduced in a subset of tumors from the Cancer Genome Atlas (TCGA). Small interfering RNA (siRNA)-mediated TET2 knockdown (KD) increases LNCaP cell proliferation, migration, and wound healing, verifying loss drives a cancer phenotype. Endogenous TET2 bound the androgen receptor (AR) and AR-coactivator proteins in LNCaP cell extracts, and TET2 KD increases prostate-specific antigen (KLK3/PSA) expression. Published data reveal TET2 binding sites and hydroxymethylcytosine (hmC) proximal to KLK3. A gene co-expression network identified using TCGA prostate tumor RNA-sequencing identifies co-regulated cancer genes associated with 2-oxoglutarate (2-OG) and succinate metabolism, including TET2, lysine demethylase (KDM) KDM6A, BRCA1-associated BAP1, and citric acid cycle enzymes IDH1/2, SDHA/B, and FH. The co-expression signature is conserved across 31 TCGA cancers suggesting a putative role for TET2 as an energy sensor (of 2-OG) that modifies aspects of androgen-AR signaling. Decreased TET2 mRNA expression in TCGA PCa tumors is strongly associated with reduced patient survival

  6. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dick, Robert A.; Datta, Siddhartha A. K.; Nanda, Hirsh

    2016-05-06

    Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactionsin vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particlesin vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, whichmore » is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interactionin vitro, either by directly contacting acidic lipids or by promoting Gag multimerization. Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our results show that RSV Gag is highly flexible and can adopt

  7. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    PubMed Central

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane

  8. Kinetic and Thermodynamic Characterization of Dihydrotestosterone-Induced Conformational Perturbations in Androgen Receptor Ligand-Binding Domain

    PubMed Central

    Jasuja, Ravi; Ulloor, Jagadish; Yengo, Christopher M.; Choong, Karen; Istomin, Andrei Y.; Livesay, Dennis R.; Jacobs, Donald J.; Swerdloff, Ronald S.; Mikšovská, Jaroslava; Larsen, Randy W.; Bhasin, Shalender

    2009-01-01

    Ligand-induced conformational perturbations in androgen receptor (AR) are important in coactivator recruitment and transactivation. However, molecular rearrangements in AR ligand-binding domain (AR-LBD) associated with agonist binding and their kinetic and thermodynamic parameters are poorly understood. We used steady-state second-derivative absorption and emission spectroscopy, pressure and temperature perturbations, and 4,4′-bis-anilinonaphthalene 8-sulfonate (bis-ANS) partitioning to determine the kinetics and thermodynamics of the conformational changes in AR-LBD after dihydrotestosterone (DHT) binding. In presence of DHT, the second-derivative absorption spectrum showed a red shift and a change in peak-to-peak distance. Emission intensity increased upon DHT binding, and center of spectral mass was blue shifted, denoting conformational changes resulting in more hydrophobic environment for tyrosines and tryptophans within a more compact DHT-bound receptor. In pressure perturbation calorimetry, DHT-induced energetic stabilization increased the Gibbs free energy of unfolding to 8.4 ± 1.3 kcal/mol from 3.5 ± 1.6 kcal/mol. Bis-ANS partitioning studies revealed that upon DHT binding, AR-LBD underwent biphasic rearrangement with a high activation energy (13.4 kcal/mol). An initial, molten globule-like burst phase (k ∼30 sec−1) with greater solvent accessibility was followed by rearrangement (k ∼0.01 sec−1), leading to a more compact conformation than apo-AR-LBD. Molecular simulations demonstrated unique sensitivity of tyrosine and tryptophan residues during pressure unfolding with rearrangement of residues in the coactivator recruitment surfaces distant from the ligand-binding pocket. In conclusion, DHT binding leads to energetic stabilization of AR-LBD domain and substantial rearrangement of residues distant from the ligand-binding pocket. DHT binding to AR-LBD involves biphasic receptor rearrangement including population of a molten globule

  9. 2,2'-Bis(monoacylglycero) PO4 (BMP), but Not 3,1'-BMP, increases membrane curvature stress to enhance α-tocopherol transfer protein binding to membranes.

    PubMed

    Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D; Katsaras, John; Atkinson, Jeffrey

    2015-03-01

    Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. We examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.

  10. 2,2'-Bis(monoacylglycero) PO 4 (BMP), but Not 3,1'-BMP, Increases Membrane Curvature Stress to Enhance α-Tocopherol Transfer Protein Binding to Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D.

    2015-01-21

    Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. In this paper, we examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. Finally, α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.

  11. Immunostaining of the androgen receptor and sequence analysis of its DNA-binding domain in canine prostate cancer.

    PubMed

    Lai, Chen-Li; van den Ham, René; Mol, Jan; Teske, Erik

    2009-09-01

    Prostate cancer in the dog (cPC) has many features in common with hormone refractory human prostate cancer. As cPC is seen more often in castrated dogs, the contribution of the androgen receptor (AR) to the development of prostate cancer remains questionable. The aim of the present study was to evaluate the presence of the AR by immunohistochemistry in cPC. AR staining was observed in most tumors from intact and castrated dogs, but the proportion of positive cells and the staining intensity were much lower than in the prostate of healthy, non-castrated dogs. Most of the positive staining was seen in the cytoplasm rather than in the nuclei of the tumor cells. The predominant cytoplasmic localization was not related to mutations in exon 3 of the DNA-binding domain of the AR, as shown by sequence analysis of microdissected AR positive tumor cells. Other mechanisms that lead to an impaired androgen-AR signaling or a basal/stem cell like origin may explain the low cytoplasmic AR staining in cPC.

  12. Specific strychnine binding sites on acrosome-associated membranes of golden hamster spermatozoa.

    PubMed

    Llanos, Miguel N; Ronco, Ana M; Aguirre, María C

    2003-06-27

    This study demonstrates for the first time, that membrane vesicles originated from the hamster sperm head after the occurrence of the acrosome reaction, possess specific strychnine binding sites. [3H]Strychnine binding was saturable and reversible, being displaced by unlabeled strychnine (IC(50)=26.7+/-2.3 microM). Kinetic analysis revealed one binding site with K(d)=120nM and B(max)=142fmol/10(6) spermatozoa. Glycine receptor agonists beta-alanine and taurine inhibited strychnine binding by 20-30%. Surprisingly, glycine stimulated binding by about 40-50%. Results obtained in this study strongly suggest the presence of glycine receptors-with distinctive kinetic properties on the periacrosomal plasma membrane of hamster spermatozoa. Localization of this receptor fits well with its previously proposed role in acrosomal exocytosis during mammalian fertilization.

  13. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    PubMed

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  14. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  15. Binding of /sup 18/F by cell membranes and cell walls of Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yotis, W.W.; Zeb, M.; McNulty, J.

    1983-07-01

    The binding of /sup 18/F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of /sup 18/F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. /sup 18/F binding was stimulated by Ca/sup 2 +/ (1 mM). The binding of /sup 18/F to cellular components was dependent upon the pH, as well as the amount of /sup 18/F and dose of the binder employed. The binding of /sup 18/F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly.more » The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of /sup 18/F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of /sup 18/F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of /sup 18/F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of /sup 18/F per mg (dry weight). /sup 18/F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of /sup 18/F binding by cell membranes and walls of oral flora.« less

  16. Development of cell-penetrating bispecific antibodies targeting the N-terminal domain of androgen receptor for prostate cancer therapy.

    PubMed

    Goicochea, Nancy L; Garnovskaya, Maria; Blanton, Mary G; Chan, Grace; Weisbart, Richard; Lilly, Michael B

    2017-12-01

    Castration-resistant prostate cancer cells exhibit continued androgen receptor signaling in spite of low levels of ligand. Current therapies to block androgen receptor signaling act by inhibiting ligand production or binding. We developed bispecific antibodies capable of penetrating cells and binding androgen receptor outside of the ligand-binding domain. Half of the bispecific antibody molecule consists of a single-chain variable fragment of 3E10, an anti-DNA antibody that enters cells. The other half is a single-chain variable fragment version of AR441, an anti-AR antibody. The resulting 3E10-AR441 bispecific antibody enters human LNCaP prostate cells and accumulates in the nucleus. The antibody binds to wild-type, mutant and splice variant androgen receptor. Binding affinity of 3E10-AR441 to androgen receptor (284 nM) was lower than that of the parental AR441 mAb (4.6 nM), but could be improved (45 nM) through alternative placement of the affinity tags, and ordering of the VH and VK domains. The 3E10-AR441 bispecific antibody blocked genomic signaling by wild-type or splice variant androgen receptor in LNCaP cells. It also blocked non-genomic signaling by the wild-type receptor. Furthermore, bispecific antibody inhibited the growth of C4-2 prostate cancer cells under androgen-stimulated conditions. The 3E10-AR441 biAb can enter prostate cancer cells and inhibits androgen receptor function in a ligand-independent manner. It may be an attractive prototype agent for prostate cancer therapy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Luteinizing hormone-releasing hormone inactivation by purified pituitary plasma membranes: effects of receptor-binding studies.

    PubMed

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C

    1979-05-01

    Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The

  18. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes

    PubMed Central

    Hoogerheide, David P.; Noskov, Sergei Y.; Jacobs, Daniel; Bergdoll, Lucie; Silin, Vitalii; Worcester, David L.; Abramson, Jeff; Nanda, Hirsh; Rostovtseva, Tatiana K.; Bezrukov, Sergey M.

    2017-01-01

    Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques—surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations—suggest that α-tubulin’s amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic “mitochondrial” membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents. PMID:28420794

  19. Cellular androgen content influences enzalutamide agonism of F877L mutant androgen receptor

    PubMed Central

    Coleman, Daniel J.; Van Hook, Kathryn; King, Carly J.; Schwartzman, Jacob; Lisac, Robert; Urrutia, Joshua; Sehrawat, Archana; Woodward, Josha; Wang, Nicholas J.; Gulati, Roman; Thomas, George V.; Beer, Tomasz M.; Gleave, Martin; Korkola, James E.; Gao, Lina; Heiser, Laura M.; Alumkal, Joshi J.

    2016-01-01

    Prostate cancer is the most commonly diagnosed and second-most lethal cancer among men in the United States. The vast majority of prostate cancer deaths are due to castration-resistant prostate cancer (CRPC) – the lethal form of the disease that has progressed despite therapies that interfere with activation of androgen receptor (AR) signaling. One emergent resistance mechanism to medical castration is synthesis of intratumoral androgens that activate the AR. This insight led to the development of the AR antagonist enzalutamide. However, resistance to enzalutamide invariably develops, and disease progression is nearly universal. One mechanism of resistance to enzalutamide is an F877L mutation in the AR ligand-binding domain that can convert enzalutamide to an agonist of AR activity. However, mechanisms that contribute to the agonist switch had not been fully clarified, and there were no therapies to block AR F877L. Using cell line models of castration-resistant prostate cancer (CRPC), we determined that cellular androgen content influences enzalutamide agonism of mutant F877L AR. Further, enzalutamide treatment of AR F877L-expressing cell lines recapitulated the effects of androgen activation of F877L AR or wild-type AR. Because the BET bromodomain inhibitor JQ-1 was previously shown to block androgen activation of wild-type AR, we tested JQ-1 in AR F877L-expressing CRPC models. We determined that JQ-1 suppressed androgen or enzalutamide activation of mutant F877L AR and suppressed growth of mutant F877L AR CRPC tumors in vivo, demonstrating a new strategy to treat tumors harboring this mutation. PMID:27276681

  20. Zebrafish (Danio rerio) androgen receptor: sequence homology and up-regulation by the fungicide vinclozolin.

    PubMed

    Smolinsky, Amanda N; Doughman, Jennifer M; Kratzke, Liên-Thành C; Lassiter, Christopher S

    2010-03-01

    Steroid hormones regulate gene expression in organisms by binding to receptor proteins. These hormones include the androgens, which signal through androgen receptors (ARs). Endocrine disrupters (EDCs) are chemicals in the environment that adversely affect organisms by binding to nuclear receptors, including ARs. Vinclozolin, a fungicide used on fruit and vegetable crops, is a known anti-androgen, a type of EDC that blocks signals from testosterone and its derivatives. In order to better understand the effects of EDCs, further research on androgen receptors and other hormone signaling pathways is necessary. In this study, we demonstrate the evolutionary conservation between the genomic structure of the human and zebrafish ar genes and find that ar mRNA expression increases in zebrafish embryos exposed to vinclozolin, which may be evolutionarily conserved as well. At 48 and 72 h post-fertilization, vinclozolin-treated embryos express ar mRNA 8-fold higher than the control level. These findings suggest that zebrafish embryos attempt to compensate for the presence of an anti-androgen by increasing the number of androgen receptors available.

  1. The binding of calcium ions by erythrocytes and `ghost'-cell membranes

    PubMed Central

    Long, C.; Mouat, Barbara

    1971-01-01

    1. Washed human erythrocytes, suspended in iso-osmotic sucrose containing 2.5mm-calcium chloride, bind about 400μg-atoms of calcium/litre of packed cells. Sucrose may be replaced by other sugars. 2. Partial replacement of sucrose by iso-osmotic potassium chloride diminishes the uptake of calcium, 50% inhibition occurring at about 50mm-potassium chloride. 3. Other univalent cations behave like potassium, whereas bivalent cations are much more inhibitory. The tervalent cations, yttrium and lanthanum, however, are the most effective inhibitors of calcium uptake. 4. An approximate correlation exists between the calcium uptake and the sialic acid content of erythrocytes of various species and of human erythrocytes that have been partially depleted of sialic acid by treatment with neuraminidase. However, even after complete removal of sialic acid, human erythrocytes still bind about 140μg-atoms of calcium/litre of packed cells. 5. A Scatchard (1949) plot of calcium uptake at various Ca2+ concentrations in the suspending media shows the presence of three different binding sites on the external surface of the human erythrocyte membrane. 6. Erythrocyte `ghost' cells, the membranes of which appear to be permeable to Ca2+ ions, can bind about 1000μg-atoms of calcium per `ghost'-cell equivalent of 1 litre of packed erythrocytes. This indicates that there are also binding sites for calcium on the internal surface of the erythrocyte membrane. PMID:5124387

  2. Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids

    PubMed Central

    Konshina, Anastasia G.; Boldyrev, Ivan A.; Utkin, Yuri N.; Omel'kov, Anton V.; Efremov, Roman G.

    2011-01-01

    The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of

  3. Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy.

    PubMed

    Siligardi, Giuliano; Hussain, Rohanah; Patching, Simon G; Phillips-Jones, Mary K

    2014-01-01

    A great number of membrane proteins have proven difficult to crystallise for use in X-ray crystallographic structural determination or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour. In this review examples of the applications of CD and synchrotron radiation CD (SRCD) to membrane protein ligand binding interaction studies are discussed. The availability of SRCD has been an important advancement in recent progress, most particularly because it can be used to extend the spectral region in the far-UV region (important for increasing the accuracy of secondary structure estimations) and for working with membrane proteins available in only small quantities for which SRCD has facilitated molecular recognition studies. Such studies have been accomplished by probing in the near-UV region the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells of small volume capacity. In particular, this review describes the most recent use of the technique in the following areas: to obtain quantitative data on ligand binding (exemplified by the FsrC membrane sensor kinase receptor); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by secretory phospholipase A2); and to identify suitable detergent conditions to observe membrane protein-ligand interactions using stabilised proteins (exemplified by the antiseptic transporter SugE). Finally, the importance of characterising in solution the conformational behaviour and ligand binding properties of proteins in both far- and near-UV regions is discussed. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. © 2013.

  4. The specificity of binding of growth hormone and prolactin to purified plasma membranes from pregnant-rabbit liver.

    PubMed Central

    Webb, C F; Cadman, H F; Wallis, M

    1986-01-01

    The binding of 125I-labelled human growth hormone (hGH) to a purified plasma membrane preparation from the liver of pregnant rabbit, and to receptors solubilized from this fraction with Triton X-100, was dependent on time, temperature, the cations used and the receptor concentration. Solubilization did not affect the binding properties of the receptors at low concentrations of Triton X-100. Some somatogenic hormones, such as bovine GH, and some lactogenic hormones, such as ovine prolactin, displaced 125I-labelled hGH from purified plasma membranes and solubilized receptor preparations, but GHs and prolactins from various other species were rather ineffective. The results indicate that although there are binding sites for hGH in these pregnant rabbit liver membranes, few of these are specifically somatogenic or lactogenic. The binding properties of the purified plasma membranes are similar to those of a microsomal preparation studied previously, suggesting that the complex nature of the binding of hGH is not due to the heterogeneity of cellular membranes used to study binding, but is a property of the receptors associated with plasma membranes. PMID:3790086

  5. A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding

    PubMed Central

    Khan, Hanif M.; He, Tao; Fuglebakk, Edvin; Grauffel, Cédric; Yang, Boqian; Roberts, Mary F.; Gershenson, Anne; Reuter, Nathalie

    2016-01-01

    Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) is a secreted virulence factor that binds specifically to phosphatidylcholine (PC) bilayers containing negatively charged phospholipids. BtPI-PLC carries a negative net charge and its interfacial binding site has no obvious cluster of basic residues. Continuum electrostatic calculations show that, as expected, nonspecific electrostatic interactions between BtPI-PLC and membranes vary as a function of the fraction of anionic lipids present in the bilayers. Yet they are strikingly weak, with a calculated ΔGel below 1 kcal/mol, largely due to a single lysine (K44). When K44 is mutated to alanine, the equilibrium dissociation constant for small unilamellar vesicles increases more than 50 times (∼2.4 kcal/mol), suggesting that interactions between K44 and lipids are not merely electrostatic. Comparisons of molecular-dynamics simulations performed using different lipid compositions reveal that the bilayer composition does not affect either hydrogen bonds or hydrophobic contacts between the protein interfacial binding site and bilayers. However, the occupancies of cation-π interactions between PC choline headgroups and protein tyrosines vary as a function of PC content. The overall contribution of basic residues to binding affinity is also context dependent and cannot be approximated by a rule-of-thumb value because these residues can contribute to both nonspecific electrostatic and short-range protein-lipid interactions. Additionally, statistics on the distribution of basic amino acids in a data set of membrane-binding domains reveal that weak electrostatics, as observed for BtPI-PLC, might be a less unusual mechanism for peripheral membrane binding than is generally thought. PMID:27028646

  6. Autoinhibition of ankyrin-B/G membrane target bindings by intrinsically disordered segments from the tail regions

    PubMed Central

    Wang, Chao; Wei, Zhiyi

    2017-01-01

    Ankyrins together with their spectrin partners are the master organizers of micron-scale membrane domains in diverse tissues. The 24 ankyrin (ANK) repeats of ankyrins bind to numerous membrane proteins, linking them to spectrin-based cytoskeletons at specific membrane microdomains. The accessibility of the target binding groove of ANK repeats must be regulated to achieve spatially defined functions of ankyrins/target complexes in different tissues, though little is known in this regard. Here we systemically investigated the autoinhibition mechanism of ankyrin-B/G by combined biochemical, biophysical and structural biology approaches. We discovered that the entire ANK repeats are inhibited by combinatorial and quasi-independent bindings of multiple disordered segments located in the ankyrin-B/G linkers and tails, suggesting a mechanistic basis for differential regulations of membrane target bindings by ankyrins. In addition to elucidating the autoinhibition mechanisms of ankyrins, our study may also shed light on regulations on target bindings by other long repeat-containing proteins. PMID:28841137

  7. Structural insights into the methyl donor recognition model of a novel membrane-binding protein UbiG.

    PubMed

    Zhu, Yuwei; Jiang, Xuguang; Wang, Chongyuan; Liu, Yang; Fan, Xiaojiao; Zhang, Linjuan; Niu, Liwen; Teng, Maikun; Li, Xu

    2016-03-15

    UbiG is a SAM-dependent O-methyltransferase, catalyzing two O-methyl transfer steps for ubiquinone biosynthesis in Escherichia coli. UbiG possesses a unique sequence insertion between β4 and α10, which is used for membrane lipid interaction. Interestingly, this sequence insertion also covers the methyl donor binding pocket. Thus, the relationship between membrane binding and entrance of the methyl donor of UbiG during the O-methyl transfer process is a question that deserves further exploration. In this study, we reveal that the membrane-binding region of UbiG gates the entrance of methyl donor. When bound with liposome, UbiG displays an enhanced binding ability toward the methyl donor product S-adenosylhomocysteine. We further employ protein engineering strategies to design UbiG mutants by truncating the membrane interacting region or making it more flexible. The ITC results show that the binding affinity of these mutants to SAH increases significantly compared with that of the wild-type UbiG. Moreover, we determine the structure of UbiG∆(165-187) in complex with SAH. Collectively, our results provide a new angle to cognize the relationship between membrane binding and entrance of the methyl donor of UbiG, which is of benefit for better understanding the O-methyl transfer process for ubiquinone biosynthesis.

  8. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.

    PubMed

    Jia, Lin; Wu, Dinglan; Wang, Yuliang; You, Wenxing; Wang, Zhu; Xiao, Lijia; Cai, Ganhui; Xu, Zhenyu; Zou, Chang; Wang, Fei; Teoh, Jeremy Yuen-Chun; Ng, Chi-Fai; Yu, Shan; Chan, Franky L

    2018-03-20

    The metastatic castration-resistant prostate cancer (CRPC) is a lethal form of prostate cancer, in which the expression of androgen receptor (AR) is highly heterogeneous. Indeed, lower AR expression and attenuated AR signature activity is shown in CRPC tissues, especially in the subset of neuroendocrine prostate cancer (NEPC) and prostate cancer stem-like cells (PCSCs). However, the significance of AR downregulation in androgen insensitivity and de-differentiation of tumor cells in CRPC is poorly understood and much neglected. Our previous study shows that the orphan nuclear receptor TLX (NR2E1), which is upregulated in prostate cancer, plays an oncogenic role in prostate carcinogenesis by suppressing oncogene-induced senescence. In the present study, we further established that TLX exhibited an increased expression in metastatic CRPC. Further analyses showed that overexpression of TLX could confer resistance to androgen deprivation and anti-androgen in androgen-dependent prostate cancer cells in vitro and in vivo, whereas knockdown of endogenous TLX could potentiate the sensitivity to androgen deprivation and anti-androgen in prostate cancer cells. Our study revealed that the TLX-induced resistance to androgen deprivation and anti-androgen was mediated through its direct suppression of AR gene transcription and signaling in both androgen-stimulated and -unstimulated prostate cancer cells. We also characterized that TLX could bind directly to AR promoter and repress AR transcription by recruitment of histone modifiers, including HDAC1, HDAC3, and LSD1. Together, our present study shows, for the first time, that TLX can contribute to androgen insensitivity in CRPC via repression of AR gene transcription and signaling, and also implicates that targeting the druggable TLX may have a potential therapeutic significance in CRPC management, particularly in NEPC and PCSCs.

  9. Binding of Signal Recognition Particle Gives Ribosome/Nascent Chain Complexes a Competitive Advantage in Endoplasmic Reticulum Membrane Interaction

    PubMed Central

    Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.

    1998-01-01

    Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994

  10. A major integral protein of the plant plasma membrane binds flavin.

    PubMed

    Lorenz, Astrid; Kaldenhoff, Ralf; Hertel, Rainer

    2003-05-01

    Abundant flavin binding sites have been found in membranes of plants and fungi. With flavin mononucleotide-agarose affinity columns, riboflavin-binding activity from microsomes of Cucurbita pepoL. hypocotyls was purified and identified as a specific PIP1-homologous protein of the aquaporin family. Sequences such as gi|2149955 in Phaseolus vulgaris, PIP1b of Arabidopsis thaliana, and NtAQP1 of tobacco are closely related. The identification as a riboflavin-binding protein was confirmed by binding tests with an extract of Escherichia coli cells expressing the tobacco NtAQP1 as well as leaves of transgenic tobacco plants that overexpress NtAQP1 or were inhibited in PIP1 expression by antisense constructs. When binding was assayed in the presence of dithionite, the reduced flavin formed a relatively stable association with the protein. Upon dilution under oxidizing conditions, the adduct was resolved, and free flavin reappeared with a half time of about 30 min. Such an association can also be induced photochemically, with oxidized flavin by blue light at 450 nm, in the presence of an electron donor. Several criteria, localization in the plasma membrane, high abundance, affinity to roseoflavin, and photochemistry, argue for a role of the riboflavin-binding protein PIP1 as a photoreceptor.

  11. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    PubMed Central

    2012-01-01

    Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769

  12. Plasma sex steroid binding in Chiroptera.

    PubMed

    Kwiecinski, G G; Damassa, D A; Gustafson, A W; Armao, M E

    1987-04-01

    Plasma steroid binding was examined in samples obtained from seven species of bats representing four different families. A specific sex steroid-binding protein (SBP) was identified by steady-state polyacrylamide gel electrophoresis in representatives of two families, the phyllostomids and the vespertilionids. In these species, as in primates, SBP not only exhibited high affinity for the androgens testosterone and dihydrotestosterone (DHT), but also for estradiol. A specific SBP was not identified in the tropical American vampire bat or in the two species of pteropodids examined. In all species examined, except for the vampire bat, a specific corticosteroid-binding globulin (CBG) was also identified. In addition to binding glucocorticoids, CBG in these species appeared to bind androgens as well.

  13. Binding of canonical Wnt ligands to their receptor complexes occurs in ordered plasma membrane environments.

    PubMed

    Sezgin, Erdinc; Azbazdar, Yagmur; Ng, Xue W; Teh, Cathleen; Simons, Kai; Weidinger, Gilbert; Wohland, Thorsten; Eggeling, Christian; Ozhan, Gunes

    2017-08-01

    While the cytosolic events of Wnt/β-catenin signaling (canonical Wnt signaling) pathway have been widely studied, only little is known about the molecular mechanisms involved in Wnt binding to its receptors at the plasma membrane. Here, we reveal the influence of the immediate plasma membrane environment on the canonical Wnt-receptor interaction. While the receptors are distributed both in ordered and disordered environments, Wnt binding to its receptors selectively occurs in more ordered membrane environments which appear to cointernalize with the Wnt-receptor complex. Moreover, Wnt/β-catenin signaling is significantly reduced when the membrane order is disturbed by specific inhibitors of certain lipids that prefer to localize at the ordered environments. Similarly, a reduction in Wnt signaling activity is observed in Niemann-Pick Type C disease cells where trafficking of ordered membrane lipid components to the plasma membrane is genetically impaired. We thus conclude that ordered plasma membrane environments are essential for binding of canonical Wnts to their receptor complexes and downstream signaling activity. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  14. Androgen antagonists in androgen target tissues.

    PubMed

    Tindall, D J; Chang, C H; Lobl, T J; Cunningham, G R

    1984-01-01

    Most antiandrogens appear to act by binding to the androgen receptor and competitively inhibiting the binding of testosterone and cihydrotestosterone to the receptor. Focusing on those compounds which appear to inhibit androgen receptor mediated responses, this review discusses the chemistry of those antiandrogens which have been studied to the extent that their mechanism of action is at least partially understood, outlines the mechanism of androgen action as it is currently understood and suggests how antiandrogens might fit in with this mechanism, indicates the major metabolites of several important antiandrogens, and discusses the clinical applications of several antiandrogens. Cyproterone acetate has been studied extensively as a potential male contraceptive. Although it was recognized that 100 mg of cyproterone acetate per day inhibited spermatogenesis, that dose also reduced libido and potency. Following the administration of 10 or 20 mg of cyproterone acetate per day to 15 males for 26 weeks, the following observations were made: the number of motile sperm was reduced; the quality of their motion was impaired; and the ability of the sperm to penetrate cervical mucus was decreased. Sperm density was also suppressed, but neither it nor sperm motility were inhibited to the extent necessary for contraception. Antiandrogens have been demonstrated to be beneficial in treating 5 clinical syndromes or diseases: acne, seborrhea, hirsutism with or without menstrual abnormalities; precocious puberty; benign prostatic hypertrophy; cancer of the prostate; and sexual deviates. Since 3 of these conditions are very common, effective and safe treatment would have a large market. At this time, antiandrogens are widely used in Europe for treatment of seborrhea, acne, and hirsutism and a large Veterans Administration Cooperative Study in the US was approved but has not yet been funded to compare antiandrogens with other treatments for cancer of the prostate. Studies to assess

  15. Allostery in a disordered protein: Oxidative modifications to α-Synuclein act distally to regulate membrane binding

    PubMed Central

    Sevcsik, Eva; Trexler, Adam J.; Dunn, Joanna M.; Rhoades, Elizabeth

    2011-01-01

    Both oxidative stress and aggregation of the protein α-synuclein (aS) have been implicated as key factors in the etiology of Parkinson’s disease. Specifically, oxidative modifications to aS disrupt its binding to lipid membranes, an interaction considered critical to its native function. Here we seek to provide a mechanistic explanation for this phenomenon by investigating the effects of oxidative nitration of tyrosine residues on the structure of aS and its interaction with lipid membranes. Membrane binding is mediated by the first ~95 residues of aS. We find that nitration of the single tyrosine (Y39) in this domain disrupts binding due to electrostatic repulsion. Moreover, we observe that nitration of the three tyrosines (Y125/133/136) in the C-terminal domain is equally effective in perturbing binding, an intriguing result given that the C-terminus is not thought to interact directly with membranes. Our investigations show that tyrosine nitration results in a change of the conformational states populated by aS in solution, with the most prominent changes occurring in the C-terminal region. These results lead us to suggest that nitration of Y125/133/136 reduces the membrane binding affinity of aS through allosteric coupling by altering the ensemble of conformational states and depopulating those capable of membrane binding. While allostery is a well-established concept for structured proteins, it has only recently been discussed in the context of disordered proteins. We propose that allosteric regulation through modification of specific residues in, or ligand binding to, the C-terminus may even be a general mechanism for modulating aS function. PMID:21491910

  16. Minoxidil may suppress androgen receptor-related functions.

    PubMed

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, An-Chi; Yang, Chih-Hsun; Chung, Wen-Hung; Wu, Wen-Guey

    2014-04-30

    Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a K(d) value of 2.6 µM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases.

  17. Minoxidil may suppress androgen receptor-related functions

    PubMed Central

    Hsu, Cheng-Lung; Liu, Jai-Shin; Lin, An-Chi; Yang, Chih-Hsun; Chung, Wen-Hung; Wu, Wen-Guey

    2014-01-01

    Although minoxidil has been used for more than two decades to treat androgenetic alopecia (AGA), an androgen-androgen receptor (AR) pathway-dominant disease, its precise mechanism of action remains elusive. We hypothesized that minoxidil may influence the AR or its downstream signaling. These tests revealed that minoxidil suppressed AR-related functions, decreasing AR transcriptional activity in reporter assays, reducing expression of AR targets at the protein level, and suppressing AR-positive LNCaP cell growth. Dissecting the underlying mechanisms, we found that minoxidil interfered with AR-peptide, AR-coregulator, and AR N/C-terminal interactions, as well as AR protein stability. Furthermore, a crystallographic analysis using the AR ligand-binding domain (LBD) revealed direct binding of minoxidil to the AR in a minoxidil-AR-LBD co-crystal model, and surface plasmon resonance assays demonstrated that minoxidil directly bound the AR with a Kd value of 2.6 μM. Minoxidil also suppressed AR-responsive reporter activity and decreased AR protein stability in human hair dermal papilla cells. The current findings provide evidence that minoxidil could be used to treat both cancer and age-related disease, and open a new avenue for applications of minoxidil in treating androgen-AR pathway-related diseases. PMID:24742982

  18. High abundance androgen receptor in goldfish brain: characteristics and seasonal changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasmanik, M.; Callard, G.V.

    1988-08-01

    Testosterone (T) exerts its actions in brain directly via androgen receptors or, after aromatization to estradiol, via estrogen receptors. Brain aromatase activity in teleost fish is 100-1000 times greater than in mammals and would be expected to significantly reduce the quantity of androgen available for receptor binding. Experiments were carried out on the goldfish Carassius auratus to determine if androgen receptors are present in teleost brain and whether their physicochemical properties reflect elevated aromatase. Cytosolic and nuclear extracts were assayed with the use of (/sup 3/H)T and charcoal, Sephadex LH-20, or DNA-cellulose chromatography to separate bound and free steroids. Bindingmore » activity was saturable and had an equally high affinity for T and 5 alpha-dihydrotestosterone. Although mibolerone was a relatively weak competitor, the putative teleost androgen 11-ketotestosterone, methyltrienolone (R1881), estradiol, progesterone, and cortisol were poor ligands. Characteristics that distinguish this receptor from a steroid-binding protein in goldfish serum are the presence of binding activity in both nuclear and cytosolic extracts, a low rate of ligand-receptor dissociation, electrophoretic mobility, sedimentation properties in low vs. high salt, and tissue distribution. DNA cellulose-adhering and nonadhering forms were detected, but these did not differ in other variables measured. Although goldfish androgen receptors resembled those of mammals in all important physicochemical characteristics, they were unusually abundant compared to levels in rat brain, but comparable to levels in prostate and other male sex hormone target organs. Moreover, there were seasonal variations in total receptors, with a peak at spawning (April) 4- to 5-fold higher than values in reproductively inactive fish.« less

  19. Clostridium Perfringens Epsilon Toxin Binds to Membrane Lipids and Its Cytotoxic Action Depends on Sulfatide.

    PubMed

    Gil, Carles; Dorca-Arévalo, Jonatan; Blasi, Juan

    2015-01-01

    Epsilon toxin (Etx) is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx) that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction) and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3)-phosphate and phosphatidylinositol (5)-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology.

  20. Analysis of Perforin Assembly by Quartz Crystal Microbalance Reveals a Role for Cholesterol and Calcium-independent Membrane Binding.

    PubMed

    Stewart, Sarah E; Bird, Catherina H; Tabor, Rico F; D'Angelo, Michael E; Piantavigna, Stefania; Whisstock, James C; Trapani, Joseph A; Martin, Lisandra L; Bird, Phillip I

    2015-12-25

    Perforin is an essential component in the cytotoxic lymphocyte-mediated cell death pathway. The traditional view holds that perforin monomers assemble into pores in the target cell membrane via a calcium-dependent process and facilitate translocation of cytotoxic proteases into the cytoplasm to induce apoptosis. Although many studies have examined the structure and role of perforin, the mechanics of pore assembly and granzyme delivery remain unclear. Here we have employed quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate binding and assembly of perforin on lipid membranes, and show that perforin monomers bind to the membrane in a cooperative manner. We also found that cholesterol influences perforin binding and activity on intact cells and model membranes. Finally, contrary to current thinking, perforin efficiently binds membranes in the absence of calcium. When calcium is added to perforin already on the membrane, the QCM-D response changes significantly, indicating that perforin becomes membranolytic only after calcium binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Therapeutic potential of the SARMs: revisiting the androgen receptor for drug discovery.

    PubMed

    Segal, Scott; Narayanan, Ramesh; Dalton, James T

    2006-04-01

    Selective androgen receptor modulators (SARMS) bind to the androgen receptor and demonstrate anabolic activity in a variety of tissues; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents are able to induce bone and muscle growth, as well as shrinking the prostate. The potential of SARMS is to maximise the positive attributes of steroidal androgens as well as minimising negative effects, thus providing therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, end-stage renal disease, osteoporosis, frailty and hypogonadism. This review summarises androgen physiology, the current status of the R&D of SARMS and potential therapeutic indications for this emerging class of drugs.

  2. Tunable Membrane Binding of the Intrinsically Disordered Dehydrin Lti30, a Cold-Induced Plant Stress Protein[W

    PubMed Central

    Eriksson, Sylvia K.; Kutzer, Michael; Procek, Jan; Gröbner, Gerhard; Harryson, Pia

    2011-01-01

    Dehydrins are intrinsically disordered plant proteins whose expression is upregulated under conditions of desiccation and cold stress. Their molecular function in ensuring plant survival is not yet known, but several studies suggest their involvement in membrane stabilization. The dehydrins are characterized by a broad repertoire of conserved and repetitive sequences, out of which the archetypical K-segment has been implicated in membrane binding. To elucidate the molecular mechanism of these K-segments, we examined the interaction between lipid membranes and a dehydrin with a basic functional sequence composition: Lti30, comprising only K-segments. Our results show that Lti30 interacts electrostatically with vesicles of both zwitterionic (phosphatidyl choline) and negatively charged phospholipids (phosphatidyl glycerol, phosphatidyl serine, and phosphatidic acid) with a stronger binding to membranes with high negative surface potential. The membrane interaction lowers the temperature of the main lipid phase transition, consistent with Lti30’s proposed role in cold tolerance. Moreover, the membrane binding promotes the assembly of lipid vesicles into large and easily distinguishable aggregates. Using these aggregates as binding markers, we identify three factors that regulate the lipid interaction of Lti30 in vitro: (1) a pH dependent His on/off switch, (2) phosphorylation by protein kinase C, and (3) reversal of membrane binding by proteolytic digest. PMID:21665998

  3. Rotenone Activates Phagocyte NADPH Oxidase through Binding to Its Membrane Subunit gp91phox

    PubMed Central

    Zhou, Hui; Zhang, Feng; Chen, Shih-heng; Zhang, Dan; Wilson, Belinda; Hong, Jau-shyong; Gao, Hui-Ming

    2011-01-01

    Rotenone, a widely used pesticide, reproduces Parkinsonism in rodents and associates with increased risk for Parkinson’s disease. We previously reported rotenone increased superoxide production through stimulating microglial phagocyte NADPH oxidase (PHOX). The present study identified a novel mechanism by which rotenone activates PHOX. Ligand-binding assay revealed that rotenone directly bound to membrane gp91phox, the catalytic subunit of PHOX; such binding was inhibited by diphenyleneiodonium, a PHOX inhibitor with a binding site on gp91phox. Functional studies showed both membrane and cytosolic subunits were required for rotenone-induced superoxide production in cell-free systems, intact phagocytes, and COS7 cells transfected with membrane subunits (gp91phox/p22phox) and cytosolic subunits (p67phox and p47phox). Rotenone-elicited extracellular superoxide release in p47phox-deficient macrophages suggested rotenone enabled to activate PHOX through a p47phox-independent mechanism. Increased membrane translocation of p67phox, elevated binding of p67phox to rotenone-treated membrane fractions, and co-immunoprecipitation of p67phox and gp91phox in rotenone-treated wild-type and p47phox-deficient macrophages indicated p67phox played a critical role in rotenone-induced PHOX activation via its direct interaction with gp91phox. Rac1, a Rho-like small GTPase, enhanced p67phox-gp91phox interaction; Rac1 inhibition decreased rotenone-elicited superoxide release. In conclusion, rotenone directly interacted with gp91phox; such an interaction triggered membrane translocation of p67phox, leading to PHOX activation and superoxide production. PMID:22094225

  4. Mutagenesis of the C2 domain of protein kinase C-alpha. Differential roles of Ca2+ ligands and membrane binding residues.

    PubMed

    Medkova, M; Cho, W

    1998-07-10

    The C2 domains of conventional protein kinase C (PKC) have been implicated in their Ca2+-dependent membrane binding. The C2 domain of PKC-alpha contains several Ca2+ ligands that bind multiple Ca2+ ions and other putative membrane binding residues. To understand the roles of individual Ca2+ ligands and protein-bound Ca2+ ions in the membrane binding and activation of PKC-alpha, we mutated five putative Ca2+ ligands (D187N, D193N, D246N, D248N, and D254N) and measured the effects of mutations on vesicle binding, enzyme activity, and monolayer penetration of PKC-alpha. Altered properties of these mutants indicate that individual Ca2+ ions and their ligands have different roles in the membrane binding and activation of PKC-alpha. The binding of Ca2+ to Asp187, Asp193, and Asp246 of PKC-alpha is important for the initial binding of protein to membrane surfaces. On the other hand, the binding of another Ca2+ to Asp187, Asp246, Asp248, and Asp254 induces the conformational change of PKC-alpha, which in turn triggers its membrane penetration and activation. Among these Ca2+ ligands, Asp246 was shown to be most essential for both membrane binding and activation of PKC-alpha, presumably due to its coordination to multiple Ca2+ ions. Furthermore, to identify the residues in the C2 domain that are involved in membrane binding of PKC-alpha, we mutated four putative membrane binding residues (Trp245, Trp247, Arg249, and Arg252). Membrane binding and enzymatic properties of two double-site mutants (W245A/W247A and R249A/R252A) indicate that Arg249 and Arg252 are involved in electrostatic interactions of PKC-alpha with anionic membranes, whereas Trp245 and Trp247 participate in its penetration into membranes and resulting hydrophobic interactions. Taken together, these studies provide the first experimental evidence for the role of C2 domain of conventional PKC as a membrane docking unit as well as a module that triggers conformational changes to activate the protein.

  5. Inhibition of vincristine binding to plasma membrane vesicles from daunorubicin-resistant Ehrlich ascites cells by multidrug resistance modulators.

    PubMed Central

    Sehested, M.; Jensen, P. B.; Skovsgaard, T.; Bindslev, N.; Demant, E. J.; Friche, E.; Vindeløv, L.

    1989-01-01

    The multidrug resistance (MDR) phenotype is presumed to be mostly dependent on changes in the resistant cell plasma membrane, notably the emergence of a 170 kDa glycoprotein called P-glycoprotein, which facilitate increased drug efflux. We have previously demonstrated that ATP-enhanced binding of vincristine (VCR) to plasma membrane vesicles is much greater in MDR than in wild type cells. The present study has shown that VCR binding to MDR Ehrlich ascites tumour cell plasma membrane vesicles is inhibited 50% most efficiently by quinidine (0.5 microM) followed by verapamil (4.1 microM) and trifluoperazine (23.2 microM). This is the reverse order of the effect on whole cells where a ranking of efficiency in terms of enhancement of VCR accumulation, inhibition of VCR efflux, DNA perturbation and modulation of resistance in a clonogenic assay, was trifluoperazine greater than or equal to verapamil much greater than quinidine. The detergent Tween 80 inhibited VCR binding to plasma membrane vesicles at 0.001% v/v which agreed with the level which modulated resistance and increased VCR accumulation in whole cells. No effect was observed on daunorubicin binding to MDR plasma membrane vesicles after incubation with either Tween 80 (up to 0.1% v/v) or verapamil (up to 25 microM). We conclude that the effect of a modulating drug in reversing resistance to VCR correlates with its ability to raise intracellular VCR levels but not with its capability to inhibit VCR binding to the plasma membrane. Thus, enhancement of VCR accumulation in MDR cells is hardly solely due to competition for a drug binding site on P-glycoprotein. Furthermore, the lack of a demonstrable effect on daunorubicin binding to the plasma membrane by modulators points to transport mechanisms which do not utilise specific drug binding to the plasma membrane. PMID:2605092

  6. A new dawn for androgens: Novel lessons from 11-oxygenated C19 steroids.

    PubMed

    Pretorius, Elzette; Arlt, Wiebke; Storbeck, Karl-Heinz

    2017-02-05

    The abundant adrenal C19 steroid 11β-hydroxyandrostenedione (11OHA4) has been written off as a dead-end product of adrenal steroidogenesis. However, recent evidence has demonstrated that 11OHA4 is the precursor to the potent androgenic 11-oxygenated steroids, 11-ketotestosterone and 11-ketodihydrotestosterone, that bind and activate the human androgen receptor similarly to testosterone and DHT. The significance of this discovery becomes apparent when considering androgen dependent diseases such as castration resistant prostate cancer and diseases associated with androgen excess, e.g. congenital adrenal hyperplasia and polycystic ovary syndrome. In this review we describe the production and metabolism of 11-oxygenated steroids. We subsequently discuss their androgenic activity and highlight the putative role of these androgens in disease states. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. [Molecular organization of glutamate-sensitive chemoexcitatory membranes of nerve cells. Binding of L-[3H]glutamate to synaptic membranes of the rat cerebral cortex].

    PubMed

    Dambinova, S A; Gorodinskiĭ, A I

    1984-01-01

    The binding of L-[3H]glutamate to rat cerebral cortex synaptic membranes was investigated. Two types of binding sites, a Na+-independent (Kd = 140-160 nm; Bmax = 3.8-4.5 pmol-mg of protein) and a Na+-dependent (Kd = 2.0 microM; Bmax = 45-50 pmol/mg of protein) ones, were detected. The dependence of Na+-insensitive binding on time and temperature and membrane content in a sample was determined. Mono- and divalent cations (5-10 mM) potentiated specific binding by 2.1-3.3 times. The Na+-dependent binding is associated with active transport systems, while the Na+-independent one-with true receptor binding. The relationship between CNS glutamate receptors and Na+-independent binding sites is discussed.

  8. Membrane Modulates Affinity for Calcium Ion to Create an Apparent Cooperative Binding Response by Annexin a5

    PubMed Central

    Gauer, Jacob W.; Knutson, Kristofer J.; Jaworski, Samantha R.; Rice, Anne M.; Rannikko, Anika M.; Lentz, Barry R.; Hinderliter, Anne

    2013-01-01

    Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca2+ in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca2+ differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca2+ affinity to a membrane-associated, higher Ca2+ affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca2+ influx is the basis for the cooperative response of annexin a5 toward Ca2+, and the role of membrane organization in this response. PMID:23746516

  9. Binding of (/sup 3/H)forskolin to platelet membranes and solubilized proteins from bovine brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.A.; Seamon, K.B.

    1986-05-01

    (/sup 3/H)Forskolin ((/sup 3/H)FSK) bound to platelet membranes with a Kd of 20 nM and a Bmax of 125 fmol/mg protein. The Bmax was increased to 400 fmol/mg protein in the presence of GppNHp (or NaF) and MgCl/sub 2/ with no change in Kd. PGE/sub 1/ decreased the EC50 of GppNHp to increase the Bmax for (/sup 3/H)FSK binding from 600 nM to 35 nM. In contrast, PGE/sub 1/ had no effect on the EC50 of NaF to increase (/sup 3/H)FSK binding. (/sup 3/H)FSK binding increased slowly over 60 min when forskolin and GppNHp were added to membranes simultaneously atmore » 20/sup 0/C. Preincubation of membranes with GppNHp at 20/sup 5/C also caused a linear increase in adenylate cyclase specific activity over 60 minutes. (/sup 3/H)FSK bound to solubilized protein from bovine brain membrane with a Kd of 22 nM. GppNHp increased the number of binding sites in solubilized proteins only if membranes were not preincubated with GppNHp prior to solubilization. In conclusion the number of binding sites for (/sup 3/H)FSK is increased by agents that activate adenylate cyclase through the Ns protein. These sites appear to be associated with an activated complex of the Ns protein and adenylate cyclase.« less

  10. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doktorova, Milka; Heberle, Frederick A.; Kingston, Richard L.

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein’s matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here in this paper, using a broad set of in vitro and in silico techniques we addressed molecularmore » mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins.« less

  11. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.

    PubMed

    Doktorova, Milka; Heberle, Frederick A; Kingston, Richard L; Khelashvili, George; Cuendet, Michel A; Wen, Yi; Katsaras, John; Feigenson, Gerald W; Vogt, Volker M; Dick, Robert A

    2017-11-07

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties

    DOE PAGES

    Doktorova, Milka; Heberle, Frederick A.; Kingston, Richard L.; ...

    2017-11-07

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein’s matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here in this paper, using a broad set of in vitro and in silico techniques we addressed molecularmore » mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins.« less

  13. Resveratrol, piceatannol and analogs inhibit activation of both wild-type and T877A mutant androgen receptor.

    PubMed

    Lundqvist, Johan; Tringali, Corrado; Oskarsson, Agneta

    2017-11-01

    Prostate cancer growth and progression are mainly dependent on androgens and many current prostate cancer treatment options target the synthesis or function of androgens. We have previously reported that resveratrol and synthetic analogs of resveratrol with a higher bioavailability inhibit the synthesis of androgens in human adrenocortical H295R cells. Now we have studied the antiandrogenic properties of resveratrol, piceatannol and analogs in two different prostate cell lines; LNCaP and RWPE. LNCaP carry a T877A mutation in the androgen receptor while RWPE has a wild-type androgen receptor. We found that resveratrol, piceatannol and all studied analogs were able to inhibit a dihydrotestosterone-induced activation of the androgen receptor, showing that they act as antiandrogens. In LNCaP cells, all studied compounds were able to statistically significantly decrease the androgenic signaling in concentrations ≥1μM and the synthetic analogs trimethylresveratrol (RSVTM) and tetramethylpiceatannol (PICTM) were the most potent compounds. RWPE cells were not as responsive to the studied compounds as the LNCaP cells. A statistically significant decrease in the androgenic signaling was observed at concentrations ≤5μM for most compounds and RSVTM was found to be the most potent compound. Further, we studied the effects of resveratrol, piceatannol and analogs on the levels of prostate-specific antigen (PSA) in LNCaP cells and found that all studied compounds decreased the level of PSA and that the synthetic analogs diacetylresveratrol (RSVDA), triacetylresveratrol (RSVTA) and RSVTM were the most potent compounds, decreasing the PSA level by approx. 50% at concentrations ≥10μM. In a cell-free receptor binding assay we were unable to show binding of resveratrol or analogs to the ligand binding domain of the androgen receptor, indicating that the observed effects are mediated via other mechanisms than direct ligand competition. We conclude that the resveratrol

  14. Specificity and kinetics of alpha-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe.

    PubMed

    Shvadchak, Volodymyr V; Falomir-Lockhart, Lisandro J; Yushchenko, Dmytro A; Jovin, Thomas M

    2011-04-15

    Parkinson disease is characterized cytopathologically by the deposition in the midbrain of aggregates composed primarily of the presynaptic neuronal protein α-synuclein (AS). Neurotoxicity is currently attributed to oligomeric microaggregates subjected to oxidative modification and promoting mitochondrial and proteasomal dysfunction. Unphysiological binding to membranes of these and other organelles is presumably involved. In this study, we performed a systematic determination of the influence of charge, phase, curvature, defects, and lipid unsaturation on AS binding to model membranes using a new sensitive solvatochromic fluorescent probe. The interaction of AS with vesicular membranes is fast and reversible. The protein dissociates from neutral membranes upon thermal transition to the liquid disordered phase and transfers to vesicles with higher affinity. The binding of AS to neutral and negatively charged membranes occurs by apparently different mechanisms. Interaction with neutral bilayers requires the presence of membrane defects; binding increases with membrane curvature and rigidity and decreases in the presence of cholesterol. The association with negatively charged membranes is much stronger and much less sensitive to membrane curvature, phase, and cholesterol content. The presence of unsaturated lipids increases binding in all cases. These findings provide insight into the relation between membrane physical properties and AS binding affinity and dynamics that presumably define protein localization in vivo and, thereby, the role of AS in the physiopathology of Parkinson disease.

  15. Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, Focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways

    EPA Science Inventory

    The focus of this meeting is the SAP's review and comment on the Agency's proposed high-throughput computational model of androgen receptor pathway activity as an alternative to the current Tier 1 androgen receptor assay (OCSPP 890.1150: Androgen Receptor Binding Rat Prostate Cyt...

  16. Binding of Thyrotropin-Releasing Hormone to Plasma Membranes of Bovine Anterior Pituitary Gland

    PubMed Central

    Labrie, Fernand; Barden, Nicholas; Poirier, Guy; De Lean, Andre

    1972-01-01

    An assay for the binding of [3H]thyrotropin-releasing hormone ([3H]TRH) is described. Plasma membranes isolated from bovine anterior pituitary gland bind about 600 femtomoles of this hormone per mg of protein, as compared to 15 femtomoles per mg of protein in the total adenohypophyseal homogenate (40-fold purification). The equilibrium constant of membrane receptor-[3H]TRH binding at 0°C is 4.3 × 107 L·M-1, or a half-maximal binding of this hormone at 23 nM. The binding is time-dependent; addition of unlabeled hormone induces dissociation of the receptor-[3H]TRH complex with a half-life of 14 min. The binding of TRH is not altered by 10 μM melanocyte-stimulating hormone-release inhibiting hormone, lysine-vasopressin, adrenocorticotropin, growth hormone, prolactin, luteinizing hormone, insulin, glucagon, L-thyroxine, or L-triiodothyronine. K+ and Mg++ increase formation of the receptor-TRH complex at optimal concentrations of 5-25 mM and 0.5-2.5 mM, respectively, with inhibition at higher concentrations. Ca++ inhibits binding of TRH at all concentrations tested. PMID:4621548

  17. Location and ion-binding of membrane-associated valinomycin, a proton nuclear magnetic resonance study.

    PubMed

    Meers, P; Feigenson, G W

    1988-03-03

    Valinomycin, incorporated in small unilamellar vesicles of perdeuterated dimyristoylphosphatidylcholine, reveals several well-resolved 1H-NMR resonances. These resonances were used to examine the location, orientation and ion-binding of membrane-bound valinomycin. The order of affinity of membrane-bound valinomycin for cations is Rb+ greater than K+ greater than Cs+ greater than Ba2+, and binding is sensitive to surface change. The exchange between bound and free forms is fast on the NMR time scale. The intrinsic binding constants, extrapolated to zero anion concentration, are similar to those determined in aqueous solution. Rb+ and K+ show 1:1 binding to valinomycin, whereas the stoichiometry of Cs+ and Ba2+ is not certain. Paramagnetic chemical shift reagents and nitroxide spin label relaxation probes were used to study the location and orientation of valinomycin in the membrane. Despite relatively fast exchange of bound cations, the time average location of the cation-free form of valinomycin is deep within the bilayer under the conditions of these experiments. Upon complexation to K+, valinomycin moves closer to the interfacial region.

  18. The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids

    PubMed Central

    Campanacci, Valérie; Bishop, Russell E.; Blangy, Stéphanie; Tegoni, Mariella; Cambillau, Christian

    2016-01-01

    Lipocalins, a widespread multifunctional family of small proteins (15–25 kDa) have been first described in eukaryotes and more recently in Gram-negative bacteria. Bacterial lipocalins belonging to class I are outer membrane lipoproteins, among which Blc from E. coli is the better studied. Blc is expressed under conditions of starvation and high osmolarity, conditions known to exert stress on the cell envelope. The structure of Blc that we have previously solved (V. Campanacci, D. Nurizzo, S. Spinelli, C. Valencia, M. Tegoni, C. Cambillau, FEBS Lett. 562 (2004) 183–188.) suggested its possible role in binding fatty acids or phospholipids. Both physiological and structural data on Blc, therefore, point to a role in storage or transport of lipids necessary for membrane maintenance. In order to further document this hypothesis for Blc function, we have performed binding studies using fluorescence quenching experiments. Our results indicate that dimeric Blc binds fatty acids and phospholipids in a micromolar Kd range. The crystal structure of Blc with vaccenic acid, an unsaturated C18 fatty acid, reveals that the binding site spans across the Blc dimer, opposite to its membrane anchored face. An exposed unfilled pocket seemingly suited to bind a polar group attached to the fatty acid prompted us to investigate lyso-phospholipids, which were found to bind in a nanomolar Kd range. We discuss these findings in terms of a potential role for Blc in the metabolism of lysophospholipids generated in the bacterial outer membrane. PMID:16920109

  19. Artificial masculinization in tilapia involves androgen receptor activation.

    PubMed

    Golan, Matan; Levavi-Sivan, Berta

    2014-10-01

    Estrogens have a pivotal role in natural female sexual differentiation of tilapia while lack of steroids results in testicular development. Despite the fact that androgens do not participate in natural sex differentiation, synthetic androgens, mainly 17-α-methyltestosterone (MT) are effective in the production of all-male fish in aquaculture. The sex inversion potency of synthetic androgens may arise from their androgenic activity or else as inhibitors of aromatase activity. The current study is an attempt to differentiate between the two alleged activities in order to evaluate their contribution to the sex inversion process and aid the search for novel sex inversion agents. In the present study, MT inhibited aromatase activity, when applied in vitro as did the non-aromatizable androgen dihydrotestosterone (DHT). In comparison, exposure to fadrozole, a specific aromatase inhibitor, was considerably more effective. Androgenic activity of MT was evaluated by exposure of Sciaenochromis fryeri fry to the substance and testing for the appearance of blue color. Flutamide, an androgen antagonist, administered concomitantly with MT, reduced the appearance of the blue color and the sex inversion potency of MT in a dose-dependent manner. In tilapia, administration of MT, fadrozole or DHT resulted in efficient sex inversion while flutamide reduced the sex inversion potency of all three compounds. In the case of MT and DHT the decrease in sex inversion efficiency caused by flutamide is most likely due to the direct blocking of the androgen binding to its cognate receptor. The negative effect of flutamide on the efficiency of the fadrozole treatment may indicate that the masculinizing activity of fadrozole may be attributed to excess, un-aromatized, androgens accumulated in the differentiating gonad. The present study shows that when androgen receptors are blocked, there is a reduction in the efficiency of sex inversion treatments. Our results suggest that in contrast to

  20. Pharmacodynamics of selective androgen receptor modulators.

    PubMed

    Yin, Donghua; Gao, Wenqing; Kearbey, Jeffrey D; Xu, Huiping; Chung, Kiwon; He, Yali; Marhefka, Craig A; Veverka, Karen A; Miller, Duane D; Dalton, James T

    2003-03-01

    The present study aimed to identify selective androgen receptor modulators (SARMs) with in vivo pharmacological activity. We examined the in vitro and in vivo pharmacological activity of four chiral, nonsteroidal SARMs synthesized in our laboratories. In the in vitro assays, these compounds demonstrated moderate to high androgen receptor (AR) binding affinity, with K(i) values ranging from 4 to 37 nM, and three of the compounds efficaciously stimulated AR-mediated reporter gene expression. The compounds were then administered subcutaneously to castrated rats to appraise their in vivo pharmacological activity. Androgenic activity was evaluated by the ability of these compounds to maintain the weights of prostate and seminal vesicle, whereas levator ani muscle weight was used as a measure of anabolic activity. The maximal response (E(max)) and dose for half-maximal effect (ED(50)) were determined for each compound and compared with that observed for testosterone propionate (TP). Compounds S-1 and S-4 demonstrated in vivo androgenic and anabolic activity, whereas compounds S-2 and S-3 did not. The activities of S-1 and S-4 were tissue-selective in that both compounds stimulated the anabolic organs more than the androgenic organs. These two compounds were less potent and efficacious than TP in androgenic activity, but their anabolic activity was similar to or greater than that of TP. Neither S-1 nor S-4 caused significant luteinizing hormone or follicle stimulating hormone suppression at doses near the ED(50) value. Thus, compounds S-1 and S-4 were identified as SARMs with potent and tissue-selective in vivo pharmacological activity, and represent the first members of a new class of SARMs with selective anabolic effects.

  1. Highly potent antimicrobial peptides from N-terminal membrane-binding region of E. coli MreB.

    PubMed

    Saikia, Karabi; Sravani, Yalavarthi Durga; Ramakrishnan, Vibin; Chaudhary, Nitin

    2017-02-23

    Microbial pathogenesis is a serious health concern. The threat escalates as the existing conventional antimicrobials are losing their efficacy against the evolving pathogens. Peptides hold promise to be developed into next-generation antibiotics. Antimicrobial peptides adopt amphipathic structures that could selectively bind to and disrupt the microbial membranes. Interaction of proteins with membranes is central to all living systems and we reasoned that the membrane-binding domains in microbial proteins could be developed into efficient antimicrobials. This is an interesting approach as self-like sequences could elude the microbial strategies of degrading the antimicrobial peptides, one of the mechanisms of showing resistance to antimicrobials. We selected the 9-residue-long membrane-binding region of E. coli MreB protein. The 9-residue peptide (C-terminal amide) and its N-terminal acetylated analog displayed broad-spectrum activity, killing Gram-negative bacteria, Gram-positive bacteria, and fungi. Extension with a tryptophan residue at the N-terminus drastically improved the activity of the peptides with lethal concentrations ≤10 μM against all the organisms tested. The tryptophan-extended peptides caused complete killing of C. albicans as well as gentamicin and methicillin resistant S. aureus at 5 μM concentration. Lipid-binding studies and electron microscopic analyses of the peptide-treated microbes suggest membrane disruption as the mechanism of killing.

  2. RECOMBINANT ANDROGEN RECEPTOR (AR) BINDING ACROSS VERTEBRATE SPECIES: COMPARISON OF BINDING OF ENVIRONMENTAL COMPOUNDS TO HUMAN, RAINBOW TROUT AND FATHEAD MINNOW AR.

    EPA Science Inventory

    In vitro screening assays designed to identify androgen mimics or antagonists typically use mammalian (rat, human) androgen receptors (AR). Although the amino acid sequences of receptors from nonmammalian vertebrates are not identical to the mammalian receptors, it is uncertain ...

  3. Inhibitors for Androgen Receptor Activation Surfaces

    DTIC Science & Technology

    2008-09-01

    such as FKBP52 or HSP90 bind in vivo, and started a collaboration with Marc Cox at UT El Paso to test these possibilities. Our assays of mutated amino...will complete testing the compounds in full length AR constructs and publish the results. We have begun two collaborations, one with Marc Cox on...Prof. Marc Cox and Dr. Paul Rennie to identify proteins that bind to BF3 so that we may form crystals of the receptor with these proteins and learn more about function of the human androgen receptor.

  4. Modulation of GABAergic receptor binding by activation of calcium and calmodulin-dependent kinase II membrane phosphorylation.

    PubMed

    Churn, S B; DeLorenzo, R J

    1998-10-26

    gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Because of the important role that GABA plays in the CNS, alteration of GABAA receptor function would significantly affect neuronal excitability. Protein phosphorylation is a major mechanism for regulating receptor function in the brain and has been implicated in modulating GABAA receptor function. Therefore, this study was initiated to determine the role of calmodulin-dependent kinase II (CaM kinase II) membrane phosphorylation on GABAA receptor binding. Synaptosomal membrane fractions were tested for CaM kinase II activity towards endogenous substrates. In addition, muscimol binding was evaluated under equilibrium conditions in synaptosomal membrane fractions subjected to either basal (Mg2+ alone) or maximal CaM kinase II-dependent phosphorylation. Activation of endogenous CaM kinase II-dependent phosphorylation resulted in a significant enhancement of the apparent Bmax for muscimol binding without significantly altering the apparent binding affinity. The enhanced muscimol binding could be increased further by the addition of exogenous CaM kinase II to synaptosomal membrane fractions. Co-incubation with inhibitors of kinase activity during the phosphorylation reactions blocked the CaM kinase II-dependent increase in muscimol binding. The data support the hypothesis that activation of CaM kinase II-dependent phosphorylation caused an increased GABAA receptor binding and may play an important role in modulating the function of this inhibitory receptor/chloride ion channel complex. Copyright 1998 Elsevier Science B.V.

  5. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importancemore » of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.« less

  6. Development of Selective Androgen Receptor Modulators (SARMs)

    PubMed Central

    Narayanan, Ramesh; Coss, Christopher C.; Dalton, James T.

    2018-01-01

    The Androgen Receptor (AR), a member of the steroid hormone receptor family, plays important roles in the physiology and pathology of diverse tissues. AR ligands, which include circulating testosterone and locally synthesized dihydrotestosterone, bind to and activate the AR to elicit their effects. Ubiquitous expression of the AR, metabolism and cross reactivity with other receptors limit broad therapeutic utilization of steroidal androgens. However, the discovery of selective androgen receptor modulators (SARMs) and other tissue-selective nuclear hormone receptor modulators that activate their cognate receptors in a tissue-selective manner provides an opportunity to promote the beneficial effects of androgens and other hormones in target tissues with greatly reduced unwanted side-effects. In the last two decades, significant resources have been dedicated to the discovery and biological characterization of SARMs in an effort to harness the untapped potential of the AR. SARMs have been proposed as treatments of choice for various diseases, including muscle-wasting, breast cancer, and osteoporosis. This review provides insight into the evolution of SARMs from proof-of-concept agents to the cusp of therapeutic use in less than two decades, while covering contemporary views of their mechanisms of action and therapeutic benefits. PMID:28624515

  7. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory.

    PubMed

    Weikl, Thomas R; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-09-02

    The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).

  8. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory

    PubMed Central

    Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-01-01

    ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442

  9. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenman, W.M.; Meuser, R.U.

    1986-02-01

    Chlamydia trachomatis proteins were electrophoresed and then transferred to nitrocellulose paper to detect chlamydial proteins which bind to eucaryotic cell membranes. Resolved polypeptides of C. trachomatis serovars J and L/sub 2/ were reacted with iodinated HeLa cell membranes and autoradiographed. Infectious elementary bodies of both serovars possess 31,000- and 18,000-dalton proteins which bind to HeLa cells. In contrast, noninfectious reticulate bodies do not possess eucaryotic cell-binding proteins. Both proteins are antigenic when reacted with hyperimmune rabbit antisera in immunoblots and antisera raised against the 31,000- and 18,000-dalton proteins are inhibitory to chlamydia-host cell association. In addition, these antisera exhibit neutralizingmore » activity. These data suggest that these putative chlamydial adhesions play a key role in the early steps of chlamydia-host cell interaction and that antibody directed against them may be protective.« less

  10. The Yeast Plasma Membrane ATP Binding Cassette (ABC) Transporter Aus1

    PubMed Central

    Marek, Magdalena; Milles, Sigrid; Schreiber, Gabriele; Daleke, David L.; Dittmar, Gunnar; Herrmann, Andreas; Müller, Peter; Pomorski, Thomas Günther

    2011-01-01

    The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter. PMID:21521689

  11. Mutagenesis of Paramyxovirus Hemagglutinin-Neuraminidase Membrane-Proximal Stalk Region Influences Stability, Receptor Binding, and Neuraminidase Activity.

    PubMed

    Adu-Gyamfi, Emmanuel; Kim, Lori S; Jardetzky, Theodore S; Lamb, Robert A

    2016-09-01

    Paramyxoviridae consist of a large family of enveloped, negative-sense, nonsegmented single-stranded RNA viruses that account for a significant number of human and animal diseases. The fusion process for nearly all paramyxoviruses involves the mixing of the host cell plasma membrane and the virus envelope in a pH-independent fashion. Fusion is orchestrated via the concerted action of two surface glycoproteins: an attachment protein called hemagglutinin-neuraminidase (HN [also called H or G depending on virus type and substrate]), which acts as a receptor binding protein, and a fusion (F) protein, which undergoes a major irreversible refolding process to merge the two membranes. Recent biochemical evidence suggests that receptor binding by HN is dispensable for cell-cell fusion. However, factors that influence the stability and/or conformation of the HN 4-helix bundle (4HB) stalk have not been studied. Here, we used oxidative cross-linking as well as functional assays to investigate the role of the structurally unresolved membrane-proximal stalk region (MPSR) (residues 37 to 58) of HN in the context of headless and full-length HN membrane fusion promotion. Our data suggest that the receptor binding head serves to stabilize the stalk to regulate fusion. Moreover, we found that the MPSR of HN modulates receptor binding and neuraminidase activity without a corresponding regulation of F triggering. Paramyxoviruses require two viral membrane glycoproteins, the attachment protein variously called HN, H, or G and the fusion protein (F), to couple host receptor recognition to virus-cell fusion. The HN protein has a globular head that is attached to a membrane-anchored flexible stalk of ∼80 residues and has three activities: receptor binding, neuraminidase, and fusion activation. In this report, we have identified the functional significance of the membrane-proximal stalk region (MPSR) (HN, residues 37 to 56) of the paramyxovirus parainfluenza virus (PIV5), a region of the

  12. Bmp7 and Lef1 are the downstream effectors of androgen signaling in androgen-induced sex characteristics development in medaka.

    PubMed

    Ogino, Yukiko; Hirakawa, Ikumi; Inohaya, Keiji; Sumiya, Eri; Miyagawa, Shinichi; Denslow, Nancy; Yamada, Gen; Tatarazako, Norihisa; Iguchi, Taisen

    2014-02-01

    Androgens play key roles in the morphological specification of male type sex attractive and reproductive organs, whereas little is known about the developmental mechanisms of such secondary sex characters. Medaka offers a clue about sexual differentiation. They show a prominent masculine sexual character for appendage development, the formation of papillary processes in the anal fin, which has been induced in females by exogenous androgen exposure. This current study shows that the development of papillary processes is promoted by androgen-dependent augmentation of bone morphogenic protein 7 (Bmp7) and lymphoid enhancer-binding factor-1 (Lef1). Androgen receptor (AR) subtypes, ARα and ARβ, are expressed in the distal region of outgrowing bone nodules of developing papillary processes. Development of papillary processes concomitant with the induction of Bmp7 and Lef1 in the distal bone nodules by exposure to methyltestosterone was significantly suppressed by an antiandrogen, flutamide, in female medaka. When Bmp signaling was inhibited in methyltestosterone-exposed females by its inhibitor, dorsomorphin, Lef1 expression was suppressed accompanied by reduced proliferation in the distal bone nodules and retarded bone deposition. These observations indicate that androgen-dependent expressions of Bmp7 and Lef1 are required for the bone nodule outgrowth leading to the formation of these secondary sex characteristics in medaka. The formation of androgen-induced papillary processes may provide insights into the mechanisms regulating the specification of sexual features in vertebrates.

  13. Quantitation of the calcium and membrane binding properties of the C2 domains of dysferlin.

    PubMed

    Abdullah, Nazish; Padmanarayana, Murugesh; Marty, Naomi J; Johnson, Colin P

    2014-01-21

    Dysferlin is a large membrane protein involved in calcium-triggered resealing of the sarcolemma after injury. Although it is generally accepted that dysferlin is Ca(2+) sensitive, the Ca(2+) binding properties of dysferlin have not been characterized. In this study, we report an analysis of the Ca(2+) and membrane binding properties of all seven C2 domains of dysferlin as well as a multi-C2 domain construct. Isothermal titration calorimetry measurements indicate that all seven dysferlin C2 domains interact with Ca(2+) with a wide range of binding affinities. The C2A and C2C domains were determined to be the most sensitive, with Kd values in the tens of micromolar, whereas the C2D domain was least sensitive, with a near millimolar Kd value. Mutagenesis of C2A demonstrates the requirement for negatively charged residues in the loop regions for divalent ion binding. Furthermore, dysferlin displayed significantly lower binding affinity for the divalent cations magnesium and strontium. Measurement of a multidomain construct indicates that the solution binding affinity does not change when C2 domains are linked. Finally, sedimentation assays suggest all seven C2 domains bind lipid membranes, and that Ca(2+) enhances but is not required for interaction. This report reveals for the first time, to our knowledge, that all dysferlin domains bind Ca(2+) albeit with varying affinity and stoichiometry. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. [Influence of fluorine on expression of androgen-binding protein and inhibin B mRNA in rat testis sertoli cells].

    PubMed

    Xu, Rui; Shang, Weichao; Liu, Jianmin; Duan, Liju; Ba, Yue; Zhang, Huizhen; Cheng, Xuemin; Cui, Liuxin

    2010-09-01

    To study the influence of fluorine on the transcription level of androgen binding protein (ABP) and inhibin B (INHB) mRNA in testis sertoli cells of Sprague Dawley rats. A method was set up the model to culture the Sertoli cells. Use a series of concentrations of NaF solutions of 2.5, 5.0, 10.0 and 20.0 mg/L to poison the cells and then, measure the relative expression amount of ABP and INHB mRNA by RT-PCR method. (1) Compare the relative expression amount of ABP mRNA of each group of different concentration with the control group. 2.5 mg/L group was higher than that in the control group, and the difference has the statistical significance (P < 0.05). The 5.0 mg/L group was also higher than that of the control group, and the difference has no statistical significance (P > 0.05). (2) Compare the relative expression amount of INH B mRNA of each group of different concentration with the control group. Both the 2.5 mg/L group and the 5.0 mg/L group were higher than that in the control group, and the difference has the statistical significance (P < 0.05). The rest 2 groups were lower than that in the control group and the difference has no statistical significance (P > 0.05). In the range of concentrations between 2.5 and 20.0 mg/L, no distinct influence of fluorine on the expression of androgen binding protein (ABP) and inhibin B (INHB) mRNA in testis sertoli cells of Sprague Dawley rats.

  15. EVALUATION OF THE MODEL ANTI-ANDROGEN FLUTAMIDE FOR ASSESSING THE MECHANISTIC BASIS OF RESPONSES TO AN ANDROGEN IN THE FATHEAD MINNOW (JOURNAL ARTICLE)

    EPA Science Inventory

    In this study we characterized the effects of flutamide, a model mammalian androgen receptor (AR) antagonist, on endocrine function in the fathead minnow (Pimephales promelas), a small fish species which is widely used for testing endocrine-disrupting chemicals (EDCs). Binding a...

  16. Specific binding of 15 HETE to lymphocytes. Effects on the fluidity of plasmatic membranes.

    PubMed

    Mexmain, S; Gualde, N; Aldigier, J C; Motta, C; Chable-Rabinovitch, H; Rigaud, M

    1984-01-01

    Specific binding of mouse lymphocytes for 15 HETE was examined by incubating cells with [14C]-15 HETE, 1 X 10(-8) to 1 X 10(-10)M. It was observed that the specific binding of radiolabeled 15 HETE is a function of time, of temperature and is modified by Ca2+ and dithiothreitol. When a fluorescent probe was embedded in the phospholipid core of the lymphocyte membrane and its motion analysed by fluorescence polarization, it was observed that 15 HETE increases the viscosity of the plasmatic membrane.

  17. Binding of KATP channel modulators in rat cardiac membranes

    PubMed Central

    Löffler-Walz, Cornelia; Quast, Ulrich

    1998-01-01

    The binding of [3H]-P1075, a potent opener of adenosine-5′-triphosphate-(ATP)-sensitive K+ channels, was studied in a crude heart membrane preparation of the rat, at 37°C.Binding required MgATP. In the presence of an ATP-regenerating system, MgATP supported [3H]-P1075 binding with an EC50 value of 100 μM and a Hill coefficient of 1.4.In saturation experiments [3H]-P1075 binding was homogeneous with a KD value of 6±1 nM and a binding capacity (Bmax) of 33±3 fmol mg−1 protein.Upon addition of an excess of unlabelled P1075, the [3H]-P1075-receptor complex dissociated in a mono-exponential manner with a dissociation rate constant of 0.13±0.01 min−1. If a bi-molecular association mechanism was assumed, the dependence of the association kinetics on label concentration gave an association rate constant of 0.030±0.003 nM−1 min−1. From the kinetic experiments the KD value was calculated as 4.7±0.6 nM.Openers of the ATP-sensitive K+ channel belonging to different structural classes inhibited specific [3H]-P1075 binding in a monophasic manner to completion; an exception was minoxidil sulphate where maximum inhibition was 68%. The potencies of the openers in this assay agree with published values obtained in rat cardiocytes and are on average 3.5 times lower than those determined in rat aorta.Sulphonylureas, such as glibenclamide and glibornuride and the sulphonylurea-related carboxylate, AZ-DF 265, inhibited [3H]-P1075 binding with biphasic inhibition curves. The high affinity component comprised about 60% of the curves with the IC50 value of glibenclamide being ≈amp;90 nM; affinities for the low affinity component were in the μM concentration range. The fluorescein derivative, phloxine B, showed a monophasic inhibition curve with an IC50 value of 6 μM, a maximum inhibition of 94% and a Hill coefficient of 1.5.It is concluded that binding studies with [3H]-P1075 are feasible in rat heart membranes in the presence of MgATP and of an ATP

  18. Analysis of the interaction between membrane proteins and soluble binding partners by surface plasmon resonance.

    PubMed

    Wu, Zht Cheng; de Keyzer, Jeanine; Kusters, Ilja; Driessen, Arnold J M

    2013-01-01

    The interaction between membrane proteins and their (protein) ligands is conventionally investigated by nonequilibrium methods such as co-sedimentation or pull-down assays. Surface Plasmon Resonance can be used to monitor such binding events in real-time using isolated membranes immobilized to a surface providing insights in the kinetics of binding under equilibrium conditions. This application provides a fast, automated way to detect interacting species and to determine the kinetics and affinity (Kd) of the interaction.

  19. Synergistic activation of the androgen receptor by bombesin and low-dose androgen.

    PubMed

    Dai, Jie; Shen, Ruoqian; Sumitomo, Makoto; Stahl, Rosalyn; Navarro, Daniel; Gershengorn, Marvin C; Nanus, David M

    2002-07-01

    Neuropeptide growth factors such as bombesinare implicated in progression to androgen-independent prostate cancer (PC). We examined the impact of bombesin on androgen receptor (AR)-mediated gene expression. The AR together with the AR-responsive probasin ARR(3)tk-luc or PSA-pPUE-ELB-luc promoter was cotransfected into Swiss 3T3 and PC-3 cells, both of which express high-affinity bombesin receptors; the cells were incubated with bombesin (0-50 nM) and dihydrotestosterone (DHT; 0-10 nM), and luciferase activities were measured. DHT increased transcription approximately 40-fold at doses of 1 and 10 nM but had no effect at 10 pM. Bombesin alone, or with 1 or 10 nM DHT, did not further increase transcription. However, 5 nM bombesin and 10 pM DHT, doses that by themselves had no effect, resulted in a approximately 20 fold increase in transcription (P < 0.005). This synergistic effect was blocked by bombesin receptor antagonists and recombinant neutral endopeptidase, which hydrolyzes bombesin. Bombesin and DHT together also increased binding of nuclear extracts from PC-3 cells transfected with AR to a consensus androgen response element in mobility shift assays and increased the level of secreted prostate-specific antigen in LNCaP cell supernatant compared with DHT or bombesin alone. Immunoprecipitation of AR from (32)P-labeled LNCaP cells revealed that 5 nM bombesin + 10 pM DHT induced AR phosphorylation comparable with 1 nM DHT, whereas bombesin or 10 pM DHT alone did not. These data indicate that bombesin can synergize with low (castrate) levels of DHT to induce AR-mediated transcription and suggest that neuropeptides promote AR-mediated signaling in androgen-independent prostate cancer.

  20. Characterization of two forms of mouse salivary androgen-binding protein (ABP): implications for evolutionary relationships and ligand-binding function.

    PubMed

    Karn, Robert C; Laukaitis, Christina M

    2003-06-17

    Mouse salivary androgen-binding protein (ABP) is a member of the secretoglobin family produced in the submaxillary glands of house mice (Mus musculus). We report the cDNA sequences and amino acid sequences of the beta and gamma subunits of ABP from a mouse cDNA library, identifying the two subunits by their pIs and molecular weights. An anomalously high molecular weight of the alpha subunit is likely due to glycosylation at a single site. A phylogenetic comparison of the three subunits of ABP with the chains of other mammalian secretoglobins shows that ABP is most closely related to mouse lachrymal protein and to the major cat allergen Fel dI. An evaluation of the most conserved residues in ABP and the other secretoglobins, in light of structural data reported by others [Callebaut, I., Poupon, A., Bally, R., Demaret, J.-P., Housset, D., Delettre, J., Hossenlopp, P., and Mornon, J.-P. (2000) Ann. N.Y. Acad. Sci. 923, 90-112; Pattabiraman, N., Matthews, J., Ward, K., Mantile-Selvaggi, G., Miele, L., and Mukherjee, A. (2000) Ann. N.Y. Acad. Sci. 923, 113-127], allows us to draw conclusions about the critical residues important in ligand binding by the two different ABP dimers and to assess the importance of ligand binding in the function of the molecule. In addition to the cDNAs, which represent those of the musculus subspecies of Mus musculus, we also report the coding regions of the beta and gamma subunit cDNAs from two other mouse inbred strains which represent the other two subspecies: M. musculus domesticus and M. musculus castaneus. The high nonsynonymous/synonymous substitution rate ratios (K(a)/K(s)) for both the beta and gamma subunits suggest that these two proteins are evolving under strong directional selection, as has been reported for the alpha subunit [Hwang, J., Hofstetter, J., Bonhomme, F., and Karn, R. (1997) J. Hered. 88, 93-97; Karn, R., and Clements, M. (1999) Biochem. Genet. 37, 187-199].

  1. The Adipophilin C Terminus Is a Self-folding Membrane-binding Domain That Is Important for Milk Lipid Secretion*

    PubMed Central

    Chong, Brandi M.; Russell, Tanya D.; Schaack, Jerome; Orlicky, David J.; Reigan, Philip; Ladinsky, Mark; McManaman, James L.

    2011-01-01

    Cytoplasmic lipid droplets (CLD) in mammary epithelial cells undergo secretion by a unique membrane envelopment process to produce milk lipids. Adipophilin (ADPH/Plin2), a member of the perilipin/PAT family of lipid droplet-associated proteins, is hypothesized to mediate CLD secretion through interactions with apical plasma membrane elements. We found that the secretion of CLD coated by truncated ADPH lacking the C-terminal region encoding a putative four-helix bundle structure was impaired relative to that of CLD coated by full-length ADPH. We used homology modeling and analyses of the solution and membrane binding properties of purified recombinant ADPH C terminus to understand how this region possibly mediates CLD secretion. Homology modeling supports the concept that the ADPH C terminus forms a four-helix bundle motif and suggests that this structure can form stable membrane bilayer interactions. Circular dichroism and protease mapping studies confirmed that the ADPH C terminus is an independently folding α-helical structure that is relatively resistant to urea denaturation. Liposome binding studies showed that the purified C terminus binds to phospholipid membranes through electrostatic dependent interactions, and cell culture studies documented that it localizes to the plasma membrane. Collectively, these data provide direct evidence that the ADPH C terminus forms a stable membrane binding helical structure that is important for CLD secretion. We speculate that interactions between the four-helix bundle of ADPH and membrane phospholipids may be an initial step in milk lipid secretion. PMID:21383012

  2. The low dose gamma ionising radiation impact upon cooperativity of androgen-specific proteins.

    PubMed

    Filchenkov, Gennady N; Popoff, Eugene H; Naumov, Alexander D

    2014-01-01

    The paper deals with effects of the ionising radiation (γ-IR, 0.5 Gy) upon serum testosterone (T), characteristics of testosterone-binding globulin (TeBG) and androgen receptor (AR) in parallel with observation of androgen (A) responsive enzyme activity - hexokinase (HK). The interdependence or relationships of T-levels with parameters of the proteins that provide androgenic regulation are consequently analyzed in post-IR dynamics. The IR-stress adjustment data reveal expediency of TeBG- and AR-cooperativity measurements for more precise assessments of endocrine A-control at appropriate emergencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    PubMed

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  4. Vitamin D is associated with bioavailability of androgens in eumenorrheic women with prior pregnancy loss.

    PubMed

    Kuhr, Daniel L; Sjaarda, Lindsey A; Alkhalaf, Zeina; Omosigho, Ukpebo R; Connell, Matthew T; Silver, Robert M; Kim, Keewan; Perkins, Neil J; Holland, Tiffany L; Plowden, Torie C; Schisterman, Enrique F; Mumford, Sunni L

    2018-06-01

    Prior studies have reported mixed results regarding relationships between vitamin D, androgens, and sex hormone-binding globulin in patients with polycystic ovary syndrome. However, less is known regarding these associations in eumenorrheic, premenopausal women. Our objective was to study the relationships between serum vitamin D and androgen biomarkers in eumenorrheic women with a history of pregnancy loss who were attempting pregnancy. This was an analysis of a cohort of 1191 participants from the Effects of Aspirin in Gestation and Reproduction trial (2006-2012). Participants were attempting to conceive, aged 18-40 years, with 1-2 documented prior pregnancy losses and no history of infertility, and recruited from 4 academic medical centers in the United States. Serum vitamin D (25-hydroxyvitamin D) and hormone concentrations were measured at baseline. Vitamin D concentration was negatively associated with free androgen index (percentage change [95% confidence interval, -5% (-8% to -2%)] per 10 ng/mL increase) and positively associated with sex hormone-binding globulin (95% confidence interval, 4% [2-7%]), although not with total testosterone, free testosterone, or dehydroepiandrosterone sulfate after adjusting for age, body mass index, smoking status, race, income, education, physical activity, and season of blood draw. Overall, vitamin D was associated with sex hormone-binding globulin and free androgen index in eumenorrheic women with prior pregnancy loss, suggesting that vitamin D may play a role in the bioavailability of androgens in eumenorrheic women. We are limited in making assessments regarding directionality, given the cross-sectional nature of our study. Copyright © 2018. Published by Elsevier Inc.

  5. Androgen-responsive gene database: integrated knowledge on androgen-responsive genes.

    PubMed

    Jiang, Mei; Ma, Yunsheng; Chen, Congcong; Fu, Xuping; Yang, Shu; Li, Xia; Yu, Guohua; Mao, Yumin; Xie, Yi; Li, Yao

    2009-11-01

    Androgen signaling plays an important role in many biological processes. Androgen Responsive Gene Database (ARGDB) is devoted to providing integrated knowledge on androgen-controlled genes. Gene records were collected on the basis of PubMed literature collections. More than 6000 abstracts and 950 original publications were manually screened, leading to 1785 human genes, 993 mouse genes, and 583 rat genes finally included in the database. All the collected genes were experimentally proved to be regulated by androgen at the expression level or to contain androgen-responsive regions. For each gene important details of the androgen regulation experiments were collected from references, such as expression change, androgen-responsive sequence, response time, tissue/cell type, experimental method, ligand identity, and androgen amount, which will facilitate further evaluation by researchers. Furthermore, the database was integrated with multiple annotation resources, including National Center for Biotechnology Information, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway, to reveal the biological characteristics and significance of androgen-regulated genes. The ARGDB web site is mainly composed of the Browse, Search, Element Scan, and Submission modules. It is user friendly and freely accessible at http://argdb.fudan.edu.cn. Preliminary analysis of the collected data was performed. Many disease pathways, such as prostate carcinogenesis, were found to be enriched in androgen-regulated genes. The discovered androgen-response motifs were similar to those in previous reports. The analysis results are displayed in the web site. In conclusion, ARGDB provides a unified gateway to storage, retrieval, and update of information on androgen-regulated genes.

  6. Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgold, J.

    1986-05-01

    Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and themore » remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.« less

  7. Localization of the androgen-synthesizing enzymes, androgen receptor, and sex steroids in the vagina: possible implications for the treatment of postmenopausal sexual dysfunction.

    PubMed

    Bertin, Jonathan; Dury, Alain Y; Ouellet, Johanne; Pelletier, Georges; Labrie, Fernand

    2014-08-01

    To better understand the mechanisms underlying the beneficial effects of the intravaginal administration of dehydroepiandrosterone (DHEA) observed in postmenopausal women on sexual dysfunction. To identify the distribution of the androgen-synthesizing enzymes as well as androgen receptor (AR) and measure steroid levels in the monkey vagina. The cynomolgus monkey (Macaca fascicularis), the closest model to the human, has been used to measure the expression levels of steroidogenic enzymes and androgen receptor by quantitative reverse transcription polymerase chain reaction (n=4), confirmed by immunohistochemistry, and immunofluorescence (n=3). DHEA and its androgenic metabolites were quantified by LC-MS/MS (n=4). The presence of SRD5A1, SRD5A2, HSD17B3, AR as well as nerve fibers (PGP 9.5) was investigated, and steroid levels were measured. AR is widely distributed within the vaginal epithelium and also in the lamina propria with a lower expression in the muscularis layer and blood vessel walls. Androgen-forming enzymes, on the other hand, are expressed in the vaginal stratified squamous epithelium at a relatively high level where they are uniformly distributed from the basal membrane up to the superficial keratinized cells. The enzymes are at a lower level in blood vessel walls and zona muscularis where nerve fibers are localized. DHEA and its androgen metabolites are present at biologically significant concentrations in the monkey vagina. The enzymes responsible for androgen formation as well as AR are at the highest level in the superficial layer of the stratified epithelium and muscularis layers of the vagina. These data provide a potential explanation for the described role of androgens in regulating vaginal lubrication, smooth muscle activity, blood flow, and the neuronal activity potentially involved in the correction of sexual dysfunction. © 2014 International Society for Sexual Medicine.

  8. Trichosanthes kirilowii Exerts Androgenic Activity via Regulation of PSA and KLK2 in 22Rv1 Prostate Cancer Cells.

    PubMed

    Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2017-01-01

    The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American Type Culture Collection; FBS: fetal bovine serum; PBS: phosphate

  9. Trichosanthes kirilowii Exerts Androgenic Activity via Regulation of PSA and KLK2 in 22Rv1 Prostate Cancer Cells

    PubMed Central

    Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2017-01-01

    Background: The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. Objective: We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Materials and Methods: Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. Results: TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Conclusion: Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. SUMMARY Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American

  10. In Vitro Androgen Bioassays as a Detection Method for Designer Androgens

    PubMed Central

    Cooper, Elliot R.; McGrath, Kristine C. Y.; Heather, Alison K.

    2013-01-01

    Androgens are the class of sex steroids responsible for male sexual characteristics, including increased muscle mass and decreased fat mass. Illicit use of androgen doping can be an attractive option for those looking to enhance sporting performance and/or physical appearance. The use of in vitro bioassays to detect androgens, especially designer or proandrogens, is becoming increasingly important in combating androgen doping associated with nutritional supplements. The nutritional sports supplement market has grown rapidly throughout the past decade. Many of these supplements contain androgens, designer androgens or proandrogens. Many designer or proandrogens cannot be detected by the standard highly-sensitive screening methods such as gas chromatography-mass spectrometry because their chemical structure is unknown. However, in vitro androgen bioassays can detect designer and proandrogens as these assays are not reliant on knowing the chemical structure but instead are based on androgen receptor activation. For these reasons, it may be advantageous to use routine androgen bioassay screening of nutraceutical samples to help curb the increasing problem of androgen doping. PMID:23389345

  11. Quantification of transcription factor-DNA binding affinity in a living cell

    PubMed Central

    Belikov, Sergey; Berg, Otto G.; Wrange, Örjan

    2016-01-01

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. PMID:26657626

  12. Complex modulation of androgen responsive gene expression by methoxyacetic acid

    PubMed Central

    2011-01-01

    Background Optimal androgen signaling is critical for testicular development and spermatogenesis. Methoxyacetic acid (MAA), the primary active metabolite of the industrial chemical ethylene glycol monomethyl ether, disrupts spermatogenesis and causes testicular atrophy. Transcriptional trans-activation studies have indicated that MAA can enhance androgen receptor activity, however, whether MAA actually impacts the expression of androgen-responsive genes in vivo, and which genes might be affected is not known. Methods A mouse TM3 Leydig cell line that stably expresses androgen receptor (TM3-AR) was prepared and analyzed by transcriptional profiling to identify target gene interactions between MAA and testosterone on a global scale. Results MAA is shown to have widespread effects on androgen-responsive genes, affecting processes ranging from apoptosis to ion transport, cell adhesion, phosphorylation and transcription, with MAA able to enhance, as well as antagonize, androgenic responses. Moreover, testosterone is shown to exert both positive and negative effects on MAA gene responses. Motif analysis indicated that binding sites for FOX, HOX, LEF/TCF, STAT5 and MEF2 family transcription factors are among the most highly enriched in genes regulated by testosterone and MAA. Notably, 65 FOXO targets were repressed by testosterone or showed repression enhanced by MAA with testosterone; these include 16 genes associated with developmental processes, six of which are Hox genes. Conclusions These findings highlight the complex interactions between testosterone and MAA, and provide insight into the effects of MAA exposure on androgen-dependent processes in a Leydig cell model. PMID:21453523

  13. Association of Androgen Metabolism Gene Polymorphisms with Prostate Cancer Risk and Androgen Concentrations: Results from the Prostate Cancer Prevention Trial

    PubMed Central

    Price, Douglas K.; Chau, Cindy H.; Till, Cathee; Goodman, Phyllis J.; Leach, Robin J.; Johnson-Pais, Teresa L.; Hsing, Ann W.; Hoque, Ashraful; Parnes, Howard L.; Schenk, Jeannette M.; Tangen, Catherine M.; Thompson, Ian M.; Reichardt, Juergen K.V.; Figg, William D.

    2016-01-01

    Background Prostate cancer is highly influenced by androgens and genes. We investigated whether genetic polymorphisms along the androgen biosynthesis and metabolism pathways are associated with androgen concentrations or risk of prostate cancer or high-grade disease from finasteride treatment. Methods A nested case-control study from the Prostate Cancer Prevention Trial using cases drawn from men with biopsy-proven prostate cancer and biopsy-negative, frequency-matched controls was conducted to investigate the association of 51 single nucleotide polymorphisms (SNPs) in 12 genes of the androgen pathway with total, low-grade, and high-grade prostate cancer incidence and serum hormone concentrations. Results There were significant associations of genetic polymorphisms in SRD5A1 (rs3736316, rs3822430, rs1560149, rs248797, and rs472402) and SRD5A2 (rs2300700) with risk of high-grade prostate cancer in the placebo arm of the PCPT; two SNPs were significantly associated with increased risk (SRD5A1 rs472402 [OR, 1.70; 95% CI, 1.05-2.75, Ptrend=0.03]; SRD5A2 rs2300700 [OR, 1.94; 95% CI, 1.19-3.18, Ptrend=0.01]). Eleven SNPs in SRD5A1, SRD5A2, CYP1B1, and CYP3A4 were found to be associated with modifying mean serum androgen and sex hormone-binding globulin concentrations; two SNPs (SRD5A1 rs824811 and CYP1B1 rs10012, Ptrend<0.05) consistently and significantly altered all androgen concentrations. Several SNPs (rs3822430, rs2300700; CYP3A43 rs800672; CYP19 rs700519; Ptrend<0.05) were significantly associated with both circulating hormone levels and prostate cancer risk. Conclusion Germline genetic variations of androgen-related pathway genes are associated with serum androgen concentrations and risk of prostate cancer. Further studies to examine the functional consequence of novel causal variants are warranted. PMID:27164191

  14. Prostate Cancer Cells Express More Androgen Receptor (AR) Following Androgen Deprivation, Improving Recognition by AR-Specific T Cells.

    PubMed

    Olson, Brian M; Gamat, Melissa; Seliski, Joseph; Sawicki, Thomas; Jeffery, Justin; Ellis, Leigh; Drake, Charles G; Weichert, Jamey; McNeel, Douglas G

    2017-12-01

    Androgen deprivation is the primary therapy for recurrent prostate cancer, and agents targeting the androgen receptor (AR) pathway continue to be developed. Because androgen-deprivation therapy (ADT) has immmunostimulatory effects as well as direct antitumor effects, AR-targeted therapies have been combined with other anticancer therapies, including immunotherapies. Here, we sought to study whether an antigen-specific mechanism of resistance to ADT (overexpression of the AR) may result in enhanced AR-specific T-cell immune recognition, and whether this might be strategically combined with an antitumor vaccine targeting the AR. Androgen deprivation increased AR expression in human and murine prostate tumor cells in vitro and in vivo The increased expression persisted over time. Increased AR expression was associated with recognition and cytolytic activity by AR-specific T cells. Furthermore, ADT combined with vaccination, specifically a DNA vaccine encoding the ligand-binding domain of the AR, led to improved antitumor responses as measured by tumor volumes and delays in the emergence of castrate-resistant prostate tumors in two murine prostate cancer models (Myc-CaP and prostate-specific PTEN-deficient mice). Together, these data suggest that ADT combined with AR-directed immunotherapy targets a major mechanism of resistance, overexpression of the AR. This combination may be more effective than ADT combined with other immunotherapeutic approaches. Cancer Immunol Res; 5(12); 1074-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo

    PubMed Central

    Lee, Justin B; Zhang, Kaixin; Tam, Yuen Yi C; Quick, Joslyn; Tam, Ying K; Lin, Paulo JC; Chen, Sam; Liu, Yan; Nair, Jayaprakash K; Zlatev, Ivan; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Rennie, Paul S; Cullis, Pieter R

    2016-01-01

    The androgen receptor plays a critical role in the progression of prostate cancer. Here, we describe targeting the prostate-specific membrane antigen using a lipid nanoparticle formulation containing small interfering RNA designed to silence expression of the messenger RNA encoding the androgen receptor. Specifically, a Glu-urea-Lys PSMA-targeting ligand was incorporated into the lipid nanoparticle system formulated with a long alkyl chain polyethylene glycol-lipid to enhance accumulation at tumor sites and facilitate intracellular uptake into tumor cells following systemic administration. Through these features, and by using a structurally refined cationic lipid and an optimized small interfering RNA payload, a lipid nanoparticle system with improved potency and significant therapeutic potential against prostate cancer and potentially other solid tumors was developed. Decreases in serum prostate-specific antigen, tumor cellular proliferation, and androgen receptor levels were observed in a mouse xenograft model following intravenous injection. These results support the potential clinical utility of a prostate-specific membrane antigen–targeted lipid nanoparticle system to silence the androgen receptor in advanced prostate cancer. PMID:28131285

  16. Conformational changes in the M2 muscarinic receptor induced by membrane voltage and agonist binding

    PubMed Central

    Navarro-Polanco, Ricardo A; Galindo, Eloy G Moreno; Ferrer-Villada, Tania; Arias, Marcelo; Rigby, J Ryan; Sánchez-Chapula, José A; Tristani-Firouzi, Martin

    2011-01-01

    Abstract The ability to sense transmembrane voltage is a central feature of many membrane proteins, most notably voltage-gated ion channels. Gating current measurements provide valuable information on protein conformational changes induced by voltage. The recent observation that muscarinic G-protein-coupled receptors (GPCRs) generate gating currents confirms their intrinsic capacity to sense the membrane electrical field. Here, we studied the effect of voltage on agonist activation of M2 muscarinic receptors (M2R) in atrial myocytes and how agonist binding alters M2R gating currents. Membrane depolarization decreased the potency of acetylcholine (ACh), but increased the potency and efficacy of pilocarpine (Pilo), as measured by ACh-activated K+ current, IKACh. Voltage-induced conformational changes in M2R were modified in a ligand-selective manner: ACh reduced gating charge displacement while Pilo increased the amount of charge displaced. Thus, these ligands manifest opposite voltage-dependent IKACh modulation and exert opposite effects on M2R gating charge displacement. Finally, mutations in the putative ligand binding site perturbed the movement of the M2R voltage sensor. Our data suggest that changes in voltage induce conformational changes in the ligand binding site that alter the agonist–receptor interaction in a ligand-dependent manner. Voltage-dependent GPCR modulation has important implications for cellular signalling in excitable tissues. Gating current measurement allows for the tracking of subtle conformational changes in the receptor that accompany agonist binding and changes in membrane voltage. PMID:21282291

  17. Coordinated autoinhibition of F-BAR domain membrane binding and WASp activation by Nervous Wreck.

    PubMed

    Stanishneva-Konovalova, Tatiana B; Kelley, Charlotte F; Eskin, Tania L; Messelaar, Emily M; Wasserman, Steven A; Sokolova, Olga S; Rodal, Avital A

    2016-09-20

    Membrane remodeling by Fes/Cip4 homology-Bin/Amphiphysin/Rvs167 (F-BAR) proteins is regulated by autoinhibitory interactions between their SRC homology 3 (SH3) and F-BAR domains. The structural basis of autoregulation, and whether it affects interactions of SH3 domains with other cellular ligands, remain unclear. Here we used single-particle electron microscopy to determine the structure of the F-BAR protein Nervous Wreck (Nwk) in both soluble and membrane-bound states. On membrane binding, Nwk SH3 domains do not completely dissociate from the F-BAR dimer, but instead shift from its concave surface to positions on either side of the dimer. Unexpectedly, along with controlling membrane binding, these autoregulatory interactions inhibit the ability of Nwk-SH3a to activate Wiskott-Aldrich syndrome protein (WASp)/actin related protein (Arp) 2/3-dependent actin filament assembly. In Drosophila neurons, Nwk autoregulation restricts SH3a domain-dependent synaptopod formation, synaptic growth, and actin organization. Our results define structural rearrangements in Nwk that control F-BAR-membrane interactions as well as SH3 domain activities, and suggest that these two functions are tightly coordinated in vitro and in vivo.

  18. Fulvestrant (ICI 182,780) down-regulates androgen receptor expression and diminishes androgenic responses in LNCaP human prostate cancer cells.

    PubMed

    Bhattacharyya, Rumi S; Krishnan, Aruna V; Swami, Srilatha; Feldman, David

    2006-06-01

    The androgen receptor (AR) plays a key role in the development and progression of prostate cancer. Targeting the AR for down-regulation would be a useful strategy for treating prostate cancer, especially hormone-refractory or androgen-independent prostate cancer. In the present study, we showed that the antiestrogen fulvestrant [ICI 182,780 (ICI)] effectively suppressed AR expression in several human prostate cancer cells, including androgen-independent cells. In LNCaP cells, ICI (10 micromol/L) treatment decreased AR mRNA expression by 43% after 24 hours and AR protein expression by approximately 50% after 48 hours. We further examined the mechanism of AR down-regulation by ICI in LNCaP cells. ICI did not bind to the T877A-mutant AR present in the LNCaP cells nor did it promote proteasomal degradation of the AR. ICI did not affect AR mRNA or protein half-life. However, ICI decreased the activity of an AR promoter-luciferase reporter plasmid transfected into LNCaP cells, suggesting a direct repression of AR gene transcription. As a result of AR down-regulation by ICI, androgen induction of prostate-specific antigen mRNA and protein expression were substantially attenuated. Importantly, LNCaP cell proliferation was significantly inhibited by ICI treatment. Following 6 days of ICI treatment, a 70% growth inhibition was seen in androgen-stimulated LNCaP cells. These data show that the antiestrogen ICI is a potent AR down-regulator that causes significant inhibition of prostate cancer cell growth. Our study suggests that AR down-regulation by ICI would be an effective strategy for the treatment of all prostate cancer, especially AR-dependent androgen-independent prostate cancer.

  19. The Association of Myosin IB with Actin Waves in Dictyostelium Requires Both the Plasma Membrane-Binding Site and Actin-Binding Region in the Myosin Tail

    PubMed Central

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A.; Korn, Edward D.

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave. PMID:24747353

  20. Dissecting binding of a β-barrel membrane protein by phage display.

    PubMed

    Meneghini, Luz M; Tripathi, Sarvind; Woodworth, Marcus A; Majumdar, Sudipta; Poulos, Thomas L; Weiss, Gregory A

    2017-07-25

    Membrane proteins (MPs) constitute a third of all proteomes, and contribute to a myriad of cellular functions including intercellular communication, nutrient transport and energy generation. For example, TonB-dependent transporters (TBDTs) in the outer membrane of Gram-negative bacteria play an essential role transporting iron and other nutrients into the bacterial cell. The inherently hydrophobic surfaces of MPs complicates protein expression, purification, and characterization. Thus, dissecting the functional contributions of individual amino acids or structural features through mutagenesis can be a challenging ordeal. Here, we apply a new approach for the expedited protein characterization of the TBDT ShuA from Shigella dysenteriae, and elucidate the protein's initial steps during heme-uptake. ShuA variants were displayed on the surface of an M13 bacteriophage as fusions to the P8 coat protein. Each ShuA variant was analyzed for its ability to display on the bacteriophage surface, and functionally bind to hemoglobin. This technique streamlines isolation of stable MP variants for rapid characterization of binding to various ligands. Site-directed mutagenesis studies targeting each extracellular loop region of ShuA demonstrate no specific extracellular loop is required for hemoglobin binding. Instead two residues, His420 and His86 mediate this interaction. The results identify a loop susceptible to antibody binding, and also a small molecule motif capable of disrupting ShuA from S. dysenteriae. The approach is generalizable to the dissection of other phage-displayed TBDTs and MPs.

  1. Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule

    PubMed Central

    1984-01-01

    By means of a multistage quantitative assay, we have identified a new kind of cell adhesion molecule (CAM) on neuronal cells of the chick embryo that is involved in their adhesion to glial cells. The assay used to identify the binding component (which we name neuron-glia CAM or Ng-CAM) was designed to distinguish between homotypic binding (e.g., neuron to neuron) and heterotypic binding (e.g., neuron to glia). This distinction was essential because a single neuron might simultaneously carry different CAMs separately mediating each of these interactions. The adhesion of neuronal cells to glial cells in vitro was previously found to be inhibited by Fab' fragments prepared from antisera against neuronal membranes but not by Fab' fragments against N-CAM, the neural cell adhesion molecule. This suggested that neuron-glia adhesion is mediated by specific cell surface molecules different from previously isolated CAMs . To verify that this was the case, neuronal membrane vesicles were labeled internally with 6-carboxyfluorescein and externally with 125I-labeled antibodies to N-CAM to block their homotypic binding. Labeled vesicles bound to glial cells but not to fibroblasts during a 30-min incubation period. The specific binding of the neuronal vesicles to glial cells was measured by fluorescence microscopy and gamma spectroscopy of the 125I label. Binding increased with increasing concentrations of both glial cells and neuronal vesicles. Fab' fragments prepared from anti-neuronal membrane sera that inhibited binding between neurons and glial cells were also found to inhibit neuronal vesicle binding to glial cells. The inhibitory activity of the Fab' fragments was depleted by preincubation with neuronal cells but not with glial cells. Trypsin treatment of neuronal membrane vesicles released material that neutralized Fab' fragment inhibition; after chromatography, neutralizing activity was enriched 50- fold. This fraction was injected into mice to produce monoclonal

  2. MicroRNAs Are Mediators of Androgen Action in Prostate and Muscle

    PubMed Central

    Narayanan, Ramesh; Jiang, Jinmai; Gusev, Yuriy; Jones, Amanda; Kearbey, Jeffrey D.; Miller, Duane D.; Schmittgen, Thomas D.; Dalton, James T.

    2010-01-01

    Androgen receptor (AR) function is critical for the development of male reproductive organs, muscle, bone and other tissues. Functionally impaired AR results in androgen insensitivity syndrome (AIS). The interaction between AR and microRNA (miR) signaling pathways was examined to understand the role of miRs in AR function. Reduction of androgen levels in Sprague-Dawley rats by castration inhibited the expression of a large set of miRs in prostate and muscle, which was reversed by treatment of castrated rats with 3 mg/day dihydrotestosterone (DHT) or selective androgen receptor modulators. Knockout of the miR processing enzyme, DICER, in LNCaP prostate cancer cells or tissue specifically in mice inhibited AR function leading to AIS. Since the only function of miRs is to bind to 3′ UTR and inhibit translation of target genes, androgens might induce miRs to inhibit repressors of AR function. In concordance, knock-down of DICER in LNCaP cells and in tissues in mice induced the expression of corepressors, NCoR and SMRT. These studies demonstrate a feedback loop between miRs, corepressors and AR and the imperative role of miRs in AR function in non-cancerous androgen-responsive tissues. PMID:21048966

  3. Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes.

    PubMed

    Subasinghe, Supundi; Unabia, Sharon; Barrow, Colin J; Mok, Su San; Aguilar, Marie-Isabel; Small, David H

    2003-02-01

    Accumulation of beta amyloid (Abeta) in the brain is central to the pathogenesis of Alzheimer's disease. Abeta can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Abeta binding to membranes. Abeta peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Abeta peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Abeta peptides and their membrane binding. 'Ageing' the Abeta peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Abeta analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Abeta to purified plasma membrane preparations but also reduced Abeta toxicity. The results support the view that Abeta toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Abeta-membrane binding.

  4. Conformational antibody binding to a native, cell-free expressed GPCR in block copolymer membranes.

    PubMed

    de Hoog, Hans-Peter M; Lin JieRong, Esther M; Banerjee, Sourabh; Décaillot, Fabien M; Nallani, Madhavan

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4.

  5. Conformational Antibody Binding to a Native, Cell-Free Expressed GPCR in Block Copolymer Membranes

    PubMed Central

    de Hoog, Hans-Peter M.; Lin JieRong, Esther M.; Banerjee, Sourabh; Décaillot, Fabien M.; Nallani, Madhavan

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4. PMID:25329156

  6. Glycosphingolipid-facilitated membrane insertion and internalization of cobra cardiotoxin. The sulfatide.cardiotoxin complex structure in a membrane-like environment suggests a lipid-dependent cell-penetrating mechanism for membrane binding polypeptides.

    PubMed

    Wang, Chia-Hui; Liu, Jyung-Hurng; Lee, Shao-Chen; Hsiao, Chwan-Deng; Wu, Wen-Guey

    2006-01-06

    Cobra cardiotoxins, a family of basic polypeptides having lipid- and heparin-binding capacities similar to the cell-penetrating peptides, induce severe tissue necrosis and systolic heart arrest in snakebite victims. Whereas cardiotoxins are specifically retained on the cell surface via heparan sulfate-mediated processes, their lipid binding ability appears to be responsible, at least in part, for cardiotoxin-induced membrane leakage and cell death. Although the exact role of lipids involved in toxin-mediated cytotoxicity remains largely unknown, monoclonal anti-sulfatide antibody O4 has recently been shown to inhibit the action of CTX A3, the major cardiotoxin from Taiwan cobra venom, on cardiomyocytes by preventing cardiotoxin-induced membrane leakage and CTX A3 internalization into mitochondria. Here, we show that anti-sulfatide acts by blocking the binding of CTX A3 to the sulfatides in the plasma membrane to prevent sulfatide-dependent CTX A3 membrane pore formation and internalization. We also describe the crystal structure of a CTX A3-sulfatide complex in a membrane-like environment at 2.3 angstroms resolution. The unexpected orientation of the sulfatide fatty chains in the structure allows prediction of the mode of toxin insertion into the plasma membrane. CTX A3 recognizes both the headgroup and the ceramide interfacial region of sulfatide to induce a lipid conformational change that may play a key role in CTX A3 oligomerization and cellular internalization. This proposed lipid-mediated toxin translocation mechanism may also shed light on the cellular uptake mechanism of the amphiphilic cell-penetrating peptides known to involve multiple internalization pathways.

  7. Androgen Action via the Androgen Receptor in Neurons Within the Brain Positively Regulates Muscle Mass in Male Mice.

    PubMed

    Davey, Rachel A; Clarke, Michele V; Russell, Patricia K; Rana, Kesha; Seto, Jane; Roeszler, Kelly N; How, Jackie M Y; Chia, Ling Yeong; North, Kathryn; Zajac, Jeffrey D

    2017-10-01

    Although it is well established that exogenous androgens have anabolic effects on skeletal muscle mass in humans and mice, data from muscle-specific androgen receptor (AR) knockout (ARKO) mice indicate that myocytic expression of the AR is dispensable for hind-limb muscle mass accrual in males. To identify possible indirect actions of androgens via the AR in neurons to regulate muscle, we generated neuron-ARKO mice in which the dominant DNA binding-dependent actions of the AR are deleted in neurons of the cortex, forebrain, hypothalamus, and olfactory bulb. Serum testosterone and luteinizing hormone levels were elevated twofold in neuron-ARKO males compared with wild-type littermates due to disruption of negative feedback to the hypothalamic-pituitary-gonadal axis. Despite this increase in serum testosterone levels, which was expected to increase muscle mass, the mass of the mixed-fiber gastrocnemius (Gast) and the fast-twitch fiber extensor digitorum longus hind-limb muscles was decreased by 10% in neuron-ARKOs at 12 weeks of age, whereas muscle strength and fatigue of the Gast were unaffected. The mass of the soleus muscle, however, which consists of a high proportion of slow-twitch fibers, was unaffected in neuron-ARKOs, demonstrating a stimulatory action of androgens via the AR in neurons to increase the mass of fast-twitch hind-limb muscles. Furthermore, neuron-ARKOs displayed reductions in voluntary and involuntary physical activity by up to 60%. These data provide evidence for a role of androgens via the AR in neurons to positively regulate fast-twitch hind-limb muscle mass and physical activity in male mice. Copyright © 2017 Endocrine Society.

  8. INTERACTION OF ORGANOPHOSPHATE PESTICIDES AND RELATED COMPOUNDS WITH THE ANDROGEN RECEPTOR

    EPA Science Inventory

    Identification of several environmental chemicals capable of binding to the androgen receptor (AR) and interfering with its normal function has heightened concern for adverse effects across a broad spectrum of environmental chemicals. We previously demonstrated AR antagonist act...

  9. Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis.

    PubMed

    Duggal, Ruchia; Liu, Yilin; Gregory, Michael C; Denisov, Ilia G; Kincaid, James R; Sligar, Stephen G

    2016-08-19

    Cytochrome P450 17A1 (CYP17A1) is an important drug target for castration resistant prostate cancer. It is a bi-functional enzyme, catalyzing production of glucocorticoid precursors by hydroxylation of pregnene-nucleus, and androgen biosynthesis by a second CC lyase step, at the expense of glucocorticoid production. Cytochrome b5 (cyt b5) is known to be a key regulator of the androgen synthesis reaction in vivo, by a mechanism that is not well understood. Two hypotheses have been proposed for the mechanism by which cyt b5 increases androgen biosynthesis. Cyt b5 could act as an allosteric effector, binding to CYP17A1 and either changing its selective substrate affinity or altering the conformation of the P450 to increase the catalytic rate or decrease unproductive uncoupling channels. Alternatively, cyt b5 could act as a redox donor for supply of the second electron in the P450 cycle, reducing the oxyferrous complex to form the reactive peroxo-intermediate. To understand the mechanism of lyase enhancement by cyt b5, we generated a redox-inactive form of cyt b5, in which the heme is replaced with a Manganese-protoporphyrin IX (Mn-b5), and investigated enhancement of androgen producing lyase reaction by CYP17A1. Given the critical significance of a stable membrane anchor for all of the proteins involved and the need for controlled stoichiometric ratios, we employed the Nanodisc system for this study. The redox inactive form was observed to have no effect on the lyase reaction, while reactions with the normal heme-iron containing cyt b5 were enhanced ∼5 fold as compared to reactions in the absence of cyt b5. We also performed resonance Raman measurements on ferric CYP17A1 bound to Mn-b5. Upon addition of Mn-b5 to Nanodisc reconstituted CYP17A1, we observed clear evidence for the formation of a b5-CYP17A1 complex, as noted by changes in the porphyrin modes and alteration in the proximal FeS vibrational frequency. Thus, although Mn-b5 binds to CYP17A1, it is unable to

  10. Restoration of the cellular secretory milieu overrides androgen dependence of in vivo generated castration resistant prostate cancer cells overexpressing the androgen receptor.

    PubMed

    Patki, Mugdha; Huang, Yanfang; Ratnam, Manohar

    2016-07-22

    It is believed that growth of castration resistant prostate cancer (CRPC) cells is enabled by sensitization to minimal residual post-castrate androgen due to overexpression of the androgen receptor (AR). Evidence is derived from androgen-induced colony formation in the absence of cell-secreted factors or from studies involving forced AR overexpression in hormone-dependent cells. On the other hand, standard cell line models established from CRPC patient tumors (e.g., LNCaP and VCaP) are hormone-dependent and require selection pressure in castrated mice to re-emerge as CRPC cells and the resulting tumors then tend to be insensitive to the androgen antagonist enzalutamide. Therefore, we examined established CRPC model cells produced by castration of mice bearing hormone-dependent cell line xenografts including CRPC cells overexpressing full-length AR (C4-2) or co-expressing wtAR and splice-variant AR-V7 that is incapable of ligand binding (22Rv1). In standard colony formation assays, C4-2 cells were shown to be androgen-dependent and sensitive to enzalutamide whereas 22Rv1 cells were incapable of colony formation under identical conditions. However, both C4-2 and 22Rv1 cells formed colonies in conditioned media derived from the same cells or from HEK293 fibroblasts that were proven to lack androgenic activity. This effect was (i) not enhanced by androgen, (ii) insensitive to enzalutamide, (iii) dependent on AR (in C4-2) and on AR-V7 and wtAR (in 22Rv1) and (iv) sensitive to inhibitors of several signaling pathways, similar to androgen-stimulation. Therefore, during progression to CRPC in vivo, coordinate cellular changes accompanying overexpression of AR may enable cooperation between hormone-independent activity of AR and actions of cellular secretory factors to completely override androgen-dependence and sensitivity to drugs targeting hormonal factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Neurotoxic properties of the anabolic androgenic steroids nandrolone and methandrostenolone in primary neuronal cultures.

    PubMed

    Caraci, Filippo; Pistarà, V; Corsaro, A; Tomasello, Flora; Giuffrida, Maria Laura; Sortino, Maria Angela; Nicoletti, Ferdinando; Copani, Agata

    2011-04-01

    Anabolic-androgenic steroid (AAS) abuse is associated with multiple neurobehavioral disturbances. The sites of action and the neurobiological sequels of AAS abuse are unclear at present. We investigated whether two different AASs, nandrolone and methandrostenolone, could affect neuronal survival in culture. The endogenous androgenic steroid testosterone was used for comparison. Both testosterone and nandrolone were neurotoxic at micromolar concentrations, and their effects were prevented by blockade of androgen receptors (ARs) with flutamide. Neuronal toxicity developed only over a 48-hr exposure to the steroids. The cell-impermeable analogues testosterone-BSA and nandrolone-BSA, which preferentially target membrane-associated ARs, were also neurotoxic in a time-dependent and flutamide-sensitive manner. Testosterone-BSA and nandrolone-BSA were more potent than their parent compounds, suggesting that membrane-associated ARs were the relevant sites for the neurotoxic actions of the steroids. Unlike testosterone and nandrolone, toxicity by methandrostenolone and methandrostenolone-BSA was insensitive to flutamide, but it was prevented by the glucocorticoid receptor (GR) antagonist RU-486. Methandrostenolone-BSA was more potent than the parent compound, suggesting that its toxicity relied on the preferential activation of putative membrane-associated GRs. Consistently with the evidence that membrane-associated GRs can mediate rapid effects, a brief challenge with methandrostenolone-BSA was able to promote neuronal toxicity. Activation of putative membrane steroid receptors by nontoxic (nanomolar) concentrations of either nandrolone-BSA or methandrostenolone-BSA became sufficient to increase neuronal susceptibility to the apoptotic stimulus provided by β-amyloid (the main culprit of AD). We speculate that AAS abuse might facilitate the onset or progression of neurodegenerative diseases not usually linked to drug abuse. Copyright © 2011 Wiley-Liss, Inc.

  12. Muscle-specific androgen receptor deletion shows limited actions in myoblasts but not in myofibers in different muscles in vivo.

    PubMed

    Rana, Kesha; Chiu, Maria W S; Russell, Patricia K; Skinner, Jarrod P; Lee, Nicole K L; Fam, Barbara C; Zajac, Jeffrey D; MacLean, Helen E

    2016-08-01

    The aim of this study was to investigate the direct muscle cell-mediated actions of androgens by comparing two different mouse lines. The cre-loxP system was used to delete the DNA-binding activity of the androgen receptor (AR) in mature myofibers (MCK mAR(ΔZF2)) in one model and the DNA-binding activity of the AR in both proliferating myoblasts and myofibers (α-actin mAR(ΔZF2)) in another model. We found that hind-limb muscle mass was normal in MCK mAR(ΔZF2) mice and that relative mass of only some hind-limb muscles was reduced in α-actin mAR(ΔZF2) mice. This suggests that myoblasts and myofibers are not the major cellular targets mediating the anabolic actions of androgens on male muscle during growth and development. Levator ani muscle mass was decreased in both mouse lines, demonstrating that there is a myofiber-specific effect in this unique androgen-dependent muscle. We found that the pattern of expression of genes including c-myc, Fzd4 and Igf2 is associated with androgen-dependent changes in muscle mass; therefore, these genes are likely to be mediators of anabolic actions of androgens. Further research is required to identify the major targets of androgen actions in muscle, which are likely to include indirect actions via other tissues. © 2016 Society for Endocrinology.

  13. Evaluation of OASIS QSAR Models Using ToxCast™ in Vitro Estrogen and Androgen Receptor Binding Data and Application in an Integrated Endocrine Screening Approach

    PubMed Central

    Bhhatarai, Barun; Wilson, Daniel M.; Price, Paul S.; Marty, Sue; Parks, Amanda K.; Carney, Edward

    2016-01-01

    Background: Integrative testing strategies (ITSs) for potential endocrine activity can use tiered in silico and in vitro models. Each component of an ITS should be thoroughly assessed. Objectives: We used the data from three in vitro ToxCast™ binding assays to assess OASIS, a quantitative structure-activity relationship (QSAR) platform covering both estrogen receptor (ER) and androgen receptor (AR) binding. For stronger binders (described here as AC50 < 1 μM), we also examined the relationship of QSAR predictions of ER or AR binding to the results from 18 ER and 10 AR transactivation assays, 72 ER-binding reference compounds, and the in vivo uterotrophic assay. Methods: NovaScreen binding assay data for ER (human, bovine, and mouse) and AR (human, chimpanzee, and rat) were used to assess the sensitivity, specificity, concordance, and applicability domain of two OASIS QSAR models. The binding strength relative to the QSAR-predicted binding strength was examined for the ER data. The relationship of QSAR predictions of binding to transactivation- and pathway-based assays, as well as to in vivo uterotrophic responses, was examined. Results: The QSAR models had both high sensitivity (> 75%) and specificity (> 86%) for ER as well as both high sensitivity (92–100%) and specificity (70–81%) for AR. For compounds within the domains of the ER and AR QSAR models that bound with AC50 < 1 μM, the QSAR models accurately predicted the binding for the parent compounds. The parent compounds were active in all transactivation assays where metabolism was incorporated and, except for those compounds known to require metabolism to manifest activity, all assay platforms where metabolism was not incorporated. Compounds in-domain and predicted to bind by the ER QSAR model that were positive in ToxCast™ ER binding at AC50 < 1 μM were active in the uterotrophic assay. Conclusions: We used the extensive ToxCast™ HTS binding data set to show that OASIS ER and AR QSAR models had

  14. Binding of (/sup 3/H)Forskolin to rat brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seamon, K.B.; Vaillancourt, R.; Edwards, M.

    1984-08-01

    (12-/sup 3/H)Forskolin (27 Ci/mmol) has been used to study binding sites in rat brain tissue by using both centrifugation and filtration assays. The binding isotherm measured in the presence of 5 mM MgCl/sub 2/ by using the centrifugation assay is described best by a two-site model: K/sub d1/ = 15 nM, B/sub max/sub 1// (maximal binding) = 270 fmol/mg of protein; K/sub d2/ = 1.1 ..mu..M; B/sub max/sub 2// = 4.2 pmol/mg of protein. Only the high-affinity binding sites are detected when the binding is determined by using a filtration assay; K/sub d/ = 26 nM, B/sub max/ = 400more » fmol/mg of protein. Analogs of forskolin that do not activate adenylate cyclase (EC 4.6.1.1) do not compete effectively for (/sup 3/H)forskolin binding sites. Analogs of forskolin that are less potent than forskolin in activating adenylate cyclase are also less potent in competing for forskolin binding sites. The presence of 5 mM MgCl/sub 2/ or MnCl/sub 2/ was found to enhance binding. In the presence of 1 mM EDTA the amount of high-affinity binding is reduced to 110 fmol/mg of protein with no change in K/sub d/. There is no effect of CaCl/sub 2/ (20 mM) or NaCl (100 mM) on the binding. No high-affinity binding can be detected in membranes from ram sperm, which contains an adenylate cyclase that is not activated by forskolin. It is proposed that the high-affinity binding sites for forskolin are associated with the activated complex of catalytic subunit and stimulatory guanine nucleotide binding protein. 23 references, 5 figures, 2 tables.« less

  15. The Polar and Electrical Nature of Dye Binding Sites on Human Red Blood Cell Membranes.

    DTIC Science & Technology

    positive charges at the binding sites. By increasing the concentration of the anionic BPB (or by the addition of the anionic detergent sodium lauryl ... sulfate ) these positive charges appear to be successively titrated, rendering the membrane binding sites electrically neutral at this pH. The average

  16. Multiple sup 3 H-oxytocin binding sites in rat myometrial plasma membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crankshaw, D.; Gaspar, V.; Pliska, V.

    1990-01-01

    The affinity spectrum method has been used to analyse binding isotherms for {sup 3}H-oxytocin to rat myometrial plasma membranes. Three populations of binding sites with dissociation constants (Kd) of 0.6-1.5 x 10(-9), 0.4-1.0 x 10(-7) and 7 x 10(-6) mol/l were identified and their existence verified by cluster analysis based on similarities between Kd, binding capacity and Hill coefficient. When experimental values were compared to theoretical curves constructed using the estimated binding parameters, good fits were obtained. Binding parameters obtained by this method were not influenced by the presence of GTP gamma S (guanosine-5'-O-3-thiotriphosphate) in the incubation medium. The bindingmore » parameters agree reasonably well with those found in uterine cells, they support the existence of a medium affinity site and may allow for an explanation of some of the discrepancies between binding and response in this system.« less

  17. AOP description: Androgen receptor agonism leading to reproductive dysfunction (in fish)

    EPA Science Inventory

    This adverse outcome pathway details the linkage between binding and activation of androgen receptor as a nuclear transcription factor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoi...

  18. A Printed Equilibrium Dialysis Device with Integrated Membranes for Improved Binding Affinity Measurements.

    PubMed

    Pinger, Cody W; Heller, Andrew A; Spence, Dana M

    2017-07-18

    Equilibrium dialysis is a simple and effective technique used for investigating the binding of small molecules and ions to proteins. A three-dimensional (3D) printer was used to create a device capable of measuring binding constants between a protein and a small ion based on equilibrium dialysis. Specifically, the technology described here enables the user to customize an equilibrium dialysis device to fit their own experiments by choosing membranes of various material and molecular-weight cutoff values. The device has dimensions similar to that of a standard 96-well plate, thus being amenable to automated sample handlers and multichannel pipettes. The device consists of a printed base that hosts multiple windows containing a porous regenerated-cellulose membrane with a molecular-weight cutoff of ∼3500 Da. A key step in the fabrication process is a print-pause-print approach for integrating membranes directly into the windows subsequently inserted into the base. The integrated membranes display no leaking upon placement into the base. After characterizing the system's requirements for reaching equilibrium, the device was used to successfully measure an equilibrium dissociation constant for Zn 2+ and human serum albumin (K d = (5.62 ± 0.93) × 10 -7 M) under physiological conditions that is statistically equal to the constants reported in the literature.

  19. Interaction of Clostridium perfringens delta toxin with erythrocyte and liposome membranes and relation with the specific binding to the ganglioside GM2.

    PubMed

    Jolivet-Reynaud, C; Hauttecoeur, B; Alouf, J E

    1989-01-01

    The specific interaction of the cytolytic Clostridium perfringens delta toxin with membrane GM2 was indicated by: (i) characterization of this glycolipid in the membrane of sheep and goat erythrocytes, which are lysed by the toxin, whereas GM2 was undetectable in insensitive rabbit erythrocytes, (ii) demonstration of 125I-toxin binding to GM2, by autoradiography, following incubation with thin-layer chromatograms containing separated neuroblastoma gangliosides, and (iii) toxin fixation by phospholipid-cholesterol unilamellar vesicles containing either sheep gangliosides or GM2. In order to investigate the intramembrane events leading to membrane disruption following toxin binding, the photoreactive probe 12(4-azido-2-nitrophenoxy)stearoyl 1-14C glucosamine, which inserts into the outer layer and labels integral membrane proteins, was used to establish whether delta toxin penetrates into target cell membrane. No toxin labeling was found, suggesting that toxin action takes place at the membrane surface. This contention is supported by the observation that despite toxin binding, GM2 liposomes did not release entrapped 14C-glucose. Treatment of toxin with carboxypeptidases, but not aminopeptidases, abolished both toxin binding capacity onto erythrocytes and its combination with antitoxin neutralizing antibodies, suggesting that the carboxy terminal end of the toxin is critical for binding to cell membrane.

  20. The physiological and pharmacological basis for the ergogenic effects of androgens in elite sports.

    PubMed

    Choong, Karen; Lakshman, Kishore M; Bhasin, Shalender

    2008-05-01

    Androgen doping in power sports is undeniably rampant worldwide. There is strong evidence that androgen administration in men increases skeletal muscle mass, maximal voluntary strength and muscle power. However, we do not have good experimental evidence to support the presumption that androgen administration improves physical function or athletic performance. Androgens do not increase specific force or whole body endurance measures. The anabolic effects of testosterone on the skeletal muscle are mediated through androgen receptor signaling. Testosterone promotes myogenic differentiation of multipotent mesenchymal stem cells and inhibits their differentiation into the adipogenic lineage. Testosterone binding to androgen receptor induces a conformational change in androgen receptor protein, causing it to associate with beta-catenin and TCF-4 and activate downstream Wnt target genes thus promoting myogenic differentiation. The adverse effects of androgens among athletes and recreational bodybuilders are under reported and include acne, deleterious changes in the cardiovascular risk factors, including a marked decrease in plasma high-density lipoproteins (HDL) cholesterol level, suppression of spermatogenesis resulting in infertility, increase in liver enzymes, hepatic neoplasms, mood and behavioral disturbances, and long term suppression of the endogenous hypothalamic-pituitary-gonadal axis. Androgens are often used in combination with other drugs which may have serious adverse events of their own. In spite of effective methods for detecting androgen doping, the policies for screening of athletes are highly variable in different countries and organizations and even existing policies are not uniformly enforced. 2008, Asian Journal of Andrology, SIMM and SJTU. All rights reserved.

  1. Androgen dynamics in vitro in the human prostate gland. Effect of cyproterone and cyproterone acetate

    PubMed Central

    Giorgi, Eleonora P.; Shirley, I. M.; Grant, J. K.; Stewart, Joan C.

    1973-01-01

    Hyperplastic and adenocarcinomatous human prostatic tissue was superfused in vitro with radioactively labelled androst-4-ene-3,17-dione, testosterone and 5α-dihydrotestosterone (17β-hydroxy-5α-androstan-3-one), with and without addition of the anti-androgens cyproterone and cyproterone acetate. Cyproterone competitively inhibited the entry of the androgens into the majority of the tissues, whereas cyproterone acetate increased this entry. These findings indicated that transport of androstenedione, testosterone and 5α-dihydrotestosterone into prostatic tissue is performed by a specific mechanism, possibly involving a carrier situated in the cell membrane. The extent of metabolism of the three androgens was also modified: formation of 5α-dihydrotestosterone from testosterone, and of the latter from androstenedione, was decreased by cyproterone and increased by the acetate. Acetate was more effective than cyproterone in decreasing the `uptake' of the perfused androgens by the tissue; at the same time, it increased the androgen clearance from the tissue. As cyproterone acetate is the more potent of the two anti-androgens, the possibility that these findings in vitro are related to the different anti-androgenic potency exhibited by the two compounds in vivo is discussed. `Uptake' of the two anti-androgens and the response to their action on androgen dynamics were similar in adenocarcinomatous and hyperplastic glands. PMID:4125095

  2. Association of androgen metabolism gene polymorphisms with prostate cancer risk and androgen concentrations: Results from the Prostate Cancer Prevention Trial.

    PubMed

    Price, Douglas K; Chau, Cindy H; Till, Cathee; Goodman, Phyllis J; Leach, Robin J; Johnson-Pais, Teresa L; Hsing, Ann W; Hoque, Ashraful; Parnes, Howard L; Schenk, Jeannette M; Tangen, Catherine M; Thompson, Ian M; Reichardt, Juergen K V; Figg, William D

    2016-08-01

    Prostate cancer is highly influenced by androgens and genes. The authors investigated whether genetic polymorphisms along the androgen biosynthesis and metabolism pathways are associated with androgen concentrations or with the risk of prostate cancer or high-grade disease from finasteride treatment. A nested case-control study from the Prostate Cancer Prevention Trial using data from men who had biopsy-proven prostate cancer (cases) and a group of biopsy-negative, frequency-matched controls was conducted to investigate the association of 51 single nucleotide polymorphisms (SNPs) in 12 genes of the androgen pathway with overall (total), low-grade, and high-grade prostate cancer incidence and serum hormone concentrations. There were significant associations of genetic polymorphisms in steroid 5α-reductase 1 (SRD5A1) (reference SNPs: rs3736316, rs3822430, rs1560149, rs248797, and rs472402) and SRD5A2 (rs2300700) with the risk of high-grade prostate cancer in the placebo arm of the Prostate Cancer Prevention Trial; 2 SNPs were significantly associated with an increased risk (SRD5A1 rs472402 [odds ratio, 1.70; 95% confidence interval, 1.05-2.75; Ptrend = .03] and SRD5A2 rs2300700 [odds ratio, 1.94; 95% confidence interval, 1.19-3.18; Ptrend = .01]). Eleven SNPs in SRD5A1, SRD5A2, cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1), and CYP3A4 were associated with modifying the mean concentrations of serum androgen and sex hormone-binding globulin; and 2 SNPs (SRD5A1 rs824811 and CYP1B1 rs10012; Ptrend < .05) consistently and significantly altered all androgen concentrations. Several SNPs (SRD5A1 rs3822430, SRD5A2 rs2300700, CYP3A43 rs800672, and CYP19 rs700519; Ptrend < .05) were significantly associated with both circulating hormone levels and prostate cancer risk. Germline genetic variations of androgen-related pathway genes are associated with serum androgen concentrations and the risk of prostate cancer. Further studies to examine the functional

  3. Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors.

    PubMed

    Sommer, Martha E; Hofmann, Klaus Peter; Heck, Martin

    2011-03-04

    In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.

  4. Characterization of GTP binding and hydrolysis in plasma membranes of zucchini

    NASA Technical Reports Server (NTRS)

    Perdue, D. O.; Lomax, T. L.

    1992-01-01

    We have investigated the possibility that G-protein-like entities may be present in the plasma membrane (PM) of zucchini (Cucurbita pepo L.) hypocotyls by examining a number of criteria common to animal and yeast G-proteins. The GTP binding and hydrolysis characteristics of purified zucchini PM are similar to the characteristics of a number of known G-proteins. Our results demonstrate GTP binding to a single PM site having a Kd value between 16-31 nM. This binding has a high specificity for guanine nucleotides, and is stimulated by Mg2+, detergents, and fluoride or aluminium ions. The GTPase activity (Km = 0.49 micromole) of zucchini PM shows a sensitivity to NaF similar to that seen for other G-proteins. Localization of GTP mu 35S binding to nitrocellulose blots of proteins separated by SDS-PAGE indicates a 30-kDa protein as the predominant GTP-binding species in zucchini PM. Taken together, these data indicate that plant PM contains proteins which are biochemically similar to previously characterized G-proteins.

  5. Characterization of GTP binding and hydrolysis in plasma membranes of zucchini.

    PubMed

    Perdue, D O; Lomax, T L

    1992-01-01

    We have investigated the possibility that G-protein-like entities may be present in the plasma membrane (PM) of zucchini (Cucurbita pepo L.) hypocotyls by examining a number of criteria common to animal and yeast G-proteins. The GTP binding and hydrolysis characteristics of purified zucchini PM are similar to the characteristics of a number of known G-proteins. Our results demonstrate GTP binding to a single PM site having a Kd value between 16-31 nM. This binding has a high specificity for guanine nucleotides, and is stimulated by Mg2+, detergents, and fluoride or aluminium ions. The GTPase activity (Km = 0.49 micromole) of zucchini PM shows a sensitivity to NaF similar to that seen for other G-proteins. Localization of GTP mu 35S binding to nitrocellulose blots of proteins separated by SDS-PAGE indicates a 30-kDa protein as the predominant GTP-binding species in zucchini PM. Taken together, these data indicate that plant PM contains proteins which are biochemically similar to previously characterized G-proteins.

  6. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films.

    PubMed Central

    Salamon, Z; Wang, Y; Soulages, J L; Brown, M F; Tollin, G

    1996-01-01

    Surface plasmon resonance (SPR) spectroscopy can provide useful information regarding average structural properties of membrane films supported on planar solid substrates. Here we have used SPR spectroscopy for the first time to monitor the binding and activation of G-protein (transducin or Gt) by bovine rhodopsin incorporated into an egg phosphatidylcholine bilayer deposited on a silver film. Rhodopsin incorporation into the membrane, performed by dilution of a detergent solution of the protein, proceeds in a saturable manner. Before photolysis, the SPR data show that Gt binds tightly (Keq approximately equal to 60 nM) and with positive cooperativity to rhodopsin in the lipid layer to form a closely packed film. A simple multilayer model yields a calculated average thickness of about 57 A, in good agreement with the structure of Gt. The data also demonstrate that Gt binding saturates at a Gt/rhodopsin ratio of approximately 0.6. Moreover, upon visible light irradiation, characteristic changes occur in the SPR spectrum, which can be modeled by a 6 A increase in the average thickness of the lipid/protein film caused by formation of metarhodopsin II (MII). Upon subsequent addition of GTP, further SPR spectral changes are induced. These are interpreted as resulting from dissociation of the alpha-subunit of Gt, formation of new MII-Gt complexes, and possible conformational changes of Gt as a consequence of complex formation. The above results clearly demonstrate the ability of SPR spectroscopy to monitor interactions among the proteins associated with signal transduction in membrane-bound systems. Images FIGURE 1 PMID:8804611

  7. Inactivation by Phenylglyoxal of the Specific Binding of 1-Naphthyl Acetic Acid with Membrane-Bound Auxin Binding Sites from Maize Coleoptiles

    PubMed Central

    Navé, Jean-François; Benveniste, Pierre

    1984-01-01

    The specific binding of 1-[3H]naphthyl acetic acid (NAA) to membrane-bound binding sites from maize (Zea mays cv INRA 258) coleoptiles is inactivated by phenylglyoxal. The inactivation obeys pseudo first-order kinetics. The rate of inactivation is proportional to phenylglyoxal concentration. Under conditions at which significant binding occurs, NAA, R and S-1-naphthyl 2-propionic acids protect the auxin binding site against inactivation by phenylglyoxal. Scatchard analysis shows that the inhibition of binding corresponds to a decrease in the concentration of sites but not in the affinity. The results of the present chemical modification study indicate that at least one arginyl residue is involved in the positively charged recognition site of the carboxylate anion of NAA. PMID:16663499

  8. Structure-function relationship in the binding of snake neurotoxins to the torpedo membrane receptor.

    PubMed

    Chicheportiche, R; Vincent, J P; Kopeyan, C; Schweitz, H; Lazdunski, M

    1975-05-20

    The Cys30-Cus34 bridge present in all long neutotoxins (71-74 amino acids, 5 disulfide bridges), but not in short toxins (60-63 amino acids, 4 disulfide bridges), is exposed at the surface since it can be reduced rapidly and selectively by sodium borohydride. Reduction and alkylation of the Cys30-Cys34 bridge of Naja haje neurotoxin III hardly alter the conformational properties of this model long toxin. Although alkylation by iodoacetic acid of th -SH groups liberated by reduction abolishes the toxicity, alkylation by iodoacetamide or ethylenimine does not affect the curarizing efficacy of the toxin. The Cys30-Cys34 bridge is not very important for the toxic activity of long neurotoxins. Reduction of the Cys30-Cys34 bridge followed by alkylation with radioactive iodoacetamide gave a labeled and active toxin which is a convenient derivative for binding experiments to the toxin receptor in membranes of the Torpedo electric organ. The binding capacity of these membrane is 1200 pmol of toxin/mg of membrane protein. The dissociation constant of the modified toxin-receptor complex at pH 7.4, 20 degrees is 10 minus 8m. Reduction with carbroxamidomethylation of the Cys30-Cys34 bridge decreases the affinity of the native Naja haje toxin only by a factor of 15. Carboxymethylation after reduction prevents binding to the membrane receptor. The binding properties of the derivative obtained by reduction and aminoethylation of Cys30-Cys34 are very similar to those of native neurotoxin III; the affinity is decreased only by a factor of 5. Binding properties to Toredo membrane of long neurotoxins (Naja haje neurotoxin III) and short neurotoxins (Naje haje toxin I and Naja mossambica toxin I) have been compared. Dissociation constants of receptor-long neurotoxin and receptor-short neurotoxin complexes are very similar (5.7 minus 8.2 times 10(-10) M at pH 7.4, 20degrees. However, the kinetics of complex formation and complex dissociation are quite different. Short neurotoxins

  9. Quantification of Ligand Binding to G-Protein Coupled Receptors on Cell Membranes by Ellipsometry

    PubMed Central

    Kriechbaumer, Verena; Nabok, Alexei; Widdowson, Robert; Smith, David P.; Abell, Ben M.

    2012-01-01

    G-protein-coupled receptors (GPCRs) are prime drug targets and targeted by approximately 60% of current therapeutic drugs such as β-blockers, antipsychotics and analgesics. However, no biophysical methods are available to quantify their interactions with ligand binding in a native environment. Here, we use ellipsometry to quantify specific interactions of receptors within native cell membranes. As a model system, the GPCR-ligand CXCL12α and its receptor CXCR4 are used. Human-derived Ishikawa cells were deposited onto gold coated slides via Langmuir-Schaefer film deposition and interactions between the receptor CXCR4 on these cells and its ligand CXCL12α were detected via total internal reflection ellipsometry (TIRE). This interaction could be inhibited by application of the CXCR4-binding drug AMD3100. Advantages of this approach are that it allows measurement of interactions in a lipid environment without the need for labelling, protein purification or reconstitution of membrane proteins. This technique is potentially applicable to a wide variety of cell types and their membrane receptors, providing a novel method to determine ligand or drug interactions targeting GPCRs and other membrane proteins. PMID:23049983

  10. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane

    NASA Astrophysics Data System (ADS)

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S.; Gray, C. G.

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05±0.39kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  11. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane.

    PubMed

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S; Gray, C G

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05+/-0.39 kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  12. Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity

    PubMed Central

    Yamamoto, Eiji; Akimoto, Takuma; Kalli, Antreas C.; Yasuoka, Kenji; Sansom, Mark S. P.

    2017-01-01

    Pleckstrin homology (PH) domains are membrane-binding lipid recognition proteins that interact with phosphatidylinositol phosphate (PIP) molecules in eukaryotic cell membranes. Diffusion of PH domains plays a critical role in biological reactions on membrane surfaces. Although diffusivity can be estimated by long-time measurements, it lacks information on the short-time diffusive nature. We reveal two diffusive properties of a PH domain bound to the surface of a PIP-containing membrane using molecular dynamics simulations. One is fractional Brownian motion, attributed to the motion of the lipids with which the PH domain interacts. The other is temporally fluctuating diffusivity; that is, the short-time diffusivity of the bound protein changes substantially with time. Moreover, the diffusivity for short-time measurements is intrinsically different from that for long-time measurements. This fluctuating diffusivity results from dynamic changes in interactions between the PH domain and PIP molecules. Our results provide evidence that the complexity of protein-lipid interactions plays a crucial role in the diffusion of proteins on biological membrane surfaces. Changes in the diffusivity of PH domains and related membrane-bound proteins may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:28116358

  13. Concept and viability of androgen annihilation for advanced prostate cancer.

    PubMed

    Mohler, James L

    2014-09-01

    There remains no standard of care for patients with a rising prostate-specific antigen level after radical prostatectomy or radiotherapy but who have no radiographic metastases, even though this is the second largest group of patients with prostate cancer (CaP) in the United States. Androgen deprivation therapy (ADT) may cure some men with advanced CaP based on single-institution series and a randomized clinical trial of immediate versus delayed ADT for men found to have pelvic lymph node metastasis at the time of radical prostatectomy. ADT may be more effective when initiated for minimal disease burden, which can be detected using PSA after radical prostatectomy or radiotherapy, and if more complete disruption of the androgen axis using newer agents decreases the chance that androgen-sensitive cells survive to adapt to a low-androgen environment. Androgens may be "annihilated" simultaneously using a luteinizing hormone-releasing hormone antagonist or agonist to inhibit testicular production of testosterone, a P45017A1 (CYP17A1) inhibitor to diminish metabolism of testosterone via the adrenal pathway and dihydrotestosterone (DHT) via the backdoor pathway, a 5α-reductase (SRD5A) inhibitor to diminish testosterone reduction to DHT and backdoor metabolism of progesterone substrates to DHT, and a newer antiandrogen to compete better with DHT for the androgen receptor ligand-binding domain. Early initiation of androgen annihilation for induction as part of planned intermittent ADT should be safe, may reduce tumor burden below a threshold that allows eradication by the immune system, and may cure many men who have failed definitive local therapy. © 2014 American Cancer Society.

  14. The Hsp90 Inhibitor, 17-AAG, Prevents the Ligand-Independent Nuclear Localization of Androgen Receptor in Refractory Prostate Cancer Cells

    PubMed Central

    Saporita, Anthony J.; Ai, Junkui; Wang, Zhou

    2010-01-01

    BACKGROUND Androgen receptor (AR) is the key molecule in androgen-refractory prostate cancer. Despite androgen ablative conditions, AR remains active and is necessary for the growth of androgen-refractory prostate cancer cells. Nuclear localization of AR is a prerequisite for its transcriptional activation. We examined AR localization in androgen-dependent and androgen-refractory prostate cancer cells. METHODS AND RESULTS We demonstrate increased nuclear localization of a GFP-tagged AR in the absence of hormone in androgen-refractory C4-2 cells compared to parental androgen-sensitive human prostate cancer LNCaP cells. Analysis of AR mutants impaired in ligand-binding indicates that the nuclear localization of AR in C4-2 cells is truly androgen-independent. The hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), inhibits basal PSA expression and disrupts the ligand-independent nuclear localization of AR at doses much lower than required to inhibit androgen-induced nuclear import. CONCLUSIONS Hsp90 is a key regulator of ligand-independent nuclear localization and activation of AR in androgen-refractory prostate cancer cells. PMID:17221841

  15. Androgen Modulation of Foxp1 and Foxp2 in the Developing Rat Brain: Impact on Sex Specific Vocalization

    PubMed Central

    Perez-Pouchoulen, Miguel; Roby, Clinton R.; Ryan, Timothy E.; McCarthy, Margaret M.

    2014-01-01

    Sex differences in vocal communication are prevalent in both the animals and humans. The mechanism(s) mediating gender differences in human language are unknown, although, sex hormones, principally androgens, play a central role in the development of vocalizations in a wide variety of animal species. The discovery of FOXP2 has added an additional avenue for exploring the origins of language and animal communication. The FOXP2 gene is a member of the forkhead box P (FOXP) family of transcription factors. Prior to the prenatal androgen surge in male fetuses, we observed no sex difference for Foxp2 protein levels in cultured cells. In contrast, 24 hours after the onset of the androgen surge, we found a sex difference for Foxp2 protein levels in cultured cortical cells with males having higher levels than females. Furthermore, we observed the potent nonaromatizable androgen dihydrotestosterone altered not only Foxp2 mRNA and protein levels but also Foxp1. Androgen effects on both Foxp2 and Foxp1 were found to occur in the striatum, cerebellar vermis, and cortex. Immunofluorescence microscopy and coimmunoprecipitation demonstrate Foxp2 and the androgen receptor protein interact. Databases for transcription factor binding sites predict a consensus binding motif for androgen receptor on the Foxp2 promoter regions. We also observed a sex difference in rat pup vocalization with males vocalizing more than females and treatment of females with dihydrotestosterone eliminated the sex difference. We propose that androgens might be an upstream regulator of both Foxp2 and Foxp1 expression and signaling. This has important implications for language and communication as well as neuropsychiatric developmental disorders involving impairments in communication. PMID:25247470

  16. Androgen modulation of Foxp1 and Foxp2 in the developing rat brain: impact on sex specific vocalization.

    PubMed

    Bowers, J Michael; Perez-Pouchoulen, Miguel; Roby, Clinton R; Ryan, Timothy E; McCarthy, Margaret M

    2014-12-01

    Sex differences in vocal communication are prevalent in both the animals and humans. The mechanism(s) mediating gender differences in human language are unknown, although, sex hormones, principally androgens, play a central role in the development of vocalizations in a wide variety of animal species. The discovery of FOXP2 has added an additional avenue for exploring the origins of language and animal communication. The FOXP2 gene is a member of the forkhead box P (FOXP) family of transcription factors. Prior to the prenatal androgen surge in male fetuses, we observed no sex difference for Foxp2 protein levels in cultured cells. In contrast, 24 hours after the onset of the androgen surge, we found a sex difference for Foxp2 protein levels in cultured cortical cells with males having higher levels than females. Furthermore, we observed the potent nonaromatizable androgen dihydrotestosterone altered not only Foxp2 mRNA and protein levels but also Foxp1. Androgen effects on both Foxp2 and Foxp1 were found to occur in the striatum, cerebellar vermis, and cortex. Immunofluorescence microscopy and coimmunoprecipitation demonstrate Foxp2 and the androgen receptor protein interact. Databases for transcription factor binding sites predict a consensus binding motif for androgen receptor on the Foxp2 promoter regions. We also observed a sex difference in rat pup vocalization with males vocalizing more than females and treatment of females with dihydrotestosterone eliminated the sex difference. We propose that androgens might be an upstream regulator of both Foxp2 and Foxp1 expression and signaling. This has important implications for language and communication as well as neuropsychiatric developmental disorders involving impairments in communication.

  17. Chemical Suppression of the Reactivated Androgen Signaling Pathway in Androgen-Independent Prostate Cancer

    DTIC Science & Technology

    2014-01-08

    Prostate Cancer, Castration Resistant Disease, Hedgehog Signaling, Smoothened, Gli, Cyclopamine, Androgen Signaling, Androgen Biosynthesis, Androgen...role of Hedgehog /Gli Signaling in generating the androgen-independent growth phenotype of castration resistant prostate cancer and will test the ability...of drugs that target Hedgehog /Gli as a means to suppress the androgen independent growth behavior associated with castration resistant prostate

  18. Binding of bisphenol A, bisphenol AF, and bisphenol S on the androgen receptor: Coregulator recruitment and stimulation of potential interaction sites.

    PubMed

    Perera, Lalith; Li, Yin; Coons, Laurel A; Houtman, Rene; van Beuningen, Rinie; Goodwin, Bonnie; Auerbach, Scott S; Teng, Christina T

    2017-10-01

    Bisphenol A (BPA), bisphenol AF (BPAF), and bisphenol S (BPS) are well known endocrine disruptors. Previous in vitro studies showed that these compounds antagonize androgen receptor (AR) transcriptional activity; however, the mechanisms of action are unclear. In the present study, we investigated interactions of coregulator peptides with BPA, BPAF, or BPS at the AR complexes using Micro Array for Real-time Coregulator Nuclear Receptor Interaction (MARCoNI) assays and assessed the binding of these compounds on AR by molecular dynamics (MD) simulations. The set of coregulator peptides that are recruited by BPA-bound AR, either positively/or negatively, are different from those recruited by the agonist R1881-bound AR. Therefore, the data indicates that BPA shows no similarities to R1881 and suggests that it may recruit other coregulators to the AR complex. BPAF-bound AR recruits about 70-80% of the same coregulator peptides as BPA-bound AR. Meanwhile, BPS-bound AR interacts with only few peptides compared to BPA or BPAF-bound AR. MD results show that multiple binding sites with varying binding affinities are available on AR for BPA, BPAF, and BPS, indicating the availability of modified binding surfaces on AR for coregulator interactions. These findings help explain some of the distinct AR-related toxicities observed with bisphenol chemicals and raise concern for the use of substitutes for BPA in commercial products. Published by Elsevier Ltd.

  19. Evidence that cytochrome b{sub 5} acts as a redox donor in CYP17A1 mediated androgen synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duggal, Ruchia; Liu, Yilin; Gregory, Michael C.

    2016-08-19

    Cytochrome P450 17A1 (CYP17A1) is an important drug target for castration resistant prostate cancer. It is a bi-functional enzyme, catalyzing production of glucocorticoid precursors by hydroxylation of pregnene-nucleus, and androgen biosynthesis by a second C−C lyase step, at the expense of glucocorticoid production. Cytochrome b{sub 5} (cyt b{sub 5}) is known to be a key regulator of the androgen synthesis reaction in vivo, by a mechanism that is not well understood. Two hypotheses have been proposed for the mechanism by which cyt b{sub 5} increases androgen biosynthesis. Cyt b{sub 5} could act as an allosteric effector, binding to CYP17A1 and eithermore » changing its selective substrate affinity or altering the conformation of the P450 to increase the catalytic rate or decrease unproductive uncoupling channels. Alternatively, cyt b{sub 5} could act as a redox donor for supply of the second electron in the P450 cycle, reducing the oxyferrous complex to form the reactive peroxo-intermediate. To understand the mechanism of lyase enhancement by cyt b{sub 5}, we generated a redox-inactive form of cyt b{sub 5}, in which the heme is replaced with a Manganese-protoporphyrin IX (Mn-b{sub 5}), and investigated enhancement of androgen producing lyase reaction by CYP17A1. Given the critical significance of a stable membrane anchor for all of the proteins involved and the need for controlled stoichiometric ratios, we employed the Nanodisc system for this study. The redox inactive form was observed to have no effect on the lyase reaction, while reactions with the normal heme-iron containing cyt b{sub 5} were enhanced ∼5 fold as compared to reactions in the absence of cyt b{sub 5}. We also performed resonance Raman measurements on ferric CYP17A1 bound to Mn-b{sub 5}. Upon addition of Mn-b{sub 5} to Nanodisc reconstituted CYP17A1, we observed clear evidence for the formation of a b{sub 5}-CYP17A1 complex, as noted by changes in the porphyrin modes and alteration in the

  20. Plasma membrane proteome analysis identifies a role of barley membrane steroid binding protein in root architecture response to salinity.

    PubMed

    Witzel, Katja; Matros, Andrea; Møller, Anders L B; Ramireddy, Eswarayya; Finnie, Christine; Peukert, Manuela; Rutten, Twan; Herzog, Andreas; Kunze, Gotthard; Melzer, Michael; Kaspar-Schoenefeld, Stephanie; Schmülling, Thomas; Svensson, Birte; Mock, Hans-Peter

    2018-06-01

    Although the physiological consequences of plant growth under saline conditions have been well described, understanding the core mechanisms conferring plant salt adaptation has only started. We target the root plasma membrane proteomes of two barley varieties, cvs. Steptoe and Morex, with contrasting salinity tolerance. In total, 588 plasma membrane proteins were identified by mass spectrometry, of which 182 were either cultivar or salinity stress responsive. Three candidate proteins with increased abundance in the tolerant cv. Morex were involved either in sterol binding (a GTPase-activating protein for the adenosine diphosphate ribosylation factor [ZIGA2], and a membrane steroid binding protein [MSBP]) or in phospholipid synthesis (phosphoethanolamine methyltransferase [PEAMT]). Overexpression of barley MSBP conferred salinity tolerance to yeast cells, whereas the knock-out of the heterologous AtMSBP1 increased salt sensitivity in Arabidopsis. Atmsbp1 plants showed a reduced number of lateral roots under salinity, and root-tip-specific expression of barley MSBP in Atmsbp1 complemented this phenotype. In barley, an increased abundance of MSBP correlates with reduced root length and lateral root formation as well as increased levels of auxin under salinity being stronger in the tolerant cv. Morex. Hence, we concluded the involvement of MSBP in phytohormone-directed adaptation of root architecture in response to salinity. © 2018 John Wiley & Sons Ltd.

  1. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.

    PubMed

    Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko

    2015-05-26

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.

  2. Androgen receptors in the pelvic diaphragm muscles of dogs with and without perineal hernia.

    PubMed

    Mann, F A; Nonneman, D J; Pope, E R; Boothe, H W; Welshons, W V; Ganjam, V K

    1995-01-01

    Levator ani and coccygeus muscle estrogen and androgen receptors were measured in 6, healthy, > or = 5-year-old, noncastrated, male Beagles (controls) and in 24 dogs with perineal hernia. Estrogen and androgen receptor analyses were performed on levator ani and coccygeus muscle specimens obtained from control dogs at the time of castration; contralateral levator ani and coccygeus muscle specimens were assayed 2 months after castration. During herniorrhaphy of dogs with perineal hernia, levator ani (non-castrated, n = 12; castrated, n = 7) and/or coccygeus (noncastrated, n = 5; castrated, n = 4) muscle biopsy specimens were obtained for estrogen and androgen receptor analyses. For estrogen and androgen receptor assays, each muscle biopsy specimen was homogenized in Tris-EDTA-glycerol buffer, and centrifuged at 30,000 x g; extracts were used for binding with ligands: [3H]methyltrienolone (3HR1881) for androgen receptors, and [3H]estradiol-17 beta for estrogen receptors. Extracts were incubated overnight at 0 to 4 C. Nonspecific binding was estimated, using 100-fold concentration of cold ligands. Bound and free hormones were separated, using hydroxylapatite batch assay. Receptor numbers for each tissue were calculated as femtomoles (fmol) per milligram of protein. Quantified data were compared between precastration and postcastration controls, using a paired t-test. One-way ANOVA and Bonferroni post-hoc test were used to compare values for precastration controls, postcastration controls, castrated dogs with perineal hernia, and noncastrated dogs with perineal hernia. Significance was set at P < 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Transcriptional up-regulation of the human androgen receptor by androgen in bone cells.

    PubMed

    Wiren, K M; Zhang, X; Chang, C; Keenan, E; Orwoll, E S

    1997-06-01

    Androgen regulation of androgen receptor (AR) expression has been observed in a variety of tissues, generally as inhibition, and is thought to attenuate cellular responses to androgen. AR is expressed in osteoblasts, the bone-forming cell, suggesting direct actions of androgens on bone. Here we characterized the effect of androgen exposure on AR gene expression in human osteoblastic SaOS-2 and U-2 OS cells. Treatment of osteoblastic cells with the nonaromatizable androgen 5alpha-dihydrotestosterone increased AR steady state messenger RNA levels in a time- and dose-dependent fashion. Reporter assays with 2.3 kilobases of the proximal 5'-flanking region of the human AR promoter linked to the chloramphenicol acetyltransferase gene in transfected cultures showed that up-regulation of AR promoter activity by androgen was time and dose dependent. Treatment with other steroid hormones, including progesterone, 17beta-estradiol, and dexamethasone, was without effect. The antiandrogen hydroxyflutamide completely antagonized androgen up-regulation. Thus, in contrast to many other androgen target tissues, androgen exposure increases steady state AR messenger RNA levels in osteoblasts. This regulation occurs at least partially at the level of transcription, is mediated by the 5'-promoter region of the AR gene, and is dependent on functional AR. These results suggest that physiological concentrations of androgens have significant effects on AR expression in skeletal tissue.

  4. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells.

    PubMed

    Ghotbaddini, Maryam; Powell, Joann B

    2015-07-06

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  5. In vivo modulation of androgen receptor by androgens.

    PubMed

    Kumar, V L; Majumder, P K; Kumar, V

    2002-09-01

    To study the effect of androgen and antiandrogen on the level of androgen receptor (AR) mRNA. The total RNA was extracted from the prostate and analyzed by slot blot analysis. The blots were hybridized with AR cDNA probe and 1A probe (internal control) and autoradiography was performed. The intensity of signal was measured with a densitometer and the ratio of AR RNA and 1A RNA was calculated. Androgenic deprivation produced by castration decreased the weight of the prostate and increased the levels of AR mRNA. Treatment of the castrated rats with testostrone increased the weight of prostate and decreased the levels of AR mRNA. Treatment of normal rats with flutamide decreased the weight of the gland and increased the levels of AR mRNA. Androgens produce proliferative effect on the prostate and negatively regulate the AR transcription.

  6. Public health impact of androgens.

    PubMed

    Kanayama, Gen; Kaufman, Marc J; Pope, Harrison G

    2018-06-01

    To summarize recent findings regarding the public health impact of androgen abuse. Abuse of androgens (also called 'anabolic-androgenic steroids') has grown into a major worldwide substance abuse problem involving tens of millions of individuals, of whom about 98% are men. Most androgen abusers are still under age 50 today, and thus, the long-term effects of these drugs are only beginning to be understood. Recent studies confirm that long-term supraphysiologic androgen exposure produces cardiovascular toxicity, characterized especially by cardiomyopathy and atherosclerotic disease. Withdrawal from androgens after long-term use may produce prolonged and sometimes irreversible hypogonadism in men. Supraphysiologic androgen levels may sometimes cause irritability, aggressiveness, and violence, whereas androgen withdrawal may cause depression. However, these psychiatric effects are idiosyncratic, affecting only a minority of users. Emerging evidence now also suggests that long-term androgen exposure may cause neurotoxicity, raising the possibility that aging androgen abusers may be at increased risk for dementia. Several recent studies have also described androgen-induced hepatotoxicity, nephrotoxicity, and adverse musculoskeletal effects. Recent studies have demonstrated marked adverse effects of long-term androgen abuse. As increasing numbers of androgen abusers reach middle age, these effects will likely represent an emerging public health problem.

  7. Selective androgen receptor modulators in preclinical and clinical development.

    PubMed

    Narayanan, Ramesh; Mohler, Michael L; Bohl, Casey E; Miller, Duane D; Dalton, James T

    2008-01-01

    Androgen receptor (AR) plays a critical role in the function of several organs including primary and accessory sexual organs, skeletal muscle, and bone, making it a desirable therapeutic target. Selective androgen receptor modulators (SARMs) bind to the AR and demonstrate osteo- and myo-anabolic activity; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents produce less of a growth effect on prostate and other secondary sexual organs. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, or end-stage renal disease, osteoporosis, frailty, and hypogonadism. This review summarizes the current standing of research and development of SARMs, crystallography of AR with SARMs, plausible mechanisms for their action and the potential therapeutic indications for this emerging class of drugs.

  8. Evidence for an allosteric mechanism of substrate release from membrane-transporter accessory binding proteins.

    PubMed

    Marinelli, Fabrizio; Kuhlmann, Sonja I; Grell, Ernst; Kunte, Hans-Jörg; Ziegler, Christine; Faraldo-Gómez, José D

    2011-12-06

    Numerous membrane importers rely on accessory water-soluble proteins to capture their substrates. These substrate-binding proteins (SBP) have a strong affinity for their ligands; yet, substrate release onto the low-affinity membrane transporter must occur for uptake to proceed. It is generally accepted that release is facilitated by the association of SBP and transporter, upon which the SBP adopts a conformation similar to the unliganded state, whose affinity is sufficiently reduced. Despite the appeal of this mechanism, however, direct supporting evidence is lacking. Here, we use experimental and theoretical methods to demonstrate that an allosteric mechanism of enhanced substrate release is indeed plausible. First, we report the atomic-resolution structure of apo TeaA, the SBP of the Na(+)-coupled ectoine TRAP transporter TeaBC from Halomonas elongata DSM2581(T), and compare it with the substrate-bound structure previously reported. Conformational free-energy landscape calculations based upon molecular dynamics simulations are then used to dissect the mechanism that couples ectoine binding to structural change in TeaA. These insights allow us to design a triple mutation that biases TeaA toward apo-like conformations without directly perturbing the binding cleft, thus mimicking the influence of the membrane transporter. Calorimetric measurements demonstrate that the ectoine affinity of the conformationally biased triple mutant is 100-fold weaker than that of the wild type. By contrast, a control mutant predicted to be conformationally unbiased displays wild-type affinity. This work thus demonstrates that substrate release from SBPs onto their membrane transporters can be facilitated by the latter through a mechanism of allosteric modulation of the former.

  9. Hybrid In Silico/In Vitro Approaches for the Identification of Functional Cholesterol-Binding Domains in Membrane Proteins.

    PubMed

    Di Scala, Coralie; Fantini, Jacques

    2017-01-01

    In eukaryotic cells, cholesterol is an important regulator of a broad range of membrane proteins, including receptors, transporters, and ion channels. Understanding how cholesterol interacts with membrane proteins is a difficult task because structural data of these proteins complexed with cholesterol are scarce. Here, we describe a dual approach based on in silico studies of protein-cholesterol interactions, combined with physico-chemical measurements of protein insertion into cholesterol-containing monolayers. Our algorithm is validated through careful analysis of the effect of key mutations within and outside the predicted cholesterol-binding site. Our method is illustrated by a complete analysis of cholesterol-binding to Alzheimer's β-amyloid peptide, a protein that penetrates the plasma membrane of brain cells through a cholesterol-dependent process.

  10. Impaired helix 12 dynamics due to proline 892 substitutions in the androgen receptor are associated with complete androgen insensitivity.

    PubMed

    Elhaji, Youssef A; Stoica, Ileana; Dennis, Sheldon; Purisima, Enrico O; Lumbroso, Rose; Beitel, Lenore K; Trifiro, Mark A

    2006-03-15

    Structural studies of the ligand-binding domain (LBD) of several steroid receptors have revealed that the dynamic properties of the C-terminal helix 12 (H12) are the major determinant of the activation mode of these receptors. H12 exhibits high mobility and different conformations in the absence of ligand. Upon ligand binding, H12 is stabilized in a precise position to seal the ligand-binding pocket and finalize the assembly of the activation function (AF-2) domain. In this study, we investigated the role of the conserved proline 892 of the androgen receptor (AR) in directing the dynamic location and orientation of the AR-H12. We used a combined approach including kinetic and biochemical assays with molecular dynamic simulations to analyze two substitutions (P892A and P892L) identified in individuals with complete androgen insensitivity syndrome. Our analyses revealed distinct mechanisms by which these substitutions impair H12 function resulting in severely defective receptors. The AR-P892A receptor exhibited reduced ligand binding and transactivational potential because of an increased flexibility in H12. The AR-P892L substitution renders the receptor inactive due to a distorted, unstructured and misplaced H12. To confirm the mutants' inability to stabilize H12 in an active position, we have developed a novel in vivo assay to evaluate the accessibility of the H12-docking site on the AR-LBD surface. An extrinsic AR-H12 peptide was able to interact with wild-type and mutant LBDs in the absence of ligand. Ligand-induced proper positioning of the intrinsic H12 of wild-type AR prevented these interactions, whereas the misplacement of the mutants' H12 did not. Proline at this position may be critical for H12 dynamics not only in the AR, but also in other nuclear receptors where this proline is conserved.

  11. cAMP regulates DEP domain-mediated binding of the guanine nucleotide exchange factor Epac1 to phosphatidic acid at the plasma membrane.

    PubMed

    Consonni, Sarah V; Gloerich, Martijn; Spanjaard, Emma; Bos, Johannes L

    2012-03-06

    Epac1 is a cAMP-regulated guanine nucleotide exchange factor for the small G protein Rap. Upon cAMP binding, Epac1 undergoes a conformational change that results in its release from autoinhibition. In addition, cAMP induces the translocation of Epac1 from the cytosol to the plasma membrane. This relocalization of Epac1 is required for efficient activation of plasma membrane-located Rap and for cAMP-induced cell adhesion. This translocation requires the Dishevelled, Egl-10, Pleckstrin (DEP) domain, but the molecular entity that serves as the plasma membrane anchor and the possible mechanism of regulated binding remains elusive. Here we show that Epac1 binds directly to phosphatidic acid. Similar to the cAMP-induced Epac1 translocation, this binding is regulated by cAMP and requires the DEP domain. Furthermore, depletion of phosphatidic acid by inhibition of phospholipase D1 prevents cAMP-induced translocation of Epac1 as well as the subsequent activation of Rap at the plasma membrane. Finally, mutation of a single basic residue within a polybasic stretch of the DEP domain, which abolishes translocation, also prevents binding to phosphatidic acid. From these results we conclude that cAMP induces a conformational change in Epac1 that enables DEP domain-mediated binding to phosphatidic acid, resulting in the tethering of Epac1 at the plasma membrane and subsequent activation of Rap.

  12. The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.

    PubMed

    Catalá, A

    1984-10-01

    Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.

  13. Androgen-Induced Cell Migration: Role of Androgen Receptor/Filamin A Association

    PubMed Central

    Castoria, Gabriella; D'Amato, Loredana; Ciociola, Alessandra; Giovannelli, Pia; Giraldi, Tiziana; Sepe, Leandra; Paolella, Giovanni; Barone, Maria Vittoria; Migliaccio, Antimo; Auricchio, Ferdinando

    2011-01-01

    Background Androgen receptor (AR) controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. Methodology/Principal Findings Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA) at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK), paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. Conclusions/Significance The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development and prostate cancer

  14. Lipid A binding sites in membranes of macrophage tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, R.Y.; Golenbock, D.T.; Raetz, C.R.

    1988-10-15

    Lipopolysaccharide affects a variety of eukaryotic cells and mammalian organisms. These actions are involved in the pathogenesis of Gram-negative septicemia. Many of the actions of lipopolysaccharide are believed to be caused by its active moiety, lipid A. Our laboratory has previously identified a bioactive lipid A precursor, termed lipid IVA, which can be labeled with 32P of high specific activity and purified. In this work we have used the labeled probe, 4'-32P-lipid IVA, to develop a novel assay for the specific binding of lipid IVA to whole cells. We have also demonstrated its use in a ligand blotting assay ofmore » immobilized cellular proteins. Using the whole cell assay, we show that 4'-32P-lipid IVA specifically binds to RAW 264.7 macrophage-like cultured cells. The binding is saturable, is inhibited with excess unlabeled lipid IVA, and is proteinase K-sensitive. It displays cellular and pharmacological specificity. Using the ligand blotting assay, we show that several RAW 264.7 cell proteins can bind 4'-32P-lipid IVA. The two principal binding proteins have Mr values of 31 and 95 kDa, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fractionation studies indicate that the 31-kDa protein is enriched in the nuclear fraction and may be a histone, whereas the 95-kDa protein is enriched in the membrane fraction. The binding assays that we have developed should lead to a clearer understanding of lipid A/animal cell interactions.« less

  15. Clinical outcomes of anti-androgen withdrawal and subsequent alternative anti-androgen therapy for advanced prostate cancer following failure of initial maximum androgen blockade

    PubMed Central

    MOMOZONO, HIROYUKI; MIYAKE, HIDEAKI; TEI, HIROMOTO; HARADA, KEN-ICHI; FUJISAWA, MASATO

    2016-01-01

    The present study aimed to investigate the significance of anti-androgen withdrawal and/or subsequent alternative anti-androgen therapy in patients with advanced prostate cancer (PC) who relapsed after initial maximum androgen blockade (MAB). The present study evaluated the clinical outcomes of 272 consecutive advanced PC patients undergoing anti-androgen withdrawal and/or subsequent alternative anti-androgen therapy with flutamide following the failure of initial MAB using bicalutamide. With the exception of 41 patients (15.1%) who did not undergo anti-androgen withdrawal due to the characteristics of PC suggesting aggressive diseases, prostate-specific antigen (PSA) declined from the baseline value in 83 patients (35.9%), including 18 (7.8%) with PSA decline >50%, but not in the remaining 148 (64.1%). No significant difference in the overall survival (OS) or cancer-specific survival (CSS) among the three groups was observed based on the response to anti-androgen withdrawal. Following the introduction of alternative anti-androgen therapy with flutamide, PSA decline was observed in 185 patients (68.0%), including 103 (37.9%) who achieved a PSA reduction of >50%; however, the PSA level continued to elevate in the remaining 87 (32.0%). Furthermore, of the numerous factors examined, only the duration of the initial MAB therapy was shown to be significantly correlated with the PSA decline following alternative anti-androgen therapy. Multivariate analysis of several factors identified revealed that only PSA decline following alternative anti-androgen therapy was an independent predictor of CSS and OS. If initial MAB is effective, the introduction of alternative anti-androgen therapy may be considered; however, anti-androgen withdrawal should be omitted, irrespective of the characteristics of advanced PC. PMID:27123292

  16. Rearrangements under confinement lead to increased binding energy of Synaptotagmin-1 with anionic membranes in Mg2+ and Ca2.

    PubMed

    Gruget, Clémence; Coleman, Jeff; Bello, Oscar; Krishnakumar, Shyam S; Perez, Eric; Rothman, James E; Pincet, Frederic; Donaldson, Stephen H

    2018-05-01

    Synaptotagmin-1 (Syt1) is the primary calcium sensor (Ca 2+ ) that mediates neurotransmitter release at the synapse. The tandem C2 domains (C2A and C2B) of Syt1 exhibit functionally critical, Ca 2+ -dependent interactions with the plasma membrane. With the surface forces apparatus, we directly measure the binding energy of membrane-anchored Syt1 to an anionic membrane and find that Syt1 binds with ~6 k B T in EGTA, ~10 k B T in Mg 2+ and ~18 k B T in Ca 2+ . Molecular rearrangements measured during confinement are more prevalent in Ca 2+ and Mg 2+ and suggest that Syt1 initially binds through C2B, then reorients the C2 domains into the preferred binding configuration. These results provide energetic and mechanistic details of the Syt1 Ca 2+ -activation process in synaptic transmission. © 2018 Federation of European Biochemical Societies.

  17. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics

    PubMed Central

    Lee, Donald W.; Hsu, Hung-Lun; Bacon, Kaitlyn B.; Daniel, Susan

    2016-01-01

    With the development of single-particle tracking (SPT) microscopy and host membrane mimics called supported lipid bilayers (SLBs), stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data obtained by assays such

  18. Selective androgen receptor modulators in preclinical and clinical development

    PubMed Central

    Narayanan, Ramesh; Mohler, Michael L.; Bohl, Casey E.; Miller, Duane D.; Dalton, James T.

    2008-01-01

    Androgen receptor (AR) plays a critical role in the function of several organs including primary and accessory sexual organs, skeletal muscle, and bone, making it a desirable therapeutic target. Selective androgen receptor modulators (SARMs) bind to the AR and demonstrate osteo- and myo-anabolic activity; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents produce less of a growth effect on prostate and other secondary sexual organs. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, or end-stage renal disease, osteoporosis, frailty, and hypogonadism. This review summarizes the current standing of research and development of SARMs, crystallography of AR with SARMs, plausible mechanisms for their action and the potential therapeutic indications for this emerging class of drugs. PMID:19079612

  19. Effect of heterogeneity of carcinoembryonic antigen on liver cell membrane binding and its kinetics of removal from circulation.

    PubMed

    Byrn, R A; Medrek, P; Thomas, P; Jeanloz, R W; Zamcheck, N

    1985-07-01

    Carcinoembryonic antigen (CEA) is a glycoprotein metabolized primarily by the liver. Subcellular fractions of rat liver were examined for CEA binding activity. Hepatocyte plasma membrane and microsome fractions bound CEA, and this binding shared the calcium requirement, neuraminidase sensitivity, and carbohydrate specificity of the hepatocyte asialoglycoprotein receptor. CEA had previously been shown to react with this galactose-specific receptor, in vivo, only following neuraminidase treatment. Galactose receptor binding of CEA was measured in three different purified CEA preparations. The fraction of CEA capable of binding to excess levels of galactose receptor on membranes varied (46.5%, 40.2%, and 4.7% for CEA-1, -2, and -3, respectively). These CEAs were shown to be 2.3%, 7.9%, and 0.7% as effective, respectively, as asialo-alpha 1-acid glycoprotein in inhibiting the binding of radiolabeled asialo-alpha 1-acid glycoprotein to liver cell membranes. Each of the three CEA preparations showed different clearance kinetics from the circulation of mice. Coinjection of asialo-alpha 1-acid glycoprotein with the CEAs revealed differing inhibition of the clearances. These results show that differences in the carbohydrate components of purified CEA preparations affect their rate of removal from circulation and thus possibly the relationship between CEA production and observed plasma levels in patients. The possible origin of these CEA differences is discussed with their clinical implications.

  20. Androgens are bronchoactive drugs that act by relaxing airway smooth muscle and preventing bronchospasm.

    PubMed

    Montaño, Luis M; Espinoza, Julia; Flores-Soto, Edgar; Chávez, Jaime; Perusquía, Mercedes

    2014-07-01

    Changes in the androgen levels in asthmatic men may be associated with the severity of asthma. Androgens induce a nongenomic relaxation in airway smooth muscle, but the underlying mechanisms remain unclear. The aim of this study was to investigate the potential bronchorelaxing action of testosterone (TES) and its metabolites (5α- and 5β-dihydrotestosterone (DHT). A preventive effect on ovalbumin (OVA)-induced bronchospasm was observed in sensitized guinea pigs for each androgen. Androgens were studied in response to bronchoconstrictors: carbachol (CCh) and KCl in isolated trachea rings with and without epithelium from non-sensitized and sensitized animals as well as on OVA-induced contraction. Androgens concentration-dependently abolished the contraction in response to CCh, KCl, and OVA. There were significant differences in the sensitivity to the relaxation induced by each androgen. 5β-DHT was more potent for relaxing KCl-induced contraction, while TES and 5α-DHT were more potent for CCh- and OVA-induced contraction. No differences were found in preparations with and without epithelium or in the presence of a nitric oxide (NO) synthase inhibitor or an inhibitor of K(+) channels. These data indicate the absence of involvement of the epithelium-, NO- and K(+) channels-dependent pathway in androgen-induced relaxation. However, in dissociated tracheal myocytes loaded with the calcium-binding fluorescent dye Fura -2, physiological concentrations of androgens decreased the KCl-induced [Ca(2+)]i increment. 5β-DHT was the most potent at decreasing KCl-induced [Ca(2+)]i increment and preventing bronchospasm. We suggest that androgen-induced brochorelaxation was mediated via decreased Ca(2+) influx through L-type Ca(2+)channels but additional Ca(2+) entry blockade may be involved. Molecular changes in androgen structure may determine its preferential site of action. © 2014 Society for Endocrinology.

  1. Aerobic sn-glycerol-3-phosphate dehydrogenase from Escherichia coli binds to the cytoplasmic membrane through an amphipathic alpha-helix.

    PubMed Central

    Walz, Antje-Christine; Demel, Rudy A; de Kruijff, Ben; Mutzel, Rupert

    2002-01-01

    sn-Glycerol-3-phosphate dehydrogenase (GlpD) from Escherichia coli is a peripheral membrane enzyme involved in respiratory electron transfer. For it to display its enzymic activity, binding to the inner membrane is required. The way the enzyme interacts with the membrane and how this controls activity has not been elucidated. In the present study we provide evidence for direct protein-lipid interaction. Using the monolayer technique, we observed insertion of GlpD into lipid monolayers with a clear preference for anionic phospholipids. GlpD variants with point mutations in their predicted amphipathic helices showed a decreased ability to penetrate anionic phospholipid monolayers. From these data we propose that membrane binding of GlpD occurs by insertion of an amphipathic helix into the acyl-chain region of lipids mediated by negatively charged phospholipids. PMID:11955283

  2. Lipophilic oligonucleotides spontaneously insert into lipid membranes, bind complementary DNA strands, and sequester into lipid-disordered domains.

    PubMed

    Bunge, Andreas; Kurz, Anke; Windeck, Anne-Kathrin; Korte, Thomas; Flasche, Wolfgang; Liebscher, Jürgen; Herrmann, Andreas; Huster, Daniel

    2007-04-10

    For the development of surface functionalized bilayers, we have synthesized lipophilic oligonucleotides to combine the molecular recognition mechanism of nucleic acids and the self-assembly characteristics of lipids in planar membranes. A lipophilic oligonucleotide consisting of 21 thymidine units and two lipophilic nucleotides with an alpha-tocopherol moiety as a lipophilic anchor was synthesized using solid-phase methods with a phosphoramadite strategy. The interaction of the water soluble lipophilic oligonucleotide with vesicular lipid membranes and its capability to bind complementary DNA strands was studied using complementary methods such as NMR, EPR, DSC, fluorescence spectroscopy, and fluorescence microscopy. This oligonucleotide inserted stably into preformed membranes from the aqueous phase. Thereby, no significant perturbation of the lipid bilayer and its stability was observed. However, the non-lipidated end of the oligonucleotide is exposed to the aqueous environment, is relatively mobile, and is free to interact with complementary DNA strands. Binding of the complementary single-stranded DNA molecules is fast and accomplished by the formation of Watson-Crick base pairs, which was confirmed by 1H NMR chemical shift analysis and fluorescence resonance energy transfer. The molecular structure of the membrane bound DNA double helix is very similar to the free double-stranded DNA. Further, the membrane bound DNA double strands also undergo regular melting. Finally, in raft-like membrane mixtures, the lipophilic oligonucleotide was shown to preferentially sequester into liquid-disordered membrane domains.

  3. Androgen abuse in the community.

    PubMed

    Melnik, Bodo C

    2009-06-01

    To provide information of the current prevalence of illicit use of androgens by individuals of the community. Prevalence of abuse of androgens in individuals of the general population has reached alarming dimensions. Use of androgens is no longer limited to competitive sports, but has spread to leisure and fitness sports, bodybuilding, and nonathletes motivated to increase muscular mass and physical attractiveness. Alarming studies from Germany demonstrated that members of the healthcare systems provide illegal androgens to 48.1% of abusers visiting fitness centers. The new trend to combine androgens with growth hormone, insulin, and insulinotropic milk protein-fortified drinks may potentiate health risks of androgen abuse. The use of androgens has changed from being a problem restricted to sports to one of public health concern. The potential health hazards of androgen abuse are underestimated in the medical community, which unfortunately contributes to illegal distribution of androgens. Both the adverse effects of current androgen abuse especially in young men as well as the chronic toxicity from past long-term abuse of now middle-aged men has to be considered as a growing public health problem. In the future, an increasing prevalence of androgen misuse in combination with other growth-promoting hormones and insulinotropic milk protein products has to be expected, which may have further promoting effects on the prevalence of chronic western diseases.

  4. Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C 2 A domain in asynchronous neurotransmitter release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voleti, Rashmi; Tomchick, Diana R.; Südhof, Thomas C.

    Synaptotagmins (Syts) act as Ca2+ sensors in neurotransmitter release by virtue of Ca2+-binding to their two C2 domains, but their mechanisms of action remain unclear. Puzzlingly, Ca2+-binding to the C2B domain appears to dominate Syt1 function in synchronous release, whereas Ca2+-binding to the C2A domain mediates Syt7 function in asynchronous release. Here we show that crystal structures of the Syt7 C2A domain and C2AB region, and analyses of intrinsic Ca2+-binding to the Syt7 C2 domains using isothermal titration calorimetry, did not reveal major differences that could explain functional differentiation between Syt7 and Syt1. However, using liposome titrations under Ca2+ saturatingmore » conditions, we show that the Syt7 C2A domain has a very high membrane affinity and dominates phospholipid binding to Syt7 in the presence or absence of L-α-phosphatidylinositol 4,5-diphosphate (PIP2). For Syt1, the two Ca2+-saturated C2 domains have similar affinities for membranes lacking PIP2, but the C2B domain dominates binding to PIP2-containing membranes. Mutagenesis revealed that the dramatic differences in membrane affinity between the Syt1 and Syt7 C2A domains arise in part from apparently conservative residue substitutions, showing how striking biochemical and functional differences can result from the cumulative effects of subtle residue substitutions. Viewed together, our results suggest that membrane affinity may be a key determinant of the functions of Syt C2 domains in neurotransmitter release.« less

  5. Human androgen deficiency: insights gained from androgen receptor knockout mouse models

    PubMed Central

    Rana, Kesha; Davey, Rachel A; Zajac, Jeffrey D

    2014-01-01

    The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype. PMID:24480924

  6. The androgen receptor malignancy shift in prostate cancer.

    PubMed

    Copeland, Ben T; Pal, Sumanta K; Bolton, Eric C; Jones, Jeremy O

    2018-05-01

    Androgens and the androgen receptor (AR) are necessary for the development, function, and homeostatic growth regulation of the prostate gland. However, once prostate cells are transformed, the AR is necessary for the proliferation and survival of the malignant cells. This change in AR function appears to occur in nearly every prostate cancer. We have termed this the AR malignancy shift. In this review, we summarize the current knowledge of the AR malignancy shift, including the DNA-binding patterns that define the shift, the transcriptome changes associated with the shift, the putative drivers of the shift, and its clinical implications. In benign prostate epithelial cells, the AR primarily binds consensus AR binding sites. In carcinoma cells, the AR cistrome is dramatically altered, as the AR associates with FOXA1 and HOXB13 motifs, among others. This shift leads to the transcription of genes associated with a malignant phenotype. In model systems, some mutations commonly found in localized prostate cancer can alter the AR cistrome, consistent with the AR malignancy shift. Current evidence suggests that the AR malignancy shift is necessary but not sufficient for transformation of prostate epithelial cells. Reinterpretation of prostate cancer genomic classification systems in light of the AR malignancy shift may improve our ability to predict clinical outcomes and treat patients appropriately. Identifying and targeting the molecular factors that contribute to the AR malignancy shift is not trivial but by doing so, we may be able to develop new strategies for the treatment or prevention of prostate cancer. © 2018 Wiley Periodicals, Inc.

  7. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was foundmore » to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.« less

  8. 14-3-3η Amplifies Androgen Receptor Actions in Prostate Cancer

    PubMed Central

    Titus, Mark A.; Tan, Jiann-an; Gregory, Christopher W.; Ford, O. Harris; Subramanian, Romesh R.; Fu, Haian; Wilson, Elizabeth M.; Mohler, James L.; French, Frank S.

    2009-01-01

    Purpose Androgen receptor (AR) abundance and AR-regulated gene expression in castration-recurrent prostate cancer (CaP) are indicative of AR activation in the absence of testicular androgen. AR transactivation of target genes in castration-recurrent CaP occurs in part through mitogen signaling that amplifies the actions of AR and its coregulators. Herein we report on the role of 14-3-3η in AR action. Experimental Design and Results AR and 14-3-3η co-localized in COS cell nuclei with and without androgen and 14-3-3η promoted AR nuclear localization in the absence of androgen. 14-3-3η interacted with AR in cell-free binding and coimmunoprecipitation assays. In the recurrent human CaP cell line, CWR-R1, native endogenous AR transcriptional activation was stimulated by 14-3-3η at low DHT concentrations and was increased by EGF. Moreover, the DHT and EGF dependent increase in AR transactivation was inhibited by a dominant negative 14-3-3η. In the CWR22 CaP xenograft model, 14-3-3η expression was increased by androgen, suggesting a feed-forward mechanism that potentiates both 14-3-3η and AR actions. 14-3-3η mRNA and protein decreased following castration of tumor bearing mice and increased in tumors of castrate mice after treatment with testosterone. CWR22 tumors that recurred 5 months after castration contained 14-3-3η levels similar to the androgen-stimulated tumors removed before castration. In a human prostate tissue microarray of clinical specimens, 14-3-3η localized with AR in nuclei and the similar amounts expressed in castration-recurrent CaP, androgen-stimulated CaP and benign prostatic hyperplasia were consistent with AR activation in recurrent CaP. Conclusion 14-3-3η enhances androgen and mitogen induced AR transcriptional activity in castration-recurrent CaP. PMID:19996220

  9. Probing the Interaction of Brain Fatty Acid Binding Protein (B-FABP) with Model Membranes

    PubMed Central

    Dyszy, Fábio; Pinto, Andressa P. A.; Araújo, Ana P. U.; Costa-Filho, Antonio J.

    2013-01-01

    Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called “portal region”, formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that B-FABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs. PMID:23555925

  10. Screening of synthetic and natural product databases: Identification of novel androgens and antiandrogens.

    PubMed

    Bobach, Claudia; Tennstedt, Stephanie; Palberg, Kristin; Denkert, Annika; Brandt, Wolfgang; de Meijere, Armin; Seliger, Barbara; Wessjohann, Ludger A

    2015-01-27

    The androgen receptor is an important pharmaceutical target for a variety of diseases. This paper presents an in silico/in vitro screening procedure to identify new androgen receptor ligands. The two-step virtual screening procedure uses a three-dimensional pharmacophore model and a docking/scoring routine. About 39,000 filtered compounds were docked with PLANTS and scored by Chemplp. Subsequent to virtual screening, 94 compounds, including 28 steroidal and 66 nonsteroidal compounds, were tested by an androgen receptor fluorescence polarization ligand displacement assay. As a result, 30 compounds were identified that show a relative binding affinity of more than 50% in comparison to 100 nM dihydrotestosterone and were classified as androgen receptor binders. For 11 androgen receptor binders of interest IC50 and Ki values were determined. The compound with the highest affinity exhibits a Ki value of 10.8 nM. Subsequent testing of the 11 compounds in a PC-3 and LNCaP multi readout proliferation assay provides insights into the potential mode of action. Further steroid receptor ligand displacement assays and docking studies on estrogen receptors α and β, glucocorticoid receptor, and progesterone receptor gave information about the specificity of the 11 most active compounds. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Identification of a new plant extract for androgenic alopecia treatment using a non-radioactive human hair dermal papilla cell-based assay.

    PubMed

    Jain, Ruchy; Monthakantirat, Orawan; Tengamnuay, Parkpoom; De-Eknamkul, Wanchai

    2016-01-21

    Androgenic alopecia (AGA) is a major type of human scalp hair loss, which is caused by two androgens: testosterone (T) and 5α-dihydrotestosterone (5α-DHT). Both androgens bind to the androgen receptor (AR) and induce androgen-sensitive genes within the human hair dermal papilla cells (HHDPCs), but 5α-DHT exhibits much higher binding affinity and potency than T does in inducing the involved androgen-sensitive genes. Changes in the induction of androgen-sensitive genes during AGA are caused by the over-production of 5α-DHT by the 5α-reductase (5α-R) enzyme; therefore, one possible method to treat AGA is to inhibit this enzymatic reaction. RT-PCR was used to identify the presence of the 5α-R and AR within HHDPCs. A newly developed AGA-relevant HHDPC-based assay combined with non-radioactive thin layer chromatography (TLC) detection was used for screening crude plant extracts for the identification of new 5α-R inhibitors. HHDPCs expressed both 5α-R type 1 isoform of the enzyme (5α-R1) and AR in all of the passages used in this study. Among the thirty tested extracts, Avicennia marina (AM) displayed the highest inhibitory activity at the final concentration of 10 μg/ml, as the production of 5α-DHT decreased by 52% (IC50 = 9.21 ± 0.38 μg/ml). Avicennia marina (AM) was identified as a potential candidate for the treatment of AGA based on its 5α-R1-inhibitory activity.

  12. Binding of Sudan II and IV to lecithin liposomes and E. coli membranes: insights into the toxicity of hydrophobic azo dyes

    PubMed Central

    Li, Lu; Gao, Hong-Wen; Ren, Jiao-Rong; Chen, Ling; Li, Yu-Cheng; Zhao, Jian-Fu; Zhao, He-Ping; Yuan, Yuan

    2007-01-01

    Background Sudan red compounds are hydrophobic azo dyes, still used as food additives in some countries. However, they have been shown to be unsafe, causing tumors in the liver and urinary bladder in rats. They have been classified as category 3 human carcinogens by the International Agency for Research on Cancer. A number of hypotheses that could explain the mechanism of carcinogenesis have been proposed for dyes similar to the Sudan red compounds. Traditionally, investigations of the membrane toxicity of organic substances have focused on hydrocarbons, e.g. polycyclic aromatic hydrocarbons (PAHs), and DDT. In contrast to hydrocarbons, Sudan red compounds contain azo and hydroxy groups, which can form hydrogen bonds with the polar head groups of membrane phospholipids. Thus, entry may be impeded. They could have different toxicities from other lipophilic hydrocarbons. The available data show that because these compounds are lipophilic, interactions with hydrophobic parts of the cell are important for their toxicity. Lipophilic compounds accumulate in the membrane, causing expansion of the membrane surface area, inhibition of primary ion pumps and increased proton permeability. Results This work investigated the interactions of the amphiphilic compounds Sudan II and IV with lecithin liposomes and live Escherichia coli (E. coli). Sudan II and IV binding to lecithin liposomes and live E. coli corresponds to the Langmuir adsorption isotherm. In the Sudan red compounds – lecithin liposome solutions, the binding ratio of Sudan II to lecithin is 1/31 and that of Sudan IV to 1/314. The binding constant of the Sudan II-lecithin complex is 1.75 × 104 and that of the Sudan IV-lecithin complex 2.92 × 105. Besides, the influences of pH, electrolyte and temperature were investigated and analyzed quantitatively. In the Sudan red compounds – E.coli mixture, the binding ratios of Sudan II and Sudan IV to E.coli membrane phospholipid are 1/29 and 1/114. The binding constants

  13. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer.

    PubMed

    Urbanucci, Alfonso; Barfeld, Stefan J; Kytölä, Ville; Itkonen, Harri M; Coleman, Ilsa M; Vodák, Daniel; Sjöblom, Liisa; Sheng, Xia; Tolonen, Teemu; Minner, Sarah; Burdelski, Christoph; Kivinummi, Kati K; Kohvakka, Annika; Kregel, Steven; Takhar, Mandeep; Alshalalfa, Mohammed; Davicioni, Elai; Erho, Nicholas; Lloyd, Paul; Karnes, R Jeffrey; Ross, Ashley E; Schaeffer, Edward M; Vander Griend, Donald J; Knapp, Stefan; Corey, Eva; Feng, Felix Y; Nelson, Peter S; Saatcioglu, Fahri; Knudsen, Karen E; Tammela, Teuvo L J; Sauter, Guido; Schlomm, Thorsten; Nykter, Matti; Visakorpi, Tapio; Mills, Ian G

    2017-06-06

    Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF) binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4) have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC). Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC). We show that the deregulation of androgen receptor (AR) expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs) mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10) for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Androgen Receptor (AR) in Cardiovascular Diseases

    PubMed Central

    Huang, Chiung-Kuei; Lee, Soo Ok; Chang, Eugene; Pang, Haiyan; Chang, Chawnshang

    2016-01-01

    Cardiovascular diseases (CVDs) are still the highest leading cause of death worldwide. Several risk factors have been linked to CVDs, including smoking, diabetes, hyperlipidemia, and gender among others. Sex hormones, especially the androgen and its receptor, androgen receptor (AR), have been linked to many diseases with a clear gender difference. Here, we summarize androgen/AR effects on CVDs, including hypertension, stroke, atherosclerosis, abdominal aortic aneurysm (AAA), myocardial hypertrophy, and heart failure, as well as metabolic syndrome/diabetes and their impacts on CVDs. Androgen/AR signaling exacerbates hypertension and anti-androgens may suppress hypertension. Androgen/AR signaling plays dual roles in strokes, depending on different kinds of factors, but generally males have a higher incidence of strokes than females. Androgen and AR differentially modulate atherosclerosis. Androgen deficiency causes elevated lipid accumulation to enhance atherosclerosis, but targeting AR in selective cells without altering serum androgen levels would suppress atherosclerosis progression. Androgen/AR signaling is crucial in AAA development and progression, and targeting androgen/AR profoundly restricts AAA progression. Men have increased cardiac hypertrophy as compared to age-matched women that may be due to androgens. Finally, androgen/AR plays important roles in contributing to obesity and insulin/leptin resistance to increase the metabolic syndrome. PMID:26769913

  15. Androgens and osteoporosis.

    PubMed

    Ebeling, Peter R

    2010-06-01

    The review is timely given recent advances regarding mechanisms of androgen action on bone cells and in humans. Osteoporosis in men is an important public health problem. An improved understanding of the role of androgens in the pathophysiology of bone loss will lead to new treatments. Androgen receptors are present in most bone cells. Testosterone acts on bone both directly via the androgen receptor and indirectly, following aromatization, via the oestrogen receptor. During skeletal modelling, ERalpha is critical for longitudinal bone growth. For periosteal growth and bone expansion, androgen receptor activation has a positive effect, whereas ERalpha activation is inhibitory. During skeletal remodelling, both receptor pathways generate similar and additive effects on bone.Androgen deficiency is a common secondary cause of osteoporosis in men and should be treated with testosterone, particularly in symptomatic men. However, lack of efficacy data for testosterone in osteoporosis means it is less useful as a first-line treatment in men with age-related declines in testosterone and osteoporosis, when other agents such as bisphosphonates and parathyroid hormone are effective. Randomized, placebo-controlled trials of testosterone therapy in men with age-related declines in testosterone and osteoporosis are needed, and should carefully evaluate potential risks, as well as its efficacy in reducing fractures and other health benefits.

  16. Fluorescence studies on the interaction of choline-binding domain B of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes.

    PubMed

    Damai, Rajani S; Anbazhagan, V; Rao, K Babu; Swamy, Musti J

    2009-12-01

    The microenvironment and accessibility of the tryptophan residues in domain B of PDC-109 (PDC-109/B) in the native state and upon ligand binding have been investigated by fluorescence quenching, time-resolved fluorescence and red-edge excitation shift (REES) studies. The increase in the intrinsic fluorescence emission intensity of PDC-109/B upon binding to lysophosphatidylcholine (Lyso-PC) micelles and dimyristoylphosphatidylcholine (DMPC) membranes was considerably less as compared to that observed with the whole PDC-109 protein. The degree of quenching achieved by different quenchers with PDC-109/B bound to Lyso-PC and DMPC membranes was significantly higher as compared to the full PDC-109 protein, indicating that membrane binding afforded considerably lesser protection to the tryptophan residues of domain B as compared to those in the full PDC-109 protein. Finally, changes in red-edge excitation shift (REES) seen with PDC-109/B upon binding to DMPC membranes and Lyso-PC micelles were smaller that the corresponding changes in the REES values observed for the full PDC-109. These results, taken together suggest that intact PDC-109 penetrates deeper into the hydrophobic parts of the membrane as compared to domain B alone, which could be the reason for the inability of PDC-109/B to induce cholesterol efflux, despite its ability to recognize choline phospholipids at the membrane surface.

  17. Ligand and membrane-binding behavior of the phosphatidylinositol transfer proteins PITPα and PITPβ.

    PubMed

    Baptist, Matilda; Panagabko, Candace; Cockcroft, Shamshad; Atkinson, Jeffrey

    2016-12-01

    Phosphatidylinositol transfer proteins (PITPs) are believed to be lipid transfer proteins because of their ability to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments, in vitro. However, the detailed mechanism of this transfer process is not fully established. To further understand the transfer mechanism of PITPs we examined the interaction of PITPs with membranes using dual polarization interferometry (DPI), which measures protein binding affinity on a flat immobilized lipid surface. In addition, a fluorescence resonance energy transfer (FRET)-based assay was also employed to monitor how quickly PITPs transfer their ligands to lipid vesicles. DPI analysis revealed that PITPβ had a higher affinity to membranes compared with PITPα. Furthermore, the FRET-based transfer assay revealed that PITPβ has a higher ligand transfer rate compared with PITPα. However, both PITPα and PITPβ demonstrated a preference for highly curved membrane surfaces during ligand transfer. In other words, ligand transfer rate was higher when the accepting vesicles were highly curved.

  18. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer

    PubMed Central

    Siddiqui, Imtiaz A.; Asim, Mohammad; Hafeez, Bilal B.; Adhami, Vaqar M.; Tarapore, Rohinton S.; Mukhtar, Hasan

    2011-01-01

    Androgen deprivation therapy is the major treatment for advanced prostate cancer (PCa). However, it is a temporary remission, and the patients almost inevitably develop hormone refractory prostate cancer (HRPC). HRPC is almost incurable, although most HRPC cells still express androgen receptor (AR) and depend on the AR for growth, making AR a prime drug target. Here, we provide evidence that epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, is a direct antagonist of androgen action. In silico modeling and FRET-based competition assay showed that EGCG physically interacts with the ligand-binding domain of AR by replacing a high-affinity labeled ligand (IC50 0.4 μM). The functional consequence of this interaction was a decrease in AR-mediated transcriptional activation, which was due to EGCG mediated inhibition of interdomain N-C termini interaction of AR. Treatment with EGCG also repressed the transcriptional activation by a hotspot mutant AR (T877A) expressed ectopically as well as the endogenous AR mutant. As the physiological consequence of AR antagonism, EGCG repressed R1881-induced PCa cell growth. In a xenograft model, EGCG was found to inhibit AR nuclear translocation and protein expression. We also observed a significant down-regulation of androgen-regulated miRNA-21 and up-regulation of a tumor suppressor, miRNA-330, in tumors of mice treated with EGCG. Taken together, we provide evidence that EGCG functionally antagonizes androgen action at multiple levels, resulting in inhibition of PCa growth.—Siddiqui, I. A., Asim, M., Hafeez, B. B., Adhami, V. M., Tarapore, R. S., Mukhtar, H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. PMID:21177307

  19. Oriental herbs as a source of novel anti-androgen and prostate cancer chemopreventive agents.

    PubMed

    Lu, Junxuan; Kim, Sung-Hoon; Jiang, Cheng; Lee, HyoJeong; Guo, Junming

    2007-09-01

    Androgen and androgen receptor (AR) signaling are crucial for the genesis of prostate cancer (PCa), which can often develop into androgen-ligand-independent diseases that are lethal to the patients. Recent studies show that even these hormone-refractory PCa require ligand-independent AR signaling for survival. As current chemotherapy is largely ineffective for PCa and has serious toxic sideeffects, we have initiated a collaborative effort to identify and develop novel, safe and naturally occurring agents that target AR signaling from Oriental medicinal herbs for the chemoprevention and treatment of PCa. We highlight our discovery of decursin from an Oriental formula containing Korean Angelica gigas Nakai (Dang Gui) root as a novel anti-androgen/AR agent. We have identified the following mechanisms to account for the specific anti-AR actions: rapid block of AR nuclear translocation, inhibition of binding of 5alpha-dihydrotestesterone to AR and increased proteasomal degradation of AR protein. Furthermore, decursin lacks the agonist activity of the "pure" anti-androgen bicalutamide and is more potent than bicalutamide in inducing PCa apoptosis. Structure-activity analyses reveal a critical requirement of the side-chain on decursin or its structural isomer decursinol angelate for anti-AR, cell cycle arrest and proapoptotic activities. This work demonstrates the feasibility of using activity-guided fractionation in cell culture assays combined with mechanistic studies to identify novel anti-androgen/ AR agents from complex herbal mixtures.

  20. Androgen regulation of the human hair follicle: the type I hair keratin hHa7 is a direct target gene in trichocytes.

    PubMed

    Jave-Suarez, Luis F; Langbein, Lutz; Winter, Hermelita; Praetzel, Silke; Rogers, Michael A; Schweizer, Juergen

    2004-03-01

    Previous work had shown that most members of the complex human hair keratin family were expressed in terminal scalp hairs. An exception to this rule was the type I hair keratin hHa7, which was only detected in some but not all vellus hairs of the human scalp (Langbein et al, 1999). Here we show that hHa7 exhibits constitutive expression in medullary cells of all types of male and female sexual hairs. Medullated beard, axillary, and pubic hairs arise during puberty from small, unmedullated vellus hairs under the influence of circulating androgens. This suggested an androgen-controlled expression of the hHa7 gene. Further evidence for this assumption was provided by the demonstration of androgen receptor (AR) expression in the nuclei of medullary cells of beard hairs. Moreover, homology search for the semipalindromic androgen receptor-binding element (ARE) consensus sequence GG(A)/(T)ACAnnnTGTTCT in the proximal hHa7 promoter revealed three putative ARE motifs. Electrophoretic mobility shift assays demonstrated the specific binding of AR to all three hHa7 AREs. Their function as AR-responsive elements, either individually or in concert within the hHa7 promoter, could be further confirmed by transfection studies with or without an AR expression vector in PtK2 and prostate PC3-Arwt cells, respectively in the presence or absence of a synthetic androgen. Our study detected hHa7 as the first gene in hair follicle trichocytes whose expression appears to be directly regulated by androgens. As such, hHa7 represents a marker for androgen action on hair follicles and might be a suitable tool for investigations of androgen-dependent hair disorders.

  1. A preliminary MTD-PLS study for androgen receptor binding of steroid compounds

    NASA Astrophysics Data System (ADS)

    Bora, Alina; Seclaman, E.; Kurunczi, L.; Funar-Timofei, Simona

    The relative binding affinities (RBA) of a series of 30 steroids for Human Androgen Receptor (AR) were used to initiate a MTD-PLS study. The 3D structures of all the compounds were obtained through geometry optimization in the framework of AM1 semiempirical quantum chemical method. The MTD hypermolecule (HM) was constructed, superposing these structures on the AR-bonded dihydrotestosterone (DHT) skeleton obtained from PDB (AR complex, ID 1I37). The parameters characterizing the HM vertices were collected using: AM1 charges, XlogP fragmental values, calculated fragmental polarizabilities (from refractivities), volumes, and H-bond parameters (Raevsky's thermodynamic originated scale). The resulted QSAR data matrix was submitted to PCA (Principal Component Analysis) and PLS (Projections in Latent Structures) procedure (SIMCA P 9.0); five compounds were selected as test set, and the remaining 25 molecules were used as training set. In the PLS procedure supplementary chemical information was introduced, i.e. the steric effect was always considered detrimental, and the hydrophobic and van der Waals interactions were imposed to be beneficial. The initial PLS model using the entire training set has the following characteristics: R2Y = 0.584, Q2 = 0.344. Based on distances to the model criterions (DMODX and DMODY), five compounds were eliminated and the obtained final model had the following characteristics: R2Y D 0.891, Q2 D 0.591. For this the external predictivity on the test set was unsatisfactory. A tentative explanation for these behaviors is the weak information content of the input QSAR matrix for the present series comparatively with other successful MTD-PLS modeling published elsewhere.

  2. Endogenous Androgens and Sex Hormone-Binding Globulin in Women and Risk of Metabolic Syndrome and Type 2 Diabetes.

    PubMed

    Fenske, Benjamin; Kische, Hanna; Gross, Stefan; Wallaschofski, Henri; Völzke, Henry; Dörr, Marcus; Nauck, Matthias; Keevil, Brian G; Brabant, Georg; Haring, Robin

    2015-12-01

    The association of endogenous androgens and sex hormone-binding globulin (SHBG) with metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) mostly 23562 refers to small and selected study samples with immunoassay-based measurements. Thus, we investigated the association of hormone levels with MetS and T2DM in women from a large population-based sample. A total of 2077 women from the Study of Health in Pomerania were assessed at baseline (N = 3160, 1997-2001) and 5-year follow-up (N = 1711, 2002-2006). We investigated associations of total testosterone (T) and androstenedione measured by liquid chromatography-tandem mass spectrometry, SHBG by immunoassay, and free T and free androgen index with MetS and T2DM. Baseline prevalence of MetS and T2DM was 23.1% (N = 365) and 9.5% (N = 196), with an incidence of 17.7 and 7.0 per 1.000 person-years, respectively. Cross-sectional analyses yielded inverse associations of SHBG with MetS (relative risk [RR], 0.67; 95% confidence interval [CI], 0.60-0.74) and T2DM (RR, 0.61; 95% CI, 0.50-0.74) after multivariable adjustment. In longitudinal analyses, only age-adjusted models showed an inverse association of baseline SHBG with incident MetS (RR, 0.61; 95% CI, 0.51-0.73) and T2DM (RR, 0.58; 95% CI, 0.43-0.78). Multivariable-adjusted models stratified by menopausal status revealed an inverse association between SHBG and incident MetS risk in postmenopausal women (RR, 0.65; 95% CI, 0.51-0.81). This longitudinal population-based study revealed independent inverse associations of SHBG with MetS and T2DM, suggesting low SHBG as a potential risk marker for cardiometabolic morbidity, especially among postmenopausal women.

  3. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    PubMed

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Prenatal Androgen Exposure Causes Hypertension and Gut Microbiota Dysbiosis.

    PubMed

    Sherman, Shermel; Sarsour, Nadeen; Salehi, Marziyeh; Schroering, Allen; Mell, Blair; Joe, Bina; Hill, Jennifer W

    2018-02-22

    Conditions of excess androgen in women, such as polycystic ovary syndrome (PCOS), often exhibit intergenerational transmission. One way in which the risk for PCOS may be increased in daughters of affected women is through exposure to elevated androgens in utero. Hyperandrogenemic conditions have serious health consequences, including increased risk for hypertension and cardiovascular disease. Recently, gut dysbiosis has been found to induce hypertension in rats, such that blood pressure can be normalized through fecal microbial transplant. Therefore, we hypothesized that the hypertension seen in PCOS has early origins in gut dysbiosis caused by in utero exposure to excess androgen. We investigated this hypothesis with a model of prenatal androgen (PNA) exposure and maternal hyperandrogenemia by single-injection of testosterone cypionate or sesame oil vehicle (VEH) to pregnant dams in late gestation. We then completed a gut microbiota and cardiometabolic profile of the adult female offspring. The metabolic assessment revealed that adult PNA rats had increased body weight and increased mRNA expression of adipokines: adipocyte binding protein 2, adiponectin, and leptin in inguinal white adipose tissue. Radiotelemetry analysis revealed hypertension with decreased heart rate in PNA animals. The fecal microbiota profile of PNA animals contained higher relative abundance of bacteria associated with steroid hormone synthesis, Nocardiaceae and Clostridiaceae, and lower abundance of Akkermansia, Bacteroides, Lactobacillus, Clostridium. The PNA animals also had an increased relative abundance of bacteria associated with biosynthesis and elongation of unsaturated short chain fatty acids (SCFAs). We found that prenatal exposure to excess androgen negatively impacted cardiovascular function by increasing systolic and diastolic blood pressure and decreasing heart rate. Prenatal androgen was also associated with gut microbial dysbiosis and altered abundance of bacteria involved in

  5. TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer

    PubMed Central

    Nyquist, Michael D.; Li, Yingming; Hwang, Tae Hyun; Manlove, Luke S.; Vessella, Robert L.; Silverstein, Kevin A. T.; Voytas, Daniel F.; Dehm, Scott M.

    2013-01-01

    Androgen receptor (AR) target genes direct development and survival of the prostate epithelial lineage, including prostate cancer (PCa). Thus, endocrine therapies that inhibit the AR ligand-binding domain (LBD) are effective in treating PCa. AR transcriptional reactivation is central to resistance, as evidenced by the efficacy of AR retargeting in castration-resistant PCa (CRPC) with next-generation endocrine therapies abiraterone and enzalutamide. However, resistance to abiraterone and enzalutamide limits this efficacy in most men, and PCa remains the second-leading cause of male cancer deaths. Here we show that AR gene rearrangements in CRPC tissues underlie a completely androgen-independent, yet AR-dependent, resistance mechanism. We discovered intragenic AR gene rearrangements in CRPC tissues, which we modeled using transcription activator-like effector nuclease (TALEN)-mediated genome engineering. This modeling revealed that these AR gene rearrangements blocked full-length AR synthesis, but promoted expression of truncated AR variant proteins lacking the AR ligand-binding domain. Furthermore, these AR variant proteins maintained the constitutive activity of the AR transcriptional program and a CRPC growth phenotype independent of full-length AR or androgens. These findings demonstrate that AR gene rearrangements are a unique resistance mechanism by which AR transcriptional activity can be uncoupled from endocrine regulation in CRPC. PMID:24101480

  6. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer.

    PubMed

    Myung, Jae-Kyung; Wang, Gang; Chiu, Helen H L; Wang, Jun; Mawji, Nasrin R; Sadar, Marianne D

    2017-01-01

    Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD.

  7. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer

    PubMed Central

    Myung, Jae-Kyung; Wang, Gang; Chiu, Helen H. L.; Wang, Jun; Mawji, Nasrin R.; Sadar, Marianne D.

    2017-01-01

    Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD. PMID:28306720

  8. Novel series of potent, nonsteroidal, selective androgen receptor modulators based on 7H-[1,4]oxazino[3,2-g]quinolin-7-ones.

    PubMed

    Higuchi, Robert I; Arienti, Kristen L; López, Francisco J; Mani, Neelakhanda S; Mais, Dale E; Caferro, Thomas R; Long, Yun Oliver; Jones, Todd K; Edwards, James P; Zhi, Lin; Schrader, William T; Negro-Vilar, Andrés; Marschke, Keith B

    2007-05-17

    Recent interest in orally available androgens has fueled the search for new androgens for use in hormone replacement therapy and as anabolic agents. In pursuit of this, we have discovered a series of novel androgen receptor modulators derived from 7H-[1,4]oxazino[3,2-g]quinolin-7-ones. These compounds were synthesized and evaluated in competitive binding assays and an androgen receptor transcriptional activation assay. A number of compounds from the series demonstrated single-digit nanomolar agonist activity in vitro. In addition, lead compound (R)-16e was orally active in established rodent models that measure androgenic and anabolic properties of these agents. In this assay, (R)-16e demonstrated full efficacy in muscle and only partially stimulated the prostate at 100 mg/kg. These data suggest that these compounds may be utilized as selective androgen receptor modulators or SARMs. This series represents a novel class of compounds for use in androgen replacement therapy.

  9. Gain in Transcriptional Activity by Primate-specific Coevolution of Melanoma Antigen-A11 and Its Interaction Site in Androgen Receptor*

    PubMed Central

    Liu, Qiang; Su, Shifeng; Blackwelder, Amanda J.; Minges, John T.; Wilson, Elizabeth M.

    2011-01-01

    Male sex development and growth occur in response to high affinity androgen binding to the androgen receptor (AR). In contrast to complete amino acid sequence conservation in the AR DNA and ligand binding domains among mammals, a primate-specific difference in the AR NH2-terminal region that regulates the NH2- and carboxyl-terminal (N/C) interaction enables direct binding to melanoma antigen-A11 (MAGE-11), an AR coregulator that is also primate-specific. Human, mouse, and rat AR share the same NH2-terminal 23FQNLF27 sequence that mediates the androgen-dependent N/C interaction. However, the mouse and rat AR FXXLF motif is flanked by Ala33 that evolved to Val33 in primates. Human AR Val33 was required to interact directly with MAGE-11 and for the inhibitory effect of the AR N/C interaction on activation function 2 that was relieved by MAGE-11. The functional importance of MAGE-11 was indicated by decreased human AR regulation of an androgen-dependent endogenous gene using lentivirus short hairpin RNAs and by the greater transcriptional strength of human compared with mouse AR. MAGE-11 increased progesterone and glucocorticoid receptor activity independently of binding an FXXLF motif by interacting with p300 and p160 coactivators. We conclude that the coevolution of the AR NH2-terminal sequence and MAGE-11 expression among primates provides increased regulatory control over activation domain dominance. Primate-specific expression of MAGE-11 results in greater steroid receptor transcriptional activity through direct interactions with the human AR FXXLF motif region and indirectly through steroid receptor-associated p300 and p160 coactivators. PMID:21730049

  10. [Molecular organization of glutamate-sensitive chemoexcitatory membranes of nerve cells. Comparative analysis of glutamate-binding membrane proteins from the cerebral cortex of rats and humans].

    PubMed

    Dambinova, S A; Gorodinskiĭ, A I; Lekomtseva, T M; Koreshonkov, O N

    1987-10-01

    The kinetics of 3H-L-glutamate binding to human brain synaptic membranes revealed the existence of one type of binding sites with Kd and Vmax comparable with those for freshly isolated rat brain membranes. The fraction of glutamate-binding proteins (GBP) was shown to contain three components with Mr of 14, 60 and 280 kD whose stoichiometry is specific for human and rat brain. All fractions were found to bind the radiolabeled neurotransmitter and to dissociate into subunits with Mr of 14 kD after treatment with-potent detergents (with the exception of the 56-60 kD component). Study of association-dissociation of GBP protein subunits by high performance liquid chromatography confirmed the hypothesis on the oligomeric structure of glutamate receptors which are made up of low molecular weight glycoprotein-lipid subunits and which form ionic channels by way of repeated association. Despite the similarity of antigen determinants in the active center of glutamate receptors from human and rat brain, it was assumed that the stoichiometry of structural organization of receptor subunits isolated from different sources is different. The functional role of structural complexity of human brain glutamate receptors is discussed.

  11. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters.

    PubMed

    Seppälä, Susanna; Solomon, Kevin V; Gilmore, Sean P; Henske, John K; O'Malley, Michelle A

    2016-12-20

    Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and transporting biomass hydrolysates within a competitive and rather extreme environment. Using sequence analyses and homology, we identified membrane protein-coding sequences from assembled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. We report the first comprehensive characterization of the membrane protein machinery of biotechnologically relevant anaerobic gut fungi. Apart from identifying conserved machinery for protein sorting and secretion, we identify a large number of putative solute transporters that are of interest for biotechnological applications. Notably, our data suggests that the fungi display a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass degrading, extracellular enzymes

  12. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.

    PubMed

    Hsieh, Chen-Lin; Cai, Changmeng; Giwa, Ahmed; Bivins, Aaronica; Chen, Shao-Yong; Sabry, Dina; Govardhan, Kumara; Shemshedini, Lirim

    2008-07-01

    Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that expression of a hyperactive AR would be sufficient for androgen-independent growth of prostate cancer cells. To test this hypothesis, stable lune cancer prostate (LNCaP) cell lines were generated, which express a virion phosphoprotein (VP)16-AR hybrid protein that contains full-length AR fused to the strong viral transcriptional activation domain VP16. This fusion protein elicited as much as a 20-fold stronger transcriptional activity than the natural AR. Stable expression of VP16-AR in LNCaP cells yielded androgen-independent cell proliferation, while under the same growth conditions the parental LNCaP cells exhibited only androgen-dependent growth. These results show that expression of a hyperactive AR is sufficient for androgen-independent growth of prostate cancer cells. To study the molecular basis of this enhanced growth, we measured the expression of soluble guanylyl cyclase-alpha1 (sGCalpha1), a subunit of the sGC, an androgen-regulated gene that has been shown to be involved in prostate cancer cell growth. Interestingly, the expression of sGCalpha1 is androgen independent in VP16-AR-expressing cells, in contrast to its androgen-induced expression in control LNCaP cells. RNA(I)-dependent inhibition of sGCalpha1 expression resulted in significantly reduced proliferation of VP16-AR cells, implicating an important role for sGCalpha1 in the androgen-independent growth of these cells.

  13. Selective androgen receptor modulators as function promoting therapies.

    PubMed

    Bhasin, Shalender; Jasuja, Ravi

    2009-05-01

    The past decade has witnessed an unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Although steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5alpha-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with androgen receptor (AR) contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand-binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis.

  14. Nonsteroidal selective androgen receptor modulators enhance female sexual motivation.

    PubMed

    Jones, Amanda; Hwang, Dong Jin; Duke, Charles B; He, Yali; Siddam, Anjaiah; Miller, Duane D; Dalton, James T

    2010-08-01

    Women experience a decline in estrogen and androgen levels after natural or surgically induced menopause, effects that are associated with a loss of sexual desire and bone mineral density. Studies in our laboratories have shown the beneficial effects of selective androgen receptor modulators (SARMs) in the treatment of osteoporosis and muscle wasting in animal models. A series of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-cyano-3-trifluoromethyl-phenyl)-propionamide analogs was synthesized to evaluate the effects of B-ring substitutions on in vitro and in vivo pharmacologic activity, especially female sexual motivation. The androgen receptor (AR) relative binding affinities ranged from 0.1 to 26.5% (relative to dihydrotestosterone) and demonstrated a range of agonist activity at 100 nM. In vivo pharmacologic activity was first assessed by using male rats. Structural modifications to the B-ring significantly affected the selectivity of the SARMs, demonstrating that single-atom substitutions can dramatically and unexpectedly influence activity in androgenic (i.e., prostate) and anabolic (i.e., muscle) tissues. (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro,4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide (S-23) displayed full agonist activity in androgenic and anabolic tissues; however, the remaining SARMs were more prostate-sparing, selectively maintaining the size of the levator ani muscle in castrated rats. The partner-preference paradigm was used to evaluate the effects of SARMs on female sexual motivation. With the exception of two four-halo substituted analogs, the SARMs increased sexual motivation in ovariectomized rats, with potency and efficacy comparable with testosterone propionate. These results indicate that the AR is important in regulating female libido given the nonaromatizable nature of SARMs and it could be a superior alternative to steroidal testosterone preparations in the treatment of hypoactive sexual desire disorder.

  15. Nonsteroidal Selective Androgen Receptor Modulators Enhance Female Sexual Motivation

    PubMed Central

    Jones, Amanda; Hwang, Dong Jin; Duke, Charles B.; He, Yali; Siddam, Anjaiah; Miller, Duane D.

    2010-01-01

    Women experience a decline in estrogen and androgen levels after natural or surgically induced menopause, effects that are associated with a loss of sexual desire and bone mineral density. Studies in our laboratories have shown the beneficial effects of selective androgen receptor modulators (SARMs) in the treatment of osteoporosis and muscle wasting in animal models. A series of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-cyano-3-trifluoromethyl-phenyl)-propionamide analogs was synthesized to evaluate the effects of B-ring substitutions on in vitro and in vivo pharmacologic activity, especially female sexual motivation. The androgen receptor (AR) relative binding affinities ranged from 0.1 to 26.5% (relative to dihydrotestosterone) and demonstrated a range of agonist activity at 100 nM. In vivo pharmacologic activity was first assessed by using male rats. Structural modifications to the B-ring significantly affected the selectivity of the SARMs, demonstrating that single-atom substitutions can dramatically and unexpectedly influence activity in androgenic (i.e., prostate) and anabolic (i.e., muscle) tissues. (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro,4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide (S-23) displayed full agonist activity in androgenic and anabolic tissues; however, the remaining SARMs were more prostate-sparing, selectively maintaining the size of the levator ani muscle in castrated rats. The partner-preference paradigm was used to evaluate the effects of SARMs on female sexual motivation. With the exception of two four-halo substituted analogs, the SARMs increased sexual motivation in ovariectomized rats, with potency and efficacy comparable with testosterone propionate. These results indicate that the AR is important in regulating female libido given the nonaromatizable nature of SARMs and it could be a superior alternative to steroidal testosterone preparations in the treatment of hypoactive sexual desire disorder. PMID:20444881

  16. Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs)

    PubMed Central

    Gao, Wenqing; Dalton, James T.

    2007-01-01

    Selective androgen receptor modulators (SARMs) are a novel class of androgen receptor (AR) ligands that might change the future of androgen therapy dramatically. With improved pharmacokinetic characteristics and tissue-selective pharmacological activities, SARMs are expected to greatly extend the clinical applications of androgens to osteoporosis, muscle wasting, male contraception and diseases of the prostate. Mechanistic studies with currently available SARMs will help to define the contributions of differential tissue distribution, tissue-specific expression of 5α-reductase, ligand-specific regulation of gene expression and AR interactions with tissue-specific coactivators to their observed tissue selectivity, and lead to even greater expansion of selective anabolic therapies. PMID:17331889

  17. Androgens and menopause.

    PubMed

    Shulman, L P

    2009-12-01

    The cessation of ovarian sex steroidigenesis, either as result as surgical extirpation, certain medical therapies or the gradual cessation of ovarian function, leads to menopause with all its associated physiological, physical and lifestyle changes. The changing hormonal milieu of menopause is most commonly associated with declining levels of estrogens. However, ovarian senescence also results in declining levels of androgens. Indeed, it is the loss of physiological levels of estrogens and androgens that result in the varied signs and symptoms of menopause including vasomotor symptoms, bone mineral density loss, reduced interest in sex, alterations in mood and energy and hair loss, among others. This paper will provide a review of the role of androgens in the menopause and assess the potential of androgen therapies in the management of the menopause.

  18. Augmenting β-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins.

    PubMed

    Heuck, Alexander; Schleiffer, Alexander; Clausen, Tim

    2011-03-11

    β-Barrel proteins are frequently found in the outer membrane of mitochondria, chloroplasts and Gram-negative bacteria. In Escherichia coli, these proteins are inserted in the outer membrane by the Bam (β-barrel assembly machinery) complex, a multiprotein machinery formed by the β-barrel protein BamA and the four peripheral membrane proteins BamB, BamC, BamD and BamE. The periplasmic part of BamA binds prefolded β-barrel proteins by a β-augmentation mechanism, thereby stabilizing the precursors prior to their membrane insertion. However, the role of the associated proteins within the Bam complex remains unknown. Here, we describe the crystal structure of BamB, a nonessential component of the Bam complex. The structure shows a typical eight-bladed β-propeller fold. Two sequence stretches of BamB were previously identified to be important for interaction with BamA. In our structure, both motifs are located in close proximity to each other and contribute to a conserved region forming a narrow groove on the top of the propeller. Moreover, crystal contacts reveal two interaction modes of how BamB might bind unfolded β-barrel proteins. In the crystal lattice, BamB binds to exposed β-strands by β-augmentation, whereas peptide stretches rich in aromatic residues can be accommodated in hydrophobic pockets located at the bottom of the propeller. Thus, BamB could simultaneously bind to BamA and prefolded β-barrel proteins, thereby enhancing the folding and membrane insertion capability of the Bam complex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling

    PubMed Central

    Ma, Yan-Min; Wu, Kai-Jie; Dang, Qiang; Shi, Qi; Gao, Yang; Guo, Peng; Xu, Shan; Wang, Xin-Yang; He, Da-Lin; Gong, Yong-Guang

    2014-01-01

    Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR) protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b). Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b. PMID:24994782

  20. Testosterone regulates keratin 33B expression in rat penis growth through androgen receptor signaling.

    PubMed

    Ma, Yan-Min; Wu, Kai-Jie; Dang, Qiang; Shi, Qi; Gao, Yang; Guo, Peng; Xu, Shan; Wang, Xin-Yang; He, Da-Lin; Gong, Yong-Guang

    2014-01-01

    Androgen therapy is the mainstay of treatment for the hypogonadotropic hypogonadal micropenis because it obviously enhances penis growth in prepubescent microphallic patients. However, the molecular mechanisms of androgen treatment leading to penis growth are still largely unknown. To clarify this well-known phenomenon, we successfully generated a castrated male Sprague Dawley rat model at puberty followed by testosterone administration. Interestingly, compared with the control group, testosterone treatment stimulated a dose-dependent increase of penis weight, length, and width in castrated rats accompanied with a dramatic recovery of the pathological changes of the penis. Mechanistically, testosterone administration substantially increased the expression of androgen receptor (AR) protein. Increased AR protein in the penis could subsequently initiate transcription of its target genes, including keratin 33B (Krt33b). Importantly, we demonstrated that KRT33B is generally expressed in the rat penis and that most KRT33B expression is cytoplasmic. Furthermore, AR could directly modulate its expression by binding to a putative androgen response element sequence of the Krt33b promoter. Overall, this study reveals a novel mechanism facilitating penis growth after testosterone treatment in precastrated prepubescent animals, in which androgen enhances the expression of AR protein as well as its target genes, such as Krt33b.

  1. Androgens: basic biology and clinical implication.

    PubMed

    Orwoll, E S

    2001-10-01

    Although androgens have been considered essential modulators of bone biology in men, recent studies have indicated that estrogen may have an important, if not dominant, role. Nevertheless, there is strong evidence that androgens have independent skeletal actions. Nonaromatizable androgens influence a variety of aspects of bone cell biology and are capable of modulating bone remodeling and bone mass. It appears that androgens are particularly important in the control of periosteal bone formation, an effect that might underlie the gender difference in bone size. Alterations in androgen receptor function affect bone metabolism, and new information suggests that androgens modulate receptor homeostasis. The clinical implications of androgen effects, and how they interact with those of estrogens, are somewhat unclear. It is likely that overall bone homeostasis and gender differences depend on a combination of androgenic and estrogenic actions. Androgens may well provide advantages in the prevention and therapy of metabolic bone disorders in both men and women.

  2. Selection shaped the evolution of mouse androgen-binding protein (ABP) function and promoted the duplication of Abp genes.

    PubMed

    Karn, Robert C; Laukaitis, Christina M

    2014-08-01

    In the present article, we summarize two aspects of our work on mouse ABP (androgen-binding protein): (i) the sexual selection function producing incipient reinforcement on the European house mouse hybrid zone, and (ii) the mechanism behind the dramatic expansion of the Abp gene region in the mouse genome. Selection unifies these two components, although the ways in which selection has acted differ. At the functional level, strong positive selection has acted on key sites on the surface of one face of the ABP dimer, possibly to influence binding to a receptor. A different kind of selection has apparently driven the recent and rapid expansion of the gene region, probably by increasing the amount of Abp transcript, in one or both of two ways. We have shown previously that groups of Abp genes behave as LCRs (low-copy repeats), duplicating as relatively large blocks of genes by NAHR (non-allelic homologous recombination). The second type of selection involves the close link between the accumulation of L1 elements and the expansion of the Abp gene family by NAHR. It is probably predicated on an initial selection for increased transcription of existing Abp genes and/or an increase in Abp gene number providing more transcriptional sites. Either or both could increase initial transcript production, a quantitative change similar to increasing the volume of a radio transmission. In closing, we also provide a note on Abp gene nomenclature.

  3. Genome-Wide Analysis of Androgen Receptor Targets Reveals COUP-TF1 as a Novel Player in Human Prostate Cancer

    PubMed Central

    Perets, Ruth; Kaplan, Tommy; Stein, Ilan; Hidas, Guy; Tayeb, Shay; Avraham, Eti; Ben-Neriah, Yinon; Simon, Itamar; Pikarsky, Eli

    2012-01-01

    Androgen activity plays a key role in prostate cancer progression. Androgen receptor (AR) is the main mediator of androgen activity in the prostate, through its ability to act as a transcription mediator. Here we performed a genome-wide analysis of human AR binding to promoters in the presence of an agonist or antagonist in an androgen dependent prostate cancer cell line. Many of the AR bound promoters are bound in all examined conditions while others are bound only in the presence of an agonist or antagonist. Several motifs are enriched in AR bound promoters, including the AR Response Element (ARE) half-site and recognition elements for the transcription factors OCT1 and SOX9. This suggests that these 3 factors could define a module of co-operating transcription factors in the prostate. Interestingly, AR bound promoters are preferentially located in AT rich genomic regions. Analysis of mRNA expression identified chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TF1) as a direct AR target gene that is downregulated upon binding by the agonist liganded AR. COUP-TF1 immunostaining revealed nucleolar localization of COUP-TF1 in epithelium of human androgen dependent prostate cancer, but not in adjacent benign prostate epithelium. Stromal cells both in human and mouse prostate show nuclear COUP-TF1 staining. We further show that there is an inverse correlation between COUP-TF1 expression in prostate stromal cells and the rising levels of androgen with advancing puberty. This study extends the pool of recognized putative AR targets and identifies a negatively regulated target of AR – COUP-TF1 – which could possibly play a role in human prostate cancer. PMID:23056316

  4. Genome-wide analysis of androgen receptor targets reveals COUP-TF1 as a novel player in human prostate cancer.

    PubMed

    Perets, Ruth; Kaplan, Tommy; Stein, Ilan; Hidas, Guy; Tayeb, Shay; Avraham, Eti; Ben-Neriah, Yinon; Simon, Itamar; Pikarsky, Eli

    2012-01-01

    Androgen activity plays a key role in prostate cancer progression. Androgen receptor (AR) is the main mediator of androgen activity in the prostate, through its ability to act as a transcription mediator. Here we performed a genome-wide analysis of human AR binding to promoters in the presence of an agonist or antagonist in an androgen dependent prostate cancer cell line. Many of the AR bound promoters are bound in all examined conditions while others are bound only in the presence of an agonist or antagonist. Several motifs are enriched in AR bound promoters, including the AR Response Element (ARE) half-site and recognition elements for the transcription factors OCT1 and SOX9. This suggests that these 3 factors could define a module of co-operating transcription factors in the prostate. Interestingly, AR bound promoters are preferentially located in AT rich genomic regions. Analysis of mRNA expression identified chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TF1) as a direct AR target gene that is downregulated upon binding by the agonist liganded AR. COUP-TF1 immunostaining revealed nucleolar localization of COUP-TF1 in epithelium of human androgen dependent prostate cancer, but not in adjacent benign prostate epithelium. Stromal cells both in human and mouse prostate show nuclear COUP-TF1 staining. We further show that there is an inverse correlation between COUP-TF1 expression in prostate stromal cells and the rising levels of androgen with advancing puberty. This study extends the pool of recognized putative AR targets and identifies a negatively regulated target of AR - COUP-TF1 - which could possibly play a role in human prostate cancer.

  5. [Nipple dysplasia and androgen syndrome].

    PubMed

    Radowicki, S; Koczorowski, R

    1997-11-01

    Among 1500 patients in the reproductive age of Clinical Department of Endocrinological Gynecology in State Hospital in Warszawa, Poland estimated the correlations between the onset of benign breast disease (BBD) and the incidence of androgenic syndrome. Symptoms of the androgenic syndrome stated in cases of 191 women; 51 of them had also benign lesions of the breasts. It makes 26.9 percent women with the symptoms of androgenicity. Clinical studies have correlated mean age patients with acne, hirsutism, menstrual cycle disturbances, gain of weight (androgenic syndrome) and mean age women who have suffered both androgenicity and BBD.

  6. Substrate binding site for nitrate reductase of Escherichia coli is on the inner aspect of the membrane.

    PubMed Central

    Kristjansson, J K; Hollocher, T C

    1979-01-01

    Escherichia coli grown anaerobically on nitrate exhibited the same transport barrier to reduction of chlorate, relative to nitrate, as that exhibited by Paracoccus denitrificans. This establishes that the nitrate binding site of nitrate reductase (EC 1.7.99.4) in E. coli must also lie on the cell side of the nitrate transporter which is associated with the plasma membrane. Because nitrate reductase is membrane bound, the nitrate binding site is thus located on the inner aspect of the membrane. Nitrate pulse studies on E. coli in the absence of valinomycin showed a small transient alkalinization (leads to H+/NO3- congruent to --0.07) which did not occur with oxygen pulses. By analogy with P. denitrificans, the alkaline transient is interpreted to arise from proton-linked nitrate uptake which is closely followed by nitrite efflux. The result is consistent with internal reduction of nitrate, whereas external reduction would be expected to give leads to H+/NO3-ratios approaching --2. PMID:374343

  7. Androgens and alopecia.

    PubMed

    Kaufman, Keith D

    2002-12-30

    Androgens have profound effects on scalp and body hair in humans. Scalp hair grows constitutively in the absence of androgens, while body hair growth is dependent on the action of androgens. Androgenetic alopecia, referred to as male pattern hair loss (MPHL) in men and female pattern hair loss (FPHL) in women, is due to the progressive miniaturization of scalp hair. Observations in both eunuchs, who have low levels of testicular androgens, and males with genetic 5alpha-reductase (5alphaR) deficiency, who have low levels of dihydrotestosterone (DHT), implicate DHT as a key androgen in the pathogenesis of MPHL in men. The development of finasteride, a type 2-selective 5alphaR inhibitor, further advanced our understanding of the role of DHT in the pathophysiology of scalp alopecia. Controlled clinical trials with finasteride demonstrated improvements in scalp hair growth in treated men associated with reductions in scalp DHT content, and a trend towards reversal of scalp hair miniaturization was evident by histopathologic evaluation of scalp biopsies. In contrast to its beneficial effects in men, finasteride did not improve hair growth in postmenopausal women with FPHL. Histopathological evaluation of scalp biopsies confirmed that finasteride treatment produced no benefit on scalp hair in these women. These findings suggest that MPHL and FPHL are distinct clinical entities, with disparate pathophysiologies. Studies that elucidate the molecular mechanisms by which androgens regulate hair growth would provide greater understanding of these differences. Copyright 2002 Elsevier Science Ireland Ltd.

  8. Cigarette smoking, androgen levels, and hot flushes in midlife women.

    PubMed

    Cochran, Chrissy J; Gallicchio, Lisa; Miller, Susan R; Zacur, Howard; Flaws, Jodi A

    2008-11-01

    To test the hypothesis that cigarette smoking is associated with hot flushes through a mechanism involving androgen levels, progesterone levels, sex hormone-binding globulin levels, or the ratio of androgens to estrogens. Women with and without hot flushes were recruited from Baltimore, Maryland, and the surrounding counties. Women were between 45 and 54 years of age, with at least three menstrual periods in the previous 12 months, and were not postmenopausal. Study participants completed a questionnaire and gave a blood sample for hormone measurements. Current smokers had significantly higher androstenedione levels and a higher androgen-to-estrogen ratio than never smokers. Current smokers had significantly lower progesterone levels compared with never smokers. Former and current cigarette smokers had increased odds of experiencing hot flushes compared with never smokers (former: odds ratio [OR] 1.41, 95% confidence interval [CI] 0.99-2.01; current: OR 2.43, 95% CI 1.28-4.62). This association, however, was not attenuated by the addition of hormones to the smoking and hot-flush model. Cigarette smoking is associated with hot flushes through a mechanism that may not involve alterations in hormone levels or their ratios. II.

  9. Androgens and bone.

    PubMed

    De Oliveira, D H A; Fighera, T M; Bianchet, L C; Kulak, C A M; Kulak, J

    2012-12-01

    Testosterone is the major gonadal sex steroid produced by the testes in men. Androgens induce male sexual differentiation before birth and sexual maturation during puberty; in adult men, they maintain the function of the male genital system, including spermatogenesis. Testosterone is also produced in smaller amounts by the ovaries in women. The adrenal glands produce the weaker androgens dehydroepiandrosterone, dehydroepiandrosterone sulfate, and androstenedione. Because testosterone can be metabolized to estradiol by the aromatase enzyme, there has been controversy as to which gonadal sex steroid has the greater skeletal effect. In this respect, there is increasing evidence that at least part of the effects of androgens in men can be explained by their aromatization into estrogens. The current evidence suggests that estradiol plays a greater role in maintenance of skeletal health than testosterone, but that androgens also have direct beneficial effects on bone.

  10. The sodium channel in membranes of electroplax. Binding of batrachotoxinin-a [(3)H]benzoate to particulate preparations from electric eel (electrophorus).

    PubMed

    McNeal, E T; Daly, J W

    1986-01-01

    Batrachotoxinin-A [(3)H]benzoate ([(3)H]BTX-B) binds specifically and with high affinity (K(D) 48 nM) to sites (B(max) 2.1 pmol/mg protein) associated with voltage-dependent sodium channels in rodent brain vesicular preparations. High affinity binding requires the presence of scorpion (Leiurus) venom and a membrane potential. Local anesthetics antagonize the binding. Nonspecific binding is defined in the presence of veratridine. In particulate preparations from electroplax of the eel Electrophorus electricus, [(3)H]BTX-B binds with a K(D) of about 140 nM and a B(max) of 2.5 pmol/mg protein in the presence of scorpion venom. Higher concentrations of scorpion venom are required to enhance binding in Electrophorus preparations than in brain preparations. Local anesthetics antagonize binding in Electrophorus preparations with potencies similar to those in brain preparations. Veratridine and batrachotoxin are less potent in blocking binding in Electrophorus than in brain preparations. It appears likely that binding in Electrophorus preparations is primarily to membrane fragments rather than vesicular entities as in brain. Binding of [(3)H]BTX-B to particulate preparations from electroplax of the ray Torpedo californica and the catfish Malapterurus electricus is mainly nonspecific. Scorpion venom does not enhance total binding and local anesthetics are not effective in antagonizing binding.

  11. Leuprolide acetate-stimulated androgen response during female puberty.

    PubMed

    Hernandez, María Isabel; Martinez-Aguayo, Alejandro; Cavada, Gabriel; Avila, Alejandra; Iñiguez, German; Mericq, Veronica

    2015-08-01

    A physiological increase in androgen levels occurs during adolescence. Measuring androgen concentrations is the best method to distinguish normal evolution processes from hyperandrogenic disorders. The increase in circulating androgens during puberty is inversely associated with insulin sensitivity in normal weight girls. To assess circulating levels of ovarian androgens and anti-Müllerian hormone (AMH) at baseline and after GnRH analogue (GnRH-a) stimulation in normal pubertal girls across different Tanner stages. We also studied the association between this response and insulin sensitivity. Prospective study of healthy girls (6-12 years) from the local community (n = 63). Tanner I (n = 23) subjects were assessed cross-sectionally, and Tanner II girls (n = 40) were evaluated every 6 months until they reached Tanner V. Early morning dehydroepiandrosterone sulphate (DHEA-S), AMH, sex hormone-binding globulin (SHBG), androstenedione, glucose and insulin levels were measured. A GnRH-a test (500 μg/m(2) ; sc) and oral glucose intolerance test (OGTT) were performed. Differences throughout puberty were evaluated. Basal and/or stimulated Testosterone DHEA-S and 17-hydroxyprogesterone (17OHP) were inversely associated with insulin sensitivity (WIBSI) from the beginning of puberty, whereas androstenedione was directly associated with gonadotrophins. AMH was inversely associated with basal and stimulated gonadotrophins and directly with insulin area under the curve (AUC) only in the early stages of puberty. 17OHP and testosterone responsiveness increased significantly during puberty in all subjects, whereas testosterone levels changed less consistently. This pattern of ovarian-steroidogenic response was most evident during mid- and late puberty. Moreover, during late puberty only, basal 17OHP, testosterone and DHEA-S were positively associated with gonadotrophins. In normal nonobese girls born appropriate for gestational age, androgen synthesis was associated with

  12. Solubilization and characterization of haloperidol-sensitive (+)-( sup 3 H)SKF-10,047 binding sites (sigma sites) from rat liver membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, D.J.; Su, T.P.

    1991-05-01

    The zwitterionic detergent 3-((3-cholamidopropyl)dimethylamino)-1-propanesulfonate (CHAPS) produced optimal solubilization of (+)-({sup 3}H)SKF-10,047 binding sites from rat liver membranes at a concentration of 0.2%, well below the critical micellular concentration of the detergent. The pharmacological selectivity of the liver (+)-({sup 3}H)SKF-10,047 binding sites corresponds to that of sigma sites from rat and guinea pig brain. When the affinities of 18 different drugs at (+)-({sup 3}H)SKF-10,047 binding sites in membranes and solubilized preparations were compared, a correlation coefficient of 0.99 and a slope of 1.03 were obtained, indicating that the pharmacological selectivity of rat liver sigma sites is retained after solubilization. In addition,more » the binding of 20 nM ({sup 3}H)progesterone to solubilized rat liver preparations was found to exhibit a pharmacological selectivity appropriate for sigma sites. A stimulatory effect of phenytoin on (+)-({sup 3}H)SKF-10,047 binding to sigma sites persisted after solubilization. When the solubilized preparation was subjected to molecular sizing chromatography, a single peak exhibiting specific (+)-({sup 3}H)SKF-10,047 binding was obtained. The binding activity of this peak was stimulated symmetrically when assays were performed in the presence of 300 microM phenytoin. The molecular weight of the CHAPS-solubilized sigma site complex was estimated to be 450,000 daltons. After solubilization with CHAPS, rat liver sigma sites were enriched to 12 pmol/mg of protein. The present results demonstrate a successful solubilization of sigma sites from rat liver membranes and provide direct evidence that the gonadal steroid progesterone binds to sigma sites. The results also suggest that the anticonvulsant phenytoin binds to an associated allosteric site on the sigma site complex.« less

  13. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters

    DOE PAGES

    Seppala, Susanna; Solomon, Kevin V.; Gilmore, Sean P.; ...

    2016-12-20

    Here, engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and transporting biomass hydrolysates within a competitive andmore » rather extreme environment. Using sequence analyses and homology, we identified membrane protein-coding sequences from assembled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. In conclusion, we report the first comprehensive characterization of the membrane protein machinery of biotechnologically relevant anaerobic gut fungi. Apart from identifying conserved machinery for protein sorting and secretion, we identify a large number of putative solute transporters that are of interest for biotechnological applications. Notably, our data suggests that the fungi display a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass

  14. Effects of orlistat on serum androgen levels among iranian obese women with polycystic ovarian syndrome.

    PubMed

    Salehpour, Saghar; Hosseini, Sedighe; Nazari, Leila; Saharkhiz, Nasrin; Zademodarres, Shahrzad

    2018-05-14

    Polycystic ovary syndrome is one of the most common endocrinopathies in young women, and it affects 6% to 8% of women in reproductive age. Hyperandrogenism is the hallmark of polycystic ovary syndrome. The aim of the present study was to evaluate the effects of orlistat on weight loss and serum androgen levels among Iranian women with polycystic ovary syndrome. The present study was carried out in the clinic of Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Thirty-two patients with polycystic ovary syndrome were randomly enrolled. We measured serum androgens (Testosterone, 17α-hydroxyprogesterone, dehydroepiandrosterone and sex hormone-binding globulin) before and after 12 weeks of treatment with orlistat. We used the Rotterdam Criteria for all patients and transvaginal sonography was performed. The mean age of patients was 27.75±6.22 and the mean body mass index was 32.69±0.94 kg/m2. Comparing with baseline, treatment with orlistat resulted in a significant reduction in weight, BMI, and waist circumference (p=0.001). We also found a remarkable reduction in total testosterone levels (p>0.001). Treatment improved the sex hormone-binding globulin plasma levels, but the improvement was not statistically significant. There was no reduction in other androgen levels. This study showed a significant reduction of weight and total testosterone level - the most important androgen in polycystic ovary syndrome - after 12 weeks of treatment with orlistat. Therefore, it seems that a short course of orlistat can be useful in the management of patients with polycystic ovary syndrome.

  15. Metabolic Syndrome, Androgens, and Hypertension

    PubMed Central

    Moulana, Mohadetheh; Lima, Roberta; Reckelhoff, Jane F.

    2013-01-01

    Obesity is one of the constellation of factors that make up the definition of the metabolic syndrome. Metabolic syndrome is also associated with insulin resistance, dyslipidemia, hypertriglyceridemia, and type 2 diabetes mellitus. The presence of obesity and metabolic syndrome in men and women is also associated with increased risk of cardiovascular disease and hypertension. In men, obesity and metabolic syndrome are associated with reductions in testosterone levels. In women, obesity and metabolic syndrome is associated with increases in androgen levels. In men reductions in androgen levels is associated with inflammation. Androgen supplements reduce inflammation in men. In women, increases in androgens are associated with increases in inflammatory cytokines, and reducing androgens reduces inflammation. In this review the possibility that androgens may have different effects on metabolic syndrome and its sequelae in males and females will be discussed. PMID:21274756

  16. Allosteric alterations in the androgen receptor and activity in prostate cancer.

    PubMed

    Uo, Takuma; Plymate, Stephen R; Sprenger, Cynthia C

    2017-09-01

    Organisms have evolved to generate biological complexity in their proteome and transcriptome from a limited number of genes. This concept holds true for the androgen receptor, which displays a diversity of inclusion/exclusion events in its structural motifs as a mechanism of resistance to the most forefront anti-androgen therapies. More than 20 androgen receptor variants that lack various portions of ligand-binding domain have been identified in human prostate cancer (PCa) samples. Most of the variants are inactive on their own, with a few exceptions displaying constitutive activity. The full-length receptor and one or more variants can be co-expressed in the same cell under many circumstances, which raises the question of how these variants physically and functionally interact with the full-length receptor or one another in the course of PCa progression. To address this issue, in this review, we will characterize and discuss androgen receptor variants, including the novel variants discovered in the last couple of years (i) individually, (ii) with respect to their physical and functional interaction with one another and (iii) in clinical relevance. Here, we also introduce the very recent understanding of AR-Vs obtained through successful development of some AR-V-specific antibodies as well as identification of novel AR-Vs by data mining approaches. © 2017 Society for Endocrinology.

  17. Androgen Regulation of 5α-Reductase Isoenzymes in Prostate Cancer: Implications for Prostate Cancer Prevention

    PubMed Central

    Li, Jin; Ding, Zhiyong; Wang, Zhengxin; Lu, Jing-Fang; Maity, Sankar N.; Navone, Nora M.; Logothetis, Christopher J.; Mills, Gordon B.; Kim, Jeri

    2011-01-01

    The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), performs key functions in the androgen receptor (AR) signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type–specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE) on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention. PMID:22194926

  18. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane.

    PubMed

    Tolokh, Igor S; Vivcharuk, Victor; Tomberli, Bruno; Gray, C G

    2009-09-01

    Molecular dynamics (MD) simulations are used to study the interaction of an anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with a POPG bilayer is employed as a model system for studying the details of membrane adsorption selectivity of cationic antimicrobial peptides. Seventy eight 4 ns MD production run trajectories of the equilibrated system, with six restrained orientations of LFCinB at 13 different separations from the POPG membrane, are generated to determine the free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the profile for this relatively large system, a variant of constrained MD and thermodynamic integration is used. A simplified method for relating the free energy profile to the LFCinB-POPG membrane binding constant is employed to predict a free energy of adsorption of -5.4+/-1.3 kcal/mol and a corresponding maximum adsorption binding force of about 58 pN. We analyze the results using Poisson-Boltzmann theory. We find the peptide-membrane attraction to be dominated by the entropy increase due to the release of counterions and polarized water from the region between the charged membrane and peptide, as the two approach each other. We contrast these results with those found earlier for adsorption of LFCinB on the mammalianlike palmitoyl-oleoyl-phosphatidylcholine membrane.

  19. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane

    NASA Astrophysics Data System (ADS)

    Tolokh, Igor S.; Vivcharuk, Victor; Tomberli, Bruno; Gray, C. G.

    2009-09-01

    Molecular dynamics (MD) simulations are used to study the interaction of an anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with a POPG bilayer is employed as a model system for studying the details of membrane adsorption selectivity of cationic antimicrobial peptides. Seventy eight 4 ns MD production run trajectories of the equilibrated system, with six restrained orientations of LFCinB at 13 different separations from the POPG membrane, are generated to determine the free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the profile for this relatively large system, a variant of constrained MD and thermodynamic integration is used. A simplified method for relating the free energy profile to the LFCinB-POPG membrane binding constant is employed to predict a free energy of adsorption of -5.4±1.3kcal/mol and a corresponding maximum adsorption binding force of about 58 pN. We analyze the results using Poisson-Boltzmann theory. We find the peptide-membrane attraction to be dominated by the entropy increase due to the release of counterions and polarized water from the region between the charged membrane and peptide, as the two approach each other. We contrast these results with those found earlier for adsorption of LFCinB on the mammalianlike palmitoyl-oleoyl-phosphatidylcholine membrane.

  20. Anabolic Androgenic Steroid (AAS) Related Deaths: Autoptic, Histopathological and Toxicological Findings

    PubMed Central

    Frati, Paola; Busardò, Francesco P.; Cipolloni, Luigi; Dominicis, Enrico De; Fineschi, Vittorio

    2015-01-01

    Anabolic androgenic steroids (AASs) represent a large group of synthetic derivatives of testosterone, produced to maximize anabolic effects and minimize the androgenic ones. AAS can be administered orally, parenterally by intramuscular injection and transdermally. Androgens act by binding to the nuclear androgen receptor (AR) in the cytoplasm and then translocate into the nucleus. This binding results in sequential conformational changes of the receptor affecting the interaction between receptor and protein, and receptor and DNA. Skeletal muscle can be considered as the main target tissue for the anabolic effects of AAS, which are mediated by ARs which after exposure to AASs are up-regulated and their number increases with body building. Therefore, AASs determine an increase in muscle size as a consequence of a dose-dependent hypertrophy resulting in an increase of the cross-sectional areas of both type I and type II muscle fibers and myonuclear domains. Moreover, it has been reported that AASs can increase tolerance to exercise by making the muscles more capable to overload therefore shielding them from muscle fiber damage and improving the level of protein synthesis during recovery. Despite some therapeutic use of AASs, there is also wide abuse among athletes especially bodybuilders in order to improve their performances and to increase muscle growth and lean body mass, taking into account the significant anabolic effects of these drugs. The prolonged misuse and abuse of AASs can determine several adverse effects, some of which may be even fatal especially on the cardiovascular system because they may increase the risk of sudden cardiac death (SCD), myocardial infarction, altered serum lipoproteins, and cardiac hypertrophy. The aim of this review is to focus on deaths related to AAS abuse, trying to evaluate the autoptic, histopathological and toxicological findings in order to investigate the pathophysiological mechanism that underlines this type of death, which

  1. IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victoria, E.J.; Pierce, S.W.; Branks, M.J.

    1990-01-01

    Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting frommore » the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10%, consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3.« less

  2. Targeting androgen receptor and JunD interaction for prevention of prostate cancer progression.

    PubMed

    Mehraein-Ghomi, Farideh; Kegel, Stacy J; Church, Dawn R; Schmidt, Joseph S; Reuter, Quentin R; Saphner, Elizabeth L; Basu, Hirak S; Wilding, George

    2014-05-01

    Multiple studies show that reactive oxygen species (ROS) play a major role in prostate cancer (PCa) development and progression. Previously, we reported an induction of Spermidine/Spermine N(1) -Acetyl Transferase (SSAT) by androgen-activated androgen receptor (AR)-JunD protein complex that leads to over-production of ROS in PCa cells. In our current research, we identify small molecules that specifically block AR-JunD in this ROS-generating metabolic pathway. A high throughput assay based on Gaussia Luciferase reconstitution was used to identify inhibitors of the AR-JunD interaction. Selected hits were further screened using a fluorescence polarization competitor assay to eliminate those that bind to the AR Ligand Binding Domain (LBD), in order to identify molecules that specifically target events downstream to androgen activation of AR. Eleven molecules were selected for studies on their efficacy against ROS generation and growth of cultured human PCa cells by DCFH dye-oxidation assay and DNA fluorescence assay, respectively. In situ Proximity Ligation Assay (PLA), SSAT promoter-luciferase reporter assay, and western blotting of apoptosis and cell cycle markers were used to study mechanism of action of the lead compound. Selected lead compound GWARJD10 with EC(50) 10 μM against ROS production was shown to block AR-JunD interaction in situ as well as block androgen-induced SSAT gene expression at IC(50) 5 μM. This compound had no effect on apoptosis markers, but reduced cyclin D1 protein level. Inhibitor of AR-JunD interaction, GWARJD10 shows promise for prevention of progression of PCa at an early stage of the disease by blocking growth and ROS production. © 2014 Wiley Periodicals, Inc.

  3. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    PubMed Central

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  4. MUC1-C ONCOPROTEIN CONFERS ANDROGEN-INDEPENDENT GROWTH OF HUMAN PROSTATE CANCER CELLS

    PubMed Central

    Rajabi, Hasan; Ahmad, Rehan; Jin, Caining; Joshi, Maya Datt; Guha, Minakshi; Alam, Maroof; Kharbanda, Surender; Kufe, Donald

    2012-01-01

    Background The mucin 1 (MUC1) heterodimeric oncoprotein is overexpressed in human prostate cancers with aggressive pathologic and clinical features. However, few insights are available regarding the functional role of MUC1 in prostate cancer. Methods Effects of MUC1-C on AR expression were determined by RT-PCR, immunoblotting and AR promoter activation. Coimmunoprecipitations, direct binding assays and chromatin immunoprecipitation (ChIP) studies were performed to assess the interaction between MUC1-C and AR. Cells were analyzed for invasion, growth in androgen-depleted medium and sensitivity to MUC1-C inhibitors. Results The present studies in androgen-dependent LNCaP and LAPC4 prostate cancer cells demonstrate that the oncogenic MUC1-C subunit suppresses AR expression. The results show that MUC1-C activates a posttranscriptional mechanism involving miR-135b-mediated downregulation of AR mRNA levels. The results further demonstrate that MUC1-C forms a complex with AR through a direct interaction between the MUC1-C cytoplasmic domain and the AR DNA-binding domain. In addition, MUC1-C associates with AR in a complex that occupies the PSA promoter. The interaction between MUC1-C and AR is associated with induction of the epithelial-mesenchymal transition (EMT) and increased invasion. MUC1-C also conferred growth in androgen-depleted medium and resistance to bicalutamide treatment. Moreover, expression of MUC1-C resulted in sensitivity to the MUC1-C inhibitor GO-203 with inhibition of growth in vitro. GO-203 treatment also inhibited growth of established tumor xenografts in nude mice. Conclusions These findings indicate that MUC1-C suppresses AR expression in prostate cancer cells and confers a more aggressive androgen-independent phenotype that is sensitive to MUC1-C inhibition. PMID:22473899

  5. The phosphatidylinositol transfer protein RdgBβ binds 14-3-3 via its unstructured C-terminus, whereas its lipid-binding domain interacts with the integral membrane protein ATRAP (angiotensin II type I receptor-associated protein).

    PubMed

    Garner, Kathryn; Li, Michelle; Ugwuanya, Natalie; Cockcroft, Shamshad

    2011-10-01

    PITPs [PI (phosphatidylinositol) transfer proteins] bind and transfer PI between intracellular membranes and participate in many cellular processes including signalling, lipid metabolism and membrane traffic. The largely uncharacterized PITP RdgBβ (PITPNC1; retinal degeneration type B β), contains a long C-terminal disordered region following its defining N-terminal PITP domain. In the present study we report that the C-terminus contains two tandem phosphorylated binding sites (Ser(274) and Ser(299)) for 14-3-3. The C-terminus also contains PEST sequences which are shielded by 14-3-3 binding. Like many proteins containing PEST sequences, the levels of RdgBβ are regulated by proteolysis. RdgBβ is degraded with a half-life of 4 h following ubiquitination via the proteasome. A mutant RdgBβ which is unable to bind 14-3-3 is degraded even faster with a half-life of 2 h. In vitro, RdgBβ is 100-fold less active than PITPα for PI transfer, and RdgBβ proteins (wild-type and a mutant that cannot bind 14-3-3) expressed in COS-7 cells or endogenous proteins from heart cytosol do not exhibit transfer activity. When cells are treated with PMA, the PITP domain of RdgBβ interacts with the integral membrane protein ATRAP (angiotensin II type I receptor-associated protein; also known as AGTRAP) causing membrane recruitment. We suggest that RdgBβ executes its function following recruitment to membranes via its PITP domain and the C-terminal end of the protein could regulate entry to the hydrophobic cavity.

  6. Bacillus thuringiensis Cry1A toxin-binding glycoconjugates present on the brush border membrane and in the peritrophic membrane of the Douglas-fir tussock moth are peritrophins

    Treesearch

    Algimantas P. Valaitis; John D. Podgwaite

    2013-01-01

    Bacillus thuringiensis (Bt) Cry1A toxin-binding sites in the Douglas fir tussock moth (DFTM) larval gut were localized using immunofluorescence microscopy. Cry1Aa, Cry1Ab and Cry1Ac all bound strongly to the DFTM peritrophic membrane (PM); weaker binding of the Cry1A toxins was observed along the apical brush border of the midgut epithelium....

  7. Sensing Membrane Stresses by Protein Insertions

    PubMed Central

    Campelo, Felix; Kozlov, Michael M.

    2014-01-01

    Protein domains shallowly inserting into the membrane matrix are ubiquitous in peripheral membrane proteins involved in various processes of intracellular membrane shaping and remodeling. It has been suggested that these domains sense membrane curvature through their preferable binding to strongly curved membranes, the binding mechanism being mediated by lipid packing defects. Here we make an alternative statement that shallow protein insertions are universal sensors of the intra-membrane stresses existing in the region of the insertion embedding rather than sensors of the curvature per se. We substantiate this proposal computationally by considering different independent ways of the membrane stress generation among which some include changes of the membrane curvature whereas others do not alter the membrane shape. Our computations show that the membrane-binding coefficient of shallow protein insertions is determined by the resultant stress independently of the way this stress has been produced. By contrast, consideration of the correlation between the insertion binding and the membrane curvature demonstrates that the binding coefficient either increases or decreases with curvature depending on the factors leading to the curvature generation. To validate our computational model, we treat quantitatively the experimental results on membrane binding by ALPS1 and ALPS2 motifs of ArfGAP1. PMID:24722359

  8. The Charcot Marie Tooth disease protein LITAF is a zinc-binding monotopic membrane protein

    PubMed Central

    Qin, Wenxia; Wunderley, Lydia; Barrett, Anne L.; High, Stephen; Woodman, Philip G.

    2016-01-01

    LITAF (LPS-induced TNF-activating factor) is an endosome-associated integral membrane protein important for multivesicular body sorting. Several mutations in LITAF cause autosomal-dominant Charcot Marie Tooth disease type 1C. These mutations map to a highly conserved C-terminal region, termed the LITAF domain, which includes a 22 residue hydrophobic sequence and flanking cysteine-rich regions that contain peptide motifs found in zinc fingers. Although the LITAF domain is thought to be responsible for membrane integration, the membrane topology of LITAF has not been established. Here, we have investigated whether LITAF is a tail-anchored (TA) membrane-spanning protein or monotopic membrane protein. When translated in vitro, LITAF integrates poorly into ER-derived microsomes compared with Sec61β, a bona fide TA protein. Furthermore, introduction of N-linked glycosylation reporters shows that neither the N-terminal nor C-terminal domains of LITAF translocate into the ER lumen. Expression in cells of an LITAF construct containing C-terminal glycosylation sites confirms that LITAF is not a TA protein in cells. Finally, an immunofluorescence-based latency assay showed that both the N- and C-termini of LITAF are exposed to the cytoplasm. Recombinant LITAF contains 1 mol/mol zinc, while mutation of predicted zinc-binding residues disrupts LITAF membrane association. Hence, we conclude that LITAF is a monotopic membrane protein whose membrane integration is stabilised by a zinc finger. The related human protein, CDIP1 (cell death involved p53 target 1), displays identical membrane topology, suggesting that this mode of membrane integration is conserved in LITAF family proteins. PMID:27582497

  9. Androgens and polycystic ovary syndrome.

    PubMed

    Nisenblat, Vicki; Norman, Robert J

    2009-06-01

    Polycystic ovary syndrome (PCOS) is a common complex endocrine genetic disorder, which involves overproduction of androgens, leading to heterogeneous range of symptoms and associated with increased metabolic and cardiovascular morbidity. This review focuses on androgen biosynthesis, use, metabolism in PCOS and clinical consequences of hyperandrogenism. Controversial definition of the disorder and different phenotypic subgroups present a challenge for clinical and basic research. Further investigation of different phenotypes highlights the fact that PCOS probably represents a group of disorders with different etiologies. Prenatal androgen exposure and adolescent studies suggest early in life androgen excess as initiating factor of PCOS, but insufficient evidence available to confirm this hypothesis. Various intracellular signaling pathways implicated in PCOS steroidogenesis and in androgen action have been studied, however, PCOS pathogenesis remains obscure. Growing evidence links androgens with pathophysiology of PCOS and metabolic derangements. Despite intensive investigation, etiology and underlying mechanisms of PCOS remain unclear, warranting further investigation. Better understanding of molecular and genetic basis might lead to invention of novel therapeutic approaches. Long-term interventional studies that lower androgen levels in women with hyperandrogenism might protect against metabolic and cardiovascular comorbidities are needed.

  10. Design, synthesis, and biological characterization of metabolically stable selective androgen receptor modulators.

    PubMed

    Marhefka, Craig A; Gao, Wenqing; Chung, Kiwon; Kim, Juhyun; He, Yali; Yin, Donghua; Bohl, Casey; Dalton, James T; Miller, Duane D

    2004-02-12

    A series of nonsteroidal ligands were synthesized as second-generation agonists for the androgen receptor (AR). These ligands were designed to eliminate metabolic sites identified in one of our first-generation AR agonists, which was inactive in vivo due to its rapid metabolism to inactive constituents. The binding affinity of these compounds was evaluated using AR isolated from rat ventral prostate. These second-generation compounds bound the AR in a high affinity and stereoselective manner, with K(i) values ranging from about 4 to 130 nM. The ability of these ligands to stimulate AR-mediated transcriptional activation was examined in cells transfected with the human AR and a hormone-dependent luciferase reporter gene. Although some compounds were unable to stimulate AR-mediated transcription, several demonstrated activity similar to that of dihydrotestosterone (DHT, an endogenous steroidal ligand for the AR). We also evaluated the in vivo pharmacologic activity of selected compounds in castrated male rats. Three compounds were identified as selective androgen receptor modulators (SARMs), exhibiting significant anabolic activity while having only moderate to minimal androgenic activity in vivo.

  11. Design, Synthesis, and Biological Characterization of Metabolically Stable Selective Androgen Receptor Modulators

    PubMed Central

    Marhefka, Craig A.; Gao, Wenqing; Chung, Kiwon; Kim, Juhyun; He, Yali; Yin, Donghua; Bohl, Casey; Dalton, James T.; Miller, Duane D.

    2007-01-01

    A series of nonsteroidal ligands were synthesized as second-generation agonists for the androgen receptor (AR). These ligands were designed to eliminate metabolic sites identified in one of our first-generation AR agonists, which was inactive in vivo due to its rapid metabolism to inactive constituents. The binding affinity of these compounds was evaluated using AR isolated from rat ventral prostate. These second-generation compounds bound the AR in a high affinity and stereoselective manner, with Ki values ranging from about 4 to 130 nM. The ability of these ligands to stimulate AR-mediated transcriptional activation was examined in cells transfected with the human AR and a hormone-dependent luciferase reporter gene. Although some compounds were unable to stimulate AR-mediated transcription, several demonstrated activity similar to that of dihydrotestosterone (DHT, an endogenous steroidal ligand for the AR). We also evaluated the in vivo pharmacologic activity of selected compounds in castrated male rats. Three compounds were identified as selective androgen receptor modulators (SARMs), exhibiting significant anabolic activity while having only moderate to minimal androgenic activity in vivo. PMID:14761201

  12. Effects of androgens on insulin action in women: is androgen excess a component of female metabolic syndrome?

    PubMed

    Corbould, A

    2008-10-01

    Hyperinsulinemia as a consequence of insulin resistance causes hyperandrogenemia in women. The objective was to review evidence for the converse situation, i.e. whether androgens adversely influence insulin action. Androgen excess could potentially contribute to the pathogenesis of insulin resistance in women with polycystic ovary syndrome (PCOS), metabolic syndrome/type 2 diabetes, and in obese peripubertal girls. An Entrez-PubMed search was conducted to identify studies addressing the relationship of androgens with metabolic syndrome/type 2 diabetes in women. Studies reporting outcomes of androgen administration, interventions to reduce androgen effects in hyperandrogenemic women, and basic studies investigating androgen effects on insulin target tissues were reviewed. Multiple studies showed associations between serum testosterone and insulin resistance or metabolic syndrome/type 2 diabetes risk in women, but their cross-sectional nature did not allow conclusions about causality. Androgen administration to healthy women was associated with development of insulin resistance. Intervention studies in women with hyperandrogenism were limited by small subject numbers and use of indirect methods for assessing insulin sensitivity. However, in three of the seven studies using euglycemic hyperinsulinemic clamps, reduction of androgen levels or blockade of androgen action improved insulin sensitivity. Testosterone administration to female rats caused skeletal muscle insulin resistance. Testosterone induced insulin resistance in adipocytes of women in vitro. In conclusion, the metabolic consequences of androgen excess in women have been under-researched. Studies of long-term interventions that lower androgen levels or block androgen effects in young women with hyperandrogenism are needed to determine whether these might protect against metabolic syndrome/type 2 diabetes in later life. Copyright (c) 2008 John Wiley & Sons, Ltd.

  13. Androgen deficiency and dry eye syndrome in the aging male.

    PubMed

    Azcarate, Patrick M; Venincasa, Vincent D; Feuer, William; Stanczyk, Frank; Schally, Andrew V; Galor, Anat

    2014-07-03

    To evaluate the relationship between androgen levels and subjective and objective measures of dry eye syndrome (DES). A total of 263 male patients from the Miami Veterans Affairs Medical Center eye clinic aged ≥50 were recruited for this prospective cross-sectional study. Patients completed Dry Eye Questionnaire 5, underwent tear film evaluation, and had serum androgen levels measured. The correlations between androgen levels, DES composite scores, DES symptoms, and global, lipid, and aqueous tear film parameters were evaluated. Two hundred sixty-three patients with a mean age of 69 (50-95) were examined. There was no linear association between composite DES scores (generated using latent class analysis) and androgen levels. However, eyes with high DES scores (0.95-1.0) had higher levels of sex hormone-binding globulin (P = 0.03) and lower levels of dehydroepiandrosterone sulfate (DHEAS) (P = 0.02), androstenedione (A) (P = 0.02), and androstane-3α,17β-diol glucuronide (P = 0.03) compared to eyes with intermediate (0.05-0.95) or low (0-0.05) scores. There were no strong correlations between tear film measures and androgen levels. Regarding global parameters, a weak inverse correlation was found between corneal staining and A (r = -0.17, P = 0.009). For lipid parameters, a weak correlation existed between tear breakup time (TBUT) and A (r = 0.15, P = 0.02). When considering aqueous and lipid deficiency independently, the association between TBUT and A existed only with aqueous tear deficiency (r = 0.66, P = 0.002). Regarding aqueous parameters, a weak correlation existed between Schirmer test and DHEAS (r = 0.13, P = 0.047) and A (r = 0.21, P = 0.001). There was a weak correlation between higher levels of androstenedione and healthier global, lipid, and aqueous tear film parameters. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  14. 2-(/sup 125/I)iodomelatonin binding sites in hamster brain membranes: pharmacological characteristics and regional distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, M.J.; Takahashi, J.S.; Dubocovich, M.L.

    1988-05-01

    Studies in a variety of seasonally breeding mammals have shown that melatonin mediates photoperiodic effects on reproduction. Relatively little is known, however, about the site(s) or mechanisms of action of this hormone for inducing reproductive effects. Although binding sites for (3H)melatonin have been reported previously in bovine, rat, and hamster brain, the pharmacological selectivity of these sites was never demonstrated. In the present study, we have characterized binding sites for a new radioligand, 2-(125I)iodomelatonin, in brains from a photoperiodic species, the Syrian hamster. 2-(125I)Iodomelatonin labels a high affinity binding site in hamster brain membranes. Specific binding of 2-(125I)iodomelatonin is rapid,more » stable, saturable, and reversible. Saturation studies demonstrated that 2-(125I)iodomelatonin binds to a single class of sites with an affinity constant (Kd) of 3.3 +/- 0.5 nM and a total binding capacity (Bmax) of 110.2 +/- 13.4 fmol/mg protein (n = 4). The Kd value determined from kinetic analysis (3.1 +/- 0.9 nM; n = 5) was very similar to that obtained from saturation experiments. Competition experiments showed that the relative order of potency of a variety of indoles for inhibition of 2-(125I)iodomelatonin binding site to hamster brain membranes was as follows: 6-chloromelatonin greater than or equal to 2-iodomelatonin greater than N-acetylserotonin greater than or equal to 6-methoxymelatonin greater than or equal to melatonin greater than 6-hydroxymelatonin greater than or equal to 6,7-dichloro-2-methylmelatonin greater than 5-methoxytryptophol greater than 5-methoxytryptamine greater than or equal to 5-methoxy-N,N-dimethyltryptamine greater than N-acetyltryptamine greater than serotonin greater than 5-methoxyindole (inactive).« less

  15. Mode of action: inhibition of androgen receptor function--vinclozolin-induced malformations in reproductive development.

    PubMed

    Kavlock, Robert; Cummings, Audrey

    2005-01-01

    Vinclozolin is a fungicide that has been shown to cause Leydig cell tumors and atrophy of the accessory sex glands in adult rodents. In addition, exposure of rats during pregnancy causes a pattern of malformations in the male urogenital tract. A wealth of standard toxicological studies and targeted research efforts is available related to this adverse effect, and these were used to evaluate the Human Relevance Framework (HRF) for noncancer health effects. Vinclozolin and two of its metabolites, designated M1 and M2, have been shown to bind and inhibit the function of the rat and human androgen receptor. Other means of interfering with androgen receptor function (e.g., by exposure to the pharmaceutical agent flutamide) lead to similar adverse health outcomes. There is direct in vivo evidence in the rat prostate that androgen-dependent gene expression changes occur after exposure to vinclozolin. There are no proposed alternatives to the androgen receptor-mediated mode of action. Based on what is known about kinetic and dynamic factors, confidence is high that the animal mode of action (MOA) for vinclozolin-induced malformation of the male reproductive tract is highly plausible in humans.

  16. Androgens and androgenic activity in broiler manure assessed by means of chemical analyses and in vitro bioassays.

    PubMed

    Valdehita, Ana; Fernández-Cruz, María-Luisa; González-Gullón, María Isabel; Becerra-Neira, Eduardo; Delgado, María Mar; García-González, Mari Cruz; Navas, José María

    2017-07-01

    The use of manure as an agricultural amendment is increasing the release of steroid hormones into the environment. Most research in this field has focused on estrogenic phenomena, with less attention paid to androgenic substances. The present study assessed androgenic activity in broiler manure using in vitro approaches based on cells stably transfected with androgen receptor. Leaching experiments were also performed to observe whether endocrine disruptors present in manure pass through a soil column and potentially reach groundwater. In parallel, an analytical chemistry method was used to determine the contribution of the most important natural androgens to androgenicity. Samplings were performed at 4 farms in 2 seasons. All but 2 samples showed androgen activity. In leakage experiments, however, no androgenic activity was detectable in leachates or in soils after leaching. According to the analytical results, androgenicity can be attributed mainly (but not completely) to androstenedione, and dihydrotestosterone. Similarly to the bioassays, chemical analysis did not reveal the presence of any androgen in leachates or soils. These results point to a rapid degradation of the substances responsible for androgenic activity in soils under the experimental conditions of the present study. However, the long-term effects associated with the constant and intensive application of manure to agricultural land require further attention. Environ Toxicol Chem 2017;36:1746-1754. © 2016 SETAC. © 2016 SETAC.

  17. Androgen Receptor Signaling in Bladder Cancer

    PubMed Central

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer. PMID:28241422

  18. Abhydrolase domain containing 2, an androgen target gene, promotes prostate cancer cell proliferation and migration.

    PubMed

    Obinata, Daisuke; Takada, Shogo; Takayama, Ken-ichi; Urano, Tomohiko; Ito, Akiko; Ashikari, Daisaku; Fujiwara, Kyoko; Yamada, Yuta; Murata, Taro; Kumagai, Jinpei; Fujimura, Tetsuya; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Homma, Yukio; Takahashi, Satoru; Inoue, Satoshi

    2016-04-01

    The androgen receptor (AR) plays a key role in the development of prostate cancer. AR signalling mediates the expression of androgen-responsive genes, which are involved in prostate cancer development and progression. Our previous chromatin immunoprecipitation study showed that the region of abhydrolase domain containing 2 (ABHD2) includes a functional androgen receptor binding site. In this study, we demonstrated that ABHD2 is a novel androgen-responsive gene that is overexpressed in human prostate cancer tissues. The expression levels of ABHD2 in androgen-sensitive cells were evaluated by quantitative reverse transcription polymerase chain reaction and western-blot analyses. LNCaP and VCaP cells with ABHD2 overexpression or short interfering RNA (siRNA) knockdown were used for functional analyses. ABHD2 expression was examined in clinical samples of prostate cancer by immunohistochemistry. We showed that ABHD2 expression is increased by androgen in LNCaP and VCaP cells. This androgen-induced ABHD2 expression was diminished by bicalutamide. While stable expression of ABHD2 affected the enhancement of LNCaP cell proliferation and migration, siRNA-mediated ABHD2 knockdown suppressed cell proliferation and migration. In addition, the siRNA treatment significantly repressed the tumour growth derived from LNCaP cells in athymic mice. Immunohistochemical analysis of ABHD2 expression in tumour specimens showed a positive correlation of ABHD2 immunoreactivity with high Gleason score and pathological N stage. Moreover, patients with high immunoreactivity of ABHD2 showed low cancer-specific survival rates and a resistance to docetaxel-based chemotherapy. ABHD2 is a novel androgen-regulated gene that can promote prostate cancer growth and resistance to chemotherapy, and is a novel target for diagnosis and treatment of prostate cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Androgens regulate scarless repair of the endometrial "wound" in a mouse model of menstruation.

    PubMed

    Cousins, Fiona L; Kirkwood, Phoebe M; Murray, Alison A; Collins, Frances; Gibson, Douglas A; Saunders, Philippa T K

    2016-08-01

    The human endometrium undergoes regular cycles of synchronous tissue shedding (wounding) and repair that occur during menstruation before estrogen-dependent regeneration. Endometrial repair is normally both rapid and scarless. Androgens regulate cutaneous wound healing, but their role in endometrial repair is unknown. We used a murine model of simulated menses; mice were treated with a single dose of the nonaromatizable androgen dihydrotestosterone (DHT; 200 µg/mouse) to coincide with initiation of tissue breakdown. DHT altered the duration of vaginal bleeding and delayed restoration of the luminal epithelium. Analysis of uterine mRNAs 24 h after administration of DHT identified significant changes in metalloproteinases (Mmp3 and -9; P < 0.01), a snail family member (Snai3; P < 0.001), and osteopontin (Spp1; P < 0.001). Chromatin immunoprecipitation analysis identified putative androgen receptor (AR) binding sites in the proximal promoters of Mmp9, Snai3, and Spp1. Striking spatial and temporal changes in immunoexpression of matrix metalloproteinase (MMP) 3/9 and caspase 3 were detected after DHT treatment. These data represent a paradigm shift in our understanding of the role of androgens in endometrial repair and suggest that androgens may have direct impacts on endometrial tissue integrity. These studies provide evidence that the AR is a potential target for drug therapy to treat conditions associated with aberrant endometrial repair processes.-Cousins, F. L., Kirkwood, P. M., Murray, A. A., Collins, F., Gibson, D. A., Saunders, P. T. K. Androgens regulate scarless repair of the endometrial "wound" in a mouse model of menstruation. © The Author(s).

  20. Androgens and the male reproductive tract: an overview of classical roles and current perspectives.

    PubMed

    Patrão, Marilia T C C; Silva, Erick J R; Avellar, Maria Christina W

    2009-11-01

    Androgens are steroid hormones that play key roles in the development and maintenance of male phenotype and reproductive function. These hormones also affect the function of several non-reproductive organs, such as bone and skeletal muscle. Endogenous androgens exert most of their effects by genomic mechanisms, which involve hormone binding to the androgen receptor (AR), a ligand-activated transcription factor, resulting in the modulation of gene expression. AR-induced non-genomic mechanisms have also been reported. A large number of steroidal and non-steroidal AR-ligands have been developed for therapeutic use, including the treatment of male hypogonadism (AR agonists) and prostate diseases (AR antagonists), among other pathological conditions. Here, the AR gene and protein structure, mechanism of action and AR gene homologous regulation were reviewed. The AR expression pattern, its in vivo regulation and physiological relevance in the developing and adult testis and epididymis, which are sites of sperm production and maturation, respectively, were also presented.

  1. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases

    PubMed Central

    Evangelisti, Elisa; Cascella, Roberta; Becatti, Matteo; Marrazza, Giovanna; Dobson, Christopher M.; Chiti, Fabrizio; Stefani, Massimo; Cecchi, Cristina

    2016-01-01

    The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer’s disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca2+ across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane. PMID:27619987

  2. Effects of HO-/MeO-PBDEs on androgen receptor: in vitro investigation and helix 12-involved MD simulation.

    PubMed

    Wang, Xiaoxiang; Yang, Huaiyu; Hu, Xinxin; Zhang, Xiaowei; Zhang, Qiansen; Jiang, Hualiang; Shi, Wei; Yu, Hongxia

    2013-10-15

    Hydroxylated and methoxylated polybrominated diphenyl ethers (HO-/MeO-PBDEs) have received increasing attention for their potential endocrine disrupting activities and widely environmental distribution. However, little information is available for the anti-androgenic activities, and the molecular mechanism of interactions with androgen receptor (AR) is not fully understood. In the present study, cell line assay and computational simulation were integrated to systematically explore the molecular mechanism of interactions between chemicals and AR. The metabolites with similar molecular structures exhibited different anti-androgenic activity while none of them showed androgenic activity. According to the multisystem molecular dynamics simulation, minute differences in the structure of ligands induced dramatic different conformational transition of AR-ligand binding domain (LBD). The Helix12 (H12) component of active ligands occupied AR-LBD could become stable, but this component continued to fluctuate in inactive ligands occupied AR-LBD. Settling time and reposition of H12 obtained in dynamics process are important factors governing anti-androgenic activities. The related settling times were characteristic of anti-androgenic potencies of the tested chemicals. Overall, in our study, the stable reposition of H12 is characterized as a computational mark for identifying AR antagonists from PBDE metabolites, or even other various environmental pollutants.

  3. A Crayfish Insulin-like-binding Protein

    PubMed Central

    Rosen, Ohad; Weil, Simy; Manor, Rivka; Roth, Ziv; Khalaila, Isam; Sagi, Amir

    2013-01-01

    Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a “pulldown” methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23–38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development. PMID:23775079

  4. Pomegranate Polyphenols Downregulate Expression of Androgen Synthesizing Genes in Human Prostate Cancer Cells Overexpressing the Androgen Receptor

    PubMed Central

    Hong, Mee Young; Seeram, Navindra P.; Heber, David

    2008-01-01

    Prostate cancer is dependent on circulating testosterone in its early stages and is treatable with radiation and surgery. However, recurrent prostate tumors advance to an androgen-independent state where they progress in the absence of circulating testosterone leading to metastasis and death. During the development of androgen independence, prostate cancer cells are known to increase intracellular testosterone synthesis which maintains cancer cell growth in the absence of significant amounts of circulating testosterone. Overexpression of the androgen receptor (AR) occurs in androgen-independent prostate cancer and has been proposed as another mechanism promoting the development of androgen independence. The LNCaP-AR cell line is engineered to overexpress AR but is otherwise similar to the widely studied LNCaP cell line. We have previously shown that pomegranate extracts inhibit both androgen-dependent and androgen-independent prostate cancer cell growth. In the present study, we examined the effects of pomegranate polyphenols, ellagitannin-rich extract and whole juice extract on the expression of genes for key androgen synthesizing enzymes and the AR. We measured expression of the HSD3B2, AKR1C3 and SRD5A1 genes for the respective androgen synthesizing enzymes in LNCaP, LNCaP-AR, and DU-145 human prostate cancer cells. A two-fold suppression of gene expression was considered statistically significant. Pomegranate polyphenols inhibited gene expression and AR most consistently in the LNCaP-AR cell line (P =.05). Therefore, inhibition by pomegranate polyphenols of gene expression involved in androgen synthesis enzymes and the AR may be of particular importance in androgen-independent prostate cancer cells and the subset of human prostate cancers where AR is upregulated. PMID:18479901

  5. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes.

    PubMed

    Csermely, P; Szamel, M; Resch, K; Somogyi, J

    1988-05-15

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested (Parker, P.J., Coussens, L., Totty, N., Rhee, L., Young, S., Chen, E., Stabel, S., Waterfield, M.D., and Ullrich, A. (1986) Science 233, 853-859). In the present report, we demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes, and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn2+, while Fe2+ and Mn2+ are only partially counteractive. Our results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca2+, phorbol ester, or antigen.

  6. Androgen receptor requires JunD as a coactivator to switch on an oxidative stress generation pathway in prostate cancer cells.

    PubMed

    Mehraein-Ghomi, Farideh; Basu, Hirak S; Church, Dawn R; Hoffmann, F Michael; Wilding, George

    2010-06-01

    Relatively high oxidative stress levels in the prostate are postulated to be a major factor for prostate carcinogenesis and prostate cancer (CaP) progression. We focused on elucidating metabolic pathways of oxidative stress generation in CaP cells. Previously, we showed that the transcription factor JunD is essential for androgen-induced reactive oxygen species (ROS) production in androgen-dependent human CaP cells. We also recently showed that androgen induces the first and regulatory enzyme spermidine/spermine N1-acetyltransferase (SSAT) in a polyamine catabolic pathway that produces copious amounts of metabolic ROS. Here, we present coimmunoprecipitation and Gaussia luciferase reconstitution assay data that show that JunD forms a complex with androgen-activated androgen receptor (AR) in situ. Our chromatin immunoprecipitation assay data show that JunD binds directly to a specific SSAT promoter sequence only in androgen-treated LNCaP cells. Using a vector containing a luciferase reporter gene connected to the SSAT promoter and a JunD-silenced LNCaP cell line, we show that JunD is essential for androgen-induced SSAT gene expression. The elucidation of JunD-AR complex inducing SSAT expression leading to polyamine oxidation establishes the mechanistic basis of androgen-induced ROS production in CaP cells and opens up a new prostate-specific target for CaP chemopreventive/chemotherapeutic drug development. Copyright 2010 AACR.

  7. Rapid bursts of androgen-binding protein (Abp) gene duplication occurred independently in diverse mammals

    PubMed Central

    2008-01-01

    Background The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) α, β and γ subunits. Further investigation of 14 α-like (Abpa) and 13 β- or γ-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Results Here, we interrogate the latest 'finished' mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. Conclusion We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification. PMID:18269759

  8. Rapid bursts of androgen-binding protein (Abp) gene duplication occurred independently in diverse mammals.

    PubMed

    Laukaitis, Christina M; Heger, Andreas; Blakley, Tyler D; Munclinger, Pavel; Ponting, Chris P; Karn, Robert C

    2008-02-12

    The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) alpha, beta and gamma subunits. Further investigation of 14 alpha-like (Abpa) and 13 beta- or gamma-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Here, we interrogate the latest 'finished' mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification.

  9. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation.

    PubMed

    Yang, Shu; Zhang, Jiyuan; Zhang, Yalong; Wan, Xuechao; Zhang, Congzhe; Huang, Xiaohui; Huang, Wenhua; Pu, Honglei; Pei, Chaohan; Wu, Hai; Huang, Yan; Huang, Shengdong; Li, Yao

    2015-06-15

    Androgen receptor (AR) is a ligand dependent transcription factor that regulates the transcription of target genes. AR activity is closely involved in the maintenance and progression of prostate cancer. After the binding with androgen, AR moves into nucleus and binds to DNA sequence containing androgen response elements (ARE). Flavin-dependent monoamine oxidase KDM1A is necessary for AR driven transcription while the mechanism remains unclear. The association between androgen-dependent transcription and oxidation was tested through pharmaceutical inhibitions and siRNA knockdown of DNA oxidation repair components in prostate cancer cells. The recruitment of involved proteins and the histone methylation dynamics on ARE region was explored by chromatin immunoprecipitation (ChIP). Oxidation inhibition reduced AR dependent expression of KLK3, TMPRSS2, hsa-miR-125b2, and hsa-miR-133b. And such reduction could be restored by H2 O2 treatment. KDM1A recruitment and H3K4me2 demethylation on ARE regions, which produce H2 O2 , are associated with AR targets transcription. AR targets transcription and coupled oxidation recruit 8-oxoguanine-DNA glycosylase (OGG1) and the nuclease APEX1 to ARE regions. Such recruitment depends on KDM1A, and is necessary for AR targets transcription. Our work underlined the importance of histone demethylation and DNA oxidation/repairing machinery in androgen-dependent transcription. The present finds have implications for research into new druggable targets for prostate cancer relying on the cascade of AR activity regulation. © 2015 Wiley Periodicals, Inc.

  10. Evidence for a G protein-coupled diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) receptor binding site in lung membranes from rat.

    PubMed

    Laubinger, W; Reiser, G

    1999-01-29

    Nucleotide receptors are of considerable importance in the treatment of lung diseases, such as cystic fibrosis. Because diadenosine polyphosphates may also be of significance as signalling molecules in lung, as they are in a variety of tissues, in the present work we investigated the binding sites for [3H]diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) in plasma membranes from rat lung and studied their possible coupling to G proteins. We present evidence for a single high-affinity binding site for [3H]Ap4A with similar affinity for other diadenosine polyphosphates ApnA (n = 2 to 6). Displacement studies with different nucleotides revealed that the [3H]Ap4A binding site was different from P2X and P2Y2 receptor binding sites. Pretreatment of lung membranes with GTPgammaS or GTP in the presence of Mg2+ increased the Ki for Ap4A from 91 nM to 5.1 microM, which is indicative of G protein coupling. The putative coupling to G proteins was further confirmed by the enhancement of [35S]GTPgammaS binding (to Galpha proteins) to lung membranes by Ap4A (63% increase over basal) in a concentration-dependent manner. Therefore, our data for the first time provide evidence of a G protein-coupled Ap4A binding site in lung membranes.

  11. (/sup 3/H)Ethylketocyclazocine binding to mouse brain membranes: evidence for a kappa opioid receptor type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.

    1984-10-01

    The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portionmore » of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.« less

  12. Pathogenesis of Shigella diarrhea: rabbit intestinal cell microvillus membrane binding site for Shigella toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, G.; Mobassaleh, M.; Donohue-Rolfe, A.

    This study examined the binding of purified /sup 125/I-labeled shigella toxin to rabbit jejunal microvillus membranes (MVMs). Toxin binding was concentration dependent, saturable, reversible, and specifically inhibited by unlabeled toxin. The calculated number of toxin molecules bound at 4/sup 0/C was 7.9 X 10(10) (3 X 10(10) to 2 X 10(11))/micrograms of MVM protein or 1.2 X 10(6) per enterocyte. Scatchard analysis showed the binding site to be of a single class with an equilibrium association constant, K, of 4.7 X 10(9) M-1 at 4/sup 0/C. Binding was inversely related to the temperature of incubation. A total of 80% ofmore » the labeled toxin binding at 4/sup 0/C dissociated from MVM when the temperature was raised to 37/sup 0/C, but reassociated when the temperature was again brought to 4/sup 0/C. There was no structural or functional change of MVM due to toxin as monitored by electron microscopy or assay of MVM sucrase activity. These studies demonstrate a specific binding site for shigella toxin on rabbit MVMs. The physiological relevance of this receptor remains to be determined.« less

  13. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X.Z.; Raffa, R.B.

    1986-03-05

    FMRFamide (Phe-Met-Arg-Phe-NH/sub 2/) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they testedmore » the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both /sup 3/(H)-dihydromorphine and /sup 3/(H)-ethylketocyclazocine (IC/sub 50/ = 14 ..mu..M and 320 ..mu..M, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation.« less

  14. Differential display RT PCR of total RNA from human foreskin fibroblasts for investigation of androgen-dependent gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, E.M.; Moquin, A.; Adams, P.S.

    1996-05-03

    Male sexual differentiation is a process that involves androgen action via the androgen receptor. Defects in the androgen receptor, many resulting from point mutations in the androgen receptor gene, lead to varying degrees of impaired masculinization in chromosomally male individuals. To date no specific androgen regulated morphogens involved in this process have been identified and no marker genes are known that would help to predict further virilization in infants with partial androgen insensitivity. In the present study we first show data on androgen regulated gene expression investigated by differential display reverse transcription PCR (dd RT PCR) on total RNA frommore » human neonatal genital skin fibroblasts cultured in the presence or absence of 100 nM testosterone. Using three different primer combinations, 54 cDNAs appeared to be regulated by androgens. Most of these sequences show the characteristics of expressed mRNAs but showed no homology to sequences in the database. However 15 clones with significant homology to previously cloned sequences were identified. Seven cDNAs appear to be induced by androgen withdrawal. Of these, five are similar to ETS (expression tagged sequences) from unknown genes; the other two show significant homology to the cDNAs of ubiquitin and human guanylate binding protein 2 (GBP-2). In addition, we have identified 8 cDNA clones which show homologies to other sequences in the database and appear to be upregulated in the presence of testosterone. Three differential expressed sequences show significant homology to the cDNAs of L-plastin and one to the cDNA of testican. This latter gene codes for a proteoglycan involved in cell social behavior and therefore of special interest in this context. The results of this study are of interest in further investigation of normal and disturbed androgen-dependent gene expression. 49 refs., 2 figs., 5 tabs.« less

  15. Androgens and Androgen Derivatives: Science, Myths, and Theories: Explored From a Special Operations Perspective.

    PubMed

    Givens, Melissa L; Deuster, Patricia

    2015-01-01

    Androgen use outside of legitimate medical therapy is a perceived concern that is drawing attention across military and specifically Special Operations Forces (SOF) communities. For leadership and the medical community to properly address the issue and relate to those individuals who are using or considering use, it will be crucial to understand the scope of the problem. Limited data suggest that the prevalence of androgen use may be increasing, and inferences made from the scientific literature suggest that SOF may be a population of concern. While risks of androgen use are well known, there are little data specific to military performance that can be applied to a rigorous risk:benefit analysis, allowing myths and poorly supported theories to perpetuate within the community. Further efforts to define the potential benefits balanced against the short- and long-term risks should be undertaken. Providers within the SOF community should arm themselves with information to engage androgen users and leadership in meaningful discussion regarding androgen use. 2015.

  16. Registered report: the androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man

    PubMed Central

    Chronscinski, Denise; Cherukeri, Srujana; Tan, Fraser; Lomax, Joelle; Iorns, Elizabeth

    2015-01-01

    The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative (PCFMFRI) seeks to address growing concerns about reproducibility in scientific research by conducting replications of recent papers in the field of prostate cancer. This Registered Report describes the proposed replication plan of key experiments from “The Androgen Receptor Induces a Distinct Transcriptional Program in Castration-Resistant Prostate Cancer in Man” by Sharma and colleagues (2013), published in Cancer Cell in 2013. Of thousands of targets for the androgen receptor (AR), the authors elucidated a subset of 16 core genes that were consistently downregulated with castration and re-emerged with castration resistance. These 16 AR binding sites were distinct from those observed in cells in culture. The authors suggested that cellular context can have dramatic effects on downstream transcriptional regulation of AR binding sites. The present study will attempt to replicate Fig. 7C by comparing gene expression of the 16 core genes identified by Sharma and colleagues in xenograft tumor tissue compared to androgen treated LNCaP cells in vitro. The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative is a collaboration between the Prostate Cancer Foundation, the Movember Initiative, and Science Exchange, and the results of the replications will be published by PeerJ. PMID:26401447

  17. Characterization of the proton binding sites of extracellular polymeric substances in an anaerobic membrane bioreactor.

    PubMed

    Liu, Yi; Chang, Sheng; Defersha, Fantahun M

    2015-07-01

    This paper focuses on the characterization of the chemical compositions and acidic constants of the extracellular polymeric substances (EPSs) in an anaerobic membrane bioreactor treating synthetic brewery wastewater by using chemical analysis, linear programming analysis (LPA) of titration data, and FT-IR analysis. The linear programming analysis of titration data revealed that the EPSs have proton binding sites with pKa values from pKa ≤ 6, between 6 and 7, and approximately 9.8. The strong acidic sites (pKa ≤ 6) and some weak acidic sites (7.5 < pKa < 9.0) were found to be readily removed by 0.45-μm membrane filtration. In addition, the FT-IR analysis confirmed the presence of proteins, carbohydrates, nucleic acids, and lipids in the EPS samples. Based on the FT-IR analysis and the main chemical functional groups at the bacterial cell surfaces, the identified proton binding sites were related to carboxyl, phosphate, and hydroxyl/amine groups with pKa values of 4.6 ± 0.7, 6.6 ± 0.01, and 9.7 ± 0.1, respectively, with the corresponding respective intensities of 0.31 ± 0.05, 0.96 ± 0.3, and 1.53 ± 0.3 mmole/g-EPS. The pKa values and intensities of the proton binding sites are the fundamental molecular properties of EPSs that affect the EPS charge, molecular interactions, and metal complexation characteristics. Determination of such properties can advance Derjaguin-Landau-Verwey-Overbeek (DLVO)-based concentration polarization modeling, facilitate the estimation of the osmotic pressure of the EPS concentration polarization layers, and lead to a deeper understanding of the role of metal complexation in membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1

    PubMed Central

    Nambiar, Dhanya K.; Deep, Gagan; Singh, Rana P.; Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis. PMID:25294820

  19. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1.

    PubMed

    Nambiar, Dhanya K; Deep, Gagan; Singh, Rana P; Agarwal, Chapla; Agarwal, Rajesh

    2014-10-30

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis.

  20. Seminal Plasma Proteins as Androgen Receptor Coregulators Promote Prostate Cancer Growth

    DTIC Science & Technology

    2014-10-01

    structural proteins in human semen containing a high concentration of Zn2+, and their physiological functions have been well characterized...Specifically, semenogelins, upon binding to Zn2+, play an important role in gel-like formation of the semen [1]. After ejaculation, these proteins are degraded...determined whether SgI regulated the expression of PSA, an androgen- inducible AR target and also known to proteolyze SgI in semen [1,2], in prostate

  1. A Novel Phosphatidylinositol 4,5-Bisphosphate Binding Domain Mediates Plasma Membrane Localization of ExoU and Other Patatin-like Phospholipases*

    PubMed Central

    Tyson, Gregory H.; Halavaty, Andrei S.; Kim, Hyunjin; Geissler, Brett; Agard, Mallory; Satchell, Karla J.; Cho, Wonhwa; Anderson, Wayne F.; Hauser, Alan R.

    2015-01-01

    Bacterial toxins require localization to specific intracellular compartments following injection into host cells. In this study, we examined the membrane targeting of a broad family of bacterial proteins, the patatin-like phospholipases. The best characterized member of this family is ExoU, an effector of the Pseudomonas aeruginosa type III secretion system. Upon injection into host cells, ExoU localizes to the plasma membrane, where it uses its phospholipase A2 activity to lyse infected cells. The targeting mechanism of ExoU is poorly characterized, but it was recently found to bind to the phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a marker for the plasma membrane of eukaryotic cells. We confirmed that the membrane localization domain (MLD) of ExoU had a direct affinity for PI(4,5)P2, and we determined that this binding was required for ExoU localization. Previously uncharacterized ExoU homologs from Pseudomonas fluorescens and Photorhabdus asymbiotica also localized to the plasma membrane and required PI(4,5)P2 for this localization. A conserved arginine within the MLD was critical for interaction of each protein with PI(4,5)P2 and for localization. Furthermore, we determined the crystal structure of the full-length P. fluorescens ExoU and found that it was similar to that of P. aeruginosa ExoU. Each MLD contains a four-helical bundle, with the conserved arginine exposed at its cap to allow for interaction with the negatively charged PI(4,5)P2. Overall, these findings provide a structural explanation for the targeting of patatin-like phospholipases to the plasma membrane and define the MLD of ExoU as a member of a new class of PI(4,5)P2 binding domains. PMID:25505182

  2. Membrane-Mediated Cooperativity of Proteins

    NASA Astrophysics Data System (ADS)

    Weikl, Thomas R.

    2018-04-01

    Besides direct protein-protein interactions, indirect interactions mediated by membranes play an important role for the assembly and cooperative function of proteins in membrane shaping and adhesion. The intricate shapes of biological membranes are generated by proteins that locally induce membrane curvature. Indirect curvature-mediated interactions between these proteins arise because the proteins jointly affect the bending energy of the membranes. These curvature-mediated interactions are attractive for crescent-shaped proteins and are a driving force in the assembly of the proteins during membrane tubulation. Membrane adhesion results from the binding of receptor and ligand proteins that are anchored in the apposing membranes. The binding of these proteins strongly depends on nanoscale shape fluctuations of the membranes, leading to a fluctuation-mediated binding cooperativity. A length mismatch between receptor-ligand complexes in membrane adhesion zones causes repulsive curvature-mediated interactions that are a driving force for the length-based segregation of proteins during membrane adhesion.

  3. Structural Basis of Pullulanase Membrane Binding and Secretion Revealed by X-Ray Crystallography, Molecular Dynamics and Biochemical Analysis.

    PubMed

    East, Alexandra; Mechaly, Ariel E; Huysmans, Gerard H M; Bernarde, Cédric; Tello-Manigne, Diana; Nadeau, Nathalie; Pugsley, Anthony P; Buschiazzo, Alejandro; Alzari, Pedro M; Bond, Peter J; Francetic, Olivera

    2016-01-05

    The Klebsiella lipoprotein pullulanase (PulA) is exported to the periplasm, triacylated, and anchored via lipids in the inner membrane (IM) prior to its transport to the bacterial surface through a type II secretion system (T2SS). X-Ray crystallography and atomistic molecular dynamics (MD) simulations of PulA in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) model membrane provided an unprecedented molecular view of an N-terminal unstructured tether and the IM lipoprotein retention signal, and revealed novel interactions with the IM via N-terminal immunoglobulin-like domains in PulA. An efficiently secreted nonacylated variant (PulANA) showed similar peripheral membrane association during MD simulations, consistent with the binding of purified PulANA to liposomes. Remarkably, combined X-ray, MD, and functional studies identified a novel subdomain, Ins, inserted in the α-amylase domain, which is required for PulA secretion. Available data support a model in which PulA binding to the IM promotes interactions with the T2SS, possibly via the Ins subdomain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The Recombinant Sea Urchin Immune Effector Protein, rSpTransformer-E1, Binds to Phosphatidic Acid and Deforms Membranes

    PubMed Central

    Lun, Cheng Man; Samuel, Robin L.; Gillmor, Susan D.; Boyd, Anthony; Smith, L. Courtney

    2017-01-01

    The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that functions without adaptive capabilities and responds to pathogens effectively by expressing the highly diverse SpTransformer gene family (formerly the Sp185/333 gene family). The swift gene expression response and the sequence diversity of SpTransformer cDNAs suggest that the encoded proteins have immune functions. Individual sea urchins can express up to 260 distinct SpTransformer proteins, and their diversity suggests that different versions may have different functions. Although the deduced proteins are diverse, they share an overall structure of a hydrophobic leader, a glycine-rich N-terminal region, a histidine-rich region, and a C-terminal region. Circular dichroism analysis of a recombinant SpTransformer protein, rSpTransformer-E1 (rSpTrf-E1) demonstrates that it is intrinsically disordered and transforms to α helical in the presence of buffer additives and binding targets. Although native SpTrf proteins are associated with the membranes of perinuclear vesicles in the phagocyte class of coelomocytes and are present on the surface of small phagocytes, they have no predicted transmembrane region or conserved site for glycophosphatidylinositol linkage. To determine whether native SpTrf proteins associate with phagocyte membranes through interactions with lipids, when rSpTrf-E1 is incubated with lipid-embedded nylon strips, it binds to phosphatidic acid (PA) through both the glycine-rich region and the histidine-rich region. Synthetic liposomes composed of PA and phosphatidylcholine show binding between rSpTrf-E1 and PA by fluorescence resonance energy transfer, which is associated with leakage of luminal contents suggesting changes in lipid organization and perhaps liposome lysis. Interactions with liposomes also change membrane curvature leading to liposome budding, fusion, and invagination, which is associated with PA clustering induced by rSpTrf-E1

  5. Host and viral RNA-binding proteins involved in membrane targeting, replication and intercellular movement of plant RNA virus genomes

    PubMed Central

    Hyodo, Kiwamu; Kaido, Masanori; Okuno, Tetsuro

    2014-01-01

    Many plant viruses have positive-strand RNA [(+)RNA] as their genome. Therefore, it is not surprising that RNA-binding proteins (RBPs) play important roles during (+)RNA virus infection in host plants. Increasing evidence demonstrates that viral and host RBPs play critical roles in multiple steps of the viral life cycle, including translation and replication of viral genomic RNAs, and their intra- and intercellular movement. Although studies focusing on the RNA-binding activities of viral and host proteins, and their associations with membrane targeting, and intercellular movement of viral genomes have been limited to a few viruses, these studies have provided important insights into the molecular mechanisms underlying the replication and movement of viral genomic RNAs. In this review, we briefly overview the currently defined roles of viral and host RBPs whose RNA-binding activity have been confirmed experimentally in association with their membrane targeting, and intercellular movement of plant RNA virus genomes. PMID:25071804

  6. Flow cytometric sex sorting affects CD4 membrane distribution and binding of exogenous DNA on bovine sperm cells.

    PubMed

    Domingues, William Borges; da Silveira, Tony Leandro Rezende; Komninou, Eliza Rossi; Monte, Leonardo Garcia; Remião, Mariana Härter; Dellagostin, Odir Antônio; Corcini, Carine Dahl; Varela Junior, Antônio Sergio; Seixas, Fabiana Kömmling; Collares, Tiago; Campos, Vinicius Farias

    2017-08-01

    Bovine sex-sorted sperm have been commercialized and successfully used for the production of transgenic embryos of the desired sex through the sperm-mediated gene transfer (SMGT) technique. However, sex-sorted sperm show a reduced ability to internalize exogenous DNA. The interaction between sperm cells and the exogenous DNA has been reported in other species to be a CD4-like molecule-dependent process. The flow cytometry-based sex-sorting process subjects the spermatozoa to different stresses causing changes in the cell membrane. The aim of this study was to elucidate the relationship between the redistribution of CD4-like molecules and binding of exogenous DNA to sex-sorted bovine sperm. In the first set of experiments, the membrane phospholipid disorder and the redistribution of the CD4 were evaluated. The second set of experiments was conducted to investigate the effect of CD4 redistribution on the mechanism of binding of exogenous DNA to sperm cells and the efficiency of lipofection in sex-sorted bovine sperm. Sex-sorting procedure increased the membrane phospholipid disorder and induced the redistribution of CD4-like molecules. Both X-sorted and Y-sorted sperm had decreased DNA bound to membrane in comparison with the unsorted sperm; however, the binding of the exogenous DNA was significantly increased with the addition of liposomes. Moreover, we demonstrated that the number of sperm-bound exogenous DNA was decreased when these cells were preincubated with anti-bovine CD4 monoclonal antibody, supporting our hypothesis that CD4-like molecules indeed play a crucial role in the process of exogenous DNA/bovine sperm cells interaction.

  7. A selective androgen receptor modulator for hormonal male contraception.

    PubMed

    Chen, Jiyun; Hwang, Dong Jin; Bohl, Casey E; Miller, Duane D; Dalton, James T

    2005-02-01

    The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies, including hormonal male contraception. The identification of an orally bioavailable SARM with the ability to mimic the central and peripheral androgenic and anabolic effects of testosterone would represent an important step toward the "male pill". We characterized the in vitro and in vivo pharmacologic activity of (S)-3-(4-chloro-3-fluorophenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethylphenyl)propionamide (C-6), a novel SARM developed in our laboratories. C-6 was identified as an androgen receptor (AR) agonist with high AR binding affinity (K(i) = 4.9 nM). C-6 showed tissue-selective pharmacologic activity with higher anabolic activity than androgenic activity in male rats. The doses required to maintain the weight of the prostate, seminal vesicles, and levator ani muscle to half the size of the maximum effects (i.e., ED(50)) were 0.78 +/- 0.06, 0.88 +/- 0.1, and 0.17 +/- 0.04 mg/day, respectively. As opposed to other SARMs, gonadotropin levels in C-6-treated groups were significantly lower than control values. C-6 also significantly decreased serum testosterone concentration in intact rats after 2 weeks of treatment. Marked suppression of spermatogenesis was observed after 10 weeks of treatment with C-6 in intact male rats. Pharmacokinetic studies of C-6 in male rats revealed that C-6 was well absorbed after oral administration (bioavailability 76%), with a long (6.3 h) half-life at a dose of 10 mg/kg. These studies show that C-6 mimicked the in vivo pharmacologic and endocrine effects of testosterone while maintaining the oral bioavailability and tissue-selective actions of nonsteroidal SARMs.

  8. Development and Validation of a Computational Model for Androgen Receptor Activity

    PubMed Central

    2016-01-01

    Testing thousands of chemicals to identify potential androgen receptor (AR) agonists or antagonists would cost millions of dollars and take decades to complete using current validated methods. High-throughput in vitro screening (HTS) and computational toxicology approaches can more rapidly and inexpensively identify potential androgen-active chemicals. We integrated 11 HTS ToxCast/Tox21 in vitro assays into a computational network model to distinguish true AR pathway activity from technology-specific assay interference. The in vitro HTS assays probed perturbations of the AR pathway at multiple points (receptor binding, coregulator recruitment, gene transcription, and protein production) and multiple cell types. Confirmatory in vitro antagonist assay data and cytotoxicity information were used as additional flags for potential nonspecific activity. Validating such alternative testing strategies requires high-quality reference data. We compiled 158 putative androgen-active and -inactive chemicals from a combination of international test method validation efforts and semiautomated systematic literature reviews. Detailed in vitro assay information and results were compiled into a single database using a standardized ontology. Reference chemical concentrations that activated or inhibited AR pathway activity were identified to establish a range of potencies with reproducible reference chemical results. Comparison with existing Tier 1 AR binding data from the U.S. EPA Endocrine Disruptor Screening Program revealed that the model identified binders at relevant test concentrations (<100 μM) and was more sensitive to antagonist activity. The AR pathway model based on the ToxCast/Tox21 assays had balanced accuracies of 95.2% for agonist (n = 29) and 97.5% for antagonist (n = 28) reference chemicals. Out of 1855 chemicals screened in the AR pathway model, 220 chemicals demonstrated AR agonist or antagonist activity and an additional 174 chemicals were predicted to have

  9. The antiandrogenic effect of finasteride against a mutant androgen receptor

    PubMed Central

    Chhipa, Rishi Raj; Zhang, Haitao; Ip, Clement

    2011-01-01

    Finasteride is known to inhibit Type 2 5α-reductase and thus block the conversion of testosterone to dihydrotestosterone (DHT). The structural similarity of finasteride to DHT raises the possibility that finasteride may also interfere with the function of the androgen receptor (AR). Experiments were carried out to evaluate the antiandrogenic effect of finasteride in LNCaP, C4-2 and VCaP human prostate cancer cells. Finasteride decreased DHT binding to AR, and DHT-stimulated AR activity and cell growth in LNCaP and C4-2 cells, but not in VCaP cells. LNCaP and C4-2 (derived from castration-resistant LNCaP) cells express the T877A mutant AR, while VCaP cells express the wild-type AR. When PC-3 cells, which are AR-null, were transfected with either the wild-type or the T877A mutant AR, only the mutant AR-expressing cells were sensitive to finasteride inhibition of DHT binding. Peroxiredoxin-1 (Prx1) is a novel endogenous facilitator of AR binding to DHT. In Prx1-rich LNCaP cells, the combination of Prx1 knockdown and finasteride was found to produce a greater inhibitory effect on AR activity and cell growth than either treatment alone. The observation suggests that cells with a low expression of Prx1 are likely to be more responsive to the antiandrogenic effect of finasteride. Additional studies showed that the efficacy of finasteride was comparable to that of bicalutamide (a widely used non-steroidal antiandrogen). The implication of the above findings is discussed in the context of developing strategies to improve the outcome of androgen deprivation therapy. PMID:21386657

  10. Lepidium meyenii (Maca) does not exert direct androgenic activities.

    PubMed

    Bogani, P; Simonini, F; Iriti, M; Rossoni, M; Faoro, F; Poletti, A; Visioli, F

    2006-04-06

    Maca is the edible root of the Peruvian plant Lepidum meyenii, traditionally employed for its purported aphrodisiac and fertility-enhancing properties. This study aimed at testing the hypothesis that Maca contains testosterone-like compounds, able to bind the human androgen receptor and promote transcription pathways regulated by steroid hormone signaling. Maca extracts (obtained with different solvents: methanol, ethanol, hexane and chloroform) are not able to regulate GRE (glucocorticoid response element) activation. Further experiments are needed to assess which compound, of the several Maca's components, is responsible of the observed in vivo effects.

  11. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Y.C.; Liu, C.

    2010-12-28

    Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitorsmore » in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.« less

  12. Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes.

    PubMed

    Liu, Qian; Yao, Wei-Dong; Suzuki, Tatsuo

    2013-06-01

    Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. We recently demonstrated the presence, at the electron microscopic level, of complexes consisting of membrane rafts and postsynaptic densities (PSDs) in detergent-resistant membranes (DRMs) prepared from synaptic plasma membranes (SPMs) ( Suzuki et al., 2011 , J Neurochem, 119, 64-77). To further explore these complexes, here we investigated the nature of the binding between purified SPM-DRMs and PSDs in vitro. In binding experiments, we used SPM-DRMs prepared after treating SPMs with n-octyl-β-d-glucoside, because at concentrations of 1.0% or higher it completely separates SPM-DRMs and PSDs, providing substantially PSD-free unique SPM-DRMs as well as DRM-free PSDs. PSD binding to PSD-free DRMs was identified by mass spectrometry, Western blotting, and electron microscopy. PSD proteins were not incorporated into SPMs, and significantly less PSD proteins were incorporated into DRMs prepared from liver membranes, providing in vitro evidence that binding of PSDs to DRMs is specific and suggestion of the presence of specific interacting molecules. These specific interactions may have important roles in synaptic development, function, and plasticity in vivo. In addition, the binding system we developed may be a good tool to search for binding molecules and binding mechanisms between PSDs and rafts.

  13. The amphiphilic peptide adenoregulin enhances agonist binding to A1-adenosine receptors and [35S]GTP gamma S to brain membranes.

    PubMed

    Moni, R W; Romero, F S; Daly, J W

    1995-08-01

    1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state

  14. Bioactive Androgens and Glucuronidated Androgen Metabolites are Associated with Subcutaneous and Ectopic Skeletal Muscle Adiposity among Older Black Men

    PubMed Central

    Miljkovic, Iva; Cauley, Jane A; Dressen, Amy S; Gordon, Christopher L; Goodpaster, Bret H; Kuller, Lewis H; Bunker, Clareann H; Patrick, Alan L; Wheeler, Victor W; Orwoll, Eric S; Zmuda, Joseph M

    2011-01-01

    Aging is associated with declining serum levels of androgenic hormones and with increased skeletal muscle fat infiltration, an emerging risk factor for type 2 diabetes mellitus (T2DM). Androgens regulate fat mass and glucose homeostasis, but the effect of androgenic hormones on skeletal muscle fat infiltration is largely unknown. Thus, the aim of the current study was to examine the association of serum androgens and their precursors and metabolites with skeletal muscle fat infiltration and T2DM in a black male population group at high risk of T2DM. Serum androgens, estrogens, and androgen precursors and metabolites were measured using mass spectrometry, and calf skeletal muscle fat distribution [subcutaneous and intermuscular fat; skeletal muscle density] were measured using quantitative computed tomography in 472 Afro-Caribbean men aged 65 and older. Bioactive androgens, testosterone, free testosterone and dihydrotestosterone, were associated with less skeletal muscle fat infiltration (r=−0.14 to −0.18, P<0.05) and increased skeletal muscle density (r=0.10 to 0.14, P<0.05), independent of total adiposity. Additionally, glucuronidated androgen metabolites were associated with less subcutaneous fat (r=−0.11 to −0.15, P<0.05). Multivariate logistic regression analysis identified an increased level of 3α-diol-3 glucuronide (OR=1.38, P<0.01) and a decreased level of dihydrotestosterone (OR=0.66, P<0.01) to be significantly associated with T2DM. Our findings suggest that in elderly black men, independent of total adiposity, bioactive androgens and glucuronidated androgen metabolites may play previously unrecognized role in skeletal muscle fat distribution. Longitudinal studies are needed to further evaluate the relationship between androgens and androgen metabolites with changes in skeletal muscle fat distribution with aging and the incidence of T2DM. PMID:21353258

  15. Effects of Lys to Glu mutations in GsMTx4 on membrane binding, peptide orientation, and self-association propensity, as analyzed by molecular dynamics simulations.

    PubMed

    Nishizawa, Kazuhisa; Nishizawa, Manami; Gnanasambandam, Radhakrishnan; Sachs, Frederick; Sukharev, Sergei I; Suchyna, Thomas M

    2015-11-01

    GsMTx4, a gating modifier peptide acting on cationic mechanosensitive channels, has a positive charge (+5e) due to six Lys residues. The peptide does not have a stereospecific binding site on the channel but acts from the boundary lipids within a Debye length of the pore probably by changing local stress. To gain insight into how these Lys residues interact with membranes, we performed molecular dynamics simulations of Lys to Glu mutants in parallel with our experimental work. In silico, K15E had higher affinity for 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine bilayers than wild-type (WT) peptide or any other mutant tested, and showed deeper penetration than WT, a finding consistent with the experimental data. Experimentally, the inhibitory activities of K15E and K25E were most compromised, whereas K8E and K28E inhibitory activities remained similar to WT peptide. Binding of WT in an interfacial mode did not influence membrane thickness. With interfacial binding, the direction of the dipole moments of K15E and K25E was predicted to differ from WT, whereas those of K8E and K28E oriented similarly to that of WT. These results support a model in which binding of GsMTx4 to the membrane acts like an immersible wedge that serves as a membrane expansion buffer reducing local stress and thus inhibiting channel activity. In simulations, membrane-bound WT attracted other WT peptides to form aggregates. This may account for the positive cooperativity observed in the ion channel experiments. The Lys residues seem to fine-tune the depth of membrane binding, the tilt angle, and the dipole moments. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. DEVELOPMENT OF TWO ANDROGEN RECEPTOR ASSAYS USING ADENOVIRAL TRANSDUCTION OF MMTV-LUC REPORTER AND/OR HAR FOR ENDOCRINE SCREENING

    EPA Science Inventory

    Abstract
    The discovery of xenobiotics which interfere with androgen activity has highlighted the need to assess chemicals for their ability to modulate dihydrotestosterone (DHT)-receptor binding. Previous test systems have used cells transfected with plasmid containing a rep...

  17. Androgens in pregnancy: roles in parturition

    PubMed Central

    Makieva, Sofia; Saunders, Philippa T.K.; Norman, Jane E.

    2014-01-01

    BACKGROUND Understanding the physiology of pregnancy enables effective management of pregnancy complications that could otherwise be life threatening for both mother and fetus. A functional uterus (i) retains the fetus in utero during pregnancy without initiating stretch-induced contractions and (ii) is able to dilate the cervix and contract the myometrium at term to deliver the fetus. The onset of labour is associated with successful cervical remodelling and contraction of myometrium, arising from concomitant activation of uterine immune and endocrine systems. A large body of evidence suggests that actions of local steroid hormones may drive changes occurring in the uterine microenvironment at term. Although there have been a number of studies considering the potential role(s) played by progesterone and estrogen at the time of parturition, the bio-availability and effects of androgens during pregnancy have received less scrutiny. The aim of this review is to highlight potential roles of androgens in the biology of pregnancy and parturition. METHODS A review of published literature was performed to address (i) androgen concentrations, including biosynthesis and clearance, in maternal and fetal compartments throughout gestation, (ii) associations of androgen concentrations with adverse pregnancy outcomes, (iii) the role of androgens in the physiology of cervical remodelling and finally (iv) the role of androgens in the physiology of myometrial function including any impact on contractility. RESULTS Some, but not all, androgens increase throughout gestation in maternal circulation. The effects of this increase are not fully understood; however, evidence suggests that increased androgens might regulate key processes during pregnancy and parturition. For example, androgens are believed to be critical for cervical remodelling at term, in particular cervical ripening, via regulation of cervical collagen fibril organization. Additionally, a number of studies highlight

  18. Androgens in pregnancy: roles in parturition.

    PubMed

    Makieva, Sofia; Saunders, Philippa T K; Norman, Jane E

    2014-01-01

    Understanding the physiology of pregnancy enables effective management of pregnancy complications that could otherwise be life threatening for both mother and fetus. A functional uterus (i) retains the fetus in utero during pregnancy without initiating stretch-induced contractions and (ii) is able to dilate the cervix and contract the myometrium at term to deliver the fetus. The onset of labour is associated with successful cervical remodelling and contraction of myometrium, arising from concomitant activation of uterine immune and endocrine systems. A large body of evidence suggests that actions of local steroid hormones may drive changes occurring in the uterine microenvironment at term. Although there have been a number of studies considering the potential role(s) played by progesterone and estrogen at the time of parturition, the bio-availability and effects of androgens during pregnancy have received less scrutiny. The aim of this review is to highlight potential roles of androgens in the biology of pregnancy and parturition. A review of published literature was performed to address (i) androgen concentrations, including biosynthesis and clearance, in maternal and fetal compartments throughout gestation, (ii) associations of androgen concentrations with adverse pregnancy outcomes, (iii) the role of androgens in the physiology of cervical remodelling and finally (iv) the role of androgens in the physiology of myometrial function including any impact on contractility. Some, but not all, androgens increase throughout gestation in maternal circulation. The effects of this increase are not fully understood; however, evidence suggests that increased androgens might regulate key processes during pregnancy and parturition. For example, androgens are believed to be critical for cervical remodelling at term, in particular cervical ripening, via regulation of cervical collagen fibril organization. Additionally, a number of studies highlight potential roles for androgens

  19. [Propranolol beta-blocker decrease in the concentration of high-affinity binding sites for calcium ions by sarcolemma membranes of the rat heart].

    PubMed

    Seleznev, Iu M; Martynov, A V; Smirnov, V N

    1982-05-01

    In vivo administration of propranolol considerably inhibits the isoproterenol-stimulated increase in 45Ca accumulation by the myocardium and completely eliminates the potentiation of isoproterenol effect by hydrocortisone. A significant lowering of the concentration of high affinity binding sites for calcium in the sarcolemmal membranes can be produced by propranolol in vitro. Under these conditions, the glucocorticoids do not change the sarcolemmal Ca2+-binding parameters or modulate the propranolol effect. Therefore, for the manifestation of glucocorticoid action to be brought about, the integrity of the cells is apparently required, while propranolol seems to change calcium binding by direct interaction with the sarcolemmal membranes. It is suggested that in vivo propranolol inhibition of catecholamine effect on calcium ion accumulation by the myocardium depends on the interaction with the beta-receptors and direct modulation of the concentration of high affinity binding sites for calcium ions on the surface of the sarcolemma.

  20. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles.

    PubMed

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario

    2013-03-01

    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Iron porphyrin-modified PVDF membrane as a biomimetic material and its effectiveness on nitric oxide binding

    NASA Astrophysics Data System (ADS)

    Can, Faruk; Demirci, Osman Cahit; Dumoulin, Fabienne; Erhan, Elif; Arslan, Leyla Colakerol; Ergenekon, Pınar

    2017-10-01

    Nitric oxide (NO) is a reactive gas well-known as an air pollutant causing severe environmental problems. NO is also an important signaling molecule having a strong affinity towards heme proteins in the body. Taking this specialty as a model, a biomimetic membrane was developed by modification of the membrane surface with iron-porphyrin which depicts very similar structure to heme proteins. In this study, PVDF membrane was coated with synthesized (4-carboxyphenyl)-10,15,20-triphenyl-porphyrin iron(III) chloride (FeCTPP) to promote NO fixation on the surface. The coated membrane was characterized in terms of ATR-IR spectra, contact angle measurement, chemical composition, and morphological structure. Contact angle of original PVDF first decreased sharply after plasma treatment and surface polymerization steps but after incorporation of FeCTPP, the surface acquired its hydrophobicity again. NO binding capability of modified membrane surface was evaluated on the basis of X-ray Photoelectron. Upon exposure to NO gas, a chemical shift of Fe+3 and appearance of new N peak was observed due to the electron transfer from NO ligand to Fe ion with the attachment of nitrosyl group to FeCTPP. This modification brings the functionality to the membrane for being used in biological systems such as membrane bioreactor material in biological NO removal technology.

  2. Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting.

    PubMed

    Hwang Fu, Yu-Hsien; Huang, William Y C; Shen, Kuang; Groves, Jay T; Miller, Thomas; Shan, Shu-Ou

    2017-07-28

    The signal recognition particle (SRP) delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum, or the bacterial plasma membrane. The precise mechanism by which the bacterial SRP receptor, FtsY, interacts with and is regulated at the target membrane remain unclear. Here, quantitative analysis of FtsY-lipid interactions at single-molecule resolution revealed a two-step mechanism in which FtsY initially contacts membrane via a Dynamic mode, followed by an SRP-induced conformational transition to a Stable mode that activates FtsY for downstream steps. Importantly, mutational analyses revealed extensive auto-inhibitory mechanisms that prevent free FtsY from engaging membrane in the Stable mode; an engineered FtsY pre-organized into the Stable mode led to indiscriminate targeting in vitro and disrupted FtsY function in vivo. Our results show that the two-step lipid-binding mechanism uncouples the membrane association of FtsY from its conformational activation, thus optimizing the balance between the efficiency and fidelity of co-translational protein targeting.

  3. Interaction analysis of chimeric metal-binding green fluorescent protein and artificial solid-supported lipid membrane by quartz crystal microbalance and atomic force microscopy.

    PubMed

    Prachayasittikul, Virapong; Isarankura Na Ayudhya, Chartchalerm; Hilterhaus, Lutz; Hinz, Andreas; Tantimongcolwat, Tanawut; Galla, Hans-Joachim

    2005-02-04

    Non-specific adsorption and specific interaction between a chimeric green fluorescent protein (GFP) carrying metal-binding region and the immobilized zinc ions on artificial solid-supported lipid membranes was investigated using the quartz crystal microbalance technique and the atomic force microscopy (AFM). Supported lipid bilayer, composed of octanethiol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[N-(5-amino-1-carboxypentyl iminodiacetic acid)succinyl] (NTA-DOGS)-Zn2+, was formed on the gold electrode of quartz resonator (5 MHz). Binding of the chimeric GFP to zinc ions resulted in a rapid decrease of resonance frequency. Reversibility of the process was demonstrated via the removal of metal ions by EDTA. Nanoscale structural orientation of the chimeric GFP on the membrane was imaged by AFM. Association constant of the specific binding to metal ions was 2- to 3-fold higher than that of the non-specific adsorption, which was caused by the fluidization effect of the metal-chelating lipid molecules as well as the steric hindrance effect. This infers a possibility for a further development of biofunctionalized membrane. However, maximization is needed in order to attain closer advancement to a membrane-based sensor device.

  4. Sex-hormone-binding globulin.

    PubMed

    Anderson, D C

    1974-01-01

    A review was made to understand how plasma binding protein might influence sex-hormone action in target tissues. Steroids are predominately bound to plasma proteins and only unbound steroids enter the cells. Sex-hormone-binding globulin (SHBG) binds to both the main circulating steroid T and E2 but changes in SHBG concentrations exert significant results. Increased SHBG levels increase estrogen production and decreases T activity; whereas, increased androgens increase T action and inhibit SHBG production. These disturbances in hormone maintenance may lead to abnormal adult sex differentiation such as hirsutism and forms of hynaecomastia. By developing SHBG concentration measurement methods-responses of hirsutism to glucocorticoid or estrogem may be assessed. In addition, the effect of thyroid hormones on SHBG may also have therapeutic implications in endocrine disease.

  5. Size-dependent protein segregation at membrane interfaces

    PubMed Central

    Schmid, Eva M; Bakalar, Matthew H; Choudhuri, Kaushik; Weichsel, Julian; Ann, HyoungSook; Geissler, Phillip L; Dustin, Michael L; Fletcher, Daniel A

    2016-01-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane protein organization, such as E-cadherin enrichment in epithelial junctional complexes and CD45 exclusion from the signaling foci of immunological synapses. To isolate the role of protein size in these processes, we reconstituted membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between binding and non-binding proteins can dramatically alter their organization at membrane interfaces in the absence of active contributions from the cytoskeleton, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally-driven membrane height fluctuations that transiently limit access to the interface. This simple, sensitive, and highly effective means of passively segregating proteins has implications for signaling at cell-cell junctions and protein sorting at intracellular contact points between membrane-bound organelles. PMID:27980602

  6. Structural features and dynamic investigations of the membrane-bound cytochrome P450 17A1.

    PubMed

    Cui, Ying-Lu; Xue, Qiao; Zheng, Qing-Chuan; Zhang, Ji-Long; Kong, Chui-Peng; Fan, Jing-Rong; Zhang, Hong-Xing

    2015-10-01

    Cytochrome P450 (CYP) 17A1 is a dual-function monooxygenase with a critical role in the synthesis of many human steroid hormones. The enzyme is an important target for treatment of breast and prostate cancers that proliferate in response to estrogens and androgens. Despite the crystallographic structures available for CYP17A1, no membrane-bound structural features of this enzyme at atomic level are available. Accumulating evidence has indicated that the interactions between bounded CYPs and membrane could contribute to the recruitment of lipophilic substrates. To this end, we have investigated the effects on structural characteristics in the presence of the membrane for CYP17A1. The MD simulation results demonstrate a spontaneous insertion process of the enzyme to the lipid. Two predominant modes of CYP17A1 in the membrane are captured, characterized by the depths of insertion and orientations of the enzyme to the membrane surface. The measured heme tilt angles show good consistence with experimental data, thereby verifying the validity of the structural models. Moreover, conformational changes induced by the membrane might have impact on the accessibility of the active site to lipophilic substrates. The dynamics of internal aromatic gate formed by Trp220 and Phe224 are suggested to regulate tunnel opening motions. The knowledge of the membrane binding characteristics could guide future experimental and computational works on membrane-bound CYPs so that various investigations of CYPs in their natural, lipid environment rather than in artificially solubilized forms may be achieved. Copyright © 2015. Published by Elsevier B.V.

  7. The presence of an insulin-like androgenic gland factor (IAG) and insulin-like peptide binding protein (ILPBP) in the ovary of the blue crab, Callinectes sapidus and their roles in ovarian development.

    PubMed

    Huang, Xiaoshuai; Ye, Haihui; Chung, J Sook

    2017-08-01

    Insulin-like androgenic gland factor (IAG) that is produced by the male androgenic gland (AG), plays a role in sexual differentiation and maintenance of male secondary sex characteristics in decapod crustaceans. With an earlier finding of IAG expression in a female Callinectes sapidus ovary, we aimed to examine a putative role of IAG during the ovarian development of this species. To this end, the full-length cDNA sequence of the ovarian CasIAG (termed CasIAG-ova) has been isolated. The predicted mature peptide sequence of CasIAG-ova is identical to that of the IAG from the AG, except in their signal peptide regions. The CasIAG-ova contains an alternative initiation codon (UUG) as the start codon, which suggests that the translational regulation of CasIAG-ova may differ from that of the IAG from AG. To define the function of CasIAG-ova, the expressions of CasIAG-ova as well as its putative binding protein, insulin-like peptide binding protein (ILPBP), are measured in the ovaries at various developmental stages obtained from different seasons. Season affects both CasIAG and ILPBP expression in the ovary. Overall, summer females at earlier ovarian stages contain high levels of CasIAG and ILPBP than spring or fall females. These findings indicate that CasIAG-ova and CasILPBP may be involved in the ovarian development. When comparing the levels of CasIAG and CasILPBP in the ovary, the latter are much higher (∼10-10000 fold) than the former. Expression patterns of CasILPBP differ from those of CasIAG-ova during ovarian development and by season, suggesting that ILPBP may have an additional role in ovarian development rather than a function of a putative binding protein of IAG. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bacillus thuringiensis delta-endotoxin binding to brush border membrane vesicles of rice stem borers.

    PubMed

    Alcantara, Edwin P; Aguda, Remedios M; Curtiss, April; Dean, Donald H; Cohen, Michael B

    2004-04-01

    The receptor binding step in the molecular mode of action of five delta-endotoxins (Cry1Ab, Cry1Ac, Cry1C, Cry2A, and Cry9C) from Bacillus thuringiensis was examined to find toxins with different receptor sites in the midgut of the striped stem borer (SSB) Chilo suppressalis (Walker) and yellow stem borer (YSB) Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae). Homologous competition assays were used to estimate binding affinities (K(com)) of (125)I-labelled toxins to brush border membrane vesicles (BBMV). The SSB BBMV affinities in decreasing order was: Cry1Ab = Cry1Ac > Cry9C > Cry2A > Cry1C. In YSB, the order of decreasing affinities was: Cry1Ac > Cry1Ab > Cry9C = Cry2A > Cry1C. The number of binding sites (B(max)) estimated by homologous competition binding among the Cry toxins did not affect toxin binding affinity (K(com)) to both insect midgut BBMVs. Results of the heterologous competition binding assays suggest that Cry1Ab and Cry1Ac compete for the same binding sites in SSB and YSB. Other toxins bind with weak (Cry1C, Cry2A) or no affinity (Cry9C) to Cry1Ab and Cry1Ac binding sites in both species. Cry2A had the lowest toxicity to 10-day-old SSB and Cry1Ab and Cry1Ac were the most toxic. Taken together, the results of this study show that Cry1Ab or Cry1Ac could be combined with either Cry1C, Cry2A, or Cry9C for more durable resistance in transgenic rice. Cry1Ab should not be used together with Cry1Ac because a mutation in one receptor site could diminish binding of both toxins. Copyright 2004 Wiley-Liss, Inc.

  9. Munc13-4 Is a Rab11-binding Protein That Regulates Rab11-positive Vesicle Trafficking and Docking at the Plasma Membrane.

    PubMed

    Johnson, Jennifer L; He, Jing; Ramadass, Mahalakshmi; Pestonjamasp, Kersi; Kiosses, William B; Zhang, Jinzhong; Catz, Sergio D

    2016-02-12

    The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Characterization of the slow calcium channel binding sites for ( sup 3 H)SR 33557 in rat heart sarcolemmal membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatelain, P.; Beaufort, P.; Meysmans, L.

    1991-01-01

    SR 33557 represents a new class of compounds (indolizine sulfone) that inhibit L-type Ca2+ channels. ({sup 3}H)SR 33557 has been shown to bind with high affinity (Kd congruent to 0.36 nM, calculated from saturation isotherms and association/dissociation kinetics) to a single class of sites in a purified preparation of rat cardiac sarcolemmal membranes. The binding was found to be saturable and reversible. The maximal binding capacity was in approximately 1:1 stoichiometry with that of other Ca2+ channel antagonists. Various divalent cations (Mg2+, Mn2+, Ca2+, Ba2+, and Cd2+) were shown to inhibit specific ({sup 3}H)SR 33557 binding, with Cd2+ being themore » most potent. Among several receptor or channel ligands (including omega-conotoxin and Na+ and K+ channel modulators), only the L-type Ca2+ channel antagonists were found to displace ({sup 3}H)SR 33557. However, dihydropyridines, phenylalkylamines, benzothiazepines, and diphenylbutylpiperidines were found to inhibit ({sup 3}H)SR 33557 in a noncompetitive manner as demonstrated by displacement and saturation experiments in addition to dissociation kinetics. From these results, we suggest that SR 33557 binds with high affinity to a unique site on the L-type Ca2+ channel found in rat cardiac sarcolemmal membranes.« less

  11. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site.

    PubMed

    Ulaganathan, Vijay K; Sperl, Bianca; Rapp, Ulf R; Ullrich, Axel

    2015-12-24

    Variant rs351855-G/A is a commonly occurring single-nucleotide polymorphism of coding regions in exon 9 of the fibroblast growth factor receptor FGFR4 (CD334) gene (c.1162G>A). It results in an amino-acid change at codon 388 from glycine to arginine (p.Gly388Arg) in the transmembrane domain of the receptor. Despite compelling genetic evidence for the association of this common variant with cancers of the bone, breast, colon, prostate, skin, lung, head and neck, as well as soft-tissue sarcomas and non-Hodgkin lymphoma, the underlying biological mechanism has remained elusive. Here we show that substitution of the conserved glycine 388 residue to a charged arginine residue alters the transmembrane spanning segment and exposes a membrane-proximal cytoplasmic signal transducer and activator of transcription 3 (STAT3) binding site Y(390)-(P)XXQ(393). We demonstrate that such membrane-proximal STAT3 binding motifs in the germline of type I membrane receptors enhance STAT3 tyrosine phosphorylation by recruiting STAT3 proteins to the inner cell membrane. Remarkably, such germline variants frequently co-localize with somatic mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Using Fgfr4 single nucleotide polymorphism knock-in mice and transgenic mouse models for breast and lung cancers, we validate the enhanced STAT3 signalling induced by the FGFR4 Arg388-variant in vivo. Thus, our findings elucidate the molecular mechanism behind the genetic association of rs351855 with accelerated cancer progression and suggest that germline variants of cell-surface molecules that recruit STAT3 to the inner cell membrane are a significant risk for cancer prognosis and disease progression.

  12. Androgens and estrogens in skeletal sexual dimorphism

    PubMed Central

    Laurent, Michaël; Antonio, Leen; Sinnesael, Mieke; Dubois, Vanessa; Gielen, Evelien; Classens, Frank; Vanderschueren, Dirk

    2014-01-01

    Bone is an endocrine tissue expressing androgen and estrogen receptors as well as steroid metabolizing enzymes. The bioactivity of circulating sex steroids is modulated by sex hormone-binding globulin and local conversion in bone tissue, for example, from testosterone (T) to estradiol (E2) by aromatase, or to dihydrotestosterone by 5α-reductase enzymes. Our understanding of the structural basis for gender differences in bone strength has advanced considerably over recent years due to increasing use of (high resolution) peripheral computed tomography. These microarchitectural insights form the basis to understand sex steroid influences on male peak bone mass and turnover in cortical vs trabecular bone. Recent studies using Cre/LoxP technology have further refined our mechanistic insights from global knockout mice into the direct contributions of sex steroids and their respective nuclear receptors in osteoblasts, osteoclasts, osteocytes, and other cells to male osteoporosis. At the same time, these studies have reinforced the notion that androgen and estrogen deficiency have both direct and pleiotropic effects via interaction with, for example, insulin-like growth factor 1, inflammation, oxidative stress, central nervous system control of bone metabolism, adaptation to mechanical loading, etc., This review will summarize recent advances on these issues in the field of sex steroid actions in male bone homeostasis. PMID:24385015

  13. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions.

    PubMed

    Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred

    2012-07-01

    Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.

  14. Binding of glycated ovocystatin to rat renal brush border membranes.

    PubMed

    Golab, Krzysztof; Gburek, Jakub; Konopska, Bogusława; Krotkiewski, Hubert; Warwas, Maria

    2013-10-01

    Glycated proteins are considered as one of the factors involved in the pathogenesis of diabetic complications, including nephropathy. These proteins are formed endogenously under conditions of hyperglycemia, as well as being provided with food containing sugars, which was subjected to high temperature. Examples are egg products. One of the proteins found in eggs in a relatively high concentration is chicken cystatin (ovocystatin). It is now believed that some proteins can passage the intestinal epithelium by transcytosis directly into the bloodstream. Thus, glycated protein present in food can be an additional source of glycotoxins. The aim of this study was to compare the affinity of native and glycated cystatin to the brush border membranes of rat kidney. Kinetic analysis was performed with surface plasmon resonance technique using sensor chip L1. Dissociation constants for native and glycated cystatin (Kd ) were 2.76 μmol/L and 3.82 μmol/L, respectively. The results of our study indicate that glycation only slightly affects binding of cystatin to brush border membranes. This suggests that glycated cystatin and other glycated proteins may also be efficiently taken up in the kidney proximal tubule. The observation may be important for understanding the mechanisms involved in the development of diabetic nephropathy. © 2013 Japanese Society of Animal Science.

  15. Size-dependent protein segregation at membrane interfaces

    NASA Astrophysics Data System (ADS)

    Schmid, Eva M.; Bakalar, Matthew H.; Choudhuri, Kaushik; Weichsel, Julian; Ann, Hyoung Sook; Geissler, Phillip L.; Dustin, Michael L.; Fletcher, Daniel A.

    2016-07-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell-cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.

  16. Neuroendocrine Consequences of Androgen Excess in Female Rodents

    PubMed Central

    Foecking, Eileen M.; McDevitt, Melissa A.; Acosta-Martínez, Maricedes; Horton, Teresa H.; Levine, Jon E.

    2008-01-01

    Androgens exert significant organizational and activational effects on the nervous system and behavior. Despite the fact that female mammals generally produce low levels of androgens, relative to the male of the same species, increasing evidence suggests that androgens can exert profound effects on the normal physiology and behavior of females during fetal, neonatal, and adult stages of life. This review examines the effects of exposure to androgens at three stages of development – as an adult, during early postnatal life and as a fetus, on reproductive hormone secretions in female rats. We examine the effects of androgen exposure both as a model of neuroendocrine sexual differentiation and with respect to the role androgens play in the normal female. We then discuss the hypothesis that androgens may cause epigenetic modification of estrogen target genes in the brain. Finally we consider the clinical consequences of excess androgen exposure in women. PMID:18374922

  17. Paxillin and embryonic PolyAdenylation Binding Protein (ePABP) engage to regulate androgen-dependent Xenopus laevis oocyte maturation - A model of kinase-dependent regulation of protein expression.

    PubMed

    Miedlich, Susanne U; Taya, Manisha; Young, Melissa Rasar; Hammes, Stephen R

    2017-06-15

    Steroid-triggered Xenopus laevis oocyte maturation is an elegant physiologic model of nongenomic steroid signaling, as it proceeds completely independent of transcription. We previously demonstrated that androgens are the main physiologic stimulator of oocyte maturation in Xenopus oocytes, and that the adaptor protein paxillin plays a crucial role in mediating this process through a positive feedback loop in which paxillin first enhances Mos protein translation, ensued by Erk2 activation and Erk-dependent phosphorylation of paxillin on serine residues. Phosphoserine-paxillin then further augments Mos protein translation and downstream Erk2 activation, resulting in meiotic progression. We hypothesized that paxillin enhances Mos translation by interacting with embryonic PolyAdenylation Binding Protein (ePABP) on polyadenylated Mos mRNA. Knockdown of ePABP phenocopied paxillin knockdown, with reduced Mos protein expression, Erk2 and Cdk1 activation, as well as oocyte maturation. In both Xenopus oocytes and mammalian cells (HEK-293), paxillin and ePABP constitutively interacted. Testosterone (Xenopus) or EGF (HEK-293) augmented ePABP-paxillin binding, as well as ePABP binding to Mos mRNA (Xenopus), in an Erk-dependent fashion. Thus, ePABP and paxillin work together in an Erk-dependent fashion to enhance Mos protein translation and promote oocyte maturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity.

    PubMed

    Valko, Klara; Nunhuck, Shenaz; Bevan, Chris; Abraham, Michael H; Reynolds, Derek P

    2003-11-01

    A fast gradient HPLC method (cycle time 15 min) has been developed to determine Human Serum Albumin (HSA) binding of discovery compounds using chemically bonded protein stationary phases. The HSA binding values were derived from the gradient retention times that were converted to the logarithm of the equilibrium constants (logK HSA) using data from a calibration set of molecules. The method has been validated using literature plasma protein binding data of 68 known drug molecules. The method is fully automated, and has been used for lead optimization in more than 20 company projects. The HSA binding data obtained for more than 4000 compounds were suitable to set up global and project specific quantitative structure binding relationships that helped compound design in early drug discovery. The obtained HSA binding of known drug molecules were compared to the Immobilized Artificial Membrane binding data (CHI IAM) obtained by our previously described HPLC-based method. The solvation equation approach has been used to characterize the normal binding ability of HSA, and this relationship shows that compound lipophilicity is a significant factor. It was found that the selectivity of the "baseline" lipophilicity governing HSA binding, membrane interaction, and octanol/water partition are very similar. However, the effect of the presence of positive or negative charges have very different effects. It was found that negatively charged compounds bind more strongly to HSA than it would be expected from the lipophilicity of the ionized species at pH 7.4. Several compounds showed stronger HSA binding than can be expected from their lipophilicity alone, and comparison between predicted and experimental binding affinity allows the identification of compounds that have good complementarities with any of the known binding sites. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:2236-2248, 2003

  19. A membrane-embedded pathway delivers general anesthetics to two interacting binding sites in the Gloeobacter violaceus ion channel.

    PubMed

    Arcario, Mark J; Mayne, Christopher G; Tajkhorshid, Emad

    2017-06-09

    General anesthetics exert their effects on the central nervous system by acting on ion channels, most notably pentameric ligand-gated ion channels. Although numerous studies have focused on pentameric ligand-gated ion channels, the details of anesthetic binding and channel modulation are still debated. A better understanding of the anesthetic mechanism of action is necessary for the development of safer and more efficacious drugs. Herein, we present a computational study identifying two anesthetic binding sites in the transmembrane domain of the Gloeobacter violaceus ligand-gated ion channel (GLIC) channel, characterize the putative binding pathway, and observe structural changes associated with channel function. Molecular simulations of desflurane reveal a binding pathway to GLIC via a membrane-embedded tunnel using an intrasubunit protein lumen as the conduit, an observation that explains the Meyer-Overton hypothesis, or why the lipophilicity of an anesthetic and its potency are generally proportional. Moreover, employing high concentrations of ligand led to the identification of a second transmembrane site (TM2) that inhibits dissociation of anesthetic from the TM1 site and is consistent with the high concentrations of anesthetics required to achieve clinical effects. Finally, asymmetric binding patterns of anesthetic to the channel were found to promote an iris-like conformational change that constricts and dehydrates the ion pore, creating a 13.5 kcal/mol barrier to ion translocation. Together with previous studies, the simulations presented herein demonstrate a novel anesthetic binding site in GLIC that is accessed through a membrane-embedded tunnel and interacts with a previously known site, resulting in conformational changes that produce a non-conductive state of the channel. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Effects of androgen on immunohistochemical localization of androgen receptor and Connexin 43 in mouse ovary.

    PubMed

    Yang, Mei; Li, Jianhua; An, Yulin; Zhang, Shuiwen

    2015-10-01

    Androgens have essential roles in the regulation of follicular development and female fertility. Androgen excess is the leading defect in polycystic ovary syndrome (PCOS) patients and involved in the ovarian dysfunction. The aim of this study was to elucidate the regarding regulatory role of androgen in the follicular development of female mouse. Immunohistochemical staining and Western blot analyses were performed to detect androgen receptor (AR) and Connexin 43 (Cx43) expression in ovaries from both control and testosterone-treated group mice. In this study, localizations of AR and Cx43 were dramatically altered in testosterone-treated mouse ovaries. In addition, AR expression was significantly increased, whereas Cx43 expression was markedly decreased after testosterone treatment. Alterations of AR and Cx43 expression by testosterone with concomitant reduction of MII oocytes. Overall, these results suggest the involvement of androgen in the regulation of AR and Cx43 localizations in mouse ovary. Alterations of AR and Cx43 expression by testosterone may affect normal folliculogenesis. Together these findings will enable us to begin understanding the important roles of AR and Cx43 actions in the regulation of follicular development, as well as providing insights into the role of AR and Cx43 actions in the androgen-associated reproductive diseases such as PCOS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Androgen actions in mouse wound healing: Minimal in vivo effects of local antiandrogen delivery.

    PubMed

    Wang, Yiwei; Simanainen, Ulla; Cheer, Kenny; Suarez, Francia G; Gao, Yan Ru; Li, Zhe; Handelsman, David; Maitz, Peter

    2016-05-01

    The aims of this work were to define the role of androgens in female wound healing and to develop and characterize a novel wound dressing with antiandrogens. Androgens retard wound healing in males, but their role in female wound healing has not been established. To understand androgen receptor (AR)-mediated androgen actions in male and female wound healing, we utilized the global AR knockout (ARKO) mouse model, with a mutated AR deleting the second zinc finger to disrupt DNA binding and transcriptional activation. AR inactivation enhanced wound healing rate in males by increasing re-epithelialization and collagen deposition even when wound contraction was eliminated. Cell proliferation and migration in ARKO male fibroblasts was significantly increased compared with wild-type (WT) fibroblasts. However, ARKO females showed a similar healing rate compared to WT females. To exploit local antiandrogen effects in wound healing, while minimizing off-target systemic effects, we developed a novel electrospun polycaprolactone (PCL) scaffold wound dressing material for sustained local antiandrogen delivery. Using the antiandrogen hydroxyl flutamide (HF) at 1, 5, and 10 mg/mL in PCL scaffolds, controlled HF delivery over 21 days significantly enhanced in vitro cell proliferation of human dermal fibroblasts and human keratinocytes. HF-PCL scaffolds also promoted in vivo wound healing in mice compared with open wounds but not to PCL scaffolds. © 2016 by the Wound Healing Society.

  2. The transcriptional programme of the androgen receptor (AR) in prostate cancer.

    PubMed

    Lamb, Alastair D; Massie, Charlie E; Neal, David E

    2014-03-01

    The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors. © 2013 The Authors. BJU International © 2013 BJU International.

  3. Structural Diversity of Ligand-Binding Androgen Receptors Revealed by Microsecond Long Molecular Dynamics Simulations and Enhanced Sampling.

    PubMed

    Duan, Mojie; Liu, Na; Zhou, Wenfang; Li, Dan; Yang, Minghui; Hou, Tingjun

    2016-09-13

    Androgen receptor (AR) plays important roles in the development of prostate cancer (PCa). The antagonistic drugs, which suppress the activity of AR, are widely used in the treatment of PCa. However, the molecular mechanism of antagonism about how ligands affect the structures of AR remains elusive. To better understand the conformational variability of ARs bound with agonists or antagonists, we performed long time unbiased molecular dynamics (MD) simulations and enhanced sampling simulations for the ligand binding domain of AR (AR-LBD) in complex with various ligands. Based on the simulation results, we proposed an allosteric pathway linking ligands and helix 12 (H12) of AR-LBD, which involves the interactions among the ligands and the residues W741, H874, and I899. The interaction pathway provides an atomistic explanation of how ligands affect the structure of AR-LBD. A repositioning of H12 was observed, but it is facilitated by the C-terminal of H12, instead of by the loop between helix 11 (H11) and H12. The bias-exchange metadynamics simulations further demonstrated the above observations. More importantly, the free energy profiles constructed by the enhanced sampling simulations revealed the transition process between the antagonistic form and agonistic form of AR-LBD. Our results would be helpful for the design of more efficient antagonists of AR to combat PCa.

  4. Osteopenia as a feature of the androgen insensitivity syndrome.

    PubMed

    Soule, S G; Conway, G; Prelevic, G M; Prentice, M; Ginsburg, J; Jacobs, H S

    1995-12-01

    The syndrome of androgen insensitivity, a paradigm of a hormone resistance syndrome, manifests as failure of masculinization despite normal or high concentrations of serum testosterone. The defect in these 46 XY patients resides in the androgen receptor gene, with consequent defective androgen action and abnormal sexual differentiation. We sought to evaluate whether the adverse sequelae of androgen resistance may extend to skeletal tissue by measuring bone mineral density in six patients with androgen insensitivity. A cross-sectional retrospective study. Bone mineral density was measured by means of a Dexa (Hologic QDR 1000 scanner). The diagnosis of androgen insensitivity was confirmed in each patient by karyotype and assay of sex hormones. The five adult patients with androgen insensitivity had been exposed to both defective androgen action and variable periods of oestrogen deficiency. The latter resulted from the low circulating oestrogen concentrations (for premenopausal females) before gonadectomy and inadequate oestrogen replacement after gonadectomy. All five adults with androgen insensitivity had osteopenia in both the lumbar spine (T-score -1.52 to -3.85) and femoral neck (T-score -1.34 to -4.91). Osteopenia in patients with androgen insensitivity may relate to defective androgen action, oestrogen deficiency or a combination of the two. These observations have implications for the management of patients with androgen insensitivity and may provide insight into the effects of androgens on the female as well as the male skeleton.

  5. Simultaneous ultramicroanalysis of both 17-keto-and 17beta-hydroxy androgens in biological fluids.

    PubMed

    Ganjam, V K

    1976-11-01

    Sensitive methods for quantifying androgens were lacking. Therefore, a relatively simple procedure for separating steroids was combined with highly specific assay methods so that eight androgens could be measured with high accuracy, precision and sensitivity. Semi-automated separations on Sephadex LH-20 columns used heptane:methylene chloride:ethanol:water (50:50:1:0.12) and a flow rate of 17.0 min/ml. The six peaks eluted contained androstenedine; androsterone, epiandrosterone and dihydrotestosterone; testosterone and dehydroepiandrosterone; 3alpha-androstanediol; 3beta-androstanediol; and androstenediol. Androstenedione, dehydroepiandrosterone and androstenediol were quantified using specific antisera (sensitivity less than or equal to 75 pg). Testosterone and dihydrotestosterone were measured by competitive protein-binding assays using rabbit TeBG (sensitivity less than or equal to 150 pg). 3alpha- and 3beta-androstanediol were similarly assayed using human TeBG (sensitivity approximately 150 pg). Androsterone was reduced with NaBH4 and the resulting 3alpha-androstanediol was assayed using human TeBG (sensitivity approximately 200 pg). Inter- and intra-assay variations were less than 10% for radioimmunoassays and less than 16% for competitive protein-binding assays over the entire dose response curve.

  6. Mechanistic basis for estrogenic effects in fathead minnow (Pimephales promelas) following exposure to the androgen 17alpha-methyltestosterone: conversion of 17alpha-methyltestosterone to 17alpha-methylestradiol.

    PubMed

    Hornung, Michael W; Jensen, Kathleen M; Korte, Joseph J; Kahl, Michael D; Durhan, Elizabeth J; Denny, Jeffrey S; Henry, Tala R; Ankley, Gerald T

    2004-01-07

    Exposure of adult fathead minnows (Pimephales promelas) to the androgen 17alpha-methyltestosterone (MT) produces both androgenic and estrogenic effects, manifested as nuptial tubercle formation in females, and vitellogenin production in males and females, respectively. The present study was conducted to determine if the unanticipated estrogenic effects are produced by conversion of MT via aromatase activity to 17alpha-methylestradiol (ME2). Aromatase activity at the end of a 7-day waterborne MT exposure (20, 200microg/l) was significantly decreased in ovarian microsomes and brain homogenates from exposed fish, to about 30-50% of control activity. Although aromatase activity was decreased by 7 days, it is possible that the conversion of MT to ME2 occurred soon after initial exposure. In support of this, ME2 was detected in plasma samples of the fish following the 7-day exposure, confirming their ability convert the androgen MT to the estrogen ME2. The concentration of ME2 in plasma was within the range of plasma 17ss-estradiol (E2) found in control female fathead minnows (4-5ng/ml). These results, in conjunction with competitive binding assays that indicate ME2 binds to the fathead minnow estrogen receptor with a relative binding affinity of 68.3% of E2, support the hypothesis that aromatization of MT to ME2 contributes to the estrogenic effects in fathead minnows following exposure to this androgen.

  7. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs.

    PubMed

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete's urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as 'T-equivalent' concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact.

  8. [Molecular organization of glutamate-sensitive chemoexcitable membranes of nerve cells. Function of glutamate-binding proteins of the central nervous system when incorporated into liposomes].

    PubMed

    Besedin, V I; Kuznetsov, A S; Dambinova, S A

    1985-03-01

    The functioning of the glutamate-binding protein of rat brain cortex synaptic membranes was studied by its incorporation into liposomes. The optimal conditions for the receptor protein incorporation were established and the kinetics of 22Na+ and 86Rb+ incorporation into the liposomes in the presence of L-glutamate were analyzed. Modelling of the CNS glutamate receptor functions was found to be dependent on the lipid composition and amount of the incorporated membrane protein. The selective transport of 22Na+ into the liposomes was stimulated in the presence of 10(-4) M glutamate. Addition of monoclonal antibodies against glutamate-binding proteins blocked the incorporation of Na+ into the liposomes. The experimental results are suggestive of the nativity of the liposome-incorporated membrane protein, which is capable of binding glutamate and regulating selective transport of Na+. It was assumed that the glutamate receptor macromolecule represents an integral complex made up of several low molecular weight subunits of glucoprotein nature that form a selective ionic channel.

  9. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification

    PubMed Central

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A.; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T.; Ruggles, Kelly V.; DeGiorgis, Joseph A.; Kohlwein, Sepp D.; Schon, Eric A.; Sturley, Stephen L.

    2015-01-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53–36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.—Gulati, S., Balderes, D., Kim, C., Guo, Z. A., Wilcox, L., Area-Gomez, E., Snider, J., Wolinski, H., Stagljar, I., Granato, J. T., Ruggles, K. V., DeGiorgis, J. A., Kohlwein, S. D., Schon, E. A., Sturley, S. L. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. PMID:26220175

  10. Involvement of androgens in ovarian health and disease

    PubMed Central

    Lebbe, M.; Woodruff, T.K.

    2013-01-01

    In women, ovary and adrenal gland produce androgens. Androgens are essential drivers of the primordial to antral follicle development, prior to serving as substrate for estrogen production in the later stages of folliculogenesis. Androgens play a crucial role in the follicular–stromal intertalk by fine tuning the extracellular matrix and vessel content of the ovarian stroma. Local auto-and paracrine factors regulate androgen synthesis in the pre-antral follicle. Androgen excess is a hallmark of polycystic ovary syndrome and is a key contributor in the exaggerated antral follicle formation, stromal hyperplasia and hypervascularity. Hyperandrogenaemia overrides the follicular–stromal dialog, resulting in follicular arrest and disturbed ovulation. On the other hand, androgen deficiency is likely to have a negative impact on fertility as well, and further research is needed to examine the benefits of androgen-replacement therapy in subfertility. PMID:24026057

  11. Androgen Receptor (AR) Suppresses Normal Human Prostate Epithelial Cell Proliferation via AR/β-catenin/TCF-4 Complex Inhibition of c-MYC Transcription

    PubMed Central

    Antony, Lizamma; van der Schoor, Freek; Dalrymple, Susan L.; Isaacs, John T.

    2016-01-01

    INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5′ and 3′ c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3′ c-MYC enhancer, but now suppresses c-MYC transcription. PMID:24913829

  12. Food proteins and maturation of small intestinal microvillus membranes (MVM). I. Binding characteristics of cow's milk proteins and concanavalin A to MVM from newborn and adult rats.

    PubMed

    Stern, M; Gellermann, B

    1988-01-01

    To study maturational changes of food protein and lectin binding to rat small intestinal microvillus membranes (MVM), MVM were prepared from newborn and adult animals by a modified CaCl2 precipitation technique. Radiolabeled cow's milk proteins [alpha-lactalbumin, alpha-casein, beta-lactoglobulin, bovine serum albumin (BSA)] and the lectin concanavalin A (Con A) were used for incubations. Binding assays were done using miniature ultracentrifugation for separation of unbound material. Binding of Con A to MVM from newborn and adult rats was strong, specific, and saturable. Binding of Con A was inhibited by cold Con A and by the sugar ligand polymer mannan. Adult MVM bound more Con A than newborn preparations. Unlike Con A, binding of cow's milk proteins by MVM was weak, nonspecific, and noninhibitable. Newborn MVM bound more cow's milk proteins than adult controls. This was true for all the proteins tested (p less than 0.001). Binding rose with decreased molecular weight of cow's milk proteins, but molecular weight was not the only determining factor for binding. Trypsin treatment of MVM caused a marked increase of BSA binding in adult but not in newborn preparations. This finding indicated the importance of protein components of MVM for cow's milk protein binding. Maturational changes in protein-lipid interactions and membrane fluidity possibly influence nonspecific cow's milk protein binding to MVM. Differences in binding between newborns and adults were not directly related to maturational shifts in membrane glycosylation that are indicated by differential Con A binding. Increased cow's milk protein binding in newborn individuals might increase the potential risk to develop an adverse reaction to food proteins.

  13. Androgen biosynthesis in castration-resistant prostate cancer

    PubMed Central

    Penning, Trevor M

    2014-01-01

    Prostate cancer is the second leading cause of death in adult males in the USA. Recent advances have revealed that the fatal form of this cancer, known as castration-resistant prostate cancer (CRPC), remains hormonally driven despite castrate levels of circulating androgens. CRPC arises as the tumor undergoes adaptation to low levels of androgens by either synthesizing its own androgens (intratumoral androgens) or altering the androgen receptor (AR). This article reviews the major routes to testosterone and dihydrotestosterone synthesis in CRPC cells and examines the enzyme targets and progress in the development of isoform-specific inhibitors that could block intratumoral androgen biosynthesis. Because redundancy exists in these pathways, it is likely that inhibition of a single pathway will lead to upregulation of another so that drug resistance would be anticipated. Drugs that target multiple pathways or bifunctional agents that block intratumoral androgen biosynthesis and antagonize the AR offer the most promise. Optimal use of enzyme inhibitors or AR antagonists to ensure maximal benefits to CRPC patients will also require application of precision molecular medicine to determine whether a tumor in a particular patient will be responsive to these treatments either alone or in combination. PMID:24829267

  14. Antimicrobial Peptide Potency is Facilitated by Greater Conformational Flexibility when Binding to Gram-negative Bacterial Inner Membranes

    NASA Astrophysics Data System (ADS)

    Amos, Sarah-Beth T. A.; Vermeer, Louic S.; Ferguson, Philip M.; Kozlowska, Justyna; Davy, Matthew; Bui, Tam T.; Drake, Alex F.; Lorenz, Christian D.; Mason, A. James

    2016-11-01

    The interaction of antimicrobial peptides (AMPs) with the inner membrane of Gram-negative bacteria is a key determinant of their abilities to exert diverse bactericidal effects. Here we present a molecular level understanding of the initial target membrane interaction for two cationic α-helical AMPs that share structural similarities but have a ten-fold difference in antibacterial potency towards Gram-negative bacteria. The binding and insertion from solution of pleurocidin or magainin 2 to membranes representing the inner membrane of Gram-negative bacteria, comprising a mixture of 128 anionic and 384 zwitterionic lipids, is monitored over 100 ns in all atom molecular dynamics simulations. The effects of the membrane interaction on both the peptide and lipid constituents are considered and compared with new and published experimental data obtained in the steady state. While both magainin 2 and pleurocidin are capable of disrupting bacterial membranes, the greater potency of pleurocidin is linked to its ability to penetrate within the bacterial cell. We show that pleurocidin displays much greater conformational flexibility when compared with magainin 2, resists self-association at the membrane surface and penetrates further into the hydrophobic core of the lipid bilayer. Conformational flexibility is therefore revealed as a key feature required of apparently α-helical cationic AMPs for enhanced antibacterial potency.

  15. Class B type I scavenger receptor is responsible for the high affinity cholesterol binding activity of intestinal brush border membrane vesicles

    PubMed Central

    Labonté, Eric D.; Howles, Philip N.; Granholm, Norman A.; Rojas, Juan C.; Davies, Joanna P.; Ioannou, Yiannis A.; Hui, David Y.

    2007-01-01

    Recent studies have documented the importance of Niemann Pick C1-like 1 protein (NPC1L1), a putative physiological target of the drug ezetimibe, in mediating intestinal cholesterol absorption. However, whether NPC1L1 is the high affinity cholesterol binding protein on intestinal brush border membranes is still controversial. In this study, brush border membrane vesicles (BBMV) from wild type and NPC1L1−/− mice were isolated and assayed for micellar cholesterol binding in the presence or absence of ezetimibe. Results confirmed the loss of the high affinity component of cholesterol binding when wild type BBMV preparations were incubated with antiserum against the class B type 1 scavenger receptor (SR-BI) in the reaction mixture similar to previous studies. Subsequently, second order binding of cholesterol was observed with BBMV from wild type and NPC1L1−/− mice. The inclusion of ezetimibe in these in vitro reaction assays resulted in the loss of the high affinity component of cholesterol interaction. Surprisingly, BBMVs from NPC1L1−/− mice maintained active binding of cholesterol. These results documented that SR-BI, not NPC1L1, is the major protein responsible for the initial high affinity cholesterol ligand binding process in the cholesterol absorption pathway. Additionally, ezetimibe may inhibit BBM cholesterol binding through targets such as SR-BI in addition to its inhibition of NPC1L1. PMID:17442616

  16. Androgen circle of polycystic ovary syndrome.

    PubMed

    Homburg, Roy

    2009-07-01

    Although the aetiology of polycystic ovary syndrome (PCOS) is still not known and the search for causative genes is proving elusive, it is generally agreed that hyperandrogenism is at the heart of the syndrome. Here, it is proposed that excess androgens are the root cause of PCOS starting from their influence on the female fetus in programming gene expression, producing the characteristic signs and symptoms which are then exacerbated by a propagation of excess ovarian androgen production from multiple small follicles, anovulation and insulin resistance in the reproductive life-span, thus setting up a vicious perpetual circle of androgen excess. This opinion paper, rather than being a full-scale review, is intentionally biased in support of this hypothesis that androgen excess is the 'root of all evil' in PCOS; in the hope that its acceptance could lead to more direct treatment of the syndrome in all its facets rather than the symptomatic treatment of side effects of androgen excess that we are addressing today.

  17. Dietary fat and the diabetic state alter insulin binding and the fatty acyl composition of the adipocyte plasma membrane.

    PubMed Central

    Field, C J; Ryan, E A; Thomson, A B; Clandinin, M T

    1988-01-01

    Control and diabetic rats were fed on semi-purified high-fat diets providing a polyunsaturated/saturated fatty acid ratio (P/S) of 1.0 or 0.25, to examine the effect of diet on the fatty acid composition of major phospholipids of the adipocyte plasma membrane. Feeding the high-P/S diet (P/S = 1.0) compared with the low-P/S diet (P/S = 0.25) increased the content of polyunsaturated fatty acids in membrane phospholipids in both control and diabetic animals. The diabetic state decreased the content of polyunsaturated fatty acids, particularly arachidonic acid, in adipocyte membrane phospholipids. The decrease in arachidonic acid in membrane phospholipids of diabetic animals tended to be normalized to within the control values when high-P/S diets were given. For control animals, altered plasma-membrane composition was associated with change in insulin binding, suggesting that change in plasma-membrane composition may have physiological consequences for insulin-stimulated functions in the adipocyte. PMID:3052424

  18. Up-Regulation of Follistatin-Like 1 By the Androgen Receptor and Melanoma Antigen-A11 in Prostate Cancer.

    PubMed

    Su, Shifeng; Parris, Amanda B; Grossman, Gail; Mohler, James L; Wang, Zengjun; Wilson, Elizabeth M

    2017-04-01

    High affinity androgen binding to the androgen receptor (AR) activates genes required for male sex differentiation and promotes the development and progression of prostate cancer. Human AR transcriptional activity involves interactions with coregulatory proteins that include primate-specific melanoma antigen-A11 (MAGE-A11), a coactivator that increases AR transcriptional activity during prostate cancer progression to castration-resistant/recurrent prostate cancer (CRPC). Microarray analysis and quantitative RT-PCR were performed to identify androgen-regulated MAGE-A11-dependent genes in LAPC-4 prostate cancer cells after lentivirus shRNA knockdown of MAGE-A11. Chromatin immunoprecipitation was used to assess androgen-dependent AR recruitment, and immunocytochemistry to localize an androgen-dependent protein in prostate cancer cells and tissue and in the CWR22 human prostate cancer xenograft. Microarray analysis of androgen-treated LAPC-4 prostate cancer cells indicated follistatin-like 1 (FSTL1) is up-regulated by MAGE-A11. Androgen-dependent up-regulation of FSTL1 was inhibited in LAPC-4 cells by lentivirus shRNA knockdown of AR or MAGE-A11. Chromatin immunoprecipitation demonstrated AR recruitment to intron 10 of the FSTL1 gene that contains a classical consensus androgen response element. Increased levels of FSTL1 protein in LAPC-4 cells correlated with higher levels of MAGE-A11 relative to other prostate cancer cells. FSTL1 mRNA levels increased in CRPC and castration-recurrent CWR22 xenografts in association with predominantly nuclear FSTL1. Increased nuclear localization of FSTL1 in prostate cancer was suggested by predominantly cytoplasmic FSTL1 in benign prostate epithelial cells and predominantly nuclear FSTL1 in epithelial cells in CRPC tissue and the castration-recurrent CWR22 xenograft. AR expression studies showed nuclear colocalization of AR and endogenous FSTL1 in response to androgen. AR and MAGE-A11 cooperate in the up-regulation of FSTL1 to

  19. SPECIES DIFFERENCES IN ANDROGEN AND ESTROGEN RECEPTOR STRUCTURE AND FUNCTION AMONG VERTEBRATES AND INVERTEBRATES FOR INTERSPECIES EXTRAPOLATION OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    In vitro screening assays designed to identify hormone minics or antagonists, including the EDSTAC Tier 1 Screening (TIS) Battery, typically use only mammalian estrogen (ER) and androgen receptors (AR). However, there is uncertainty concerning species differences in binding affin...

  20. Comparison of crystal structures of human type 3 3α-hydroxysteroid dehydrogenase reveals an “induced-fit” mechanism and a conserved basic motif involved in the binding of androgen

    PubMed Central

    Couture, Jean-François; Pereira De Jésus-Tran, Karine; Roy, Anne-Marie; Cantin, Line; Côté, Pierre-Luc; Legrand, Pierre; Luu-The, Van; Labrie, Fernand; Breton, Rock

    2005-01-01

    The aldo-keto reductase (AKR) human type 3 3α-hydroxysteroid dehydrogenase (h3α–HSD3, AKR1C2) plays a crucial role in the regulation of the intracellular concentrations of testosterone and 5α-dihydrotestosterone (5α-DHT), two steroids directly linked to the etiology and the progression of many prostate diseases and cancer. This enzyme also binds many structurally different molecules such as 4-hydroxynonenal, polycyclic aromatic hydrocarbons, and indanone. To understand the mechanism underlying the plasticity of its substrate-binding site, we solved the binary complex structure of h3α–HSD3-NADP(H) at 1.9 Å resolution. During the refinement process, we found acetate and citrate molecules deeply engulfed in the steroid-binding cavity. Superimposition of this structure with the h3α–HSD3-NADP(H)-testosterone/acetate ternary complex structure reveals that one of themobile loops forming the binding cavity operates a slight contraction movement against the citrate molecule while the side chains of many residues undergo numerous conformational changes, probably to create an optimal binding site for the citrate. These structural changes, which altogether cause a reduction of the substrate-binding cavity volume (from 776 Å3 in the presence of testosterone/acetate to 704 Å3 in the acetate/citratecomplex), are reminiscent of the “induced-fit” mechanism previously proposed for the aldose reductase, another member of the AKR superfamily. We also found that the replacement of residues Arg301 and Arg304, localized near the steroid-binding cavity, significantly affects the 3α–HSD activity of this enzyme toward 5α-DHT and completely abolishes its 17β–HSD activity on 4-dione. All these results have thus been used to reevaluate the binding mode of this enzyme for androgens. PMID:15929998

  1. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    PubMed

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Using Micropatterned Lipid Bilayer Arrays to Measure the Effect of Membrane Composition on Merocyanine 540 Binding

    PubMed Central

    Smith, Kathryn A.; Conboy, John C.

    2011-01-01

    The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 bindingin DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner. PMID:21376014

  3. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane

    PubMed Central

    Novakovic, Predrag; Huang, Yanyun Y.; Lockerbie, Betty; Shahriar, Farshid; Kelly, John; Gordon, John R.; Middleton, Dorothy M.; Loewen, Matthew E.; Kidney, Beverly A.; Simko, Elemir

    2015-01-01

    F4ac-positive enterotoxigenic Escherichia coli (ETEC) must attach to the intestinal mucosa to cause diarrhea in piglets. Prevention of bacterial attachment to the intestinal mucosa is the most effective defense against ETEC-induced diarrhea. Porcine milk fat globule membranes (MFGM) were shown to be able to inhibit attachment of ETEC to the intestinal brush border; however, the specific components of porcine MFGM that inhibited attachment of ETEC to enterocytes were not identified. Accordingly, the purpose of this study was to identify F4ac-binding MFGM proteins by overlay Western blot and affinity chromatography. The proteome of porcine MFGM was characterized and the following F4ac-binding proteins were detected by overlay Western blot and affinity chromatography: lactadherin, butyrophilin, adipophilin, acyl-CoA synthetase 3, and fatty acid-binding protein 3. The biological function of these proteins was not investigated but it is possible that their interaction with F4ac fimbria interferes with bacterial attachment and colonization. PMID:25852227

  4. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN− binding defined by EPR-based hybrid method

    PubMed Central

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN−, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane. PMID:26817826

  5. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN- binding defined by EPR-based hybrid method

    NASA Astrophysics Data System (ADS)

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN-, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.

  6. Upper-body resistance exercise augments vastus lateralis androgen receptor-DNA binding and canonical Wnt/β-catenin signaling compared to lower-body resistance exercise in resistance-trained men without an acute increase in serum testosterone.

    PubMed

    Spillane, Mike; Schwarz, Neil; Willoughby, Darryn S

    2015-06-01

    The purpose of the study was to determine the effect of single bouts of lower-body (LB) and upper- and lower-body (ULB) resistance exercise on serum testosterone concentrations and the effects on muscle testosterone, dihydrotestosterone (DHT), androgen receptor (AR) protein content, and AR-DNA binding. A secondary purpose was to determine the effects on serum wingless-type MMTV integration site (Wnt4) levels and skeletal muscle β-catenin content. In a randomized cross-over design, exercise bouts consisted of a LB and ULB protocol, and each bout was separated by 1 week. Blood and muscle samples were obtained before exercise and 3 and 24h post-exercise; blood samples were also obtained at 0.5, 1, and 2 h post-exercise. Statistical analyses were performed by separate two-way factorial analyses of variance (ANOVA) with repeated measures. No significant differences from baseline were observed in serum total and free testosterone and skeletal muscle testosterone and DHT with either protocol (p>0.05). AR protein was significantly increased at 3 h post-exercise and decreased at 24 h post-exercise for ULB, whereas AR-DNA binding was significantly increased at 3 and 24h post-exercise (p<0.05). In response to ULB, serum Wnt4 was significantly increased at 0.5, 1, and 2 h post-exercise (p<0.05) and β-catenin was significantly increased at 3 and 24 h post-exercise (p<0.05). It was concluded that, despite a lack of increase in serum testosterone and muscle androgen concentrations from either mode of resistance exercise, ULB resistance exercise increased Wnt4/β-catenin signaling and AR-DNA binding. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Small molecule screening reveals a transcription-independent pro-survival function of androgen receptor in castration-resistant prostate cancer

    PubMed Central

    Narizhneva, Natalia V.; Tararova, Natalia D.; Ryabokon, Petro; Shyshynova, Inna; Prokvolit, Anatoly; Komarov, Pavel G.; Purmal, Andrei A.; Gudkov, Andrei V.; Gurova, Katerina V.

    2010-01-01

    In prostate cancer (PCa) patients, initial responsiveness to androgen deprivation therapy is frequently followed by relapse due to development of treatment-resistant androgen-independent PCa. This is typically associated with acquisition of mutations in AR that allow activity as a transcription factor in the absence of ligand, indicating that androgen-independent PCa remains dependent on AR function. Our strategy to effectively target AR in androgen-independent PCa involved using a cell-based readout to isolate small molecules that inhibit AR transactivation function through mechanisms other than modulation of ligand binding. A number of the identified inhibitors were toxic to AR-expressing PCa cells regardless of their androgen dependence. Among these, some only suppressed PCa cell growth (ARTIS), while others induced cell death (ARTIK). ARTIK, but not ARTIS, compounds caused disappearance of AR protein from treated cells. siRNA against AR behaved like ARTIK compounds, while a dominant negative AR mutant that prevents AR-mediated transactivation but does not eliminate the protein showed only a growth suppressive effect. These observations reveal a transcription-independent function of AR that is essential for PCa cell viability and, therefore, is an ideal target for anti-PCa treatment. Indeed, several of the identified AR inhibitors demonstrated in vivo efficacy in mouse models of PCa and are candidates for pharmacologic optimization. PMID:19946220

  8. Stilbene Induced Inhibition of Androgen Receptor Dimerization: Implications for AR and ARΔLBD-Signalling in Human Prostate Cancer Cells

    PubMed Central

    Streicher, Wolfgang; Luedeke, Manuel; Azoitei, Anca; Zengerling, Friedemann; Herweg, Alexander; Genze, Felicitas; Schrader, Mark G.; Schrader, Andres J.; Cronauer, Marcus V.

    2014-01-01

    Background Advanced castration resistant prostate cancer (CRPC) is often characterized by an increase of C-terminally truncated, constitutively active androgen receptor (AR) variants. Due to the absence of a ligand binding domain located in the AR-C-terminus, these receptor variants (also termed ARΔLBD) are unable to respond to all classical forms of endocrine treatments like surgical/chemical castration and/or application of anti-androgens. Methodology In this study we tested the effects of the naturally occurring stilbene resveratrol (RSV) and (E)-4-(2, 6-Difluorostyryl)-N, N-dimethylaniline, a fluorinated dialkylaminostilbene (FIDAS) on AR- and ARΔLBD in prostate cancer cells. The ability of the compounds to modulate transcriptional activity of AR and the ARΔLBD-variant Q640X was shown by reporter gene assays. Expression of endogenous AR and ARΔLBD mRNA and protein levels were determined by qRT-PCR and Western Blot. Nuclear translocation of AR-molecules was analyzed by fluorescence microscopy. AR and ARΔLBD/Q640X homo-/heterodimer formation was assessed by mammalian two hybrid assays. Biological activity of both compounds in vivo was demonstrated using a chick chorioallantoic membrane xenograft assay. Results The stilbenes RSV and FIDAS were able to significantly diminish AR and Q640X-signalling. Successful inhibition of the Q640X suggests that RSV and FIDAS are not interfering with the AR-ligand binding domain like all currently available anti-hormonal drugs. Repression of AR and Q640X-signalling by RSV and FIDAS in prostate cancer cells was caused by an inhibition of the AR and/or Q640X-dimerization. Although systemic bioavailability of both stilbenes is very low, both compounds were also able to downregulate tumor growth and AR-signalling in vivo. Conclusion RSV and FIDAS are able to inhibit the dimerization of AR and ARΔLBD molecules suggesting that stilbenes might serve as lead compounds for a novel generation of AR-inhibitors. PMID:24887556

  9. Effects of membrane properties on the binding activities of the HN and HC heavy-chain domains of botulinum neurotoxin A.

    PubMed

    Ayyar, B Vijayalakshmi; Atassi, M Zouhair

    2016-12-01

    Binding behaviors of the H N and the H C domains of BoNT/A were investigated individually to identify if there exist any differences in their interaction with the cell membrane. Recombinant fragments corresponding to both BoNT/A H N and H C regions were prepared (H N 519-845 and H C 967-1296) and their binding to synaptic proteins was verified. The binding behaviors of these heavy-chain domains were analyzed by treating the Neuro 2a, a murine neuroblastoma cell line, with compounds known to alter membrane properties. Cholesterol depletion and lipid raft inhibition increased the binding of H N 519-845 to Neuro 2a cells without affecting H C 967-1296-cell interaction. Sphingolipid depletion decreased the binding of cells to both H C 967-1296 and H N 519-845 whereas, loading exogenous GD1a, on to the Neuro 2a cells, increased the binding of both the peptides to cells. Microtubule disruption of the Neuro 2a cells by nocodazole decreased the binding of both H C 967-1296 and H N 519-845 to the treated cells. Inhibition of the clathrin-mediated endocytosis using dynasore, chlorpromazine or potassium (K + ) depletion buffer lowered the binding of both H C 967-1296 and H N 519-845 to the cells, but seemed to exert a more pronounced effect on the binding of H C 967-1296 than on the binding of H N 519-845. Results indicate that while both the H N and H C domains are involved in the binding of the toxin to neuronal cells there are differences in their behavior which probably stem from their respective amino acid composition and structural location in the toxin three-dimensional structure along with their intended role in translocation and internalization into the cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Binding characteristics of the ovine membrane progesterone receptor alpha and expression of the receptor during the estrous cycle

    PubMed Central

    Ashley, Ryan L; Arreguin-Arevalo, J Alejandro; Nett, Terry M

    2009-01-01

    Background Classically, progesterone has been thought to act only through the well-known genomic pathway involving hormone binding to nuclear receptors and subsequent modulation of gene expression. However, there is increasing evidence for rapid, non-genomic effects of progesterone in a variety of mammalian tissues and it is possible that a membrane PR (mPR) is causing these events. We recently isolated and characterized an ovine mPR referred to as mPR-alpha, distinct from the nuclear PR. Based on predicted structural analysis, the ovine mPR-alpha possesses seven transmembrane domains typical of G protein-coupled receptors. Despite the homology to other reported mPRs, information pertaining to the steroid binding characteristics of the ovine mPR-alpha was lacking. Additionally, the ovine mPR-alpha transcript has been identified in the hypothalamus, pituitary, uterus, ovary and corpus luteum, yet changes in expression of the ovine mPR-alpha in these tissues were not known. Consequently, the purpose of this work was to determine the steroid binding characteristics of the ovine mPR-alpha and to investigate possible changes in expression of the ovine mPR-alpha in reproductive tissues throughout the estrous cycle. Methods Binding studies were performed using crude membrane fractions from CHO cells expressing the mPR-alpha. Using quantitative Real-time PCR we determined the expression pattern of mRNA for the ovine mPR-alpha during the ovine estrous cycle in tissues known to express the mPR-alpha. Jugular blood samples were also collected and analyzed for serum concentrations of P4 to ensure ewes were at the appropriate stage of their cycle. Results Only progesterone, 20alpha-hydroxyprogesterone and 17alpha-hydroxyprogesterone were able to displace binding of 3H-P4 (P < 0.001) to membrane fractions from CHO cells expressing ovine mPR-alpha. The average B-max and Kd values for three separate experiments were 624 +/- 119 fmol/micro gram protein and 122 +/- 50 n

  11. Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag Molecule

    PubMed Central

    Nakanishi, Tsuyoshi; Ando, Eiji; Furuta, Masaru; Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru; Tsunasawa, Susumu; Nishimura, Osamu

    2007-01-01

    We have developed a method for on-membrane direct identification of phosphoproteins, which are detected by a phosphate-binding tag (Phos-tag) that has an affinity to phosphate groups with a chelated Zn2+ ion. This rapid profiling approach for phosphoproteins combines chemical inkjet technology for microdispensing of reagents onto a tiny region of target proteins with mass spectrometry for on-membrane digested peptides. Using this method, we analyzed human epidermoid carcinoma cell lysates of A-431 cells stimulated with epidermal growth factor, and identified six proteins with intense signals upon affinity staining with the phosphate-binding tag. It was already known that these proteins are phosphorylated, and our new approach proved to be effective at rapid profiling of phosphoproteins. Furthermore, we tried to determine their phosphorylation sites by MS/MS analysis after in-gel digestion of the corresponding spots on the 2DE gel to the rapid on-membrane identifications. As one example of use of information gained from the rapid-profiling approach, we successfully characterized a phosphorylation site at Ser-113 on prostaglandin E synthase 3. PMID:18166671

  12. Analysis of Ethylene Receptors: Ethylene-Binding Assays.

    PubMed

    Binder, Brad M; Schaller, G Eric

    2017-01-01

    Plant ethylene receptors bind ethylene with high affinity. Most of the characterization of ethylene binding to the receptors has been carried out using a radioligand-binding assay on functional receptors expressed in yeast. In this chapter, we describe methods for expressing ethylene receptors in yeast and conducting ethylene-binding assays on intact yeast and yeast membranes. The ethylene-binding assays can be modified to analyze ethylene binding to intact plants and other organisms as well as membranes isolated from any biological source.

  13. Therapeutic androgen receptor ligands

    PubMed Central

    Allan, George F.; Sui, Zhihua

    2003-01-01

    In the past several years, the concept of tissue-selective nuclear receptor ligands has emerged. This concept has come to fruition with estrogens, with the successful marketing of drugs such as raloxifene. The discovery of raloxifene and other selective estrogen receptor modulators (SERMs) has raised the possibility of generating selective compounds for other pathways, including androgens (that is, selective androgen receptor modulators, or SARMs). PMID:16604181

  14. Cyclotides Insert into Lipid Bilayers to Form Membrane Pores and Destabilize the Membrane through Hydrophobic and Phosphoethanolamine-specific Interactions*

    PubMed Central

    Wang, Conan K.; Wacklin, Hanna P.; Craik, David J.

    2012-01-01

    Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities. PMID:23129773

  15. The Response of Prostate Smooth Muscle Cells to Testosterone Is Determined by the Subcellular Distribution of the Androgen Receptor.

    PubMed

    Peinetti, Nahuel; Scalerandi, María Victoria; Cuello Rubio, Mariana Micaela; Leimgruber, Carolina; Nicola, Juan Pablo; Torres, Alicia Ines; Quintar, Amado Alfredo; Maldonado, Cristina Alicia

    2018-02-01

    Androgen signaling in prostate smooth muscle cells (pSMCs) is critical for the maintenance of prostate homeostasis, the alterations of which are a central aspect in the development of pathological conditions. Testosterone can act through the classic androgen receptor (AR) in the cytoplasm, eliciting genomic signaling, or through different types of receptors located at the plasma membrane for nongenomic signaling. We aimed to find evidence of nongenomic testosterone-signaling mechanisms in pSMCs and their participation in cell proliferation, differentiation, and the modulation of the response to lipopolysaccharide. We demonstrated that pSMCs can respond to testosterone by a rapid activation of ERK1/2 and Akt. Furthermore, a pool of ARs localized at the cell surface of pSMCs is responsible for a nongenomic testosterone-induced increase in cell proliferation. Through membrane receptor stimulation, testosterone favors a muscle phenotype, indicated by an increase in smooth muscle markers. We also showed that the anti-inflammatory effects of testosterone, capable of attenuating lipopolysaccharide-induced proinflammatory actions, are promoted only by receptors located inside the cell. We postulate that testosterone might perform prohomeostatic effects through intracellular-initiated mechanisms by modulating cell proliferation and inflammation, whereas some pathological, hyperproliferative actions would be induced by membrane-initiated nongenomic signaling in pSMCs. Copyright © 2018 Endocrine Society.

  16. Androgens in health and disease: An overview

    PubMed Central

    Jordan, Cynthia L.; DonCarlos, Lydia

    2009-01-01

    This special issue of Hormones and Behavior, “Androgens in health and disease: new insights into roles and mechanisms of action,” is prompted by a number of relatively recent findings that androgens affect brain morphology and function in ways not previously or widely appreciated. Moreover, recent results also make it clear that androgens utilize a variety of signaling molecules to exert their effects on the brain, which may or may not depend on the classic nuclear androgen receptor (AR). The papers in this issue underscore these two points. This overview is not intended as a comprehensive review of androgen action on the nervous system, since the papers in this issue serve that purpose, but rather to frame the basic issues and themes that tie these papers together. The sum effect of the stories told in this issue encourages us to broaden and refocus our view of androgen action on brain and behavior—to recognize that androgens affect many aspects of brain structure and function throughout the lifespan, from shaping its sexual phenotype to influencing its propensity for disease and repair, and that at least some of these actions are exerted via non-classical modes of action that in many cases were first identified in non-neural tissue or cells. PMID:18407273

  17. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.

  18. Bisphenol A affects androgen receptor function via multiple mechanisms.

    PubMed

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. Published by Elsevier Ireland Ltd.

  19. Characterization of karyopherins in androgen receptor intracellular trafficking in the yeast model

    PubMed Central

    Nguyen, Minh M; Harmon, Robert M; Wang, Zhou

    2014-01-01

    Background: Mechanisms regulating androgen receptor (AR) subcellular localization represent an essential component of AR signaling. Karyopherins are a family of nucleocytoplasmic trafficking factors. In this paper, we used the yeast model to study the effects of karyopherins on the subcellular localization of the AR. Methods: Yeast mutants deficient in different nuclear transport factors were transformed with various AR based, GFP tagged constructs and their localization was monitored using microscopy. Results: We showed that yeast can mediate androgen-induced AR nuclear localization and that in addition to the import factor, Importinα/β, this process required the import karyopherin Sxm1. We also showed that a previously identified nuclear export sequence (NESAR) in the ligand binding domain of AR does not appear to rely on karyopherins for cytoplasmic localization. Conclusions: These results suggest that while AR nuclear import relies on karyopherin activity, AR nuclear export and/or cytoplasmic localization may require other undefined mechanisms. PMID:25031696

  20. A Conformational Investigation of Propeptide Binding to the Integral Membrane Protein γ-Glutamyl Carboxylase Using Nanodisc Hydrogen Exchange Mass Spectrometry

    PubMed Central

    2015-01-01

    Gamma (γ)-glutamyl carboxylase (GGCX) is an integral membrane protein responsible for the post-translational catalytic conversion of select glutamic acid (Glu) residues to γ-carboxy glutamic acid (Gla) in vitamin K-dependent (VKD) proteins. Understanding the mechanism of carboxylation and the role of GGCX in the vitamin K cycle is of biological interest in the development of therapeutics for blood coagulation disorders. Historically, biophysical investigations and structural characterizations of GGCX have been limited due to complexities involving the availability of an appropriate model membrane system. In previous work, a hydrogen exchange mass spectrometry (HX MS) platform was developed to study the structural configuration of GGCX in a near-native nanodisc phospholipid environment. Here we have applied the nanodisc–HX MS approach to characterize specific domains of GGCX that exhibit structural rearrangements upon binding the high-affinity consensus propeptide (pCon; AVFLSREQANQVLQRRRR). pCon binding was shown to be specific for monomeric GGCX-nanodiscs and promoted enhanced structural stability to the nanodisc-integrated complex while maintaining catalytic activity in the presence of carboxylation co-substrates. Noteworthy modifications in HX of GGCX were prominently observed in GGCX peptides 491–507 and 395–401 upon pCon association, consistent with regions previously identified as sites for propeptide and glutamate binding. Several additional protein regions exhibited minor gains in solvent protection upon propeptide incorporation, providing evidence for a structural reorientation of the GGCX complex in association with VKD carboxylation. The results herein demonstrate that nanodisc–HX MS can be utilized to study molecular interactions of membrane-bound enzymes in the absence of a complete three-dimensional structure and to map dynamic rearrangements induced upon ligand binding. PMID:24512177

  1. Canine REIC/Dkk-3 interacts with SGTA and restores androgen receptor signalling in androgen-independent prostate cancer cell lines.

    PubMed

    Kato, Yuiko; Ochiai, Kazuhiko; Kawakami, Shota; Nakao, Nobuhiro; Azakami, Daigo; Bonkobara, Makoto; Michishita, Masaki; Morimatsu, Masami; Watanabe, Masami; Omi, Toshinori

    2017-06-09

    The pathological condition of canine prostate cancer resembles that of human androgen-independent prostate cancer. Both canine and human androgen receptor (AR) signalling are inhibited by overexpression of the dimerized co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA), which is considered to cause the development of androgen-independency. Reduced expression in immortalised cells (REIC/Dkk-3) interferes with SGTA dimerization and rescues AR signalling. This study aimed to assess the effects of REIC/Dkk-3 and SGTA interactions on AR signalling in the canine androgen-independent prostate cancer cell line CHP-1. Mammalian two-hybrid and Halo-tagged pull-down assays showed that canine REIC/Dkk-3 interacted with SGTA and interfered with SGTA dimerization. Additionally, reporter assays revealed that canine REIC/Dkk-3 restored AR signalling in both human and canine androgen-independent prostate cancer cells. Therefore, we confirmed the interaction between canine SGTA and REIC/Dkk-3, as well as their role in AR signalling. Our results suggest that this interaction might contribute to the development of a novel strategy for androgen-independent prostate cancer treatment. Moreover, we established the canine androgen-independent prostate cancer model as a suitable animal model for the study of this type of treatment-refractory human cancer.

  2. A large scale membrane-binding protein conformational change that initiates at small length scales

    NASA Astrophysics Data System (ADS)

    Grandpre, Trevor; Andorf, Matthew; Chakravarthy, Srinivas; Lamb, Robert; Poor, Taylor; Landahl, Eric

    2013-03-01

    The fusion (F) protein of parainfluenza virus 5 (PIV5) is a membrane-bound, homotrimeric glycoprotein located on the surface of PIV5 viral envelopes. Upon being triggered by the receptor-binding protein (HN), F undergoes a greater than 100Å ATP-independent refolding event. This refolding event results in the insertion of a hydrophobic fusion peptide into the membrane of the target cell, followed by the desolvation and subsequent fusion event as the two membranes are brought together. Isothermal calorimetry and hydrophobic dye incorporation experiments indicate that the soluble construct of the F protein undergoes a conformational rearrangement event at around 55 deg C. We present the results of an initial Time-Resolved Small-Angle X-Ray Scattering (TR-SAXS) study of this large scale, entropically driven conformational change using a temperature jump. Although we the measured radius of gyration of this protein changes on a 110 second timescale, we find that the x-ray scattering intensity at higher angles (corresponding to smaller length scales in the protein) changes nearly an order of magnitude faster. We believe this may be a signature of entropically-driven conformational change. To whom correspondence should be addressed

  3. Prenatal and adult androgen activities in alcohol dependence.

    PubMed

    Lenz, B; Mühle, C; Braun, B; Weinland, C; Bouna-Pyrrou, P; Behrens, J; Kubis, S; Mikolaiczik, K; Muschler, M-R; Saigali, S; Sibach, M; Tanovska, P; Huber, S E; Hoppe, U; Eichler, A; Heinrich, H; Moll, G H; Engel, A; Goecke, T W; Beckmann, M W; Fasching, P A; Müller, C P; Kornhuber, J

    2017-07-01

    Alcohol dependence is more prevalent in men than in women. The evidence for how prenatal and adult androgens influence alcohol dependence is limited. We investigated the effects of prenatal and adult androgen activity on alcohol dependence. Moreover, we studied how the behaviours of pregnant women affect their children's prenatal androgen load. We quantified prenatal androgen markers (e.g., second-to-fourth finger length ratio [2D : 4D]) and blood androgens in 200 early-abstinent alcohol-dependent in-patients and 240 controls (2013-2015, including a 12-month follow-up). We also surveyed 134 women during pregnancy (2005-2007) and measured the 2D : 4D of their children (2013-2016). The prenatal androgen loads were higher in the male alcohol-dependent patients compared to the controls (lower 2D : 4D, P = 0.004) and correlated positively with the patients' liver transaminase activities (P < 0.001) and alcohol withdrawal severity (P = 0.019). Higher prenatal androgen loads and increasing androgen levels during withdrawal predicted earlier and more frequent 12-month hospital readmission in alcohol-dependent patients (P < 0.005). Moreover, stress levels (P = 0.002), alcohol (P = 0.010) and tobacco consumption (P = 0.017), and lifetime stressors (P = 0.019) of women during pregnancy related positively to their children's prenatal androgen loads (lower 2D : 4D). Androgen activities in alcohol-dependent patients and behaviours of pregnant women represent novel preventive and therapeutic targets of alcohol dependence. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Potential anabolic effects of androgens on bone.

    PubMed

    Kearns, Ann E; Khosla, Sundeep

    2004-04-01

    Sex steroid hormones are essential to normal skeletal growth and maintenance throughout life in both men and women. The importance of estrogens to bone health in women becomes obvious at menopause when estrogen deficiency occurs and results in accelerated bone loss. After menopause, estrogen deficiency results in drastic changes in the androgen-estrogen ratio. Thus, the relative importance of androgens after menopause may increase. Androgens also appear to be important for bone health in pre-menopausal women. Evidence from human, animal, and laboratory studies is leading to a better understanding of the effects of androgens on bone in women.

  5. Purification and identification of the fusicoccin binding protein from oat root plasma membrane

    NASA Technical Reports Server (NTRS)

    de Boer, A. H.; Watson, B. A.; Cleland, R. E.

    1989-01-01

    Fusicoccin (FC), a fungal phytotoxin, stimulates the H(+) -ATPase located in the plasma membrane (PM) of higher plants. The first event in the reaction chain leading to enhanced H(+) -efflux seems to be the binding of FC to a FC-binding protein (FCBP) in the PM. We solubilized 90% of the FCBP from oat (Avena sativa L. cv Victory) root PM in an active form with 1% octyl-glucoside. The FCBP was stabilized by the presence of protease inhibitors. The FCBP was purified by affinity chromatography using FC-linked adipic acid dihydrazide agarose (FC-AADA). Upon elution with 8 molar urea, two major protein bands on sodium dodecyl sulfate-polyaerylamide gel electrophoresis with molecular weights of 29,700 and 31,000 were obtained. Successive chromatography on BBAB Bio-Gel A, hexyl agarose, and FC-AADA resulted in the same two bands when the FC-AADA was eluted with sodium dodecyl sulfate. A direct correlation was made between 3H-FC-binding activity and the presence of the two protein bands. The stoichiometry of the 29,700 and 31,000 molecular weight bands was 1:2. This suggests that the FCBP occurs in the native form as a heterotrimer with an apparent molecular weight of approximately 92,000.

  6. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis

    PubMed Central

    Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L. M.; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana

    2017-01-01

    The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT. PMID:28704421

  7. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis.

    PubMed

    Tosetti, Valentina; Sassone, Jenny; Ferri, Anna L M; Taiana, Michela; Bedini, Gloria; Nava, Sara; Brenna, Greta; Di Resta, Chiara; Pareyson, Davide; Di Giulio, Anna Maria; Carelli, Stephana; Parati, Eugenio A; Gorio, Alfredo

    2017-01-01

    The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR) is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA) Sox2 overlapping transcript (Sox2OT) plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE), and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.

  8. Abnormal swelling of the peritrophic membrane in Eri silkworm gut caused by MLX56 family defense proteins with chitin-binding and extensin domains.

    PubMed

    Konno, Kotaro; Shimura, Sachiko; Ueno, Chihiro; Arakawa, Toru; Nakamura, Masatoshi

    2018-03-01

    MLX56 family defense proteins, MLX56 and its close homolog LA-b, are chitin-binding defense proteins found in mulberry latex that show strong growth-inhibitions against caterpillars when fed at concentrations as low as 0.01%. MLX56 family proteins contain a unique structure with an extensin domain surrounded by two hevein-like chitin-binding domains, but their defensive modes of action remain unclear. Here, we analyzed the effects of MLX56 family proteins on the peritrophic membrane (PM), a thin and soft membrane consisting of chitin that lines the midgut lumen of insects. We observed an abnormally thick (>1/5 the diameter of midgut) hard gel-like membrane consisted of chitin and MLX56 family proteins, MLX56 and LA-b, in the midgut of the Eri silkworms, Samia ricini, fed a diet containing MLX56 family proteins, MLX56 and LA-b. When polyoxin AL, a chitin-synthesis-inhibitor, was added to the diet containing MLX56 family proteins, the toxicity of MLX56 family proteins disappeared and PM became thinner and fragmented. These results suggest that MLX56 family proteins, through their chitin-binding domains, bind to the chitin framework of PM, then through their extensin-domain (gum arabic-like structure), which functions as swelling agent, expands PM into an abnormally thick membrane that inhibits the growth of insects. This study shows that MLX56 family proteins are plant defense lectins with a totally unique mode of action, and reveals the functions of extensin domains and arabinogalactan proteins as swelling (gel-forming) agents of plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome.

    PubMed

    Hara, Takahito; Miyazaki, Jun-ichi; Araki, Hideo; Yamaoka, Masuo; Kanzaki, Naoyuki; Kusaka, Masami; Miyamoto, Masaomi

    2003-01-01

    Most prostate cancers (PCs) become resistant to combined androgen blockade therapy with surgical or medical castration and antiandrogens after several years. Some of these refractory PCs regress after discontinuation of antiandrogen administration [antiandrogen withdrawal syndrome (AWS)]. Although the molecular mechanisms of the AWS are not fully understood because of the lack of suitable experimental models, one hypothesis of the mechanism is mutation of androgen receptor (AR). However, bicalutamide, which has become the most prevalent pure antiandrogen, does not work as an agonist for any mutant AR detected thus far in PC. To elucidate the mechanisms of the AWS, we established and characterized novel LNCaP cell sublines, LNCaP-cxDs, which were generated in vitro by culturing androgen-dependent LNCaP-FGC human PC cells in androgen-depleted medium with bicalutamide to mimic the combined androgen blockade therapy. LNCaP-FGC cells did not grow at first, but they started to grow after 6-13 weeks of culture. Bicalutamide stimulated LNCaP-cxD cell growth and increased prostate-specific antigen secretion from LNCaP-cxD cells both in vitro and in vivo. Sequencing of AR transcripts revealed that the AR in LNCaP-cxD cells harbors a novel mutation in codon 741, TGG (tryptophan) to TGT (cysteine; W741C), or in codon 741, TGG to TTG (leucine; W741L), in the ligand-binding domain. Transactivation assays showed that bicalutamide worked as an agonist for both W741C and W741L mutant ARs. Importantly, another antiandrogen, hydroxyflutamide, worked as an antagonist for these mutant ARs. In summary, we demonstrate for the first time that within only 6-13 weeks of in vitro exposure to bicalutamide, LNCaP-FGC cells, whose growth had initially been suppressed, came to use bicalutamide as an AR agonist via W741 AR mutation to survive. Our data strongly support the hypothesis that AR mutation is one possible mechanism of the AWS and suggest that flutamide might be effective as a second

  10. Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding.

    PubMed

    Messersmith, Reid E; Nusz, Greg J; Reed, Scott M

    2013-12-19

    Gold nanoparticles provide a template for preparing supported lipid layers with well-defined curvature. Here, we utilize the localized surface plasmon resonance (LSPR) of gold nanoparticles as a sensor for monitoring the preparation of lipid layers on nanoparticles. The LSPR is very sensitive to the immediate surroundings of the nanoparticle surface and it is used to monitor the coating of lipids and subsequent conversion of a supported bilayer to a hybrid membrane with an outer lipid leaflet and an inner leaflet containing hydrophobic alkanethiol. We demonstrate that both decanethiol and propanethiol are able to form hybrid membranes and that the membrane created over the shorter thiol can be stripped from the gold along with the lipid leaflet using β-mercaptoethanol. The sensitivity of the nanoparticle LSPR to the refractive index (RI) of its surroundings is greater when the shorter thiol is used (37.8 ± 1.5 nm per RI unit) than when the longer thiol is used (27.5 ± 0.5 nm per RI unit). Finally, C-reactive protein binding to the membrane is measured using this sensor allowing observation of both protein-membrane and nanoparticle-nanoparticle interactions without chemical labeling of protein or lipids.

  11. A Mathematical Model of Intermittent Androgen Suppression for Prostate Cancer

    NASA Astrophysics Data System (ADS)

    Ideta, Aiko Miyamura; Tanaka, Gouhei; Takeuchi, Takumi; Aihara, Kazuyuki

    2008-12-01

    For several decades, androgen suppression has been the principal modality for treatment of advanced prostate cancer. Although the androgen deprivation is initially effective, most patients experience a relapse within several years due to the proliferation of so-called androgen-independent tumor cells. Bruchovsky et al. suggested in animal models that intermittent androgen suppression (IAS) can prolong the time to relapse when compared with continuous androgen suppression (CAS). Therefore, IAS has been expected to enhance clinical efficacy in conjunction with reduction in adverse effects and improvement in quality of life of patients during off-treatment periods. This paper presents a mathematical model that describes the growth of a prostate tumor under IAS therapy based on monitoring of the serum prostate-specific antigen (PSA). By treating the cancer tumor as a mixed assembly of androgen-dependent and androgen-independent cells, we investigate the difference between CAS and IAS with respect to factors affecting an androgen-independent relapse. Numerical and bifurcation analyses show how the tumor growth and the relapse time are influenced by the net growth rate of the androgen-independent cells, a protocol of the IAS therapy, and the mutation rate from androgen-dependent cells to androgen-independent ones.

  12. Genetics Home Reference: androgen insensitivity syndrome

    MedlinePlus

    ... particular ethnic groups? Genetic Changes Mutations in the AR gene cause androgen insensitivity syndrome . This gene provides ... hair growth and sex drive. Mutations in the AR gene prevent androgen receptors from working properly, which ...

  13. An AKT activity threshold regulates androgen-dependent and androgen-independent PSA expression in prostate cancer cell lines.

    PubMed

    Paliouras, Miltiadis; Diamandis, Eleftherios P

    2008-06-01

    The androgen receptor (AR) plays an important role in early prostate cancer by activating transcription of a number of genes participating in cell proliferation and growth and cancer progression. However, as the cancer progresses, prostate cancer cells transform from an androgen-dependent to an androgen-independent state. Androgen-independent prostate cancer can manifest itself in several forms, including a percentage of cancers that show reduced levels of prostate-specific antigen (PSA) and can progress without the need for the ligand or active receptor. Therefore, our goal was to examine the role of intracellular signaling pathways in an androgen-independent prostate cancer in vitro model. Using the cell line PC3(AR)(2), we stimulated cells with 5-alpha-dihydrotestosterone (DHT) and epidermal growth factor (EGF) and then analyzed PSA expression. We observed lower PSA expression when cells were jointly stimulated with DHT and EGF, and this was associated with an increase in AKT activity. We examined the role of AKT in AR activity and PSA expression by creating stable PC3(AR)(2) cell lines transfected with a PI3K-Ras-effector loop mutant. These cell lines showed lower DHT-stimulated PSA expression that correlated to changes in the phosphorylated state of AR. Therefore, we propose an in vitro androgen-independent model in which a PI3K/AKT activity threshold and subsequent AR transactivation regulate PSA expression.

  14. Effects of sterol-binding agent nystatin on wheat roots: the changes in membrane permeability, sterols and glycoceramides.

    PubMed

    Valitova, Julia N; Minibayeva, Farida V; Kotlova, Ekaterina R; Novikov, Alexander V; Shavarda, Alexey L; Murtazina, Lyaisan I; Ryzhkina, Irina S

    2011-10-01

    Plant sterols are important multifunctional lipids, which are involved in determining membrane properties. Biophysical characteristics of model lipid and isolated animal membranes with altered sterol component have been intensively studied. In plants however, the precise mechanisms of involvement of sterols in membrane functioning remain unclear. In present work the possible interactions between sterols and other membrane lipids in plant cells were studied. A useful experimental approach for elucidating the roles of sterols in membrane activity is to use agents that specifically bind with endogenous sterols, for example the antibiotic nystatin. Membrane characteristics and the composition of membrane lipids in the roots of wheat (Triticum aestivum L.) seedlings treated with nystatin were analyzed. The application of nystatin greatly increased the permeability of the plasma membrane for ions and SH-containing molecules and decreased the total sterol level mainly as a consequence of a reduction in the amount of β-sitosterol and campesterol. Dynamic light-scattering was used to confirm the in vitro formation of stable complexes between nystatin and β-sitosterol or cholesterol. Sterol depletion was accompanied by a significant rise in total glycoceramide (GlCer) content after 2h treatment with nystatin. Analysis of the GlCer composition using mass spectrometry with electrospray ionization demonstrated that nystatin induced changes in the ratio of molecular species of GlCer. Our results suggest that changes in the sphingolipid composition can contribute to the changes in plasma membrane functioning induced by sterol depletion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Regulators of Androgen Action Resource: a one-stop shop for the comprehensive study of androgen receptor action.

    PubMed

    DePriest, Adam D; Fiandalo, Michael V; Schlanger, Simon; Heemers, Frederike; Mohler, James L; Liu, Song; Heemers, Hannelore V

    2016-01-01

    Androgen receptor (AR) is a ligand-activated transcription factor that is the main target for treatment of non-organ-confined prostate cancer (CaP). Failure of life-prolonging AR-targeting androgen deprivation therapy is due to flexibility in steroidogenic pathways that control intracrine androgen levels and variability in the AR transcriptional output. Androgen biosynthesis enzymes, androgen transporters and AR-associated coregulators are attractive novel CaP treatment targets. These proteins, however, are characterized by multiple transcript variants and isoforms, are subject to genomic alterations, and are differentially expressed among CaPs. Determining their therapeutic potential requires evaluation of extensive, diverse datasets that are dispersed over multiple databases, websites and literature reports. Mining and integrating these datasets are cumbersome, time-consuming tasks and provide only snapshots of relevant information. To overcome this impediment to effective, efficient study of AR and potential drug targets, we developed the Regulators of Androgen Action Resource (RAAR), a non-redundant, curated and user-friendly searchable web interface. RAAR centralizes information on gene function, clinical relevance, and resources for 55 genes that encode proteins involved in biosynthesis, metabolism and transport of androgens and for 274 AR-associated coregulator genes. Data in RAAR are organized in two levels: (i) Information pertaining to production of androgens is contained in a 'pre-receptor level' database, and coregulator gene information is provided in a 'post-receptor level' database, and (ii) an 'other resources' database contains links to additional databases that are complementary to and useful to pursue further the information provided in RAAR. For each of its 329 entries, RAAR provides access to more than 20 well-curated publicly available databases, and thus, access to thousands of data points. Hyperlinks provide direct access to gene

  16. Membrane-Dependent Effects of a Cytoplasmic Helix on the Structure and Drug Binding of the Influenza Virus M2 Protein

    PubMed Central

    Cady, Sarah; Wang, Tuo; Hong, Mei

    2011-01-01

    The influenza A M2 protein forms a proton channel for virus infection and also mediates virus assembly and budding. The minimum protein length that encodes both functions contains the transmembrane (TM) domain (roughly residues 22 to 46) for the amantadine-sensitive proton-channel activity and an amphipathic cytoplasmic helix (roughly residues 45 to 62) for curvature induction and virus budding. However, structural studies involving the TM domain with or without the amphipathic helix differed on the drug-binding site. Here we use solid-state NMR spectroscopy to determine the amantadine binding site in the cytoplasmic-helix-containing M2(21–61). 13C-2H distance measurements of 13C-labeled protein and 2H-labeled amantadine showed that in DMPC bilayers, the first equivalent of drug bound S31 inside the M2(21–61) pore, similar to the behavior of M2TM in DMPC bilayers. The non-specific surface site of D44 observed in M2TM is disfavored in the longer peptide. Thus, the pharmacologically relevant drug-binding site in the fully functional M2(21–61) is S31 in the TM pore. Interestingly, when M2(21–61) was reconstituted into a virus-mimetic membrane containing 30% cholesterol, no chemical shift perturbation was observed for pore-lining residues, while M2TM in the same membrane exhibited drug-induced chemical shift changes. Reduction of the cholesterol level and the use of unsaturated phospholipids shifted the conformational equilibrium of M2TM fully to the bound state, but did not rescue drug binding to M2(21–61). These results suggest that the amphipathic helix, together with cholesterol, modulates the ability of the TM helices to bind amantadine. Thus, the M2 protein interacts with the lipid membrane and small-molecule inhibitors in a complex fashion, and a careful examination of the environmental dependence of the protein conformation is required to fully understand the structure-function relation of this protein. PMID:21661724

  17. A Novel Dietary Flavonoid Fisetin Inhibits Androgen Receptor Signaling and Tumor Growth in Athymic Nude Mice

    PubMed Central

    Khan, Naghma; Asim, Mohammad; Afaq, Farrukh; Zaid, Mohammad Abu; Mukhtar, Hasan

    2010-01-01

    Androgen receptor (AR)–mediated signaling plays an important role in the development and progression of prostate cancer (PCa). Hormonal therapies, mainly with combinations of antiandrogens and androgen deprivation, are the mainstay treatment for advanced disease. However, emergence of androgen resistance largely due to inefficient antihormone action limits their therapeutic usefulness. Here, we report that fisetin, a novel dietary flavonoid, acts as a novel AR ligand by competing with the high-affinity androgen to interact with the ligand binding domain of AR. We show that this physical interaction results in substantial decrease in AR stability and decrease in amino-terminal/carboxyl-terminal (N-C) interaction of AR. This results in blunting of AR-mediated transactivation of target genes including prostate-specific antigen (PSA). In addition, treatment of LNCaP cells with fisetin decreased AR protein levels, in part, by decreasing its promoter activity and by accelerating its degradation. Fisetin also synergized with Casodex in inducing apoptosis in LNCaP cells. Treatment with fisetin in athymic nude mice implanted with AR-positive CWR22Rυ1 human PCa cells resulted in inhibition of tumor growth and reduction in serum PSA levels. These data identify fisetin as an inhibitor of AR signaling axis and suggest that it could be a useful chemopreventive and chemotherapeutic agent to delay progression of PCa. PMID:18922931

  18. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwieterman, W.; Sorrentino, D.; Potter, B.J.

    1988-01-01

    A portion of the hepatocellular uptake of nonesterified long-chain fatty acids is mediated by a specific 40-kDa plasma membrane fatty acid binding protein, which has also been isolated from the gut. To investigate whether a similar transport process exists in other tissues with high transmembrane fatty acid fluxes, initial rates (V/sub O/) of (/sup 3/H)-oleate uptake into isolated rat adipocytes were studied as a function of the concentration of unbound (/sup 3/H)oleate in the medium. V/sub O/ reached a maximum as the concentration of unbound oleate was increased and was significantly inhibited both by phloretin and by prior incubation ofmore » the cells with Pronase. A rabbit antibody to the rat liver plasma membrane fatty acid binding protein inhibited adipocyte fatty acid uptake by up to 63% in dose-dependent fashion. Inhibition was noncompetitive; at an immunoglobulin concentration of 250 ..mu..g/ml V/sub max/ was reduced from 2480 /plus minus/ 160 to 1870 /plus minus/ 80 pmol/min per 5 /times/ 10/sup 4/ adipocytes, with no change in K/sub m/. A basic kDa adipocyte plasma membrane fatty acid binding protein, isolated from crude adipocyte plasma membrane fractions, reacted strongly in both agar gel diffusion and electrophoretic blots with the antibody raised against the corresponding hepatic plasma membrane protein. These data indicate that the uptake of oleate by rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut.« less

  19. Androgen Receptor Content of the Normal and Hyperplastic Canine Prostate

    PubMed Central

    Shain, Sydney A.; Boesel, Robert W.

    1978-01-01

    A procedure was developed for measurement of androgen receptors in cytoplasmic extracts of prostates from intact dogs. The protocol utilized exchange saturation analysis at 15°C employing the synthetic androgen R1881 (17β-hydroxy-17α-methylestra-4,9,11-trien-3-one) as the ligand probe and quantitatively detected total cytoplasmic androgen receptor (Rc, androgen-free receptor, and RcA, androgen-occupied receptor) present at the initiation of the assay. This protocol was employed in conjunction with a tissue mince saturation analysis procedure (for quantitation of nuclear androgen receptor) to quantitate total androgen receptor content of normal and hyperplastic prostates obtained from young (2.5- or 4.6-yr old) and aged (12.5-yr old) purebred dogs of known birth date. The total cytoplasmic androgen receptor content (picomoles per prostate) of hyperplastic prostates was 4.6-fold greater than that of normal prostates. The total nuclear androgen receptor content of hyperplastic prostates (picomoles per prostate measured in crude nuclear preparations) was either 5.0- (4.6-yr-old dogs) or 7.8-fold (2.5-yr-old dogs) greater than that of normal prostates. However, androgen receptor content per cell was identical for hyperplastic and normal canine prostates, with the exception that nuclear androgen receptor was diminished in prostates from 2.5-yr-old dogs. The cell content per gram dry weight was identical for hyperplastic and normal canine prostates. We conclude that canine prostate hyperplasia is characterized by coordinate proliferation of androgen receptor-positive and androgen receptor-negative cells and is not a consequence of increased accumulation of 5α-dihydrotestosterone due to proliferation of androgen receptors per prostate cell. PMID:76635

  20. Reversible binding kinetics of a cytoskeletal protein at the erythrocyte submembrane.

    PubMed Central

    Stout, A. L.; Axelrod, D.

    1994-01-01

    Reversible binding among components of the cellular submembrane cytoskeleton and reversible binding of some of these components with the plasma membrane likely play a role in nonelastic morphological changes and mechanoplastic properties of cells. However, relatively few studies have been devoted to investigating directly the kinetic aspects of the interactions of individual components of the membrane skeleton with the membrane. The experiments described here investigated whether one component of the erythrocyte membrane cytoskeleton, protein 4.1, binds to its sites on the membrane reversibly and if so, whether the different 4.1-binding sites display distinct kinetic behavior. Protein 4.1 is known to stabilize the membrane and to mediate the attachment of spectrin filaments to the membrane. Protein 4.1 previously has been shown to bind to integral membrane proteins band 3, glycophorin C, and to negatively charged phospholipids. To examine the kinetic rates of dissociation of carboxymethyl fluorescein-labeled 4.1 (CF-4.1) to the cytofacial surface of erythrocyte membrane, a special preparation of hemolyzed erythrocyte ghosts was used, in which the ghosts became flattened on a glass surface and exposed their cytofacial surfaces to the solution through a membrane rip in a distinctive characteristic pattern. This preparation was examined by the microscopy technique of total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP). Four different treatments were employed to help identify which membrane binding sites gave rise to the multiplicity of observed kinetic rates. The first treatment, the control, stripped off the native spectrin, actin, 4.1, and ankyrin. About 60% of the CF-4.1 bound to this control binded irreversibly (dissociation time > 20 min), but the remaining approximately 40% binded reversibly with a range of residency times averaging approximately 3 s. The second treatment subjected these stripped membranes to trypsin, which presumably

  1. FlnA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets.

    PubMed

    Begonja, Antonija Jurak; Pluthero, Fred G; Suphamungmee, Worawit; Giannini, Silvia; Christensen, Hilary; Leung, Richard; Lo, Richard W; Nakamura, Fumihiko; Lehman, William; Plomann, Markus; Hoffmeister, Karin M; Kahr, Walter H A; Hartwig, John H; Falet, Hervé

    2015-07-02

    Bin-Amphiphysin-Rvs (BAR) and Fes-CIP4 homology BAR (F-BAR) proteins generate tubular membrane invaginations reminiscent of the megakaryocyte (MK) demarcation membrane system (DMS), which provides membranes necessary for future platelets. The F-BAR protein PACSIN2 is one of the most abundant BAR/F-BAR proteins in platelets and the only one reported to interact with the cytoskeletal and scaffold protein filamin A (FlnA), an essential regulator of platelet formation and function. The FlnA-PACSIN2 interaction was therefore investigated in MKs and platelets. PACSIN2 associated with FlnA in human platelets. The interaction required FlnA immunoglobulin-like repeat 20 and the tip of PACSIN2 F-BAR domain and enhanced PACSIN2 F-BAR domain membrane tubulation in vitro. Most human and wild-type mouse platelets had 1 to 2 distinct PACSIN2 foci associated with cell membrane GPIbα, whereas Flna-null platelets had 0 to 4 or more foci. Endogenous PACSIN2 and transfected enhanced green fluorescent protein-PACSIN2 were concentrated in midstage wild-type mouse MKs in a well-defined invagination of the plasma membrane reminiscent of the initiating DMS and dispersed in the absence of FlnA binding. The DMS appeared less well defined, and platelet territories were not readily visualized in Flna-null MKs. We conclude that the FlnA-PACSIN2 interaction regulates membrane tubulation in MKs and platelets and likely contributes to DMS formation. © 2015 by The American Society of Hematology.

  2. Crystal Structure of the Receptor Binding Domain of the botulinum C-D Mosiac Neurotoxin Reveals Potential Roles of Lysines 1118 and 1136 in Membrane Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Zhang; G Buchko; L Qin

    2011-12-31

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C ({approx}two-third) and BoNT/D ({approx}one-third) serotypes. While the amino acid sequence of themore » heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 {angstrom} resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal {beta}-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR.« less

  3. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Ling

    2011-01-07

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C (~two-thirds) and BoNT/D (~one-third) serotypes. While the amino acid sequence of themore » heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 Å resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal β-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR« less

  4. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions.

    PubMed

    Zhang, Yanfeng; Buchko, Garry W; Qin, Ling; Robinson, Howard; Varnum, Susan M

    2011-01-07

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C (∼two-third) and BoNT/D (∼one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 Å resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal β-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR. Copyright © 2010

  5. Hypochlorite Oxidation of Select Androgenic Steroids

    EPA Science Inventory

    Steroid hormones are vital for regulation of various biological functions including sexual development. Elevated concentrations of natural and synthetic androgenic steroids have been shown to adversely affect normal development in indigenous aqueous species. Androgens and their s...

  6. Inhibition of gentamicin binding to rat renal brush-border membrane by megalin ligands and basic peptides.

    PubMed

    Nagai, Junya; Saito, Masaki; Adachi, Yoshinori; Yumoto, Ryoko; Takano, Mikihisa

    2006-05-01

    Our previous studies showed that coadministration of cytochrome c and a 20-residue basic peptide, N-WASP181-200 (NISHTKEKKKGKAKKKRLTK, pI=10.87) inhibits renal accumulation of gentamicin. In this study, we examined effects of ligands of megalin, an endocytic receptor involved in renal uptake of gentamicin, and basic peptides including N-WASP180-200 and its mutant peptides on gentamicin binding to isolated rat renal brush-border membrane (BBM). Gentamicin binding to BBM was inhibited by megalin ligands, basic peptide fragments of cytochrome c, and N-WASP181-200 in a concentration-dependent manner. Klotz plot analysis showed that N-WASP181-200 inhibited the binding of gentamicin in a competitive manner. By substituting glycines for lysines in N-WASP181-200 at positions 9 and 15, the inhibitory effect on gentamicin binding to BBM was reduced, which may be related to a decrease in the alpha-helix content in the peptide. Gentamicin binding to BBM treated with trypsin, in which megalin completely disappeared, was significantly but not completely decreased compared with the native BBM. In addition, treatment of BBM with trypsin led to a decrease in the inhibitory effect of N-WASP181-200 on gentamicin binding. These observations support that megalin ligands and basic peptides including N-WASP181-200 decrease renal accumulation of gentamicin by inhibiting its binding to BBM of proximal tubule cells, partly interacting with megalin. In addition, the alpha-helix conformation may play an important role in the inhibitory effect of N-WASP181-200 on the binding of gentamicin to BBM.

  7. Androgen actions on endothelium functions and cardiovascular diseases

    PubMed Central

    Cai, Jing-Jing; Wen, Juan; Jiang, Wei-Hong; Lin, Jian; Hong, Yuan; Zhu, Yuan-Shan

    2016-01-01

    The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple factors such as genetic and epigenetic variation, sex-specificity, hormone interactions, drug preparation and route of administration may contribute. Recently, growing evidence suggests that androgens exhibit beneficial effects on cardiovascular function though the mechanism remains to be elucidated. Endothelial cells (ECs) which line the interior surface of blood vessels are distributed throughout the circulatory system, and play a crucial role in cardiovascular function. Endothelial progenitor cells (EPCs) are considered an indispensable element for the reconstitution and maintenance of an intact endothelial layer. Endothelial dysfunction is regarded as an initiating step in development of atherosclerosis and cardiovascular diseases. The modulation of endothelial functions by androgens through either genomic or nongenomic signal pathways is one possible mechanism by which androgens act on the cardiovascular system. Obtaining insight into the mechanisms by which androgens affect EC and EPC functions will allow us to determine whether androgens possess beneficial effects on the cardiovascular system. This in turn may be critical in the prevention and therapy of cardiovascular diseases. This article seeks to review recent progress in androgen regulation of endothelial function, the sex-specificity of androgen actions, and its clinical applications in the cardiovascular system. PMID:27168746

  8. Design and synthesis of tricyclic tetrahydroquinolines as a new series of nonsteroidal selective androgen receptor modulators (SARMs).

    PubMed

    Nagata, Naoya; Miyakawa, Motonori; Amano, Seiji; Furuya, Kazuyuki; Yamamoto, Noriko; Inoguchi, Kiyoshi

    2011-03-15

    Some tricyclic tetrahydroquinolines (THQs) were found to have the potential of a new series of nonsteroidal selective androgen receptor modulators (SARMs). Compound 5b was first designed and synthesized under our hypothesis based on a four-point pharmacophoric requirement of the 3-carbonyl, 18-methyl, 17-hydroxyl, and 13-quaternary carbon groups of dihydrotestosterone (DHT). It was revealed that this compound exhibits not only a strong androgen receptor (AR) agonistic activity (EC(50)=9.2 nM) but also the highest selectivity in binding affinity to AR among the steroid hormone receptors. Furthermore, this compound showed a weak virilizing effect with retention of the desired anabolic effect as compared with DHT in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The yeast plasma membrane ATP binding cassette (ABC) transporter Aus1: purification, characterization, and the effect of lipids on its activity.

    PubMed

    Marek, Magdalena; Milles, Sigrid; Schreiber, Gabriele; Daleke, David L; Dittmar, Gunnar; Herrmann, Andreas; Müller, Peter; Pomorski, Thomas Günther

    2011-06-17

    The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter.

  10. The role of testosterone in coordinating male life history strategies: The moderating effects of the androgen receptor CAG repeat polymorphism.

    PubMed

    Gettler, Lee T; Ryan, Calen P; Eisenberg, Dan T A; Rzhetskaya, Margarita; Hayes, M Geoffrey; Feranil, Alan B; Bechayda, Sonny Agustin; Kuzawa, Christopher W

    2017-01-01

    Partnered fathers often have lower testosterone than single non-parents, which is theorized to relate to elevated testosterone (T) facilitating competitive behaviors and lower T contributing to nurturing. Cultural- and individual-factors moderate the expression of such psychobiological profiles. Less is known about genetic variation's role in individual psychobiological responses to partnering and fathering, particularly as related to T. We examined the exon 1 CAG (polyglutamine) repeat (CAGn) within the androgen receptor (AR) gene. AR CAGn shapes T's effects after it binds to AR by affecting AR transcriptional activity. Thus, this polymorphism is a strong candidate to influence individual-level profiles of "androgenicity." While males with a highly androgenic profile are expected to engage in a more competitive-oriented life history strategy, low androgenic men are at increased risk of depression, which could lead to similar outcomes for certain familial dynamics, such as marriage stability and parenting. Here, in a large longitudinal study of Filipino men (n=683), we found that men who had high androgenicity (elevated T and shorter CAGn) or low androgenicity (lower T and longer CAGn) showed elevated likelihood of relationship instability over the 4.5-year study period and were also more likely be relatively uninvolved with childcare as fathers. We did not find that CAGn moderated men's T responses to the fatherhood transition. In total, our results provide evidence for invested fathering and relationship stability at intermediate levels of androgenicity and help inform our understanding of variation in male reproductive strategies and the individual hormonal and genetic differences that underlie it. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. High dose androgen therapy in male pseudohermaphroditism due to 5 alpha-reductase deficiency and disorders of the androgen receptor.

    PubMed

    Price, P; Wass, J A; Griffin, J E; Leshin, M; Savage, M O; Large, D M; Bu'Lock, D E; Anderson, D C; Wilson, J D; Besser, G M

    1984-10-01

    We describe the clinical and biochemical features of six men with male pseudohermaphroditism due to androgen resistance. Each of the subjects had male-gender behavior but incomplete virilization. The underlying defects in androgen metabolism were defined by studies of the 5 alpha-reductase enzyme and the androgen receptor in fibroblasts cultured from biopsies of genital skin. Four of the six have 5 alpha-reductase deficiency, and two have defects of the androgen receptor (the Reifenstein syndrome). The responses of these men to androgen treatment were assessed by monitoring nitrogen balance, plasma luteinizing hormone (LH) values, and clinical parameters of virilization including penile growth, potency and ejaculatory volume, muscle bulk, and growth of body and facial hair. In all of the subjects with 5 alpha-reductase deficiency and one man with the Reifenstein syndrome significant response occurred, as evidence by nitrogen retention, lowered plasma LH levels, and improved virilization, with doses of parenteral testosterone esters that raised plasma testosterone levels above the normal male range and brought plasma dihydrotestosterone levels into the normal male range. The subject who did not respond with clinical virilization nevertheless showed nitrogen retention in response to acute testosterone administration. This patient had a profound deficiency of the androgen receptor, whereas the man with a receptor defect who did respond clinically to therapy had normal amounts of a qualitatively abnormal receptor. We conclude that high dose androgen therapy may be of benefit in improving virilization, self-image, and sexual performance in subjects with 5 alpha-reductase deficiency who have male-gender behavior and in some subjects with defects of the androgen receptor.

  12. Effects of androgens on cardiovascular remodeling.

    PubMed

    Ikeda, Yasumasa; Aihara, Ken-ichi; Yoshida, Sumiko; Akaike, Masashi; Matsumoto, Toshio

    2012-07-01

    Androgens, the male sex hormones, exert various biological effects on many target organs through the transcriptional effects of the nuclear androgen receptor (AR). ARs are expressed not only in classical target organs, such as the brain, genital organs, bone, and skeletal muscles, but also in the cardiovascular system. Because the female sex hormones estrogens are well-known to protect against cardiovascular disease, sex has been considered to have a significant clinical impact on cardiovascular mortality. However, the influence of androgens on the cardiovascular system has not been fully elucidated. To clarify this issue, we analyzed the effects of administration of angiotensin II and doxorubicin, an anticancer agent, in a loading model in male wild-type and AR-deficient mice. In this review, we focus on the actions of androgens as potential targets for the prevention of cardiovascular diseases in males.

  13. The HOPS/Class C Vps Complex Tethers High-Curvature Membranes via a Direct Protein-Membrane Interaction.

    PubMed

    Ho, Ruoya; Stroupe, Christopher

    2016-10-01

    Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Postmenopausal virilization after spousal use of topical androgens.

    PubMed

    Merhi, Zaher O; Santoro, Nanette

    2007-04-01

    To increase awareness of the potential to cause virilization in postmenopausal woman secondary to a spouse's use of topical androgen. Case report. University-affiliated teaching hospital. A 63-year-old postmenopausal woman with virilization. Removal of the source of androgen exposure. Regression of the biochemical and physical signs of androgen excess in a woman after cessation of T gel use by her partner, and reinitiation of use with precautions against potential methods of transfer. This case highlights the unintentional transdermal absorption of testosterone sufficient to induce virilization in a couple who were aware of this potential problem. The apparent source of androgen absorption was a washcloth that the couple shared. The diagnosis can be established with a detailed history and a few blood tests (total and free T, and DHEAS) to exclude other sources of androgens. This report reinforces the need to consider exogenous androgen exposure in the differential diagnosis of virilization in adults when the more common causes have been excluded.

  15. BAY 1024767 blocks androgen receptor mutants found in castration-resistant prostate cancer patients

    PubMed Central

    Sugawara, Tatsuo; Lejeune, Pascale; Köhr, Silke; Neuhaus, Roland; Faus, Hortensia; Gelato, Kathy A.; Busemann, Matthias; Cleve, Arwed; Lücking, Ulrich; von Nussbaum, Franz; Brands, Michael; Mumberg, Dominik; Jung, Klaus; Stephan, Carsten; Haendler, Bernard

    2016-01-01

    Androgen receptor (AR) mutations arise in patients developing resistance to hormone deprivation therapies. Here we describe BAY 1024767, a thiohydantoin derivative with strong antagonistic activity against nine AR variants with mutations located in the AR ligand-binding domain (LBD), and against wild-type AR. Antagonism was maintained, though reduced, at increased androgen levels. Anti-tumor efficacy was evidenced in vivo in the KuCaP-1 prostate cancer model which bears the W741C bicalutamide resistance mutation and in the syngeneic prostate cancer rat model Dunning R3327-G. The prevalence of six selected AR mutations was determined in plasma DNA originating from 100 resistant patients and found to be at least 12%. Altogether the results show BAY 1024767 to be a strong antagonist for several AR mutants linked to therapy resistance, which opens the door for next-generation compounds that can benefit patients based on their mutation profile. PMID:26760770

  16. High-affinity 3H-substance P binding to longitudinal muscle membranes of the guinea pig small intestine.

    PubMed

    Buck, S H; Maurin, Y; Burks, T F; Yamamura, H I

    1984-01-30

    The binding of 3H-substance P (3H-SP) to longitudinal muscle membranes of the guinea pig small intestine has been characterized. The binding of 3H-SP exhibited a high affinity (Kd = 0.5nM). It was saturable (Bmax = 2 fmoles/mg tissue), reversible, and temperature-dependent. Kinetic studies and competition of 3H-SP binding by unlabeled SP yielded Kd and Ki values, respectively, which were in good agreement with the Kd calculated from saturation studies. The binding of 3H-SP appeared to be dependent on the presence of divalent cations in the incubation buffer. It was displaced by SP and various analogs and fragments in the rank order of SP greater than SP-(2-11) = SP-(3-11) greater than Nle11- SP = physalaemin greater than SP-(4-11) greater than SP-(5-11) greater than eledoisin much greater than SP-(7-11). Our results indicate that 3H-SP binds in longitudinal muscle of the guinea pig small intestine to a biologically relevant receptor which in many respects resembles the SP receptor characterized in the brain and the salivary gland of the rat.

  17. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H] SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes.

    PubMed Central

    Tam, S W; Cook, L

    1984-01-01

    The relationship between binding of antipsychotic drugs and sigma psychotomimetic opiates to binding sites for the sigma agonist (+)-[3H]SKF 10,047 (N-allylnormetazocine) and to dopamine D2 sites was investigated. In guinea pig brain membranes, (+)-[3H]SKF 10,047 bound to a single class of sites with a Kd of 4 X 10(-8) M and a Bmax of 333 fmol/mg of protein. This binding was different from mu, kappa, or delta opiate receptor binding. It was inhibited by opiates that produce psychotomimetic activities but not by opiates that lack such activities. Some antipsychotic drugs inhibited (+)-[3H]SKF 10,047 binding with high to moderate affinities in the following order of potency: haloperidol greater than perphenazine greater than fluphenazine greater than acetophenazine greater than trifluoperazine greater than molindone greater than or equal to pimozide greater than or equal to thioridazine greater than or equal to chlorpromazine greater than or equal to triflupromazine. However, there were other antipsychotic drugs such as spiperone and clozapine that showed low affinity for the (+)-[3H]SKF 10,047 binding sites. Affinities of antipsychotic drugs for (+)-[3H]SKF 10,047 binding sites did not correlate with those for [3H]spiperone (dopamine D2) sites. [3H]-Haloperidol binding in whole brain membranes was also inhibited by the sigma opiates pentazocine, cyclazocine, and (+)-SKF 10,047. In the striatum, about half of the saturable [3H]haloperidol binding was to [3H]spiperone (D2) sites and the other half was to sites similar to (+)-[3H]SKF 10,047 binding sites. PMID:6147851

  18. Membrane Curvature Sensing by Amphipathic Helices

    PubMed Central

    Jensen, Martin Borch; Bhatia, Vikram Kjøller; Jao, Christine C.; Rasmussen, Jakob Ewald; Pedersen, Søren L.; Jensen, Knud J.; Langen, Ralf; Stamou, Dimitrios

    2011-01-01

    Preferential binding of proteins on curved membranes (membrane curvature sensing) is increasingly emerging as a general mechanism whereby cells may effect protein localization and trafficking. Here we use a novel single liposome fluorescence microscopy assay to examine a common sensing motif, the amphipathic helix (AH), and provide quantitative measures describing and distinguishing membrane binding and sensing behavior. By studying two AH-containing proteins, α-synuclein and annexin B12, as well as a range of AH peptide mutants, we reveal that both the hydrophobic and hydrophilic faces of the helix greatly influence binding and sensing. Although increased hydrophobic and electrostatic interactions with the membrane both lead to greater densities of bound protein, the former yields membrane curvature-sensitive binding, whereas the latter is not curvature-dependent. However, the relative contributions of both components determine the sensing of AHs. In contrast, charge density in the lipid membrane seems important primarily in attracting AHs to the membrane but does not significantly influence sensing. These observations were made possible by the ability of our assay to distinguish within our samples liposomes with and without bound protein as well as the density of bound protein. Our findings suggest that the description of membrane curvature-sensing requires consideration of several factors such as short and long range electrostatic interactions, hydrogen bonding, and the volume and structure of inserted hydrophobic residues. PMID:21953452

  19. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Ripple, M.; Balczon, R.; Weindruch, R.; Chakrabarti, A.; Taylor, M.; Hueser, C. N.

    2000-01-01

    We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well. Copyright 2000 Wiley-Liss, Inc.

  20. Regulation of uterine progesterone receptors by the nonsteroidal anti-androgen hydroxyflutamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrasekhar, Y.; Armstrong, D.T.

    1991-07-01

    The authors have recently reported that the anti-androgen hydroxyflutamide causes delayed implantation and exhibits antideciduogenic activity in the rat. The present experiments were conducted to examine whether hydroxyflutamide binds to the uterine progesterone receptors and/or alters the progesterone binding sites in the uterus. Cytosol and nuclear fractions from decidualized rat uterus were incubated with (3H)-R5020 without or with increasing concentrations of radioinert R5020, RU486, dihydrotestosterone, or hydroxyflutamide. From the log-dose inhibition curves, the relative binding affinity of both hydroxyflutamide and dihydrotestosterone was less than 0.1% and 2%, compared with R5020 (100%) for displacing (3H)-R5020 bound to uterine cytosol and nuclearmore » fractions, respectively. Injection of estradiol-17 beta (1 microgram/rat) to ovariectomized prepubertal rats induced a 1.85-fold increase in uterine weight by 24 h. Hydroxyflutamide at 2.5 or 5.0 mg did not significantly alter the estrogen-induced increase in uterine weight. Compared to vehicle alone, estrogen induced an approximately 5-fold increase in uterine cytosolic progesterone binding sites. Hydroxyflutamide at both 2.5- and 5.0-mg doses significantly attenuated the estrogen-induced elevation in uterine progesterone binding sites. These studies demonstrate that hydroxyflutamide does not bind with high affinity to progesterone receptors, but suppresses the estrogen-induced elevation in progesterone receptor levels in the uterus.« less

  1. AB69. Phyto-androgenic androgens in men’s health, sex and aging FX

    PubMed Central

    Adimoelja, Arif; Siauw, Ali Fuchih

    2014-01-01

    Protodioscin is a Herbal Steroid Saponin extract derived mainly from Tribulus terristris L. grown mainly in Bulgaria. This herbal plant begun well known in main stream medicine since the periods around 1972 in Indonesia when this phyto-steroid compound has been proven of having the ability to be converted to DHEA and further to another androgenic androgen (T) in hypogonadal men in the presence of 5-alpha-dehydrogenase (A. Adimoelja, 1976, 1978). Biogenic androgens and androgenic androgens Testosterone as a product of the male gonads from blood serum cholesterol. Cholesterol is further converted to DHEA. This product is identified as one of the biogenic or endogenic androgens (testosterone, pregnenolone, progesterone, aldosterone, androstendione). Health disorders are often hampered by the tendencies of men or women to conceal their health (sexual health) conditions due to fear and/or embarrassments. If these conditions are not being soonest medically diagnosed and left to be untreated, another un-healthy condition may appear. (hypertension, high blood serum cholesterol, decrease HDL, CVD). Decrease libido, sex arousal and ED are the first expression of the down-degraded health conditions which may appear (A. Adimoelja 1985). Prescription of phytopharmaceuticals in mainstream medicine Surprisingly more phyto-pharmaceuticals in mainstream medicine were unconsciously prescribed by physicians (25% of prescriptions, WHO, 1908). Prescriptions were made to support health conditions and promote sexual health problems, most common as aphrodisiacs. Prtodioscin and health enhancers Protodioscin indeed promote health condition in hypogonadic men (A.Adimoelja and Tjahjo Djojo Tanojo, 2009). Regretfully most herbal products whih has been promoted as health foods in the market, or sex-tonics are combined with other chemical product(s), some of which combined with erectogenics (W. Pangkahila, 2010). Sharlip ID (USA) too reported in the “Newark Star Ledger in 2002” that 9 out

  2. Androgens as double-edged swords: Induction and suppression of follicular development.

    PubMed

    Pan, Jie-Xue; Zhang, Jun-Yu; Ke, Zhang-Hong; Wang, Fang-Fang; Barry, John A; Hardiman, Paul J; Qu, Fan

    2015-01-01

    Androgens, which are mediated via the androgen receptor (AR), play important roles in normal follicular development and female fertility. However, just like a double-edged sword, besides the positive effects of androgen on follicular development, abnormal androgen levels, especially as in hyperandrogenism, seriously suppress normal follicular development. A crucial balance exists between the importance of androgens in follicular development and their negative effects when in excess. As the first meiotic division and epigenetic reprogramming are two critical events in oogenesis, abnormal androgen levels or deficiency in androgen/AR signaling in the ovary may affect these vital events. Oocytes have a tendency to develop genomic instability, thus resulting in an increasing incidence of unpredictable adult diseases. Although many studies have explored the effects of androgens and AR on follicular development, the conclusions are controversial and there has been no thorough review of this topic. This review focuses on the roles of androgens in the physiological process of follicular development, summarizes new insights into the roles of androgens in the arrested development of follicles, and discusses the potential risk of adult diseases originating from abnormal follicular androgen levels or androgen receptor signals, which may determine areas for future studies.

  3. Determination of structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC

    PubMed Central

    Wu, Wei; Park, Kyung-Tae; Holyoak, Todd; Lutkenhaus, Joe

    2011-01-01

    Summary The three Min proteins spatially regulate Z ring positioning in E. coli and are dynamically associated with the membrane. MinD binds to vesicles in the presence of ATP and can recruit MinC or MinE. Biochemical and genetic evidence indicate the binding sites for these two proteins on MinD overlap. Here we solved the structure of a hydrolytic-deficient mutant of MinD truncated for the C-terminal amphipathic helix involved in binding to the membrane. The structure solved in the presence of ATP is a dimer and reveals the face of MinD abutting the membrane. Using a combination of random and extensive site-directed mutagenesis additional residues important for MinE and MinC binding were identified. The location of these residues on the MinD structure confirms that the binding sites overlap and reveals that the binding sites are at the dimer interface and exposed to the cytosol. The location of the binding sites at the dimer interface offers a simple explanation for the ATP-dependency of MinC and MinE binding to MinD. PMID:21231967

  4. Inhibition of progression of androgen-dependent prostate LNCaP tumors to androgen independence in SCID mice by oral caffeine and voluntary exercise.

    PubMed

    Zheng, Xi; Cui, Xiao-Xing; Huang, Mou-Tuan; Liu, Yue; Wagner, George C; Lin, Yong; Shih, Weichung Joe; Lee, Mao-Jung; Yang, Chung S; Conney, Allan H

    2012-01-01

    The effect of oral caffeine or voluntary running wheel exercise (RW) alone or in combination on the progression of human androgen-dependent LNCaP prostate tumors to androgen independence in male severe combined immunodeficiency mice was determined. The mice were injected subcutaneously with LNCaP cells, and when the tumors reached a moderate size, the mice were surgically castrated and treated with caffeine (0.40 mg/ml drinking water) or RW alone or in combination for 42 days. We found that caffeine administration or RW inhibited the progression and growth of androgen-dependent LNCaP tumors to androgen independence, and a combination of the 2 regimens was more effective than the individual regimens alone. The ratios of the percent mitotic cells/caspase-3 positive cells in tumors from the caffeine-treated, RW-treated, or combination-treated mice were decreased by 34%, 38%, and 52%, respectively. Caffeine treatment increased the percentage of mitotic tumor cells undergoing apoptosis (lethal mitosis) whereas RW inhibited the increase in interleukin-6 that occurred during the progression of LNCaP tumors from androgen dependence to androgen independence. Our results indicate that oral administration of caffeine in combination with voluntary exercise may be an effective strategy for the prevention of prostate cancer progression from androgen dependence to androgen independence.

  5. Androgens are differentially associated with ovarian cancer subtypes in the Ovarian Cancer Cohort Consortium

    PubMed Central

    Ose, Jennifer; Poole, Elizabeth M.; Schock, Helena; Lehtinen, Matti; Arslan, Alan A.; Zeleniuch-Jacquotte, Anne; Visvanathan, Kala; Helzlsouer, Kathy; Buring, Julie E.; Lee, I-Min; Tjønneland, Anne; Dossus, Laure; Trichopoulou, Antonia; Masala, Giovanna; Onland-Moret, N. Charlotte; Weiderpass, Elisabete; Duell, Eric J.; Idahl, Annika; Travis, Ruth C.; Rinaldi, Sabina; Merritt, Melissa A.; Trabert, Britton; Wentzensen, Nicolas; Tworoger, Shelley S.; Kaaks, Rudolf; Fortner, Renée T.

    2017-01-01

    Invasive epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. The etiology of EOC remains elusive; however, experimental and epidemiologic data suggest a role for hormone-related exposures in ovarian carcinogenesis and risk factor differences by histologic phenotypes and developmental pathways. Research on pre-diagnosis androgen concentrations and EOC risk has yielded inconclusive results, and analyses incorporating EOC subtypes are sparse. We conducted a pooled analysis of 7 nested case-control studies in the Ovarian Cancer Cohort Consortium to investigate the association between pre-diagnosis circulating androgens (testosterone, free testosterone, androstenedione, dehydroepiandrosterone sulfate (DHEAS)), sex hormone binding globulin (SHBG), and EOC risk by tumor characteristics (i.e. histology, grade, and stage). The final study population included 1,331 EOC cases and 3,017 matched controls. Multivariable conditional logistic regression was used to assess risk associations in pooled individual data. Testosterone was positively associated with EOC risk (all subtypes combined, Odds Ratio (OR)log2=1.12 [95% Confidence Interval (CI) 1.02–1.24]); other endogenous androgens and SHBG were not associated with overall risk. Higher concentrations of testosterone and androstenedione associated with an increased risk in endometrioid and mucinous tumors (e.g., testosterone, endometrioid tumors, ORlog2=1.40 [1.03–1.91]), but not serous or clear cell. An inverse association was observed between androstenedione and high grade serous tumors (ORlog2=0.76 [0.60–0.96]). Our analyses provide further evidence for a role of hormone-related pathways in EOC risk, with differences in associations between androgens and histologic subtypes of EOC. PMID:28381542

  6. In vitro binding of the asialoglycoprotein receptor to the beta adaptin of plasma membrane coated vesicles.

    PubMed Central

    Beltzer, J P; Spiess, M

    1991-01-01

    The asialoglycoprotein (ASGP) receptor was used to probe total clathrin-coated vesicle proteins and purified adaptor proteins (APs) which had been fractionated by gel electrophoresis and transferred to nitrocellulose. The receptor was found to interact with proteins of approximately 100 kDa. The cytoplasmic domain of the ASGP receptor subunit H1 fused to dihydrofolate reductase competed for receptor binding to the 100 kDa polypeptide in the plasma membrane-type AP complexes (AP-2). A fusion protein containing the cytoplasmic domain of the endocytic mutant haemagglutinin HA-Y543 also competed, but a protein with the wild-type haemagglutinin sequence did not. This indicates that the observed interaction is specific for the cytoplasmic domain of the receptor and involves the tyrosine signal for endocytosis. When fractionated by gel electrophoresis in the presence of urea, the ASGP receptor binding polypeptide displayed a characteristic shift in electrophoretic mobility identifying it as the beta adaptin. Partial proteolysis of the AP-2 preparation followed by the receptor binding assay revealed that the aminoterminal domain of the beta adaptin contains the binding site for receptors. Images PMID:1935897

  7. Anti-androgenic effects of S-40542, a novel non-steroidal selective androgen receptor modulator (SARM) for the treatment of benign prostatic hyperplasia.

    PubMed

    Nejishima, Hiroaki; Yamamoto, Noriko; Suzuki, Mika; Furuya, Kazuyuki; Nagata, Naoya; Yamada, Shizuo

    2012-10-01

    Selective androgen receptor modulators (SARMs) would provide alternative therapeutic agent for androgen-related diseases. We identified a tetrahydroquinoline (THQ) derivative, 1-(8-nitro-3a, 4, 5, 9b-tetrahydro-3H-cyclopenta[c]quinolin-4-yl) ethane-1, 2-diol (S-40542) as a novel SARM antagonist. Affinity for nuclear receptors of S-40542 was evaluated in receptor-binding studies. Androgen receptor (AR) transcriptional activity of S-40542 was investigated by luciferase reporter assay in DU145AR cells. Normal and benign prostatic hyperplasia (BPH) model rats were repeatedly treated with S-40542 and flutamide. The tissue weights of prostate and levator ani muscle as well as blood levels of testosterone and luteinizing hormone were measured. S-40542 bound to the AR with high affinity. S-40542 at relatively high concentrations increased the transcriptional activity. This agent also showed a concentration-dependent AR antagonistic action in the presence of 1 nM 5α-dihydrotestosterone. Repeated treatment with S-40542 and flutamide decreased dose-dependently the weights of the prostate to a similar extent. In contrast, the tissue weight-reducing effect by S-40542 treatment on the levator ani muscle was much weaker than that of flutamide. S-40542 had little effect on the blood level of testosterone and luteinizing hormone, whereas flutamide increased the level of both hormones. Furthermore, S-40542 decreased dose-dependently prostate weight of BPH rats. The current results indicate that S-40542 possesses the prostate-selective SARM activity, suggestive of clinical benefit against benign prostate hyperplasia. THQ compounds may be useful for the research of mode of action of SARMs and for the development of safe SARM antagonists. Copyright © 2012 Wiley Periodicals, Inc.

  8. Visualising Androgen Receptor Activity in Male and Female Mice

    PubMed Central

    Dart, D. Alwyn; Waxman, Jonathan; Aboagye, Eric O.; Bevan, Charlotte L.

    2013-01-01

    Androgens, required for normal development and fertility of males and females, have vital roles in the reproductive tract, brain, cardiovascular system, smooth muscle and bone. Androgens function via the androgen receptor (AR), a ligand-dependent transcription factor. To assay and localise AR activity in vivo we generated the transgenic “ARE-Luc” mouse, expressing a luciferase reporter gene under the control of activated endogenous AR. In vivo imaging of androgen-mediated luciferase activity revealed several strongly expressing tissues in the male mouse as expected and also in certain female tissues. In males the testes, prostate, seminal vesicles and bone marrow all showed high AR activity. In females, strong activity was seen in the ovaries, uterus, omentum tissue and mammary glands. In both sexes AR expression and activity was also found in salivary glands, the eye (and associated glands), adipose tissue, spleen and, notably, regions of the brain. Luciferase protein expression was found in the same cell layers as androgen receptor expression. Additionally, mouse AR expression and activity correlated well with AR expression in human tissues. The anti-androgen bicalutamide reduced luciferase signal in all tissues. Our model demonstrates that androgens can act in these tissues directly via AR, rather than exclusively via androgen aromatisation to estrogens and activation of the estrogen receptor. Additionally, it visually demonstrates the fundamental importance of AR signalling outside the normal role in the reproductive organs. This model represents an important tool for physiological and developmental analysis of androgen signalling, and for characterization of known and novel androgenic or antiandrogenic compounds. PMID:23940781

  9. The Borrelia afzelii outer membrane protein BAPKO_0422 binds human factor-H and is predicted to form a membrane-spanning β-barrel

    PubMed Central

    Dyer, Adam; Brown, Gemma; Stejskal, Lenka; Laity, Peter R.; Bingham, Richard J.

    2015-01-01

    The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value. PMID:26181365

  10. Studies of an Androgen-Binding Protein Knockout Corroborate a Role for Salivary ABP in Mouse Communication

    PubMed Central

    Chung, Amanda G.; Belone, Phillip M.; Bímová, Barbora Vošlajerová; Karn, Robert C.; Laukaitis, Christina M.

    2017-01-01

    The house mouse Androgen-binding protein (Abp) gene family is comprised of 64 paralogs, 30 Abpa and 34 Abpbg, encoding the alpha (ABPA) and beta-gamma (ABPBG) protein subunits that are disulfide-bridged to form dimers in secretions. Only 14 Abp genes are expressed in distinct patterns in the lacrimal (11) and submandibular glands (3). We created a knockout mouse line lacking two of the three genes expressed in submandibular glands, Abpa27 and Abpbg27, by replacing them with the neomycin resistance gene. The knockout genotype (−/−) showed no Abpa27 or Abpbg27 transcripts in submandibular gland complementary DNA (cDNA) libraries and there was a concomitant lack of protein expression of ABPA27 and ABPBG27 in the −/− genotype saliva, shown by elimination of these two proteins from the saliva proteome and the loss of cross-reactive material in the acinar cells of the submandibular glands. We also observed a decrease in BG26 protein in the −/− animals, suggesting monomer instability. Overall, we observed no major phenotypic changes in the −/− genotype, compared with their +/+ and +/− siblings raised in a laboratory setting, including normal growth curves, tissue histology, fecundity, and longevity. The only difference is that male and female C57BL/6 mice preferred saliva of the opposite sex containing ABP statistically significantly more than saliva of the opposite sex without ABP in a Y-maze test. These results show for the first time that mice can sense the presence of ABP between saliva targets with and without ABPs, and that they spend more time investigating the target containing ABP. PMID:28159752

  11. Studies of an Androgen-Binding Protein Knockout Corroborate a Role for Salivary ABP in Mouse Communication.

    PubMed

    Chung, Amanda G; Belone, Phillip M; Bímová, Barbora Vošlajerová; Karn, Robert C; Laukaitis, Christina M

    2017-04-01

    The house mouse Androgen-binding protein ( Abp ) gene family is comprised of 64 paralogs, 30 Abpa and 34 Abpbg , encoding the alpha (ABPA) and beta-gamma (ABPBG) protein subunits that are disulfide-bridged to form dimers in secretions. Only 14 Abp genes are expressed in distinct patterns in the lacrimal (11) and submandibular glands (3). We created a knockout mouse line lacking two of the three genes expressed in submandibular glands, Abpa27 and Abpbg27 , by replacing them with the neomycin resistance gene. The knockout genotype (-/-) showed no Abpa27 or Abpbg27 transcripts in submandibular gland complementary DNA (cDNA) libraries and there was a concomitant lack of protein expression of ABPA27 and ABPBG27 in the -/- genotype saliva, shown by elimination of these two proteins from the saliva proteome and the loss of cross-reactive material in the acinar cells of the submandibular glands. We also observed a decrease in BG26 protein in the -/- animals, suggesting monomer instability. Overall, we observed no major phenotypic changes in the -/- genotype, compared with their +/+ and +/- siblings raised in a laboratory setting, including normal growth curves, tissue histology, fecundity, and longevity. The only difference is that male and female C57BL/6 mice preferred saliva of the opposite sex containing ABP statistically significantly more than saliva of the opposite sex without ABP in a Y-maze test. These results show for the first time that mice can sense the presence of ABP between saliva targets with and without ABPs, and that they spend more time investigating the target containing ABP. Copyright © 2017 by the Genetics Society of America.

  12. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes

    PubMed Central

    1980-01-01

    The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812

  13. Selective effect of cell membrane on synaptic neurotransmission

    NASA Astrophysics Data System (ADS)

    Postila, Pekka A.; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition to the paradigm of neurotransmission, essentially dividing it into membrane-independent and membrane-dependent mechanisms. Moreover, the simulations also indicate that the lipid composition especially in terms of charged lipids can affect the membrane partitioning of NTs. The revised paradigm, highlighting the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike.

  14. High expression of TROP2 characterizes different cell subpopulations in androgen-sensitive and androgen-independent prostate cancer cells.

    PubMed

    Xie, Jinhan; Mølck, Christina; Paquet-Fifield, Sophie; Butler, Lisa; Sloan, Erica; Ventura, Sabatino; Hollande, Frédéric

    2016-07-12

    Progression of castration-resistant tumors is frequent in prostate cancer. Current systemic treatments for castration-resistant prostate cancer only produce modest increases in survival time and self-renewing Tumor-Initiating Cells (TICs) are suspected to play an important role in resistance to these treatments. However it remains unclear whether the same TICs display both chemo-resistance and self-renewing abilities throughout progression from early stage lesions to late, castration resistant tumors. Here, we found that treatment of mice bearing LNCaP-derived xenograft tumors with cytotoxic (docetaxel) and anti-androgen (flutamide) compounds enriched for cells that express TROP2, a putative TIC marker. Consistent with a tumor-initiating role, TROP2high cells from androgen-sensitive prostate cancer cell lines displayed an enhanced ability to re-grow in culture following treatment with taxane-based chemotherapy with or without androgen blockade. TROP2 down-regulation in these cells reduced their ability to recur after treatment with docetaxel, in the presence or absence of flutamide. Accordingly, in silico analysis of published clinical data revealed that prostate cancer patients with poor prognosis exhibit significantly elevated TROP2 expression level compared to low-risk patients, particularly in the case of patients diagnosed with early stage tumors. In contrast, in androgen-independent prostate cancer cell lines, TROP2high cells did not exhibit a differential treatment response but were characterized by their high self-renewal ability. Based on these findings we propose that high TROP2 expression identifies distinct cell sub-populations in androgen-sensitive and androgen-independent prostate tumors and that it may be a predictive biomarker for prostate cancer treatment response in androgen-sensitive tumors.

  15. Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis.

    PubMed

    Kumagai, Jinpei; Hofland, Johannes; Erkens-Schulze, Sigrun; Dits, Natasja F J; Steenbergen, Jacobie; Jenster, Guido; Homma, Yukio; de Jong, Frank H; van Weerden, Wytske M

    2013-11-01

    Despite an initial response to hormonal therapy, patients with advanced prostate cancer (PC) almost always progress to castration-resistant disease (CRPC). Although serum testosterone (T) is reduced by androgen deprivation therapy, intratumoral T levels in CRPC are comparable to those in prostate tissue of eugonadal men. These levels could originate from intratumoral conversion of adrenal androgens and/or from de novo steroid synthesis. However, the relative contribution of de novo steroidogenesis to AR-driven cell growth is unknown. The relative contribution of androgen biosynthetic pathways to activate androgen receptor (AR)-regulated cell growth and expression of PSA, FKBP5, and TMPRSS2 was studied at physiologically relevant levels of adrenal androgen precursors and intermediates of de novo androgen biosynthesis in human prostate cancer cell lines, PC346C, VCaP, and LNCaP. In PC346C and VCaP, responses to pregnenolone and progesterone were absent or minimal, while large effects of adrenal androgen precursors were found. VCaP CRPC clones overexpressing CYP17A1 did not acquire an increased ability to use pregnenolone or progesterone to activate AR. In contrast, all precursors stimulated growth and gene expression in LNCaP cells, presumably resulting from the mutated AR in these cells. Our data indicate that at physiological levels of T precursors PC cells can generally convert adrenal androgens, while de novo steroidogenesis is not generally possible in PC cells and is not able to support AR transactivation and PC growth. © 2013 Wiley Periodicals, Inc.

  16. Circulating androgens in women: exercise-induced changes.

    PubMed

    Enea, Carina; Boisseau, Nathalie; Fargeas-Gluck, Marie Agnès; Diaz, Véronique; Dugué, Benoit

    2011-01-01

    Physical exercise is known to strongly stimulate the endocrine system in both sexes. Among these hormones, androgens (e.g. testosterone, androstenedione, dehydroepiandrosterone) play key roles in the reproductive system, muscle growth and the prevention of bone loss. In female athletes, excessive physical exercise may lead to disorders, including delay in the onset of puberty, amenorrhoea and premature osteoporosis. The free and total fractions of circulating androgens vary in response to acute and chronic exercise/training (depending on the type), but the physiological role of these changes is not completely understood. Although it is commonly accepted that only the free fraction of steroids has a biological action, this hypothesis has recently been challenged. Indeed, a change in the total fraction of androgen concentration may have a significant impact on cells (inducing genomic or non-genomic signalling). The purpose of this review, therefore, is to visit the exercise-induced changes in androgen concentrations and emphasize their potential effects on female physiology. Despite some discrepancies in the published studies (generally due to differences in the types and intensities of the exercises studied, in the hormonal status of the group of women investigated and in the methods for androgen determination), exercise is globally able to induce an increase in circulating androgens. This can be observed after both resistance and endurance acute exercises. For chronic exercise/training, the picture is definitely less clear and there are even circumstances where exercise leads to a decrease of circulating androgens. We suggest that those changes have significant impact on female physiology and physical performance.

  17. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were usedmore » to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in

  18. Compounds from Cynomorium songaricum with Estrogenic and Androgenic Activities Suppress the Oestrogen/Androgen-Induced BPH Process.

    PubMed

    Wang, Xueni; Tao, Rui; Yang, Jing; Miao, Lin; Wang, Yu; Munyangaju, Jose Edouard; Wichai, Nuttapong; Wang, Hong; Zhu, Yan; Liu, Erwei; Chang, Yanxu; Gao, Xiumei

    2017-01-01

    To investigate the phytoestrogenic and phytoandrogenic activities of compounds isolated from CS and uncover the role of CS in prevention of oestrogen/androgen-induced BPH. Cells were treated with CS compounds, and immunofluorescence assay was performed to detect the nuclear translocation of ER α or AR in MCF-7 or LNCaP cells; luciferase reporter assay was performed to detect ERs or AR transcriptional activity in HeLa or AD293 cells; MTT assay was performed to detect the cell proliferation of MCF-7 or LNCaP cells. Oestrogen/androgen-induced BPH model was established in rat and the anti-BPH, anti-estrogenic, and anti-androgenic activities of CS in vivo were further investigated. The nuclear translocation of ER α was stimulated by nine CS compounds, three of which also stimulated AR translocation. The transcriptional activities of ER α and ER β were induced by five compounds, within which only ECG induced AR transcriptional activity as well. Besides, ECG stimulated the proliferation of both MCF-7 cells and LNCaP cells. CS extract suppressed oestrogen/androgen-induced BPH progress in vivo by downregulation of E2 and T level in serum and alteration of the expressions of ER α , ER β , and AR in the prostate. Our data demonstrates that compounds from CS exhibit phytoestrogenic and phytoandrogenic activities, which may contribute to inhibiting the oestrogen/androgen-induced BPH development.

  19. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation.

    PubMed

    Gaughan, Luke; Logan, Ian R; Neal, David E; Robson, Craig N

    2005-01-01

    The androgen receptor (AR) is a member of the nuclear hormone receptor family of transcription factors and plays a critical role in regulating the expression of genes involved in androgen-dependent and -independent tumour formation. Regulation of the AR is achieved by alternate binding of either histone acetyltransferase (HAT)-containing co-activator proteins, or histone deacetylase 1 (HDAC1). Factors that control AR stability may also constitute an important regulatory mechanism, a notion that has been confirmed with the finding that the AR is a direct target for Mdm2-mediated ubiquitylation and proteolysis. Using chromatin immunoprecipitation (ChIP) and re-ChIP analyses, we show that Mdm2 associates with AR and HDAC1 at the active androgen-responsive PSA promoter in LNCaP prostate cancer cells. Furthermore, we demonstrate that Mdm2-mediated modification of AR and HDAC1 catalyses protein destabilization and attenuates AR sactivity, suggesting that ubiquitylation of the AR and HDAC1 may constitute an additional mechanism for regulating AR function. We also show that HDAC1 and Mdm2 function co-operatively to reduce AR-mediated transcription that is attenuated by the HAT activity of the AR co-activator Tip60, suggesting interplay between acetylation status and receptor ubiquitylation in AR regulation. In all, our data indicates a novel role for Mdm2 in regulating components of the AR transcriptosome.

  20. Hormone Treatment and Muscle Anabolism during Aging: Androgens

    PubMed Central

    Dillon, E. Lichar; Durham, William J.; Urban, Randall J.; Sheffield-Moore, Melinda

    2010-01-01

    Aging is associated with a gradual decline in circulating testosterone concentrations and decreased musculature in men. While testosterone administration is often considered when symptoms of hypogonadism are presented, the long-term effects of androgen use on muscle physiology are not yet fully understood. The definition of hypogonadism in men remains obscure but is generally indicated by total testosterone concentrations less than a threshold value of 300-500 ng/dL. Androgen replacement therapy is generally safe in men and women with low endogenous testosterone concentrations. The development of selective androgen receptor modulators (SARMs) may provide additional options in treatment of hypogonadism while lowering the potential of side effects often associated with long-term androgen use. Androgen administration, either alone or in combination with other treatments, can be successful in improving muscle mass by increasing protein anabolism and reducing protein catabolism in men and women. Further research is necessary to optimize the anabolic and anticatabolic properties of androgens for treatment and prevention of muscle loss in men and women. PMID:20452103

  1. Differential inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors.

    PubMed

    Lockhart, B; Closier, M; Howard, K; Steward, C; Lestage, P

    2001-04-01

    The potential interaction of acetylcholinesterase inhibitors with cholinergic receptors may play a significant role in the therapeutic and/or side-effects associated with this class of compound. In the present study, the capacity of acetylcholinesterase inhibitors to interact with muscarinic receptors was assessed by their ability to displace both [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding in rat brain membranes. The [3H]-quinuclinidyl benzilate/[3H]-oxotremorine-M affinity ratios permitted predictions to be made of either the antagonist or agonist properties of the different compounds. A series of compounds, representative of the principal classes of acetylcholinesterase inhibitors, displaced [3H]-oxotremorine-M binding with high-to-moderate potency (ambenonium>neostigmine=pyridostigmine=tacrine>physostigmine> edrophonium=galanthamine>desoxypeganine) whereas only ambenonium and tacrine displaced [3H]-quinuclinidyl benzilate binding. Inhibitors such as desoxypeganine, parathion and gramine demonstrated negligible inhibition of the binding of both radioligands. Scatchard plots constructed from the inhibition of [3H]-oxotremorine-M binding in the absence and presence of different inhibitors showed an unaltered Bmax and a reduced affinity constant, indicative of potential competitive or allosteric mechanisms. The capacity of acetylcholinesterase inhibitors, with the exception of tacrine and ambenonium, to displace bound [3H]-oxotremorine-M in preference to [3H]quinuclinidyl benzilate predicts that the former compounds could act as potential agonists at muscarinic receptors. Moreover, the rank order for potency in inhibiting acetylcholinesterase (ambenonium>neostigmine=physostigmine =tacrine>pyridostigmine=edrophonium=galanthamine >desoxypeganine>parathion>gramine) indicated that the most effective inhibitors of acetylcholinesterase also displaced [3H]-oxotremorine-M to the greatest extent. The capacity of these inhibitors to displace [3H

  2. Obstructing Androgen Receptor Activation in Prostate Cancer Cells Through Post-translational Modification by NEDD8

    DTIC Science & Technology

    2012-11-01

    FACS flow cytometer analysis . In addition, we will measure the steady state protein level of p53, p21, p27, and pRb. In the Jab1 silencing cell...affected by DHT treatment, and the endogenous AR level was not affected by Jab1 silencing. Interestingly, Western blot analysis of immunoprecipitated AR...Avantaggiati, and R. G. Pestell . 2003. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol

  3. A novel high light-inducible carotenoid-binding protein complex in the thylakoid membranes of Synechocystis PCC 6803.

    PubMed

    Daddy, Soumana; Zhan, Jiao; Jantaro, Saowarath; He, Chenliu; He, Qingfang; Wang, Qiang

    2015-03-30

    Synechocystis sp. PCC 6803 is a model cyanobacterium extensively used to study photosynthesis. Here we reveal a novel high light-inducible carotenoid-binding protein complex (HLCC) in the thylakoid membranes of Synechocystis PCC 6803 cells exposed to high intensity light. Zeaxanthin and myxoxanthophyll accounted for 29.8% and 54.8%, respectively, of the carotenoids bound to the complex. Using Blue-Native PAGE followed by 2D SDS-PAGE and mass spectrometry, we showed that the HLCC consisted of Slr1128, IsiA, PsaD, and HliA/B. We confirmed these findings by SEAD fluorescence cross-linking and anti-PsaD immuno-coprecipitation analyses. The expression of genes encoding the protein components of the HLCC was enhanced by high light illumination and artificial oxidative stress. Deletion of these proteins resulted in impaired state transition and increased sensitivity to oxidative and/or high light stress, as indicated by increased membrane peroxidation. Therefore, the HLCC protects thylakoid membranes from extensive photooxidative damage, likely via a mechanism involving state transition.

  4. Illicit use of androgens and other hormones: recent advances.

    PubMed

    Kanayama, Gen; Pope, Harrison G

    2012-06-01

    To summarize recent advances in studies of illicit use of androgens and other hormones. Androgens and other appearance-enhancing and performance-enhancing substances are widely abused worldwide. Three notable clusters of findings have emerged in this field in recent years. First, studies almost unanimously find that androgen users engage in polypharmacy, often ingesting other hormones (e.g., human growth hormone, thyroid hormones, and insulin), ergo/thermogenic drugs (e.g., caffeine, ephedrine, and clenbuterol), and classical drugs of abuse (e.g., cannabis, opiates, and cocaine). Second, reports of long-term psychiatric and medical adverse effects of androgens continue to accumulate. In cardiovascular research particularly, controlled studies have begun to supersede anecdotal evidence, strengthening the case that androgens (possibly acting synergistically with other abused drugs) may cause significant morbidity and even mortality. Third, it is increasingly recognized that androgen use may lead to a dependence syndrome with both psychological and physiological origins. Androgen dependence likely affects some millions of individuals worldwide, and arguably represents the least studied major class of illicit drug dependence. Given mounting evidence of the adverse effects of androgens and associated polypharmacy, this topic will likely represent an expanding area of research and an issue of growing public health concern.

  5. Androgen associated hepatocellular carcinoma with an aggressive course.

    PubMed Central

    Gleeson, D; Newbould, M J; Taylor, P; McMahon, R F; Leahy, B C; Warnes, T W

    1991-01-01

    The hepatocellular carcinomas that develop in patients treated with androgens have previously been associated with a benign clinical outcome. We describe a man who developed a hepatocellular carcinoma after 24 years of androgen treatment, whose tumour initially showed partial regression after withdrawal of androgens but subsequently pursued an aggressive and fatal course. Images Figure 1 Figure 2 PMID:1655591

  6. A screen for transcription factor targets of Glycogen Synthase Kinase-3 highlights an inverse correlation of NFκB and Androgen Receptor Signaling in Prostate Cancer

    PubMed Central

    Campa, Victor M.; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M.

    2014-01-01

    Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer. PMID:25327559

  7. A screen for transcription factor targets of glycogen synthase kinase-3 highlights an inverse correlation of NFκB and androgen receptor signaling in prostate cancer.

    PubMed

    Campa, Victor M; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M

    2014-09-30

    Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer.

  8. Androgen-estrogen synergy in rat levator ani muscle Glucose-6-phosphate dehydrogenase

    NASA Technical Reports Server (NTRS)

    Max, S. R.

    1984-01-01

    The effects of castration and hormone administration on the activity of glucose-6-phosphate dehydrogenase in the rat levator ani muscle were studied. Castration caused a decrease in enzyme activity and in wet weight of the levator ani muscle. Chronic administration of testosterone propionate increased glucose-6-phosphate dehydrogenase activity in the levator ani muscle of castrated rats; the magnitude of the recovery of enzyme activity was related to the length of time of exposure to testosterone propionate after castration as well as to the length of time the animals were castrated. The longer the period of castration before exposure to testosterone propionate, the greater the effect. This result may be related to previously reported castration-mediated increases in androgen receptor binding in muscle. Dihydrotestosterone was less effective than testosterone propionate in enhancing glucose-6-phosphate dehydrogenase activity in the levator ani muscle from castrated rats; estradiol-17-beta alone was ineffective. Combined treatment with estradiol-17-beta and dihydrotestosterone, however, was as effective as testosterone alone. Thus, androgens and estrogens may exert synergistic effects on levator ani muscle.

  9. The Hinge Region as a Key Regulatory Element of Androgen Receptor Dimerization, DNA Binding and Transactivation

    DTIC Science & Technology

    2006-05-01

    Mutations in the human androgen receptor gene as a learning tool for molecular endocrinology’ III. Poster presentations at international meetings...nonconsensus half-site, the cognate half-complex buries slightly more surface area from solvent (1,230 Å2) than the noncognate one (960 Å2). AR Mutations ...energetic penalty in- Fig. 4. (A) The AR DBD dimer interface. The molecular surfaces of the AR subunits are shown in red and blue. Dashed black lines

  10. The Safety, Pharmacokinetics, and Effects of LGD-4033, a Novel Nonsteroidal Oral, Selective Androgen Receptor Modulator, in Healthy Young Men

    PubMed Central

    Basaria, Shehzad; Collins, Lauren; Dillon, E. Lichar; Orwoll, Katie; Storer, Thomas W.; Miciek, Renee; Ulloor, Jagadish; Zhang, Anqi; Eder, Richard; Zientek, Heather; Gordon, Gilad; Kazmi, Syed; Sheffield-Moore, Melinda

    2013-01-01

    Background. Concerns about potential adverse effects of testosterone on prostate have motivated the development of selective androgen receptor modulators that display tissue-selective activation of androgenic signaling. LGD-4033, a novel nonsteroidal, oral selective androgen receptor modulator, binds androgen receptor with high affinity and selectivity. Objectives. To evaluate the safety, tolerability, pharmacokinetics, and effects of ascending doses of LGD-4033 administered daily for 21 days on lean body mass, muscle strength, stair-climbing power, and sex hormones. Methods. In this placebo-controlled study, 76 healthy men (21–50 years) were randomized to placebo or 0.1, 0.3, or 1.0 mg LGD-4033 daily for 21 days. Blood counts, chemistries, lipids, prostate-specific antigen, electrocardiogram, hormones, lean and fat mass, and muscle strength were measured during and for 5 weeks after intervention. Results. LGD-4033 was well tolerated. There were no drug-related serious adverse events. Frequency of adverse events was similar between active and placebo groups. Hemoglobin, prostate-specific antigen, aspartate aminotransferase, alanine aminotransferase, or QT intervals did not change significantly at any dose. LGD-4033 had a long elimination half-life and dose-proportional accumulation upon multiple dosing. LGD-4033 administration was associated with dose-dependent suppression of total testosterone, sex hormone–binding globulin, high density lipoprotein cholesterol, and triglyceride levels. follicle-stimulating hormone and free testosterone showed significant suppression at 1.0-mg dose only. Lean body mass increased dose dependently, but fat mass did not change significantly. Hormone levels and lipids returned to baseline after treatment discontinuation. Conclusions. LGD-4033 was safe, had favorable pharmacokinetic profile, and increased lean body mass even during this short period without change in prostate-specific antigen. Longer randomized trials should

  11. Androgen receptor-related diseases: what do we know?

    PubMed

    Shukla, G C; Plaga, A R; Shankar, E; Gupta, S

    2016-05-01

    The androgen receptor (AR) and the androgen-AR signaling pathway play a significant role in male sexual differentiation and the development and function of male reproductive and non-reproductive organs. Because of AR's widely varied and important roles, its abnormalities have been identified in various diseases such as androgen insensitivity syndrome, spinal bulbar muscular atrophy, benign prostatic hyperplasia, and prostate cancer. This review provides an overview of the function of androgens and androgen-AR mediated diseases. In addition, the diseases delineated above are discussed with respect to their association with mutations and other post-transcriptional modifications in the AR. Finally, we present an introduction to the potential therapeutic application of most recent pharmaceuticals including miRNAs in prostate cancer that specifically target the transactivation function of the AR at post-transcriptional stages. © 2016 American Society of Andrology and European Academy of Andrology.

  12. Single strand conformation polymorphism analysis of androgen receptor gene mutations in patients with androgen insensitivity syndromes: Application for diagnosis, genetic counseling, and therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiort, O.; Huang, Q.; Sinnecker, G.H.G.

    Recent studies indicate that mutations in the androgen receptor gene are associated with androgen insensitivity syndromes, a heterogeneous group of related disorders involving defective sexual differentiation in karyotypic males. In this report, the authors address the possibility of rapid mutational analysis of the androgen receptor gene for initial diagnosis, genetic counseling, and molecular subclassification of affected patients and their families. DNA from peripheral blood leukocytes of six patients from five families with various degrees of androgen insensitivity was studied. Exons 2 to 8 of the androgen receptor gene were analyzed using a combination of single strand conformation polymorphism analysis andmore » direct DNA sequencing. Female family members were also studied to identify heterozygote carriers. Point mutations in the AR gene were identified in all six patients, and all mutations caused amino acid substitutions. One patient with incomplete androgen insensitivity was a mosaic for the mutation. Four of the five mothers, as well as a young sister of one patient, were carriers of the mutation present in the affected child. The data show that new mutations may occur in the androgen receptor gene leading to sporadic androgen insensitivity syndrome. Molecular genetic characterization of the variant allele can serve as a primary tool for diagnosis and subsequent therapy, and can provide a basis for distinguishing heterozygous carriers in familial androgen resistance. The identification of carriers is of substantial clinical importance for genetic counseling. 29 refs., 2 figs., 1 tab.« less

  13. Deacetylation of forskolin catalyzed by bovine brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selfe, S.; Storm, D.R.

    1985-11-27

    Radiolabeled forskolin, 7-(/sup 3/H-acetyl)-forskolin, was synthesized to explore interactions between forskolin and bovine brain membrane preparations. The radiolabeled derivative was chemically characterized, and found to be indistinquishable from unlabeled forskolin in its ability to stimulate bovine brain adenylate cyclase. Preliminary binding data demonstrated that binding of 7-(/sup 3/H-acetyl)-forskolin to membranes was concentration dependent. However, competition binding studies using a constant concentration of 7-(/sup 3/H-acetyl)-forskolin with increasing levels of unlabeled forskolin showed enhanced binding of the labeled derivative. This suggested that 7-(/sup 3/H-acetyl)-forskolin was degraded by membranes and protected by native forskolin. Incubation of forskolin with membranes and analysis of themore » products by thin layer chromatography and mass spectroscopy showed the formation of 7-desacetylforskolin. The deacetylation of forskolin was monitored by quantitating the release of (/sup 3/H)acetate from 7-(/sup 3/H-acetyl)-forskolin. The reaction was linear with time and protein concentration. These data illustrate that forskolin can be degraded by membranes and indicate that ligand binding studies using labeled forskolin and membrane preparations should be cautiously interpreted.« less

  14. Androgen replacement for women.

    PubMed Central

    Basson, R.

    1999-01-01

    OBJECTIVES: To determine whether a postmenopausal syndrome comprising specific changes in sexual desire and response associated with low free testosterone exists. To determine whether this syndrome is ameliorated by testosterone replacement. QUALITY OF EVIDENCE: Literature documenting that replacement of physiological levels of testosterone is beneficial and safe is scant. Only one randomized prospective blinded study examines sexual outcome in detail. MAIN MESSAGE: Testosterone is an important metabolic and sex hormone produced by the ovary throughout life. The variable reduction in ovarian testosterone production coincident with menopause is sometimes associated with a syndrome of specific changes in sexual desire and sexual response. Estrogen deficiency also impairs sexual response, but its replacement will not improve and might exacerbate sexual symptoms from androgen loss. Diagnosis of androgen deficiency is clinical, based on accurate assessment of a woman's sexual status before and after menopause and only confirmed (rather than diagnosed) by a low level of free testosterone. Partial androgen replacement restores much of the sexual response and facilitates sexual desire that is triggered by external cues. Avoiding supraphysiological levels of testosterone lessens risk of masculinization. Avoiding alkylated testosterone lessens hepatic or lipid impairment. CONCLUSION: Further prospective randomized studies of replacement of physiological levels of testosterone in women with androgen deficiency syndrome are needed, using formulations of testosterone available in Canada. The consistency of sexual changes, the associated personal and relationship distress, together with our clinical experience of the gratifying response to physiological replacement, make further studies urgently needed. PMID:10509222

  15. The ErbB family and androgen receptor signaling are targets of Celecoxib in prostate cancer.

    PubMed

    Brizzolara, Antonella; Benelli, Roberto; Venè, Roberta; Barboro, Paola; Poggi, Alessandro; Tosetti, Francesca; Ferrari, Nicoletta

    2017-08-01

    Inflammation plays a central role in prostate cancer (PCa) development through significant crosstalk between the COX-2-ErbB family receptor network and androgen receptor (AR)-EGFR signaling pathways. The purpose of this work was to determine the ability of the COX-2 inhibitor Celecoxib to modulate the EGFR-AR signaling pathway in androgen-dependent PCa cells and to provide a rationale for its beneficial use in chemopreventive strategies. Functional studies of Celecoxib activity were performed on LNCaP prostate cancer cells. Western blotting, gene expression analysis, dual-luciferase reporter assay and ELISA were applied to assess the Celecoxib mechanisms of action. We found that Celecoxib, through EGF and amphiregulin (AREG) induction, caused EGFR and ErbB2 activation and consequent degradation associated with the inhibition of androgenic signaling. By upregulating the E3 ubiquitin ligase Nrdp1, Celecoxib also efficiently downregulated ErbB3, which is strongly implicated in castration-resistant prostate cancer. Lastly, Celecoxib directly regulated AR transcription and translation independent of ErbB activation by downregulating the RNA binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K). The simultaneous suppression of ErbB kinases and androgen signaling by Celecoxib represents a novel strategy to interrupt the vicious cycle of AR/ErbB cross-talk with the primary purpose of undermining their resilient signaling in prostate cancer progression. Our data provide important premises for the chemopreventive use of Celecoxib in the clinical management of prostate cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Definitive treatment of androgen receptor-positive salivary duct carcinoma with androgen deprivation therapy and external beam radiotherapy.

    PubMed

    Soper, Margaret S; Iganej, Shawn; Thompson, Lester D R

    2014-01-01

    Salivary duct carcinoma (SDC) is an aggressive malignancy with high recurrence rates. Standard management includes surgical resection followed by adjuvant radiation. Androgen receptor positivity has been described to be present in 40% to 90% of SDCs, and a recent case series showed a benefit to androgen deprivation therapy (ADT) in recurrent or metastatic disease. We present the case of an 87-year-old woman with a locally advanced androgen receptor-positive parotid SDC treated definitively with ADT and external beam radiotherapy, a regimen modeled after the treatment of prostate cancer. She had a complete response on positron emission tomography (PET)/CT scan and had no evidence of disease 24 months after the completion of treatment. To our knowledge, this case report is the first to describe the use of ADT plus radiation to definitively treat SDC. This regimen could be considered in patients with androgen receptor-positive SDCs who are considered unresectable or who refuse surgery. Copyright © 2013 Wiley Periodicals, Inc.

  17. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    PubMed

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A novel substance P binding site in rat brain regions modulates TRH receptor binding.

    PubMed

    Sharif, N A

    1990-10-01

    Binding sites for thyrotropin-releasing hormone (TRH) were labelled with [3H](2-Me-His3)TRH ([3H]MeTRH) on membranes from rat brain regions at 0 degrees C for 5 h. Amygdaloid membranes bound [3H]MeTRH with high-affinity (Kd = 3.1 +/- 0.5 nM (n = 4)). Five TRH analogs competed for this binding with the same rank order and with affinities that matched the pharmacological specificity of pituitary TRH receptors. Substance P (SP) and its C-terminal fragments reduced amygdaloid TRH receptor binding in a concentration dependent manner (IC50 for SP = 65 microM). The rank order of potency of SP analogs at inhibiting TRH receptor binding was: SP greater than nonapeptide (3-11) greater than hexapeptide (6-11) greater than heptapeptide (5-11) greater than pentapeptide (7-11). However, other tachykinins were inactive in this system. SP was a potent inhibitor of [3H]MeTRH binding in hippocampus greater than spinal cord greater than retina greater than n. accumbens greater than hypothalamus greater than amygdaloid greater than olfactory bulb greater than or equal to pituitary greater than pons/medulla in parallel assays. In amygdaloid membranes SP (50 microM) reduced the apparent maximum receptor density by 39% (p less than 0.01) without altering the binding affinity, and 100 microM SP induced a biphasic dissociation of [3H]MeTRH with kinetics faster than those induced by both TRH (10 microM) and serotonin (100 microM). In contrast, other neuropeptides such as neurotensin, proctolin, angiotensin II, bombesin and luteinizing hormone releasing hormone did not significantly inhibit [3H]MeTRH binding to amygdaloid membranes.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Physicochemical characterization of camptothecin membrane binding properties and polymeric microsphere formulations

    NASA Astrophysics Data System (ADS)

    Selvi, Bilge

    In an effort to design novel formulation strategies to optimize the antitumor activity of camptothecin (CPT), the physicochemical and membrane binding properties of the drug, were investigated by various techniques in acidic and physiological pH. The intrinsic solubility of the CPT-lactone free base was determined to be 3.44 muM and 5.11 muM at 22°C and 37°C, respectively. The equilibrium solubility of the drug was found to increase with increasing temperature and decreasing pH. The enhanced solubility of the drug at very low pH is attributed to the protonation of the nitrogen atom in the ring B and the increased solvency of the highly acidic media. The logarithmic value of the intrinsic partition coefficient P of the free base CPT-lactone form was estimated to be 1.65, characteristic of a molecule suitable for oral absorption. The association constants Kf of the drug for bilayers composed of the zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and the negatively-charged 1,2-dioleoyl-sn-glycero-3-phospho- rac-(1-glycerol) (DOPG) were studied at acidic pH by fluorescence anisotropy and determined to be 35.4 +/- 4.5 M-1 and 93.1 +/- 11.0 M-1 for DOPC and DOPG, respectively, indicating a tendency of CPT to preferentially bind to negatively charged membranes. The energy of activation for the hydrolysis of CPT at physiological pH was found to be 114.3 +/- 33.4 kj/mole. The calculated t½ of the reaction at pH 7.2 at temperatures 25°C and 10°C was found to be 0.07 days and 5.12 days, respectively, whereas the time required for 1% of CPT-lactone to hydrolyze to CPT-carboxylate (t99%) was determined to be 1.8 hours, thus offering enough time to safely handle CPT-lactone at low temperatures. The preformulation results indicated that at highly acidic media CPT is positively charged and exists at its stable lactone form of increased solubility and has a capacity to bind to negatively charged membranes. Taking advantage of the increased stability of CPT in

  20. Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane.

    PubMed

    Bayer, Simone B; Low, Felicia M; Hampton, Mark B; Winterbourn, Christine C

    2016-12-01

    Peroxiredoxin 2 (Prx2) is an abundant antioxidant protein in erythrocytes that protects against hemolytic anemia resulting from hemoglobin oxidation and Heinz body formation. A small fraction of Prx2 is bound to the cell membrane, but the mechanism and relevance of binding are not clear. We have investigated Prx2 interactions with the erythrocyte membrane and oxidized hemoglobin and whether these interactions are dependent on Prx2 redox state. Membrane binding of Prx2 in erythrocytes decreased when the cells were treated with H 2 O 2 , but studies with purified Prx2 and isolated ghosts showed that the interaction was independent of Prx2 redox state. Hemoglobin oxidation leads to the formation of hemichrome, a denatured form of the protein that binds to Band3 protein in the cell membrane as part of the senescence process and is a precursor of Heinz bodies. Hemichrome competed with Prx2 and decreased Prx2 binding to the membrane, potentially explaining the decreased binding in oxidant-exposed cells. The increased membrane binding of Prx2 seen with increasing intracellular calcium was less sensitive to H 2 O 2 or hemichrome, suggesting an alternative mode of binding. Prx2 was also shown to exhibit chaperone-like activity by retarding the precipitation of pre-formed hemichrome. Our results suggest that Prx2, by restricting membrane binding of hemichrome, could impede Band3 clustering and exposure of senescence antigens. This mechanism, plus the observed chaperone activity for oxidized hemoglobin, may help protect against hemolytic anemia.