Science.gov

Sample records for membrane antigen requires

  1. Molecular mapping of signals in the Qa-2 antigen required for attachment of the phosphatidylinositol membrane anchor.

    PubMed Central

    Waneck, G L; Sherman, D H; Kincade, P W; Low, M G; Flavell, R A

    1988-01-01

    Proteins anchored in the membrane by covalent linkage to phosphatidylinositol (PtdIns) can be released by treatment with purified PtdIns-specific phospholipase C (Ptd-Ins-PLC). A recent survey of leukocyte antigens using flow cytometry has shown that staining of certain Qa antigens was diminished after PtdIns-PLC treatment, but staining of structurally related H-2 antigens was not affected. Therefore, in this study, the sensitivity of cell-surface Qa-2, H-2Kb, and H-2Db to hydrolysis by PtdIns-PLC was investigated biochemically by immunoprecipitation of radioiodinated molecules from cell lysates or supernatants. Qa-2, but not H-2Kb, was released from the surface of PtdIns-PLC-treated C57BL/10 mouse spleen cells and recovered in the cell supernatants. Similar analysis of thymoma cells transfected with cloned C57BL/10 genes showed that cell-surface Qa-2 molecules encoded by a Q7b cDNA and the Q7b or Q9b gene were sensitive to hydrolysis by PtdIns-PLC, whereas the H-2Kb and H-2Db gene products were resistant. Using thymoma cells transfected with hybrid genes constructed by exchanging exons between Q7b and H-2Db, the signals for PtdIns modification were localized to a defined region of Qa-2. This region differs from H-2Db most significantly by the presence of a central aspartate residue in the transmembrane segment and in the length of the cytoplasmic portion. Images PMID:3422441

  2. Host antigens on avian oncoviruses: evidence for virus envelope antigens related to specific chicken erythrocyte membrane antigens.

    PubMed

    Aupoix, M; Vigier, P; Blanchet, J P

    1980-01-01

    Avian sarcoma viruses (ASV) of subgroups A to D, produced by chick embryo fibroblasts (CEF), are inactivated to a high degree by rabbit antisera to the membrane antigens of adult chicken and chick embryo erythrocytes, notably by antisera to an antigen of embryo erythrocytes, which is lost by adult erythrocytes and to another antigen specific to the latter erythrocytes. Contrary to virus inactivation by anti-CEF serum reported earlier, virus inactivation by the antisera to these two age-specific antigens does not require complement and is not paralleled by virolysis but by aggregation of virions. The two antigens related, or identical, to the age-specific erythrocyte membrane antigens thus shown to be present on the virus envelope do not pre-exist, or pre-exist only in a low amount, on the CEF membrane, since the virus-inactivating capacity of their antisera is not removed by absorption with CEF. Their appearance on the virus does not depend on cell transformation but only on infection, since both antigens are found on a ts ASV mutant produced at restrictive temperature by untransformed CEF and the virus-inactivating capacity of their antisera is removed by absorption with CEF infected with Rous-associated virus (RAV-1). These findings suggest that infection of CEF by avian oncoviruses may elicit the appearance, or enhance the expression at the cell surface of antigens characteristic of another cell type which may contribute to the formation of specific virus budding sites.

  3. Role of antigen-presenting cells in activation of human T cells by the streptococcal M protein superantigen: requirement for secreted and membrane-associated costimulatory factors.

    PubMed Central

    Majumdar, G; Ohnishi, H; Tomai, M A; Geller, A M; Wang, B; Dockter, M E; Kotb, M

    1993-01-01

    The requirements for T-cell activation by the streptococcal superantigen (SAg), pepsin-extracted M protein from type 5 streptococci (pep M5), were studied by monitoring Ca2+ influx and cell proliferation. Cells from a pep M5-specific T-cell line showed no change in intracellular Ca2+ levels in response to pep M5 when added alone or with freshly isolated autologous antigen-presenting cells (APC). However, after being incubated with pep M5 overnight, the APC secreted soluble factors that together with pep M5 induced a marked increase in intracellular Ca2+ levels in pep M5-specific T cells or freshly isolated, purified T cells. Removal of the SAg from the overnight APC-derived supernatants resulted in loss of the Ca(2+)-mobilizing activity, which was restored within seconds of addition of SAg, suggesting that both the SAg and the soluble factors synergize to induce the Ca2+ influx. Induction of cell proliferation required additional signals inasmuch as the activated APC-derived supernatant failed to synergize with pep M5 to induce the proliferation of purified T cells and required the presence of phorbol myristate acetate for this activity. Metabolically inactive, fixed APC were impaired in their ability to present pep M5 to T cells. Presentation of pep M5 by fixed APC was, however, restored when the APC-derived soluble costimulatory factors were added to the culture. Our data suggest that pep M5-induced activation of T cells is dependent on APC-derived soluble factors and an APC membrane-associated costimulatory molecule(s). These interactions may be important in regulating the in vivo responses to M proteins, could contribute to the severity or progression of infections with Streptococcus pyogenes, and may influence the susceptibility of individuals to its associated nonsuppurative autoimmune sequelae. PMID:8423107

  4. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore.

    PubMed

    Jacquez, Pedro; Avila, Gustavo; Boone, Kyle; Altiyev, Agamyrat; Puschhof, Jens; Sauter, Roland; Arigi, Emma; Ruiz, Blanca; Peng, Xiuli; Almeida, Igor; Sherman, Michael; Xiao, Chuan; Sun, Jianjun

    2015-01-01

    Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig) domain of the anthrax toxin receptor 2 (ANTXR2) inhibited the function of the protective antigen (PA) pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA) domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax.

  5. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore

    PubMed Central

    Boone, Kyle; Altiyev, Agamyrat; Puschhof, Jens; Sauter, Roland; Arigi, Emma; Ruiz, Blanca; Peng, Xiuli; Almeida, Igor; Sherman, Michael; Xiao, Chuan; Sun, Jianjun

    2015-01-01

    Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig) domain of the anthrax toxin receptor 2 (ANTXR2) inhibited the function of the protective antigen (PA) pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA) domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax. PMID:26107617

  6. PROSTATE SPECIFIC MEMBRANE ANTIGEN-BASED IMAGING

    PubMed Central

    Osborne, Joseph R.; Akhtar, Naveed H.; Vallabhajosula, Shankar; Anand, Alok; Deh, Kofi; Tagawa, Scott T.

    2012-01-01

    SUMMARY Prostate cancer (PC) is the most common non-cutaneous malignancy affecting men in North America. Despite significant efforts, conventional imaging of PC does not contribute to patient management as much as imaging performed for other common cancers. Given the lack of specificity in conventional imaging techniques, one possible solution is to screen for PC specific antigenic targets and generate agents able to specifically bind. Prostate specific membrane antigen (PSMA) is over-expressed in PC tissue, with low levels of expression in the small intestine, renal tubular cells and salivary gland. The first clinical agent for targeting PSMA was 111In-capromab, involving an antibody recognizing the internal domain of PSMA. The second- and third-generation humanized PSMA binding antibodies have the potential to overcome some of the limitations inherent to capromab pendetide i.e. inability to bind to live PC cells. One example is the humanized monoclonal antibody J591 (Hu mAb J591) that was developed primarily for therapeutic purposes but also has interesting imaging characteristics including the identification of bone metastases in PC. The major disadvantage of use of mAb for imaging is slow target recognition and background clearance in an appropriate timeframe for diagnostic imaging. Urea-based compounds such as small molecule inhibitors may also present promising agents for PC imaging with SPECT and PET. Two such small-molecule inhibitors targeting PSMA, MIP-1072 and MIP-1095, have exhibited high affinity for PSMA. The uptake of 123I-MIP-1072 and 123I-MIP-1095 in PC xenografts have imaged successfully with favorable properties amenable to human trials. While advances in conventional imaging will continue, Ab and small molecule imaging exemplified by PSMA targeting have the greatest potential to improve diagnostic sensitivity and specificity. PMID:22658884

  7. Herpesvirus Glycoproteins Undergo Multiple Antigenic Changes before Membrane Fusion

    PubMed Central

    Glauser, Daniel L.; Kratz, Anne-Sophie; Stevenson, Philip G.

    2012-01-01

    Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4) entry machinery—gB, gH/gL and gp150—changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion. PMID:22253913

  8. The effect of erythrocyte antigen structure on requirement for T cells*

    PubMed Central

    Byrd, W.; Feldmann, Marc; Palmer, J.

    1974-01-01

    The induction in mice of a humoral immune response to intact sheep erythrocytes, both in vivo and in vitro, requires participation of thymus-derived (T) lymphocytes. In an in vitro system, spleen cells from both neonatally thymectomized and adult thymectomized irradiated bone marrow protected mice were successfully immunized, using washed sonicated sheep erythrocyte membrane fragments as antigen. This obviation of the requirement of T lymphocytes in the immune response, coupled with previous work on macrophage independence, indicates that sonicated membrane fragments were capable of directly immunizing bone marrow-derived (B) lymphocytes in vitro. These results further confirm the signal importance of antigenic structure in determining the cellular requirements for an immunological response; whereas antigens of particulate or monomeric form require the presence of both T cells and macrophages, polymeric antigens of intermediate size such as polymerized flagellin and sonicated sheep erythrocyte membranes require neither of these accessory cells. The results caution against the use of erythrocytes as models of thymus-dependent antigens. The data further suggest that reports of late antibody responses of relatively normal magnitude in thymectomized animals given larger doses of heterologous erythrocytes may have been due to direct immunization of B lymphocytes by degraded erythrocyte antigen. PMID:4138234

  9. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen.

    PubMed

    Lopez, Jodie; Bittame, Amina; Massera, Céline; Vasseur, Virginie; Effantin, Grégory; Valat, Anne; Buaillon, Célia; Allart, Sophie; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Schoehn, Guy; Weissenhorn, Winfried; Dubremetz, Jean-François; Gagnon, Jean; Mercier, Corinne; Cesbron-Delauw, Marie-France; Blanchard, Nicolas

    2015-12-15

    Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.

  10. Expression of basement membrane antigens in spindle cell melanoma.

    PubMed

    Prieto, V G; Woodruff, J M

    1998-07-01

    Spindle cell melanoma (SCM) is an uncommon form of melanoma that may be confused histologically with other tumors, including malignant peripheral nerve sheath tumors (MPNST). Tumors with neural differentiation and melanocytic nevi may both show basement membrane immunohistochemically and at the ultrastructural level. However, most ultrastructural studies of melanoma have failed to demonstrate well formed basement membrane around tumor cells. The presence of basement membrane has been used by some authors as evidence favoring MPNST, as opposed to SCM. To evaluate this distinction immunohistochemically, 22 primary and metastatic cutaneous melanomas having a spindle cell component (SCM) were studied using monoclonal antibodies against laminin and Type IV collagen. S100 protein and HMB45 antigen expression were also studied. All but one of the SCM were reactive for S100 protein in at least 25% of the cells. Thirteen of 20 tumors (65%) were focally reactive with HMB45. Laminin was expressed in 42% of the tumors (only membranous pattern in 3; cytoplasmic and membranous in 5). Seventeen tumors (77%) expressed type IV collagen (only membranous pattern in 7; cytoplasmic and membranous pattern in 10). Laminin and type IV collagen, known components of basement membrane, are often found in SCM. Therefore, their detection cannot be used to distinguish SCM from MPNST.

  11. A smart membrane based on an antigen-responsive hydrogel.

    PubMed

    Zhang, Rongsheng; Bowyer, Adrian; Eisenthal, Robert; Hubble, John

    2007-07-01

    Hydrogel membranes have been fabricated that incorporate antibody/antigen moieties. The permeability of large solutes through these membranes is dependent on the presence of soluble antigen that can compete with the internal interactions between antibody and antigen leading to an increase in gel mesh size. Specifically, the membrane's structure is based on a dextran backbone grafted with a fluorescein isothiocyanate (FITC) antigen and a sheep anti-FITC IgG antibody. The backbone is covalently cross-linked by conjugated divinyl sulfone (DVS) groups. The gel structure is additionally stabilized by affinity crosslinks formed by biospecific interactions between the bound IgG and FITC. FTIR spectra of the gel are consistent with formation of covalent bonds between cysteine groups in the IgG and DVS groups in the dextran. Results obtained using isothermal titration calorimetry (ITC) confirmed the competitive interaction binding between IgG-FITC-dextran and free sodium fluorescein at pH 5.0. Scanning electron microscopy (SEM) of samples prepared using cryofixation and cryofracturing techniques showed that observed changes in permeability correlate with free fluorescein-dependent structural changes in the gel. Three-dimensional images obtained from confocal laser scanning microscopy show that these changes occur throughout the gel and indicate that SEM results are not artifacts of sample preparation. The permeability of these gels, as shown by blue-dextran (12 kDa) diffusion, increases in response to the presence of free fluorescein of the external medium, which causes competitive displacement of the affinity cross-links. Sequential addition and removal of sodium fluorescein showed that these permeability changes are reversible.

  12. Gallium-68 Prostate-Specific Membrane Antigen PET Imaging.

    PubMed

    Hofman, Michael S; Iravani, Amir

    2017-04-01

    The role of gallium-68 ((68)Ga) prostate-specific membrane antigen (PSMA) PET imaging is evolving and finding its place in the imaging armamentarium for prostate cancer (PCa). Despite the progress of conventional imaging strategies, significant limitations remain, including identification of small-volume disease and assessment of bone. Clinical studies have demonstrated that (68)Ga-PSMA is a promising tracer for detection of PCa metastases, even in patients with low prostate-specific antigen. To provide an accurate interpretation of (68)Ga-PSMA PET/computed tomography, nuclear medicine specialists and radiologists should be familiar with physiologic (68)Ga-PSMA uptake, common variants, patterns of locoregional and distant spread of PCa, and inherent pitfalls.

  13. Antigen Processing and Remodeling of the Endosomal Pathway: Requirements for Antigen Cross-Presentation

    PubMed Central

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation. PMID:22566920

  14. Substrate Specificity of Prostate-Specific Membrane Antigen

    PubMed Central

    Anderson, Marc O.; Wu, Lisa Y.; Santiago, Nicholas M.; Moser, Jamie M.; Rowley, Jennifer A.; Bolstad, Erin S. D.; Berkman, Clifford E.

    2007-01-01

    A series of putative dipeptide substrates of prostate specific membrane antigen (PSMA) was prepared that explored α- and β/γ-linked acidic residues at the P1 position and various chromophores at the P2 position, while keeping the P1’ residue constant as L-Glu. Four chromophores were examined, including 4-phenylazobenzoyl, 1-pyrenebutyrl, 9-anthracenylcarboxyl-γ-aminobutyrl, and 4-nitrophenylbutyryl. When evaluating these chromophores, it was found that a substrate containing 4-phenylazobenzoyl at the P2 position was consumed most efficiently. Substitution at the P1 position with acidic residues showed that only γ-linked L-Glu and D-Glu were recognized by the enzyme, with the former being more readily proteolyzed. Lastly, binding modes of endogenous substrates and our best synthetic substrate (4-phenylazobenzoyl-Glu-γ-Glu) were proposed by computational docking studies into an X-ray crystal structure of the PSMA extracellular domain. PMID:17764959

  15. Updates of prostate cancer staging: Prostate-specific membrane antigen

    PubMed Central

    Lamb, Alastair; Nair, Rajesh; Geurts, Nicolas; Mitchell, Catherine; Lawrentschuk, Nathan L; Moon, Daniel A; Murphy, Declan G

    2016-01-01

    The ability to accurately stage prostate cancer in both the primary and secondary staging setting can have a major impact on management. Until recently radiological staging has relied on computer tomography, magnetic resonance imaging, and nuclear bone scans to evaluate the extent of disease. However, the utility of these imaging technologies has been limited by their sensitivity and specificity especially in detecting early recurrence. Functional imaging using positron-emission tomography with a radiolabeled ligand targeted to prostate-specific membrane antigen has transformed the prostate cancer imaging landscape. Initial results suggest that it is a substantial improvement over conventional imaging in the setting of recurrence following primary therapy by having a superior ability to detect disease and to do so at an earlier stage. Additionally, it appears that the benefits seen in the secondary staging setting may also exist in the primary staging setting. PMID:27995218

  16. Hetero-bivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen (PSMA) and Hepsin

    DTIC Science & Technology

    2013-09-01

    Simultaneous Targeting Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin PRINCIPAL INVESTIGATOR: Youngjoo Byun, Ph. D. CONTRACTING...SUBTITLE 5a. CONTRACT NUMBER Hetero-bivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin 5b...prostate cancer by targeting simultaneously PSMA and hepsin, which are highly expressed in advanced and metastatic prostate cancer. In Year 3, we

  17. Outer membrane proteome and antigens of Tannerella forsythia.

    PubMed

    Veith, Paul D; O'Brien-Simpson, Neil M; Tan, Yan; Djatmiko, Deasy C; Dashper, Stuart G; Reynolds, Eric C

    2009-09-01

    Tannerella forsythia is a Gram-negative, anaerobic, fusiform bacterium implicated as a periodontal pathogen. With use of 2D PAGE, SDS PAGE, and LC-MALDI-TOF/TOF MS, 221 proteins of T. forsythia outer membrane preparations were identified, of which 197 were predicted to be localized to the cell envelope. Fifty-six proteins were reproducibly mapped by 2D PAGE and included several highly abundant proteins in the MW range 140-250 kDa that exhibited C-terminal sequence similarity to the CTD family of Porphyromonas gingivalis. Two-dimensional Western blot analyses revealed that these CTD family proteins together with several other outer membrane proteins were antigenic. The CTD family proteins exhibited a higher than expected MW, and were strongly reactive with the fluorescent glycoprotein stain, ProQ Emerald. This group included BspA and surface layer proteins A and B. TonB-dependent receptors (TDRs) (46) were identified together with 28 putative lipoproteins whose genes are immediately downstream of a TDR gene. The major OmpA-like protein was found to be TF1331. Uniquely, it was found to exist as a homodimer held together by up to three disulfide bridges as demonstrated by MS/MS of a tryptic peptide derived from unreduced TF1331.

  18. Alanine mutagenesis of the primary antigenic escape residue cluster, c1, of apical membrane antigen 1.

    PubMed

    Dutta, Sheetij; Dlugosz, Lisa S; Clayton, Joshua W; Pool, Christopher D; Haynes, J David; Gasser, Robert A; Batchelor, Adrian H

    2010-02-01

    Antibodies against apical membrane antigen 1 (AMA1) inhibit invasion of Plasmodium merozoites into red cells, and a large number of single nucleotide polymorphisms on AMA1 allow the parasite to escape inhibitory antibodies. The availability of a crystal structure makes it possible to test protein engineering strategies to develop a monovalent broadly reactive vaccine. Previously, we showed that a linear stretch of polymorphic residues (amino acids 187 to 207), localized within the C1 cluster on domain 1, conferred the highest level of escape from inhibitory antibodies, and these were termed antigenic escape residues (AER). Here we test the hypothesis that immunodampening the C1 AER will divert the immune system toward more conserved regions. We substituted seven C1 AER of the FVO strain Plasmodium falciparum AMA1 with alanine residues (ALA). The resulting ALA protein was less immunogenic than the native protein in rabbits. Anti-ALA antibodies contained a higher proportion of cross-reactive domain 2 and domain 3 antibodies and had higher avidity than anti-FVO. No overall enhancement of cross-reactive inhibitory activity was observed when anti-FVO and anti-ALA sera were compared for their ability to inhibit invasion. Alanine mutations at the C1 AER had shifted the immune response toward cross-strain-reactive epitopes that were noninhibitory, refuting the hypothesis but confirming the importance of the C1 cluster as an inhibitory epitope. We further demonstrate that naturally occurring polymorphisms that fall within the C1 cluster can predict escape from cross-strain invasion inhibition, reinforcing the importance of the C1 cluster genotype for antigenic categorization and allelic shift analyses in future phase 2b trials.

  19. Immunoprotection of Mice against Schistosomiasis Mansoni Using Solubilized Membrane Antigens

    PubMed Central

    Sulbarán, Guidenn; Noya, Oscar; Brito, Beatríz; Ballén, Diana E.; Cesari, Italo M.

    2013-01-01

    Background Schistosomiasis continues to be one of the most prevalent parasitic diseases in the world. Despite the existence of a highly effective antischistosome drug, the disease is spreading into new areas, and national control programs do not arrive to complete their tasks particularly in low endemic areas. The availability of a vaccine could represent an additional component to chemotherapy. Experimental vaccination studies are however necessary to identify parasite molecules that would serve as vaccine candidates. In the present work, C57BL/6 female mice were subcutaneously immunized with an n-butanol extract of the adult worm particulate membranous fraction (AWBE) and its protective effect against a S. mansoni challenge infection was evaluated. Methodology and Findings Water-saturated n-butanol release into the aqueous phase a set of membrane-associated (glyco)proteins that are variably recognized by antibodies in schistosome-infected patients; among the previously identified AWBE antigens there is Alkaline Phosphatase (SmAP) which has been associated with resistance to the infection in mice. As compared to control, a significantly lower number of perfuse parasites was obtained in the immunized/challenged mouse group (P<0.05, t test); and consequently, a lower number of eggs and granulomas (with reduced sizes), overall decreasing pathology. Immunized mice produced high levels of sera anti-AWBE IgG recognizing antigens of ∼190-, 130-, 98-, 47-, 28-23, 14-, and 9-kDa. The ∼130-kDa band (the AP dimer) exhibited in situ SmAP activity after addition of AP substrate and the activity was not apparently inhibited by host antibodies. A preliminary proteomic analysis of the 25-, 27-, and 28-kDa bands in the immunodominant 28–23 kDa region suggested that they are composed of actin. Conclusions Immunization with AWBE induced the production of specific antibodies to various adult worm membrane molecules (including AP) and a partial (43%) protection against a

  20. Antigen digestion on the target plate of MALDI-TOF MS after isolation using an immunoaffinity membrane.

    PubMed

    Shimazaki, Youji; Nishimura, Yuri; Saito, Masaki

    2013-09-01

    A combination of methods is required to achieve separation of intact proteins and subsequently perform structure analysis to examine their unstable or external structures. The aim of this study was to develop a method of structure analysis in intact proteins after purification. Transferrin from human plasma was trapped by membrane-immobilized anti-transferrin antibody, which was produced by non-denaturing two-dimensional electrophoresis (2-DE), and transferred to a polyvinylidene fluoride (PVDF) membrane and stained with Ponceau S. The antigen transferrin was eluted by rinsing the membrane with trifluoroacetic acid (TFA) or aspartic acid. In addition, a method was established by which the purified human transferrin was enzymatically digested on a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) target plate. Thus, after purification of the human transferrin antigen from tens of microlitres of human plasma using an immunoaffinity membrane, transferrin polypeptide fragments were obtained on the plate following digestion with pepsin in the presence of 0.1% TFA or endoproteinase Lys-C or Lys-C/trypsin with 0.001% sodium dodecyl sulphate (SDS). The results indicated that the combined methods of isolation using an immunoaffinity membrane and enzymatic digestion on a MALDI-TOF MS plate could be applied to the purification and microanalysis of antigens. This approach would be particularly applicable to the analysis of the primary structure and the less stable and highly accessible regions of antigens from limited sample volumes.

  1. Characterization of O-antigen delivered by Generalized Modules for Membrane Antigens (GMMA) vaccine candidates against nontyphoidal Salmonella.

    PubMed

    De Benedetto, G; Alfini, R; Cescutti, P; Caboni, M; Lanzilao, L; Necchi, F; Saul, A; MacLennan, C A; Rondini, S; Micoli, F

    2017-01-11

    Invasive nontyphoidal Salmonella disease (iNTS) is a leading cause of death and morbidity in Africa. The most common pathogens are Salmonella enterica serovars Typhimurium and Enteritidis. The O-antigen portion of their lipopolysaccharide is a target of protective immunity and vaccines targeting O-antigen are currently in development. Here we investigate the use of Generalized Modules for Membrane Antigens (GMMA) as delivery system for S. Typhimurium and S. Enteritidis O-antigen. Gram-negative bacteria naturally shed outer membrane in a blebbing process. By deletion of the tolR gene, the level of shedding was greatly enhanced. Further genetic modifications were introduced into the GMMA-producing strains in order to reduce reactogenicity, by detoxifying the lipid A moiety of lipopolysaccharide. We found that genetic mutations can impact on expression of O-antigen chains. All S. Enteritidis GMMA characterized had an O-antigen to protein w/w ratio higher than 0.6, while the ratio was 0.7 for S. Typhimurium ΔtolR GMMA, but decreased to less than 0.1 when further mutations for lipid A detoxification were introduced. Changes were also observed in O-antigen chain length and level and/or position of O-acetylation. When tested in mice, the GMMA induced high levels of anti-O-antigen-specific IgG functional antibodies, despite variation in density and O-antigen structural modifications. In conclusion, simplicity of manufacturing process and low costs of production, coupled with encouraging immunogenicity data, make GMMA an attractive strategy to further investigate for the development of a vaccine against iNTS.

  2. Hetero-bivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen (PSMA) and Hepsin

    DTIC Science & Technology

    2012-09-01

    Prostate- Specific Membrane Antigen ( PSMA ) and Hepsin PRINCIPAL INVESTIGATOR: Youngjoo Byun, Ph. D. CONTRACTING ORGANIZATION: Korea...Membrane Antigen ( PSMA ) and Hepsin 5b. GRANT NUMBER W81XWH-10-1-0189 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Youngjoo Byun, Ph. D. 5d...accuracy of prostate cancer diagnosis by targeting simultaneously PSMA and hepsin, which are highly expressed in advanced and metastatic prostate

  3. Heterobivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen (PSMA) and Hepsin

    DTIC Science & Technology

    2014-11-01

    Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin PRINCIPAL INVESTIGATOR: Youngjoo Byun, Ph. D. CONTRACTING ORGANIZATION: Korea...Simultaneous Targeting Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin 5b. GRANT NUMBER W81XWH-10-1-0189 5c. PROGRAM ELEMENT NUMBER 6...heterobivalent conjugates of PSMA /hepsin-binding ligands labeled with optical dyes or radionuclides. The sensitivity and accuracy of prostate cancer

  4. Quantitative flow cytometric analysis of membrane antigen expression.

    PubMed

    D'hautcourt, Jean-Luc

    2002-11-01

    Immunological analysis for cell antigens has been performed by flow cytometry in a qualitative fashion for over thirty years. During that time it has become increasingly apparent that quantitative measurements such as number of antigens per cell provide unique and useful information. This unit on quantitative flow cytometry (QFCM) describes the most commonly used protocols, both direct and indirect, and the major methods of analysis for the number of antibody binding sites on a cell or particle. Practical applications include detection of antigen under- or overexpression in hematological malignancies, distinguishing between B cell lymphoproliferative disorders, and precise diagnosis of certain rare diseases.

  5. Overcoming Antigenic Diversity by Enhancing the Immunogenicity of Conserved Epitopes on the Malaria Vaccine Candidate Apical Membrane Antigen-1

    PubMed Central

    Dutta, Sheetij; Dlugosz, Lisa S.; Drew, Damien R.; Ge, Xiopeng; Ababacar, Diouf; Rovira, Yazmin I.; Moch, J. Kathleen; Shi, Meng; Long, Carole A.; Foley, Michael; Beeson, James G.; Anders, Robin F.; Miura, Kazutoyo; Haynes, J. David; Batchelor, Adrian H.

    2013-01-01

    Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal

  6. Identification of human trophoblast membrane antigens in maternal blood during pregnancy.

    PubMed Central

    O'Sullivan, M J; McIntyre, J A; Prior, M; Warriner, G; Faulk, W P

    1982-01-01

    The development of an immunoradiometric assay for the detection of human trophoblast-specific membrane antigens is described. The test revealed for the first time circulating trophoblast-specific cell membrane antigens in the peripheral blood of pregnant women, but none in non-pregnant female or male controls. Comparison of the circulating levels of these trophoblast-specific proteins between normal and pre-eclamptic blood samples showed no significant differences, thus casting doubt on the role of differential trophoblast antigen deportation in the etiology of toxaemic pregnancy. Matched retroplacental cord blood from several normal and pre-eclamptic pregnancies were examined and found either negative or near the lower sensitivity limit of the assay, suggesting that deportation of trophoblast membrane antigens during gestation is limited to the maternal aspect of the placenta. PMID:6177463

  7. Antigens protected functional red blood cells by the membrane grafting of compact hyperbranched polyglycerols.

    PubMed

    Chapanian, Rafi; Constantinescu, Iren; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran

    2013-01-02

    Red blood cell (RBC) transfusion is vital for the treatment of a number of acute and chronic medical problems such as thalassemia major and sickle cell anemia. Due to the presence of multitude of antigens on the RBC surface (~308 known antigens), patients in the chronic blood transfusion therapy develop alloantibodies due to the miss match of minor antigens on transfused RBCs. Grafting of hydrophilic polymers such as polyethylene glycol (PEG) and hyperbranched polyglycerol (HPG) forms an exclusion layer on RBC membrane that prevents the interaction of antibodies with surface antigens without affecting the passage of small molecules such as oxygen, glucose, and ions. At present no method is available for the generation of universal red blood donor cells in part because of the daunting challenge presented by the presence of large number of antigens (protein and carbohydrate based) on the RBC surface and the development of such methods will significantly improve transfusion safety, and dramatically improve the availability and use of RBCs. In this report, the experiments that are used to develop antigen protected functional RBCs by the membrane grafting of HPG and their characterization are presented. HPGs are highly biocompatible compact polymers, and are expected to be located within the cell glycocalyx that surrounds the lipid membrane and mask RBC surface antigens.

  8. Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion

    PubMed Central

    Bargieri, Daniel Y.; Andenmatten, Nicole; Lagal, Vanessa; Thiberge, Sabine; Whitelaw, Jamie A.; Tardieux, Isabelle; Meissner, Markus; Ménard, Robert

    2013-01-01

    Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization. Here, we generate Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and find that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have implications on the use of apical membrane antigen 1 or the apical membrane antigen 1–rhoptry neck 2 interaction as targets of intervention strategies against malaria or other diseases caused by apicomplexans. PMID:24108241

  9. Use of Immunodampening To Overcome Diversity in the Malarial Vaccine Candidate Apical Membrane Antigen 1

    PubMed Central

    Harris, Karen S.; Adda, Christopher G.; Khore, Madhavi; Drew, Damien R.; Valentini-Gatt, Antonina; Fowkes, Freya J. I.; Beeson, James G.; Dutta, Sheetij; Anders, Robin F.

    2014-01-01

    Apical membrane antigen 1 (AMA1) is a leading malarial vaccine candidate; however, its polymorphic nature may limit its success in the field. This study aimed to circumvent AMA1 diversity by dampening the antibody response to the highly polymorphic loop Id, previously identified as a major target of strain-specific, invasion-inhibitory antibodies. To achieve this, five polymorphic residues within this loop were mutated to alanine, glycine, or serine in AMA1 of the 3D7 and FVO Plasmodium falciparum strains. Initially, the corresponding antigens were displayed on the surface of bacteriophage, where the alanine and serine but not glycine mutants folded correctly. The alanine and serine AMA1 mutants were expressed in Escherichia coli, refolded in vitro, and used to immunize rabbits. Serological analyses indicated that immunization with a single mutated form of 3D7 AMA1 was sufficient to increase the cross-reactive antibody response. Targeting the corresponding residues in an FVO backbone did not achieve this outcome. The inclusion of at least one engineered form of AMA1 in a biallelic formulation resulted in an antibody response with broader reactivity against different AMA1 alleles than combining the wild-type forms of 3D7 and FVO AMA1 alleles. For one combination, this extended to an enhanced relative growth inhibition of a heterologous parasite line, although this was at the cost of reduced overall inhibitory activity. These results suggest that targeted mutagenesis of AMA1 is a promising strategy for overcoming antigenic diversity in AMA1 and reducing the number of variants required to induce an antibody response that protects against a broad range of Plasmodium falciparum AMA1 genotypes. However, optimization of the immunization regime and mutation strategy will be required for this potential to be realized. PMID:25156737

  10. Development of biohybrid immuno-selective membranes for target antigen recognition.

    PubMed

    Militano, Francesca; Poerio, Teresa; Mazzei, Rosalinda; Salerno, Simona; Bartolo, Loredana De; Giorno, Lidietta

    2017-02-03

    Membranes are gaining increasing interest in solid-phase analytical assay and biosensors applications, in particular as functional surface for bioreceptors immobilization and stabilization as well as for the concentration of target molecules in microsystems. In this work, regenerated cellulose immuno-affinity membranes were developed and they were used for the selective capture of interleukin-6 (IL-6) as targeted antigen. Protein G was covalently linked on the membrane surface and it was successfully used for the oriented site-specific antibody immobilization. The antibody binding capacity of the protein G-coupled membrane was evaluated. The specific anti IL-6 antibody was immobilized and a quantitative analysis of the amount of IL-6 captured by the immuno-affinity membrane was performed. The immobilization procedure was optimized to eliminate the non-specific binding of antigen on the membrane surface. Additionally, the interaction between anti IL-6 antibody and protein G was stabilized by chemical cross-linking with glutaraldehyde and the capture ability of immuno-affinity membranes, with and without the cross-linker, was compared. The maximum binding capacity of the protein G-coupled membrane was 43.8µg/cm(2) and the binding efficiency was 88%. The immuno-affinity membranes showed a high IL-6 capture efficiency at very low antigen concentration, up to a maximum of 91%, the amount of captured IL-6 increased linearly as increasing the initial concentration. The cross-linked surface retained the antigen binding capacity demonstrating its robustness in being reused, without antibody leakage or reduction in antibody binding capacity. The overall results demonstrated the possibility of a reliable application of the immuno-affinity membrane developed for biosensors and bioassays also in multiple use.

  11. Identification of a Highly Antigenic Linear B Cell Epitope within Plasmodium vivax Apical Membrane Antigen 1 (AMA-1)

    PubMed Central

    Bueno, Lilian Lacerda; Lobo, Francisco Pereira; Morais, Cristiane Guimarães; Mourão, Luíza Carvalho; de Ávila, Ricardo Andrez Machado; Soares, Irene Silva; Fontes, Cor Jesus; Lacerda, Marcus Vinícius; Olórtegui, Carlos Chavez; Bartholomeu, Daniella Castanheira; Fujiwara, Ricardo Toshio; Braga, Érika Martins

    2011-01-01

    Apical membrane antigen 1 (AMA-1) is considered to be a major candidate antigen for a malaria vaccine. Previous immunoepidemiological studies of naturally acquired immunity to Plasmodium vivax AMA-1 (PvAMA-1) have shown a higher prevalence of specific antibodies to domain II (DII) of AMA-1. In the present study, we confirmed that specific antibody responses from naturally infected individuals were highly reactive to both full-length AMA-1 and DII. Also, we demonstrated a strong association between AMA-1 and DII IgG and IgG subclass responses. We analyzed the primary sequence of PvAMA-1 for B cell linear epitopes co-occurring with intrinsically unstructured/disordered regions (IURs). The B cell epitope comprising the amino acid sequence 290–307 of PvAMA-1 (SASDQPTQYEEEMTDYQK), with the highest prediction scores, was identified in domain II and further selected for chemical synthesis and immunological testing. The antigenicity of the synthetic peptide was identified by serological analysis using sera from P. vivax-infected individuals who were knowingly reactive to the PvAMA-1 ectodomain only, domain II only, or reactive to both antigens. Although the synthetic peptide was recognized by all serum samples specific to domain II, serum with reactivity only to the full-length protein presented 58.3% positivity. Moreover, IgG reactivity against PvAMA-1 and domain II after depletion of specific synthetic peptide antibodies was reduced by 18% and 33% (P = 0.0001 for both), respectively. These results suggest that the linear epitope SASDQPTQYEEEMTDYQK is highly antigenic during natural human infections and is an important antigenic region of the domain II of PvAMA-1, suggesting its possible future use in pre-clinical studies. PMID:21713006

  12. Isolation and partial characterization of antigens from basement membranes and streptococcal cell membrane (SCM) employing anti-SCM monoclonal antibody.

    PubMed

    Zelman, M E; Lange, C F

    1989-09-01

    Monoclonal antibodies (mAb) against streptococcal cell membrane (SCM) antigen were used to identify specific cross-reactive peptides prepared by trypsin digestion of purified glomerular basement membrane (GBM) and lung basement membrane (LBM). Anti-SCM mAb-coupled HPLC columns were used to affinity isolate soluble LBM, GBM, and SCM antigens which then were sized by HPLC. Alternatively, SCM, GBM, and LBM digests were subjected to an initial separation by HPLC into component polypeptides, followed by affinity purification and ELISA of these fractions using anti-SCM mAb. Comparison of the antigenic reactivities by ELISA of the sized polypeptides on a nanomolar basis permitted the estimation of their individual relative epitope densities. The results for SCM antigens showed increasing epitope density with increasing molecular size, which suggests that intact SCM consists of repeating epitopes. Low mol. wt GBM polypeptides in nanogram amounts inhibited mAb binding to SCM, indicating that these small GBM polypeptides may similarly contain more than a single cross-reactive epitope. The identification of these cross-reactive epitopes in LBM and GBM has important implications for the etiology of post-streptococcal sequelae.

  13. Analysis of Moraxella catarrhalis outer membrane antigens cross-reactive with Neisseria meningitidis and Neisseria lactamica.

    PubMed

    Troncoso, Gemma; Sánchez, Sandra; Criado, María Teresa; Ferreirós, Carlos

    2004-01-15

    Mouse sera against outer membrane proteins from Moraxella catarrhalis, Neisseria meningitidis and Neisseria lactamica, and human sera from both healthy individuals and patients convalescing from meningococcal meningitis were used to identify cross-reactive antigens. Mouse anti-N. meningitidis and anti-N. lactamica sera recognized 77, 62 and 32 kDa outer membrane antigens in M. catarrhalis strains; on the contrary, the meningococcal porin PorB (38-42 kDa) was recognized by one of the two anti-M. catarrhalis sera. Human sera from both healthy individuals and patients convalescing from meningococcal meningitis also showed cross-reactive antibodies against these proteins. The existence of cross-reactive antigens in M. catarrhalis and N. meningitidis (as well as in N. lactamica) could favor the development of natural immunization against both pathogens.

  14. M-Type Phospholipase A2 Receptor as Target Antigen in Idiopathic Membranous Nephropathy

    PubMed Central

    Beck, Laurence H.; Bonegio, Ramon G.B.; Lambeau, Gérard; Beck, David M.; Powell, David W.; Cummins, Timothy D.; Klein, Jon B.; Salant, David J.

    2009-01-01

    BACKGROUND Idiopathic membranous nephropathy, a common form of the nephrotic syndrome, is an antibody-mediated autoimmune glomerular disease. Serologic diagnosis has been elusive because the target antigen is unknown. METHODS We performed Western blotting of protein extracts from normal human glomeruli with serum samples from patients with idiopathic or secondary membranous nephropathy or other proteinuric or autoimmune diseases and from normal controls. We used mass spectrometry to analyze the reactive protein bands and confirmed the identity and location of the target antigen with a monospecific antibody. RESULTS Serum samples from 26 of 37 patients (70%) with idiopathic but not secondary membranous nephropathy specifically identified a 185-kD glycoprotein in non-reduced glomerular extract. Mass spectrometry of the reactive protein band detected the M-type phospholipase A2 receptor (PLA2R). Reactive serum specimens recognized recombinant PLA2R and bound the same 185-kD glomerular protein as did the monospecific anti-PLA2R antibody. Anti-PLA2R autoantibodies in serum samples from patients with membranous nephropathy were mainly IgG4, the predominant immunoglobulin subclass in glomerular deposits. PLA2R was expressed in podocytes in normal human glomeruli and colocalized with IgG4 in immune deposits in glomeruli of patients with membranous nephropathy. IgG eluted from such deposits in patients with idiopathic membranous nephropathy, but not in those with lupus membranous or IgA nephropathy, recognized PLA2R. CONCLUSIONS A majority of patients with idiopathic membranous nephropathy have antibodies against a conformation-dependent epitope in PLA2R. PLA2R is present in normal podocytes and in immune deposits in patients with idiopathic membranous nephropathy, indicating that PLA2R is a major antigen in this disease. PMID:19571279

  15. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  16. Identification of soluble and membrane antigenic markers of acquired toxoplasmosis by immunoblot.

    PubMed

    Khammari, I; Saghrouni, F; Lakhal, S; Bougmiza, I; Bouratbine, A; Ben Said, M; Boukadida, J

    2014-12-01

    The overall performance of quantitative assays in the detection of anti-Toxoplasma IgG is satisfactory, but discrepancies between assays are not uncommon especially when IgG concentrations are close to the limit of detection of the tests. The purpose of our study was to identify soluble and membrane antigens extracted from Toxoplasma gondii tachyzoites by immunoblot to select the most relevant antigenic bands to be used for qualitative serodiagnosis of acquired toxoplasmosis. We selected five relevant bands (98, 36, 33, 32 and 21 kDa) with soluble antigens and four relevant bands (42, 35, 32 and 30 kDa) with membrane antigens which gave high sensitivity and/or specificity in immunodiagnosis. The association on the same blot of at least three of the five relevant bands in the soluble antigen immunoblot showed the highest sensitivity/specificity (97.4%/99.0%, respectively). Our results indicate that immunoblot using soluble tachyzoite extract with simultaneous detection of at least three of the five bands (98, 36, 33, 32 and 21 kDa) represents a valuable test for serodiagnosis of acquired toxoplasmosis and should be further evaluated as a confirmatory test for sera which give discrepant results in quantitative assays.

  17. Immunoelectron microscopy of skin basement membrane zone antigens: a pre-embedding method using 1-nm immunogold with silver enhancement.

    PubMed

    McGrath, J A; Ishida-Yamamoto, A; Shimizu, H; Fine, J D; Eady, R A

    1994-05-01

    There is no single immunoelectron microscopical method for invariably effective localization of both intracellular and extracellular antigens. We describe a simple and practicable immunogold technique that can be used to localize various skin basement membrane zone antigens at the ultrastructural level. Small pieces of skin were incubated with primary antibodies recognizing epitopes on a range of basement membrane zone-related antigens (two different lamina lucida-associated antigens, laminin, type VII collagen, fibrillin and keratin 14). This was followed by incubation with 1-nm colloidal gold-conjugated secondary antibody and subsequent silver intensification. The specimens were then processed for transmission electron microscopy. Precise immunolocalization with good ultrastructural preservation was achieved for all basement membrane zone antibodies tested. The results of basal cell keratin immunostaining showed that this microscopic approach could also be applied to some extent in the characterization of intracellular antigens. This immunoelectron microscopy technique provides a useful approach to the study of macromolecules at the basement membrane zone.

  18. Cross-linking analysis of antigenic outer membrane protein complexes of Neisseria meningitidis.

    PubMed

    Sánchez, Sandra; Abel, Ana; Arenas, Jesús; Criado, María Teresa; Ferreirós, Carlos M

    2006-03-01

    Polysaccharide-based approaches have not enabled the development of effective vaccines against meningococci of serogroup B, and the most promising current research is focused on the use of outer membrane vesicles. Due to the toxicity of the outer membrane oligosaccharides, new vaccines based on purified proteins are being sought, but despite the application of advanced techniques, they remain elusive, perhaps due to the fact that standard techniques for analysis of antigens overlook conformational epitopes located in membrane complexes. Membrane complex antigens have been analyzed in Neisseria gonorrhoeae, and a study published on Neisseria meningitidis has reported the in vitro formation of 800-kD complexes by deposition of a purified protein (MSP63) onto synthetic lipid layers; however, no studies to date have attempted to identify membrane complexes present in vivo in N. meningitidis. In the present study, cross-linking with formaldehyde was used to identify outer membrane protein associations in various N. meningitidis and Neisseria lactamica strains. In N. meningitides, complexes of about 450 kD (also present in N. lactamica), 165 and 95 kD were detected and shown to be made up of the proteins MSP63, PorA/PorB/RmpM/FetA, and PorA/PorB/RmpM, respectively. In western blots, the 450-kD complex was identified by mouse antibodies raised against outer membrane vesicles, but not by antibodies raised against the purified complex, demonstrating the importance of conformational epitopes, and thus suggesting that the analysis of antigens in their native conformation may be useful or even essential for the design of effective vaccines against meningococci.

  19. Lipid-Free Antigen B Subunits from Echinococcus granulosus: Oligomerization, Ligand Binding, and Membrane Interaction Properties

    PubMed Central

    Silva-Álvarez, Valeria; Franchini, Gisela R.; Pórfido, Jorge L.; Kennedy, Malcolm W.; Ferreira, Ana M.; Córsico, Betina

    2015-01-01

    Background The hydatid disease parasite Echinococcus granulosus has a restricted lipid metabolism, and needs to harvest essential lipids from the host. Antigen B (EgAgB), an abundant lipoprotein of the larval stage (hydatid cyst), is thought to be important in lipid storage and transport. It contains a wide variety of lipid classes, from highly hydrophobic compounds to phospholipids. Its protein component belongs to the cestode-specific Hydrophobic Ligand Binding Protein family, which includes five 8-kDa isoforms encoded by a multigene family (EgAgB1-EgAgB5). How lipid and protein components are assembled into EgAgB particles remains unknown. EgAgB apolipoproteins self-associate into large oligomers, but the functional contribution of lipids to oligomerization is uncertain. Furthermore, binding of fatty acids to some EgAgB subunits has been reported, but their ability to bind other lipids and transfer them to acceptor membranes has not been studied. Methodology/Principal Findings Lipid-free EgAgB subunits obtained by reverse-phase HPLC were used to analyse their oligomerization, ligand binding and membrane interaction properties. Size exclusion chromatography and cross-linking experiments showed that EgAgB8/2 and EgAgB8/3 can self-associate, suggesting that lipids are not required for oligomerization. Furthermore, using fluorescent probes, both subunits were found to bind fatty acids, but not cholesterol analogues. Analysis of fatty acid transfer to phospholipid vesicles demonstrated that EgAgB8/2 and EgAgB8/3 are potentially capable of transferring fatty acids to membranes, and that the efficiency of transfer is dependent on the surface charge of the vesicles. Conclusions/Significance We show that EgAgB apolipoproteins can oligomerize in the absence of lipids, and can bind and transfer fatty acids to phospholipid membranes. Since imported fatty acids are essential for Echinococcus granulosus, these findings provide a mechanism whereby EgAgB could engage in lipid

  20. Molecular cloning, characterization and antigenicity of Babesia sp. BQ1 (Lintan) (Babesia cf. motasi) apical membrane antigen-1 (AMA-1).

    PubMed

    Niu, Qingli; Liu, Zhijie; Yang, Jifei; Guan, Guiquan; Pan, Yuping; Luo, Jianxun; Yin, Hong

    2016-12-12

    Apical membrane antigen-1 (AMA-1) has been described as a potential vaccine candidate in apicomplexan parasites. Here we characterize the ama-1 gene. The full-length ama-1 gene of Babesia sp. BQ1 (Lintan) (BLTAMA-1) is 1785 bp, which contains an open reading frame (ORF) encoding a 65-kDa protein of 594 amino acid residues; by definition, the 5' UTR precedes the first methionine of the ORF. Phylogenetic analysis based on AMA-1 amino acid sequences clearly separated Piroplasmida from other Apicomplexa parasites. The Babesia sp. BQ1 (Lintan) AMA-1 sequence is most closely associated with that of B. ovata and B. bigemina, with high bootstrap value. A recombinant protein encoding a conserved region and containing ectodomains I and II of BLTAMA-1 was constructed. BLTrAMA-1-DI/DII proteins were tested for reactivity with sera from sheep infected by Babesia sp. BQ1 (Lintan). In Western-blot analysis, native Babesia sp. BQ1 (Lintan) AMA-1 proteins were recognized by antibodies raised in rabbits against BLTrAMA-1 in vitro. The results of this study are discussed in terms of gene characterization, taxonomy and antigenicity.

  1. Characterization of antibody binding to cell surface antigens using a plasma membrane-bound plate assay.

    PubMed

    Vater, C A; Reid, K; Bartle, L M; Goldmacher, V S

    1995-01-01

    A procedure has been developed for measuring antibody binding to cell surface antigens using an immobilized plasma membrane fraction. In this method, isolated plasma membranes are dried onto wells of a 96-well microtiter plate and incubated with antibodies that recognize a cell surface protein. Bound antibody is detected indirectly using an enzyme-linked or fluorescently tagged second antibody. Alternatively, the primary antibody itself can be labeled and its binding can be detected directly. The assay is simple and fast and provides several advantages over whole cell binding assays currently in widespread use.

  2. Binding of Streptococcus mutans antigens to heart and kidney basement membranes.

    PubMed Central

    Stinson, M W; Barua, P K; Bergey, E J; Nisengard, R J; Neiders, M E; Albini, B

    1984-01-01

    Using indirect immunofluorescence, alkali-extracted components of Streptococcus mutans were found to bind in vitro to capillary walls and sarcolemmal sheaths of monkey cardiac muscle and to glomerular and tubular basement membranes of monkey kidney. Adsorption of S. mutans components to tissue fragments was also detected by indirect radioimmunoassay and immunoblotting on nitrocellulose paper. Antibodies did not bind to untreated, control tissues in these experiments, proving that antigens shared by S. mutans and tissue components were not involved. Rabbit and monkey heart and kidney components bound S. mutans antigens of 24,000, 35,000, and 65,000 Mr. Monkey heart also bound molecules of 90,000 and 120,000 Mr. Rabbits immunized by intravenous injection of disrupted S. mutans cells developed severe nephritis that was characterized by the deposition of immunoglobulins, complement component C3, and S. mutans antigens in the glomeruli. Immunoglobulin G eluted from nephritic kidneys reacted in immunoblots with the 24,000, 35,000, and 65,000 Mr components of S. mutans extract, indicating that the antigens that bound to tissue in vitro also bound in vivo and reacted with antibodies in situ. Antibodies to other S. mutans antigens were not detected in the kidney eluate, although they were present in the serum of the same rabbit. Images PMID:6384042

  3. Development and comparative evaluation of a plate enzyme-linked immunosorbent assay based on recombinant outer membrane antigens Omp28 and Omp31 for diagnosis of human brucellosis.

    PubMed

    Tiwari, Sapana; Kumar, Ashu; Thavaselvam, Duraipandian; Mangalgi, Smita; Rathod, Vedika; Prakash, Archana; Barua, Anita; Arora, Sonia; Sathyaseelan, Kannusamy

    2013-08-01

    Brucellosis is an important zoonotic infectious disease of humans and livestock with worldwide distribution and is caused by bacteria of the genus Brucella. The diagnosis of brucellosis always requires laboratory confirmation by either isolation of pathogens or detection of specific antibodies. The conventional serological tests available for the diagnosis of brucellosis are less specific and show cross-reactivity with other closely related organisms. These tests also necessitate the handling of Brucella species for antigen preparation. Therefore, there is a need to develop reliable, rapid, and user-friendly systems for disease diagnosis and alternatives to vaccine approaches. Keeping in mind the importance of brucellosis as an emerging infection and the prevalence in India, we carried out the present study to compare the recombinant antigens with the native antigens (cell envelope and sonicated antigen) of Brucella for diagnosis of human brucellosis by an indirect plate enzyme-linked immunosorbent assay (ELISA). Recombinant outer membrane protein 28 (rOmp28) and rOmp31 antigens were cloned, expressed, and purified in the bacterial expression system, and the purified proteins were used as antigens. Indirect plate ELISAs were then performed and standardized for comparison of the reactivities of recombinant and native antigens against the 433 clinical samples submitted for brucellosis testing, 15 culture-positive samples, and 20 healthy donor samples. The samples were separated into four groups based on their positivity to rose bengal plate agglutination tests (RBPTs), standard tube agglutination tests (STATs), and 2-mercaptoethanol (2ME) tests. The sensitivities and specificities of all the antigens were calculated, and the rOmp28 antigen was found to be more suitable for the clinical diagnosis of brucellosis than the rOmp31 antigen and native antigens. The rOmp28-based ELISA showed a very high degree of agreement with the conventional agglutination tests and

  4. Immunolocalization of nestin, mesothelin and epithelial membrane antigen (EMA) in developing and adult serous membranes and mesotheliomas.

    PubMed

    Petricevic, Josko; Punda, Hrvoje; Brakus, Snjezana Mardesic; Vukojevic, Katarina; Govorko, Danijela Kalibovic; Alfirevic, Darko; Kvesic, Ante; Saraga-Babic, Mirna

    2012-09-01

    The spatial and temporal distribution of epithelial membrane antigen (EMA), mesothelin and nestin was immunohistochemically analyzed in developing and adult human serous membranes and mesotheliomas in order to detect possible differences in the course of mesenchymal to epithelial transformation, which is associated with differentiation of mesothelial cells during normal development and tumorigenesis. Pleura and pericardium developing from the visceral mesoderm gradually transform into mesothelial cells and connective tissue. EMA appeared in mesothelium of both serous membranes during the early fetal period, whereas during further development, EMA expression was retained only in the pericardial mesothelium. It increased in both pleural mesothelium and connective tissue. Mesothelin appeared first in pericardial submesothelial cells and later in surface mesothelium, while in pleura it was immediately localized in mesothelium. In adult serous membranes, EMA and mesothelin were predominantly expressed in mesothelium. Nestin never appeared in mesothelium, but in connective tissues and myocardial cells and subsequently decreased during development, apart from in the walls of blood vessels. Mesothelial cells in the two serous membranes developed in two separate developmental pathways. We speculate that submesothelial pericardial and mesothelial pleural cells might belong to a population of stem cells. In epithelioid mesotheliomas, 13% of cells expressed nestin, 39% EMA and 7% mesothelin.

  5. Monoclonal antibodies to antigens in the peribacteroid membrane from Rhizobium-induced root nodules of pea cross-react with plasma membranes and Golgi bodies

    PubMed Central

    Brewin, N. J.; Robertson, J. G.; Wood, E. A.; Wells, B.; Larkins, A. P.; Galfre, G.; Butcher, G. W.

    1985-01-01

    Three rat hybridoma lines that produced monoclonal antibodies reacting with the peribacteroid membrane from Pisum sativum were isolated, and these all appeared to recognise the same antigenic structure. Using one of these monoclonal antibodies, AFRC MAC 64, electron microscopy of immunogold-stained thin sections of nodule tissue revealed that the antigen, present in the peribacteroid membrane, was also found in the plant plasma membranes and in the Golgi bodies, but not in the endoplasmic reticulum. When peribacteroid membrane proteins were separated by SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose by electro-blotting, it was found that MAC 64 bound to a series of protease-sensitive bands that migrated in the mol. wt. range 50-85 K. The epitope was sensitive to periodate oxidation and its structure may therefore involve the carbohydrate component of a membrane glycoprotein. We suggest that this structure originates in the Golgi apparatus and is subsequently transferred to the peribacteriod membranes and plasma membranes. The monoclonal antibody also reacted with peribacteroid membranes from nodules of Vicia and lupin, and with plasma membranes and Golgi membranes from uninfected plant cells, including root tip cells from onion (Allium cepa), indicating that the antigen is highly conserved in the plasma membranes of plant cells. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:15926221

  6. Effect of particulate adjuvant on the anthrax protective antigen dose required for effective nasal vaccination.

    PubMed

    Bento, Dulce; Staats, Herman F; Borges, Olga

    2015-07-17

    Successful vaccine development is dependent on the development of effective adjuvants since the poor immunogenicity of modern subunit vaccines typically requires the use of potent adjuvants and high antigen doses. In recent years, adjuvant formulations combining both immunopotentiators and delivery systems have emerged as a promising strategy to develop effective and improved vaccines. In this study we investigate if the association of the mast cell activating adjuvant compound 48/80 (C48/80) with chitosan nanoparticles would promote an antigen dose sparing effect when administered intranasally. Even though the induction of strong mucosal immunity required higher antigen doses, incorporation of C48/80 into nanoparticles provided significant dose sparing when compared to antigen and C48/80 in solution with no significant effect on serum neutralizing antibodies titers. These results suggest the potential of this novel adjuvant combination to improve the immunogenicity of a vaccine and decrease the antigen dose required for vaccination.

  7. Detection of Goodpasture antigen in fractions prepared from collagenase digests of human glomerular basement membrane.

    PubMed Central

    Fish, A J; Lockwood, M C; Wong, M; Price, R G

    1984-01-01

    Preparations of human glomerular basement membrane (GBM) were digested with collagenase, and a Goodpasture (GP) antigen rich pool from gel filtration column runs was identified by antibody inhibition radioimmunoassay. The components of the GP antigen pool were separated on polyacrylamide gels, and transferred to nitrocellulose sheets by the 'western' blotting technique. The blots were separately reacted with thirteen GP sera as primary antibody, followed by peroxidase labelled goat anti-human IgG and revealed 45-50K (two bands) and 25-28K (one-three bands) components. No corresponding reactivity was observed using convalescent GP sera or other control sera (normal human serum, rapidly progressive glomerulonephritis with or without pulmonary haemorrhage, and lupus erythematosus) as primary antibody. Images Fig. 3 PMID:6319059

  8. Antigenic Structure of Outer Membrane Protein E of Moraxella catarrhalis and Construction and Characterization of Mutants

    PubMed Central

    Murphy, Timothy F.; Brauer, Aimee L.; Yuskiw, Norine; Hiltke, Thomas J.

    2000-01-01

    Outer membrane protein E (OMP E) is a 50-kDa protein of Moraxella catarrhalis which possesses several characteristics indicating that the protein will be an effective vaccine antigen. To study the antigenic structure of OMP E, eight monoclonal antibodies were developed and characterized. Three of the antibodies recognized epitopes which are present on the bacterial surface. Fusion peptides corresponding to overlapping regions of OMP E were constructed, and immunoblot assays were performed to localize the areas of the molecule bound by the monoclonal antibodies. These studies identified a surface-exposed epitope in the region of amino acids 80 through 180. To further study the protein, two mutants which lack OMP E were constructed. In bactericidal assays, the mutants were more readily killed by normal human serum compared to the isogenic parent strains. These results indicate that OMP E is involved in the expression of serum resistance of M. catarrhalis. PMID:11035732

  9. Characterization of Prostate-Specific Membrane Antigen (PSMA) for Use in Therapeutic and Diagnostic Strategies Against Prostate Cancer

    DTIC Science & Technology

    2001-07-01

    Detection of circulating tumor cells in patients with prostate cancer using prostate specific membrane-derived primers in the polymerase chain reaction . Int...Limitations of reverse-transcriptase polymerase chain reaction analyses for detection of micrometastatic epithelial cancer cells in bone marrow . I. Clin. Oncol...that PSMA is expressed in the Prostate Specific Membrane Antigen 309 endothelial

  10. Definition of glomerular antigens by monoclonal antibodies produced against a human glomerular membrane fraction.

    PubMed

    Neale, T J; Callus, M S; Donovan, L C; Baird, H

    1990-10-01

    Experimental animal models of glomerulonephritis (GN) produced by direct antibody binding to non-basement membrane glomerular capillary wall antigens do not to date have human parallels. To examine the potential for this form of humoral glomerular injury in man, we sought to define discrete human non-GBM glomerular antigenic targets using hybridoma technology. Mice were immunised intraperitoneally with 20-100 micrograms of a human glomerular membrane fraction (HGMF). Six fusions have yielded 12 stable reagents defined by positive glomerular indirect immunofluorescence (IF) and microELISA using HGMF as the screening antigen. Subclass analysis of ascitic McAbs indicated several IgG1, one IgG2b, and three IgM reagents. Distinctive IF patterns of reactivity with epithelial, endothelial or mesangial structures have been observed, with or without peritubular capillary, tubular basement membrane and vessel wall reactivity. Seven normal non-renal human organs and the kidneys of rat, rabbit and sheep have shown patterns characteristic of each individual McAb, restricted to human or with species cross reactivity. To partially characterise McAb-reactive antigens, detergent-solubilised renal cortex and collagenase-solubilised GBM (CS-GBM) extracts have been probed by immunoblot. A unique McAb 7-5Q, reactive with glomerular and tubular epithelial structures, binds major bands of approximately 107 KD and 93 KD in detergent solubilised cortex and a single band of similar size by immunoprecipitation (110 KD). 5-3A (a human-restricted linear-reacting McAb) binds bands of 20-200 KD (major band 58 KD) in CS-GBM. In conclusion, distinct species-restricted and more broadly disposed glomerular epitopes are definable in man by McAbs and are potential targets for humoral injury. Purification of these antigens will allow assay for circulating putative nephritogenic auto-antibody and potentially, McAbs may be useful in screening urine for evidence of occult structural renal disease.

  11. Antibodies to liver membrane antigens in chronic active hepatitis (CAH). II. Specificity for autoimmune CAH.

    PubMed Central

    Frazer, I H; Kronborg, I J; Mackay, I R

    1983-01-01

    An immunoradiometric assay for IgG class autoantibody to liver membrane antigens, based on serum binding to glutaraldehyde treated monkey hepatocytes, was used to examine sera from patients with chronic active hepatitis (CAH) and other acute and chronic liver diseases. All sera from normals and patients showed binding, up to a titre of 1/2,048. For comparison of assays, results were normalized by selecting two reference sera, one with a high degree of binding, and one from a healthy subject with a low degree of binding: at a dilution of 1/2,048, these sera were given binding values of 100% and 0%. The values for the binding of unknown sera at the same dilution were calculated from these two reference values. For 26 patients with autoimmune CAH, the mean (+/- s.d.) percentage binding value (70 +/- 33%) was significantly higher than the mean value for 26 healthy subjects (10 +/- 15%), and high binding values were significantly associated with biochemically active hepatitis. The mean percentage binding value was moderately increased for eight patients with HBsAg associated CAH (42 +/- 12%), 13 patients with alcoholic hepatitis with cirrhosis (37 +/- 25%) and 45 patients with acute viral hepatitis A (40 +/- 27%) or B (52 +/- 37%). At a cut-off binding value of 65%, the assay as a single diagnostic procedure was shown to have a 70% sensitivity and a 95% specificity for the diagnosis of autoimmune CAH. Better understanding of the pathogenetic significance of antibodies to liver membrane antigens in CAH and other liver diseases will depend upon biochemical analysis of the presumably multiple antigenic determinants on the hepatocyte membrane. PMID:6616969

  12. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles.

    PubMed

    Cahill, Bethaney K; Seeley, Kent W; Gutel, Dedra; Ellis, Terri N

    2015-11-01

    Klebsiella pneumoniae is a nosocomial pathogen which naturally secretes lipopolysaccharide (LPS) and cell envelope associated proteins into the environment through the production of outer membrane vesicles (OMVs). The loss of the LPS O antigen has been demonstrated in other bacterial species to significantly alter the composition of OMVs. Therefore, this study aimed to comprehensively analyze the impact of O antigen loss on the sub-proteomes of both the outer membrane and secreted OMVs from K. pneumoniae. As determined by LC-MS/MS, OMVs were highly enriched with outer membrane proteins involved in cell wall, membrane, and envelope biogenesis as compared to the source cellular outer membrane. Deletion of wbbO, the enzyme responsible for O antigen attachment to LPS, decreased but did not eliminate this enrichment effect. Additionally, loss of O antigen resulted in OMVs with increased numbers of proteins involved in post-translational modification, protein turnover, and chaperones as compared to secreted vesicles from the wild type. This alteration of OMV composition may be a compensatory mechanism to deal with envelope stress. This comprehensive analysis confirms the highly distinct protein composition of OMVs as compared to their source membrane, and provides evidence for a selective sorting mechanism that involves LPS polysaccharides. These data support the hypothesis that modifications to LPS alters both the mechanics of protein sorting and the contents of secreted OMVs and significantly impacts the protein composition of the outer membrane.

  13. Clinical Experience with (18)F-Labeled Small Molecule Inhibitors of Prostate-Specific Membrane Antigen.

    PubMed

    Rowe, Steven P; Gorin, Michael A; Salas Fragomeni, Roberto A; Drzezga, Alexander; Pomper, Martin G

    2017-04-01

    Prostate cancer (PCa) is the most common noncutaneous malignancy diagnosed in men. Despite the large number of men who will suffer from PCa at some point during their lives, conventional imaging modalities for this important disease (contrast-enhanced computed tomography, bone scan, and MR imaging) have provided only marginal to moderate success in appropriately guiding patient management in certain clinical contexts. In this review, the authors discuss radiofluorinated small molecule radiotracers that have been developed to bind to the transmembrane glycoprotein prostate-specific membrane antigen, a target that is nearly universally overexpressed on PCa epithelial cells.

  14. Immunity Provided by an Outer Membrane Vesicle Cholera Vaccine Is Due to O-Antigen-Specific Antibodies Inhibiting Bacterial Motility.

    PubMed

    Wang, Zhu; Lazinski, David W; Camilli, Andrew

    2017-01-01

    An outer membrane vesicle (OMV)-based cholera vaccine is highly efficacious in preventing intestinal colonization in the suckling mouse model. Immunity from OMVs comes from immunoglobulin (Ig), particularly IgG, in the milk of mucosally immunized dams. Anti-OMV IgG renders Vibrio cholerae organisms immotile, thus they pass through the small intestine without colonizing. However, the importance of motility inhibition for protection and the mechanism by which motility is inhibited remain unclear. By using both in vitro and in vivo experiments, we found that IgG inhibits motility by specifically binding to the O-antigen of V. cholerae We demonstrate that the bivalent structure of IgG, although not required for binding to the O-antigen, is required for motility inhibition. Finally, we show using competition assays in suckling mice that inhibition of motility appears to be responsible for most, if not all, of the protection engendered by OMV vaccination, thus providing insight into the mechanism of immune protection.

  15. Native surface association of a recombinant 38-kilodalton Treponema pallidum antigen isolated from the Escherichia coli outer membrane.

    PubMed Central

    Fehniger, T E; Radolf, J D; Walfield, A M; Cunningham, T M; Miller, J N; Lovett, M A

    1986-01-01

    A recombinant plasmid designated pAW305, containing a 6-kilobase insert of Treponema pallidum DNA, directed the expression of a 38-kilodalton (kDa) treponemal antigen in Escherichia coli. The 38-kDa antigen copurified with the outer membrane fraction of the E. coli cell envelope after treatment with nonionic detergents or sucrose density gradient centrifugation. Rabbits immunized with the recombinant 38-kDa antigen developed antibodies which reacted specifically with a 38-kDa T. pallidum antigen on immunoblots, and 38-kDa antisera specifically immobilized T. pallidum in a complement-dependent manner in the T. pallidum immobilization test. Antisera to the 38-kDa recombinant antigen were also used to demonstrate its native surface association on T. pallidum by immunoelectron microscopy. Images PMID:3516880

  16. Babesia divergens and Neospora caninum apical membrane antigen 1 structures reveal selectivity and plasticity in apicomplexan parasite host cell invasion

    PubMed Central

    Tonkin, Michelle L; Crawford, Joanna; Lebrun, Maryse L; Boulanger, Martin J

    2013-01-01

    Host cell invasion by the obligate intracellular apicomplexan parasites, including Plasmodium (malaria) and Toxoplasma (toxoplasmosis), requires a step-wise mechanism unique among known host–pathogen interactions. A key step is the formation of the moving junction (MJ) complex, a circumferential constriction between the apical tip of the parasite and the host cell membrane that traverses in a posterior direction to enclose the parasite in a protective vacuole essential for intracellular survival. The leading model of MJ assembly proposes that Rhoptry Neck Protein 2 (RON2) is secreted into the host cell and integrated into the membrane where it serves as the receptor for apical membrane antigen 1 (AMA1) on the parasite surface. We have previously demonstrated that the AMA1-RON2 interaction is an effective target for inhibiting apicomplexan invasion. To better understand the AMA1-dependant molecular recognition events that promote invasion, including the significant AMA1-RON2 interaction, we present the structural characterization of AMA1 from the apicomplexan parasites Babesia divergens (BdAMA1) and Neospora caninum (NcAMA1) by X-ray crystallography. These studies offer intriguing structural insight into the RON2-binding surface groove in the AMA1 apical domain, which shows clear evidence for receptor–ligand co-evolution, and the hyper variability of the membrane proximal domain, which in Plasmodium is responsible for direct binding to erythrocytes. By incorporating the structural analysis of BdAMA1 and NcAMA1 with existing AMA1 structures and complexes we were able to define conserved pockets in the AMA1 apical groove that could be targeted for the design of broadly reactive therapeutics. PMID:23169033

  17. A novel Cryptosporidium parvum antigen, CP2, preferentially associates with membranous structures.

    PubMed

    O'Hara, Steven P; Yu, Jae-Ran; Lin, Jim Jung-Ching

    2004-03-01

    The present study addresses the cloning and characterization of a Cryptosporidium parvum antigen, CP2. Sequencing of cDNA and genomic clones revealed a novel gene capable of coding a message of 2,136 nucleotides flanked by 28 and 140 nucleotides of the 5'- and 3'-noncoding regions, respectively. The deduced amino acid sequence suggests that CP2 is a secreted and/or membrane protein. Immunofluorescence microscopy detected CP2 enrichment in sporozoites that subsequently appeared to encase type I meronts in infected HCT-8 cells. Immunogold electron microscopy revealed that CP2 consistently localized to membranous structures throughout development. In addition, progression from macrogametocyte to sporulated oocyst revealed CP2 initially at the periphery of amylopectin-like granules, in the cytoplasm and discrete vesicles, the parasitophorous vacuole, on the surface of sporozoites, and finally on the parasitophorous vacuole membrane (PVM). The observed expression pattern suggests that CP2 may be involved in the invasion process and/or PVM integrity.

  18. Co-Administration of Lipid Nanoparticles and Sub-Unit Vaccine Antigens Is Required for Increase in Antigen-Specific Immune Responses in Mice.

    PubMed

    Thoryk, Elizabeth A; Swaminathan, Gokul; Meschino, Steven; Cox, Kara S; Gindy, Marian; Casimiro, Danilo R; Bett, Andrew J

    2016-12-06

    A vast body of evidence suggests that nanoparticles function as potent immune-modulatory agents. We have previously shown that Merck proprietary Lipid NanoParticles (LNPs) markedly boost B-cell and T-cell responses to sub-unit vaccine antigens in mice. To further evaluate the specifics of vaccine delivery and dosing regimens in vivo, we performed immunogenicity studies in BALB/c and C57BL/6 mice using two model antigens, Hepatitis B Surface Antigen (HBsAg) and Ovalbumin (OVA), respectively. To assess the requirement for co-administration of antigen and LNP for the elicitation of immune responses, we evaluated immune responses after administering antigen and LNP to separate limbs, or administering antigen and LNP to the same limb but separated by 24 h. We also evaluated formulations combining antigen, LNP, and aluminum-based adjuvant amorphous aluminum hydroxylphosphate sulfate (MAA) to look for synergistic adjuvant effects. Analyses of antigen-specific B-cell and T-cell responses from immunized mice revealed that the LNPs and antigens must be co-administered-both at the same time and in the same location-in order to boost antigen-specific immune responses. Mixing of antigen with MAA prior to formulation with LNP did not impact the generation of antigen-specific B-cell responses, but drastically reduced the ability of LNPs to boost antigen-specific T-cell responses. Overall, our data demonstrate that the administration of LNPs and vaccine antigen together enables their immune-stimulatory properties.

  19. Co-Administration of Lipid Nanoparticles and Sub-Unit Vaccine Antigens Is Required for Increase in Antigen-Specific Immune Responses in Mice

    PubMed Central

    Thoryk, Elizabeth A.; Swaminathan, Gokul; Meschino, Steven; Cox, Kara S.; Gindy, Marian; Casimiro, Danilo R.; Bett, Andrew J.

    2016-01-01

    A vast body of evidence suggests that nanoparticles function as potent immune-modulatory agents. We have previously shown that Merck proprietary Lipid NanoParticles (LNPs) markedly boost B-cell and T-cell responses to sub-unit vaccine antigens in mice. To further evaluate the specifics of vaccine delivery and dosing regimens in vivo, we performed immunogenicity studies in BALB/c and C57BL/6 mice using two model antigens, Hepatitis B Surface Antigen (HBsAg) and Ovalbumin (OVA), respectively. To assess the requirement for co-administration of antigen and LNP for the elicitation of immune responses, we evaluated immune responses after administering antigen and LNP to separate limbs, or administering antigen and LNP to the same limb but separated by 24 h. We also evaluated formulations combining antigen, LNP, and aluminum-based adjuvant amorphous aluminum hydroxylphosphate sulfate (MAA) to look for synergistic adjuvant effects. Analyses of antigen-specific B-cell and T-cell responses from immunized mice revealed that the LNPs and antigens must be co-administered—both at the same time and in the same location—in order to boost antigen-specific immune responses. Mixing of antigen with MAA prior to formulation with LNP did not impact the generation of antigen-specific B-cell responses, but drastically reduced the ability of LNPs to boost antigen-specific T-cell responses. Overall, our data demonstrate that the administration of LNPs and vaccine antigen together enables their immune-stimulatory properties. PMID:27929422

  20. Proteomic analysis of Neisseria lactamica and N eisseria meningitidis outer membrane vesicle vaccine antigens.

    PubMed

    Vaughan, Thomas E; Skipp, Paul J; O'Connor, C David; Hudson, Michael J; Vipond, Richard; Elmore, Michael J; Gorringe, Andrew R

    2006-06-19

    Vaccines to prevent meningococcal disease have been developed from the outer membrane vesicles (OMVs) of Neisseria meningitidis and the related commensal organism Neisseria lactamica. In addition to lipopolysaccharide and the major porins, these vaccines contain a large number of proteins that are incompletely characterised. Here we describe comparative proteomic analyses of the N. lactamica OMV vaccine and OMVs from a serogroup B strain of N. meningitidis. Tandem mass-spectrometry data for trypsinised N. lactamica OMV vaccine were matched to an incompletely assembled genome sequence from the same strain to give 65 robust protein identifications and a further 122 single- or two-peptide matches. Fifty-seven N. meningitidis K454 proteins were identified robustly (and a further 68 from single- or two-peptide matches) by inference from the N. meningitidis MC58 genome. The results suggest that OMVs have a hitherto unappreciated complexity and pinpoint novel candidate antigens for further characterisation.

  1. Comparison of colorimetric assays with quantitative amino acid analysis for protein quantification of Generalized Modules for Membrane Antigens (GMMA).

    PubMed

    Rossi, Omar; Maggiore, Luana; Necchi, Francesca; Koeberling, Oliver; MacLennan, Calman A; Saul, Allan; Gerke, Christiane

    2015-01-01

    Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Interfering assays using bovine serum albumin (BSA) as standard with quantitative amino acid (AA) analysis, the most accurate currently available method for protein quantification. The Lowry assay has the lowest inter- and intra-assay variation and gives the best linearity between protein amount and absorbance. In all three assays, the color yield (optical density per mass of protein) of GMMA was markedly different from that of BSA with a ratio of approximately 4 for the Bradford assay, and highly variable between different GMMA; and approximately 0.7 for the Lowry and Non-Interfering assays, highlighting the need for calibrating the standard used in the colorimetric assay against GMMA quantified by AA analysis. In terms of a combination of ease, reproducibility, and proportionality of protein measurement, and comparability between samples, the Lowry assay was superior to Bradford and Non-Interfering assays for GMMA quantification.

  2. Expression of vascular antigens by bone cells during bone regeneration in a membranous bone distraction system.

    PubMed

    Lewinson, D; Maor, G; Rozen, N; Rabinovich, I; Stahl, S; Rachmiel, A

    2001-11-01

    An in vivo system of membranous bone formation during distraction has been investigated in order to follow cells that express vascular markers with the objective of understanding the neovascularization process. Concomitantly, sustained proliferation of preskeletal cells was achieved through the application of mechanical force. New capillaries and leading edges that arose by angiogenesis from the periosteal and mucosal surfaces and invaded the central zone of the regenerating distraction tissue temporally preceded the growth of delicate woven bone trabeculae from both edges of the cut bone. Concentrically arranged 'onion-like' configurations were abundant in paracentral zones and in association with mesenchymal condensations, suggesting their de novo formation in situ. Vascular specific markers, the angiopoietin receptor Tie-2 and factor VIII-related antigen (FVIIIrAg), were localized immunohistochemically in order to follow cells of vascular origin. Endothelial cells of the new capillaries, centrally located cells of the concentric configurations, pericytes, and most of the adjacent polygonal mesenchymal cells stained positively with specific antibodies to both antigens. Moreover, preosteoblasts and osteoblasts that lie adjacent to or already embedded in the osteiod of the newly formed trabeculae were also FVIIIrAg and Tie-2 immunopositive. As the source of the bone-forming cells in regenerating tissue during distraction is not yet fully understood, this observation might support the possibility of their vascular origin.

  3. Molecular characterization of a conserved 20-kilodalton membrane-associated lipoprotein antigen of Helicobacter pylori.

    PubMed Central

    Kostrzynska, M; O'Toole, P W; Taylor, D E; Trust, T J

    1994-01-01

    Antisera raised in rabbits to whole cells of Helicobacter pylori recognized as a major antigen a protein with an apparent molecular weight of 20,000. The antigen was purified by differential solubilization with N-octyl-beta-D-glucopyranoside, urea, and sodium dodecyl sulfate followed by molecular sieving. The mass of the protein, Lpp20, was 18,283 Da as determined by mass spectrometry. The lpp20 gene encoding this protein was cloned in Escherichia coli by using the vector lambda EMBL3, and plasmid subclones expressed the full-length protein from the native H. pylori promoter. lpp20 was mapped to the same 358-kb NruI fragment as flaB. DNA sequence analysis showed that the gene was 525 bp long and encoded a 175-amino-acid protein with a molecular weight of 19,094 containing a 21-residue typical lipoprotein signal peptide and consensus prolipoprotein processing site. The mass of the deduced 154-residue mature protein was 16,865 Da. Growth of E. coli cells expressing the cloned H. pylori lpp20 gene in the presence of [3H]palmitic acid resulted in radiolabelled Lpp20 while treatment of the E. coli cells with globomycin caused accumulation of unprocessed Lpp20, consistent with Lpp20 being a lipoprotein. Lpp20 cofractionated with the cytoplasmic membrane fraction, although a proportion of the protein was also found in the outer membrane. A mutant generated by mutant-allele exchange displayed normal viability, showing that Lpp20 belonged to the nonessential class of lipoproteins. Images PMID:7928954

  4. Characterization of Prostate-Specific Membrane Antigen (PSMA) for Use in Therapeutic and Diagnostic Strategies against Prostate Cancer

    DTIC Science & Technology

    2000-07-01

    polymerase chain reaction analyses for detection of micrometastatic epithelial cancer cells in bone marrow . J Clin...Edwards, G. J. Wise and et al. (1994). Sensitive nested reverse transcription polymerase chain reaction detection of circulating prostatic tumor cells ...transcription polymerase chain reaction assay based on prostate- specific membrane antigen . Clin Chem 41: 1698-704. 44.

  5. Enhanced expression and secretion of an epithelial membrane antigen (MA5) in a human mucinous breast tumor line (BT549).

    PubMed

    Williams, C J; Major, P P; Dion, A S

    1990-01-01

    The mouse monoclonal antibody MA5, generated versus a membrane-enriched extract of breast cancer metastatic to liver, detects one or two high molecular weight species (greater than 200 kD) in breast tumor membranes, human milk fat globule membranes, and various breast tumor cell lines. From comparative studies of five breast carcinoma lines (BT20, BT549, MCF-7, T47D, and ZR75-1), as well as an epithelial line established from milk (HBL-100), we report the stimulation of expression of MA5-reactive antigen in a mucinous breast tumor cell line (BT549) through the use of a culture medium supplemented with charcoal-absorbed fetal calf serum, insulin, and hydrocortisone. Large amounts of aggregated MA5-reactive antigen are secreted into the culture medium and can be recovered from the media for further purification by centrifugation. These findings suggest that BT549 cells, grown in the special nutritive medium, may be useful in providing an ample source of epithelial membrane antigen (also termed polymorphic epithelial mucin) for standardization of clinical assay protocols, as well as provide a model system for studies of the regulation of expression for this class of antigens in breast carcinoma.

  6. Discriminatory Role of Detergent-Resistant Membranes in the Dimerization and Endocytosis of Prostate-Specific Membrane Antigen.

    PubMed

    Schmidt, Sonja; Gericke, Birthe; Fracasso, Giulio; Ramarli, Dunia; Colombatti, Marco; Naim, Hassan Y

    2013-01-01

    Prostate-specific membrane antigen (PSMA) is a type-II membrane glycoprotein that was initially identified in LNCaP cells. It is expressed at elevated levels in prostate cancer. In view of the correlation between the expression levels of PSMA and disease grade and stage, PSMA is considered to be one of the most promising biomarkers in the diagnosis and treatment of prostate cancer. In LNCaP cells PSMA undergoes internalization via clathrin-coated pits followed by accumulation in the endosomes. PSMA associates with different types of detergent-resistant membranes (DRMs) along the secretory pathway. Its mature form is mainly insoluble in Lubrol WX, but does not associate with Triton X-100-DRMs. To understand the mechanism of PSMA internalization we investigated its association during internalization with DRMs. For this purpose, internalization was induced by antibody cross-linking. We demonstrate at the biochemical and cell biological levels that: [i] exclusively homodimers of PSMA are associated with Lubrol WX-DRMs, [ii] antibody-induced cross-linking of PSMA molecules results in a time-dependent partitioning into another DRMs type, namely Triton X-100-DRMs, and [iii] concomitant with its association with Triton-X-100-DRMs internalization of PSMA occurs along tubulin filaments. In a previous work (Colombatti et al. (2009) PLoS One 4: e4608) we demonstrated that the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 are activated during antibody cross-linking. As downstream effects of this activation we observed a strong induction of NF-kB associated with an increased expression of IL-6 and CCL5 genes and that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically. These observations together with findings reported here hypothesize a fundamental role of DRMs during activation of PSMA as platforms for trafficking, endocytosis and signalling. Understanding these mechanisms constitutes an essential prerequisite for utilization of PSMA as

  7. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism

    PubMed Central

    Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung

    2015-01-01

    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOTTM). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen. PMID:26563565

  8. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism.

    PubMed

    Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung

    2015-11-13

    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.

  9. Prostate-Specific Membrane Antigen PET/CT: False-Positive Results due to Sarcoidosis?

    PubMed Central

    Hermann, Robert M.; Djannatian, Manoutschehr; Czech, Norbert; Nitsche, Mirko

    2016-01-01

    We report on a 72-year-old male patient who developed sarcoidosis of the mediastinal lymph nodes, the liver, and the prostate 11 years ago. Seven years later, he underwent transurethral resection of the prostate by laser due to hematuria. Pathology of the resected chips showed a ‘granulomatous prostatitis with epitheloid cells’. Malignancy was histologically excluded at that time. Four years later, he was diagnosed with an undifferentiated prostate carcinoma, with a Gleason score of 5 + 4 = 9. After initiation of antihormonal therapy, he underwent radical prostatectomy and pelvic lymphadenectomy, which revealed a pT3b pN1 carcinoma with infiltrated resection margins. Three months later, the prostate-specific antigen level was 1.4 ng/ml, and a local recurrence was suspected by ultrasound; consequently, a 68Ga-prostate-specific membrane antigen (PSMA) PET/CT was performed. This examination seemed to confirm the local recurrence, a right pelvic lymph node metastasis, and a hepatic metastasis. However, ultrasound with contrast medium could not confirm the metastatic spread to the liver. In palliative intention, radiotherapy of the pelvis was done. After 50 Gy, the supposed recurrence had markedly shrunk, and an additional boost dose with 16.2 Gy was applied. Two years later, the patient is still free of disease. Due to this clinical development, we doubt the diagnosis of a fulminant progression of the prostate cancer as suspected by PSMA-PET/CT. Instead, we suspect a recurrence of the previously proven sarcoidosis leading to false-positive results. Our focus in this report is on the interaction between PSMA-PET/CT and sarcoidosis. Another report on a case of sarcoidosis of the spleen seems to confirm this possibility [Kobe et al: Clin Nucl Med 2015;40: 897–898]. PMID:27721768

  10. Prostate-Specific Membrane Antigen Retargeted Measles Virotherapy for the Treatment of Prostate Cancer

    PubMed Central

    Liu, Chunsheng; Hasegawa, Kosei; Russell, Stephen J.; Sadelain, Michel; Peng, Kah-Whye

    2009-01-01

    BACKGROUND Live attenuated vaccine strain of measles virus (MV) has promising antitumor activity and is undergoing clinical testing in three different phase I cancer trials. The virus uses one of two receptors, CD46 which is ubiquitously expressed on all nucleated cells or CD150 which is expressed on immune cells, to infect cells. To minimize potential toxicity due to indiscriminate infection of normal cells, we have generated a fully retargeted MV that infects cells exclusively through the prostate-specific membrane antigen (PSMA) receptor, which is overexpressed on prostate cancer cells and tumor neovasculature. METHODS A single-chain antibody (scFv) specific for the extracellular domain of PSMA (J591) was inserted as a C-terminal extension on the MV attachment protein. Specificity of infection by the PSMA targeted virus was evaluated in parallel with the parental MV and a control virus which binds to CD38, a myeloma antigen. Antitumor activity of the PSMA retargeted virus was tested in both LNCaP and PC3-PSMA tumor xenograft models, with and without low dose external beam radiation. RESULTS Replication of the PSMA targeted virus was comparable to the parental MV. The PSMA scFv efficiently redirected virus infection and cytopathic killing exclusively to PSMA positive prostate cancer cells and not PSMA negative cells. There was an additive effect on cell killing from radiation treatment and virotherapy. The PSMA virus induced tumor regression of LNCaP and PC3-PSMA tumor xenografts. Extensive areas of MV infection and apoptosis were seen in virus treated tumors. CONCLUSIONS The PSMA retargeted virus warrants further investigation as a virotherapy agent. PMID:19367568

  11. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization.

    PubMed

    Zou, Wei; Yadav, Smita; DeVault, Laura; Nung Jan, Yuh; Sherwood, David R

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth.

  12. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    PubMed Central

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  13. Bacterial histo-blood group antigens contributing to genotype-dependent removal of human noroviruses with a microfiltration membrane.

    PubMed

    Amarasiri, Mohan; Hashiba, Satoshi; Miura, Takayuki; Nakagomi, Toyoko; Nakagomi, Osamu; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-05-15

    We demonstrated the genotype-dependent removal of human norovirus particles with a microfiltration (MF) membrane in the presence of bacteria bearing histo-blood group antigens (HBGAs). Three genotypes (GII.3, GII.4, and GII.6) of norovirus-like particles (NoVLPs) were mixed with three bacterial strains (Enterobacter sp. SENG-6, Escherichia coli O86:K61:B7, and Staphylococcus epidermidis), respectively, and the mixture was filtered with an MF membrane having a nominal pore size of 0.45 μm. All NoVLP genotypes were rejected by the MF membrane in the presence of Enterobacter sp. SENG-6, which excreted HBGAs as extracellular polymeric substances (EPS). This MF membrane removal of NoVLPs was not significant when EPS was removed from cells of Enterobacter sp. SENG-6. GII.6 NoVLP was not rejected with the MF membrane in the presence of E. coli O86:K61:B7, but the removal of EPS of E. coli O86:K61:B7 increased the removal efficiency due to the interaction of NoVLPs with the exposed B-antigen in lipopolysaccharide (LPS) of E. coli O86:K61:B7. No MF membrane removal of all three genotypes was observed when S. epidermidis, an HBGA-negative strain, was mixed with NoVLPs. These results demonstrate that the location of HBGAs on bacterial cells is an important factor in determining the genotype-dependent removal efficiency of norovirus particles with the MF membrane. The presence of HBGAs in mixed liquor suspended solids from a membrane bioreactor (MBR) pilot plant was confirmed by immune-transmission electron microscopy, which implies that bacterial HBGAs can contribute to the genotype-dependent removal of human noroviruses with MBR using MF membrane.

  14. Characterization of a novel inhibitory human monoclonal antibody directed against Plasmodium falciparum Apical Membrane Antigen 1

    PubMed Central

    Maskus, Dominika J.; Królik, Michał; Bethke, Susanne; Spiegel, Holger; Kapelski, Stephanie; Seidel, Melanie; Addai-Mensah, Otchere; Reimann, Andreas; Klockenbring, Torsten; Barth, Stefan; Fischer, Rainer; Fendel, Rolf

    2016-01-01

    Malaria remains a major challenge to global health causing extensive morbidity and mortality. Yet, there is no efficient vaccine and the immune response remains incompletely understood. Apical Membrane Antigen 1 (AMA1), a leading vaccine candidate, plays a key role during merozoite invasion into erythrocytes by interacting with Rhoptry Neck Protein 2 (RON2). We generated a human anti-AMA1-antibody (humAbAMA1) by EBV-transformation of sorted B-lymphocytes from a Ghanaian donor and subsequent rescue of antibody variable regions. The antibody was expressed in Nicotiana benthamiana and in HEK239-6E, characterized for binding specificity and epitope, and analyzed for its inhibitory effect on Plasmodium falciparum. The generated humAbAMA1 shows an affinity of 106–135 pM. It inhibits the parasite strain 3D7A growth in vitro with an expression system-independent IC50-value of 35 μg/ml (95% confidence interval: 33 μg/ml–37 μg/ml), which is three to eight times lower than the IC50-values of inhibitory antibodies 4G2 and 1F9. The epitope was mapped to the close proximity of the RON2-peptide binding groove. Competition for binding between the RON2-peptide and humAbAMA1 was confirmed by surface plasmon resonance spectroscopy measurements. The particularly advantageous inhibitory activity of this fully human antibody might provide a basis for future therapeutic applications. PMID:28000709

  15. Synthetic peptides from Plasmodium falciparum apical membrane antigen 1 (AMA-1) specifically interacting with human hepatocytes.

    PubMed

    Valbuena, J; Rodríguez, L; Vera, R; Puentes, A; Curtidor, H; Cortés, J; Rosas, J; Patarroyo, M E

    2006-10-01

    Plasmodium falciparum apical membrane antigen 1 (AMA-1) is expressed during both the sporozoite and merozoite stage of the parasite's life cycle. The role placed by AMA-1 during sporozoite invasion of hepatocytes has not been made sufficiently clear to date. Identifying the sequences involved in binding to hepatocytes is an important step towards understanding the structural basis for sporozoite-hepatocyte interaction. Binding assays between P. falciparum AMA-1 peptides and HepG2 cell were performed in this study to identify possible AMA-1 functional regions. Four AMA-1 high activity binding peptides (HABPs) bound specifically to hepatocytes: 4310 ((74)QHAYPIDHEGAEPAPQEQNL(93)), 4316 ((194)TLDEMRHFYKDNKYVKNLDE(213)), 4321 ((294)VVDNWEKVCPRKNLQNAKFGY(313)) and 4332 ((514)AEVTSNNEVVVKEEYKDEYA(533)). Their binding to these cells became saturable and resistant to treatment with neuraminidase. Most of these peptides were located in AMA-1 domains I and III, these being target regions for protective antibody responses. These peptides interacted with 36 and 58 kDa proteins on the erythrocyte surface. Some of the peptides were found in exposed regions of the AMA-1 protein, thereby facilitating their interaction with host cells. It is thus probable that AMA-1 regions defined by the four peptides mentioned above are involved in sporozoite-hepatocyte interaction.

  16. PET Imaging in Prostate Cancer: Focus on Prostate-Specific Membrane Antigen

    PubMed Central

    Mease, Ronnie C.; Foss, Catherine A.; Pomper, Martin G.

    2014-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related death in American men. Positron emission tomography/computed tomography (PET/CT) with emerging radiopharmaceuticals promises accurate staging of primary disease, restaging of recurrent disease, detection of metastatic lesions and, ultimately, for predicting the aggressiveness of disease. Prostate-specific membrane antigen (PSMA) is a well-characterized imaging biomarker of PCa. Because PSMA levels are directly related to androgen independence, metastasis and progression, PSMA could prove an important target for the development of new radiopharmaceuticals for PET. Preclinical data for new PSMA-based radiotracers are discussed and include new 89Zr- and 64Cu-labeled anti-PSMA antibodies and antibody fragments, 64Cu-labeled aptamers, and 11C-, 18F-, 68Ga-, 64Cu-, and 86Y-labeled low molecular weight inhibitors of PSMA. Several of these agents, namely 68Ga-HBED-CC conjugate 15, 18F-DCFBC 8, and BAY1075553 are particularly promising, each having detected sites of PCa in initial clinical studies. These early clinical results suggest that PET/CT using PSMA-targeted agents, especially with compounds of low molecular weight, will make valuable contributions to the management of PCa. PMID:23590171

  17. Prostate-specific membrane antigen as a target for cancer imaging and therapy

    PubMed Central

    KIESS, A. P.; BANERJEE, S. R.; MEASE, R. C.; ROWE, S. P.; RAO, A.; FOSS, C. A.; CHEN, Y.; YANG, X.; CHO, S. Y.; NIMMAGADDA, S.; POMPER, M. G.

    2016-01-01

    The prostate-specific membrane antigen (PSMA) is a molecular target whose use has resulted in some of the most productive work toward imaging and treating prostate cancer over the past two decades. A wide variety of imaging agents extending from intact antibodies to low-molecular-weight compounds permeate the literature. In parallel there is a rapidly expanding pool of antibody-drug conjugates, radiopharmaceutical therapeutics, small-molecule drug conjugates, theranostics and nanomedicines targeting PSMA. Such productivity is motivated by the abundant expression of PSMA on the surface of prostate cancer cells and within the neovasculature of other solid tumors, with limited expression in most normal tissues. Animating the field is a variety of small-molecule scaffolds upon which the radionuclides, drugs, MR-detectable species and nanoparticles can be placed with relative ease. Among those, the urea-based agents have been most extensively leveraged, with expanding clinical use for detection and more recently for radiopharmaceutical therapy of prostate cancer, with surprisingly little toxicity. PSMA imaging of other cancers is also appearing in the clinical literature, and may overtake FDG for certain indications. Targeting PSMA may provide a viable alternative or first-line approach to managing prostate and other cancers. PMID:26213140

  18. Maturation of human B lymphocytes--studies with a panel of monoclonal antibodies against membrane antigens.

    PubMed Central

    Zola, H; McNamara, P J; Moore, H A; Smart, I J; Brooks, D A; Beckman, I G; Bradley, J

    1983-01-01

    The expression of six different membrane markers by cells of the human B lymphocyte lineage has been studied, using monoclonal antibodies. B cells representing various stages of differentiation/maturation have been examined, using normal cells, leukaemia cells, and continuous cell lines. The expression of the six markers has been compared with maturation stages defined by immunoglobulin expression. The HLA/beta 2-microglobulin complex is present throughout the B cell lineage, whilst the Ia (p28,33) marker is present from the earliest stage that can be attributed to the B lineage, but is lost during plasma cell differentiation. A marker detected by monoclonal antibody FMC 1 is present only on mature B lymphocytes, being absent from pre-B cells or plasma cells. FMC 7 detects an antigen found on a relatively mature subpopulation, whereas FMC 8 detects early as well as mature B cells. FMC 3 expression is found on a proportion of cells at any maturation stage, suggesting that expression of this marker is controlled by factors unrelated to maturation. Images Fig. 1 PMID:6191892

  19. Synthesis and evaluation of constrained phosphoramidate inhibitors of prostate-specific membrane antigen.

    PubMed

    Ley, Corinne R; Beattie, Nathan R; Dannoon, Shorouk; Regan, Melanie; VanBrocklin, Henry; Berkman, Clifford E

    2015-06-15

    Prostate-specific membrane antigen (PSMA) is a cell-surface enzyme-biomarker that is actively pursued for targeted delivery of imaging and therapeutic agents for prostate cancer. Our lab has developed PSMA inhibitors based on a phosphoramidate scaffold, which has shown both high selectivity for PSMA-positive tumors and rapid clearance in vivo when radiolabeled with (18)F. However, this scaffold exhibits hydrolytic instability under low pH and high temperature conditions, barring the use of other imaging or therapeutic radionuclides such as (68)Ga or (177)Lu. Previous studies in our lab have shown a trend in increasing acid stability as the distance between the phosphoramidate core and the α-carboxylate of the P1 residue is increased. Therefore, a new generation of phosphoramidate inhibitors was developed based on trans-4-hydroxyproline as the P1 residue to restrict the interaction of the α-carboxylate to the phosphoramidate core. These hydroxyproline inhibitors demonstrated comparable IC50 values to earlier generations as well as enhanced thermal and acid stability.

  20. Characterization of a novel inhibitory human monoclonal antibody directed against Plasmodium falciparum Apical Membrane Antigen 1.

    PubMed

    Maskus, Dominika J; Królik, Michał; Bethke, Susanne; Spiegel, Holger; Kapelski, Stephanie; Seidel, Melanie; Addai-Mensah, Otchere; Reimann, Andreas; Klockenbring, Torsten; Barth, Stefan; Fischer, Rainer; Fendel, Rolf

    2016-12-21

    Malaria remains a major challenge to global health causing extensive morbidity and mortality. Yet, there is no efficient vaccine and the immune response remains incompletely understood. Apical Membrane Antigen 1 (AMA1), a leading vaccine candidate, plays a key role during merozoite invasion into erythrocytes by interacting with Rhoptry Neck Protein 2 (RON2). We generated a human anti-AMA1-antibody (humAbAMA1) by EBV-transformation of sorted B-lymphocytes from a Ghanaian donor and subsequent rescue of antibody variable regions. The antibody was expressed in Nicotiana benthamiana and in HEK239-6E, characterized for binding specificity and epitope, and analyzed for its inhibitory effect on Plasmodium falciparum. The generated humAbAMA1 shows an affinity of 106-135 pM. It inhibits the parasite strain 3D7A growth in vitro with an expression system-independent IC50-value of 35 μg/ml (95% confidence interval: 33 μg/ml-37 μg/ml), which is three to eight times lower than the IC50-values of inhibitory antibodies 4G2 and 1F9. The epitope was mapped to the close proximity of the RON2-peptide binding groove. Competition for binding between the RON2-peptide and humAbAMA1 was confirmed by surface plasmon resonance spectroscopy measurements. The particularly advantageous inhibitory activity of this fully human antibody might provide a basis for future therapeutic applications.

  1. Requirement for Coenzyme Q in Plasma Membrane Electron Transport

    NASA Astrophysics Data System (ADS)

    Sun, I. L.; Sun, E. E.; Crane, F. L.; Morre, D. J.; Lindgren, A.; Low, H.

    1992-12-01

    Coenzyme Q is required in the electron transport system of rat hepatocyte and human erythrocyte plasma membranes. Extraction of coenzyme Q from the membrane decreases NADH dehydrogenase and NADH:oxygen oxidoreductase activity. Addition of coenzyme Q to the extracted membrane restores the activity. Partial restoration of activity is also found with α-tocopherylquinone, but not with vitamin K_1. Analogs of coenzyme Q inhibit NADH dehydrogenase and oxidase activity and the inhibition is reversed by added coenzyme Q. Ferricyanide reduction by transmembrane electron transport from HeLa cells is inhibited by coenzyme Q analogs and restored with added coenzyme Q10. Reduction of external ferricyanide and diferric transferrin by HeLa cells is accompanied by proton release from the cells. Inhibition of the reduction by coenzyme Q analogs also inhibits the proton release, and coenzyme Q10 restores the proton release activity. Trans-plasma membrane electron transport stimulates growth of serum-deficient cells, and added coenzyme Q10 increases growth of HeLa (human adenocarcinoma) and BALB/3T3 (mouse fibroblast) cells. The evidence is consistent with a function for coenzyme Q in a trans-plasma membrane electron transport system which influences cell growth.

  2. Inhibitory monoclonal antibody against a (myristylated) small-molecular-weight antigen from Plasmodium falciparum associated with the parasitophorous vacuole membrane.

    PubMed

    Kara, U A; Stenzel, D J; Ingram, L T; Bushell, G R; Lopez, J A; Kidson, C

    1988-04-01

    A small-molecular-weight antigen that occurs in asexual blood stages in synchronized cultures of Plasmodium falciparum was detected by a monoclonal antibody which inhibits parasite growth in vitro. This antigen, QF116, showed a molecular weight of 15,000 in parasite strain FCR-3K+ from The Gambia and 19,000 in strain FCQ-27 from Papua New Guinea. The protein did not show significant glycosylation by galactose or glucosamine labeling but was found to be acylated by myristic acid. By using immunogold labeling and electron microscopy, the location of the antigen could be attributed to the parasitophorous vacuole membrane and to inclusions and vesicles residing within the cytoplasm of the erythrocyte host cell.

  3. Investigating the Functional Role of Prostate-Specific Membrane Antigen and its Enzymatic Activity in Prostate Cancer Metastasis

    DTIC Science & Technology

    2008-02-01

    2007 – 28 Jan 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Investigating the Functional Role of Prostate-Specific Membrane Antigen and its...Activity in Prostate Cancer Metastasis. IMPACT meeting, Atlanta GA, 2007 . Page 9 CONCLUSION The goal of the proposal is to investigate the function of...distribution of secondary growths in cancer of the breast. Lancet 1:571-573, 1889. 3. Fornaro M, Manes T and Languino LR: Integrins and prostate cancer

  4. In vitro antigen-induced antibody responses to hepatitis B surface antigen in man. Kinetic and cellular requirements.

    PubMed Central

    Cupps, T R; Gerin, J L; Purcell, R H; Goldsmith, P K; Fauci, A S

    1984-01-01

    In this report we define the parameters of the human immune response after immunization with hepatitis B vaccine. 2 wk after booster immunization, there is significant spontaneous secretion of antibody to hepatitis B surface antigen (anti-HBs IgG), which is not further augmented by stimulation with antigen or pokeweed mitogen (PWM). By 4 wk there is little spontaneous secretion of specific antibody, and low doses of antigen or PWM produce significant increases in the amount of anti-HBs IgG produced. By 8 wk the peripheral blood mononuclear cells are refractory to stimulation by antigen, but anti-HBs IgG is produced in response to PWM. 0.5 yr or more after the last immunization, some individuals will manifest an antigen-induced specific antibody response. This induction of anti-HBs IgG by hepatitis B surface antigen (HBsAg) is monocyte- and T cell-dependent. Note that there is a dichotomy in the T cell response to HBsAg. The specific antibody response is clearly T cell dependent, but no in vitro T cell proliferative response to HBsAG could be demonstrated in the immunized individuals. Although the precise reason for the absent proliferative response to HBsAg despite well-established humoral immunity has not been determined, there was no evidence to suggest nonspecific suppression by HBsAg or the presence of an adherent suppressor cell population. The ability to evaluate antigen-induced, antigen-specific responses to HBsAg will be useful in defining the unique interaction between the human immune response and this clinically important viral agent. PMID:6332826

  5. Characterization of antigens from nontypable Haemophilus influenzae recognized by human bactericidal antibodies. Role of Haemophilus outer membrane proteins.

    PubMed Central

    Gnehm, H E; Pelton, S I; Gulati, S; Rice, P A

    1985-01-01

    Major outer membrane antigens, proteins, and lipopolysaccharides (LPSs), from nontypable Haemophilus influenzae were characterized and examined as targets for complement-dependent human bactericidal antibodies. Outer membranes from two nontypable H. influenzae isolates that caused otitis media and pneumonia (middle ear and transtracheal aspirates) were prepared by shearing organisms in EDTA. These membranes were compared with membranes prepared independently by spheroplasting and lysozyme treatment of whole cells and found to have: similar sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of the proteins; identical densities (rho = 1.22 g/cm3); and minimal d-lactose dehydrogenase activity indicating purity from cytoplasmic membranes. Outer membranes were solubilized in an LPS-disaggregating buffer and proteins were separated from LPS by molecular sieve chromatography. The SDS-PAGE patterns of outer membrane proteins (OMPs) from the two strains differed in the major band although other prominent bands appeared similar in molecular weight. LPS prepared by hot phenol water extraction of each of the strains contained 45% (pneumonia isolate) and 60% (otitis isolate) lipid (wt/wt), 49% and 50% carbohydrate (wt/wt), respectively, and less than 1%, 3-deoxy-manno octulosonic acid. Immunoglobulin M (IgM) purified from normal human serum (NHS) plus complement was bactericidal for both strains. Purified immunoglobulin G (IgG) from NHS killed the middle ear isolate and immune convalescent IgM from the serum of the patient with pneumonia killed his isolate. NHS or convalescent serum were absorbed with OMPs and LPS (0.6-110 micrograms) from each of the strains and immune specific inhibition of bactericidal antibody activity by each antigen was determined. OMPs from the pulmonary isolate inhibited bactericidal antibody activity directed against the isolate in both NHS (1.5 microgram of antigen) and immune serum (0.75 microgram of antigen). OMPs (60

  6. Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer.

    PubMed

    Maurer, Tobias; Weirich, Gregor; Schottelius, Margret; Weineisen, Martina; Frisch, Benjamin; Okur, Asli; Kübler, Hubert; Thalgott, Mark; Navab, Nassir; Schwaiger, Markus; Wester, Hans-Jürgen; Gschwend, Jürgen E; Eiber, Matthias

    2015-09-01

    With the advent of (68)Ga-labeled prostate-specific membrane antigen-N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid ((68)Ga-PSMA-HBED-CC) positron emission tomography (PET) hybrid imaging in prostate cancer (PCa), even small metastatic lymph nodes (LNs) can be visualized. However, intraoperative detection of such LNs may not be easy owing to their inconspicuous morphology and/or atypical localization. The aim of our feasibility study was to evaluate PSMA-radioguided surgery for detection of metastatic LNs. One patient with primary PCa and evidence of LN metastases and four PCa patients with evidence of recurrent disease to regional LNs on (68)Ga-PSMA-HBED-CC PET hybrid imaging received an intravenous injection of an (111)In-PSMA investigation and therapy agent 24h before surgery. Metastatic LNs were tracked intraoperatively using a gamma probe with acoustic and visual feedback. All radioactive-positive LN specimens detected in vivo were confirmed by ex vivo measurements and corresponded to PSMA-avid metastatic disease according to histopathology analysis. Intraoperative use of the gamma probe detected all PSMA-positive lesions identified on preoperative (68)Ga-PSMA-HBED-CC PET. Detection of small subcentimeter metastatic LNs was facilitated, and PSMA-radioguided surgery in two patients revealed additional lesions close to known tumor deposits that were not detected by preoperative (68)Ga-PSMA-HBED-CC PET. However, greater patient numbers and long-term follow-up data are needed to determine the future role of PSMA-radioguided surgery.

  7. Micromanipulation of adhesion of a Jurkat cell to a planar bilayer membrane containing lymphocyte function-associated antigen 3 molecules

    PubMed Central

    1992-01-01

    Cell adhesion plays a fundamental role in the organization of cells in differentiated organs, cell motility, and immune response. A novel micromanipulation method is employed to quantify the direct contribution of surface adhesion receptors to the physical strength of cell adhesion. In this technique, a cell is brought into contact with a glass-supported planar membrane reconstituted with a known concentration of a given type of adhesion molecules. After a period of incubation (5-10 min), the cell is detached from the planar bilayer by pulling away the pipette holding the cell in the direction perpendicular to the glass-supported planar bilayer. In particular, we investigated the adhesion between a Jurkat cell expressing CD2 and a glass-supported planar bilayer containing either the glycosyl- phosphatidylinositol (GPI) or the transmembrane (TM) isoform of the counter-receptor lymphocyte function-associated antigen 3 (LFA-3) at a concentration of 1,000 molecules/microns 2. In response to the pipette force the Jurkat cells that adhered to the planar bilayer containing the GPI isoform of LFA-3 underwent extensive elongation. When the contact radius was reduced by approximately 50%, the cell then detached quickly from its substrate. The aspiration pressure required to detach a Jurkat cell from its substrate was comparable to that required to detach a cytotoxic T cell from its target cell. Jurkat cells that had been separated from the substrate again adhered strongly to the planar bilayer when brought to proximity by micromanipulation. In experiments using the planar bilayer containing the TM isoform of LFA-3, Jurkat cells detached with little resistance to micromanipulation and without changing their round shape. PMID:1370839

  8. Efficient thrombin generation requires molecular phosphatidylserine, not a membrane surface.

    PubMed

    Majumder, Rinku; Weinreb, Gabriel; Lentz, Barry R

    2005-12-27

    Activation of prothrombin to thrombin is catalyzed by a "prothrombinase" complex, traditionally viewed as factor X(a) (FX(a)) in complex with factor V(a) (FV(a)) on a phosphatidylserine (PS)-containing membrane surface, which is widely regarded as required for efficient activation. Activation involves cleavage of two peptide bonds and proceeds via one of two released intermediates or through "channeling" (activation without the release of an intermediate). We ask here whether the PS molecule itself and not the membrane surface is sufficient to produce the fully active human "prothrombinase" complex in solution. Both FX(a) and FV(a) bind soluble dicaproyl-phosphatidylserine (C6PS). In the presence of sufficient C6PS to saturate both FX(a) and FV(a2) (light isoform of FV(a)), these proteins form a tight (Kd = 0.6 +/- 0.09 nM at 37 degrees C) soluble complex. Complex assembly occurs well below the critical micelle concentration of C6PS, as established in the presence of the proteins by quasi-elastic light scattering and pyrene fluorescence. Ferguson analysis of native gels shows that the complex migrates with an apparent molecular mass only slightly larger than that expected for one FX(a) and one FV(a2), further ruling out complex assembly on C6PS micelles. Human prothrombin activation by this complex occurs at nearly the same overall rate (2.2 x 10(8) M(-1) s(-1)) and via the same reaction pathway (50-60% channeling, with the rest via the meizothrombin intermediate) as the activation catalyzed by a complex assembled on PS-containing membranes (4.4 x 10(8) M(-1) s(-1)). These results question the accepted role of PS membranes as providing "dimensionality reduction" and favor a regulatory role for platelet-membrane-exposed PS.

  9. Requirement for capsular antigen KX105 and fimbrial antigen CS1541 in the pathogenicity of porcine enterotoxigenic Escherichia coli O8:KX105 strains.

    PubMed Central

    Broes, A; Fairbrother, J M; Jacques, M; Larivière, S

    1989-01-01

    The requirement for capsular antigen KX105 and fimbrial antigen CS1541 in the pathogenicity of porcine enterotoxigenic Escherichia coli O8:KX105 strains lacking the colonization factor antigens K88, K99, 987P and F41 was investigated using two encapsulated strains and their acapsular variants, one of which produced the fimbrial antigen CS1541 in vitro. None of the strains adhered in vitro to enterocytes isolated from newborn colostrum-deprived piglets. All of the strains caused diarrhea in orally infected, hysterotomy-derived, colostrum-deprived piglets although a great variability in the clinical response of the piglets was observed. Colonization of the small intestine of infected piglets by these strains was only moderate and no differences in the ability to colonize the small intestine was noted between the strains. All of the strains reacted in the indirect fluorescent antibody test with both CS1541 and 987P antisera when applied to organisms in the intestines of infected piglets. A control strain expressing the 987P fimbrial adhesin also reacted with the CS1541 antiserum applied to organisms in the intestines of an infected piglet. It was concluded that capsular antigen KX105 was not essential for intestinal colonization and production of diarrhea in hysterotomy-derived colostrum-deprived pigs, and that fimbrial antigen CS1541 does not promote in vitro adherence to enterocyte brush borders but could be important in bacterial colonization in vivo. Images Fig. 1. Fig. 2. Fig. 3. PMID:2563336

  10. Co-expression and impact of prostate specific membrane antigen and prostate specific antigen in prostatic pathologies

    PubMed Central

    2010-01-01

    Background The present study was undertaken to relate the co-expression of prostate-associated antigens, PSMA and PSA, with the degree of vascularization in normal and pathologic (hyperplasia and cancer) prostate tissues to elucidate their possible role in tumor progression. Methods The study was carried out in 6 normal, 44 benign prostatic hyperplastic and 39 cancerous human prostates. Immunohistochemical analysis were performed using the monoclonal antibody CD34 to determine the angiogenic activity, and the monoclonal antibodies 3E6 and ER-PR8 to assess PSMA and PSA expression, respectively. Results In our study we found that in normal prostate tissue, PSMA and PSA were equally expressed (3.7 ± 0.18 and 3.07 ± 0.11). A significant difference in their expression was see in hyperplastic and neoplastic prostates tissues (16.14 ± 0.17 and 30.72 ± 0.85, respectively) for PSMA and (34.39 ± 0.53 and 17.85 ± 1.21, respectively) for PSA. Study of prostate tumor profiles showed that the profile (PSA+, PSMA-) expression levels decreased between normal prostate, benign prostatic tissue and primary prostate cancer. In the other hand, the profile (PSA-, PSMA+) expression levels increased from normal to prostate tumor tissues. PSMA overexpression was associated with high intratumoral angiogenesis activity. By contrast, high PSA expression was associated with low angiogenesis activity. Conclusion These data suggest that these markers are regulated differentially and the difference in their expression showed a correlation with malignant transformation. With regard to the duality PSMA-PSA, this implies the significance of their investigation together in normal and pathologic prostate tissues. PMID:21189143

  11. Functional Recombinant Extra Membrane Loop of Human CD20, an Alternative of the Full Length CD20 Antigen

    PubMed Central

    Anbouhi, Mahdi Habibi; Baraz, Aida Feiz; Bouzari, Saeid; Abolhassani, Mohsen; Khanahmad, Hossein; Golkar, Majid; Aghasadeghi, Mohammad Reza; Behdani, Mahdi; Najafabadi, Ali Jahanian; Shokrgozar, Mohammad Ali

    2012-01-01

    Background: Targeting of CD20 antigen with monoclonal antibodies has become the mainstay in the treatment of non-Hodgkin's lymphomas and immunotherapeutic depletion of malignant B cells. Accessibility of antigen is one of the crucial factors in development of monoclonal antibodies against this antigen. One major problem in expression of full length CD20 is aggregation and misfolding. Therefore, production of an alternative polypeptide is easer and favorable comparing to that of a full length transmembrane protein CD20. Methods: In this study, we expressed the extra membrane loop of hCD20 (exCD20) consisting of a non-glycosylated 47-amino acids region. The exCD20 coding sequence was amplified by PCR and cloned in pET32a(+) expression vector. The desired protein was expressed in fusion with thioredoxin and 6× His tag in E. coli Origami strain. ELISA and Western-blotting data were performed to indicate the functionality of this protein. Results: We have obtained the exCD20 recombinant protein which can be detected in ELISA and Western-blot experiments. This recombinant fusion protein was soluble and stable without aggregation and misfolding problems. Conclusion: The recombinant extra membrane loop of human CD20 protein in fusion with thioredoxin (exCD20) can be used in function assays and some applications such as ELISA, immuneblotting, affinity purification, immunization, screening, and development of anti-CD20 antibodies. PMID:23023212

  12. Cellular distribution and molecular heterogeneity of MAC393 antigen (clusterin, beta-chain) on the surface membrane of bull spermatozoa.

    PubMed

    Howes, E A; Hurst, S; Laslop, A; Jones, R

    1998-07-01

    The distribution and size of a surface membrane antigen identified by a monoclonal antibody (MAC9393) have been examined in testicular and epididymal bovine sperm preparations. Western blots indicated a substantial decrease in molecular mass of the antigen during epididymal maturation from approximately 87 kDa in the testis to approximately 35 kDa in the cauda epididymidis. This was accompanied by a change in its cellular localization from the neck and whole head to the acrosomal region. N-terminal microsequencing identified MAC393 antigen as the beta-chain of clusterin. A polyclonal antiserum to the alpha-chain of clusterin recognized both testicular and epididymal forms and revealed that the heterodimer was present on the sperm tail as well as the acrosome. These findings are explained by the co-existence of dimeric and monomeric pools of clusterin on spermatozoa. The polyclonal antiserum recognizes both testicular and epididymal forms of the heterodimer and although the monoclonal antibody binds to the testicular heterodimer, it only recognizes the beta-chain monomer of epididymal clusterin. These findings support previous observations made on human spermatozoa that two forms of clusterin, the beta-chain monomer and the heterodimer, are present on the surface membrane and in seminal plasma.

  13. MS-H: A Novel Proteomic Approach to Isolate and Type the E. coli H Antigen Using Membrane Filtration and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

    PubMed Central

    Cheng, Keding; Drebot, Mike; McCrea, Joanne; Peterson, Lorea; Lee, David; McCorrister, Stuart; Nickel, Richard; Gerbasi, Alyssia; Sloan, Angela; Janella, Debra; Van Domselaar, Gary; Beniac, Daniel; Booth, Tim; Chui, Linda; Tabor, Helen; Westmacott, Garrett; Gilmour, Matthew; Wang, Gehua

    2013-01-01

    Serotyping is the long-standing gold standard method to determine E. coli H antigens; however, this method requires a panel of H-antigen specific antibodies and often culture-based induction of the H-antigen flagellar motility. In this study, a rapid and accurate method to isolate and identify the Escherichia coli (E. coli) H flagellar antigen was developed using membrane filtration and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Flagella were isolated from pure culture, digested with trypsin, and then subjected to LC-MS/MS using one of two systems (Agilent-nano-LC-QSTAR XL or Proxeon-nano-LC-LTQ-Orbitrap XL). The resulting peptide sequence data were searched against a custom E. coli flagella/H antigen database. This approach was evaluated using flagella isolated from reference E. coli strains representing all 53 known H antigen types and 41 clinical E. coli strains. The resulting LC-MS/MS classifications of H antigen types (MS-H) were concordant with the known H serogroup for all 53 reference types, and of 41 clinical isolates tested, 38 (92.7%) were concordant with the known H serogroup. MS-H clearly also identified two clinical isolates (4.9%) that were untypeable by serotyping. Notably, successful detection and classification of flagellar antigens with MS-H did not generally require induction of motility, establishing this proteomic approach as more rapid and cost-effective than traditional methods, while providing equitable specificity for typing E. coli H antigens. PMID:23437374

  14. MS-H: a novel proteomic approach to isolate and type the E. coli H antigen using membrane filtration and liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    PubMed

    Cheng, Keding; Drebot, Mike; McCrea, Joanne; Peterson, Lorea; Lee, David; McCorrister, Stuart; Nickel, Richard; Gerbasi, Alyssia; Sloan, Angela; Janella, Debra; Van Domselaar, Gary; Beniac, Daniel; Booth, Tim; Chui, Linda; Tabor, Helen; Westmacott, Garrett; Gilmour, Matthew; Wang, Gehua

    2013-01-01

    Serotyping is the long-standing gold standard method to determine E. coli H antigens; however, this method requires a panel of H-antigen specific antibodies and often culture-based induction of the H-antigen flagellar motility. In this study, a rapid and accurate method to isolate and identify the Escherichia coli (E. coli) H flagellar antigen was developed using membrane filtration and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Flagella were isolated from pure culture, digested with trypsin, and then subjected to LC-MS/MS using one of two systems (Agilent-nano-LC-QSTAR XL or Proxeon-nano-LC-LTQ-Orbitrap XL). The resulting peptide sequence data were searched against a custom E. coli flagella/H antigen database. This approach was evaluated using flagella isolated from reference E. coli strains representing all 53 known H antigen types and 41 clinical E. coli strains. The resulting LC-MS/MS classifications of H antigen types (MS-H) were concordant with the known H serogroup for all 53 reference types, and of 41 clinical isolates tested, 38 (92.7%) were concordant with the known H serogroup. MS-H clearly also identified two clinical isolates (4.9%) that were untypeable by serotyping. Notably, successful detection and classification of flagellar antigens with MS-H did not generally require induction of motility, establishing this proteomic approach as more rapid and cost-effective than traditional methods, while providing equitable specificity for typing E. coli H antigens.

  15. Screening and characterization of apical membrane antigen 1 interacting proteins in Eimeria tenella.

    PubMed

    Han, Hongyu; Xue, Pu; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Huang, Bing

    2016-11-01

    Avian coccidiosis is a widespread and economically significant disease of poultry. It is an enteric disease caused by several protozoan Eimeria species. Eimeria belongs to the phylum Apicomplexa, which exhibits an unusual mechanism of host cell invasion. During invasion of host cells, the protein apical membrane antigen 1 (AMA1) is essential for invasion of Toxoplasma gondii and Plasmodium. Contrary to the roles of AMA1 during host cell invasion in T. gondii and Plasmodium, the precise functions of Eimeria AMA1 (EtAMA1) are unclear. In order to study the functions of EtAMA1, a yeast two-hybrid cDNA library was constructed from E. tenella sporozoites. The EtAMA1 ectodomain was cloned into the pGBKT7 vector to construct the bait plasmid pGBKT7- EtAMA1. Autoactivation and toxicity of the bait protein in yeast cells were tested by comparison with the pGBKT7 empty vector. Expression of the bait protein was detected by western blots. The bait plasmid pGBKT7-EtAMA1 was used to screen yeast two-hybrid cDNA library from E. tenella sporozoites. After multiple screenings with high-screening-rate medium and exclusion of false-positive plasmids, positive preys were sequenced and analyzed using BLAST. We obtained 14 putative EtAMA1-interacting proteins including E. tenella acidic microneme protein2 (EtMIC2), E. tenella putative cystathionine beta-synthase, E. tenella Eimeria-specific protein, four E. tenella conserved hypothetical proteins (one in the serine/threonine protein kinase family) and seven unknown proteins. Gene Ontology analysis indicated that two known proteins were associated with metabolic process, pyridoxal phosphate binding and protein phosphorylation. Functional analysis indicated EtMIC2 was implicated in parasite motility, migration, recognition and invasion of host cells. The data suggested that EtAMA1 may be important during host cell invasion, but also involved in other biological processes.

  16. A bicistronic DNA vaccine containing apical membrane antigen 1 and merozoite surface protein 4/5 can prime humoral and cellular immune responses and partially protect mice against virulent Plasmodium chabaudi adami DS malaria.

    PubMed

    Rainczuk, A; Scorza, T; Spithill, T W; Smooker, P M

    2004-10-01

    The ultimate malaria vaccine will require the delivery of multiple antigens from different stages of the complex malaria life cycle. In order to efficiently deliver multiple antigens with use of DNA vaccine technology, new antigen delivery systems must be assessed. This study utilized a bicistronic vector construct, containing an internal ribosome entry site, expressing a combination of malarial candidate antigens: merozoite surface protein 4/5 (MSP4/5) (fused to a monocyte chemotactic protein 3 chemoattractant sequence) and apical membrane antigen 1 (AMA-1) (fused to a tissue plasminogen activator secretion signal). Transfection of COS 7 cells with bicistronic plasmids resulted in production and secretion of both AMA-1 and MSP4/5 in vitro. Vaccination of BALB/c mice via intraepidermal gene gun and intramuscular routes against AMA-1 and MSP4/5 resulted in antibody production and significant in vitro proliferation of splenocytes stimulated by both AMA-1 and MSP4/5. Survival of BALB/c mice vaccinated with bicistronic constructs after lethal Plasmodium chabaudi adami DS erythrocytic-stage challenge was variable, although significant increases in survival and reductions in peak parasitemia were observed in several challenge trials when the vaccine was delivered by the intramuscular route. This study using a murine model demonstrates that the delivery of malarial antigens via bicistronic vectors is feasible. Further experimentation with bicistronic delivery systems is required for the optimization and refinement of DNA vaccines to effectively prime protective immune responses against malaria.

  17. Epstein-Barr virus latent membrane protein 2A exacerbates experimental autoimmune encephalomyelitis and enhances antigen presentation function

    PubMed Central

    Chang, Rhoda A.; Miller, Stephen D.; Longnecker, Richard

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory, autoimmune disease of the central nervous system. The cause of MS is still unknown but epidemiological and immunological studies have implicated Epstein-Barr virus (EBV), which infects B cells, as a possible etiological agent involved in disease. Of particular interest is EBV latent membrane protein 2A (LMP2A) because previous studies have demonstrated that LMP2A enhances the expansion and differentiation of B cells upon antigen stimulation, revealing a potential contribution of this protein in autoimmunity. Since B cells are thought to contribute to MS, we examined the role of LMP2A in the animal model experimental autoimmune encephalomyelitis (EAE). In this model, transgenic mice in which B cells express LMP2A show increased severity and incidence of disease. This difference was not due to lymphocyte recruitment into the CNS or differences in T cell activation, rather, we show that LMP2A enhances antigen presentation function. PMID:22616025

  18. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen.

    PubMed

    Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin

    2016-01-01

    Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.

  19. Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes.

    PubMed

    Nasir, Waqas; Frank, Martin; Kunze, Angelika; Bally, Marta; Parra, Francisco; Nyholm, Per-Georg; Höök, Fredrik; Larson, Göran

    2017-03-27

    Virus entry depends on biomolecular recognition at the surface of cell membranes. In the case of glycolipid receptors, these events are expected to be influenced by how the glycan epitope close to the membrane is presented to the virus. This presentation of membrane-associated glycans is more restricted than that of glycans in solution, particularly because of orientational constraints imposed on the glycolipid through its lateral interactions with other membrane lipids and proteins. We have developed and employed a total internal reflection fluorescence microscopy-based binding assay and a scheme for molecular dynamics (MD) membrane simulations to investigate the consequences of various glycan presentation effects. The system studied was histo-blood group antigen (HBGA) epitopes of membrane-bound glycosphingolipids (GSLs) derived from small intestinal epithelium of humans (type 1 chain) and dogs (type 2 chain) interacting with GII.4 norovirus-like particles. Our experimental results showed strong binding to all lipid-linked type 1 chain HBGAs but no or only weak binding to the corresponding type 2 chain HBGAs. This is in contrast to results derived from STD experiments with free HBGAs in solution where binding was observed for Lewis x. The MD data suggest that the strong binding to type 1 chain glycolipids was due to the well-exposed (1,2)-linked α-l-Fucp and (1,4)-linked α-l-Fucp residues, while the weaker binding or lack of binding to type 2 chain HBGAs was due to the very restricted accessibility of the (1,3)-linked α-l-Fucp residue when the glycolipid is embedded in a phospholipid membrane. Our results not only contribute to a general understanding of protein-carbohydrate interactions on model membrane surfaces, particularly in the context of virus binding, but also suggest a possible role of human intestinal GSLs as potential receptors for norovirus uptake.

  20. Erythrocyte Membrane Antigen Frequencies in Patients with Type II Congenital Smell Loss

    PubMed Central

    Stateman, William A.; Henkin, Robert I.; Knöppel, Alexandra; Flegel, Willy A.

    2014-01-01

    OBJECTIVE The objective of this study was to determine whether there are genetic factors associated with Type II congenital smell loss. STUDY DESIGN The expression frequencies of 16 erythrocyte antigens among patients with Type II congenital smell loss were determined and compared to those of a large control group. METHODS Blood samples were obtained from 99 patients with Type II congenital smell loss. Presence of the erythrocyte surface antigens A, B, M, N, S, s, Fya, Fyb, D, C, c, E, e, K, Jka, and Jkb was analyzed by blood group serology. Comparisons of expression frequencies of these antigens were made between the patients and a large control group. RESULTS Patients tested for the Duffy b antigen (Fyb haplotype) exhibited a statistically significant 11% decrease in expression frequency compared to the controls. There were no significant differences between patients and controls in the expression frequencies for all other erythrocyte antigens (A, B, M, N, S, s, Fya, D, C, c, E, e, K, Jka, or Jkb). CONCLUSIONS These findings describe the presence of a previously unrevealed genetic tendency among patients with Type II congenital smell loss related to erythrocyte surface antigen expression. The deviation in expression rate of Duffy b suggests a target gene and chromosome region in which future research into this form of congenital smell loss may reveal a more specific genetic basis for Type II congenital smell loss. PMID:25456515

  1. Identification of the cutaneous basement membrane zone antigen and isolation of antibody in linear immunoglobulin A bullous dermatosis.

    PubMed Central

    Zone, J J; Taylor, T B; Kadunce, D P; Meyer, L J

    1990-01-01

    Linear IgA bullous dermatosis (LABD) is a rare blistering skin disease characterized by basement membrane zone deposition of IgA. This study identifies a tissue antigen detected by patient serum and then isolates the autoantibody using epidermis and protein bands blotted on nitrocellulose as immunoabsorbents. Sera from 10 patients (9 with cutaneous disease and 1 with cicatrizing conjunctivitis) were evaluated. Indirect immunofluorescence revealed an IgA anti-basement membrane antibody in 6 of 10 sera with monkey esophagus substrate and 9 of 10 sera with human epidermal substrate. Immunoblotting was performed on epidermal and dermal extracts prepared from skin separated at the basement membrane zone with either sodium chloride or EDTA. Saline-separated skin expressed a 97-kD band in dermal extract alone that was recognized by 4 of 10 sera. EDTA-separated skin expressed the 97-kD band in both epidermal (4 of 10 sera) and dermal (6 of 10 sera) extract. Immunoabsorption of positive sera with epidermis purified an IgA antibody that reacted uniquely with the 97-kD band. In addition, IgA antibody bound to nitrocellulose was eluted from the 97-kD band and found to uniquely bind basement membrane zone. It is likely that the 97-kD protein identified by these techniques is responsible for basement membrane binding of IgA in LABD. Images PMID:2107211

  2. Eimeria bovis meront I-carrying host cells express parasite-specific antigens on their surface membrane.

    PubMed

    Badawy, Ahmed Ibrahem I; Lutz, Kathleen; Taubert, Anja; Zahner, Horst; Hermosilla, Carlos

    2010-02-01

    Host immune responses conducted against antigens of Eimeria bovis are key factors for the development of protective immunity against this protozoan disease. In this study we investigated the expression of E. bovis-derived antigens on the host cell surface membrane during E. bovis first merogony in vitro. Host cells carrying E. bovis-meront I stages expressed E. bovis host cell surface antigens (EbHCSAg) on their surface membrane which were recognised by hyperimmune sera of calves and by sera from rats immunized with E. bovis merozoites I, when tested by indirect immune fluorescent antibody test (IIFAT), laser scanning confocal microscopy (LSCM) and immune electron microscopy. Expression of EbHCSAg on permissive host cells was earliest detected 7 days p. i., thus coinciding with the onset of the parasite replication. Membrane-associated EbHCSAg were removed from infected host cells by proteinase K, partially by Triton X-100, Triton X-114 and Triton X-405, but not by 1 M NaCl, CHAPS or phospholipase C treatment. Antibodies, affinity-purified on paraformaldehyde/glutardialdehyde (PAGA)-fixed E. bovis meront I-infected bovine host cells bound to the surface meront I-carrying cells and to merozoites I (IIFAT, LSCM) but, in contrast to untreated sera, not to sporozoites. When tested on methanol-fixed merozoites I and sporozoites by IIFAT, affinity-purified antibodies bound to structures in the apical complex area of merozoites I, but not to sporozoites, whilst untreated sera caused diffuse labelling of internal structures of both parasite stages. Immune electron microscopy demonstrated binding of affinity-purified antibodies to micronemes and dense granules of merozoites I. Although the function of EbHCSAg is still unknown, results of this study might suggest an involvement in the development of protective immunity against E. bovis infections.

  3. Localization of Rh1(D), 2(C), 3(E), 4(c), 5(e) and 25(LW) antigens of human Rh blood groups in fetal erythrocyte membranes.

    PubMed

    Fukushima, H; Segawa, M; Ota, M; Yonemura, I; Hiraide, K; Hasekura, H

    1987-01-01

    The fetal erythrocyte membranes were partially solubilized with Triton X-100 at the low concentration (0.5%). The localizations of Rh1(D), 2(C), 3(E), 4(c), 5(e) and 25(LW) were investigated. Using hemagglutination inhibition assay, Rh1(D) antigen activity was observed in the Triton-treated membrane (Triton shell) containing mainly band 1, 2 (spectrin), band 5 (actin), band 4.1 and a part of band 3, while Rh2(C), 3(E), 4(c), 5(e) and 25(LW) antigens were detected in the supernatant containing band 3, 6, 2.2, 2.3 and 4.2. It is suggested that: Rh1(D) antigen would associate with cytoskeleton matrix of fetal erythrocyte membranes; Rh1(D) and Rh25(LW) antigens might be integral membrane proteins, while Rh2(C), 3(E), 4(c) and 5(e) antigens would be surface membrane proteins which are easily released from membranes by EDTA, mercaptoethanol and alkaline treatments.

  4. Prostate specific membrane antigen (PSMA) from diagnostic to therapeutic target: radionuclide therapy comes of age in prostate cancer.

    PubMed

    Violet, John A; Hofman, Michael S

    2017-04-05

    Without doubt, molecular imaging using PET/CT directed against prostate specific membrane antigen (PSMA) has generated much interest for its impressive accuracy in detecting prostate cancer, particularly for biochemical recurrence[1]. PSMA expression is up regulated in advanced prostate cancer, including metastatic castration resistant prostate cancer (mCRPC), and provides a novel therapeutic target for radionuclide therapy directed towards PSMA-avid disease. Radionuclide therapy relies on the identification of a suitable tumour associated 'target' and an appropriate 'vehicle' that can bind to this with high selectivity and specificity to allow delivery of a therapeutic radionuclide. This article is protected by copyright. All rights reserved.

  5. Metastatic superscan in prostate carcinoma on gallium-68-prostate-specific membrane antigen positron emission tomography/computed tomography scan.

    PubMed

    Agarwal, Krishan Kant; Tripathi, Madhavi; Kumar, Rajeev; Bal, Chandrasekhar

    2016-01-01

    We describe the imaging features of a metastatic superscan on gallium-68 Glu-NH-CO-NH-Lys-(Ahx)-[Ga-68(HBED-CC)], abbreviated as gallium-68-prostate-specific membrane antigen ((68)Ga-PSMA) positron emission tomography/computed tomography (PET/CT) imaging. (68)Ga-PSMA is novel radiotracer undergoing evaluation for PET/CT imaging of prostate carcinoma. This patient had a superscan of metastases on conventional bone scintigraphy and was referred for (68)Ga-PSMA PET/CT to evaluate the feasibility of (177)Lu-PSMA therapy.

  6. Isolation of mitochondria with cubic membrane morphology reveals specific ionic requirements for the preservation of membrane structure.

    PubMed

    Chong, Ketpin; Tan, Olivia Li Ling; Almsherqi, Zakaria A; Lin, Qingsong; Kohlwein, Sepp D; Deng, Yuru

    2015-03-01

    Biological membranes with cubic symmetry are a hallmark of virus-infected or diseased cells. The mechanisms of formation and specific cellular functions of cubic membranes, however, are unclear. The best-documented cubic membrane formation occurs in the free-living giant amoeba Chaos carolinense. In that system, mitochondrial inner membranes undergo a reversible structural change from tubular to cubic membrane organization upon starvation of the organism. As a prerequisite to further analyze the structural and functional features of cubic membranes, we adapted protocols for the isolation of mitochondria from starved amoeba and have identified buffer conditions that preserve cubic membrane morphology in vitro. The requirement for high concentration of ion-chelating agents in the isolation media supports the importance of a balanced ion milieu in establishing and maintaining cubic membranes in vivo.

  7. Modulation of endotoxicity of Shigella generalized modules for membrane antigens (GMMA) by genetic lipid A modifications: relative activation of TLR4 and TLR2 pathways in different mutants.

    PubMed

    Rossi, Omar; Pesce, Isabella; Giannelli, Carlo; Aprea, Susanna; Caboni, Mariaelena; Citiulo, Francesco; Valentini, Sara; Ferlenghi, Ilaria; MacLennan, Calman Alexander; D'Oro, Ugo; Saul, Allan; Gerke, Christiane

    2014-09-05

    Outer membrane particles from Gram-negative bacteria are attractive vaccine candidates as they present surface antigens in their natural context. We previously developed a high yield production process for genetically derived particles, called generalized modules for membrane antigens (GMMA), from Shigella. As GMMA are derived from the outer membrane, they contain immunostimulatory components, especially lipopolysaccharide (LPS). We examined ways of reducing their reactogenicity by modifying lipid A, the endotoxic part of LPS, through deletion of late acyltransferase genes, msbB or htrB, in GMMA-producing Shigella sonnei and Shigella flexneri strains. GMMA with resulting penta-acylated lipid A from the msbB mutants showed a 600-fold reduced ability, and GMMA from the S. sonnei ΔhtrB mutant showed a 60,000-fold reduced ability compared with GMMA with wild-type lipid A to stimulate human Toll-like receptor 4 (TLR4) in a reporter cell line. In human peripheral blood mononuclear cells, GMMA with penta-acylated lipid A showed a marked reduction in induction of inflammatory cytokines (S. sonnei ΔhtrB, 800-fold; ΔmsbB mutants, 300-fold). We found that the residual activity of these GMMA is largely due to non-lipid A-related TLR2 activation. In contrast, in the S. flexneri ΔhtrB mutant, a compensatory lipid A palmitoleoylation resulted in GMMA with hexa-acylated lipid A with ∼10-fold higher activity to stimulate peripheral blood mononuclear cells than GMMA with penta-acylated lipid A, mostly due to retained TLR4 activity. Thus, for use as vaccines, GMMA will likely require lipid A penta-acylation. The results identify the relative contributions of TLR4 and TLR2 activation by GMMA, which need to be taken into consideration for GMMA vaccine development.

  8. Comparison of Intranasal Outer Membrane Vesicles with Cholera Toxin and Injected MF59C.1 as Adjuvants for Malaria Transmission Blocking Antigens AnAPN1 and Pfs48/45

    PubMed Central

    Pritsch, Michael; Ben-Khaled, Najib; Chaloupka, Michael; Kobold, Sebastian; Berens-Riha, Nicole; Peter, Annabell; Liegl, Gabriele; Schubert, Sören; Hoelscher, Michael; Löscher, Thomas; Wieser, Andreas

    2016-01-01

    Purified protein vaccines often require adjuvants for efficient stimulation of immune responses. There is no licensed mucosal adjuvant on the market to adequately boost the immune response to purified antigens for intranasal applications in humans. Bacterial outer membrane vesicles (OMV) are attractive candidates potentially combining antigenic and adjuvant properties in one substance. To more precisely characterize the potential of Escherichia coli OMV for intranasal vaccination with heterologous antigens, immune responses for AnAPN1 and Pfs48/45 as well as ovalbumin as a reference antigen were assessed in mice. The intranasal adjuvant cholera toxin (CT) and parenteral adjuvant MF59C.1 were used in comparison. Vaccinations were administered intranasally or subcutaneously. Antibodies (total IgG and IgM as well as subclasses IgG1, IgG2a, IgG2b, and IgG3) were measured by ELISA. T cell responses (cytotoxic T cells, Th1, Th17, and regulatory T cells) were determined by flow cytometry. When OMV were used as adjuvant for intranasal immunization, antibody and cellular responses against all three antigens could be induced, comparable to cholera toxin and MF59C.1. Antigen-specific IgG titres above 1 : 105 could be detected in all groups. This study provides the rationale for further development of OMV as a vaccination strategy in malaria and other diseases. PMID:27239480

  9. In vitro induction of non-responsiveness in cloned normal inducer T cells by antigen and purified Ia incorporated into planar membranes

    SciTech Connect

    Quill, H.; Fox, B.; Carlson, L.; Pardoll, D.; Schwartz, R.H.

    1986-03-05

    Incubation of cytochrome c-specific E/sub ..beta..//sup k/E/sub ..cap alpha..//sup k/-containing planar membranes and an antigenic peptide analogue of moth cytochrome c resulted in a specific increase in cell volume of 40-50% as measured by Coulter Counter analysis. No change in cell volume was seen in the absence of antigen, or when A/sub ..beta..//sup k/A/sub ..cap alpha..//sup k/-planar membranes were used. T cell proliferation was never detected at any time from one to eight days after incubation with E/sub ..beta..//sup k/E/sub ..cap alpha..//sup k/-membranes at a wide range of antigen concentrations. Furthermore, only trace amounts of IL-2 were detected and no increase in IL-2 receptor expression was seen. IL-3 production, however, could be detected. T cells pre-incubated for one day with E/sub ..beta..//sup k/E/sub ..cap alpha..//sup k/-membranes plus antigen became non-responsive to subsequent normal stimulation with antigen and APC. Incorporation of /sup 3/H-thymidine was reduced by more than 90% and the production of both IL-2 and IL-3 was inhibited. Non-responsiveness persisted for at least eight days after exposure to E/sub ..beta..///sup k/E/sub ..cap alpha..//sup k/-membranes plus antigen. In contrast, T cells pre-incubated under control conditions remained fully responsive. These results demonstrate the specific induction of non-responsiveness in inducer T cells by antigen and purified E/sub ..beta..//sup k/E/sub ..cap alpha..//sup k/ in planar membranes.

  10. Synthesis and Evaluation of GdIII-Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostate-Specific Membrane Antigen**

    PubMed Central

    Ngen, Ethel J.; Rotz, Matthew W.; Kakkad, Samata; Lisok, Ala; Pracitto, Richard; Pullambhatla, Mrudula; Chen, Zhengping; Shah, Tariq; Artemov, Dmitri; Meade, Thomas J.; Bhujwalla, Zaver M.; Pomper, Martin G.

    2016-01-01

    Magnetic resonance (MR) imaging is advantageous because it concurrently provides anatomic, functional, and molecular information. MR molecular imaging can combine the high spatial resolution of this established clinical modality with molecular profiling in vivo. However, as a result of the intrinsically low sensitivity of MR imaging, high local concentrations of biological targets are required to generate discernable MR contrast. We hypothesize that the prostate-specific membrane antigen (PSMA), an attractive target for imaging and therapy of prostate cancer, could serve as a suitable biomarker for MR-based molecular imaging. We have synthesized three new high-affinity, low-molecular-weight GdIII-based PSMA-targeted contrast agents containing one to three GdIII chelates per molecule. We evaluated the relaxometric properties of these agents in solution, in prostate cancer cells, and in an in vivo experimental model to demonstrate the feasibility of PSMA-based MR molecular imaging. PMID:26212031

  11. Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization.

    PubMed

    Dillard, Pierre; Pi, Fuwei; Lellouch, Annemarie C; Limozin, Laurent; Sengupta, Kheya

    2016-03-14

    We investigate the adhesion and molecular organization of the plasma membrane of T lymphocytes interacting with a surrogate antigen presenting cell comprising glass supported ordered arrays of antibody (α-CD3) nano-dots dispersed in a non-adhesive matrix of polyethylene glycol (PEG). The local membrane adhesion and topography, as well as the distribution of the T cell receptors (TCRs) and the kinase ZAP-70, are influenced by dot-geometry, whereas the cell spreading area is determined by the overall average density of the ligands rather than specific characteristics of the dots. TCR clusters are recruited preferentially to the nano-dots and the TCR cluster size distribution has a weak dot-size dependence. On the patterns, the clusters are larger, more numerous, and more enriched in TCRs, as compared to the homogeneously distributed ligands at comparable concentrations. These observations support the idea that non-ligated TCRs residing in the non-adhered parts of the proximal membrane are able to diffuse and enrich the existing clusters at the ligand dots. However, long distance transport is impaired and cluster centralization in the form of a central supramolecular cluster (cSMAC) is not observed. Time-lapse imaging of early cell-surface contacts indicates that the ZAP-70 microclusters are directly recruited to the site of the antibody dots and this process is concomitant with membrane adhesion. These results together point to a complex interplay of adhesion, molecular organization and activation in response to spatially modulated stimulation.

  12. Partial Purification of Integral Membrane Antigenic Proteins from Trypanosoma evansi That Display Immunological Cross-Reactivity with Trypanosoma vivax

    PubMed Central

    Velásquez, Norma P.; Camargo, Rocío E.; Uzcanga, Graciela L.; Bubis, José

    2014-01-01

    Trypanosoma evansi and Trypanosoma vivax, which are the major causative agents of animal trypanosomosis in Venezuela, have shown a very high immunological cross-reactivity. Since the production of T. vivax antigens is a limiting factor as this parasite is difficult to propagate in experimental animal models, our goal has been to identify and isolate antigens from T. evansi that cross-react with T. vivax. Here, we used the Venezuelan T. evansi TEVA1 isolate to prepare the total parasite lysate and its corresponding cytosolic and membranous fractions. In order to extract the T. evansi integral membrane proteins, the particulate portion was further extracted first with Triton X-100, and then with sodium dodecyl sulfate. After discarding the cytosolic and Triton X-100 solubilized proteins, we employed sedimentation by centrifugation on linear sucrose gradients to partially purify the sodium dodecyl sulfate-solubilized proteins from the Triton X-100 resistant particulate fraction of T. evansi. We obtained enriched pools containing polypeptide bands with apparent molecular masses of 27 kDa, 31 kDa, and 53 kDa, which were recognized by anti-T. vivax antibodies from experimentally and naturally infected bovines. PMID:24757558

  13. Solution NMR characterization of apical membrane antigen 1 and small molecule interactions as a basis for designing new antimalarials.

    PubMed

    Krishnarjuna, Bankala; Lim, San Sui; Devine, Shane M; Debono, Cael O; Lam, Raymond; Chandrashekaran, Indu R; Jaipuria, Garima; Yagi, Hiromasa; Atreya, Hanudatta S; Scanlon, Martin J; MacRaild, Christopher A; Scammells, Peter J; Norton, Raymond S

    2016-06-01

    Plasmodium falciparum apical membrane antigen 1 (PfAMA1) plays an important role in the invasion by merozoites of human red blood cells during a malaria infection. A key region of PfAMA1 is a conserved hydrophobic cleft formed by 12 hydrophobic residues. As anti-apical membrane antigen 1 antibodies and other inhibitory molecules that target this hydrophobic cleft are able to block the invasion process, PfAMA1 is an attractive target for the development of strain-transcending antimalarial agents. As solution nuclear magnetic resonance spectroscopy is a valuable technique for the rapid characterization of protein-ligand interactions, we have determined the sequence-specific backbone assignments for PfAMA1 from two P. falciparum strains, FVO and 3D7. Both selective labelling and unlabelling strategies were used to complement triple-resonance experiments in order to facilitate the assignment process. We have then used these assignments for mapping the binding sites for small molecules, including benzimidazoles, pyrazoles and 2-aminothiazoles, which were selected on the basis of their affinities measured from surface plasmon resonance binding experiments. Among the compounds tested, benzimidazoles showed binding to a similar region on both FVO and 3D7 PfAMA1, suggesting that these compounds are promising scaffolds for the development of novel PfAMA1 inhibitors. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling.

    PubMed

    Sena, Laura A; Li, Sha; Jairaman, Amit; Prakriya, Murali; Ezponda, Teresa; Hildeman, David A; Wang, Chyung-Ru; Schumacker, Paul T; Licht, Jonathan D; Perlman, Harris; Bryce, Paul J; Chandel, Navdeep S

    2013-02-21

    It is widely appreciated that T cells increase glycolytic flux during activation, but the role of mitochondrial flux is unclear. Here, we have shown that mitochondrial metabolism in the absence of glucose metabolism is sufficient to support interleukin-2 (IL-2) induction. Furthermore, we used mice with reduced mitochondrial reactive oxygen species (mROS) production in T cells (T-Uqcrfs(-/-) mice) to show that mitochondria are required for T cell activation to produce mROS for activation of nuclear factor of activated T cells (NFAT) and subsequent IL-2 induction. These mice could not induce antigen-specific expansion of T cells in vivo, but Uqcrfs1(-/-) T cells retained the ability to proliferate in vivo under lymphopenic conditions. This suggests that Uqcrfs1(-/-) T cells were not lacking bioenergetically but rather lacked specific ROS-dependent signaling events needed for antigen-specific expansion. Thus, mitochondrial metabolism is a critical component of T cell activation through the production of complex III ROS.

  15. The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development.

    PubMed Central

    Guo, D; Bowden, M G; Pershad, R; Kaplan, H B

    1996-01-01

    A wild-type sasA locus is critical for Myxococcus xanthus multicellular development. Mutations in the sasA locus cause defective fruiting body formation, reduce sporulation, and restore developmental expression of the early A-signal-dependent gene 4521 in the absence of A signal. The wild-type sasA locus has been located on a 14-kb cloned fragment of the M. xanthus chromosome. The nucleotide sequence of a 7-kb region containing the complete sasA locus was determined. Three open reading frames encoded by the genes, designated rfbA, B and C were identified. The deduced amino acid sequences of rfbA and rfbB show identity to the integral membrane domains and ATPase domains, respectively, of the ATP-binding cassette (ABC) transporter family. The highest identities are to a set of predicted ABC transporters required for the biosynthesis of lipopolysaccharide O-antigen in certain gram-negative bacteria. The rfbC gene encodes a predicted protein of 1,276 amino acids. This predicted protein contains a region of 358 amino acids that is 33.8% identical to the Yersinia enterocolitica O3 rfbH gene product, which is also required for O-antigen biosynthesis. Immunoblot analysis revealed that the sasA1 mutant, which was found to encode a nonsense codon in the beginning of rfbA, produced less O-antigen than sasA+ strains. These data indicate that the sasA locus is required for the biosynthesis of O-antigen and, when mutated, results in A-signal-independent expression of 4521. PMID:8626291

  16. Chronic follicular bronchiolitis requires antigen-specific regulatory T cell control to prevent fatal disease progression

    PubMed Central

    Schmitt, Erica G.; Haribhai, Dipica; Jeschke, Jonathan C.; Co, Dominic O.; Ziegelbauer, Jennifer; Yan, Ke; Iwakura, Yoichiro; Mishra, Manoj K.; Simpson, Pippa; Salzman, Nita H.; Williams, Calvin B.

    2014-01-01

    In order to study regulatory T (Treg) cell control of chronic autoimmunity in a lymphoreplete host, we created and characterized a new model of autoimmune lung inflammation that targets the medium and small airways. We generated transgenic mice that express a chimeric membrane protein consisting of hen egg lysozyme (mHEL) and a hemoglobin (Hb) epitope tag under the control of the Clara cell secretory protein (CCSP) promoter, which largely limited transgene expression to the respiratory bronchioles. When CCSP-mHEL/Hb transgenic mice were crossed to N3.L2 TCR transgenic mice that recognize the Hb epitope, the bigenic progeny developed dense, pseudo-follicular lymphocytic peribronchiolar infiltrates that resembled the histological pattern of follicular bronchiolitis. Aggregates of activated IFN-γ- and IL-17A-secreting CD4+ T cells as well as B cells surrounded the airways. Lung pathology was similar in Ifng−/− and Il17a−/− mice, indicating that either cytokine is sufficient to establish chronic disease. A large number of antigen-specific Treg cells accumulated in the lesions and Treg cell-depletion in the affected mice led to an interstitial spread of the disease that ultimately proved fatal. Thus Treg cells act to restrain autoimmune responses, resulting in an organized and controlled chronic pathological process rather than a progressive disease. PMID:24163409

  17. Requirement for caspase-8 in NF-kappaB activation by antigen receptor.

    PubMed

    Su, Helen; Bidère, Nicolas; Zheng, Lixin; Cubre, Alan; Sakai, Keiko; Dale, Janet; Salmena, Leonardo; Hakem, Razqallah; Straus, Stephen; Lenardo, Michael

    2005-03-04

    Caspase-8, a proapoptotic protease, has an essential role in lymphocyte activation and protective immunity. We show that caspase-8 deficiency (CED) in humans and mice specifically abolishes activation of the transcription factor nuclear factor kappaB (NF-kappaB) after stimulation through antigen receptors, Fc receptors, or Toll-like receptor 4 in T, B, and natural killer cells. Caspase-8 also causes the alphabeta complex of the inhibitor of NF-kappaB kinase (IKK) to associate with the upstream Bcl10-MALT1 (mucosa-associated lymphatic tissue) adapter complex. Recruitment of the IKKalpha, beta complex, its activation, and the nuclear translocation of NF-kappaB require enzyme activity of full-length caspase-8. These findings thus explain the paradoxical association of defective apoptosis and combined immunodeficiency in human CED.

  18. Purification, pore-forming ability, and antigenic relatedness of the major outer membrane protein of Shigella dysenteriae type 1.

    PubMed Central

    Roy, S; Das, A B; Ghosh, A N; Biswas, T

    1994-01-01

    The major outer membrane protein (MOMP), the most abundant outer membrane protein, was purified to homogeneity from Shigella dysenteriae type 1. The purification method involved selective extraction of MOMP with sodium dodecyl sulfate in the presence of 0.4 M sodium chloride followed by size exclusion chromatography with Sephacryl S-200 HR. MOMP was found to form hydrophilic diffusion pores by incorporation into artificial liposome vesicles composed of egg yolk phosphatidylcholine and dicetylphosphate, indicating that MOMP of S. dysenteriae type 1 exhibited significant porin activity. However, the liposomes containing heat-denatured MOMP were barely active. The molecular weight of MOMP found by size exclusion chromatography was 130,000, and in sodium dodecyl sulfate-10% polyacrylamide gel it moved as an oligomer of 78,000 molecular weight. Upon boiling, fully dissociated monomers of 38,000 molecular weight were seen for S. dysenteriae type 1. However, among the four Shigella spp., the monomeric MOMP generated upon boiling ranged from 38,000 to 35,000 in molecular weight. Antibody raised in BALB/c mice immunized with MOMP of S. dysenteriae type 1 reacted strongly with purified MOMP of S. dysenteriae type 1 in an enzyme-linked immunosorbent assay (ELISA). The antibody reacted with whole-cell preparations of S. dysenteriae type 1 in an ELISA, suggesting that MOMP possessed surface components. Moreover, MOMP could be visualized on the bacterial surface by immunoelectron microscopy with anti-MOMP antibody. S. dysenteriae type 1 MOMP-specific immunoglobulin eluted from MOMP bound to a nitrocellulose membrane was found to cross-react with MOMP preparations of S. flexneri, S. boydii, and S. sonnei, indicating that MOMPs were antigenically related among Shigella species. The strong immunogenicity, surface exposure, and antigenic relatedness make MOMP of Shigella species an immunologically significant macromolecule for study. Images PMID:7927692

  19. Display of Antigens on Polyester Inclusions Lowers the Antigen Concentration Required for a Bovine Tuberculosis Skin Test.

    PubMed

    Parlane, Natalie A; Chen, Shuxiong; Jones, Gareth J; Vordermeier, H Martin; Wedlock, D Neil; Rehm, Bernd H A; Buddle, Bryce M

    2015-10-28

    The tuberculin skin test is the primary screening test for the diagnosis of bovine tuberculosis (TB), and use of this test has been very valuable in the control of this disease in many countries. However, the test lacks specificity when cattle have been exposed to environmental mycobacteria or vaccinated with Mycobacterium bovis bacille Calmette-Guérin (BCG). Recent studies showed that the use of three or four recombinant mycobacterial proteins, including 6-kDa early secretory antigenic target (ESAT6), 10-kDa culture filtrate protein (CFP10), Rv3615c, and Rv3020c, or a peptide cocktail derived from those proteins, in the skin test greatly enhanced test specificity, with minimal loss of test sensitivity. The proteins are present in members of the pathogenic Mycobacterium tuberculosis complex but are absent in or not expressed by the majority of environmental mycobacteria and the BCG vaccine strain. To produce a low-cost skin test reagent, the proteins were displayed at high density on polyester beads through translational fusion to a polyhydroxyalkanoate synthase that mediates the formation of antigen-displaying inclusions in recombinant Escherichia coli. Display of the proteins on the polyester beads greatly increased their immunogenicity, allowing for the use of very low concentrations of proteins (0.1 to 3 μg of mycobacterial protein/inoculum) in the skin test. Polyester beads simultaneously displaying all four proteins were produced in a single fermentation process. The polyester beads displaying three or four mycobacterial proteins were shown to have high sensitivity for detection of M. bovis-infected cattle and induced minimal responses in animals exposed to environmental mycobacteria or vaccinated with BCG.

  20. MISTIC-fusion proteins as antigens for high quality membrane protein antibodies

    PubMed Central

    Alves, Natalia Silva; Astrinidis, Susanne Adina; Eisenhardt, Nathalie; Sieverding, Cornelia; Redolfi, Josef; Lorenz, Michael; Weberruss, Marion; Moreno-Andrés, Daniel; Antonin, Wolfram

    2017-01-01

    Lack of high-quality antibodies against transmembrane proteins is a widely recognized hindrance in biomedical and cell biological research. Here we present a robust pipeline for the generation of polyclonal antibodies employing full-length membrane proteins as immunogens to overcome this “antibody bottleneck”. We express transmembrane proteins fused to a MISTIC fragment that enhances expression of eukaryotic membrane proteins in E. coli. Purified membrane proteins are used as immunogen for rabbit injection employing standard immunizing protocols. The raised antibodies against membrane proteins of the endoplasmic reticulum and the nuclear envelope, which we use as test cases, function in a wide range of applications and are superior to ones produced against soluble domains as immunogens. PMID:28148968

  1. Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens.

    PubMed

    Fehres, Cynthia M; Kalay, Hakan; Bruijns, Sven C M; Musaafir, Sara A M; Ambrosini, Martino; van Bloois, Louis; van Vliet, Sandra J; Storm, Gert; Garcia-Vallejo, Juan J; van Kooyk, Yvette

    2015-04-10

    Dendritic cells (DCs) and Langerhans cells (LC) are professional antigen presenting cells (APCs) that initiate humoral and cellular immune responses. Targeted delivery of antigen towards DC- or LC-specific receptors enhances vaccine efficacy. In this study, we compared the efficiency of glycan-based antigen targeting to both the human DC-specific C-type lectin receptor (CLR) DC-SIGN and the LC-specific CLR langerin. Since DC-SIGN and langerin are able to recognize the difucosylated oligosaccharide Lewis Y (Le(Y)), we prepared neoglycoconjugates bearing this glycan epitope to allow targeting of both lectins. Le(Y)-modified liposomes, with an approximate diameter of 200nm, were significantly endocytosed by DC-SIGN(+) DCs and mediated efficient antigen presentation to CD4(+) and CD8(+) T cells. Surprisingly, although langerin bound to Le(Y)-modified liposomes, LCs exposed to Le(Y)-modified liposomes could not endocytose liposomes nor mediate antigen presentation to T cells. However, LCs mediated an enhanced cross-presentation when antigen was delivered through langerin using Le(Y)-modified synthetic long peptides. In contrast, Le(Y)-modified synthetic long peptides were recognized by DC-SIGN, but did not trigger antigen internalization nor antigen cross-presentation. These data demonstrate that langerin and DC-SIGN have different size requirements for antigen uptake. Although using glycans remains an interesting option in the design of anti-cancer vaccines targeting multiple CLRs, aspects such as molecule size and conformation need to be taken in consideration.

  2. Selective Conditions Are Required for the Induction of Invariant NKT Cell Hyporesponsiveness by Antigenic Stimulation.

    PubMed

    Wingender, Gerhard; Birkholz, Alysia M; Sag, Duygu; Farber, Elisa; Chitale, Sampada; Howell, Amy R; Kronenberg, Mitchell

    2015-10-15

    Activation of invariant (i)NKT cells with the model Ag α-galactosylceramide induces rapid production of multiple cytokines, impacting a wide variety of different immune reactions. In contrast, following secondary activation with α-galactosylceramide, the behavior of iNKT cells is altered for months, with the production of most cytokines being strongly reduced. The requirements for the induction of this hyporesponsive state, however, remain poorly defined. In this study, we show that Th1-biasing iNKT cell Ags could induce iNKT cell hyporesponsiveness, as long as a minimum antigenic affinity was reached. In contrast, the Th2-biasing Ag OCH did not induce a hyporesponsive state, nor did cytokine-driven iNKT cell activation by LPS or infections. Furthermore, although dendritic cells and B cells have been reported to be essential for iNKT cell stimulation, neither dendritic cells nor B cells were required to induce iNKT cell hyporesponsiveness. Therefore, our data indicate that whereas some bone marrow-derived cells could induce iNKT cell hyporesponsiveness, selective conditions, dependent on the structure and potency of the Ag, were required to induce hyporesponsiveness.

  3. The mouse Lyt-2/3 antigen complex--I. Mode of association of the subunits with the membrane.

    PubMed

    Luescher, B; Naim, H Y; MacDonald, H R; Bron, C

    1984-04-01

    Different radiolabeling procedures have been used in conjunction with specific immunoprecipitation to assess the mode of association of Lyt-2/3 antigens with the cell membrane. Thus, cells were labeled with two different hydrophobic probes reacting selectively with lipid-associated portions of membrane proteins. The segments of glycoproteins exposed on the outside of the plasma membrane were specifically labeled using either enzyme-catalysed surface iodination or specific labeling of the carbohydrate moiety. The results show that the three disulfide-linked polypeptides of Lyt-2/3 molecules are all surface-expressed glycopeptides possessing hydrophobic regions residing within the lipid bilayer. In particular, the 28,000 mol. wt component, barely detectable by surface iodination, can be identified as a strongly labeled homogeneous and basic species by hydrophobic, biosynthetic and glycoprotein-specific labeling procedures. In addition, differences in the expression of these components were observed between thymocytes and differentiated T-lymphocytes. Probably due to glycosylation or other processing events, the 37,000 and 32,000 mol. wt components distinguishable on thymocytes co-migrate as a broad band of apparent mol. wt 41,000-42,000 when precipitated from a cloned cytolytic T-cell line. Finally, the 28,000 mol. wt component which is abundant in thymocytes is expressed in reduced amounts on cytolytic T-cells.

  4. A Single Talent Immunogenic Membrane Antigen and Novel Prognostic Predictor: voltage-dependent anion channel 1 (VDAC1) in Pancreatic Cancer

    PubMed Central

    Wang, Weibin; Zhang, Taiping; Zhao, Wenjing; Xu, Lai; Yang, Yu; Liao, Quan; Zhao, Yupei

    2016-01-01

    Immunogenic membrane antigens associated with multiple biological functions of human cancer cells, have significant value in molecule diagnosis and targeted therapy. Here we screened immunogenic membrane antigens in pancreatic cancer by immunobloting IgG purified from sera of 66 pancreatic cancer patients with membrane proteins separated from two-dimensional PAGE of human pancreatic cancer cell line SWl990, and identified voltage-dependent anion channel 1 (VDAC1) as one of the potential immunogenic membrane antigens. Further studies focusing on VDAC1 demonstrated that VDAC1 mRNA and protein were significantly expressed in the tested pancreatic cancer cell lines. VDAC1 silencing with RNAi significantly decreased cell growth, invasion and migration in the pancreatic cancer cell line Capan-1. Additionally, VDAC1 expression was upregulated in pancreatic cancer tissue compared with normal pancreas samples and patients with low VDAC1 expression had a significantly greater median survival compared to those with high expression (27.0 months vs. 17.8 months, P = 0.039). In multivariable analysis, VDAC1 staining was an independent prognostic factor for survival [(Hazard-Ratio) HR = 1.544, 95% CI = 0.794–3.0, P = 0.021]. These results demonstrated that VDAC1 may be a candidate immunogenic membrane antigen for pancreatic cancer, a potential independent prognostic marker, and an ideal drug target. PMID:27659305

  5. Effect of denervation on a cholinergic-specific ganglioside antigen (Chol-1) present in Torpedo electromotor presynaptic plasma membranes.

    PubMed

    Ferretti, P; Borroni, E

    1984-04-01

    The presence of Chol-1, an antigen identified in the plasma membrane of cholinergic electromotor nerve terminals of Torpedo marmorata, was investigated in Torpedo electric organ after 3, 6, and 9 weeks' denervation. Denervation was monitored by the cessation of stimulus-evoked discharge potentials, by the reduction in nerve terminals seen morphologically, and by the decrease in ACh and ChAT contents. The content of ganglioside-bound sialic acid did not show any appreciable change with time. Some modification of ganglioside pattern on TLC was observed after 9 weeks' denervation. The presence of Chol-1 after denervation was assayed by its activity in inhibiting the selective complement-induced lysis of the cholinergic subpopulation of guinea pig cortical synaptosome which is mediated by the anti-Chol-1 antiserum. Denervation did not affect Chol-1 immunoreactivity although it did alter the distribution of the immunoreactivity among gangliosides. The possible significance of the results is discussed.

  6. Uptake of an Acrochordon Incidentally Detected on 68Ga Prostate-Specific Membrane Antigen PET/CT.

    PubMed

    Daglioz Gorur, Gozde; Hekimsoy, Turkay; Isgoren, Serkan; Sikar Akturk, Aysun; Demir, Hakan

    2017-03-31

    Ga prostate-specific membrane antigen (PSMA) PET/CT is a promising tool for imaging of prostate cancer. Ga-PSMA PET/CT uptake of prostate cancer and its metastases are reflective of significant overexpression of PSMA. However, PSMA expression of benign neoplasms and nonprostate epithelial malignancies is not very well defined. We report a moderate Ga-PSMA uptake of an acrochordon (skin tag), which was incidentally found in a patient referred for staging prostate cancer. Acrochordon is a frequent, small, soft, skin-colored or hyperpigmented, benign, and usually pedunculated neoplasm of the skin. Nuclear medicine physicians should be aware of it while reporting a Ga-PSMA PET/CT.

  7. Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation

    PubMed Central

    Keibler, Mark A.; Park, Donglim Esther; Molla, Vadim; Cheng, Jingwei; Stephanopoulos, Gregory

    2016-01-01

    Merkel cell polyomavirus (MCPyV) is an etiological agent of Merkel cell carcinoma (MCC), a highly aggressive skin cancer. The MCPyV small tumor antigen (ST) is required for maintenance of MCC and can transform normal cells. To gain insight into cellular perturbations induced by MCPyV ST, we performed transcriptome analysis of normal human fibroblasts with inducible expression of ST. MCPyV ST dynamically alters the cellular transcriptome with increased levels of glycolytic genes, including the monocarboxylate lactate transporter SLC16A1 (MCT1). Extracellular flux analysis revealed increased lactate export reflecting elevated aerobic glycolysis in ST expressing cells. Inhibition of MCT1 activity suppressed the growth of MCC cell lines and impaired MCPyV-dependent transformation of IMR90 cells. Both NF-κB and MYC have been shown to regulate MCT1 expression. While MYC was required for MCT1 induction, MCPyV-induced MCT1 levels decreased following knockdown of the NF-κB subunit RelA, supporting a synergistic activity between MCPyV and MYC in regulating MCT1 levels. Several MCC lines had high levels of MYCL and MYCN but not MYC. Increased levels of MYCL was more effective than MYC or MYCN in increasing extracellular acidification in MCC cells. Our results demonstrate the effects of MCPyV ST on the cellular transcriptome and reveal that transformation is dependent, at least in part, on elevated aerobic glycolysis. PMID:27880818

  8. Nucleotide sequence polymorphism at the apical membrane antigen-1 locus reveals population history of Plasmodium vivax in Thailand

    PubMed Central

    Putaporntip, Chaturong; Jongwutiwes, Somchai; Grynberg, Priscila; Cui, Liwang; Hughes, Austin L.

    2009-01-01

    Apical membrane antigen-1 is a candidate for inclusion in a vaccine for the human malaria parasite Plasmodium vivax. We collected 231 complete sequences of the gene encoding this antigen (pvama-1) from three regions of Thailand, the most extensive collection to date of sequences at this locus. The domain II loop (previously mentioned as a potential vaccine component) was almost completely conserved, with a single amino acid variant (I313R) observed in a single sequence. The 3′ portion of the gene (domain II through the stop codon) showed significantly lower nucleotide diversity than the 5′ portion (start codon through domain I); and a given domain I sequence might be found in a haplotype with more than one domain II sequence. These results imply a hotspot of recombination between domains I and II. We found significant geographic subdivision among the three regions of Thailand (NW, East, and South) in which collections were made in 2007. Numbers of P. vivax infections have experienced overall declines since 1990 in all three regions; but the decline has been most recent in the NW, and there has been a rebound in numbers of infections in the South since 2000. Consistent with population history, amino acid sequence diversity was greatest in the NW. The South, which had by far the lowest sequence diversity of the three regions, showed signs of a population that has expanded from a small number of founders after a bottleneck. PMID:19643205

  9. DYNAMICS OF ANTIGENIC MEMBRANE SITES RELATING TO CELL AGGREGATION IN DICTYOSTELIUM DISCOIDEUM

    PubMed Central

    Beug, H.; Katz, F. E.; Gerisch, G.

    1973-01-01

    Membrane interaction in aggregating cells of Dictyostelium discoideum can be blocked by univalent antibodies directed against specific membrane sites. Using a quantitative technique for measuring cell association, two classes of target sites for blocking antibodies were distinguished and their developmental dynamics studied. One class of these sites is specific for aggregation-competent cells, their quantity rising from virtually 0-level during growth, with a steep increase shortly before cell aggregation. The serological activity of these structures is species specific; they are not detectable in a nonaggregating mutant, but present in a revertant undergoing normal morphogenesis. Patterns of cell assembly in the presence of antibodies show that selective blockage of these membrane sites abolishes the preference for end-to-end association which is typical for aggregating cells. A second class of target sites is present in comparable quantities in particle fractions from both growth-phase and aggregation-competent cells. Blockage of these sites leads to aggregation patterns in which the side-by-side contacts of aggregating cells are abolished. The target sites of aggregation-inhibiting antibodies are suggested to be identical or associated with the molecular units of the cell membrane that mediate cell-to-cell contacts during aggregation. The results indicate that in one cell, two independent classes of contact sites can be simultaneously active. PMID:4631665

  10. Limiting the Amount and Duration of Antigen Exposure During Priming Increases Memory T Cell Requirement for Costimulation During Recall

    PubMed Central

    Floyd, Tamara L.; Koehn, Brent H.; Kitchens, William H.; Robertson, Jennifer M.; Cheeseman, Jennifer A.; Stempora, Linda; Larsen, Christian P.; Ford, Mandy L.

    2011-01-01

    Donor-reactive memory T cells can play an important role in mediating graft rejection following transplantation. Transplant recipients acquire donor-reactive memory T cells not only through prior sensitization with alloantigens, but also through previous exposure to environmental pathogens that are cross-reactive with allogeneic peptide:MHC complexes. Current dogma suggests that most, if not all, memory T cell responses are independent of the requirement for CD28 and/ or CD154/CD40-mediated costimulation in order to mount a recall response. However, heterogeneity among memory T cells is increasingly being appreciated, and one important factor known to impact the function and phenotype of antigen-specific T cell responses is the amount/duration of antigen exposure. Importantly, the impact of antigen exposure on development of costimulation independence is currently unknown. Here, we interrogated the effect of decreased antigen amount/duration during priming on the ability of donor-reactive memory T cells to mediate costimulation blockade-resistant rejection during a recall response following transplantation in a murine model. Recipients possessing donor-reactive memory T cell responses that were generated under conditions of reduced antigen exposure exhibited similar frequencies of antigen-specific T cells at day 30 post infection, but, strikingly, failed to mediate costimulation blockade-resistant rejection following challenge with an OVA-expressing skin graft. Thus, these data demonstrate the amount/ duration of antigen exposure is a critical factor in determining memory T cells' relative requirement for costimulation during the recall response following transplantation. PMID:21257960

  11. Identification and Characterization of Internalization Signal of the Prostate Specific Membrane Antigen

    DTIC Science & Technology

    2001-09-01

    melanosomal membrane protein tyrosinase (H-Ining et al., 1996). It is possible that these adaptors might bind to the cytoplasmic tail of PSMA and might be...direct them to the endocytic pathway are excellent cancer inhibitors (Hurwitz et al., 1995). Increased expression of PSMA in high grade and metastatic...cytoplasmic sequence in human tyrosinase defines a second class of di-leucine-based sorting signals for late

  12. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection

    NASA Astrophysics Data System (ADS)

    Huang, Weiwei; Wang, Shijie; Yao, Yufeng; Xia, Ye; Yang, Xu; Li, Kui; Sun, Pengyan; Liu, Cunbao; Sun, Wenjia; Bai, Hongmei; Chu, Xiaojie; Li, Yang; Ma, Yanbing

    2016-11-01

    Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform.

  13. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection

    PubMed Central

    Huang, Weiwei; Wang, Shijie; Yao, Yufeng; Xia, Ye; Yang, Xu; Li, Kui; Sun, Pengyan; Liu, Cunbao; Sun, Wenjia; Bai, Hongmei; Chu, Xiaojie; Li, Yang; Ma, Yanbing

    2016-01-01

    Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform. PMID:27849050

  14. Epitope distance to the target cell membrane and antigen size determine the potency of T cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen.

    PubMed

    Bluemel, Claudia; Hausmann, Susanne; Fluhr, Petra; Sriskandarajah, Mirnalini; Stallcup, William B; Baeuerle, Patrick A; Kufer, Peter

    2010-08-01

    Melanoma chondroitin sulfate proteoglycan (MCSP; also called CSPG4, NG2, HMW-MAA, MSK16, MCSPG, MEL-CSPG, or gp240) is a surface antigen frequently expressed on human melanoma cells, which is involved in cell adhesion, invasion and spreading, angiogenesis, complement inhibition, and signaling. MCSP has therefore been frequently selected as target antigen for development of antibody- and vaccine-based therapeutic approaches. We have here used a large panel of monoclonal antibodies against human MCSP for generation of single-chain MCSP/CD3-bispecific antibodies of the BiTE (for bispecific T cell engager) class. Despite similar binding affinity to MCSP, respective BiTE antibodies greatly differed in their potency of redirected lysis of CHO cells stably transfected with full-length human MCSP, or with various MCSP deletion mutants and fusion proteins. BiTE antibodies binding to the membrane proximal domain D3 of MCSP were more potent than those binding to more distal domains. This epitope distance effect was corroborated with EpCAM/CD3-bispecific BiTE antibody MT110 by testing various fusion proteins between MCSP and EpCAM as surface antigens. CHO cells expressing small surface target antigens were generally better lysed than those expressing larger target antigens, indicating that antigen size was also an important determinant for the potency of BiTE antibody. The present study for the first time relates the positioning of binding domains and size of surface antigens to the potency of target cell lysis by BiTE-redirected cytotoxic T cells. In case of the MCSP antigen, this provides the basis for selection of a maximally potent BiTE antibody candidate for development of a novel melanoma therapy.

  15. Classical dendritic cells are required for dietary antigen-mediated peripheral regulatory T cell and tolerance induction

    PubMed Central

    Esterházy, Daria; Loschko, Jakob; London, Mariya; Jove, Veronica; Oliveira, Thiago Y.; Mucida, Daniel

    2016-01-01

    Oral tolerance prevents pathological inflammatory responses towards innocuous foreign antigens via peripheral regulatory T cells (pTreg cells). However, whether a particular subset of antigen-presenting cells (APCs) is required during dietary antigen exposure to instruct naïve CD4+ T cells to differentiate into pTreg cells has not been defined. Using myeloid lineage-specific APC depletion in mice, we found that monocyte-derived APCs are dispensable, while classical dendritic cells (cDCs) are critical for pTreg cell induction and oral tolerance. CD11b− cDCs from the gut-draining lymph nodes efficiently induced pTreg cells, and conversely, loss of IRF8-dependent CD11b− cDCs impaired their polarization, although oral tolerance remained intact. These data reveal the hierarchy of cDC subsets in pTreg cell induction and their redundancy during oral tolerance development. PMID:27019226

  16. Low thrombogenicity of polyethylene glycol-grafted cellulose membranes does not influence heparin requirements in hemodialysis.

    PubMed

    Wright, M J; Woodrow, G; Umpleby, S; Hull, S; Brownjohn, A M; Turney, J H

    1999-07-01

    Heparin is the most commonly used anticoagulant for hemodialysis despite potentially serious side effects. Polyethylene glycol-grafted cellulose (PGC) membranes produce less activation of the coagulation cascade than cuprophane membranes. Anecdotally, we found some patients required a surprisingly low level of anticoagulation using these membranes. We compared the anticoagulant requirement of the PGC membrane with that of the cuprophane membrane in this randomized, prospective, crossover study. Sixty-three patients were randomized to treatment using either membrane, and heparin administration was progressively reduced to the lowest dose that prevented visible clotting in excess of that normally encountered. Patients underwent dialysis at this dose for 1 month, after which the heparin requirement and Kt/Vurea (1.162 x ln [urea pre/urea post]) were assessed. This process was then repeated for each patient using the other membrane, and the results were compared. Heparin administration during dialysis was reduced from a mean loading dose of 29.0 +/- 9.4 to 1.5 +/- 3.2 IU/kg for both membranes and a mean maintenance infusion of 14.0 +/- 6.7 to 0.77 +/- 1.6 IU/kg/h for both membranes (both P < 0.0001 v full anticoagulation; no difference between membranes). The Kt/Vurea was not significantly altered. Forty-six patients with PGC and 45 patients with cuprophane membranes underwent dialysis successfully without heparin during dialysis, and the other patients were using considerably reduced doses. Aspirin and warfarin had no effect on the heparin requirement. These results do not support the theory that PGC membranes have a lower anticoagulant requirement than cuprophane membranes; however, they suggest that dialysis can be performed successfully with much smaller anticoagulant doses than are currently in common use.

  17. Integrin β4 is a major target antigen in pure ocular mucous membrane pemphigoid.

    PubMed

    Li, Xiaoguang; Qian, Hua; Sogame, Ryosuke; Hirako, Yoshiaki; Tsuruta, Daisuke; Ishii, Norito; Koga, Hiroshi; Tsuchisaka, Atsunari; Jin, Zhexiong; Tsubota, Kazuo; Fukumoto, Akiko; Sotozono, Chie; Kinoshita, Shigeru; Hashimoto, Takashi

    2016-06-01

    Previous studies of ocular mucous membrane pemphigoid (OMMP) have identified several components of the basement membrane zone to be autoantigens, including integrin β4. However, there are no extensive or definitive reported studies that address this, particularly in pure OMMP. To clarify the major autoantigens in pure OMMP. In this study, we examined sera from 43 pure OMMP patients for both IgG and IgA antibodies using newly developed immunoblotting analyses with a hemidesmosome-rich fraction and various recombinant proteins of integrin α6β4, in addition to our routine immune-serological tests. Using a hemidesmosome-rich fraction, sera from patients with pure OMMP demonstrated reactivity of IgG and/or IgA antibodies to integrin β4, BP180 and laminin-332. The reactivity of pure OMMP sera to integrin β4 was further confirmed by immunoblotting using integrin β4 recombinant proteins. Using concentrated supernatant of HaCaT cells, only one serum sample showed positive IgG and IgA reactivity to LAD-1, the ectodomain of BP180. None of the pure OMMP sera reacted with any autoantigens on immunoblotting using normal human epidermal or dermal extracts, or purified human laminin-332. Integrin β4 was considered to be the major and specific autoantigen for pure OMMP. The new methods established in this study are useful for detection of various autoantigens, particularly integrin β4.

  18. Vaccinia virus virion membrane biogenesis protein A11 associates with viral membranes in a manner that requires the expression of another membrane biogenesis protein, A6.

    PubMed

    Wu, Xiang; Meng, Xiangzhi; Yan, Bo; Rose, Lloyd; Deng, Junpeng; Xiang, Yan

    2012-10-01

    A group of vaccinia virus (VACV) proteins, including A11, L2, and A6, are required for biogenesis of the primary envelope of VACV, specifically, for the acquisition of viral membrane precursors. However, the interconnection among these proteins is unknown and, with the exception of L2, the connection of these proteins with membranes is also unknown. In this study, prompted by the findings that A6 coprecipitated A11 and that the cellular distribution of A11 was dramatically altered by repression of A6 expression, we studied the localization of A11 in cells by using immunofluorescence and cell fractionation analysis. A11 was found to associate with membranes and colocalize with virion membrane proteins in viral replication factories during normal VACV replication. A11 partitioned almost equally between the detergent and aqueous phases upon Triton X-114 phase separation, demonstrating an intrinsic affinity with lipids. However, in the absence of infection or VACV late protein synthesis, A11 did not associate with cellular membranes. Furthermore, when A6 expression was repressed, A11 did not colocalize with any viral membrane proteins or associate with membranes. In contrast, when virion envelope formation was blocked at a later step by repression of A14 expression or by rifampin treatment, A11 colocalized with virion membrane proteins in the factories. Altogether, our data showed that A11 associates with viral membranes during VACV replication, and this association requires A6 expression. This study provides a physical connection between A11 and viral membranes and suggests that A6 regulates A11 membrane association.

  19. Protein Kinases in Zucchini (Characterization of Calcium-Requiring Plasma Membrane Kinases).

    PubMed Central

    Verhey, S. D.; Gaiser, J. C.; Lomax, T. L.

    1993-01-01

    Using an in situ phosphorylation assay with zucchini (Cucurbita pepo L. cv Dark Green) seedling tissue, we have identified numerous polypeptides that are capable of acting as protein kinases. Total protein preparations from different organs contain different kinase profiles, but all are within the range of 55 to 70 kD. At least four kinases are associated with highly purified plasma membranes from etiolated zucchini hypocotyls. The major phosphorylated polypeptides from plasma membranes range in apparent molecular mass from 58 to 68 kD. The plasma membrane kinases are activated by micromolar concentrations of calcium and phosphorylate serine, and, to a lesser extent, threonine residues. These characteristics are similar to those of a soluble calcium-dependent protein kinase that has been purified to homogeneity from soybean suspension cultures. Three of the zucchini plasma membrane kinases share antigenic epitopes with the soluble soybean kinase. The presence of kinase activity at different apparent molecular masses may be indicative of separate kinases with similar characteristics. The zucchini hypocotyl protein kinases are not removed from plasma membrane vesicles by 0.5 M NaCl/5 mM ethylenediaminetetraacetate or by detergent concentrations below the critical micelle concentration of two types of detergent. This indicates that the plasma membrane protein kinases are tightly associated with the membrane in zucchini seedlings. PMID:12231949

  20. Zinc Coordination Is Required for and Regulates Transcription Activation by Epstein-Barr Nuclear Antigen 1

    PubMed Central

    Aras, Siddhesh; Singh, Gyanendra; Johnston, Kenneth; Foster, Timothy; Aiyar, Ashok

    2009-01-01

    Epstein-Barr Nuclear Antigen 1 (EBNA1) is essential for Epstein-Barr virus to immortalize naïve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO2). Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO2 and redox potential. PMID:19521517

  1. Antibody-producing cell responses to an isolated outer membrane protein and to complexes of this antigen with lipopolysaccharide or with vesicles of phospholipids from Proteus mirabilis.

    PubMed Central

    Karch, H; Nixdorff, K

    1981-01-01

    Antibody-producing cell responses of mice to a protein isolated from the outer membrane of Proteus mirabilis were typical of the responses to a thymus-dependent antigen. The immunoglobulin G antibody-producing cell responses to the protein were increased after administration of the antigen complexed with either lipopolysaccharide or with vesicles of phospholipids extracted from P. mirabilis. The protein in turn significantly increased the immune response to lipopolysaccharide and also converted this response from predominantly immunoglobulin M to predominantly immunoglobulin G. PMID:6164651

  2. Antigen Detection via the Rate of Ion Current Rectification Change of the Antibody-Modified Glass Nanopore Membrane

    PubMed Central

    2015-01-01

    Ion current rectification (ICR), defined as an increase in ion conduction at a given polarity and a decrease in ion conduction for the same voltage at the opposite polarity, i.e., a deviation from a linear ohmic response, occurs in conical shaped pores due to the voltage dependent solution conductivity within the aperture. The degree to which the ionic current rectifies is a function of the size and surface charge of the nanopore, with smaller and more highly charged pores exhibiting greater degrees of rectification. The ICR phenomenon has previously been exploited for biosensing applications, where the level of ICR for a nanopore functionalized with an analyte-specific binding molecule (e.g., an antibody, biotin, etc.) changes upon binding its target analyte (e.g., an antigen, streptavidin, etc.) due to a resulting change in the size and/or charge of the aperture. While this type of detection measurement is typically qualitative, for the first time, we demonstrate that the rate at which the nanopore ICR response changes is dependent on the concentration of the target analyte introduced. Utilizing a glass nanopore membrane (GNM) internally coated with a monoclonal antibody specific to the cleaved form of synaptosomal-associated protein 25 (cSNAP-25), creating the antibody-modified glass nanopore membrane (AMGNM), we demonstrate a correlation between the rate of ICR change and the concentration of introduced cSNAP-25, over a range of 500 nM–100 μM. The methodology presented here significantly expands the applications of nanopore ICR biosensing measurements and demonstrates that these measurements can be quantitative in nature. PMID:25157668

  3. Biodistribution and Radiation Dosimetry for a Probe Targeting Prostate-Specific Membrane Antigen for Imaging and Therapy

    PubMed Central

    Herrmann, Ken; Bluemel, Christina; Weineisen, Martina; Schottelius, Margret; Wester, Hans-Jürgen; Czernin, Johannes; Eberlein, Uta; Beykan, Seval; Lapa, Constantin; Riedmiller, Hubertus; Krebs, Markus; Kropf, Saskia; Schirbel, Andreas; Buck, Andreas K.; Lassmann, Michael

    2016-01-01

    Prostate-specific membrane antigen (PSMA) is a promising target for diagnosis and treatment of prostate cancer. EuK-Subkff-68Ga-DOTAGA (68Ga-PSMA Imaging & Therapy [PSMA I&T]) is a recently introduced PET tracer for imaging PSMA expression in vivo. Whole-body distribution and radiation dosimetry of this new probe were evaluated. Methods Five patients with a history of prostate cancer were injected intravenously with 91–148 MBq of 68Ga-PSMA I&T (mean ± SD, 128 ± 23 MBq). After an initial series of rapid whole-body scans, 3 static whole-body scans were acquired at 1, 2, and 4 h after tracer injection. Time-dependent changes of the injected activity per organ were determined. Mean organ-absorbed doses and effective doses were calculated using OLINDA/EXM. Results Injection of 150 MBq of 68Ga-PSMA I&T resulted in an effective dose of 3.0 mSv. The kidneys were the critical organ (33 mGy), followed by the urinary bladder wall and spleen (10 mGy each), salivary glands (9 mGy each), and liver (7 mGy). Conclusion 68Ga-PSMA I&T exhibits a favorable dosimetry, delivering organ doses that are comparable to (kidneys) or lower than those delivered by 18F-FDG. PMID:25883128

  4. Comparative sequence analysis of domain I of Plasmodium falciparum apical membrane antigen 1 from Saudi Arabia and worldwide isolates.

    PubMed

    Al-Qahtani, Ahmed A; Abdel-Muhsin, Abdel-Muhsin A; Bin Dajem, Saad M; AlSheikh, Adel Ali H; Bohol, Marie Fe F; Al-Ahdal, Mohammed N; Putaporntip, Chaturong; Jongwutiwes, Somchai

    2016-04-01

    The apical membrane antigen 1 of Plasmodium falciparum (PfAMA1) plays a crucial role in erythrocyte invasion and is a target of protective antibodies. Although domain I of PfAMA1 has been considered a promising vaccine component, extensive sequence diversity in this domain could compromise an effective vaccine design. To explore the extent of sequence diversity in domain I of PfAMA1, P. falciparum-infected blood samples from Saudi Arabia collected between 2007 and 2009 were analyzed and compared with those from worldwide parasite populations. Forty-six haplotypes and a novel codon change (M190V) were found among Saudi Arabian isolates. The haplotype diversity (0.948±0.004) and nucleotide diversity (0.0191±0.0008) were comparable to those from African hyperendemic countries. Positive selection in domain I of PfAMA1 among Saudi Arabian parasite population was observed because nonsynonymous nucleotide substitutions per nonsynonymous site (dN) significantly exceeded synonymous nucleotide substitutions per synonymous site (dS) and Tajima's D and its related statistics significantly deviated from neutrality in the positive direction. Despite a relatively low prevalence of malaria in Saudi Arabia, a minimum of 17 recombination events occurred in domain I. Genetic differentiation was significant between P. falciparum in Saudi Arabia and parasites from other geographic origins. Several shared or closely related haplotypes were found among parasites from different geographic areas, suggesting that vaccine derived from multiple shared epitopes could be effective across endemic countries.

  5. Recombinant 35-kDa inclusion membrane protein IncA as a candidate antigen for serodiagnosis of Chlamydophila pecorum.

    PubMed

    Mohamad, Khalil Yousef; Rekiki, Abdessalem; Berri, Mustapha; Rodolakis, Annie

    2010-07-14

    Chlamydophila pecorum strains are commonly found in the intestine and vaginal mucus of asymptomatic ruminants and may therefore induce a positive serological response when the animals are tested for C. abortus. They have also been associated with different pathological diseases in ruminants, swine and koala. The aim of this study was to identify specific C. pecorum immunodominant antigens which could be used in ELISA tests allowing to distinguish between animals infected with C. pecorum and those infected with other chlamydial species. A gene encoding 35-kDa inclusion membrane protein incA of C. pecorum was isolated by immunoscreening of the C. pecorum DNA library using ovine anti-C. pecorum antibodies. The recombinant IncA protein did not react with a murine serum directed against C. abortus but did react with a specific monoclonal antibody of C. pecorum and toward several ovine serum samples obtained after experimental infection with different C. pecorum strains. This protein could be a good candidate for specific diagnosis of C. pecorum infection.

  6. Expression of nestin, mesothelin and epithelial membrane antigen (EMA) in developing and adult human meninges and meningiomas.

    PubMed

    Petricevic, Josko; Forempoher, Gea; Ostojic, Ljerka; Mardesic-Brakus, Snjezana; Andjelinovic, Simun; Vukojevic, Katarina; Saraga-Babic, Mirna

    2011-11-01

    The spatial and temporal pattern of appearance of nestin, epithelial membrane antigen (EMA) and mesothelin proteins was immunohistochemically determined in the cells of normal developing and adult human meninges and meningiomas. Human meninges developed as two mesenchymal condensations in the head region. The simple squamous epithelium on the surface of leptomeninges developed during mesenchymal to epithelial transformation. Nestin appeared for the first time in week 7, EMA in week 8, while mesothelin appeared in week 22 of development. In the late fetal period and after birth, nestin expression decreased, whereas expression of EMA and mesothelin increased. EMA appeared in all surface epithelial cells and nodules, while mesothelin was found only in some of them. In adult meninges, all three proteins were predominantly localized in the surface epithelium and meningeal nodules. In meningothelial meningiomas (WHO grade I), EMA was detected in all tumor cells except in the endothelial cells, mesothelin characterized nests of tumor cells, while nestin was found predominantly in the walls of blood vessels. The distribution pattern of those proteins in normal meningeal and tumor cells indicates that nestin might characterize immature cells, while EMA and mesothelin appeared in maturing epithelial cells. Neoplastic transformation of these specific cell lineages contributes to the cell population in meningiomas.

  7. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer

    PubMed Central

    Peng, Zheng-Hong; Sima, Monika; Salama, Mohamed E.; Kopečková, Pavla; Kopeček, Jindřich

    2015-01-01

    Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (–GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer – DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates’ in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice. PMID:24160903

  8. Plasmodium falciparum apical membrane antigen 1 vaccine elicits multifunctional CD4 cytokine-producing and memory T cells.

    PubMed

    Huaman, Maria Cecilia; Mullen, Gregory E D; Long, Carole A; Mahanty, Siddhartha

    2009-08-20

    The Plasmodium falciparum apical membrane antigen 1 (AMA1) is a leading vaccine candidate and was tested for safety and immunogenicity in human Phase I Clinical Trials. PBMC from vaccine recipients were analyzed by flow cytometric methods to determine the nature of T-cell responses and AMA1-reactive memory T cells. Both CD4 and CD8 T cells produced a number of cytokines following AMA1 re-stimulation, with IL-5-producing cells at the highest frequency, consistent with a Th2 bias. The relative frequency of multifunctional cells synthesizing Th1 cytokines IFN-gamma, IL-2 and TNF-alpha changed after each vaccination. Interestingly, median fluorescence intensity measurements revealed that cells producing more than one cytokine contributed greater quantities of each cytokine than cell populations that produced each of the cytokines alone. AMA1 vaccination also elicited the development of memory cell populations, and both central and effector memory T cells were identified concurrently after the AMA1 vaccination. The detailed profile of multifunctional T-cell responses to AMA1 presented here will advance our ability to assess the immunogenicity of human malarial vaccines.

  9. New frontiers in prostate cancer imaging: clinical utility of prostate-specific membrane antigen positron emission tomography.

    PubMed

    Afaq, Asim; Batura, Deepak; Bomanji, Jamshed

    2017-02-14

    Prostate-specific membrane antigen positron emission tomography (PSMA PET) is a relatively new method of imaging prostate cancer that increases diagnostic accuracy in detecting and guiding management in various stages of the disease pathway. Gallium-68-labelled PSMA PET has increased the sensitivity of detection of disease recurrence at low PSA levels, thus allowing an optimal window for salvage treatment. Apart from its use in disease recurrence, PSMA PET has the potential for increasing sensitivity and specificity for primary tumour localisation and in detecting lymph node disease, leading to a more accurate initial staging of the condition. In advanced disease, the use of PSMA PET may be able to assess response to treatment and also guide treatment with radionuclide therapy. Newer ligands under development might provide avenues for theranostic or personalised therapy applications with early data showing high PSA response rates. The rate of translation of PSMA PET into clinical practice has been remarkable. The use of this modality is likely to increase with future efforts to modify the radiotracer including (18)F labelling to improve availability.

  10. Molecular cloning of the common acute lymphoblastic leukemia antigen (CALLA) identifies a type II integral membrane protein

    SciTech Connect

    Shipp, M.A.; Richardson, N.E.; Sayre, P.H.; Brown, N.R.; Masteller, E.L.; Clayton, L.K.; Ritz, J.; Reinherz, E.L. )

    1988-07-01

    Common acute lymphoblastic leukemia antigen (CALLA) is a 100-kDa cell-surface glycoprotein expressed on most acute lymphoblastic leukemias and certain other immature lymphoid malignancies and on normal lymphoid progenitors. The latter are either uncommitted to B- or T-cell lineage or committed to only the earliest stages of B- or T-lymphocyte maturation. To elucidate the primary structure of CALLA, the authors purified the protein to homogeneity, obtained the NH{sub 2}-terminal sequence from both the intact protein and derived tryptic and V8 protease peptides and isolated CALLA cDNAs from a Nalm-6 cell line {lambda}gt10 library using redundant oligonucleotide probes. The CALLA cDNA sequence predicts a 750-amino acid integral membrane protein with a single 24-amino acid hydrophobic segment that could function as both a transmembrane region and a signal peptide. The COOH-terminal 700 amino acids, including six potential N-linked glycosylation sites compose the extracellular protein segment, whereas the 25 NM{sub 2}-terminal amino acids remaining after cleavage of the initiation methionine form the cytoplasmic tail. CALLA{sup +} cells contain CALLA transcripts of 2.7 to 5.7 kilobases with the major 5.7- and 3.7-kilobase mRNAs being preferentially expressed in specific cell types.

  11. Molecular Insights into the Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and an Invasion-Inhibitory Peptide

    PubMed Central

    Wang, Geqing; MacRaild, Christopher A.; Mohanty, Biswaranjan; Mobli, Mehdi; Cowieson, Nathan P.; Anders, Robin F.; Simpson, Jamie S.; McGowan, Sheena; Norton, Raymond S.; Scanlon, Martin J.

    2014-01-01

    Apical membrane antigen 1 (AMA1) of the human malaria parasite Plasmodium falciparum has been implicated in invasion of the host erythrocyte. It interacts with malarial rhoptry neck (RON) proteins in the moving junction that forms between the host cell and the invading parasite. Agents that block this interaction inhibit invasion and may serve as promising leads for anti-malarial drug development. The invasion-inhibitory peptide R1 binds to a hydrophobic cleft on AMA1, which is an attractive target site for small molecules that block parasite invasion. In this work, truncation and mutational analyses show that Phe5-Phe9, Phe12 and Arg15 in R1 are the most important residues for high affinity binding to AMA1. These residues interact with two well-defined binding hot spots on AMA1. Computational solvent mapping reveals that one of these hot spots is suitable for small molecule targeting. We also confirm that R1 in solution binds to AMA1 with 1∶1 stoichiometry and adopts a secondary structure consistent with the major form of R1 observed in the crystal structure of the complex. Our results provide a basis for designing high affinity inhibitors of the AMA1-RON2 interaction. PMID:25343578

  12. Prostate-Specific Membrane Antigen Targeted Polymersomes for Delivering Mocetinostat and Docetaxel to Prostate Cancer Cell Spheroids

    PubMed Central

    2016-01-01

    Prostate cancer cells overexpress the prostate-specific membrane antigen (PSMA) receptors on the surface. Targeting the PSMA receptor creates a unique opportunity for drug delivery. Docetaxel is a Food and Drug Administration-approved drug for treating metastatic and androgen-independent prostate cancer, and mocetinostat is a potent inhibitor of class I histone deacetylases. In this study, we prepared reduction-sensitive polymersomes presenting folic acid on the surface and encapsulating either docetaxel or mocetinostat. The presence of folic acid allowed efficient targeting of the PSMA receptor and subsequent internalization of the polymeric vesicles in cultured LNCaP prostate cancer cell spheroids. The intracellular reducing agents efficiently released docetaxel and mocetinostat from the polymersomes. The combination of the two drug-encapsulated polymersome formulations significantly (p < 0.05) decreased the viability of the LNCaP cells (compared to free drugs or control) in three-dimensional spheroid cultures. The calculated combination index value indicated a synergistic effect for the combination of mocetinostat and docetaxel. Thus, our PSMA-targeted drug-encapsulated polymersomes has the potential to lead to a new direction in prostate cancer therapy that decreases the toxicity and increases the efficacy of the drug delivery systems. PMID:27917408

  13. Prostate-specific membrane antigen (PSMA) assembles a macromolecular complex regulating growth and survival of prostate cancer cells "in vitro" and correlating with progression "in vivo".

    PubMed

    Perico, Maria Elisa; Grasso, Silvia; Brunelli, Matteo; Martignoni, Guido; Munari, Enrico; Moiso, Enrico; Fracasso, Giulio; Cestari, Tiziana; Naim, Hassan Y; Bronte, Vincenzo; Colombatti, Marco; Ramarli, Dunia

    2016-11-08

    The expression of Prostate Specific-Membrane Antigen (PSMA) increases in high-grade prostate carcinoma envisaging a role in growth and progression. We show here that clustering PSMA at LNCaP or PC3-PSMA cell membrane activates AKT and MAPK pathways thus promoting proliferation and survival. PSMA activity was dependent on the assembly of a macromolecular complex including filamin A, beta1 integrin, p130CAS, c-Src and EGFR. Within this complex beta1 integrin became activated thereby inducing a c-Src-dependent EGFR phosphorylation at Y1086 and Y1173 EGF-independent residues. Silencing or blocking experiments with drugs demonstrated that all the complex components were required for full PSMA-dependent promotion of cell growth and/or survival in 3D culture, but that p130CAS and EGFR exerted a major role. All PSMA complex components were found assembled in multiple samples of two high-grade prostate carcinomas and associated with EGFR phosphorylation at Y1086. The expression of p130CAS and pEGFRY1086 was thus analysed by tissue micro array in 16 castration-resistant prostate carcinomas selected from 309 carcinomas and stratified from GS 3+4 to GS 5+5. Patients with Gleason Score ≤5 resulted negative whereas those with GS≥5 expressed p130CAS and pEGFRY1086 in 75% and 60% of the cases, respectively.Collectively, our results demonstrate for the first time that PSMA recruits a functionally active complex which is present in high-grade patients. In addition, two components of this complex, p130CAS and the novel pEGFRY1086, correlate with progression in castration-resistant patients and could be therefore useful in therapeutic or surveillance strategies of these patients.

  14. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization

    PubMed Central

    Mahdavi, Jafar; Pirinccioglu, Necmettin; Oldfield, Neil J.; Carlsohn, Elisabet; Stoof, Jeroen; Aslam, Akhmed; Self, Tim; Cawthraw, Shaun A.; Petrovska, Liljana; Colborne, Natalie; Sihlbom, Carina; Borén, Thomas; Wooldridge, Karl G.; Ala'Aldeen, Dlawer A. A.

    2014-01-01

    Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis. PMID:24451549

  15. Beriberi Induced Cardiomyopathy Requiring Salvage Venoarterial Extracorporeal Membrane Oxygenation

    PubMed Central

    Patel, Samir; Kothari, Sorabh; Denk, Jennifer

    2016-01-01

    Beriberi refers to a constellation of symptoms caused primarily by thiamine (vitamin B1) deficiency. An acute and fulminant presentation of this rare condition has been described in the literature as “Shoshin” beriberi which is characterized by catastrophic cardiovascular collapse. Early recognition and treatment lead to dramatic improvements of symptoms. We present a case of thiamine deficiency-induced acute heart failure in a malnourished patient leading to cardiac arrest necessitating VA-ECMO (venoarterial extracorporeal membrane oxygenation) with improvement in heart function secondary to thiamine administration. PMID:28050289

  16. Effect of radiochemical modification on biodistribution of scFvD2B antibody fragment recognising prostate specific membrane antigen.

    PubMed

    Frigerio, Barbara; Benigni, Fabio; Luison, Elena; Seregni, Ettore; Pascali, Claudio; Fracasso, Giulio; Morlino, Sara; Valdagni, Riccardo; Mezzanzanica, Delia; Canevari, Silvana; Figini, Mariangela

    2015-11-01

    Antibody-based reagents represent a promising strategy as clinical diagnostic tools. Prostate cancer (PCa) is the second-leading cause of death in males in the Western population. There is a presently unmet need for accurate diagnostic tool to localize and define the extent of both primary PCa and occult recurrent disease. One of the most suitable targets for PCa is the prostate-specific membrane antigen (PSMA) recognised by the monoclonal antibody D2B that we re-shaped into the single chain Fv (scFv format). Aim of this study was to evaluate in preclinical in vivo models the target specificity of scFvD2B after labelling with different radionuclides. (111)In radiolabelling was performed via the chelator Bz-NOTA, and (131)I radioiodination was performed using iodogen. The potential for molecular imaging and the biological behaviour of the radiolabelled scFvD2B were evaluated in mice bearing two subcutaneous PCa isogenic cell lines that differed only in PSMA expression. Biodistribution studies were performed at 3, 9, 15 and 24h after injection to determine the optimal imaging time point. A significant kidney accumulation, as percentage of injected dose of tissue (%ID/g), was observed for (111)In-scFvD2B at 3h after injection (45%ID/g) and it was maintained up to 24h (26%ID/g). By contrast, kidney accumulation of (131)I-scFvD2B was only marginally (0.3%ID/g at 24h). At the optimal time point defined between 15h and 24h, regardless of the radionuclide used, the scFvD2B was able to localize significantly better in the PSMA expressing tumours compared to the negative control; with (131)I-scFvD2B yielding a significantly better target/background ratio compared to (111)In-scFvD2B. These data suggest that, besides antigen specificity, chemical modification may affect antibody fragment biodistribution.

  17. Cellular membrane composition requirement by antimicrobial and anticancer peptide GA-K4.

    PubMed

    Mishig-Ochir, Tsogbadrakh; Gombosuren, Davaadulam; Jigjid, Altanchimeg; Tuguldur, Badamkhatan; Chuluunbaatar, Galbadrakh; Urnukhsaikhan, Enerelt; Pathak, Chinar; Lee, Bong-Jin

    2016-12-16

    Naturally occurring antimicrobial peptides important for innate immunity are widely studied for their antimicrobial and anticancer activity. The primary target of these AMPs is believed to be the bacterial cytoplasmic membrane. However, the interaction between cytoplasmic membrane and the antimicrobial peptides remains poorly understood. Therefore to focus on the target membrane composition that is required by AMPs to interact with membranes, we have examined the interaction of the antimicrobial and anticancer active 11-residue GA-K4 (FLKWLFKWAKK) peptide with model and intact cell membranes. Effect on the structural conformational properties of GA-K4 peptide was investigated by means of far-UV CD and fluorescence spectroscopic methods. The different conformation of GA-K4 peptide in large unilamellar vesicles (LUV) bilayer and micelle environment suggest that the curvature has an influence on the secondary structure acquired by the peptide. Furthermore, the leakage experiment result confirmed that GA-K4 induced the leakage of cytoplasmic membrane in Staphylococcus аureus bacterial cells. Fluorescence data revealed the interfacial location of GA-K4 peptide in the model membranes. The blue-shift in emission wavelength by tryptophan residues in fluorescence data indicated the penetration of GA-K4 peptide in micelles and phospholipid bilayers. These results showed that the GA-K4 peptide is a membrane-active peptide and its activity depends on membrane curvature and lipid composition. Although further studies are required to confirm the mechanism of action, the data suggest mechanism of toroidal pore formation for the interaction of GA-K4 peptide with membranes. Our studies will be helpful in better understanding of the membrane requirment of peptides to express their therapeutic effects.

  18. Suppression of colitis by adoptive transfer of helminth antigen-treated dendritic cells requires interleukin-4 receptor-α signaling

    PubMed Central

    Matisz, C. E.; Faz-López, B.; Thomson, E.; Al Rajabi, A.; Lopes, F.; Terrazas, L. I.; Wang, A.; Sharkey, K. A.; McKay, D. M.

    2017-01-01

    Infection with helminth parasites has been explored as a treatment for autoimmune and inflammatory diseases. As helminth antigens have potent immunomodulation properties capable of inducing regulatory programs in a variety of cell types, transferring cells treated with helminth antigens represents a novel extension to helminth therapy. Previous work determined that transfer of bone marrow-derived dendritic cells (DC) pulsed with a crude extract of the tapeworm Hymenolepis diminuta (HD) can suppress colitis in recipient mice. The present study explored the mechanism of disease suppression and the importance of interleukin (IL)-4 signaling. Transfer of HD-DCs suppressed dinitrobenzene sulfonic acid (DNBS)-induced colitis through activation of recipient IL-4 receptor-α. The transferred HD-DCs required IL-4Rα and the capacity to secrete IL-10 to drive IL-4 and IL-10 production and to suppress colitis in recipient mice. Treatment of DCs with IL-4 evokes an alternatively activated phenotype, but adoptive transfer of these cells did not affect the outcome of colitis. Collectively, these studies demonstrate the complexity between IL-4 and IL-10 in donor cells and recipient, and the requirement for parasite- and host-derived factors in this novel form of cell therapy. Thus IL-4Rα signaling is revealed as a pathway that could be exploited for helminth antigen cell-based therapy. PMID:28094779

  19. Immunogenicity and protective role of antigenic regions from five outer membrane proteins of Flavobacterium columnare in grass carp Ctenopharyngodon idella

    NASA Astrophysics Data System (ADS)

    Luo, Zhang; Liu, Zhixin; Fu, Jianping; Zhang, Qiusheng; Huang, Bei; Nie, Pin

    2016-11-01

    Flavobacterium columnare causes columnaris disease in freshwater fish. In the present study, the antigenic regions of five outer membrane proteins (OMPs), including zinc metalloprotease, prolyl oligopeptidase, thermolysin, collagenase and chondroitin AC lyase, were bioinformatically analyzed, fused together, and then expressed as a recombinant fusion protein in Escherichia coli. The expressed protein of 95.6 kDa, as estimated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was consistent with the molecular weight deduced from the amino acid sequence. The purified recombinant protein was used to vaccinate the grass carp, Ctenopharyngodon idella. Following vaccination of the fish their IgM antibody levels were examined, as was the expression of IgM, IgD and IgZ immunoglobulin genes and other genes such as MHC Iα and MHC IIβ, which are also involved in adaptive immunity. Interleukin genes ( IL), including IL-1β, IL-8 and IL-10, and type I and type II interferon ( IFN) genes were also examined. At 3 and 4 weeks post-vaccination (wpv), significant increases in IgM antibody levels were observed in the fish vaccinated with the recombinant fusion protein, and an increase in the expression levels of IgM, IgD and IgZ genes was also detected following the vaccinations, thus indicating that an adaptive immune response was induced by the vaccinations. Early increases in the expression levels of IL and IFN genes were also observed in the vaccinated fish. At four wpv, the fish were challenged with F. columnare, and the vaccinated fish showed a good level of protection against this pathogen, with 39% relative percent survival (RPS) compared with the control group. It can be concluded, therefore, that the five OMPs, in the form of a recombinant fusion protein vaccine, induced an immune response in fish and protection against F. columnare.

  20. Preclinical Evaluation of (18)F-PSMA-1007, a New Prostate-Specific Membrane Antigen Ligand for Prostate Cancer Imaging.

    PubMed

    Cardinale, Jens; Schäfer, Martin; Benešová, Martina; Bauder-Wüst, Ulrike; Leotta, Karin; Eder, Matthias; Neels, Oliver C; Haberkorn, Uwe; Giesel, Frederik L; Kopka, Klaus

    2017-03-01

    In recent years, several radiotracers targeting the prostate-specific membrane antigen (PSMA) have been introduced. Some of them have had a high clinical impact on the treatment of patients with prostate cancer. However, the number of (18)F-labeled tracers addressing PSMA is still limited. Therefore, we aimed to develop a radiofluorinated molecule resembling the structure of therapeutic PSMA-617. Methods: The nonradioactive reference compound PSMA-1007 and the precursor were produced by solid-phase chemistry. The radioligand (18)F-PSMA-1007 was produced by a 2-step procedure with the prosthetic group 6-(18)F-fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester. The binding affinity of the ligand for PSMA and its internalization properties were evaluated in vitro with PSMA-positive LNCaP (lymph node carcinoma of the prostate) cells. Further, organ distribution studies were performed with mice bearing LNCaP and PC-3 (prostate cancer cell line; PSMA-negative) tumors. Finally, small-animal PET imaging of an LNCaP tumor-bearing mouse was performed. Results: The identified ligand had a binding affinity of 6.7 ± 1.7 nM for PSMA and an exceptionally high internalization ratio (67% ± 13%) in vitro. In organ distribution studies, high and specific tumor uptake (8.0 ± 2.4 percentage injected dose per gram) in LNCaP tumor-bearing mice was observed. In the small-animal PET experiments, LNCaP tumors were clearly visualized. Conclusion: The radiofluorinated PSMA ligand showed promising characteristics in its preclinical evaluation, and the feasibility of prostate cancer imaging was demonstrated by small-animal PET studies. Therefore, we recommend clinical transfer of the radioligand (18)F-PSMA-1007 for use as a diagnostic PET tracer in prestaging and monitoring of prostate cancer.

  1. Crystal Structure of Plasmodium knowlesi Apical Membrane Antigen 1 and Its Complex with an Invasion-Inhibitory Monoclonal Antibody

    PubMed Central

    van der Eijk, Marjolein; Thomas, Alan W.; Singh, Balbir; Kocken, Clemens H. M.

    2015-01-01

    The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of the erythrocyte, is currently being pursued in human vaccine trials against P. falciparum. Recent vaccine trials in macaques using the P. knowlesi orthologue PkAMA1 have shown that it protects against infection by this parasite species and thus should be developed for human vaccination as well. Here, we present the crystal structure of Domains 1 and 2 of the PkAMA1 ectodomain, and of its complex with the invasion-inhibitory monoclonal antibody R31C2. The Domain 2 (D2) loop, which is displaced upon binding the Rhoptry Neck Protein 2 (RON2) receptor, makes significant contacts with the antibody. R31C2 inhibits binding of the Rhoptry Neck Protein 2 (RON2) receptor by steric blocking of the hydrophobic groove and by preventing the displacement of the D2 loop which is essential for exposing the complete binding site on AMA1. R31C2 recognizes a non-polymorphic epitope and should thus be cross-strain reactive. PkAMA1 is much less polymorphic than the P. falciparum and P. vivax orthologues. Unlike these two latter species, there are no polymorphic sites close to the RON2-binding site of PkAMA1, suggesting that P. knowlesi has not developed a mechanism of immune escape from the host’s humoral response to AMA1. PMID:25886591

  2. In Vitro Targeted Photodynamic Therapy with a Pyropheophorbide-a Conjugated Inhibitor of Prostate Specific Membrane Antigen

    PubMed Central

    Liu, Tiancheng; Wu, Lisa Y.; Choi, Joseph K.; Berkman, Clifford E.

    2009-01-01

    BACKROUND The lack of specific delivery of photosensitizers (PSs), represents a significant limitation of photodynamic therapy (PDT) of cancer. The biomarker prostate-specific membrane antigen (PSMA) has attracted considerable attention as a target for imaging and therapeutic applications for prostate cancer. Although recent efforts have been made to conjugate inhibitors of PSMA with imaging agents, there have been no reports on photosensitizer-conjugated PSMA inhibitors for targeted PDT of prostate cancer. The present study focuses on the use of a PSMA inhibitor-conjugate of pyropheophorbide-a (Ppa-conjugate 2) for targeted PDT to achieve apoptosis in PSMA+ LNCaP cells. METHODS Confocal laser scanning microscopy with a combination of nuclear staining and immunofluorescence methods were employed to monitor the specific imaging and PDT-mediated apoptotic effects on PSMA-positive LNCaP and PSMA-negative (PC-3) cells. RESULTS Our results demonstrated that PDT-mediated effects by Ppa-conjugate 2 were specific to LNCaP cells, but not PC-3 cells. Cell permeability was detected as early as 2 h by HOE33342/PI double-staining, becoming more intense by 4 h. Evidence for the apoptotic caspase cascade being activated was based on the appearance of PARP p85 fragment. TUNEL assay detected DNA fragmentation 16 h post-PDT, confirming apoptotic events. CONCLUSIONS Cell permeability by HOE33342/PI double-staining as well as PARP p85 fragment and TUNEL assays confirm cellular apoptosis in PSMA+ cells when treated with PS-inhibitor conjugate 2 and subsequently irradiated. It is expected that the PSMA targeting small-molecule of this conjugate can serve as a delivery vehicle for PDT and other therapeutic applications for prostate cancer. PMID:19142895

  3. Regulated membrane protein entry into flagella is facilitated by cytoplasmic microtubules and does not require IFT.

    PubMed

    Belzile, Olivier; Hernandez-Lara, Carmen I; Wang, Qian; Snell, William J

    2013-08-05

    The membrane protein composition of the primary cilium, a key sensory organelle, is dynamically regulated during cilium-generated signaling [1, 2]. During ciliogenesis, ciliary membrane proteins, along with structural and signaling proteins, are carried through the multicomponent, intensely studied ciliary diffusion barrier at the base of the organelle [3-8] by intraflagellar transport (IFT) [9-18]. A favored model is that signaling-triggered accumulation of previously excluded membrane proteins in fully formed cilia [19-21] also requires IFT, but direct evidence is lacking. Here, in studies of regulated entry of a membrane protein into the flagellum of Chlamydomonas, we show that cells use an IFT-independent mechanism to breach the diffusion barrier at the flagellar base. In resting cells, a flagellar signaling component [22], the integral membrane polypeptide SAG1-C65, is uniformly distributed over the plasma membrane and excluded from the flagellar membrane. Flagellar adhesion-induced signaling triggers rapid, striking redistribution of the protein to the apical ends of the cells concomitantly with entry into the flagella. Protein polarization and flagellar enrichment are facilitated by cytoplasmic microtubules. Using a conditional anterograde IFT mutant, we demonstrate that the IFT machinery is not required for regulated SAG1-C65 entry into flagella. Thus, integral membrane proteins can negotiate passage through the ciliary diffusion barrier without the need for a motor.

  4. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    PubMed

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  5. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance.

    PubMed

    Esterházy, Daria; Loschko, Jakob; London, Mariya; Jove, Veronica; Oliveira, Thiago Y; Mucida, Daniel

    2016-05-01

    Oral tolerance prevents pathological inflammatory responses to innocuous foreign antigens by peripheral regulatory T cells (pT(reg) cells). However, whether a particular subset of antigen-presenting cells (APCs) is required during dietary antigen exposure for the 'instruction' of naive CD4(+) T cells to differentiate into pT(reg) cells has not been defined. Using myeloid lineage-specific APC depletion in mice, we found that monocyte-derived APCs were dispensable, while classical dendritic cells (cDCs) were critical, for pT(reg) cell induction and oral tolerance. CD11b(-) cDCs from the gut-draining lymph nodes efficiently induced pT(reg) cells and, conversely, loss of transcription factor IRF8-dependent CD11b(-) cDCs impaired their polarization, although oral tolerance remained intact. These data reveal the hierarchy of cDC subsets in the induction of pT(reg) cells and their redundancy during the development of oral tolerance.

  6. B7 expression and antigen presentation by human brain endothelial cells: requirement for proinflammatory cytokines.

    PubMed

    Prat, A; Biernacki, K; Becher, B; Antel, J P

    2000-02-01

    Interaction between systemic immune cells with cells of the blood-brain barrier is a central step in development of CNS-directed immune responses. Endothelial cells are the first cells of the blood-brain barrier encountered by migrating lymphocytes. To investigate the antigen-presenting capacity of human adult brain endothelial cells (HBECs), we used HBECs derived from surgically resected temporal lobe tissue, cocultured with allogeneic peripheral blood derived CD4+ T lymphocytes. HBECs in response to IFN-gamma, but not under basal culture conditions, expressed HLA-DR, B7.1 and B7.2 antigens. Despite such up-regulation, these IFN-gamma-treated HBECs, in contrast to human microglia and PB monocytes, did not sustain allogeneic CD4+ cell proliferation, supported only low levels of IL-2 and IFN-gamma production, and did not stimulate IL-2 receptor expression. CD4+ T cell proliferation and increased IL-2 receptor expression could be obtained by addition of IL-2. Our data suggests that, although HBECs cannot alone support T cell proliferation and cytokine production, HBECs acting in concert with cytokines derived from a proinflammatory environment could support such a response.

  7. Antigen and vaccine banks: technical requirements and the role of the european antigen bank in emergency foot and mouth disease vaccination.

    PubMed

    Lombard, M; Füssel, A E

    2007-04-01

    Antigen and vaccine banks are stocks of immunogenic materials ready to be formulated into vaccines (bulk antigens) or ready to use (vaccines) in case of need by one or more of the parties of the bank. These stocks were primarily developed by foot and mouth disease [FMD] free European countries to control unexpected severe FMD episodes after the cessation of routine vaccination in the 1990s. For various reasons, including the lack of suitable antigens or of discriminatory tests to be used following emergency vaccination, such banks have so far not been developed to control other transboundary diseases, although over the last few years stocks of vaccines have been collected by the European Community to support control measures for bluetongue or classical swine fever. The FMD virus antigens in the banks are stored at ultra-low temperatures (usually -130 degrees C) to guarantee a shelf life of at least five years compared to a shelf-life of one to two years for vaccines stored at +4 degrees C. When concentrated, a 50 I volume of antigens can contain up to 15 million cattle doses as per the standard potency specifications in the OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Selecting antigen/vaccine strains for storage in a bank and selecting the appropriate strain(s) to be used in the case of emergency vaccination is the responsibility of FMD disease experts. The paper discusses the role of serological testing for the detection of infected animals in a vaccinated population, which is necessary for the recognition of FMD status. Technical advantages and disadvantages of antigen and vaccine banks in general are also outlined in this article. Finally, the experience of the European Community in organising, renewing, and controlling a sizeable FMD antigen bank since 1993 is discussed, and the use of the European Union (EU) antigen bank for international actions outside the EU is presented.

  8. Antigen recognition. V. Requirement for histocompatibility between antigen-presenting cell and B cell in the response to a thymus- dependent antigen, and lack of allogeneic restriction between T and B cells

    PubMed Central

    1981-01-01

    The restrictions imposed by the major histocompatibility complex on T-B- antigen-presenting cell (APC) interactions were studied with an in vivo adoptive transfer system, using mutually tolerant T and B cells taken from one-way fetal liver chimeras. It was found that the B cells and adoptive recipient (which provides APC function) have to share determinants encoded by the left-hand end of the H-2 complex for cooperation, whereas there is apparently no such requirement for T-B cell syngeneicity. Suppression arising from allogeneic effects between the host and the transferred T or B cells was excluded by the use of tolerant as well as normal adoptive recipients; both were functionally equivalent. We conclude that under experimental conditions, unrestricted helper T cell function and concurrent APC-B cell genetic restriction can be demonstrated in vivo. PMID:7276826

  9. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation.

    PubMed

    Miner, Jeffrey H; Li, Cong; Mudd, Jacqueline L; Go, Gloriosa; Sutherland, Ann E

    2004-05-01

    Laminins are components of all basement membranes and have well demonstrated roles in diverse developmental processes, from the peri-implantation period onwards. Laminin 1 (alpha1beta1gamma1) is a major laminin found at early stages of embryogenesis in both embryonic and extraembryonic basement membranes. The laminin gamma1 chain has been shown by targeted mutation to be required for endodermal differentiation and formation of basement membranes; Lamc1(-/-) embryos die within a day of implantation. We report the generation of mice lacking laminin alpha1 and laminin beta1, the remaining two laminin 1 chains. Mutagenic insertions in both Lama1 and Lamb1 were obtained in a secretory gene trap screen. Lamb1(-/-) embryos are similar to Lamc1(-/-) embryos in that they lack basement membranes and do not survive beyond embryonic day (E) 5.5. However, in Lama1(-/-) embryos, the embryonic basement membrane forms, the embryonic ectoderm cavitates and the parietal endoderm differentiates, apparently because laminin 10 (alpha5beta1gamma1) partially compensates for the absent laminin 1. However, such compensation did not occur for Reichert's membrane, which was absent, and the embryos died by E7. Overexpression of laminin alpha5 from a transgene improved the phenotype of Lama1(-/-) embryos to the point that they initiated gastrulation, but this overexpression did not rescue Reichert's membrane, and trophoblast cells did not form blood sinuses. These data suggest that both the molecular composition and the integrity of basement membranes are crucial for early developmental events.

  10. Toll-Like Receptor Activation by Generalized Modules for Membrane Antigens from Lipid A Mutants of Salmonella enterica Serovars Typhimurium and Enteritidis

    PubMed Central

    Rossi, Omar; Caboni, Mariaelena; Negrea, Aurel; Necchi, Francesca; Alfini, Renzo; Micoli, Francesca; Saul, Allan; MacLennan, Calman A.

    2016-01-01

    Invasive nontyphoidal Salmonella (iNTS) disease is a neglected disease with high mortality in children and HIV-positive individuals in sub-Saharan Africa, caused primarily by Africa-specific strains of Salmonella enterica serovars Typhimurium and Enteritidis. A vaccine using GMMA (generalized modules for membrane antigens) from S. Typhimurium and S. Enteritidis containing lipid A modifications to reduce potential in vivo reactogenicity is under development. GMMA with penta-acylated lipid A showed the greatest reduction in the level of cytokine release from human peripheral blood monocytes from that for GMMA with wild-type lipid A. Deletion of the lipid A modification genes msbB and pagP was required to achieve pure penta-acylation. Interestingly, ΔmsbB ΔpagP GMMA from S. Enteritidis had a slightly higher stimulatory potential than those from S. Typhimurium, a finding consistent with the higher lipopolysaccharide (LPS) content and Toll-like receptor 2 (TLR2) stimulatory potential of the former. Also, TLR5 ligand flagellin was found in Salmonella GMMA. No relevant contribution to the stimulatory potential of GMMA was detected even when the flagellin protein FliC from S. Typhimurium was added at a concentration as high as 10% of total protein, suggesting that flagellin impurities are not a major factor for GMMA-mediated immune stimulation. Overall, the stimulatory potential of S. Typhimurium and S. Enteritidis ΔmsbB ΔpagP GMMA was close to that of Shigella sonnei GMMA, which are currently in phase I clinical trials. PMID:26865597

  11. Preclinical Evaluation of 86Y-Labeled Inhibitors of Prostate-Specific Membrane Antigen for Dosimetry Estimates

    PubMed Central

    Banerjee, Sangeeta Ray; Foss, Catherine A.; Pullambhatla, Mrudula; Wang, Yuchuan; Srinivasan, Senthamizhchelvan; Hobbs, Robert F.; Baidoo, Kwamena E.; Brechbiel, Martin W.; Nimmagadda, Sridhar; Mease, Ronnie C.; Sgouros, George; Pomper, Martin G.

    2016-01-01

    86Y (half-life = 14.74 h, 33% β+) is within an emerging class of positron-emitting isotopes with relatively long physical half-lives that enables extended imaging of biologic processes. We report the synthesis and evaluation of 3 low-molecular-weight compounds labeled with 86Y for imaging the prostate-specific membrane antigen (PSMA) using PET. Impetus for the study derives from the need to perform dosimetry estimates for the corresponding 90Y-labeled radiotherapeutics. Methods Multistep syntheses were used in preparing 86Y-4–6. PSMA inhibition constants were evaluated by competitive binding assay. In vivo characterization using tumor-bearing male mice was performed by PET/CT for 86Y-4–6 and by biodistribution studies of 86Y-4 and 86Y-6 out to 24 h after injection. Quantitative whole-body PET scans were recorded to measure the kinetics for 14 organs in a male baboon using 86Y-6. Results Compounds 86Y-4–6 were obtained in high radiochemical yield and purity, with specific radioactivities of more than 83.92 GBq/µmol. PET imaging and biodistribution studies using PSMA-positive PC-3 PIP and PSMA-negative PC-3 flu tumor-bearing mice revealed that 86Y-4–6 had high site-specific uptake in PSMA-positive PC-3 PIP tumor starting at 20 min after injection and remained high at 24 h. Compound 86Y-6 demonstrated the highest tumor uptake and retention, with 32.17 ± 7.99 and 15.79 ± 6.44 percentage injected dose per gram (%ID/g) at 5 and 24 h, respectively. Low activity concentrations were associated with blood and normal organs, except for the kidneys, a PSMA-expressing tissue. PET imaging in baboons reveals that all organs have a 2-phase (rapid and slow) clearance, with the highest uptake (8 %ID/g) in the kidneys at 25 min. The individual absolute uptake kinetics were used to calculate radiation doses using the OLINDA/EXM software. The highest mean absorbed dose was received by the renal cortex, with 1.9 mGy per MBq of 86Y-6. Conclusion Compound 86Y-6 is a promising

  12. Natural selection and population genetic structure of domain-I of Plasmodium falciparum apical membrane antigen-1 in India.

    PubMed

    Basu, Madhumita; Maji, Ardhendu Kumar; Mitra, Mitashree; Sengupta, Sanghamitra

    2013-08-01

    Development of a vaccine against Plasmodium falciparum infection is an urgent priority particularly because of widespread resistance to most traditionally used drugs. Multiple evidences point to apical membrane antigen-1(AMA-1) as a prime vaccine candidate directed against P. falciparum asexual blood-stages. To gain understanding of the genetic and demographic forces shaping the parasite sequence diversity in Kolkata, a part of Pfama-1 gene covering domain-I was sequenced from 100 blood samples of malaria patients. Statistical and phylogenetic analyses of the sequences were performed using DnaSP and MEGA. Very high haplotype diversity was detected both at nucleotide (0.998±0.002) and amino-acid (0.996±0.001) levels. An abundance of low frequency polymorphisms (Tajima's D=-1.190, Fu & Li's D(∗) and F(∗)=-3.068 and -2.722), unimodal mismatch distribution and a star-like median-joining network of ama-1 haplotypes indicated a recent population expansion among Kolkata parasites. The high minimum number of recombination events (Rm=26) and a significantly high dN/dS of 3.705 (P<0.0001) in Kolkata suggested recombination and positive selection as major forces in the generation and maintenance of ama-1 allelic diversity. To evaluate the impact of observed non-synonymous substitutions in the context of AMA-1 functionality, PatchDock and FireDock protein-protein interaction solutions were mapped between PfAMA-1-PfRON2 and PfAMA-1-host IgNAR. Alterations in the desolvation and global energies of PfAMA-1-PfRON2 interaction complexes at the hotspot contact residues were observed together with redistribution of surface electrostatic potentials at the variant alleles with respect to referent Pf3D7 sequence. Finally, a comparison of P. falciparum subpopulations in five Indian regional isolates retrieved from GenBank revealed a significant level of genetic differentiation (FST=0.084-0.129) with respect to Kolkata sequences. Collectively, our results indicated a very high

  13. Carbohydrate antigens in nipple aspirate fluid predict the presence of atypia and cancer in women requiring diagnostic breast biopsy

    PubMed Central

    2010-01-01

    Background The goal of this prospective study was to determine (a) concentrations of the carbohydrate biomarkers Thomsen Friedenreich (TF) antigen and its precursor, Tn antigen, in nipple discharge (ND) collected from women requiring biopsy because of a suspicious breast lesion; and (b) if concentration levels predicted pathologic diagnosis. Methods Adult women requiring biopsy to exclude breast cancer were enrolled and ND obtained. The samples from 124 women were analyzed using an anti-TF and anti-Tn monoclonal antibodies in direct immunoassay. Results The highest median concentration in ND for TF and Tn was in women with ductal carcinoma in situ (DCIS). TF was higher in women with 1) cancer (DCIS or invasive) vs. either no cancer (atypia or benign pathology, p = .048), or benign pathology (p = .018); and 2) abnormal (atypia or cancer) versus benign pathology (p = .016); and was more predictive of atypia or cancer in post- compared to premenopausal women. Tn was not predictive of disease. High TF concentration and age were independent predictors of disease, correctly classifying either cancer or abnormal vs. benign pathology 83% of the time in postmenopausal women. Conclusions TF concentrations in ND were higher in women with precancer and cancer compared to women with benign disease, and TF was an independent predictor of breast atypia and cancer. TF may prove useful in early breast cancer detection. PMID:20920311

  14. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    NASA Astrophysics Data System (ADS)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  15. Physico-chemical requirements and kinetics of membrane fusion of flavivirus-like particles

    PubMed Central

    Espósito, Danillo L. A.; Nguyen, Jennifer B.; DeWitt, David C.; Rhoades, Elizabeth

    2015-01-01

    Flaviviruses deliver their RNA genome into the host-cell cytoplasm by fusing their lipid envelope with a cellular membrane. Expression of the flavivirus pre-membrane and envelope glycoprotein genes in the absence of other viral genes results in the spontaneous assembly and secretion of virus-like particles (VLPs) with membrane fusion activity. Here, we examined the physico-chemical requirements for membrane fusion of VLPs from West Nile and Japanese encephalitis viruses. In a bulk fusion assay, optimal hemifusion (or lipid mixing) efficiencies were observed at 37 °C. Fusion efficiency increased with decreasing pH; half-maximal hemifusion was attained at pH 5.6. The anionic lipids bis(monoacylglycero)phosphate and phosphatidylinositol-3-phosphate, when present in the target membrane, significantly enhanced fusion efficiency, consistent with the emerging model that flaviviruses fuse with intermediate-to-late endosomal compartments, where these lipids are most abundant. In a single-particle fusion assay, VLPs catalysed membrane hemifusion, tracked as lipid mixing with the cellular membrane, on a timescale of 7–20 s after acidification. Lipid mixing kinetics suggest that hemifusion is a kinetically complex, multistep process. PMID:25740960

  16. Methane to syngas conversion. Part I. Equilibrium conditions and stability requirements of membrane materials

    NASA Astrophysics Data System (ADS)

    Frade, J. R.; Kharton, V. V.; Yaremchenko, A.; Naumovich, E.

    Thermodynamic data have been used to predict the dependence of methane conversion on temperature and oxygen partial pressure in mixed conducting membrane reactors, and the corresponding fractions of water vapor, H 2, CO and CO 2. The relations between methane conversion, gas composition and oxygen partial pressure were also used to formulate the oxygen balance in mixed conducting membrane reactors, with tubular reactor and continuous stirred tank reactor (CSTR) configurations. A single dimensionless parameter accounts for the combined effects of geometric parameters of the membrane reactor, the permeability of the membrane material, and flow rate at the entry of the reactor. Selected examples were calculated to illustrate the effects of steam to methane and inert to methane ratios in the gas entering the reactor. The values of oxygen partial pressure required to attain the highest yield of CO and H 2 were also used to estimate the stability requirements to be met by mixed conducting membrane materials. Suitable membrane designs might be needed to bridge the difference between the conditions inside the reactors and the stability limits of known mixed conductors.

  17. The immunodominant outer membrane antigen of Actinobacillus actinomycetemcomitans is located in the serotype-specific high-molecular-mass carbohydrate moiety of lipopolysaccharide.

    PubMed Central

    Page, R C; Sims, T J; Engel, L D; Moncla, B J; Bainbridge, B; Stray, J; Darveau, R P

    1991-01-01

    Most patients with juvenile periodontitis manifest serum antibodies, sometimes at very high titers, to antigens of Actinobacillus actinomycetemcomitans, but the antigens inducing the immune response have been only partly characterized. We separated A. actinomycetemcomitans serotype b cells into protein, lipopolysaccharide (LPS), and soluble polysaccharide fractions and characterized them. Coomassie blue- and silver-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels were used to detect protein and LPS components, and gas-liquid chromatography was used to determine their carbohydrate and fatty acid composition. Western blots, dot blots, and enzyme-linked immunosorbent assay inhibition with high-titer sera from juvenile periodontitis patients revealed which components were highest in antibody binding activity. These results showed that the major portion of the immunoglobulin G binding activity resides in the purified mannan-free LPS, with lesser amounts in the total protein fraction. Using Sephacryl S-300 chromatography, we separated LPS into high-molecular-mass components with high carbohydrate contents by gas-liquid chromatography and a low-molecular-mass component consisting mainly of lipid A and the inner core sugar heptulose. The results of quantitative dot blot assays and enzyme-linked immunosorbent assay inhibition show that the serotype-specific antibody binding activity is highly concentrated in the high-molecular-mass carbohydrate-rich LPS fraction and is almost completely absent in the low-molecular-weight lipid-rich fraction. Our observations contrast with previous reports that the predominant serotype antigen of A. actinomycetemcomitans resides in a mannan-rich polysaccharide isolated from spent culture medium. These observations support the conclusion that the immunodominant antigen of the outer membrane is the O antigen of the LPS. Images PMID:1716610

  18. Detection of Prostate Specific Membrane Antigen at Picomolar Levels Using Biocatalysis Coupled to Assisted Ion Transfer Voltammetry at a Liquid-Organogel Microinterface Array.

    PubMed

    Akter, Rashida; Arrigan, Damien W M

    2016-12-06

    A label-free electrochemical strategy for the detection of a cancer biomarker, prostate specific membrane antigen (PSMA), at picomolar concentrations without the use of antibodies, was investigated. The approach is based on the assisted ion transfer of protons, generated by a series of enzymatic reactions, at an array of microinterfaces between two immiscible electrolyte solutions (μ-ITIES). This nonredox electrochemical approach based on biocatalysis-coupled proton transfer at the μ-ITIES array opens a new way to detect the prostate cancer biomarker, with detection capability achieved at concentrations below those indicative of disease presence. The strategy is expected to contribute to cancer diagnostics, recurrence monitoring, and therapeutic treatment efficacy.

  19. Image of the Month: Multifocal 68Ga Prostate-Specific Membrane Antigen Ligand Uptake in the Skeleton in a Man With Both Prostate Cancer and Multiple Myeloma.

    PubMed

    Rauscher, Isabel; Maurer, Tobias; Steiger, Katja; Schwaiger, Markus; Eiber, Matthias

    2017-03-31

    Ga prostate-specific membrane antigen (PSMA) HBED-CC PET/CT in a 65-year-old man with first diagnosis of prostate cancer (PC) and a history of multiple myeloma showing multifocal PSMA ligand uptake in the skeleton with corresponding osteolytic lesions in CT. Although osteolytic bone metastases are very rare in PC, PSMA expression in PET raised the suspicion of PC bone metastases. Bone marrow biopsy excluded PC metastases with immunohistochemistry showing endothelial expression of PSMA in small vessels within the myeloma.

  20. Flourodeoxyglucose positron emission tomography scan may be helpful in the case of ductal variant prostate cancer when prostate specific membrane antigen ligand positron emission tomography scan is negative.

    PubMed

    McEwan, Louise M; Wong, David; Yaxley, John

    2017-03-28

    Gallium-68 prostate specific membrane antigen ligand (Ga-68 PSMA) positron emission tomography/computed tomography (PET/CT) scanning is emerging as a useful imaging modality for the staging of suspected and known recurrent or metastatic prostate cancer and in staging of newly diagnosed higher grade prostate cancer. However, we have observed at our institution that in some cases of the more aggressive ductal variant, Ga-68 PSMA uptake has sometimes been poor compared with prominent 18-flourodeoxyglucose (F-18 FDG) avidity seen in F-18 FDG PET/CT, which would suggest that FDG PET/CT scans are important in staging of ductal pattern prostate cancer.

  1. Prostate-specific Membrane Antigen-targeted Ligand Positron Emission Tomography/Computed Tomography and Immunohistochemical Findings in a Patient With Synchronous Metastatic Penile and Prostate Cancer.

    PubMed

    Froehner, Michael; Kuithan, Friederike; Zöphel, Klaus; Heberling, Ulrike; Laniado, Michael; Wirth, Manfred P

    2017-03-01

    A 68-year-old man presented with synchronous metastatic penile and prostate cancer. 68Ga-labeled prostate-specific membrane antigen-targeted ligand positron emission tomography/computed tomography (PSMA-PET/CT) revealed tracer uptake in inguinal, pelvic, and retroperitoneal metastases. Lymph node biopsies and immunohistochemical staining revealed that both cancers involved the lymph nodes and expressed PSMA. In the deposits of penile squamous cell carcinoma, PSMA expression was seen in tumor vessels and may explain the PSMA-PET/CT positivity of inguinal nodes involved in squamous cell carcinoma. The interpretation of imaging in synchronous tumors should take this fact into consideration.

  2. Surface swarming motility by Pectobacterium atrosepticum is a latent phenotype that requires O antigen and is regulated by quorum sensing.

    PubMed

    Bowden, Steven D; Hale, Nicola; Chung, Jade C S; Hodgkinson, James T; Spring, David R; Welch, Martin

    2013-11-01

    We describe a previously cryptic phenotype associated with the opportunistic phytopathogen Pectobacterium atrosepticum (Pca): surface swarming. We found that when Pca was spotted onto plates containing <0.5% (w/v) agar, the culture produced copious amounts of extracellular matrix material containing highly motile cells. Once produced, this 'slime layer' spread rapidly across the plate either as an advancing front or as tendrils. Transposon mutagenesis was used to identify mutants that were affected in swarming. Hypo-swarmer mutants mostly carried insertions in a horizontally acquired island (HAI5), which encodes a cluster of genes involved in O antigen biosynthesis. Hyper-swarmer mutants mostly carried insertions in hexY, a known antagonist of the class I flagellar master regulator, FlhD4C2. In addition, we found that the nucleoid protein, histone-like nuclear structuring protein 2 (H-NS2), also regulated swarming behaviour. A mutant in which hns2 was overexpressed displayed a hyper-swarming phenotype, whereas a mutant in which the hns2 ORF was inactivated had a hypo-swarming phenotype. Swarming was also regulated by quorum sensing (QS) and by the carbon source being utilized. We show, using a range of epistasis experiments, that optimal swarming requires both motility and O antigen biosynthesis, and that H-NS2 and QS both promote swarming through their effects on motility.

  3. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly.

    PubMed

    Lee, Il-Hyung; Kai, Hiroyuki; Carlson, Lars-Anders; Groves, Jay T; Hurley, James H

    2015-12-29

    The endosomal sorting complexes required for transport (ESCRT) machinery functions in HIV-1 budding, cytokinesis, multivesicular body biogenesis, and other pathways, in the course of which it interacts with concave membrane necks and bud rims. To test the role of membrane shape in regulating ESCRT assembly, we nanofabricated templates for invaginated supported lipid bilayers. The assembly of the core ESCRT-III subunit CHMP4B/Snf7 is preferentially nucleated in the resulting 100-nm-deep membrane concavities. ESCRT-II and CHMP6 accelerate CHMP4B assembly by increasing the concentration of nucleation seeds. Superresolution imaging was used to visualize CHMP4B/Snf7 concentration in a negatively curved annulus at the rim of the invagination. Although Snf7 assemblies nucleate slowly on flat membranes, outward growth onto the flat membrane is efficiently nucleated at invaginations. The nucleation behavior provides a biophysical explanation for the timing of ESCRT-III recruitment and membrane scission in HIV-1 budding.

  4. A conserved amphipathic helix is required for membrane tubule formation by Yop1p

    PubMed Central

    Brady, Jacob P.; Claridge, Jolyon K.; Smith, Peter G.; Schnell, Jason R.

    2015-01-01

    The integral membrane proteins of the DP1 (deleted in polyposis) and reticulon families are responsible for maintaining the high membrane curvature required for both smooth endoplasmic reticulum (ER) tubules and the edges of ER sheets, and mutations in these proteins lead to motor neuron diseases, such as hereditary spastic paraplegia. Reticulon/DP1 proteins contain reticulon homology domains (RHDs) that have unusually long hydrophobic segments and are proposed to adopt intramembrane helical hairpins that stabilize membrane curvature. We have characterized the secondary structure and dynamics of the DP1 family protein produced from the YOP1 gene (Yop1p) and identified a C-terminal conserved amphipathic helix (APH) that, on its own, interacts strongly with negatively charged membranes and is necessary for membrane tubule formation. Analyses of DP1 and reticulon family members indicate that most, if not all, contain C-terminal sequences capable of forming APHs. Together, these results indicate that APHs play a previously unrecognized role in RHD membrane curvature stabilization. PMID:25646439

  5. Membranous nephropathy as a manifestation of graft-versus-host disease: association with HLA antigen typing, phospholipase A2 receptor, and C4d.

    PubMed

    Byrne-Dugan, Cathryn J; Collins, A Bernard; Lam, Albert Q; Batal, Ibrahim

    2014-12-01

    Glomerulopathy is an uncommon but increasingly recognized complication of hematopoietic cell transplantation. It typically manifests as membranous nephropathy, less commonly as minimal change disease, and rarely as proliferative glomerulonephritis. There is evidence to suggest that these glomerulopathies might represent manifestations of chronic graft-versus-host disease. In this report, we focus on membranous nephropathy as the most common form of glomerulopathy after hematopoietic cell transplantation. We present a case of membranous nephropathy that developed 483 days post-allogeneic hematopoietic stem cell transplantation in a patient with a history of acute graft-versus-host disease. We also share our experience with 4 other cases of membranous nephropathy occurring after allogeneic hematopoietic stem cell transplantation. Clinicopathologic correlates, including the association with graft-versus-host-disease, HLA antigen typing, glomerular deposition of immunoglobulin G (IgG) subclasses, subepithelial colocalization of IgG deposits with phospholipase A2 receptor staining, C4d deposition along the peritubular capillaries, and treatment, are discussed with references to the literature.

  6. Analysis of humoral immune response and cytokines in chickens vaccinated with Eimeria brunetti apical membrane antigen-1 (EbAMA1) DNA vaccine.

    PubMed

    Hoan, Tran Duc; Thao, Doan Thi; Gadahi, Javaid Ali; Song, Xiaokai; Xu, Lixin; Yan, Ruofeng; Li, Xiangrui

    2014-09-01

    This study aimed to determine the changes of cytokines, specific serum IgG and several parameters in chickens vaccinated with DNA vaccine encoding Eimeria brunetti apical membrane antigen-1 (EbAMA1) antigen. Two-week-old chickens were divided into five groups (four groups for experiment) randomly. Experimental groups of chickens were immunized with DNA vaccine while control group of chickens were injected with pVAX1 plasmid alone or TE buffer solution. All immunizations were boosted 2 weeks later. The EbAMA1 specific IgG antibody responses were measured at weeks 1-6 post-second immunizations and several parameters were also identified. The result showed that the antibody titers in chickens vaccinated with DNA vaccines were significantly different from those of the control groups 1 week after the second immunization and reached the maximum values 3 weeks post-second immunization. IFN-γ concentration was increased the highest level against EbAMA1 of all chickens vaccinated with vaccines up to 56-fold, follow by the specific IgG antibody levels were increased 10-17-fold compared with those of TE solution and plasmid (pVAX1) control chickens 1-6 weeks post-second immunization. In case of the levels of IL-10 and IL-17 was increased in experimental chickens with 4-5-fold. Even though it was statistically significant, TGF-β and IL-4 levels were higher in vaccinated than unvaccinated chickens. The results suggested that DNA vaccines encoding E. brunetti apical membrane antigen-1 (EbAMA1) could increase serum specific IgG antibody and cytokines concentration and could give protection against E. brunetti infection.

  7. Antigen persistence is required for dendritic cell licensing and CD8+ T cell cross-priming.

    PubMed

    Jusforgues-Saklani, Hélène; Uhl, Martin; Blachère, Nathalie; Lemaître, Fabrice; Lantz, Olivier; Bousso, Philippe; Braun, Deborah; Moon, James J; Albert, Matthew L

    2008-09-01

    It has been demonstrated that CD4(+) T cells require Ag persistence to achieve effective priming, whereas CD8(+) T cells are on "autopilot" after only a brief exposure. This finding presents a disturbing conundrum as it does not account for situations in which CD8(+) T cells require CD4(+) T cell help. We used a physiologic in vivo model to study the requirement of Ag persistence for the cross-priming of minor histocompatibility Ag-specific CD8(+) T cells. We report inefficient cross-priming in situations in which male cells are rapidly cleared. Strikingly, the failure to achieve robust CD8(+) T cell activation is not due to a problem with cross-presentation. In fact, by providing "extra help" in the form of dendritic cells (DCs) loaded with MHC class II peptide, it was possible to achieve robust activation of CD8(+) T cells. Our data suggest that the "licensing" of cross-presenting DCs does not occur during their initial encounter with CD4(+) T cells, thus accounting for the requirement for Ag persistence and suggesting that DCs make multiple interactions with CD8(+) T cells during the priming phase. These findings imply that long-lived Ag is critical for efficient vaccination protocols in which the CD8(+) T cell response is helper-dependent.

  8. Membrane transporters as machines: degenerate singularities as a requirement for function.

    PubMed

    Daniel, R W; Boyd, C A R

    2005-01-21

    It is suggested that Membrane Transporter functionality is based on low energy paths between proteins of different conformations. A simple extension of the Born-Oppenheimer approximation is used to reduce the protein structure problem to one of the kinematics of engineering mechanisms. Such low energy paths between conformations with the same handedness imply the existence of degenerate singularities in the engineering mechanism. The requirement for degeneracy leads to a number of conjectures. These include the structure and function of chaperones for constructing such proteins and the thermodynamic properties of membrane transporters.

  9. Membrane Ia expression and antigen-presenting accessory cell function of L cells transfected with class II major histocompatibility complex genes

    PubMed Central

    1984-01-01

    To study the relationship between the structure and function of Ia antigens, as well as the physiologic requirements for antigen presentation to major histocompatibility complex-restricted T cells, class II A alpha and A beta genes from the k and d haplotypes were transfected into Ltk- fibroblasts using the calcium phosphate coprecipitation technique. Individually transfected genes were actively transcribed in the L cells without covalent linkage to, or cotransformation with, viral enhancer sequences. However, cell surface expression of detectable I-A required the presence of transfected A alpha dA beta d or A alpha kA beta k pairs in a single cell. The level of I-A expression under these conditions was 1/5-1/10 that of Ia+ B lymphoma cells, or B lymphoma cells expressing transfected class II genes. These I-A-expressing transfectants were tested for accessory cell function and shown to present polypeptide and complex protein antigens to T cell clones and hybridomas in the context of the transfected gene products. One T cell clone, restricted to I-Ak plus GAT (L-glutamic acid60-L-alanine30-L-tyrosine10), had a profound cytotoxic effect on I-Ak- but not I-Ad-expressing transfectants in the presence of specific antigen. Assays of unprimed T cells showed that both Ia+ and Ia- L cells could serve as accessory cells for concanavalin A-induced proliferative responses. These data indicate that L cells can transcribe, translate, and express transfected class II genes and that such I-A-bearing L cells possess the necessary metabolic mechanisms for presenting these antigens to T lymphocytes in the context of their I-A molecules. PMID:6436430

  10. CD8+ T Cell Fate and Function Influenced by Antigen-Specific Virus-Like Nanoparticles Co-Expressing Membrane Tethered IL-2

    PubMed Central

    Wojta-Stremayr, Daniela; Neunkirchner, Alina; Srinivasan, Bharani; Trapin, Doris; Schmetterer, Klaus G.; Pickl, Winfried F.

    2015-01-01

    A variety of adjuvants fostering humoral immunity are known as of today. However, there is a lack of adjuvants or adjuvant strategies, which directly target T cellular effector functions and memory. We here determined whether systemically toxic cytokines such as IL-2 can be restricted to the site of antigen presentation and used as ‘natural adjuvants’. Therefore, we devised antigen-presenting virus-like nanoparticles (VNP) co-expressing IL-2 attached to different membrane-anchors and assessed their potency to modulate CD8+ T cell responses in vitro and in vivo. Efficient targeting of IL-2 to lipid rafts and ultimately VNP was achieved by fusing IL-2 at its C-terminus to a minimal glycosylphosphatidylinositol (GPI)-anchor acceptor sequence. To identify optimal membrane-anchor dimensions we inserted one (1Ig), two (2Ig) or four (4Ig) immunoglobulin(Ig)-like domains of CD16b between IL-2 and the minimal GPI-anchor acceptor sequence of CD16b (GPI). We found that the 2IgGPI version was superior to all other evaluated IL-2 variants (IL-2v) in terms of its i) degree of targeting to lipid rafts and to the VNP surface, ii) biological activity, iii) co-stimulation of cognate T cells in the absence of bystander activation and iv) potency to induce differentiation and acquisition of CD8+ T cell effector functions in vitro and in vivo. In contrast, the GPI version rather favored memory precursor cell formation. These results exemplify novel beneficial features of membrane-bound IL-2, which in addition to its mere T cell stimulatory capacity include the induction of differential effector and memory functions in CD8+ T lymphocytes. PMID:25946103

  11. Lysosome-associated membrane glycoprotein 1 predicts fratricide amongst T cell receptor transgenic CD8+ T cells directed against tumor-associated antigens

    PubMed Central

    Kirschner, Andreas; Thiede, Melanie; Blaeschke, Franziska; Richter, Günther H.S.; Gerke, Julia S.; Baldauf, Michaela C.; Grünewald, Thomas G.P.; Busch, Dirk H.; Burdach, Stefan; Thiel, Uwe

    2016-01-01

    Aim Autologous as well as allogeneic CD8+ T cells transduced with tumor antigen specific T cell receptors (TCR) may cause significant tumor lysis upon adoptive transfer. Besides unpredictable life-threatening off-target effects, these TCRs may unexpectedly commit fratricide. We hypothesized lysosome-associated membrane glycoprotein 1 (LAMP1, CD107a) to be a marker for fratricide in TCR transgenic CD8+ T cells. Methods We identified HLA-A*02:01/peptide-restricted T cells directed against ADRB3295. After TCR identification, we generated HLA-A*02:01/peptide restricted TCR transgenic T cells by retroviral transduction and tested T cell expansion rates as well as A*02:01/peptide recognition and ES killing in ELISpot and xCELLigence assays. Expansion arrest was analyzed via Annexin and CD107a staining. Results were compared to CHM1319-TCR transgenic T cells. Results Beta-3-adrenergic receptor (ADRB3) as well as chondromodulin-1 (CHM1) are over-expressed in Ewing Sarcoma (ES) but not on T cells. TCR transgenic T cells demonstrated HLA-A*02:01/ADRB3295 mediated ES recognition and killing in ELISpot and xCELLigence assays. 24h after TCR transduction, CD107a expression correlated with low expansion rates due to apoptosis of ADRB3 specific T cells in contrast to CHM1 specific transgenic T cells. Amino-acid exchange scans clearly indicated the cross-reactive potential of HLA-A*02:01/ADRB3295- and HLA-A*02:01/CHM1319-TCR transgenic T cells. Comparison of peptide motive binding affinities revealed extended fratricide among ADRB3295 specific TCR transgenic T cells in contrast to CHM1319. Conclusion Amino-acid exchange scans alone predict TCR cross-reactivity with little specificity and thus require additional assessment of potentially cross-reactive HLA-A*02:01 binding candidates. CD107a positivity is a marker for fratricide of CD8+ TCR transgenic T cells. PMID:27447745

  12. Processing and presentation of an antigen of Mycobacterium avium require access to an acidified compartment with active proteases.

    PubMed Central

    Holsti, M A; Allen, P M

    1996-01-01

    We have generated a murine T-cell hybridoma, 1C9, which recognizes an antigen expressed by a virulent clinical isolate of Mycobacterium avium. Both peritoneal exudate macrophages and bone marrow-derived macrophages infected in vitro with M. avium process and present the antigen to the T-cell hybridoma. Gel filtration chromatography of a sonicate of M. avium followed by T-cell Western blotting (immunoblotting) demonstrated that the antigen recognized by hybridoma 1C9 is approximately 50 kDa. In addition, treatment of macrophages with the lysosomotropic agent chloroquine or with inhibitors of acid proteases inhibits processing and presentation of the antigen. These results indicate that the antigen must encounter an acidic compartment with active proteases for processing and presentation to occur. Our results are discussed in the context of our current understanding of how mycobacterial antigens are processed and presented by infected macrophages to T cells. PMID:8926074

  13. Direct effects of ionizing radiation on integral membrane proteins. Noncovalent energy transfer requires specific interpeptide interactions

    SciTech Connect

    Jhun, E.; Jhun, B.H.; Jones, L.R.; Jung, C.Y. )

    1991-05-25

    The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100{degree}C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein.

  14. Biological and biochemical properties of Nonidet P40-solubilized and partially purified tumor-specific antigens of the transplantation type from plasma membranes of a methylcholanthrene-induced sarcoma.

    PubMed

    Natori, T; Law, L W; Appella, E

    1977-09-01

    Tumor-specific transplantation antigen (TSTA) was solubilized from cell membranes of sarcoma Meth-A with non-ionic detergent Nonidet P40. Soluble TSTA was partially characterized by chromatographic separation and electrophoresis. The antigen responsible for tumor rejection activity had a molecular weight of approximately 70,000 daltons in the presence of detergent and an electrophoretic mobility of alpha-globulin. TSTA was well separated from mouse histocompatibility antigen H-2 by a sequence of procedures, including gel filtration, lectin affinity chromatography, column electrophoresis, and rechromatography on agarose, showed only three major bands on polyacrylamide gel electrophoresis. TSTA was specific for sarcoma Meth-A.

  15. Crystal Structure of TDP-Fucosamine Acetyl Transferase (WECD) from Escherichia Coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis

    SciTech Connect

    Hung,M.; Rangarajan, E.; Munger, C.; Nadeau, G.; Sulea, T.; Matte, A.

    2006-01-01

    Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence {yields}(3)-{alpha}-D-Fuc4NAc-(1{yields}4)-{beta}-D-ManNAcA-(1{yields}4)-{alpha}-D-GlcNAc-(1{yields}). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structure of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.

  16. Neisserial outer membrane vesicles bind the coinhibitory receptor carcinoembryonic antigen-related cellular adhesion molecule 1 and suppress CD4+ T lymphocyte function.

    PubMed

    Lee, Hannah S W; Boulton, Ian C; Reddin, Karen; Wong, Henry; Halliwell, Denise; Mandelboim, Ofer; Gorringe, Andrew R; Gray-Owen, Scott D

    2007-09-01

    Pathogenic Neisseria bacteria naturally liberate outer membrane "blebs," which are presumed to contribute to pathology, and the detergent-extracted outer membrane vesicles (OMVs) from Neisseria meningitidis are currently employed as meningococcal vaccines in humans. While the composition of these vesicles reflects the bacteria from which they are derived, the functions of many of their constituent proteins remain unexplored. The neisserial colony opacity-associated Opa proteins function as adhesins, the majority of which mediate bacterial attachment to human carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). Herein, we demonstrate that the Opa proteins within OMV preparations retain the capacity to bind the immunoreceptor tyrosine-based inhibitory motif-containing coinhibitory receptor CEACAM1. When CD4(+) T lymphocytes were exposed to OMVs from Opa-expressing bacteria, their activation and proliferation in response to a variety of stimuli were effectively halted. This potent immunosuppressive effect suggests that localized infection will generate a "zone of inhibition" resulting from the diffusion of membrane blebs into the surrounding tissues. Moreover, it demonstrates that OMV-based vaccines must be developed from strains that lack CEACAM1-binding Opa variants.

  17. Proteaselike sequence in hepatitis B virus core antigen is not required for e antigen generation and may not be part of an aspartic acid-type protease.

    PubMed Central

    Nassal, M; Galle, P R; Schaller, H

    1989-01-01

    The hepatitis B virus (HBV) C gene directs the synthesis of two major gene products: HBV core antigen (HBcAg[p21c]), which forms the nucleocapsid, and HBV e antigen (HBeAg [p17e]), a secreted antigen that is produced by several processing events during its maturation. These proteins contain an amino acid sequence similar to the active-site residues of aspartic acid and retroviral proteases. On the basis of this sequence similarity, which is highly conserved among mammalian hepadnaviruses, a model has been put forward according to which processing to HBeAg is due to self-cleavage of p21c involving the proteaselike sequence. Using site-directed mutagenesis in conjunction with transient expression of HBV proteins in the human hepatoma cell line HepG2, we tested this hypothesis. Our results with HBV mutants in which one or two of the conserved amino acids have been replaced by others suggest strongly that processing to HBeAg does not depend on the presence of an intact proteaselike sequence in the core protein. Attempts to detect an influence of this sequence on the processing of HBV P gene products into enzymatically active viral polymerase also gave no conclusive evidence for the existence of an HBV protease. Mutations replacing the putatively essential aspartic acid showed little effect on polymerase activity. Additional substitution of the likewise conserved threonine residue by alanine, in contrast, almost abolished the activity of the polymerase. We conclude that an HBV protease, if it exists, is functionally different from aspartic acid and retroviral proteases. Images PMID:2657101

  18. Phospholipase treatment of accessory cells that have been exposed to antigen selectively inhibits antigen-specific Ia-restricted, but not allospecific, stimulation of T lymphocytes.

    PubMed Central

    Falo, L D; Benacerraf, B; Rock, K L

    1986-01-01

    The corecognition of antigen and class II major histocompatibility complex (MHC) molecules (Ia molecules) by the T-cell receptor is a cell surface event. Before antigen is recognized, it must be taken up, processed, and displayed on the surface of an Ia-bearing accessory cell (antigen-presenting cell, APC). The exact nature of antigen processing and the subsequent associations of antigen with the APC plasma membrane, Ia molecules, and/or the T-cell receptor are not well defined. To further analyze these events, we have characterized the processing and presentation of the soluble polypeptide antigen bovine insulin. We found that this antigen requires APC-dependent processing, as evidenced by the inability of metabolically inactivated APCs to present native antigen to antigen plus Ia-specific T-T hybridomas. The ability of the same APCs to present antigen after uptake and processing showed that this antigen subsequently becomes stably associated with the APC plasma membrane. To characterize the basis for this association, we analyzed its sensitivity to enzymatic digestion. APCs exposed to antigen, treated with phospholipase A2, and then immediately fixed lost the ability to stimulate bovine insulin plus I-Ad-specific hybridomas. In contrast, the ability of these same APCs to stimulate I-Ad allospecific hybridomas was unaffected. This effect of phospholipase is not mimicked by the broadly active protease Pronase, nor is there evidence for contaminating proteases in the phospholipase preparation. These results suggest that one consequence of antigen processing may be an antigen-lipid association that contributes to the anchoring of antigen to the APC membrane. The implications of this model are discussed. PMID:3529095

  19. Detection of pulmonary and extrapulmonary tuberculosis patients with the 38-kilodalton antigen from Mycobacterium tuberculosis in a rapid membrane-based assay.

    PubMed Central

    Zhou, A T; Ma, W L; Zhang, P Y; Cole, R A

    1996-01-01

    A rapid membrane-based serologic assay using the 38-kDa antigen from Mycobacterium tuberculosis for the diagnosis of tuberculosis (TB) was evaluated with 201 patients with pulmonary TB, 67 patients with extrapulmonary TB, 79 Mycobacterium bovis BCG-vaccinated healthy controls, and 77 non-TB respiratory patients. The overall sensitivities, specificities, and positive and negative predictive values were, respectively, 92, 92, 84, and 96% for sputum-positive TB patients; 70, 92, 87, and 79% for sputum-negative TB patients; and 76, 92, 80, and 90% for extrapulmonary-TB patients. Only 2% (1 of 44) of the healthy control BCG-vaccinated subjects gave weak positive signals in the assay, indicating that this rapid serological assay is a valuable aid in clinical diagnosis for both pulmonary and extrapulmonary TB. PMID:8705680

  20. Characterization of the key antigenic components and pre-clinical immune responses to a meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles.

    PubMed

    Finney, Michelle; Vaughan, Thomas; Taylor, Stephen; Hudson, Michael J; Pratt, Catherine; Wheeler, Jun X; Vipond, Caroline; Feavers, Ian; Jones, Christopher; Findlow, Jamie; Borrow, Ray; Gorringe, Andrew

    2008-01-01

    Serogroup B strains are now responsible for over 80% of meningococcal disease in the UK and no suitable vaccine is available that confers universal protection against all serogroup B strains. Neisseria lactamica shares many antigens with the meningococcus, except capsule and the surface protein PorA. Many of these antigens are thought to be responsible for providing cross-protective immunity to meningococcal disease. We have developed an N. lactamica vaccine using methods developed for meningococcal outer membrane vesicle (OMV) vaccines. The major antigenic components were identified by excision of 11 major protein bands from an SDS-PAGE gel, followed by mass spectrometric identification. These bands contained at least 22 proteins identified from an unassembled N. lactamica genome, 15 of which having orthologues in published pathogenic Neisseria genomes. Western blotting revealed that most of these bands were immunogenic, and antibodies to these proteins generally cross-reacted with N. meningitidis proteins. Sera from mice and rabbits immunized with either N. lactamica or N. meningitidis OMVs produced comparable cross-reactive ELISA titres against OMVs prepared from a panel of diverse meningococcal strains. Mice immunized with either N. meningitidis or N. lactamica OMVs showed no detectable serum bactericidal activity against the panel of target strains except N. meningitidis OMV sera against the homologous strain. Similarly, rabbit antisera to N. lactamica OMVs elicited little or no bactericidal antibodies against the panel of serogroup B meningococcal strains. However, such antisera did mediate opsonophagocytosis, suggestingthat this may did mediate opsonophagocytosis, suggesting that this may be a mechanism by which this vaccine protects in a mouse model of meningococcal bacteraemia.

  1. The Major Antigenic Membrane Protein of “Candidatus Phytoplasma asteris” Selectively Interacts with ATP Synthase and Actin of Leafhopper Vectors

    PubMed Central

    Galetto, Luciana; Bosco, Domenico; Balestrini, Raffaella; Genre, Andrea; Fletcher, Jacqueline; Marzachì, Cristina

    2011-01-01

    Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of “Candidatus Phytoplasma asteris”, the chrysanthemum yellows phytoplasmas (CYP) strain, and three others as non-vectors. Interactions between a labelled (recombinant) CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity. PMID

  2. Metastasis in urothelial carcinoma mimicking prostate cancer metastasis in Ga-68 prostate-specific membrane antigen positron emission tomography-computed tomography in a case of synchronous malignancy.

    PubMed

    Gupta, Manoj; Choudhury, Partha Sarathi; Gupta, Gurudutt; Gandhi, Jatin

    2016-01-01

    Prostate cancer is the second most common cancer in man. It commonly presents with urinary symptoms, bone pain, or diagnosed with elevated prostate-specific antigen.(PSA) levels. Correct staging and early diagnosis of recurrence by a precise imaging tool are the keys for optimum management. Molecular imaging of prostate cancer with Ga-68 prostate-specific membrane antigen.(PSMA), positron emission tomography-computed tomography.(PET-CT) has recently received significant attention and frequently used with a signature to prostate cancer-specific remark. However, this case will highlight the more cautious use of it. A-72-year-old male treated earlier for synchronous double malignancy.(invasive papillary urothelial carcinoma right ureter and carcinoma prostate) presented with rising PSA.(0.51.ng/ml) and referred for Ga-68 PSMA PET-CT, which showed a positive enlarged left supraclavicular lymph node. Lymph node biopsy microscopic and immunohistochemistry examination revealed metastatic carcinoma favoring urothelial origin. Specificity of PSMA scan to prostate cancer has been seen to be compromised in a certain situation mostly due to neoangiogenesis, and false positives emerged in renal cell cancer, differentiated thyroid cancer, glioblastoma, breast cancer brain metastasis, and paravertebral schwannomas. Understanding the causes of false positive will further enhance the confidence of interpretating PSMA scans.

  3. Sertoliform endometrioid carcinoma of the endometrium with dual immunophenotypes for epithelial membrane antigen and inhibin alpha: case report and literature review.

    PubMed

    Liang, Sharon X; Patel, Kausha; Pearl, Michael; Liu, Jingxuan; Zheng, Wenxin; Tornos, Carmen

    2007-07-01

    We report a rare case of sertoliform endometrioid carcinoma of the endometrium in a 71-year-old African American woman who presented with postmenopausal bleeding. Her medical condition was remarkable for hypertension, diabetes, and obesity. She underwent total hysterectomy, right salpingo-oophorectomy and lymph node sampling. The endometrium was occupied by a 4.5-cm solid polypoid tumor, which grossly invaded into the myometrium. Microscopically, the tumor consisted of small hollow tubules, anastomosing cords and trabeculae, and tightly packed nests. Microglandular areas mimicking adult granulosa cell tumors were also present. But true Call-Exner bodies were absent. Component of typical endometrioid carcinoma was noted only focally. The uninvolved endometrium demonstrated atypical complex hyperplasia. The tumor cells were diffusely immunoreactive for epithelial membrane antigen, estrogen receptor, and progesterone receptor (PR), and focally for vimentin. The tumor cells were also diffusely positive for inhibin alpha and CD99. Immunostains for other sex cord markers (calretinin, WT-1, and Melan-A) were also positive in approximately 30% to 40% of the tumor cells. Immunostains for CD10, smooth muscle actin, desmin, or HHF35 were negative. Two ovarian sertoliform endometrioid carcinomas from our archived tissue were, however, immunoreactive for epithelial membrane antigen but negative for inhibin alpha. Despite the prominent sertoliform features, both histologically and immunohistochemically, the tumor was of a high-grade endometrial carcinoma and will likely behave as such. As of today, dual differentiation of epithelium and sex cord by immunohistochemical staining has not been demonstrated in sertoliform endometrioid carcinomas of either endometrial or ovarian origin. Our case is the first documentation of such example and suggests that endometrial carcinoma can undergo true sex cord differentiation.

  4. Differential requirement for proliferating cell nuclear antigen in 5' and 3' nick-directed excision in human mismatch repair.

    PubMed

    Guo, Shuangli; Presnell, Steven R; Yuan, Fenghua; Zhang, Yanbin; Gu, Liya; Li, Guo-Min

    2004-04-23

    Proliferating cell nuclear antigen (PCNA) is involved in mammalian mismatch repair at a step prior to or at mismatch excision, but the molecular mechanism of this process is not fully understood. To examine the role of PCNA in mismatch-provoked and nick-directed excision, orientation-specific mismatch removal of heteroduplexes with a pre-existing nick was monitored in human nuclear extracts supplemented with the PCNA inhibitor protein p21. We show here that, whereas 3' nick-directed mismatch excision was completely inhibited by low concentrations of p21 or a p21 C-terminal fusion protein, 5' nick-directed excision was only partially blocked under the same conditions. No further reduction of the 5' excision was detected when a much higher concentration of p21 C-terminal protein was used. These results suggest the following. (i) There is a differential requirement for PCNA in 3' and 5' nick-directed excision; and (ii) 5' nick-directed excision is conducted by a manner either dependent on or independent of PCNA. Our in vitro reconstitution experiments indeed identified a 5' nick-directed excision pathway that is dependent on PCNA, hMutSalpha, and a partially purified fraction from a HeLa nuclear extract.

  5. Membranes replace irradiated blast cells as growth requirement for leukemic blast progenitors in suspension culture

    SciTech Connect

    Nara, N.; McCulloch, E.A.

    1985-11-01

    The blast cells of acute myeloblastic leukemia (AML) may be considered as a renewal population, maintained by blast stem cells capable of both self-renewal and the generation of progeny with reduced or absent proliferative potential. This growth requires that two conditions be met: first, the cultures must contain growth factors in media conditioned either by phytohemagglutinin (PHA)-stimulated mononuclear leukocytes (PHA-LCM), or by cells of the continuous bladder carcinoma line HTB9 (HTB9-CM). Second, the cell density must be maintained at 10(6) blasts/ml; this may be achieved by adding irradiated cells to smaller numbers of intact blasts. The authors are concerned with the mechanism of the feeding function. They present evidence that (a) cell-cell contact is required. (b) Blasts are heterogeneous in respect to their capacity to support growth. (c) Fractions containing membranes from blast cells will substitute for intact cells in promoting the generation of new blast progenitors in culture. (d) This membrane function may be specific for AML blasts, since membranes from blasts of lymphoblastic leukemia or normal marrow cells were inactive.

  6. Topology of Legionella pneumophila DotA: an inner membrane protein required for replication in macrophages.

    PubMed Central

    Roy, C R; Isberg, R R

    1997-01-01

    The Legionella pneumophila dotA gene is required for intracellular growth of the bacterium in macrophages. In this study, a structure-function analysis of the DotA protein was conducted to elucidate the role of this protein in L. pneumophila pathogenesis. Translational fusions of dotA to the Escherichia coli phoA and lacZ genes indicated that DotA is an integral cytoplasmic membrane protein with eight membrane-spanning domains. DotA contains two large periplasmic domains of approximately 503 and 73 amino acids and a carboxyl-terminal cytoplasmic domain of 122 amino acids. Protein fractionation studies were consistent with DotA residing in the inner membrane. An alkaline phosphatase fusion located 9 amino acids upstream from the C terminus of DotA still retained function and was able to restore intracellular growth when harbored by two L. pneumophila dotA mutants. A hybrid protein from which the carboxyl-terminal 48 amino acids of DotA were deleted was unable to complement the intracellular growth defect in the dotA mutants, indicating that this cytoplasmic region is required for function. PMID:9009315

  7. Monoclonal antibodies requiring coating buffer with low pH for efficient antigen capture in sandwich ELISA: the rarities or practically important phenomena?

    PubMed

    Dmitriev, Alexander D; Tarakanova, Julia N; Yakovleva, Dinora A; Dmitriev, Dmitriy A; Phartooshnaya, Olga V; Kolyaskina, Galina I; Massino, Yulia S; Borisova, Olga V; Segal, Olga L; Smirnova, Maria B; Ulanova, Tatiana I; Lavrov, Viacheslav F

    2013-01-01

    This article reexamines some opinions concerning pH requirements for optimal immobilization of monoclonal antibodies (mAbs) by passive adsorption in antigen capture ELISA. It was discovered that substitution of "classical" sodium phosphate (pH 7.5) and carbonate (pH 9.5) coating solutions by acid (pH 2.8) buffers maximized antigen capture 4 out of 10 different tested anti-HBsAg mAbs, resulting in a 1.5-2.5 increase of binding curve coefficients. By measuring both mAbs amounts and functionality, the enhancement effect was attributed to the better preservation of solid phase antibodies activity.

  8. Using the AD12-ICT rapid-format test to detect Wuchereria bancrofti circulating antigens in comparison to Og4C3-ELISA and nucleopore membrane filtration and microscopy techniques.

    PubMed

    El-Moamly, Amal Abdul-Rasheed; El-Sweify, Mohamed Aly; Hafez, Mohamad Abdul

    2012-09-01

    Lymphatic filariasis (LF) continues to be a major source of permanent disability and an impediment to socio-economic development in 73 countries where more than 1 billion people are at risk and over 120 millions are infected. The global drive to eliminate LF necessitates an increasing demand for valid, reliable and rapid diagnostic tests. This study aimed to assess the performance of the AD12 rapid format immunochromatographic test (ICT) to detect Wuchereria bancrofti circulating antigens, against the combined gold standard: TropBio Og4C3-ELISA (enzyme-linked immunosorbent assay) which detects circulating filarial antigen (CFA) and the nucleopore membrane filtration and microscopic examination. This prospective case-control study involved 647 asymptomatic migrant workers from filariasis-endemic countries. Of these specimens, 32 were positive for microfilaremia using the membrane filtration and microscopy, 142 positive by ELISA (of which 32 had microfilaremia), and 128 positive by the ICT (of which 31 had microfilaremia). The performance of the ICT was calculated against 32 true-positive and 90 true-negative cases. For the detection of CFA, the ICT had a sensitivity of 97% (95% confidence interval [CI] 91-103), specificity 100% (95% CI 100-100), Positive Predictive Value (PPV) 100% (95% CI 100-100), Negative Predictive Value (NPV) 99% (95% CI 97-101); and the total accuracy of the test was 99% (95% CI 98-101). The agreement between ICT and ELISA in detecting W. bancrofti antigens was excellent (kappa = 0.934; p = 0.000). In conclusion, the AD12-ICT test for the detection of W. bancrofti-CFA was sensitive and specific and comparable to the performance of ELISA. The ICT would be a useful additional test to facilitate the proposed strategies for control and elimination of LF. Because it is rapid, simple to perform, and does not require the use of special equipment, the ICT may be most appropriate in screening programs and in monitoring the possible risk of introducing

  9. Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet

    SciTech Connect

    Lo, Yuan-Hung; Ho, Po-Chun; Chen, Min-Shan; Hugo, Eric; Ben-Jonathan, Nira; Wang, Shao-Chun

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Proliferating Cell Nuclear Antigen (PCNA) is phosphorylated at Y114. Black-Right-Pointing-Pointer Phospho-Y114 of PCNA is not required for cell proliferation for normal growth. Black-Right-Pointing-Pointer MCE during adipogenesis is abolished in the lack of the phosphorylation. Black-Right-Pointing-Pointer Homozygous Y114F mice are resistant to high fat diet induced obesity. Black-Right-Pointing-Pointer Our results shed light on the interface between proliferation and differentiation. -- Abstract: Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNA{sup F/F}) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNA{sup F/F} MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT

  10. Antigenic Properties and Processing Requirements of 65-Kilodalton Mannoprotein, a Major Antigen Target of Anti-Candida Human T-Cell Response, as Disclosed by Specific Human T-Cell Clones

    PubMed Central

    Nisini, Roberto; Romagnoli, Giulia; Gomez, Maria Jesus; La Valle, Roberto; Torosantucci, Antonella; Mariotti, Sabrina; Teloni, Raffaela; Cassone, Antonio

    2001-01-01

    T-cell-mediated immunity is known to play a central role in the host response to Candida albicans. T-cell clones are useful tools for the exact identification of fungal T-cell epitopes and the processing requirements of C. albicans antigens. We isolated human T-cell clones from an HLA-DRB1*1101 healthy donor by using an antigenic extract (MP-F2) of the fungus. Specific clones were T-cell receptor α/β and CD4+/CD8− and showed a T-helper type 1 cytokine profile (production of gamma interferon and not interleukin-4). The large majority of these clones recognized both the natural (highly glycosylated) and the recombinant (nonglycosylated) 65-kDa mannoprotein (MP65), an MP-F2 minor constituent that was confirmed to be an immunodominant antigen of the human T-cell response. Surprisingly, most of the clones recognized two synthetic peptides of different MP65 regions. However, the peptides shared the amino acid motif IXSXIXXL, which may be envisaged as a motif sequence representing the minimal epitope recognized by these clones. Three clones recognized natural and pronase-treated MP65 but did not detect nonglycosylated, recombinant MP65 or the peptides, suggesting a possible role for polysaccharides in T-cell recognition of C. albicans. Finally, lymphoblastoid B-cell lines were efficient antigen-presenting cells (APC) for recombinant MP65 and peptides but failed to present natural, glycosylated antigens, suggesting that nonprofessional APC might be defective in processing highly glycosylated yeast proteins. In conclusion, this study provides the first characterization of C. albicans-specific human T-cell clones and provides new clues for the definition of the cellular immune response against C. albicans. PMID:11349037

  11. Requirement for three signals in B cell responses. II. Analysis of antigen- and Ia-restricted T helper cell-B cell interaction

    PubMed Central

    1982-01-01

    We have recently reported that resting B cells must receive at least three different signals in a T helper cell (TH)-dependent as well as in a lipopolysaccharide (LPS)-induced B cell response (3), i.e., a specific TH signal (that can be bypassed by LPS), a nonspecific TH signal (mediated by Ia or antigen-nonspecific B cell helper factor), and an antigen (hapten) signal. In a system using male (H-Y) antigen- specific cloned TH of C57BL/6 origin and male (or female) B cells, we now confirm and extend these findings by demonstrating that H-Y- specific TH must see both H-Y and Ia determinants on the B cells (and not only on macrophages) to provide the first specific TH signal required for a plaque-forming cell (PFC) response. This signal was interfered with by a monoclonal anti-I-Ab antibody at the B cell level, was not mediated by detectable soluble factors (in contrast to the nonspecific signal also provided by the TH), and could be bypassed by LPS, in which case anti-I-Ab antibody had no effect. However, although the H-Y-specific TH induced a polyclonal PFC response (B cell differentiation) in the apparent absence of an antigen seen by the B cells, significant clonal expansion of PFC precursors occurred only when the B cells also recognized an antigen (hapten). PMID:6980255

  12. A bioinformatics prediction approach towards analyzing the glycosylation, co-expression and interaction patterns of epithelial membrane antigen (EMA/MUC1)

    NASA Astrophysics Data System (ADS)

    Kalra, Rajkumar S.; Wadhwa, Renu

    2015-02-01

    Epithelial membrane antigen (EMA or MUC1) is a heavily glycosylated, type I transmembrane glycoprotein commonly expressed by epithelial cells of duct organs. It has been shown to be aberrantly glycosylated in several diseases including cancer. Protein sequence based annotation and analysis of glycosylation profile of glycoproteins by robust computational and comprehensive algorithms provides possible insights to the mechanism(s) of anomalous glycosylation. In present report, by using a number of bioinformatics applications we studied EMA/MUC1 and explored its trans-membrane structural domain sequence that is widely subjected to glycosylation. Exploration of different extracellular motifs led to prediction of N and O-linked glycosylation target sites. Based on the putative O-linked target sites, glycosylated moieties and pathways were envisaged. Furthermore, Protein network analysis demonstrated physical interaction of EMA with a number of proteins and confirmed its functional involvement in cell growth and proliferation pathways. Gene Ontology analysis suggested an involvement of EMA in a number of functions including signal transduction, protein binding, processing & transport along with glycosylation. Thus, present study explored potential of bioinformatics prediction approach in analyzing glycosylation, co-expression and interaction patterns of EMA/MUC1 glycoprotein.

  13. A bioinformatics prediction approach towards analyzing the glycosylation, co-expression and interaction patterns of epithelial membrane antigen (EMA/MUC1)

    SciTech Connect

    Kalra, Rajkumar S. Wadhwa, Renu

    2015-02-27

    Epithelial membrane antigen (EMA or MUC1) is a heavily glycosylated, type I transmembrane glycoprotein commonly expressed by epithelial cells of duct organs. It has been shown to be aberrantly glycosylated in several diseases including cancer. Protein sequence based annotation and analysis of glycosylation profile of glycoproteins by robust computational and comprehensive algorithms provides possible insights to the mechanism(s) of anomalous glycosylation. In present report, by using a number of bioinformatics applications we studied EMA/MUC1 and explored its trans-membrane structural domain sequence that is widely subjected to glycosylation. Exploration of different extracellular motifs led to prediction of N and O-linked glycosylation target sites. Based on the putative O-linked target sites, glycosylated moieties and pathways were envisaged. Furthermore, Protein network analysis demonstrated physical interaction of EMA with a number of proteins and confirmed its functional involvement in cell growth and proliferation pathways. Gene Ontology analysis suggested an involvement of EMA in a number of functions including signal transduction, protein binding, processing and transport along with glycosylation. Thus, present study explored potential of bioinformatics prediction approach in analyzing glycosylation, co-expression and interaction patterns of EMA/MUC1 glycoprotein.

  14. [The enlarged diagnosis of the fatal penicillin accident. Immunehistologic demonstration of antigen-antibody complexes and of antibodies against the tubular basement membrane after administraiton of depot penicillin].

    PubMed

    Dirnhofer, R; Sonnabend, W; Sigrist, T

    1978-05-20

    In a case of fatal penicillin allergy it proved possible at autopsy to demonstrate (by immunohistological examination of basal membranes of proximal renal tubuli) antigen-antibody complexes belonging to the penicillin (BPO) group and to an anti-penicilloyl antibody of the IgG type. In addition, complement C3 was detected. Antibodies against the basal membranes or renal tubuli were also demonstrated in material eluted from the kidney, although an inflammatory reaction ot the immunoligical changes had not yet been observed in light microscopy. It is undecided whether this discrepancy is due to the low dose of penicillin administered or the relatively short time lag between first injection and time of fatality. It is assumed that, pathogenetically, a reaction of the serum sickness type is probably involved. For etiological clarification the use of immunohistological methods in addition to serological procedures provides further indices for an antecedent sensitization to penicillin, because assay effectiveness does not decrease even after a lengthy postmortal time-lapse. On the other hand, tissues and serum for examination should be frozen at low temperatures immediately after autopsy.

  15. Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential.

    PubMed

    Parker, Nadeene; Vidal-Puig, Antonio; Brand, Martin D

    2008-04-01

    Mild uncoupling of oxidative phosphorylation, caused by a leak of protons back into the matrix, limits mitochondrial production of ROS (reactive oxygen species). This proton leak can be induced by the lipid peroxidation products of ROS, such as HNE (4-hydroxynonenal). HNE activates uncoupling proteins (UCP1, UCP2 and UCP3) and ANT (adenine nucleotide translocase), thereby providing a negative feedback loop. The mechanism of activation and the conditions necessary to induce uncoupling by HNE are unclear. We have found that activation of proton leak by HNE in rat and mouse skeletal muscle mitochondria is dependent on incubation with respiratory substrate. In the presence of HNE, mitochondria energized with succinate became progressively more leaky to protons over time compared with mitochondria in the absence of either HNE or succinate. Energized mitochondria must attain a high membrane potential to allow HNE to activate uncoupling: a drop of 10-20 mV from the resting value is sufficient to blunt induction of proton leak by HNE. Uncoupling occurs through UCP3 (11%), ANT (64%) and other pathways (25%). Our findings have shown that exogenous HNE only activates uncoupling at high membrane potential. These results suggest that both endogenous HNE production and high membrane potential are required before mild uncoupling will be triggered to attenuate mitochondrial ROS production.

  16. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein.

    PubMed

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus; Broekema, Marjoleine F; de Haar, Colin; Schipper, Henk S; Boes, Marianne; Mandrup, Susanne; Kalkhoven, Eric

    2014-08-08

    Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently, CD1d-restricted invariant (i) natural killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are up-regulated in early adipogenesis, and are transcriptionally controlled by CCAAT/enhancer-binding protein (C/EBP)-β and -δ. Moreover, adipocyte-induced Th1 and Th2 cytokine release by iNKT cells also occurred in the absence of exogenous ligands, suggesting the display of endogenous lipid antigen-D1d complexes by 3T3-L1 adipocytes. Furthermore, we identified microsomal triglyceride transfer protein, which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen presenting cells, which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis.

  17. CD1d-mediated Presentation of Endogenous Lipid Antigens by Adipocytes Requires Microsomal Triglyceride Transfer Protein*

    PubMed Central

    Rakhshandehroo, Maryam; Gijzel, Sanne M. W.; Siersbæk, Rasmus; Broekema, Marjoleine F.; de Haar, Colin; Schipper, Henk S.; Boes, Marianne; Mandrup, Susanne; Kalkhoven, Eric

    2014-01-01

    Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently, CD1d-restricted invariant (i) natural killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are up-regulated in early adipogenesis, and are transcriptionally controlled by CCAAT/enhancer-binding protein (C/EBP)-β and -δ. Moreover, adipocyte-induced Th1 and Th2 cytokine release by iNKT cells also occurred in the absence of exogenous ligands, suggesting the display of endogenous lipid antigen-D1d complexes by 3T3-L1 adipocytes. Furthermore, we identified microsomal triglyceride transfer protein, which we show is also under the transcriptional regulation of C/EBPβ and –δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen presenting cells, which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis. PMID:24966328

  18. Requirements for distinct steps of phospholipase Cgamma2 regulation, membrane-raft-dependent targeting and subsequent enzyme activation in B-cell signalling.

    PubMed Central

    Rodriguez, Rosie; Matsuda, Miho; Storey, Amy; Katan, Matilda

    2003-01-01

    Studies of PLCgamma (phospholipase Cgamma) have identified a number of regulatory components required for signalling; however, molecular mechanisms and the relationship between events leading to translocation and an increase of substrate hydrolysis have not been well defined. The addition of a membrane-targeting tag to many signal transducers results in constitutive activation, suggesting that these processes could be closely linked and difficult to dissect. The present study of PLCgamma2 regulation by cross-linking of the BCR (B-cell antigen receptor) or H2O2 stress in DT40 B-cells, demonstrated that the membrane targeting is a separate step from further changes that result in enzyme activation and substrate hydrolysis. Furthermore, we have defined the roles of different domains of PLCgamma2 and, using a panel of cell lines deficient in components linked to PLCgamma2 regulation, the involvement of signalling molecules with respect to each of the steps. We have found that only the lipid-raft-targeted Lyn-PLCgamma2 construct, unlike non-specific membrane targeting, overcame the requirement for the adapter protein BLNK (B-cell linker). The stable expression of Lyn-PLCgamma2 was not accompanied by an increase in substrate hydrolysis in resting cells, which followed stimulation and specifically required the presence and/or activation of Syk, Btk, phosphoinositide 3-kinase but not BLNK, as established using deficient cell lines or specific inhibitors. Based on mutational analysis of the specific tyrosine residues [Tyr753-->Phe (Y753F)/Y759F] and SH2 (Src homology 2) domains (R564A/R672A) in the context of Lyn-PLCgamma2, we found that Tyr753/Tyr759 were essential, whereas the PLCgamma2 SH2 domains did not have an important role in the transient activation of Lyn-PLCgamma2 but may serve to stabilize an activated form in sustained activation. PMID:12780340

  19. The Dysferlin Domain-Only Protein, Spo73, Is Required for Prospore Membrane Extension in Saccharomyces cerevisiae.

    PubMed

    Okumura, Yuuya; Nakamura, Tsuyoshi S; Tanaka, Takayuki; Inoue, Ichiro; Suda, Yasuyuki; Takahashi, Tetsuo; Nakanishi, Hideki; Nakamura, Shugo; Gao, Xiao-Dong; Tachikawa, Hiroyuki

    2016-01-01

    Sporulation of Saccharomyces cerevisiae is a developmental process in which an ascus containing four haploid spores forms from a diploid cell. During this process, newly formed membrane structures called prospore membranes extend along the nuclear envelope and engulf and package daughter nuclei along with cytosol and organelles to form precursors of spores. Proteins involved in prospore membrane extension, Vps13 and Spo71, have recently been reported; however, the overall mechanism of membrane extension remains unclear. Here, we identified Spo73 as an additional factor involved in prospore membrane extension. Analysis of a spo73∆ mutant revealed that it shows defects similar to those of a spo71∆ mutant during prospore membrane formation. Spo73 localizes to the prospore membrane, and this localization is independent of Spo71 and Vps13. In contrast, a Spo73 protein carrying mutations in a surface basic patch mislocalizes to the cytoplasm and overexpression of Spo71 can partially rescue localization to the prospore membrane. Similar to spo71∆ mutants, spo73∆ mutants display genetic interactions with the mutations in the SMA2 and SPO1 genes involved in prospore membrane bending. Further, our bioinformatic analysis revealed that Spo73 is a dysferlin domain-only protein. Thus, these results suggest that a dysferlin domain-only protein, Spo73, functions with a dual pleckstrin homology domain protein, Spo71, in prospore membrane extension. Analysis of Spo73 will provide insights into the conserved function of dysferlin domains, which is related to dysferlinopathy. IMPORTANCE Prospore membrane formation consists of de novo double-membrane formation, which occurs during the developmental process of sporulation in Saccharomyces cerevisiae. Membranes are formed into their proper size and shape, and thus, prospore membrane formation has been studied as a general model of membrane formation. We identified SPO73, previously shown to be required for spore wall formation

  20. A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration.

    PubMed

    Beane, Wendy S; Morokuma, Junji; Adams, Dany S; Levin, Michael

    2011-01-28

    Biophysical signaling is required for both embryonic polarity and regenerative outgrowth. Exploiting endogenous ion transport for regenerative therapies will require direct regulation of membrane voltage. Here, we develop a pharmacological method to target ion transporters, uncovering a role for membrane voltage as a key regulator of anterior polarity in regenerating planaria. Utilizing the highly specific inhibitor, SCH-28080, our data reveal that H(+),K(+)-ATPase-mediated membrane depolarization is essential for anterior gene expression and brain induction. H(+),K(+)-ATPase-independent manipulation of membrane potential with ivermectin confirms that depolarization drives head formation, even at posterior-facing wounds. Using this chemical genetics approach, we demonstrate that membrane voltage controls head-versus-tail identity during planarian regeneration. Our data suggest well-characterized drugs (already approved for human use) might be exploited to control adult stem cell-driven pattern formation during the regeneration of complex structures.

  1. Requirements for the formation of membrane pores by the reovirus myristoylated micro1N peptide.

    PubMed

    Zhang, Lan; Agosto, Melina A; Ivanovic, Tijana; King, David S; Nibert, Max L; Harrison, Stephen C

    2009-07-01

    The outer capsid of the nonenveloped mammalian reovirus contains 200 trimers of the micro1 protein, each complexed with three copies of the protector protein sigma3. Conformational changes in micro1 following the proteolytic removal of sigma3 lead to release of the myristoylated N-terminal cleavage fragment micro1N and ultimately to membrane penetration. The micro1N fragment forms pores in red blood cell (RBC) membranes. In this report, we describe the interaction of recombinant micro1 trimers and synthetic micro1N peptides with both RBCs and liposomes. The micro1 trimer mediates hemolysis and liposome disruption under conditions that promote the micro1 conformational change, and mutations that inhibit micro1 conformational change in the context of intact virus particles also prevent liposome disruption by particle-free micro1 trimer. Autolytic cleavage to form micro1N is required for hemolysis but not for liposome disruption. Pretreatment of RBCs with proteases rescues hemolysis activity, suggesting that micro1N cleavage is not required when steric barriers are removed. Synthetic myristoylated micro1N peptide forms size-selective pores in liposomes, as measured by fluorescence dequenching of labeled dextrans of different sizes. Addition of a C-terminal solubility tag to the peptide does not affect activity, but sequence substitution V13N or L36D reduces liposome disruption. These substitutions are in regions of alternating hydrophobic residues. Their locations, the presence of an N-terminal myristoyl group, and the full activity of a C-terminally extended peptide, along with circular dichroism data that indicate prevalence of beta-strand secondary structure, suggest a model in which micro1N beta-hairpins assemble in the membrane to form a beta-barrel pore.

  2. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae.

    PubMed

    Sandkvist, M; Michel, L O; Hough, L P; Morales, V M; Bagdasarian, M; Koomey, M; DiRita, V J; Bagdasarian, M

    1997-11-01

    The general secretion pathway (GSP) of Vibrio cholerae is required for secretion of proteins including chitinase, enterotoxin, and protease through the outer membrane. In this study, we report the cloning and sequencing of a DNA fragment from V. cholerae, containing 12 open reading frames, epsC to -N, which are similar to GSP genes of Aeromonas, Erwinia, Klebsiella, Pseudomonas, and Xanthomonas spp. In addition to the two previously described genes, epsE and epsM (M. Sandkvist, V. Morales, and M. Bagdasarian, Gene 123: 81-86, 1993; L. J. Overbye, M. Sandkvist, and M. Bagdasarian, Gene 132:101-106, 1993), it is shown here that epsC, epsF, epsG, and epsL also encode proteins essential for GSP function. Mutations in the eps genes result in aberrant outer membrane protein profiles, which indicates that the GSP, or at least some of its components, is required not only for secretion of soluble proteins but also for proper outer membrane assembly. Several of the Eps proteins have been identified by use of the T7 polymerase-promoter system in Escherichia coli. One of them, a pilin-like protein, EpsG, was analyzed also in V. cholerae and found to migrate as two bands on polyacrylamide gels, suggesting that in this organism it might be processed or otherwise modified by a prepilin peptidase. We believe that TcpJ prepilin peptidase, which processes the subunit of the toxin-coregulated pilus, TcpA, is not involved in this event. This is supported by the observations that apparent processing of EpsG occurs in a tcpJ mutant of V. cholerae and that, when coexpressed in E. coli, TcpJ cannot process EpsG although the PilD peptidase from Neisseria gonorrhoeae can.

  3. Comparison of clinical performance of antigen based-enzyme immunoassay (EIA) and major outer membrane protein (MOMP)-PCR for detection of genital Chlamydia trachomatis infection

    PubMed Central

    Nateghi Rostami, Mahmoud; Hossein Rashidi, Batool; Aghsaghloo, Fatemeh; Nazari, Razieh

    2016-01-01

    Background: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide. Early detection and treatment of C.trachomatis genital infection prevent serious reproductive complications. Objective: Performances of enzyme immunoassay (EIA) and major outer membrane protein (MOMP)-polymerase chain reaction (PCR) for diagnosis of genital C.trachomatis infection in women were compared. Materials and Methods: In this cross sectional study a total of 518 women volunteers were included (33.67±8.3 yrs) who had been referred to Gynecology clinics of Qom province, Iran, were included. Endocervical swab specimens were collected to detect lipopolysaccharide (LPS) antigen in EIA and to amplify MOMP gene of C.trachomatis in PCR. Results were confirmed using ompI nested-PCR. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) were calculated for performance of the tests. Odds ratios were determined using binary logistic regression analysis. Results: In total, 37 (7.14%) cases were positive by EIA and/or MOMP-PCR. All discrepant results were confirmed by nested-PCR. Sensitivity, specificity, PPV and NPV values of EIA were 59.46%, 100%, 100% and 96.98%, and those of MOMP-PCR were 97.30%, 100%, 100%, 99.79%, respectively. Reproductive complications including 2.7% ectopic pregnancy, 5.4% stillbirth, 5.4% infertility, and 10.8% PROM were recorded. The risk of developing chlamydiosis was increased 4.8-fold in volunteers with cervicitis (p<0.05; OR 4.80; 95% CI 1.25-18.48). Conclusion: C.trachomatis infection should be regarded in women of reproductive ages especially those with cervicitis. Primary screening of women by using the low cost antigen-EIA is recommended; however, due to the low sensitivity of Ag-EIA, verification of the negative results by a DNA amplification method is needed. PMID:27525325

  4. Genetic polymorphism and effect of natural selection at domain I of apical membrane antigen-1 (AMA-1) in Plasmodium vivax isolates from Myanmar.

    PubMed

    Moon, Sung-Ung; Na, Byoung-Kuk; Kang, Jung-Mi; Kim, Jung-Yeon; Cho, Shin-Hyeong; Park, Yun-Kyu; Sohn, Woon-Mok; Lin, Khin; Kim, Tong-Soo

    2010-05-01

    Malaria is endemic or hypoendemic in Myanmar and the country still contributes to the high level of malaria deaths in South-East Asia. Although information on the nature and extent of population diversity within malaria parasites in the country is essential not only for understanding the epidemic situation but also to establish a proper control strategy, very little data is currently available on the extent of genetic polymorphisms of the malaria parasites in Myanmar. In this study, we analyzed the genetic polymorphism and natural selection at domain I of the apical membrane antigen-1 (AMA-1) among Plasmodium vivax Myanmar isolates. A total of 34 distinguishable haplotypes were identified among the 76 isolates sequenced. Comparison with the previously available PvAMA-1 sequences in the GenBank database revealed that 21 of them were new haplotypes that have never been reported till date. The difference between the rate of nonsynonymous (dN) and synonymous (dS) mutations was positive (dN-dS, 0.013+/-0.005), suggesting the domain I is under positive natural selection. The Tajima's D statistics was found to be -0.74652, suggesting that the gene has evolved under population size expansion and/or positive selection. The minimum recombination events were also high, indicating that recombination may occur within the domain I resulting in allelic diversity of PvAMA-1. Our results collectively suggest that PvAMA-1 displays high genetic polymorphism among Myanmar P. vivax isolates with highly diversifying selection at domain I. These results have significant implications in understanding the nature of P. vivax population circulating in Myanmar as well as providing useful information for malaria vaccine development based on this antigen.

  5. Purification and characterization of a detergent-requiring membrane-bound metalloendopeptidase from porcine brain.

    PubMed

    Jeohn, G H; Matsuzaki, H; Takahashi, K

    1999-03-01

    A detergent-requiring metalloendopeptidase cleaving a progastrin-C-terminal peptide (progastrin-(88-101)) mainly at the Arg95-Gly96 bond was solubilized from porcine cerebral vesicular membranes and purified to homogeneity as examined by PAGE. The purified enzyme had a molecular mass of approximately 76 kDa as estimated by both SDS/PAGE and Sephacryl S-300 gel filtration. It hydrolyzed progastrin-(88-101) peptide, BAM-12P, and bradykinin fairly specifically, and more efficiently than various other neuropeptides and related oligopeptides examined as substrates. It was inactive in the absence of detergents, and required certain detergents such as Triton X-100 or Lubrol PX for activity. Its optimum pH was about 6.5 and was strongly inhibited by metal-chelating agents such as EDTA, EGTA, and o-phenanthroline. It was extremely sensitive to EDTA and was completely inhibited even by 0.3 microM EDTA; the activity was fully restored by addition of a 10-fold higher concentration of Zn2+, CO2+, or Mn2+ ions over EDTA. On the other hand, dynorphin A-(1-13) peptide, a strong inhibitor of neurolysin, failed to inhibit the enzyme. The various characteristics indicated that the present enzyme is a unique membrane-bound metalloendopeptidase.

  6. Homotypic vacuole fusion in yeast requires organelle acidification and not the V-ATPase membrane domain.

    PubMed

    Coonrod, Emily M; Graham, Laurie A; Carpp, Lindsay N; Carr, Tom M; Stirrat, Laura; Bowers, Katherine; Bryant, Nia J; Stevens, Tom H

    2013-11-25

    Studies of homotypic vacuole-vacuole fusion in the yeast Saccharomyces cerevisiae have been instrumental in determining the cellular machinery required for eukaryotic membrane fusion and have implicated the vacuolar H(+)-ATPase (V-ATPase). The V-ATPase is a multisubunit, rotary proton pump whose precise role in homotypic fusion is controversial. Models formulated from in vitro studies suggest that it is the proteolipid proton-translocating pore of the V-ATPase that functions in fusion, with further studies in worms, flies, zebrafish, and mice appearing to support this model. We present two in vivo assays and use a mutant V-ATPase subunit to establish that it is the H(+)-translocation/vacuole acidification function, rather than the physical presence of the V-ATPase, that promotes homotypic vacuole fusion in yeast. Furthermore, we show that acidification of the yeast vacuole in the absence of the V-ATPase rescues vacuole-fusion defects. Our results clarify the in vivo requirements of acidification for membrane fusion.

  7. Live imaging and modeling of inner nuclear membrane targeting reveals its molecular requirements in mammalian cells

    PubMed Central

    Boni, Andrea; Politi, Antonio Z.; Strnad, Petr; Xiang, Wanqing; Hossain, M. Julius

    2015-01-01

    Targeting of inner nuclear membrane (INM) proteins is essential for nuclear architecture and function, yet its mechanism remains poorly understood. Here, we established a new reporter that allows real-time imaging of membrane protein transport from the ER to the INM using Lamin B receptor and Lap2β as model INM proteins. These reporters allowed us to characterize the kinetics of INM targeting and establish a mathematical model of this process and enabled us to probe its molecular requirements in an RNA interference screen of 96 candidate genes. Modeling of the phenotypes of genes involved in transport of these INM proteins predicted that it critically depended on the number and permeability of nuclear pores and the availability of nuclear binding sites, but was unaffected by depletion of most transport receptors. These predictions were confirmed with targeted validation experiments on the functional requirements of nucleoporins and nuclear lamins. Collectively, our data support a diffusion retention model of INM protein transport in mammalian cells. PMID:26056140

  8. Venezuelan equine encephalitis virus entry mechanism requires late endosome formation and resists cell membrane cholesterol depletion

    SciTech Connect

    Kolokoltsov, Andrey A.; Fleming, Elisa H.; Davey, Robert A. . E-mail: radavey@utmb.edu

    2006-04-10

    Virus envelope proteins determine receptor utilization and host range. The choice of receptor not only permits specific targeting of cells that express it, but also directs the virus into specific endosomal trafficking pathways. Disrupting trafficking can result in loss of virus infectivity due to redirection of virions to non-productive pathways. Identification of the pathway or pathways used by a virus is, thus, important in understanding virus pathogenesis mechanisms and for developing new treatment strategies. Most of our understanding of alphavirus entry has focused on the Old World alphaviruses, such as Sindbis and Semliki Forest virus. In comparison, very little is known about the entry route taken by more pathogenic New World alphaviruses. Here, we use a novel contents mixing assay to identify the cellular requirements for entry of a New World alphavirus, Venezuelan equine encephalitis virus (VEEV). Expression of dominant negative forms of key endosomal trafficking genes shows that VEEV must access clathrin-dependent endocytic vesicles for membrane fusion to occur. Unexpectedly, the exit point is different from Old World alphaviruses that leave from early endosomes. Instead, VEEV also requires functional late endosomes. Furthermore, unlike the Old World viruses, VEEV entry is insensitive to cholesterol sequestration from cell membranes and may reflect a need to access an endocytic compartment that lacks cholesterol. This indicates fundamental differences in the entry route taken by VEEV compared to Old World alphaviruses.

  9. NK cells require antigen-specific memory CD4+ T cells to mediate superior effector functions during HSV-2 recall responses in vitro.

    PubMed

    Chen, Branson; Lee, Amanda J; Chew, Marianne V; Ashkar, Ali A

    2016-12-14

    Natural killer (NK) cells have an important role in mounting protective innate responses against genital herpes simplex virus type 2 (HSV-2) infections. However their role as effectors in adaptive immune responses against HSV-2 is unclear. Here, we demonstrate that NK cells from C57BL/6 mice in an ex vivo splenocyte culture produce significantly more interferon γ (IFN-γ) upon re-exposure to HSV-2 antigens in a mouse model of genital HSV-2 immunization. We find that naïve NK cells do not require any prior stimulation or priming to be activated to produce IFN-γ. Our results demonstrate that HSV-2-experienced CD4(+) T cells have a crucial role in coordinating NK cell activation and that their presence during HSV-2 antigen presentation is required to activate NK cells in this model of secondary immune response. We also examined the requirement of cell-to-cell contacts for both CD4(+) T cells and NK cells. NK cells are dependent on direct interactions with other HSV-2-experienced splenocytes, and CD4(+) T cells need to be in close proximity to NK cells to activate them. This study revealed that NK cells do not exhibit any memory toward HSV-2 antigens and, in fact, require specific interactions with HSV-2-experienced CD4(+) T cells to produce IFN-γ.

  10. Integrating complex functions: coordination of nuclear pore complex assembly and membrane expansion of the nuclear envelope requires a family of integral membrane proteins.

    PubMed

    Schneiter, Roger; Cole, Charles N

    2010-01-01

    The nuclear envelope harbors numerous large proteinaceous channels, the nuclear pore complexes (NPCs), through which macromolecular exchange between the cytosol and the nucleoplasm occurs. This double-membrane nuclear envelope is continuous with the endoplasmic reticulum and thus functionally connected to such diverse processes as vesicular transport, protein maturation and lipid synthesis. Recent results obtained from studies in Saccharomyces cerevisiae indicate that assembly of the nuclear pore complex is functionally dependent upon maintenance of lipid homeostasis of the ER membrane. Previous work from one of our laboratories has revealed that an integral membrane protein Apq12 is important for the assembly of functional nuclear pores. Cells lacking APQ12 are viable but cannot grow at low temperatures, have aberrant NPCs and a defect in mRNA export. Remarkably, these defects in NPC assembly can be overcome by supplementing cells with a membrane fluidizing agent, benzyl alcohol, suggesting that Apq12 impacts the flexibility of the nuclear membrane, possibly by adjusting its lipid composition when cells are shifted to a reduced temperature. Our new study now expands these findings and reveals that an essential membrane protein, Brr6, shares at least partially overlapping functions with Apq12 and is also required for assembly of functional NPCs. A third nuclear envelope membrane protein, Brl1, is related to Brr6, and is also required for NPC assembly. Because maintenance of membrane homeostasis is essential for cellular survival, the fact that these three proteins are conserved in fungi that undergo closed mitoses, but are not found in metazoans or plants, may indicate that their functions are performed by proteins unrelated at the primary sequence level to Brr6, Brl1 and Apq12 in cells that disassemble their nuclear envelopes during mitosis.

  11. Antigen Presentation by MHC-Dressed Cells

    PubMed Central

    Nakayama, Masafumi

    2015-01-01

    Professional antigen-presenting cells (APCs) such as conventional dendritic cells (DCs) process protein antigens to MHC-bound peptides and then present the peptide–MHC complexes to T cells. In addition to this canonical antigen presentation pathway, recent studies have revealed that DCs and non-APCs can acquire MHC class I (MHCI) and/or MHC class II (MHCII) from neighboring cells through a process of cell–cell contact-dependent membrane transfer called trogocytosis. These MHC-dressed cells subsequently activate or regulate T cells via the preformed antigen peptide–MHC complexes without requiring any further processing. In addition to trogocytosis, intercellular transfer of MHCI and MHCII can be mediated by secretion of membrane vesicles such as exosomes from APCs, generating MHC-dressed cells. This review focuses on the physiological role of antigen presentation by MHCI- or MHCII-dressed cells, and also discusses differences and similarities between trogocytosis and exosome-mediated transfer of MHC. PMID:25601867

  12. Factors that influence the membrane area of a multistage microfiltration process required to produce a micellar casein concentrate.

    PubMed

    Hurt, Emily E; Barbano, David M

    2015-04-01

    The objective of the work reported in this paper was to develop a theoretical model to determine the effect of type of microfiltration (MF)-process feed, number of stages, and flux on the minimization of the MF membrane area required to produce a 95% serum protein-reduced micellar casein concentrate. The MF feed, number of stages, and flux were all factors that had an effect on the MF membrane area and should be taken into consideration when designing a MF system to produce a 95% serum protein-reduced micellar casein concentrate. Feeding the MF process with a diluted ultrafiltration retentate (DUR) diluted to the protein concentration of skim milk, as opposed to skim milk, reduced the required membrane area by 36% for a 5-stage process. When DUR was the MF feed, feed protein concentration, which depended on the number of MF stages, was optimized. The DUR protein concentration that minimized the required MF membrane area was 2.47, 3.85, 4.77, and 5.41% for a 2-, 3-, 4-, or 5-stage MF process, respectively. For a 5-stage process, increasing the protein concentration of the feed from 3.2 to 5.4% decreased the required MF membrane area by 10%. It was also found that as the number of stages increased from 2 to 5, the required MF membrane area decreased by 39%, when the MF feed was DUR at the optimal feed protein concentration. Finally, increasing the flux from 50 to 60 kg/m(2) per hour decreased the required MF membrane area by 17% when the MF feed was DUR at the optimal MF feed protein concentration. Overall, using DUR as a feed for MF could reduce the amount of MF membrane area required to make a 95% serum protein-reduced micellar casein concentrate.

  13. The simian virus 40 minimal origin and the 72-base-pair repeat are required simultaneously for efficient induction of late gene expression with large tumor antigen.

    PubMed

    Hartzell, S W; Byrne, B J; Subramanian, K N

    1984-10-01

    We have studied the temporal regulation of simian virus 40 (SV40) late gene expression by construction and transient expression analysis of plasmids containing the transposon Tn9 chloramphenicol acetyltransferase gene placed downstream from the late control region. The SV40 origin region in the early (but not the late) orientation promotes chloramphenicol acetyltransferase gene expression efficiently in monkey cells lacking large tumor (T) antigen. In monkey cells producing T antigen, the promoter activity of the late control region is induced by approximately 1,000-fold above the basal level. By deletion and point mutagenesis, we define two domains of the late control region required for efficient induction with T antigen. Domain I is the minimal replication origin containing T-antigen binding site II. Domain II consists of the 72-base-pair (bp) repeat and a 19-bp downstream sequence up to nucleotide 270. Domains I and II should act synergistically because the absence of either one or the other decreases induction efficiency by 2 orders of magnitude. Though a complete copy of domain II is optimal, the origin-proximal 22-bp portion of this domain is sufficient. The 21-bp repeat, located between domains I and II, is dispensable for this induction, as are sequences located downstream from nucleotide 270 in the late orientation.

  14. Relationship between ion requirements for respiration and membrane transport in a marine bacterium.

    PubMed

    Khanna, G; DeVoe, L; Brown, L; Niven, D F; MacLeod, R A

    1984-01-01

    Intact cells of the marine bacterium Alteromonas haloplanktis 214 oxidized NADH, added to the suspending medium, by a process which was stimulated by Na+ or Li+ but not K+. Toluene-treated cells oxidized NADH at three times the rate of untreated cells by a mechanism activated by Na+ but not by Li+ or K+. In the latter reaction, K+ spared the requirement for Na+. Intact cells of A. haloplanktis oxidized ethanol by a mechanism stimulated by either Na+ or Li+. The uptake of alpha-aminoisobutyric acid by intact cells of A. haloplanktis in the presence of either NADH or ethanol as an oxidizable substrate required Na+, and neither Li+ nor K+ could replace it. The results indicate that exogenous and endogenous NADH and ethanol are oxidized by A. haloplanktis by processes distinguishable from one another by their requirements for alkali metal ions and from the ion requirements for membrane transport. Intact cells of Vibrio natriegens and Photobacterium phosphoreum oxidized NADH, added externally, by an Na+-activated process, and intact cells of Vibrio fischeri oxidized NADH, added externally, by a K+-activated process. Toluene treatment caused the cells of all three organisms to oxidize NADH at much faster rates than untreated cells by mechanisms which were activated by Na+ and spared by K+.

  15. Management of Patients with Gastroschisis Requiring Extracorporeal Membrane Oxygenation for Concurrent Respiratory Failure.

    PubMed

    Lalani, Alykhan; Benson Ham, P; Wise, Linda J; Daniel, John M; Walters, K Christian; Pipkin, Walter L; Stansfield, Brian; Hatley, Robyn M; Bhatia, Jatinder

    2016-09-01

    Treatment of gastroschisis often requires multiple surgical procedures to re-establish abdominal domain, reduce abdominal contents, and eventually close the abdominal wall. In patients who have concomitant respiratory failure requiring extracorporeal membrane oxygenation (ECMO), this process becomes further complicated. This situation is rare and only five such cases have been reported in the ECMO registry database. Management of three of the five patients along with results and implications for future care of similar patients is discussed here. Two patients had respiratory failure due to meconium aspiration syndrome and one patient had persistent acidosis as well as worsening pulmonary hypertension leading to the decision of ECMO. The abdominal contents were placed in a spring-loaded silastic silo while on ECMO and primary closure was performed three to six days after the decannulation. All three patients survived and are developmentally appropriate. We recommend avoiding aggressively reducing the abdominal contents and using a silo to conservatively reducing the gastroschisis while the patient is on ECMO therapy. Keeping the intra-abdominal pressure below 20 mm Hg can possibly reduce ECMO days and ventilator time and has been shown to decrease morbidity and mortality. Patients with gastroschisis and respiratory failure requiring ECMO can have good outcomes despite the complexity of required care.

  16. Molecular cloning, expression, and chromosomal localization of the gene encoding a human myeloid membrane antigen (gp150).

    PubMed Central

    Look, A T; Peiper, S C; Rebentisch, M B; Ashmun, R A; Roussel, M F; Lemons, R S; Le Beau, M M; Rubin, C M; Sherr, C J

    1986-01-01

    DNA from a tertiary mouse cell transformant containing amplified human sequences encoding a human myeloid membrane glycoprotein, gp150, was used to construct a bacteriophage lambda library. A single recombinant phage containing 12 kilobases (kb) of human DNA was isolated, and molecular subclones were then used to isolate the complete gp150 gene from a human placental genomic DNA library. The intact gp150 gene, assembled from three recombinant phages, proved to be biologically active when transfected into NIH 3T3 cells. Molecular probes from the gp150 locus annealed with a 4.0-kb polyadenylated RNA transcript derived from human myeloid cell lines and from tertiary mouse cell transformants. The gp150 gene was assigned to human chromosome 15, and was subchromosomally localized to bands q25-26 by in situ hybridization. The chromosomal location of the gp150 gene coincides cytogenetically with the region assigned to the c-fes proto-oncogene, another human gene specifically expressed by myeloid cells. Images PMID:2428842

  17. Identification of a prostate-specific membrane antigen-derived peptide capable of eliciting both cellular and humoral immune responses in HLA-A24+ prostate cancer patients.

    PubMed

    Kobayashi, Kazuhiko; Noguchi, Masanori; Itoh, Kyogo; Harada, Mamoru

    2003-07-01

    We tried to identify prostate-specific membrane antigen (PSMA)-derived peptides capable of eliciting both cellular and humoral immune responses in peripheral blood mononuclear cells (PBMCs) and plasma of HLA-A24(+) prostate cancer patients, respectively. For cellular response, peptide-specific and prostate cancer-reactive responses of in vitro-stimulated PBMCs were examined with regard to interferon (IFN)-gamma production and cytotoxicity against both a parental HLA-A24(-) prostate cancer cell line (PC-93) and an HLA-A24-expressing transfectant cell line (PC93-A24). For humoral response, patients' plasma was tested for reactivity to the peptides by means of an enzyme-linked immunosorbent assay (ELISA). Among 13 PSMA peptides, PSMA 624-632 peptide induced peptide-specific and tumor-reactive cytotoxic T lymphocytes (CTLs) most effectively. The PSMA 624-632 peptide-stimulated PBMCs from either healthy donors or prostate cancer patients produced a significant level of IFN-gamma in response to prostate cancer cells in an HLA-A24-restricted manner, and also showed a higher level of cytotoxicity against PC93-A24 than against PC93. Antibodies to the PSMA 624-632 peptide, but not to any others, were detected in prostate cancer patients. These results demonstrate that the PSMA 624-632 peptide could be an appropriate molecule for use in specific immunotherapy of HLA-A24(+) patients with prostate cancer.

  18. Preparation and Evaluation of Radiolabeled Antibody Recruiting Small Molecules That Target Prostate-Specific Membrane Antigen for Combined Radiotherapy and Immunotherapy.

    PubMed

    Genady, Afaf R; Janzen, Nancy; Banevicius, Laura; El-Gamal, Mahmoud; El-Zaria, Mohamed E; Valliant, John F

    2016-03-24

    The feasibility of developing a single agent that can deliver radioactive iodine and also direct cellular immune function by engaging endogenous antibodies as an antibody-recruiting small molecule (ARM) was determined. A library of new prostate-specific membrane antigen (PSMA)-binding ligands that contained antibody-recruiting 2,4-dinitrophenyl (DNP) groups and iodine were synthesized and screened in vitro and in vivo. A lead compound (9b) showed high affinity for PSMA and the ability to bind anti-DNP antibodies. Biodistribution studies of the iodine-125 analogue showed 3% ID/g in LNCaP xenograft tumors at 1 h postinjection with tumor-to-blood and tumor-to-muscle ratios of 10:1 and 44:1, respectively. The radiolabeled analogue was bound and internalized by LNCaP cells, with both functions blocked using a known PSMA inhibitor. A second candidate showed high tumor uptake (>10% ID/g) but had minimal binding to anti-DNP antibodies. The compounds reported represent the first examples of small molecules developed specifically for combination immunotherapy and radiotherapy for prostate cancer.

  19. Prostate specific membrane antigen (PSM) is expressed in various human tissues: implication for the use of PSM reverse transcription polymerase chain reaction to detect hematogenous prostate cancer spread.

    PubMed

    Renneberg, H; Friedetzky, A; Konrad, L; Kurek, R; Weingärtner, K; Wennemuth, G; Tunn, U W; Aumüller, G

    1999-01-01

    Detection of prostate-specific membrane antigen (PSM)-mRNA expression in blood samples using reverse transcription polymerase chain reaction (RT-PCR) is discussed as a new diagnostic marker of circulating micrometastases in prostate cancer patients. We applied the RT-PCR technique to different human tissues and obtained positive signals for PSM transcripts in human genital and multiple extra-genital tissue sites. The cDNAs were prepared from different human tissues and prostatic cell lines. RT-PCR and nested RT-PCR for PSM was performed with primers derived from the published PSM cDNA. The RT-PCR fragments obtained were cloned and showed 100% sequence homology to PSM. Southern blot hybridization with labeled probes was used to confirm the specificity of the amplicons. In addition to the known PSM expression in the human brain, PSM-mRNA was detected in cDNA isolated from human testis, epididymis and seminal vesicles and in the PC-3 prostatic cancer cell line. Furthermore, we found PSM-mRNA in heart, liver, lung, kidney, spleen, and thyroid gland. The results indicate that PSM expression is not restricted to the prostate gland, but represents a more general component of genital and extra-genital human tissues. This must be considered when RT-PCR and nested RT-PCR screening for PSM expression is performed as a diagnostic measure in blood from prostate cancer patients.

  20. Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

    PubMed Central

    Muralikumar, Shalini; Mahalakshmi, B; Lily Therese, K; Madhavan, HN; Alameen, Mohamed; Thirumudi, Indhuja

    2016-01-01

    Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins—namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis. PMID:27445648

  1. Initial Evaluation of [18F]DCFPyL for Prostate-Specific Membrane Antigen (PSMA)-Targeted PET Imaging of Prostate Cancer

    PubMed Central

    Szabo, Zsolt; Mena, Esther; Rowe, Steven P.; Plyku, Donika; Nidal, Rosa; Eisenberger, Mario A.; Antonarakis, Emmanuel S.; Fan, Hong; Dannals, Robert F.; Chen, Ying; Mease, Ronnie C.; Vranesic, Melin; Bhatnagar, Akrita; Sgouros, George; Cho, Steve Y.; Pomper, Martin G.

    2015-01-01

    Purpose Prostate-specific membrane antigen (PSMA) is a recognized target for imaging prostate cancer. Here we present initial safety, biodistribution, and radiation dosimetry results with [18F]DCFPyL, a second-generation fluorine-18-labeled small-molecule PSMA inhibitor, in patients with prostate cancer. Procedures Biodistribution was evaluated using sequential positron-emission tomography (PET) scans in nine patients with prostate cancer. Time-activity curves from the most avid tumor foci were determined. The radiation dose to selected organs was estimated using OLINDA/EXM. Results No major radiotracer-specific adverse events were observed. Physiologic accumulation was observed in known sites of PSMA expression. Accumulation in putative sites of prostate cancer was observed (SUVmax up to >100, and tumor-to-blood ratios up to >50). The effective radiation dose from [18F]DCFPyL was 0.0139 mGy/MBq or 5 mGy (0.5 rem) from an injected dose of 370 MBq (10 mCi). Conclusions [18F]DCFPyL is safe with biodistribution as expected, and its accumulation is high in presumed primary and metastatic foci. The radiation dose from [18F]DCFPyL is similar to that from other PET radiotracers. PMID:25896814

  2. Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1).

    PubMed

    Vetrivel, Umashankar; Muralikumar, Shalini; Mahalakshmi, B; Lily Therese, K; Madhavan, H N; Alameen, Mohamed; Thirumudi, Indhuja

    2016-06-01

    Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

  3. Early postpartum mitral valve thrombosis requiring extra corporeal membrane oxygenation before successful valve replacement.

    PubMed

    Halldorsdottir, H; Nordström, J; Brattström, O; Sennström, M M; Sartipy, U; Mattsson, E

    2016-05-01

    Pregnancy is associated with an increased risk of thrombosis in women with mechanical prosthetic heart valves. We present the case of a 29-year-old woman who developed early postpartum mitral valve thrombus after an elective cesarean delivery. The patient had a mechanical mitral valve and was treated with warfarin in the second trimester, which was replaced with high-dose dalteparin during late pregnancy. Elective cesarean delivery was performed under general anesthesia at 37weeks of gestation. The patient was admitted to the intensive care unit for postoperative care and within 30min she developed dyspnea and hypoxia requiring mechanical ventilation. She deteriorated rapidly and developed pulmonary edema, worsening hypoxia and severe acidosis. Urgent extra corporeal membrane oxygenation was initiated. Transesophageal echocardiography revealed a mitral valve thrombus. The patient underwent a successful mitral valve replacement after three days on extra corporeal membrane oxygenation. This case highlights the importance of multidisciplinary care and frequent monitoring of anticoagulation during care of pregnant women with prosthetic heart valves.

  4. Ankyrin and band 3 differentially affect expression of membrane glycoproteins but are not required for erythroblast enucleation.

    PubMed

    Ji, Peng; Lodish, Harvey F

    2012-01-27

    During late stages of mammalian erythropoiesis the nucleus undergoes chromatin condensation, migration to the plasma membrane, and extrusion from the cytoplasm surrounded by a segment of plasma membrane. Since nuclear condensation occurs in all vertebrates, mammalian erythroid membrane and cytoskeleton proteins were implicated as playing important roles in mediating the movement and extrusion of the nucleus. Here we use erythroid ankyrin deficient and band 3 knockout mouse models to show that band 3, but not ankyrin, plays an important role in regulating the level of erythroid cell membrane proteins, as evidenced by decreased cell surface expression of glycophorin A in band 3 knockout mice. However, neither band 3 nor ankyrin are required for enucleation. These results demonstrate that mammalian erythroblast enucleation does not depend on the membrane integrity generated by the ankyrin-band 3 complex.

  5. Membrane-bound immunoglobulins on human leukemic cells. Evidence for humoral immune responses of patients to leukemia-associated antigens.

    PubMed Central

    Metzgar, R S; Mohanakumar, T; Miller, D S

    1975-01-01

    Immunoglobulins were detected on the membranes of human leukemic cells by a microcytotoxicity technique. A significant percentage of lymphocytes from normal donors failed to react with goat antisera to human heavy chain determinants or to lambda-light chains. Lymphocytes from some normal donors, however, did react with antisera to k-light chains. A high percentage (50-90) of cells from some leukemia patients were killed by antisera to light chains and by one or more antisera to heavy chain determinants. Trypsin treatment of leukemic cells resulted in a loss of cytotoxic activity with all immunoglobulin antisera. Reactivity with the k-light chain antiserum was detectable 2 h after trypsinization of chronic myeloid leukemic (CML) cells and 8 h after treatment of acute lymphocytic leukemic (ALL) cells. Reactivity with the antisera to heavy chain determinants and lambda-light chains could not be detected 8 and 48 h after trypsinization of CML and ALL cells, respectively. The cytotoxic activity of the immunoglobulin antisera to heavy chains was abolished by absorption with the specific immunoglobulin used to define the antisera by precipitation. Eluates (pH 3.2) prepared from leukemic cells which reacted by cytotoxicity with the immunoglobulin antisera were shown to contain immunoglobulins of different heavy chain classes. In addition, some of the eluates had cytotoxic antibody activity to human leukemia cells. The specificity of the eluted antibodies is similar to the specificity previously described for cytophilic antibodies from leukemic patients and nonhuman primate antisera to human leukemia cells. The possible in vitro detection and in vivo significance of the eluted non-complement-fixing antibodies is considered. PMID:807598

  6. Prostate-specific membrane antigen (PSMA) assembles a macromolecular complex regulating growth and survival of prostate cancer cells “in vitro” and correlating with progression “in vivo”

    PubMed Central

    Brunelli, Matteo; Martignoni, Guido; Munari, Enrico; Moiso, Enrico; Fracasso, Giulio; Cestari, Tiziana; Naim, Hassan Y.; Bronte, Vincenzo; Colombatti, Marco; Ramarli, Dunia

    2016-01-01

    The expression of Prostate Specific-Membrane Antigen (PSMA) increases in high-grade prostate carcinoma envisaging a role in growth and progression. We show here that clustering PSMA at LNCaP or PC3-PSMA cell membrane activates AKT and MAPK pathways thus promoting proliferation and survival. PSMA activity was dependent on the assembly of a macromolecular complex including filamin A, beta1 integrin, p130CAS, c-Src and EGFR. Within this complex beta1 integrin became activated thereby inducing a c-Src-dependent EGFR phosphorylation at Y1086 and Y1173 EGF-independent residues. Silencing or blocking experiments with drugs demonstrated that all the complex components were required for full PSMA-dependent promotion of cell growth and/or survival in 3D culture, but that p130CAS and EGFR exerted a major role. All PSMA complex components were found assembled in multiple samples of two high-grade prostate carcinomas and associated with EGFR phosphorylation at Y1086. The expression of p130CAS and pEGFRY1086 was thus analysed by tissue micro array in 16 castration-resistant prostate carcinomas selected from 309 carcinomas and stratified from GS 3+4 to GS 5+5. Patients with Gleason Score ≤5 resulted negative whereas those with GS≥5 expressed p130CAS and pEGFRY1086 in 75% and 60% of the cases, respectively. Collectively, our results demonstrate for the first time that PSMA recruits a functionally active complex which is present in high-grade patients. In addition, two components of this complex, p130CAS and the novel pEGFRY1086, correlate with progression in castration-resistant patients and could be therefore useful in therapeutic or surveillance strategies of these patients. PMID:27713116

  7. Granulomatosis with polyangiitis presenting with diffuse alveolar hemorrhage requiring extracorporeal membrane oxygenation with rapid multiorgan relapse

    PubMed Central

    Vanoli, Jennifer; Riva, Marta; Vergnano, Beatrice; D’Andrea, Gabriele; L’Imperio, Vincenzo; Pozzi, Maria Rosa; Grassi, Guido

    2017-01-01

    Abstract Rationale: Granulomatosis with polyangiitis (GPA) is an antineutrophil cytoplasmatic antibodies (ANCA)-associated vasculitis affecting small- and medium-sized blood vessels, mostly involving lung and kidney. Patient concerns: We report the case of a 33-year-old man that presented with acute respiratory distress syndrome caused by alveolar hemorrhage. Diagnoses: Aggressive GPA presenting with diffuse alveolar hemorrhage and multiorgan involvement. Inteventions: Immunosuppressive therapy, plasma exchange, extracorporeal membrane oxygenation (ECMO). Outcomes: Relapse occurred very early, despite immunosuppressive treatment, with a rare involvement of genital system (epididymitis) and rapidly progressive glomerulonephritis difficult to treat. Lessons: GPA is a challenging, multifaceted disease that can require aggressive supportive therapy and is associated with a high rate of relapse that may present with uncommon site of involvement. PMID:28353556

  8. Ankyrin and band 3 differentially affect expression of membrane glycoproteins but are not required for erythroblast enucleation

    SciTech Connect

    Ji, Peng; Lodish, Harvey F.

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Ankyrin and band 3 are not required for erythroblasts enucleation. Black-Right-Pointing-Pointer Loss of ankyrin does not affect erythroid membrane glycoprotein expression. Black-Right-Pointing-Pointer Loss of band 3 influences erythroid membrane glycoprotein expression. -- Abstract: During late stages of mammalian erythropoiesis the nucleus undergoes chromatin condensation, migration to the plasma membrane, and extrusion from the cytoplasm surrounded by a segment of plasma membrane. Since nuclear condensation occurs in all vertebrates, mammalian erythroid membrane and cytoskeleton proteins were implicated as playing important roles in mediating the movement and extrusion of the nucleus. Here we use erythroid ankyrin deficient and band 3 knockout mouse models to show that band 3, but not ankyrin, plays an important role in regulating the level of erythroid cell membrane proteins, as evidenced by decreased cell surface expression of glycophorin A in band 3 knockout mice. However, neither band 3 nor ankyrin are required for enucleation. These results demonstrate that mammalian erythroblast enucleation does not depend on the membrane integrity generated by the ankyrin-band 3 complex.

  9. Asymmetric Requirements for a Rab Gtpase and Snare Proteins in Fusion of Copii Vesicles with Acceptor Membranes

    PubMed Central

    Cao, Xiaochun; Barlowe, Charles

    2000-01-01

    Soluble NSF attachment protein receptor (SNARE) proteins are essential for membrane fusion in transport between the yeast ER and Golgi compartments. Subcellular fractionation experiments demonstrate that the ER/Golgi SNAREs Bos1p, Sec22p, Bet1p, Sed5p, and the Rab protein, Ypt1p, are distributed similarly but localize primarily with Golgi membranes. All of these SNARE proteins are efficiently packaged into COPII vesicles and suggest a dynamic cycling of SNARE machinery between ER and Golgi compartments. Ypt1p is not efficiently packaged into vesicles under these conditions. To determine in which membranes protein function is required, temperature-sensitive alleles of BOS1, BET1, SED5, SLY1, and YPT1 that prevent ER/Golgi transport in vitro at restrictive temperatures were used to selectively inactivate these gene products on vesicles or on Golgi membranes. Vesicles bearing mutations in Bet1p or Bos1p inhibit fusion with wild-type acceptor membranes, but acceptor membranes containing these mutations are fully functional. In contrast, vesicles bearing mutations in Sed5p, Sly1p, or Ypt1p are functional, whereas acceptor membranes containing these mutations block fusion. Thus, this set of SNARE proteins is symmetrically distributed between vesicle and acceptor compartments, but they function asymmetrically such that Bet1p and Bos1p are required on vesicles and Sed5p activity is required on acceptor membranes. We propose the asymmetry in SNARE protein function is maintained by an asymmetric distribution and requirement for the Ypt1p GTPase in this fusion event. When a transmembrane-anchored form of Ypt1p is used to restrict this GTPase to the acceptor compartment, vesicles depleted of Ypt1p remain competent for fusion. PMID:10747087

  10. The Saccharomyces cerevisiae v-SNARE Vti1p Is Required for Multiple Membrane Transport Pathways to the Vacuole

    PubMed Central

    von Mollard, Gabriele Fischer; Stevens, Tom H.

    1999-01-01

    The interaction between v-SNAREs on transport vesicles and t-SNAREs on target membranes is required for membrane traffic in eukaryotic cells. Here we identify Vti1p as the first v-SNARE protein found to be required for biosynthetic traffic into the yeast vacuole, the equivalent of the mammalian lysosome. Certain vti1-ts yeast mutants are defective in alkaline phosphatase transport from the Golgi to the vacuole and in targeting of aminopeptidase I from the cytosol to the vacuole. VTI1 interacts genetically with the vacuolar t-SNARE VAM3, which is required for transport of both alkaline phosphatase and aminopeptidase I to the vacuole. The v-SNARE Nyv1p forms a SNARE complex with Vam3p in homotypic vacuolar fusion; however, we find that Nyv1p is not required for any of the three biosynthetic pathways to the vacuole. v-SNAREs were thought to ensure specificity in membrane traffic. However, Vti1p also functions in two additional membrane traffic pathways: Vti1p interacts with the t-SNAREs Pep12p in traffic from the TGN to the prevacuolar compartment and with Sed5p in retrograde traffic to the cis-Golgi. The ability of Vti1p to mediate multiple fusion steps requires additional proteins to ensure specificity in membrane traffic. PMID:10359592

  11. Direct activation of antigen-presenting cells is required for CD8+ T-cell priming and tumor vaccination

    PubMed Central

    Kratky, Wolfgang; Reis e Sousa, Caetano; Oxenius, Annette; Spörri, Roman

    2011-01-01

    Successful priming of adaptive immune responses is crucially dependent on innate activation signals that convert resting antigen-presenting cells (APCs) into immunogenic ones. APCs expressing the relevant innate pattern recognition receptors can be directly activated by pathogen-associated molecular patterns (PAMPs) to become competent to prime T-cell responses. Alternatively, it has been suggested that APCs could be activated indirectly by proinflammatory mediators synthesized by PAMP-exposed cells. However, data obtained with CD4+ T cells suggest that inflammatory signals often cannot substitute for direct pattern recognition in APC activation for the priming of T helper responses. To test whether the same is true for CD8+ T cells, we studied cytotoxic T lymphocyte development in vitro and in mixed chimeric mice in which coexisting APCs can either present a preprocessed model antigen or directly recognize a given PAMP, but not both. We show that indirectly activated APCs promote antigen-specific proliferation of naïve CD8+ T cells but fail to support their survival and cytotoxic T lymphocyte differentiation. Furthermore, CD8+ T cells primed by indirectly activated APCs are unable to reject tumors. Thus, inflammation cannot substitute for direct recognition of single PAMPs in CD8+ T-cell priming. These findings have important practical implications for vaccine design, indicating that adjuvants must be judiciously chosen to trigger the relevant pattern recognition receptors in APCs. PMID:21987815

  12. T suppressor cells are required for the maintenance of the antigen-induced B-cell unresponsive state in humans

    SciTech Connect

    Benveniste, E.; Stevens, R.H.

    1983-04-01

    Tetanus toxoid immunization of humans generates circulating B cells which secrete IgG anti-tetanus toxoid antibodies (IgG-Tet) when stimulated in vitro with T cells and pokeweed mitogen (PWM). A unique property of these cells is the inhibition of maturation into antibody-secreting plasma cells following a 1-hr in vitro pulse with tetanus toxoid. Studies were undertaken to determine if different T-cell subsets could modulate the in vitro generated B-cell unresponsive state. The addition of OKT4+/OKT8- cells to antigen-treated B cells resulted in a partial reversal of the antigen-induced inhibition of IgG-Tet synthesis. The addition of OKT4-/OKT8+ cells to the treated B cells caused a suppression of IgG-Tet synthesis comparable to that seen in cultures containing unfractionated T cells. These results indicate that (1) the B-cell unresponsive state generated by antigen treatment is not absolute, (2) the degree of B-cell unresponsiveness results from a balance of suppressor and helper signals, and (3) T-suppressor cells need to be present to induce and maintain the B-cell unresponsive state.

  13. 68Ga-prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Prostate Cancer Imaging: A Narrative Literature Review

    PubMed Central

    Oliveira, Jose M.; Gomes, Catarina; Faria, Diogo B.; Vieira, Tiago S.; Silva, Fernando A.; Vale, Joana; Pimentel, Francisco L.

    2017-01-01

    The 68Ga-prostate-specific membrane antigen ( 68Ga-PSMA) has been recently developed to be used, as a ligand, in positron emission tomography/computed tomography (PET/CT) prostate cancer imaging, to detect prostate disease. The main objective of this review was to collect data and findings from other studies and articles to assess, theoretically, if 68GA-PSMA PET/CT is a more appropriate prostate cancer diagnostic technique in comparison with others available such as CT, 18F-fluoro-2-deoxyglucose PET/CT, or 18F-fluoromethylcholine ( 18F-choline) PET/CT. For that purpose, PubMed, the online scientific articles’ database, was consulted where the keywords “PSMA” and “PET” were used to find relevant articles. The clinicaltrials.gov, clinical trials’ database, was also consulted where the keywords “68Ga-PSMA” and “prostate” were used to search clinical trials. Based on the reviewed scientific literature, several studies were conducted to assess and compare the 68Ga-PSMA PET/CT detection rate in prostate cancer with other available techniques. One of those studies, conducted by Giesel et al., concluded, within study sample, that 75% of patients with lymph nodes detected by 68Ga-PSMA PET/CT would have not been identified using other conventional morphological criteria based techniques. In Eiber et al.'s study, 68Ga-PSMA PET detected prostatic disease findings in 67% of patients with prostate-specific antigen levels <1 ng/mL, when compared with choline-based PET that presented detection rates between 19% and 36%. In Bluemel et al.'s study, 68Ga-PSMA identified positive prostatic disease in 43.8% of the patients with negative findings in F-choline PET/CT. Findings from this review demonstrate that 68Ga-PSMA PET/C is more effective in detecting metastases, lymph nodes, and recurrent prostate cancer when compared to 18F-choline-based PET/CT and CT. 68Ga-PSMA PET/CT presents also more imaging contrast and can be more cost-effective. 68Ga-PSMA has already

  14. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway

    PubMed Central

    Roboti, Peristera; Sato, Keisuke; Lowe, Martin

    2015-01-01

    Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogenesis type 1A, have yielded conflicting results regarding its involvement in trafficking. Here, we re-investigated the trafficking role of GMAP-210, and found that it is indeed required for efficient trafficking in the secretory pathway. GMAP-210 acts at both the endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) and Golgi complex during anterograde trafficking, and is also required for retrograde trafficking to the ER. Using co-depletion experiments, we also found that GMAP-210 acts in a partially redundant manner with the golgin GM130 to ensure efficient anterograde cargo delivery to the cis-Golgi. In summary, our results indicate a role for GMAP-210 in several trafficking steps at the ER–Golgi interface, some of which are partially redundant with another golgin, namely GM130 (also known as GOLGA2). PMID:25717001

  15. Phagocytosis of IgG-coated polystyrene beads by macrophages induces and requires high membrane order.

    PubMed

    Magenau, Astrid; Benzing, Carola; Proschogo, Nicholas; Don, Anthony S; Hejazi, Leila; Karunakaran, Denuja; Jessup, Wendy; Gaus, Katharina

    2011-12-01

    The biochemical composition and biophysical properties of cell membranes are hypothesized to affect cellular processes such as phagocytosis. Here, we examined the plasma membranes of murine macrophage cell lines during the early stages of uptake of immunoglobulin G (IgG)-coated polystyrene particles. We found that the plasma membrane undergoes rapid actin-independent condensation to form highly ordered phagosomal membranes, the biophysical hallmark of lipid rafts. Surprisingly, these membranes are depleted of cholesterol and enriched in sphingomyelin and ceramide. Inhibition of sphingomyelinase activity impairs membrane condensation, F-actin accumulation at phagocytic cups and particle uptake. Switching phagosomal membranes to a cholesterol-rich environment had no effect on membrane condensation and the rate of phagocytosis. In contrast, preventing membrane condensation with the oxysterol 7-ketocholesterol, even in the presence of ceramide, blocked F-actin dissociation from nascent phagosomes and particle uptake. In conclusion, our results suggest that ordered membranes function to co-ordinate F-actin remodelling and that the biophysical properties of phagosomal membranes are essential for phagocytosis.

  16. Evaluation of monoclonal antibodies to human plasma low density lipoproteins. A requirement for lipids to maintain antigenic structure.

    PubMed

    Patton, J G; Alley, M C; Mao, S J

    1982-12-17

    Human plasma low density lipoproteins (LDL) are composed of approximately 25% apoproteins and 75% lipids (w/w). Immunochemical properties of LDL were studied using monoclonal antibodies. BALB/c mice were immunized with LDL and the spleen cells from these mice were then fused with a non-immunoglobulin secreting myeloma cell line (F0). The clones producing desirable antibodies were selected to study the antigenic properties of LDL by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay. First, it was found that the maximal binding of 125I-labeled LDL to polyvinyl chloride microtiter dishes was not temperature dependent. The binding affinity was high with a Ka value of approximately 1.9 X 10(10) M-1 while the monoclonal antibodies possessed an affinity to LDL of 5 X 10(8) M-1 which was 2 orders less than the affinity of LDL to the dishes. The former binding, once established, was irreversible as judged by a subsequent incubation with an excess of unlabeled LDL. The latter binding could be displaced by unlabeled LDL. Therefore, the ELISA technique offered a satisfactory approach to study the interaction between LDL and monoclonal antibodies. Removal of lipids from bound LDL by organic extraction resulted in a 50% loss of immunoreactivity, suggesting that the lipids of LDL are important in maintaining the antigenic structure of LDL. Since the apoprotein of LDL also constitutes approximately 40% of the mass (w/w) of very low density lipoproteins (VLDL), the immunoreactivity of VLDL assessed by LDL-monoclonal antibodies was also carried out. Removal of triglycerides from VLDL by lipoprotein lipase resulted in a substantial loss of immunoreactivity as determined by radioimmunoassay. These findings are consistent with the concept that lipids play a role in maintaining the integrity of the antigenic structure of LDL.

  17. Non-responsiveness of antigen-experienced CD4 T cells reflects more stringent co-stimulatory requirements.

    PubMed Central

    Hamel, M E; Noteboom, E; Kruisbeek, A M

    1998-01-01

    We recently reported that previously activated T cells, irrespective of the nature of the first stimulus they encountered, are unable to respond to Staphylococcal enterotoxin B (SEB), nor to soluble anti-CD3 monoclonal antibody (mAb) presented by splenic antigen-presenting cells (APC). Such previously activated T cells are, however, fully capable of responding to plate-bound anti-CD3 plus splenic APC. These data suggest differential integration of the T-cell receptor (TCR) and co-stimulatory signalling pathways in naive versus antigen-experienced T cells. Consistent with this hypothesis, anti-CD28 mAb restores the proliferative capacity of resting ex vivo CD45RBlo CD4+ T cells (representing previously activated T cells) to both soluble anti-CD3 mAb and SEB. Interestingly, mAb-mediated engagement of cytotoxic T-lymphocyte antigen-4 (CTLA-4) completely negates the rescue effects mediated by anti-CD28 mAb in CD45RBlo cells. Nevertheless, the non-responsiveness of CD45RBlo CD4+ T cells cannot be reversed by anti-CTLA-4 Fab fragments, indicating that it is not related to negative regulatory effects of CTLA-4 engagement itself. Interestingly, the addition of interleukin-2 (IL-2) restores the proliferative capacity of CD45RBlo CD4+ T cells to SEB and soluble anti-CD3 mAb. Moreover, when rescued by IL-2, the cells are less susceptible to the negative regulatory effects of CTLA-4 engagement. Together, these findings suggest that the non-responsiveness of CD45RBlo CD4+ T cells to certain stimuli may be related to inadequate TCR signalling, primarily affecting IL-2 production. Images Figure 1 PMID:9640247

  18. Non-responsiveness of antigen-experienced CD4 T cells reflects more stringent co-stimulatory requirements.

    PubMed

    Hamel, M E; Noteboom, E; Kruisbeek, A M

    1998-03-01

    We recently reported that previously activated T cells, irrespective of the nature of the first stimulus they encountered, are unable to respond to Staphylococcal enterotoxin B (SEB), nor to soluble anti-CD3 monoclonal antibody (mAb) presented by splenic antigen-presenting cells (APC). Such previously activated T cells are, however, fully capable of responding to plate-bound anti-CD3 plus splenic APC. These data suggest differential integration of the T-cell receptor (TCR) and co-stimulatory signalling pathways in naive versus antigen-experienced T cells. Consistent with this hypothesis, anti-CD28 mAb restores the proliferative capacity of resting ex vivo CD45RBlo CD4+ T cells (representing previously activated T cells) to both soluble anti-CD3 mAb and SEB. Interestingly, mAb-mediated engagement of cytotoxic T-lymphocyte antigen-4 (CTLA-4) completely negates the rescue effects mediated by anti-CD28 mAb in CD45RBlo cells. Nevertheless, the non-responsiveness of CD45RBlo CD4+ T cells cannot be reversed by anti-CTLA-4 Fab fragments, indicating that it is not related to negative regulatory effects of CTLA-4 engagement itself. Interestingly, the addition of interleukin-2 (IL-2) restores the proliferative capacity of CD45RBlo CD4+ T cells to SEB and soluble anti-CD3 mAb. Moreover, when rescued by IL-2, the cells are less susceptible to the negative regulatory effects of CTLA-4 engagement. Together, these findings suggest that the non-responsiveness of CD45RBlo CD4+ T cells to certain stimuli may be related to inadequate TCR signalling, primarily affecting IL-2 production.

  19. Bax oligomerization in mitochondrial membranes requires tBid (caspase-8-cleaved Bid) and a mitochondrial protein.

    PubMed Central

    Roucou, Xavier; Montessuit, Sylvie; Antonsson, Bruno; Martinou, Jean-Claude

    2002-01-01

    In response to various apoptotic stimuli, Bax, a pro-apoptotic member of the Bcl-2 family, is oligomerized and permeabilizes the mitochondrial outer membrane to apoptogenic factors, including cytochrome c. Bax oligomerization can also be induced by incubating isolated mitochondria containing endogenous Bax with recombinant tBid (caspase-8-cleaved Bid) in vitro. The mechanism by which Bax oligomerizes under these conditions is still unknown. To address this question, recombinant human full-length Bax was purified as a monomeric protein. Bax failed to oligomerize spontaneously in isolated mitochondria or in liposomes composed of either cardiolipin or lipids extracted from mitochondria. However, in the presence of tBid, the protein formed large complexes in mitochondrial membranes and induced the release of cytochrome c. tBid also induced Bax oligomerization in isolated mitochondrial outer membranes, but not in other membranes, such as plasma membranes or microsomes. Moreover, tBid-induced Bax oligomerization was inhibited when mitochondria were pretreated with protease K. The presence of the voltage-dependent anion channel was not required either for Bax oligomerization or for Bax-induced cytochrome c release. Finally, Bax oligomerization was reconstituted in proteoliposomes made from mitochondrial membrane proteins. These findings imply that tBid is necessary but not sufficient for Bax oligomerization; a mitochondrial protein is also required. PMID:12193163

  20. Genetic diversity of the Plasmodium falciparum apical membrane antigen I gene in parasite population from the China-Myanmar border area.

    PubMed

    Zhu, Xiaotong; Zhao, Zhenjun; Feng, Yonghui; Li, Peipei; Liu, Fei; Liu, Jun; Yang, Zhaoqing; Yan, Guiyun; Fan, Qi; Cao, Yaming; Cui, Liwang

    2016-04-01

    To investigate the genetic diversity of the Plasmodium falciparum apical membrane antigen 1 (PfAMA1) gene in Southeast Asia, we determined PfAMA1 sequences from 135 field isolates collected from the China-Myanmar border area and compared them with 956 publically available PfAMA1 sequences from seven global P. falciparum populations. This analysis revealed high genetic diversity of PfAMA1 in global P. falciparum populations with a total of 229 haplotypes identified. The genetic diversity of PfAMA1 gene from the China-Myanmar border is not evenly distributed in the different domains of this gene. Sequence diversity in PfAMA1 from the China-Myanmar border is lower than that observed in Thai, African and Oceanian populations, but higher than that in the South American population. This appeared to correlate well with the levels of endemicity of different malaria-endemic regions, where hyperendemic regions favor genetic cross of the parasite isolates and generation of higher genetic diversity. Neutrality tests show significant departure from neutrality in the entire ectodomain and Domain I of PfAMA1 in the China-Myanmar border parasite population. We found evidence supporting a substantial continent-wise genetic structure among P. falciparum populations, with the highest genetic differentiation detected between the China-Myanmar border and the South American populations. Whereas no alleles were unique to a specific region, there were considerable geographical differences in major alleles and their frequencies, highlighting further necessity to include more PfAMA1 alleles in vaccine designs.

  1. A shared antigen among Vibrio species: outer membrane protein-OmpK as a versatile Vibriosis vaccine candidate in Orange-spotted grouper (Epinephelus coioides).

    PubMed

    Li, Ningqiu; Yang, Zhihui; Bai, Junjie; Fu, Xiaozhe; Liu, Lihui; Shi, Cunbin; Wu, Shuqin

    2010-01-01

    The outer membrane protein-OmpK has been considered as a vaccine candidate for the prevention of infections due to Vibrio harveyi, Vibrio alginolyticus and Vibrio parahaemolyticus in fish. Interestingly, the polyclonal antibody raised against the recombinant OmpK from V. harveyi strain EcGs020802 recognized the OmpK homologues from other strains of Vibrio species by immunoblotting. The ompK genes from 19 Vibrio strains including V. harveyi (11), V. alginolyticus (6) and V. parahaemolyticus (2) were then cloned and sequenced. Alignment analysis based on the amino acid sequences indicated that the OmpK from V. harveyi strain EcGs020802 had 71.7-99.2% of identities with those from V. harveyi, V. alginolyticus and V. parahaemolyticus. Western blot analysis revealed that the corresponding native proteins ranged between 28 and 31 kDa, consistent with predicated molecular weight of OmpK in Vibrio strains. Furthermore, the cross-protective property of recombinant OmpK was evaluated through challenge with heterogeneous virulent Vibrio strains in Orange-spotted groupers (Epinephelus coioides). Orange-spotted groupers vaccinated with recombinant OmpK were more tolerant of the infection by virulent Vibrio strains and their relative percentage survival (RPS) was correlative with the degree of the identity of deduced amino acid sequences of their OmpK. Taken together, the OmpK is a conserved protective antigen among tested Vibrio species and might be a potentially versatile vaccine candidate for the prevention of infections due to V. harveyi, V. alginolyticus and V. parahaemolyticus.

  2. A dimerized urea-based inhibitor of the prostate-specific membrane antigen for 68Ga-PET imaging of prostate cancer

    PubMed Central

    2012-01-01

    Background Alternative positron-emission tomography (PET) probes like labeled inhibitors of the prostate-specific membrane antigen (PSMA) are of emerging clinical impact as they show the ability to image small lesions of recurrent prostate cancer. Here, the dimerization of the pharmacophore Glu‐ureido‐Lys via the 68Ga chelator N,N′-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid (HBED-CC) was investigated to further improve the binding characteristics and pharmacokinetics. Methods The peptidomimetic structures were synthesized by solid-phase chemistry, and the resulting products were coupled with the respective 2,3,5,6-tetrafluorophenol esters of HBED-CC to form the monomeric reference and the dimeric Glu‐ureido‐Lys derivative. The binding properties were analyzed in competitive binding, internalization, and cell surface retention experiments. PET images and biodistribution data were obtained 1 h after injection in BALB/c nu/nu mice bearing LNCaP tumor xenografts. Results Cell binding data revealed significant better binding properties of the dimer (IC50 = 3.9 ± 1.8 nM; IC50 (monomer) = 12.1 ± 2.1 nM). The inhibition potency investigated by the enzyme-based NAALADase assay confirmed these results. Specific internalization in LNCaP cells was demonstrated for both, the monomer and dimer. As shown by efflux measurements, the dimeric compound was more effectively retained on the cell surface, resulting in advanced in vivo properties (T/BMonomer = 9.2; T/BDimer = 26.5). Conclusions The dimeric [68Ga]7 is a promising imaging agent for PSMA-expressing tumors as it shows higher tumor uptake while observing more favorable background clearance. As compared to the respective monomer, the higher affinity and prolonged tumor retention additionally represent promising features and warrant further evaluation regarding 68Ga-PET imaging of PSMA expression. PMID:22673157

  3. A Novel Prostate-Specific Membrane-Antigen (PSMA) Targeted Micelle-Encapsulating Wogonin Inhibits Prostate Cancer Cell Proliferation via Inducing Intrinsic Apoptotic Pathway

    PubMed Central

    Zhang, Hailong; Liu, Xiaogang; Wu, Fengbo; Qin, Feifei; Feng, Ping; Xu, Ting; Li, Xiang; Yang, Li

    2016-01-01

    Prostate cancer (PCa) is a malignant tumor for which there are no effective treatment strategies. In this study, we developed a targeted strategy for prostate-specific membrane-antigen (PSMA)-positive PCa in vitro based on 2-(3-((S)-5-amino-1-carboxypentyl)ureido) pentanedioic acid (ACUPA) modified polyethylene glycol (PEG)-Cholesterol micelles containing wogonin (WOG), which was named ACUPA-M-WOG. ACUPA-M-WOG was conventionally prepared using a self-assembling method, which produced stable particle size and ζ potential. Moreover, ACUPA-M-WOG showed good drug encapsulating capacity and drug release profiles. Fluorescence activated cell sorting (FACS) results suggested that ACUPA modified PEG-Cholesterol micelles could effectively enhance the drug uptake on PSMA(+) PCa cells, and the cytotoxicity of ACUPA-M-WOG was stronger than other controls according to in vitro cellular proliferation and apoptosis assays, separately through methyl thiazolyl tetrazolium (MTT) and Annexin V/Propidium Iodide (PI) staining. Finally, the molecular mechanisms of ACUPA-M-WOG’s effects on human PSMA(+) PCa were investigated, and were mainly the intrinsic or extrinsic apoptosis signaling pathways. The Western blot results suggested that ACUPA-M-WOG could enhance the WOG-induced apoptosis, which was mainly via the intrinsic signaling pathway rather than the extrinsic signaling pathway. In conclusion, ACUPA-M-WOG was successfully developed for WOG-selective delivery to PSMA(+) PCa cells and had stronger inhibition than free drugs, which might make it an effective strategy for PSMA(+) PCa. PMID:27196894

  4. Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising Prostate-Specific Membrane Antigen-Targeted Theranostic Agent

    PubMed Central

    Chatalic, Kristell L.S.; Heskamp, Sandra; Konijnenberg, Mark; Molkenboer-Kuenen, Janneke D.M.; Franssen, Gerben M.; Clahsen-van Groningen, Marian C.; Schottelius, Margret; Wester, Hans-Jürgen; van Weerden, Wytske M.; Boerman, Otto C.; de Jong, Marion

    2016-01-01

    Prostate-specific membrane antigen (PSMA) is a well-established target for nuclear imaging and therapy of prostate cancer (PCa). Radiolabeled small-molecule PSMA inhibitors are excellent candidates for PCa theranostics—they rapidly and efficiently localize in tumor lesions. However, high tracer uptake in kidneys and salivary glands are major concerns for therapeutic applications. Here, we present the preclinical application of PSMA I&T, a DOTAGA-chelated urea-based PSMA inhibitor, for SPECT/CT imaging and radionuclide therapy of PCa. 111In-PSMA I&T showed dose-dependent uptake in PSMA-expressing tumors, kidneys, spleen, adrenals, lungs and salivary glands. Coadministration of 2-(phosphonomethyl)pentane-1,5-dioic acid (2-PMPA) efficiently reduced PSMA-mediated renal uptake of 111In-PSMA I&T, with the highest tumor/kidney radioactivity ratios being obtained using a dose of 50 nmol 2-PMPA. SPECT/CT clearly visualized subcutaneous tumors and sub-millimeter intraperitoneal metastases; however, high renal and spleen uptake in control mice (no 2-PMPA) interfered with visualization of metastases in the vicinity of those organs. Coadministration of 2-PMPA increased the tumor-to-kidney absorbed dose ratio during 177Lu-PSMA I&T radionuclide therapy. Hence, at equivalent absorbed dose to the tumor (36 Gy), coinjection of 2-PMPA decreased absorbed dose to the kidneys from 30 Gy to 12 Gy. Mice injected with 177Lu-PSMA I&T only, showed signs of nephrotoxicity at 3 months after therapy, whereas mice injected with 177Lu-PSMA I&T + 2-PMPA did not. These data indicate that PSMA I&T is a promising theranostic tool for PCa. PSMA-specific uptake in kidneys can be successfully tackled using blocking agents such as 2-PMPA. PMID:27162555

  5. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy.

    PubMed

    Orsi, A; Razi, M; Dooley, H C; Robinson, D; Weston, A E; Collinson, L M; Tooze, S A

    2012-05-01

    Autophagy is a catabolic process essential for cell homeostasis, at the core of which is the formation of double-membrane organelles called autophagosomes. Atg9 is the only known transmembrane protein required for autophagy and is proposed to deliver membrane to the preautophagosome structures and autophagosomes. We show here that mammalian Atg9 (mAtg9) is required for the formation of DFCP1-positive autophagosome precursors called phagophores. mAtg9 is recruited to phagophores independent of early autophagy proteins, such as ULK1 and WIPI2, but does not become a stable component of the autophagosome membrane. In fact, mAtg9-positive structures interact dynamically with phagophores and autophagosomes without being incorporated into them. The membrane compartment enriched in mAtg9 displays a unique sedimentation profile, which is unaltered upon starvation-induced autophagy. Correlative light electron microscopy reveals that mAtg9 is present on tubular-vesicular membranes emanating from vacuolar structures. We show that mAtg9 resides in a unique endosomal-like compartment and on endosomes, including recycling endosomes, where it interacts with the transferrin receptor. We propose that mAtg9 trafficking through multiple organelles, including recycling endosomes, is essential for the initiation and progression of autophagy; however, rather than acting as a structural component of the autophagosome, it is required for the expansion of the autophagosome precursor.

  6. RNA Replication and Membrane Modification Require the Same Functions of Alphavirus Nonstructural Proteins.

    PubMed

    Kallio, Katri; Hellström, Kirsi; Jokitalo, Eija; Ahola, Tero

    2015-11-18

    The alphaviruses induce membrane invaginations known as spherules as their RNA replication sites. Here, we show that inactivation of any function (polymerase, helicase, protease, or membrane association) essential for RNA synthesis also prevents the generation of spherule structures in a Semliki Forest virus trans-replication system. Mutants capable of negative-strand synthesis, including those defective in RNA capping, gave rise to spherules. Recruitment of RNA to membranes in the absence of spherule formation was not detected.

  7. RNA Replication and Membrane Modification Require the Same Functions of Alphavirus Nonstructural Proteins

    PubMed Central

    Kallio, Katri; Hellström, Kirsi; Jokitalo, Eija

    2015-01-01

    The alphaviruses induce membrane invaginations known as spherules as their RNA replication sites. Here, we show that inactivation of any function (polymerase, helicase, protease, or membrane association) essential for RNA synthesis also prevents the generation of spherule structures in a Semliki Forest virus trans-replication system. Mutants capable of negative-strand synthesis, including those defective in RNA capping, gave rise to spherules. Recruitment of RNA to membranes in the absence of spherule formation was not detected. PMID:26581991

  8. Maximum yields of microsomal-type membranes from small amounts of plant material without requiring ultracentrifugation.

    PubMed

    Abas, Lindy; Luschnig, Christian

    2010-06-15

    Isolation of a microsomal membrane fraction is a common procedure in studies involving membrane proteins. By conventional definition, microsomal membranes are collected by centrifugation of a postmitochondrial fraction at 100,000g in an ultracentrifuge, a method originally developed for large amounts of mammalian tissue. We present a method for isolating microsomal-type membranes from small amounts of Arabidopsis thaliana plant material that does not rely on ultracentrifugation but instead uses the lower relative centrifugal force (21,000g) of a microcentrifuge. We show that the 21,000g pellet is equivalent to that obtained at 100,000g and that it contains all of the membrane fractions expected in a conventional microsomal fraction. Our method incorporates specific manipulation of sample density throughout the procedure, with minimal preclearance, minimal volumes of extraction buffer, and minimal sedimentation pathlength. These features allow maximal membrane yields, enabling membrane isolation from limited amounts of material. We further demonstrate that conventional ultracentrifuge-based protocols give submaximal yields due to losses during early stages of the procedure; that is, extensive amounts of microsomal-type membranes can sediment prematurely during the typical preclearance steps. Our protocol avoids such losses, thereby ensuring maximal yield and a representative total membrane fraction. The principles of our method can be adapted for nonplant material.

  9. Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry

    PubMed Central

    Lee, Jihye; Kim, Jinhee; Son, Kidong; d’Alexandry d’Orengiani, Anne-Laure Pham Humg; Min, Ji-Young

    2017-01-01

    Influenza viruses exploit host factors to successfully replicate in infected cells. Using small interfering RNA (siRNA) technology, we identified six human genes required for influenza A virus (IAV) replication. Here we focused on the role of acid phosphatase 2 (ACP2), as its knockdown showed the greatest inhibition of IAV replication. In IAV-infected cells, depletion of ACP2 resulted in a significant reduction in the expression of viral proteins and mRNA, and led to the attenuation of virus multi-cycle growth. ACP2 knockdown also decreased replication of seasonal influenza A and B viruses and avian IAVs of the H7 subtype. Interestingly, ACP2 depletion had no effect on the replication of Ebola or hepatitis C virus. Because ACP2 is known to be a lysosomal acid phosphatase, we assessed the role of ACP2 in influenza virus entry. While neither binding of the viral particle to the cell surface nor endosomal acidification was affected in ACP2-depleted cells, fusion of the endosomal and viral membranes was impaired. As a result, downstream steps in viral entry were blocked, including nucleocapsid uncoating and nuclear import of viral ribonucleoproteins. Our results established ACP2 as a necessary host factor for regulating the fusion step of influenza virus entry. PMID:28272419

  10. Interactions between HIV-1 Neutralizing Antibodies and Model Lipid Membranes imaged with AFM

    NASA Astrophysics Data System (ADS)

    Zauscher, Stefan; Hardy, Gregory; Alam, Munir; Shapter, Joseph

    2012-02-01

    Lipid membrane interactions with rare, broadly neutralizing antibodies (NAbs), 2F5 and 4E10, play a critical role in HIV-1 neutralization. Our research is motivated by recent immunization studies that have shown that induction of antibodies that avidly bind the gp41-MPER antigen is not sufficient for neutralization. Rather, it is required that antigen designs induce polyreactive antibodies that recognize MPER antigens as well as the viral lipid membrane. However, the mechanistic details of how membrane properties influence NAb-lipid and NAb-antigen interactions remain unknown. Furthermore, it is well established that the native viral membrane is heterogeneous, representing a mosaic of lipid rafts and protein clustering. However, the size, physical properties, and dynamics of these regions are poorly characterized and their potential roles in HIV-1 neutralization are also unknown. To understand how membrane properties contribute to 2F5/4E10 membrane interactions, we have engineered biomimetic supported lipid bilayers (SLBs) and use atomic force microscopy to visualize membrane domains, antigen clustering, and antibody-membrane interactions at sub-nanometer z-resolution. Our results show that localized binding of HIV-1 antigens and NAbs occur preferentially with the most fluid membrane domain. This supports the theory that NAbs may interact with regions of low lateral lipid forces that allow antibody insertion into the bilayer.

  11. Matrix Metalloproteinases are required for membrane motility and lumenogenesis during Drosophila heart development

    PubMed Central

    Raza, Qanber S.

    2017-01-01

    Matrix Metalloproteinases (Mmps) degrade glycoproteins and proteoglycans of the extracellular matrix (ECM) or cell surface and are crucial for morphogenesis. Mmps and their inhibitors are expressed during early stages of cardiac development in vertebrates and expression is altered in multiple congenital cardiomyopathies such as cardia bifida. Drosophila genome encodes two copies of Mmps, Mmp1 and Mmp2 whereas in humans up to 25 Mmps have been identified with overlapping functions. We investigated the role of Mmps during embryonic heart development in Drosophila, a process which is morphogenetically similar to early heart tube formation in vertebrates. We demonstrate that the two Mmps in Drosophila have distinct and overlapping roles in cell motility, cell adhesion and cardiac lumenogenesis. We determined that Mmp1 and Mmp2 promote Leading Edge membrane dynamics of cardioblasts during collective migration. Mmp2 is essential for cardiac lumen formation, and mutants generate a cardia bifida phenotype. Mmp1 is required for luminal expansion. Mmp1 and Mmp2 both localise to the basal domains of cardiac cells, however, occupy non-overlapping domains apically. Mmp1 and Mmp2 regulate the proteoglycan composition and size of the apical and basal ECM, yet only Mmp2 is required to restrict ECM assembly to the lumen. Mmp1 negatively regulates the size of the adhesive Cadherin cell surface domain, whereas in a complementary fashion, Mmp2 negatively regulates the size of the Integrin-ECM domain and thereby prescribes the domain to establish and restrict Slit morphogen signalling. Inhibition of Mmp activity through ectopic expression of Tissue Inhibitor of Metalloproteinase in the ectoderm blocks lumen formation. Therefore, Mmp expression and function identifies ECM differentiation and remodelling as a key element for cell polarisation and organogenesis. PMID:28192468

  12. A Role For Mitochondria In Antigen Processing And Presentation.

    PubMed

    Bonifaz, Lc; Cervantes-Silva, Mp; Ontiveros-Dotor, E; López-Villegas, Eo; Sánchez-García, Fj

    2014-09-23

    Immune synapse formation is critical for T lymphocyte activation, and mitochondria have a role in this process, by localizing close to the immune synapse, regulating intracellular calcium concentration, and providing locally required ATP. The interaction between antigen presenting cells (APCs) and T lymphocytes is a two-way signaling process. However, the role of mitochondria in antigen presenting cells during this process remains unknown. For APCs to be able to activate T lymphocytes, they must first engage in an antigen-uptake, -processing, and -presentation process. Here we show that HEL-loaded B lymphocytes, as a type of APCs, undergo a small but significant mitochondrial depolarization by 1-2 h following antigen exposure thus suggesting an increase in their metabolic demands. Inhibition of ATP synthase (oligomycin) or mitochondrial Ca(2+) uniporter (MCU) (Ruthenium red) had no effect on antigen uptake. Therefore, antigen processing and antigen presentation were further analyzed. Oligomycin treatment reduced the amount of specific MHC-peptide complexes but not total MHC II on the cell membrane of B lymphocytes which correlated with a decrease in antigen presentation. However, oligomycin also reduced antigen presentation by B lymphocytes that endogenously express HEL and by B lymphocytes loaded with the HEL48-62 peptide, although to a lesser extent. ATP synthase inhibition and MCU inhibition had a clear inhibitory effect on antigen processing (DQ-OVA). Taking together these results suggest that ATP synthase and MCU are relevant for antigen processing and presentation. Finally, APCs mitochondria were found to re-organize towards the APC-T immune synapse. This article is protected by copyright. All rights reserved.

  13. Cell Migration and Invadopodia Formation Require a Membrane-binding Domain of CARMIL2.

    PubMed

    Lanier, M Hunter; McConnell, Patrick; Cooper, John A

    2016-01-15

    CARMILs regulate capping protein (CP), a critical determinant of actin assembly and actin-based cell motility. Vertebrates have three conserved CARMIL genes with distinct functions. In migrating cells, CARMIL2 is important for cell polarity, lamellipodial assembly, ruffling, and macropinocytosis. In cells, CARMIL2 localizes with a distinctive dual pattern to vimentin intermediate filaments and to membranes at leading edges and macropinosomes. The mechanism by which CARMIL2 localizes to membranes has not been defined. Here, we report that CARMIL2 has a conserved membrane-binding domain composed of basic and hydrophobic residues, which is necessary and sufficient for membrane localization, based on expression studies in cells and on direct binding of purified protein to lipids. Most important, we find that the membrane-binding domain is necessary for CARMIL2 to function in cells, based on rescue expression with a set of biochemically defined mutants. CARMIL1 and CARMIL3 contain similar membrane-binding domains, based on sequence analysis and on experiments, but other CPI motif proteins, such as CD2AP, do not. Based on these results, we propose a model in which the membrane-binding domain of CARMIL2 tethers this multidomain protein to the membrane, where it links dynamic vimentin filaments with regulation of actin assembly via CP.

  14. Cell Migration and Invadopodia Formation Require a Membrane-binding Domain of CARMIL2*

    PubMed Central

    Lanier, M. Hunter; McConnell, Patrick; Cooper, John A.

    2016-01-01

    CARMILs regulate capping protein (CP), a critical determinant of actin assembly and actin-based cell motility. Vertebrates have three conserved CARMIL genes with distinct functions. In migrating cells, CARMIL2 is important for cell polarity, lamellipodial assembly, ruffling, and macropinocytosis. In cells, CARMIL2 localizes with a distinctive dual pattern to vimentin intermediate filaments and to membranes at leading edges and macropinosomes. The mechanism by which CARMIL2 localizes to membranes has not been defined. Here, we report that CARMIL2 has a conserved membrane-binding domain composed of basic and hydrophobic residues, which is necessary and sufficient for membrane localization, based on expression studies in cells and on direct binding of purified protein to lipids. Most important, we find that the membrane-binding domain is necessary for CARMIL2 to function in cells, based on rescue expression with a set of biochemically defined mutants. CARMIL1 and CARMIL3 contain similar membrane-binding domains, based on sequence analysis and on experiments, but other CPI motif proteins, such as CD2AP, do not. Based on these results, we propose a model in which the membrane-binding domain of CARMIL2 tethers this multidomain protein to the membrane, where it links dynamic vimentin filaments with regulation of actin assembly via CP. PMID:26578515

  15. EXO70I Is Required for Development of a Sub-domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis.

    PubMed

    Zhang, Xinchun; Pumplin, Nathan; Ivanov, Sergey; Harrison, Maria J

    2015-08-17

    In eukaryotic cells, polarized secretion mediated by exocytotic fusion of membrane vesicles with the plasma membrane is essential for spatially restricted expansion of the plasma membrane and for the delivery of molecules to specific locations at the membrane and/or cell surface. The EXOCYST complex is central to this process, and in yeast, regulation of the EXO70 subunit influences exocytosis and cargo specificity. In contrast to yeast and mammalian cells, plants have upwards of 23 EXO70 genes with largely unknown roles. During arbuscular mycorrhizal (AM) symbiosis, deposition of the plant periarbuscular membrane (PAM) around the fungal arbuscule creates an intracellular membrane interface between the symbionts. The PAM has two major membrane sub-domains, and symbiosis-specific transporter proteins are localized in the branch domain. Currently, the mechanisms and cellular machinery involved in biogenesis of the PAM are largely unknown. Here, we identify an EXO70I protein present exclusively in plants forming AM symbiosis. Medicago truncatula exo70i mutants are unable to support normal arbuscule development, and incorporation of two PAM-resident ABC transporters, STR and STR2, is limited. During arbuscule branching, EXO70I is located in spatially restricted zones adjacent to the PAM around the arbuscule hyphal tips where it interacts with Vapyrin, a plant-specific protein required for arbuscule development. We conclude that EXO70I provides a specific exocytotic capacity necessary for development of the main functional sub-domain of the PAM. Furthermore, in contrast to other eukaryotes, plant EXO70s have evolved distinct specificities and interaction partners to fulfill their specialized secretory requirements.

  16. IgE-mediated enhancement of CD4+ T cell responses requires antigen presentation by CD8α− conventional dendritic cells

    PubMed Central

    Ding, Zhoujie; Dahlin, Joakim S.; Xu, Hui; Heyman, Birgitta

    2016-01-01

    IgE, forming an immune complex with small proteins, can enhance the specific antibody and CD4+ T cell responses in vivo. The effects require the presence of CD23 (Fcε-receptor II)+ B cells, which capture IgE-complexed antigens (Ag) in the circulation and transport them to splenic B cell follicles. In addition, also CD11c+ cells, which do not express CD23, are required for IgE-mediated enhancement of T cell responses. This suggests that some type of dendritic cell obtains IgE-Ag complexes from B cells and presents antigenic peptides to T cells. To elucidate the nature of this dendritic cell, mice were immunized with ovalbumin (OVA)-specific IgE and OVA, and different populations of CD11c+ cells, obtained from the spleens four hours after immunization, were tested for their ability to present OVA. CD8α− conventional dendritic cells (cDCs) were much more efficient in inducing specific CD4+ T cell proliferation ex vivo than were CD8α+ cDCs or plasmacytoid dendritic cells. Thus, IgE-Ag complexes administered intravenously are rapidly transported to the spleen by recirculating B cells where they are delivered to CD8α− cDCs which induce proliferation of CD4+ T cells. PMID:27306570

  17. Serum Concentrations of Antibodies against Outer Membrane Protein P6, Protein D, and T- and B-Cell Combined Antigenic Epitopes of Nontypeable Haemophilus influenzae in Children and Adults of Different Ages.

    PubMed

    Hua, Chun-Zhen; Hu, Wei-Lin; Shang, Shi-Qiang; Li, Jian-Ping; Hong, Li-Quan; Yan, Jie

    2015-12-16

    Nontypeable Haemophilus influenzae (NTHi) is one of the most common etiologies of acute otitis media, rhinosinusitis, and pneumonia. Outer membrane proteins (OMPs) are the main focus in new vaccine development against NTHi, as the H. influenzae type b (Hib) vaccine does not cover noncapsulated NTHi. The OMPs P6 and protein D are the most promising candidate antigens for an NTHi vaccine, and low antibody levels against them in serum may be correlated with infection caused by NTHi. In the current study, we measured the antibody titers against P6, protein D, and their T- and B-cell combined peptide epitopes in healthy individuals of different ages. We found that children <1 month old had the lowest antibody levels against NTHi P6, protein D, and their T- and B-cell combined antigenic epitopes. Antibody titers increased at ages 1 to 6 months, peaked at 7 months to 3 years, and remained high at 4 to 6 years. The antibody titers started to decrease after 6 years and were the lowest in the 21- to 30-year group. The geometric mean titers (GMTs) of T- and B-cell combined antigenic epitopes in P6 and protein D were positively correlated with those of the protein antigens. Among 12 peptides tested, P6-61, P6-123, and protein D-167 epitopes were better recognized than others in human serum. These findings might contribute to the development of an effective serotype-independent vaccine for H. influenzae.

  18. Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by TAT-1/CHAT-1.

    PubMed

    Chen, Baohui; Jiang, Yue; Zeng, Sheng; Yan, Jiacong; Li, Xin; Zhang, Yan; Zou, Wei; Wang, Xiaochen

    2010-12-09

    Endocytic sorting is achieved through the formation of morphologically and functionally distinct sub-domains within early endosomes. Cargoes destined for recycling are sorted to and transported through newly-formed tubular membranes, but the processes that regulate membrane tubulation are poorly understood. Here, we identified a novel Caenorhabditis elegans Cdc50 family protein, CHAT-1, which acts as the chaperone of the TAT-1 P4-ATPase to regulate membrane phosphatidylserine (PS) asymmetry and endocytic transport. In chat-1 and tat-1 mutants, the endocytic sorting process is disrupted, leading to defects in both cargo recycling and degradation. TAT-1 and CHAT-1 colocalize to the tubular domain of the early endosome, the tubular endocytic recycling compartment (ERC), and the recycling endosome where PS is enriched on the cytosolic surface. Loss of tat-1 and chat-1 function disrupts membrane PS asymmetry and abrogates the tubular membrane structure. Our data suggest that CHAT-1 and TAT-1 maintain membrane phosphatidylserine asymmetry, thus promoting membrane tubulation and regulating endocytic sorting and recycling.

  19. Endocytic Sorting and Recycling Require Membrane Phosphatidylserine Asymmetry Maintained by TAT-1/CHAT-1

    PubMed Central

    Chen, Baohui; Jiang, Yue; Zeng, Sheng; Yan, Jiacong; Li, Xin; Zhang, Yan; Zou, Wei; Wang, Xiaochen

    2010-01-01

    Endocytic sorting is achieved through the formation of morphologically and functionally distinct sub-domains within early endosomes. Cargoes destined for recycling are sorted to and transported through newly-formed tubular membranes, but the processes that regulate membrane tubulation are poorly understood. Here, we identified a novel Caenorhabditis elegans Cdc50 family protein, CHAT-1, which acts as the chaperone of the TAT-1 P4-ATPase to regulate membrane phosphatidylserine (PS) asymmetry and endocytic transport. In chat-1 and tat-1 mutants, the endocytic sorting process is disrupted, leading to defects in both cargo recycling and degradation. TAT-1 and CHAT-1 colocalize to the tubular domain of the early endosome, the tubular endocytic recycling compartment (ERC), and the recycling endosome where PS is enriched on the cytosolic surface. Loss of tat-1 and chat-1 function disrupts membrane PS asymmetry and abrogates the tubular membrane structure. Our data suggest that CHAT-1 and TAT-1 maintain membrane phosphatidylserine asymmetry, thus promoting membrane tubulation and regulating endocytic sorting and recycling. PMID:21170358

  20. Evidence that membrane transduction of oligoarginine does not require vesicle formation

    SciTech Connect

    Zaro, Jennica L.; Shen Weichiang . E-mail: weishen@usc.edu

    2005-07-01

    The involvement of vesicular formation processes in the membrane transduction and nuclear transport of oligoarginine is currently a subject of controversy. In this report, a novel quantitative method which allows for the selective measurement of membrane transduction excluding concurrent endocytosis was used to determine the effects of temperature, endosomal acidification, endosomolysis, and several known inhibitors of endocytic pathways on the internalization of oligoarginine. The results show that, unlike endocytosis, transduction of oligoarginine was not affected by incubation at 16 deg. C as compared to the 37 deg. C control, and was only partially inhibited at 4 deg. C incubation. Additionally, membrane transduction was not inhibited to the same extent as endocytosis following treatment with ammonium chloride, hypertonic medium, amiloride, or filipin. The endosomolytic activity of oligoarginine was investigated by examining the leakage of FITC-dextran into the cytosolic compartment, which was not higher in the presence of oligoarginine. Furthermore, ammonium chloride showed no effect on the nuclear transport of oligoarginine. The data presented in this report indicate that membrane transduction is likely to occur at the plasma membrane without the formation of membrane vesicles, and the nuclear localization involves membrane transduction, rather than endocytosis of oligoarginine.

  1. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens.

    PubMed

    Zacharoff, Lori; Chan, Chi Ho; Bond, Daniel R

    2016-02-01

    The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than -0.1 V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at -0.1 V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50 mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below -0.1 V vs. SHE.

  2. New alternatively spliced variant of prostate-specific membrane antigen PSM-E suppresses the proliferation, migration and invasiveness of prostate cancer cells.

    PubMed

    Cao, Kai-Yuan; Xu, Lin; Zhang, Ding-Mei; Zhang, Xiao-Ming; Zhang, Tian; He, Xia; Wang, Zhu; Feng, Fa-Shen; Qiu, Shao-Peng; Shen, Guan-Xin

    2012-06-01

    PSM-E is a newly discovered alternatively spliced variant of prostate-specific membrane antigen (PSMA). In the current study, its role on the proliferation, invasiveness and migration in prostate cancer cell lines was analyzed. PSM-E and PSMA (as a comparison) eukaryotic expression vectors pcDNA3.0/PSM-E and pcDNA3.0/PSMA were constructed, validated by RT-PCR and Western blotting, and PSMA/PSM-E overexpression PC-3 cell models were built. Gene interference was used to block PSMA and the expression of its splice variants in LNCap cells. Three shRNA fragments were synthesized against PSMA, cloned into the vector pSilencer 2.1-U6-neo, their interference effect was evaluated by RT-PCR and Western blotting, and pSilencer 2.1-U6-neo‑shRNA3 (named p‑shRNA3) was chosen in further analyses. Growth curves were drawn to observe the proliferation change, which showed that PSM-E had the potential to suppress proliferation (P<0.05), but no significant change was observed in PSMA/PC-3 cells and in PSMA/PSM-E interfering LNCap cells (P>0.05). Cross-river test showed that the migration speeds of PSM-E/PC-3 and PSMA/PC-3 were both significantly slower than the vector negative control, and faster in p-shRNA3 interfering LNCap cells compared with its vector negative control (P<0.05), and no significant difference existed between PSM-E/PC-3 and PSMA/PC-3 (P>0.05). Transwell assay showed that the invasive cells of both PSMA/PC-3 and PSM-E/PC-3 were fewer compared to the vector negative control (P<0.05), and the invasive suppression effect of PSM-E was weaker than PSMA (P<0.05), and accordingly, invasiveness of interfering LNCaP cells was enhanced compared with the vector negative control (P<0.05). These results showed that PSM-E could suppress proliferation, migration and invasiveness of prostate cancer cells. Its suppression effect on cell proliferation is stronger compared to PSMA and the suppression effect on invasiveness is weaker than that of PSMA.

  3. Increased Expression of CCN2, Epithelial Membrane Antigen, and Fibroblast Activation Protein in Hepatocellular Carcinoma with Fibrous Stroma Showing Aggressive Behavior

    PubMed Central

    Yoo, Jeong Eun; Ko, Jung Eun; Lee, Jee San; Kim, Hyunki; Choi, Jin Sub; Park, Young Nyun

    2014-01-01

    Tumor behavior is affected by the tumor microenvironment, composed of cancer-associated fibroblasts (CAFs). Meanwhile, hepatocellular carcinomas (HCC) with fibrous stroma reportedly exhibit aggressive behavior suggestive of tumor-stroma interaction. However, evidence of the crosstalk remains unclear. In this study, CCN2, epithelial membrane antigen (EMA), fibroblast activation protein (FAP), and keratin 19 (K19) expression was studied in 314 HCCs (cohort 1), 42 scirrhous HCCs (cohort 2), and 36 chronic hepatitis/cirrhosis specimens by immunohistochemistry. Clinicopathological parameters were analyzed according to the expressions of these markers. In tumor epithelial cells from cohort 1, CCN2 and EMA were expressed in 15.3% and 17.2%, respectively, and their expressions were more frequent in HCCs with fibrous stroma (≥5% of tumor area) than those without (P<0.05 for all); CCN2 expression was well correlated with K19 and EMA expression. In tumor stromal cells, FAP expression was found in 6.7%. In cohort 2, CCN2, EMA, and FAP expression was noted in 40.5%, 40.5%, and 66.7%, respectively, which was more frequent than that in cohort 1 (P<0.05 for all). Additionally, EMA expression was associated with the expression of K19, CCN2, and FAP (P<0.05 for all); EMA expressing tumor epithelial cells showed a topographic closeness to FAP-expressing CAFs. Analysis of disease-free survival revealed CCN2 expression to be a worse prognostic factor in both cohort 1 (P = 0.005) and cohort 2 (P = 0.023), as well as EMA as a worse prognostic factor in cohort 2 (P = 0.048). In conclusion, expression of CCN2, EMA, and FAP may be involved in the activation of CAFs in HCC, giving rise to aggressive behavior. Significant correlation between EMA-expressing tumor cells and FAP-expressing CAFs and their topographic closeness suggests possible cross-talk between tumor epithelial cells and stromal cells in the tumor microenvironment of HCC. PMID:25126747

  4. Membrane-Initiated Estradiol Signaling Induces Spinogenesis Required for Female Sexual Receptivity

    PubMed Central

    Christensen, Amy; Dewing, Phoebe

    2011-01-01

    Estrogens have profound actions on the structure of the nervous system during development and in adulthood. One of the signature actions of estradiol is to alter the morphology of neural processes. In the hippocampus, estradiol modulates spines and cellular excitability that affect cognitive behaviors. In the hypothalamus, estradiol increases spine density in mediobasal hypothalamic nuclei that regulate reproduction. The hypothalamic arcuate nucleus (ARH), an important site for modulation of female sexual receptivity, has a sexual dimorphism in dendritic spine density that favors females. In the present study, we used both β-actin immunostaining and Golgi staining to visualize estradiol-induced changes in spine density in Long–Evans rats. Golgi impregnation was used to visualize spine shape, and then β-actin immunoreactivity was used as a semiquantitative measure of spine plasticity since actin forms the core of dendritic spines. At 4 h after estradiol treatment, both β-actin immunofluorescence and filopodial spines were increased (from 70.57 ± 1.09% to 78.01 ± 1.05%, p < 0.05). Disruption of estradiol-induced β-actin polymerization with cytochalasin D attenuated lordosis behavior, indicating the importance of estradiol-mediated spinogenesis for female sexual receptivity (81.43 ± 7.05 to 35.00 ± 11.76, p < 0.05). Deactivation of cofilin, an actin depolymerizing factor is required for spinogenesis. Membrane-initiated estradiol signaling involving the metabotropic glutamate receptor 1a was responsible for the phosphorylation and thereby deactivation of cofilin. These data demonstrate that estradiol-induced spinogenesis in the ARH is an important cellular mechanism for the regulation of female sexual behavior. PMID:22131419

  5. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    PubMed Central

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. PMID:27110810

  6. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus.

    PubMed

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-04-21

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses.

  7. The large tumor antigen: a "Swiss Army knife" protein possessing the functions required for the polyomavirus life cycle.

    PubMed

    Topalis, D; Andrei, G; Snoeck, R

    2013-02-01

    The SV40 large tumor antigen (L-Tag) is involved in the replication and cell transformation processes that take place during the polyomavirus life cycle. The ability of the L-Tag to interact with and to inactivate the tumor suppressor proteins p53 and pRb, makes this polyfunctional protein an interesting target in the search for compounds with antiviral and/or antiproliferative activities designed for the management of polyomavirus-associated diseases. The severe diseases caused by polyomaviruses, mainly in immunocompromised hosts, and the absence of licensed treatments, make the discovery of new antipolyomavirus drugs urgent. Parallels can be made between the SV40 L-Tag and the human papillomavirus (HPV) oncoproteins (E6 and E7) as they are also able to deregulate the cell cycle in order to promote cell transformation and its maintenance. In this review, a presentation of the SV40 L-Tag characteristics, regarding viral replication and cellular transformation, will show how similar these two processes are between the polyoma- and papillomavirus families. Insights at the molecular level will highlight similarities in the binding of polyoma- and papillomavirus replicative helicases to the viral DNA and in their disruptions of the p53 and pRb tumor suppressor proteins.

  8. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae.

    PubMed Central

    Gaber, R F; Styles, C A; Fink, G R

    1988-01-01

    We identified a 180-kilodalton plasma membrane protein in Saccharomyces cerevisiae required for high-affinity transport (uptake) of potassium. The gene that encodes this putative potassium transporter (TRK1) was cloned by its ability to relieve the potassium transport defect in trk1 cells. TRK1 encodes a protein 1,235 amino acids long that contains 12 potential membrane-spanning domains. Our results demonstrate the physical and functional independence of the yeast potassium and proton transport systems. TRK1 is nonessential in S. cerevisiae and maps to a locus unlinked to PMA1, the gene that encodes the plasma membrane ATPase. Haploid cells that contain a null allele of TRK1 (trk1 delta) rely on a low-affinity transporter for potassium uptake and, under certain conditions, exhibit energy-dependent loss of potassium, directly exposing the activity of a transporter responsible for the efflux of this ion. Images PMID:3043197

  9. Efficient Overproduction of Membrane Proteins in Lactococcus lactis Requires the Cell Envelope Stress Sensor/Regulator Couple CesSR

    PubMed Central

    Pinto, Joao P. C.; Kuipers, Oscar P.; Marreddy, Ravi K. R.; Poolman, Bert; Kok, Jan

    2011-01-01

    Background Membrane proteins comprise an important class of molecules whose study is largely frustrated by several intrinsic constraints, such as their hydrophobicity and added requirements for correct folding. Additionally, the complexity of the cellular mechanisms that are required to insert membrane proteins functionally in the membrane and to monitor their folding state makes it difficult to foresee the yields at which one can obtain them or to predict which would be the optimal production host for a given protein. Methods and Findings We describe a rational design approach to improve the lactic acid bacterium Lactococcus lactis as a producer of membrane proteins. Our transcriptome data shows that the two-component system CesSR, which senses cell envelope stresses of different origins, is one of the major players when L. lactis is forced to overproduce the endogenous membrane protein BcaP, a branched-chain amino acid permease. Growth of the BcaP-producing L. lactis strain and its capability to produce membrane proteins are severely hampered when the CesSR system itself or particular members of the CesSR regulon are knocked out, notably the genes ftsH, oxaA2, llmg_2163 and rmaB. Overexpressing cesSR reduced the growth defect, thus directly improving the production yield of BcaP. Applying this rationale to eukaryotic proteins, some of which are notoriously more difficult to produce, such as the medically-important presenilin complex, we were able to significantly diminish the growth defect seen in the wild-type strain and improve the production yield of the presenilin variant PS1Δ9-H6 more than 4-fold. Conclusions The results shed light into a key, and perhaps central, membrane protein quality control mechanism in L. lactis. Modulating the expression of CesSR benefited the production yields of membrane proteins from different origins. These findings reinforce L. lactis as a legitimate alternative host for the production of membrane proteins. PMID:21818275

  10. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis.

    PubMed

    Weidberg, Hilla; Shpilka, Tomer; Shvets, Elena; Abada, Adi; Shimron, Frida; Elazar, Zvulun

    2011-04-19

    Autophagy is a unique membrane trafficking pathway describing the formation and targeting of double membrane autophagosomes to the vacuole/lysosome. The biogenesis of autophagosomes and their delivery to the vacuole/lysosome depend on multiple membrane fusion events. Using a cell-free system, we have investigated the ability of LC3 and GATE-16, two mammalian Atg8 orthologs, to mediate membrane fusion. We found that both proteins promote tethering and membrane fusion, mediated by the proteins' N-terminal α helices. We further show that short, 10 amino acid long synthetic peptides derived from the N terminus of LC3 or GATE-16 are sufficient to promote membrane fusion. Our data indicate that the fusion activity of LC3 is mediated by positively charged amino acids, whereas the activity of GATE-16 is mediated by hydrophobic interactions. Finally, we demonstrate that LC3 and GATE-16 N termini in general and specific residues needed for the fusion activity are essential for the proteins role in autophagosome biogenesis.

  11. Screening for lipid requirements of membrane proteins by combining cell-free expression with nanodiscs.

    PubMed

    Henrich, Erik; Dötsch, Volker; Bernhard, Frank

    2015-01-01

    Cell-free (CF) protein expression has emerged as one of the most efficient production platforms for membrane proteins. Central bottlenecks prevalent in conventional cell-based expression systems such as mistargeting, inclusion body formation, degradation as well as product toxicity can be addressed by taking advantage of the reduced complexity of CF expression systems. However, the open accessibility of CF reactions offers the possibility to design customized artificial expression environments by supplying synthetic hydrophobic compounds such as micelles or membranes of defined composition. The open nature of CF systems therefore generally allows systematic screening approaches for the identification of efficient cotranslational solubilization environments of membrane proteins. Synergies exist in particular with the recently developed nanodisc (ND) technology enabling the synthesis of stable and highly soluble particles containing membrane discs of defined composition. Specific types of lipids frequently modulate folding, stability, and activity of integrated membrane proteins. One recently reported example are phospho-MurNAc-pentapeptide (MraY) translocases that catalyze a crucial step in bacterial peptidoglycan biosynthesis making them interesting as future drug targets. Production of functionally active MraY homologues from most human pathogens in conventional cellular production systems was so far not successful due to their obviously strict lipid dependency for functionally folding. We demonstrate that the combination of CF expression with ND technologies is an efficient strategy for the production of folded MraY translocases, and we present a general protocol for the rapid screening of lipid specificities of membrane proteins.

  12. Dissecting the membrane cholesterol requirement for mycobacterial entry into host cells.

    PubMed

    Viswanathan, Gopinath; Jafurulla, Md; Kumar, G Aditya; Raghunand, Tirumalai R; Chattopadhyay, Amitabha

    2015-07-01

    Mycobacteria are intracellular pathogens that can invade and survive within host macrophages, and are a major cause of mortality and morbidity worldwide. The molecular mechanism involved in the internalization of mycobacteria is poorly understood. In this work, we have explored the role of host membrane cholesterol in the entry of the avirulent surrogate mycobacterial strain Mycobacterium smegmatis into THP-1 macrophages. Our results show that depletion of host membrane cholesterol using methyl-β-cyclodextrin results in a significant reduction in the entry of M. smegmatis into host cells. More importantly, we show that the inhibition in the ability of M. smegmatis to enter host macrophages could be reversed upon replenishment of membrane cholesterol. To the best of our knowledge, these results constitute the first report showing that membrane cholesterol replenishment can reverse the inhibition in the entry of mycobacteria into host cells. In addition, we demonstrate that cholesterol complexation using amphotericin B (without physical depletion) is sufficient to inhibit mycobacterial entry. Importantly, we observed a significant reduction in mycobacterial entry upon enrichment of host membrane cholesterol. Taken together, our results demonstrate, for the first time, that an optimum host plasma membrane cholesterol is necessary for the entry of mycobacteria. These results assume relevance in the context of developing novel therapeutic strategies targeting cholesterol-mediated mycobacterial host cell entry.

  13. Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet.

    PubMed

    Lo, Yuan-Hung; Ho, Po-Chun; Chen, Min-Shan; Hugo, Eric; Ben-Jonathan, Nira; Wang, Shao-Chun

    2013-01-04

    Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNA(F/F)) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNA(F/F) MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT mice contain significantly more adipocytes than those isolated from PCNA(F/F) mice. This study identifies a critical role for PCNA in adipose tissue development, and for the first time identifies a role of the core DNA replication machinery at the interface between proliferation and differentiation.

  14. tBid Undergoes Multiple Conformational Changes at the Membrane Required for Bax Activation*

    PubMed Central

    Shamas-Din, Aisha; Bindner, Scott; Zhu, Weijia; Zaltsman, Yehudit; Campbell, Clinton; Gross, Atan; Leber, Brian; Andrews, David W.; Fradin, Cécile

    2013-01-01

    Bid is a Bcl-2 family protein that promotes apoptosis by activating Bax and eliciting mitochondrial outer membrane permeabilization (MOMP). Full-length Bid is cleaved in response to apoptotic stimuli into two fragments, p7 and tBid (p15), that are held together by strong hydrophobic interactions until the complex binds to membranes. The detailed mechanism(s) of fragment separation including tBid binding to membranes and release of the p7 fragment to the cytoplasm remain unclear. Using liposomes or isolated mitochondria with fluorescently labeled proteins at physiological concentrations as in vitro models, we report that the two components of the complex quickly separate upon interaction with a membrane. Once tBid binds to the membrane, it undergoes slow structural rearrangements that result in an equilibrium between two major tBid conformations on the membrane. The conformational change of tBid is a prerequisite for interaction with Bax and is, therefore, a novel step that can be modulated to promote or inhibit MOMP. Using automated high-throughput image analysis in cells, we show that down-regulation of Mtch2 causes a significant delay between tBid and Bax relocalization in cells. We propose that by promoting insertion of tBid via a conformational change at the mitochondrial outer membrane, Mtch2 accelerates tBid-mediated Bax activation and MOMP. Thus the interaction of Mtch2 and tBid is a potential target for therapeutic control of Bid initiated cell death. PMID:23744079

  15. A role for mitochondria in antigen processing and presentation

    PubMed Central

    Bonifaz, Laura C; Cervantes-Silva, Mariana P; Ontiveros-Dotor, Elizabeth; López-Villegas, Edgar O; Sánchez-García, F Javier

    2015-01-01

    Immune synapse formation is critical for T-lymphocyte activation, and mitochondria have a role in this process, by localizing close to the immune synapse, regulating intracellular calcium concentration, and providing locally required ATP. The interaction between antigen-presenting cells (APCs) and T lymphocytes is a two-way signalling process. However, the role of mitochondria in APCs during this process remains unknown. For APCs to be able to activate T lymphocytes, they must first engage in an antigen-uptake, -processing and -presentation process. Here we show that hen egg white lysozyme (HEL) -loaded B lymphocytes, as a type of APC, undergo a small but significant mitochondrial depolarization by 1–2 hr following antigen exposure, suggesting an increase in their metabolic demands. Inhibition of ATP synthase (oligomycin) or mitochondrial Ca2+ uniporter (MCU) (Ruthenium red) had no effect on antigen uptake. Therefore, antigen processing and antigen presentation were further analysed. Oligomycin treatment reduced the amount of specific MHC–peptide complexes but not total MHC II on the cell membrane of B lymphocytes, which correlated with a decrease in antigen presentation. However, oligomycin also reduced antigen presentation by B lymphocytes, which endogenously express HEL and by B lymphocytes loaded with the HEL48–62 peptide, although to a lesser extent. ATP synthase inhibition and MCU inhibition had a clear inhibitory effect on antigen processing (DQ-OVA). Taken together these results suggest that ATP synthase and MCU are relevant for antigen processing and presentation. Finally, APC mitochondria were found to re-organize towards the APC–T immune synapse. PMID:25251370

  16. Death Receptor 5 Networks Require Membrane Cholesterol for Proper Structure and Function.

    PubMed

    Lewis, Andrew K; Valley, Christopher C; Peery, Stephen L; Brummel, Benjamin; Braun, Anthony R; Karim, Christine B; Sachs, Jonathan N

    2016-12-04

    Death receptor 5 (DR5) is an apoptosis-inducing member of the tumor necrosis factor receptor superfamily, whose activity has been linked to membrane cholesterol content. Upon ligand binding, DR5 forms large clusters within the plasma membrane that have often been assumed to be manifestations of receptor co-localization in cholesterol-rich membrane domains. However, we have recently shown that DR5 clusters are more than just randomly aggregated receptors. Instead, these are highly structured networks held together by receptor dimers. These dimers are stabilized by specific transmembrane helix-helix interactions, including a disulfide bond in the long isoform of the receptor. The complex relationships among DR5 network formation, transmembrane helix dimerization, membrane cholesterol, and receptor activity has not been established. It is unknown whether the membrane itself plays an active role in driving DR5 transmembrane helix interactions or in the formation of the networks. We show that cholesterol depletion in cells does not inhibit the formation of DR5 networks. However, the networks that form in cholesterol-depleted cells fail to induce caspase cleavage. These results suggest a potential structural difference between active and inactive networks. As evidence, we show that cholesterol is necessary for the covalent dimerization of DR5 transmembrane domains. Molecular simulations and experiments in synthetic vesicles on the DR5 transmembrane dimer suggest that dimerization is facilitated by increased helicity in a thicker bilayer.

  17. Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology.

    PubMed

    Niemann, Moritz; Wiese, Sebastian; Mani, Jan; Chanfon, Astrid; Jackson, Christopher; Meisinger, Chris; Warscheid, Bettina; Schneider, André

    2013-02-01

    Trypanosoma brucei is a unicellular parasite that causes devastating diseases in humans and animals. It diverged from most other eukaryotes very early in evolution and, as a consequence, has an unusual mitochondrial biology. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the parasite. The outer mitochondrial membrane defines the boundary of the organelle. Its properties are therefore key for understanding how the cytosol and mitochondria communicate and how the organelle is integrated into the metabolism of the whole cell. We have purified the mitochondrial outer membrane of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal outer membrane proteome consists of 82 proteins, two-thirds of which have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins, 33 of which are specific to trypanosomatids, remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and for the first time identified factors that control mitochondrial shape in T. brucei.

  18. Characterization of a surface membrane molecule expressed by natural killer cells in most inbred mouse strains: monoclonal antibody C9.1 identifies an allelic form of the 2B4 antigen

    PubMed Central

    Kubota, K; Katoh, H; Muguruma, K; Koyama, K

    1999-01-01

    A newly generated monoclonal antibody (mAb C9.1) described in this study identifies a surface membrane molecule that is involved in the lytic programme of activated natural killer (NK) cells. This conclusion is based on the facts that, first, this antigen was expressed on the vast majority of surface immunoglobulin (sIg)− CD3− CD4− CD8− spleen lymphocytes, albeit it was also present on minor subsets of sIg+ B (≈7%) and CD3+ T (≈2%) lymphocytes; second, that all splenic NK activity was contained within the C9.1+ cell population, and was almost totally abolished by treatment of spleen cells with mAb C9.1 and complement; third, that mAb C9.1 was capable of increasing interleukin-2-cultured and in vivo polyinosinic:polycytidylic acid-activated, NK cell-mediated, antibody-redirected lysis, but not freshly isolated NK cell-mediated killing. Furthermore, the strain distribution of the C9.1 antigen was shown to be antithetical to that of the 2B4 antigen already described as a molecule associated with major histocompatibility complex-unrestricted killing mediated by activated NK cells. The gene encoding C9.1 antigen was linked to the Akp1 isozyme locus on chromosome 1 close to the 2B4 gene. Although C9.1 and 2B4 were monomeric glycoproteins of 78 000 MW and 66 000 MW, respectively, removal of N-linked sugars from both antigens by endoglycosidase F yielded identical protein backbones of 38 000 MW. Thus, all of these results suggest that mAb C9.1 recognizes an allelic form of the 2B4 antigen. However, the detection of mAb C9.1-reactive antigen on a minor subset of B cells may suggest a possible reactivity of mAb C9.1 with some product of other members of the 2B4 family genes. PMID:10233732

  19. Chronic mould exposure as a risk factor for severe community acquired pneumonia in a patient requiring extra corporeal membrane oxygenation

    PubMed Central

    Thomas, Stephanie; Hassan, Ibrahim; Barker, Julian; Ashworth, Alan; Barnes, Anita; Fedor, Igor; Feddy, Lee; Hayes, Tim; Malagon, Ignacio; Stirling, Sarah; Szentgyorgyi, Lajos; Mutton, Ken; Richardson, Malcolm

    2015-01-01

    A previously fit and well man developed acute respiratory failure due to environmental mould exposure from living in damp rental accommodation. Despite aggressive intensive care management he rapidly deteriorated and required respiratory and cardiac Extracorporeal Membrane Oxygenation. We hypothesize that poor domiciliary conditions may make an underestimated contribution to community respiratory disease. These conditions may present as acute and severe illness with non-typical pathogens identified. PMID:26236598

  20. SecA is required for membrane targeting of the cell division protein DivIVA in vivo

    PubMed Central

    Halbedel, Sven; Kawai, Maki; Breitling, Reinhard; Hamoen, Leendert W.

    2014-01-01

    The conserved protein DivIVA is involved in different morphogenetic processes in Gram-positive bacteria. In Bacillus subtilis, the protein localizes to the cell division site and cell poles, and functions as a scaffold for proteins that regulate division site selection, and for proteins that are required for sporulation. To identify other proteins that bind to DivIVA, we performed an in vivo cross-linking experiment. A possible candidate that emerged was the secretion motor ATPase SecA. SecA mutants have been described that inhibit sporulation, and since DivIVA is necessary for sporulation, we examined the localization of DivIVA in these mutants. Surprisingly, DivIVA was delocalized, suggesting that SecA is required for DivIVA targeting. To further corroborate this, we performed SecA depletion and inhibition experiments, which provided further indications that DivIVA localization depends on SecA. Cell fractionation experiments showed that SecA is important for binding of DivIVA to the cell membrane. This was unexpected since DivIVA does not contain a signal sequence, and is able to bind to artificial lipid membranes in vitro without support of other proteins. SecA is required for protein secretion and membrane insertion, and therefore its role in DivIVA localization is likely indirect. Possible alternative roles of SecA in DivIVA folding and/or targeting are discussed. PMID:24592260

  1. Immune responses in mice induced by prime-boost schemes of the Plasmodium falciparum apical membrane antigen 1 (PfAMA1)-based DNA, protein and recombinant modified vaccinia Ankara vaccines.

    PubMed

    Miao, Jun; Li, Xun; Liu, Zhongxiang; Xue, Caifang; Bujard, Hermann; Cui, Liwang

    2006-09-11

    The apical membrane antigen 1 (AMA1) of malaria parasites is a leading vaccine candidate. Its expression in merozoites and sporozoites and its importance for erythrocyte and hepatocyte invasion underline the significance of both humoral and cellular immunities against this antigen in malaria protection. We have generated a DNA construct and a recombinant poxvirus (rMVA) for expressing the Plasmodium falciparum AMA1 ectodomain, produced recombinant AMA1 protein (rAMA1) and evaluated their antigenicity in mice using single and combinatory vaccine schemes. Our results showed that although vaccinations of mice by either DNA or rMVA alone did not yield high antibody responses, they had primed significant numbers of rAMA1-responsive splenocytes. Under heterologous prime-boost schemes, priming with DNA followed by boosting with rMVA or rAMA1 protein resulted in a significant increase in antibody titers. In addition, the antibody titers to AMA1 appeared to be correlated with the levels of inhibition of merozoite invasion of erythrocytes in vitro. Furthermore, different prime-boost schemes resulted in different AMA1-specific antibody isotype (IgG1/IgG2a) ratios, providing us with an indication about Th1 or Th2 responses the vaccination regimens have induced. This study has yielded useful information for further in vivo evaluation of the suitability and effectiveness of the heterologous prime-boost strategy in AMA1 vaccination.

  2. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function.

    PubMed Central

    Babst, M; Wendland, B; Estepa, E J; Emr, S D

    1998-01-01

    Vps4p is an AAA-type ATPase required for efficient transport of biosynthetic and endocytic cargo from an endosome to the lysosome-like vacuole of Saccharomyces cerevisiae. Vps4p mutants that do not bind ATP or are defective in ATP hydrolysis were characterized both in vivo and in vitro. The nucleotide-free or ADP-bound form of Vps4p existed as a dimer, whereas in the ATP-locked state, Vps4p dimers assembled into a decameric complex. This suggests that ATP hydrolysis drives a cycle of association and dissociation of Vps4p dimers/decamers. Nucleotide binding also regulated the association of Vps4p with an endosomal compartment in vivo. This membrane association required the N-terminal coiled-coil motif of Vps4p, but deletion of the coiled-coil domain did not affect ATPase activity or oligomeric assembly of the protein. Membrane association of two previously uncharacterized class E Vps proteins, Vps24p and Vps32p/Snf7p, was also affected by mutations in VPS4. Upon inactivation of a temperature-conditional vps4 mutant, Vps24p and Vps32p/Snf7p rapidly accumulated in a large membrane-bound complex. Immunofluorescence indicated that both proteins function with Vps4p at a common endosomal compartment. Together, the data suggest that the Vps4 ATPase catalyzes the release (uncoating) of an endosomal membrane-associated class E protein complex(es) required for normal morphology and sorting activity of the endosome. PMID:9606181

  3. Polarized granzyme release is required for antigen-driven transendothelial migration of human effector memory CD4 T cells.

    PubMed

    Manes, Thomas D; Pober, Jordan S

    2014-12-15

    Human effector memory CD4 T cells may transmigrate across endothelial cell (EC) monolayers either in response to inflammatory chemokines or in response to TCR recognition of Ag presented on the surface of the EC. The kinetics, morphologic manifestations, and molecular requirements of chemokine- and TCR-driven transendothelial migration (TEM) differ significantly. In this study, we report that, whereas the microtubule organizing center (MTOC) and cytosolic granules follow the nucleus across the endothelium in a uropod during chemokine-driven TEM, MTOC reorientation to the contact region between the T cell and the EC, accompanied by dynein-driven transport of granzyme-containing granules to and exocytosis at the contact region, are early events in TCR-driven, but not chemokine-driven TEM. Inhibitors of either granule function or granzyme proteolytic activity can arrest TCR-driven TEM, implying a requirement for granule discharge in the process. In the final stages of TCR-driven TEM, the MTOC precedes, rather than follows, the nucleus across the endothelium. Thus, TCR-driven TEM of effector memory CD4 T cells appears to be a novel process that more closely resembles immune synapse formation than it does conventional chemotaxis.

  4. A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack

    PubMed Central

    1992-01-01

    We have used an in vitro Golgi protein transport assay dependent on high molecular weight (greater than 100 kD) cytosolic and/or peripheral membrane proteins to study the requirements for transport from the cis- to the medial-compartment. Fractionation of this system indicates that, besides the NEM-sensitive fusion protein (NSF) and the soluble NSF attachment protein (SNAP), at least three high molecular weight protein fractions from bovine liver cytosol are required. The activity from one of these fractions was purified using an assay that included the second and third fractions in a crude state. The result is a protein of 115-kD subunit molecular mass, which we term p115. Immunodepletion of the 115- kD protein from a purified preparation with mAbs removes activity. Peptide sequence analysis of tryptic peptides indicates that p115 is a "novel" protein that has not been described previously. Gel filtration and sedimentation analysis indicate that, in its native state, p115 is a nonglobular homo-oligomer. p115 is present on purified Golgi membranes and can be extracted with high salt concentration or alkaline pH, indicating that it is peripherally associated with the membrane. Indirect immunofluorescence indicates that p115 is associated with the Golgi apparatus in situ. PMID:1512287

  5. Evaluation of membrane bioreactor process capabilities to meet stringent effluent nutrient discharge requirements.

    PubMed

    Fleischer, Edwin J; Broderick, Thomas A; Daigger, Glen T; Fonseca, Anabela D; Holbrook, R David; Murthy, Sudhir N

    2005-01-01

    A six-stage membrane bioreactor (MBR) pilot plant was operated to determine and demonstrate the capability of this process to produce a low-nutrient effluent, consistent with the nutrient reduction goals for the Chesapeake Bay. Biological nitrogen removal was accomplished using a multistage configuration with an initial anoxic zone (using the carbon in the influent wastewater), an aerobic zone (where nitrification occurred), a downstream anoxic zone (where methanol was added as a carbon source), and the aerated submerged membrane zone. The capability to reliably reduce effluent total nitrogen to less than 3 mg/L as nitrogen (N) was demonstrated. A combination of biological (using an initial anaerobic zone) and chemical (using alum) phosphorus removal was used to achieve effluent total phosphate concentrations reliably less than 0.1 mg/L as phosphorus (P) and as low as 0.03 mg/L as P. Alum addition also appeared to enhance the filtration characteristics of the MBR sludge and to reduce membrane fouling. Aeration of the submerged membranes results in thickened sludge with a high dissolved oxygen concentration (approaching saturation), which can be recycled to the main aeration zone rather than to an anoxic or anaerobic zone to optimize biological nutrient removal. Biological nutrient removal was characterized using the International Water Association Activated Sludge Model No. 2d. The stoichiometry of chemical phosphorus removal was also consistent with conventional theory and experience. The characteristics of the solids produced in the MBR were compared with those of a parallel full-scale conventional biological nitrogen removal process and were generally found to be similar. These results provide valuable insight to the design and operating characteristics of MBRs intended to produce effluents with very low nutrient concentrations.

  6. Neisseria gonorrhoeae RecQ helicase HRDC domains are essential for efficient binding and unwinding of the pilE guanine quartet structure required for pilin antigenic variation.

    PubMed

    Cahoon, Laty A; Manthei, Kelly A; Rotman, Ella; Keck, James L; Seifert, H Steven

    2013-05-01

    The strict human pathogen Neisseria gonorrhoeae utilizes homologous recombination to antigenically vary the pilus, thus evading the host immune response. High-frequency gene conversion reactions between many silent pilin loci and the expressed pilin locus (pilE) allow for numerous pilus variants per strain to be produced from a single strain. For pilin antigenic variation (Av) to occur, a guanine quartet (G4) structure must form upstream of pilE. The RecQ helicase is one of several recombination or repair enzymes required for efficient levels of pilin Av, and RecQ family members have been shown to bind to and unwind G4 structures. Additionally, the vast majority of RecQ helicase family members encode one "helicase and RNase D C-terminal" (HRDC) domain, whereas the N. gonorrhoeae RecQ helicase gene encodes three HRDC domains, which are critical for pilin Av. Here, we confirm that deletion of RecQ HRDC domains 2 and 3 causes a decrease in the frequency of pilin Av comparable to that obtained with a functional knockout. We demonstrate that the N. gonorrhoeae RecQ helicase can bind and unwind the pilE G4 structure. Deletion of the RecQ HRDC domains 2 and 3 resulted in a decrease in G4 structure binding and unwinding. These data suggest that the decrease in pilin Av observed in the RecQ HRDC domain 2 and 3 deletion mutant is a result of the enzyme's inability to efficiently bind and unwind the pilE G4 structure.

  7. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR.

    PubMed

    Gottstein, Daniel; Reckel, Sina; Dötsch, Volker; Güntert, Peter

    2012-06-06

    Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5 Å in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data.

  8. Antigenic requirement for Gag in a vaccine that protects against high-dose mucosal challenge with simian immunodeficiency virus.

    PubMed

    Schell, John B; Bahl, Kapil; Folta-Stogniew, Ewa; Rose, Nina; Buonocore, Linda; Marx, Preston A; Gambhira, Ratish; Rose, John K

    2015-02-01

    We reported previously on a vaccine approach that conferred apparent sterilizing immunity to SIVsmE660. The vaccine regimen employed a prime-boost using vectors based on recombinant vesicular stomatitis virus (VSV) and an alphavirus replicon expressing either SIV Gag or SIV Env. In the current study, we tested the ability of vectors expressing only the SIVsmE660 Env protein to protect macaques against the same high-dose mucosal challenge. Animals developed neutralizing antibody levels comparable to or greater than seen in the previous vaccine study. When the vaccinated animals were challenged with the same high-dose of SIVsmE660, all became infected. While average peak viral loads in animals were slightly lower than those of previous controls, the viral set points were not significantly different. These data indicate that Gag, or the combination of Gag and Env are required for the generation of apparent sterilizing immunity to the SIVsmE660 challenge.

  9. Cryptococcus gattii Capsule Blocks Surface Recognition Required for Dendritic Cell Maturation Independent of Internalization and Antigen Processing.

    PubMed

    Huston, Shaunna M; Ngamskulrungroj, Popchai; Xiang, Richard F; Ogbomo, Henry; Stack, Danuta; Li, Shu Shun; Timm-McCann, Martina; Kyei, Stephen K; Oykhman, Paul; Kwon-Chung, Kyung J; Mody, Christopher H

    2016-02-01

    Cryptococcus gattii is an emerging fungal pathogen on the west coast of Canada and the United States that causes a potentially fatal infection in otherwise healthy individuals. In previous investigations of the mechanisms by which C. gattii might subvert cell-mediated immunity, we found that C. gattii failed to induce dendritic cell (DC) maturation, leading to defective T cell responses. However, the virulence factor and the mechanisms of evasion of DC maturation remain unknown. The cryptococcal polysaccharide capsule is a leading candidate because of its antiphagocytic properties. Consequently, we asked if the capsule of C. gattii was involved in evasion of DC maturation. We constructed an acapsular strain of C. gattii through CAP59 gene deletion by homologous integration. Encapsulated C. gattii failed to induce human monocyte-derived DC maturation and T cell proliferation, whereas the acapsular mutant induced both processes. Surprisingly, encapsulation impaired DC maturation independent of its effect on phagocytosis. Indeed, DC maturation required extracellular receptor signaling that was dependent on TNF-α and p38 MAPK, but not ERK activation, and the cryptococcal capsule blocked this extracellular recognition. Although the capsule impaired phagocytosis that led to pH-dependent serine-, threonine-, and cysteine-sensitive protease-dependent Ag processing, it was insufficient to impair T cell responses. In summary, C. gattii affects two independent processes, leading to DC maturation and Ag processing. The polysaccharide capsule masked extracellular detection and reduced phagocytosis that was required for DC maturation and Ag processing, respectively. However, the T cell response was fully restored by inducing DC maturation.

  10. Proliferating cell nuclear antigen (PCNA) is required for cell cycle-regulated silent chromatin on replicated and nonreplicated genes.

    PubMed

    Miller, Andrew; Chen, Jiji; Takasuka, Taichi E; Jacobi, Jennifer L; Kaufman, Paul D; Irudayaraj, Joseph M K; Kirchmaier, Ann L

    2010-11-05

    In Saccharomyces cerevisiae, silent chromatin is formed at HMR upon the passage through S phase, yet neither the initiation of DNA replication at silencers nor the passage of a replication fork through HMR is required for silencing. Paradoxically, mutations in the DNA replication processivity factor, POL30, disrupt silencing despite this lack of requirement for DNA replication in the establishment of silencing. We tested whether pol30 mutants could establish silencing at either replicated or non-replicated HMR loci during S phase and found that pol30 mutants were defective in establishing silencing at HMR regardless of its replication status. Although previous studies tie the silencing defect of pol30 mutants to the chromatin assembly factors Asf1p and CAF-1, we found pol30 mutants did not exhibit a gross defect in packaging HMR into chromatin. Rather, the pol30 mutants exhibited defects in histone modifications linked to ASF1 and CAF-1-dependent pathways, including SAS-I- and Rtt109p-dependent acetylation events at H4-K16 and H3-K9 (plus H3-K56; Miller, A., Yang, B., Foster, T., and Kirchmaier, A. L. (2008) Genetics 179, 793-809). Additional experiments using FLIM-FRET revealed that Pol30p interacted with SAS-I and Rtt109p in the nuclei of living cells. However, these interactions were disrupted in pol30 mutants with defects linked to ASF1- and CAF-1-dependent pathways. Together, these results imply that Pol30p affects epigenetic processes by influencing the composition of chromosomal histone modifications.

  11. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ.

    PubMed

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A; Formiggini, Fabio; Polishchuk, Roman S; Corda, Daniela; Luini, Alberto

    2016-07-12

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself).

  12. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ

    PubMed Central

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A.; Formiggini, Fabio; Polishchuk, Roman S.; Corda, Daniela; Luini, Alberto

    2016-01-01

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself). PMID:27401954

  13. Production of a monoclonal antibody to a membrane antigen of human T-cell leukaemia virus (HTLV1/ATLV)-infected cell lines from a systemic lupus erythematosus (SLE) patient: serological analyses for HTLV1 infections in SLE patients.

    PubMed Central

    Kurata, A; Katamine, S; Fukuda, T; Mine, M; Ikari, N; Kanazawa, H; Matsunaga, M; Eguchi, K; Nagataki, S

    1985-01-01

    Human T-cell leukaemia virus (HTLV1/ATLV), which causes adult T cell leukaemia (ATL), is an infectious, lymphotrophic retrovirus unique for humans. The present study was undertaken to determine whether HTLV1 had any pathogenetic role for systemic lupus erythematosus (SLE). The incidence of antibodies to ATL cell-associated antigens (ATLA) in sera from patients with SLE and other collagen diseases was investigated by an indirect immunofluorescent cytoplasmic staining of an HTLV1-infected cell line (MT-1). A radioimmunoassay was also performed to detect antibodies to HTLV1 protein and crude membrane fraction derived from an HTLV1-producing cell line MT-2. Furthermore, an Epstein-Barr virus (EBV)-transformed B cell line (ES-1) was constructed from an SLE patient, which produced a monoclonal antibody (IgG, lambda) reactive to an HTLV1-related cell-membrane antigen expressed on MT-1 and MT-2 cells. The specific reactivity of the monoclonal antibody was analysed by an indirect immunofluorescent cell-membrane staining and a microcytotoxicity test. The incidence of anti-ATLA antibodies was not different among SLE and other collagen diseases. The monoclonal antibody produced by ES-1 stained and killed HTLV1-infected cell lines specifically, but did not react with other human lymphoid cell lines. This monoclonal antibody failed to react with peripheral blood mononuclear cells (PBMC), mitogen-induced T cell blasts, and iododeoxyuridine-treated T cells from SLE patients. Thus, a possible role of HTLV1 in the aetiology of SLE was not established. PMID:2998659

  14. Circulating, but not local lung, IL-5 is required for the development of antigen-induced airways eosinophilia.

    PubMed Central

    Wang, J; Palmer, K; Lŏtvall, J; Milan, S; Lei, X F; Matthaei, K I; Gauldie, J; Inman, M D; Jordana, M; Xing, Z

    1998-01-01

    IL-5 is induced locally in the lung and systemically in the circulation during allergic airways eosinophilic inflammation both in humans and experimental animals. However, the precise role of local and systemic IL-5 in the development of allergic airways eosinophilia remains to be elucidated. In our current study, we demonstrate that compared with their IL-5(+/+) counterparts, IL-5(-/-) mice lacked an IL-5 response both in the lung and peripheral blood, yet they released similar amounts of IL-4, eotaxin, and MIP-1alpha in the lung after ovalbumin (OVA) sensitization and challenge. At cellular levels, these mice failed to develop peripheral blood and airways eosinophilia while the responses of lymphocytes, neutrophils, and macrophages remained similar to those in IL-5(+/+) mice. To dissect the relative role of local and systemic IL-5 in this model, we constructed a gene transfer vector expressing murine IL-5. Intramuscular IL-5 gene transfer to OVA-sensitized IL-5(-/-) mice led to raised levels of IL-5 compartmentalized to the circulation and completely reconstituted airways eosinophilia upon OVA challenge, which was associated with reconstitution of eosinophilia in the bone marrow and peripheral blood. Significant airways eosinophilia was observed for at least 7 d in these mice. In contrast, intranasal IL-5 gene transfer, when rendered to give rise to a significant but compartmentalized level of transgene protein IL-5 in the lung, was unable to reconstitute airways eosinophilia in OVA-sensitized IL-5(-/-) mice upon OVA-challenge, which was associated with a lack of eosinophilic responses in bone marrow and peripheral blood. Our findings thus provide unequivocal evidence that circulating but not local lung IL-5 is critically required for the development of allergic airways eosinophilia. These findings also provide the rationale for developing strategies to target circulating IL-5 and/or its receptors in bone marrow to effectively control asthmatic airways

  15. Carrier subunit of plasma membrane transporter is required for oxidative folding of its helper subunit.

    PubMed

    Rius, Mònica; Chillarón, Josep

    2012-05-25

    We study the amino acid transport system b(0,+) as a model for folding, assembly, and early traffic of membrane protein complexes. System b(0,+) is made of two disulfide-linked membrane subunits: the carrier, b(0,+) amino acid transporter (b(0,+)AT), a polytopic protein, and the helper, related to b(0,+) amino acid transporter (rBAT), a type II glycoprotein. rBAT ectodomain mutants display folding/trafficking defects that lead to type I cystinuria. Here we show that, in the presence of b(0,+)AT, three disulfides were formed in the rBAT ectodomain. Disulfides Cys-242-Cys-273 and Cys-571-Cys-666 were essential for biogenesis. Cys-673-Cys-685 was dispensable, but the single mutants C673S, and C685S showed compromised stability and trafficking. Cys-242-Cys-273 likely was the first disulfide to form, and unpaired Cys-242 or Cys-273 disrupted oxidative folding. Strikingly, unassembled rBAT was found as an ensemble of different redox species, mainly monomeric. The ensemble did not change upon inhibition of rBAT degradation. Overall, these results indicated a b(0,+)AT-dependent oxidative folding of the rBAT ectodomain, with the initial and probably cotranslational formation of Cys-242-Cys-273, followed by the oxidation of Cys-571-Cys-666 and Cys-673-Cys-685, that was completed posttranslationally.

  16. PERP, a host tetraspanning membrane protein, is required for S almonella‐induced inflammation

    PubMed Central

    Hallstrom, Kelly N.; Srikanth, C. V.; Agbor, Terence A.; Dumont, Christopher M.; Peters, Kristen N.; Paraoan, Luminita; Casanova, James E.; Boll, Erik J.

    2015-01-01

    Summary S almonella enterica  Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from S almonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast‐two‐hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP‐22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface. PMID:25486861

  17. Severe Tumor Lysis Syndrome and Acute Pulmonary Edema Requiring Extracorporeal Membrane Oxygenation Following Initiation of Chemotherapy for Metastatic Alveolar Rhabdomyosarcoma.

    PubMed

    Sanford, Ethan; Wolbrink, Traci; Mack, Jennifer; Rowe, R Grant

    2016-05-01

    We present an 8-year-old male with metastatic alveolar rhabdomyosarcoma (ARMS) who developed precipitous cardiopulmonary collapse with severe tumor lysis syndrome (TLS) 48 hr after initiation of chemotherapy. Despite no detectable pulmonary metastases, acute hypoxemic respiratory failure developed, requiring extracorporeal membrane oxygenation (ECMO). Although TLS has been reported in disseminated ARMS, this singular case of life-threatening respiratory deterioration developing after initiation of chemotherapy presented unique therapeutic dilemmas. We review the clinical aspects of this case, including possible mechanisms of respiratory failure, and discuss the role of ECMO utilization in pediatric oncology.

  18. The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 Is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis

    PubMed Central

    Steinberger, Iris; Herdean, Andrei; Gandini, Chiara; Labs, Mathias; Flügge, Ulf-Ingo; Geimer, Stefan; Schmidt, Sidsel Birkelund; Husted, Søren; Spetea, Cornelia; Leister, Dario

    2016-01-01

    In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid lumen remains poorly understood. Here, we show that Arabidopsis thaliana PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein involved in Mn2+ and Ca2+ homeostasis in chloroplasts. This protein is required for normal operation of the oxygen-evolving complex (as evidenced by oxygen evolution rates) and for manganese incorporation. Manganese binding to PSII was severely reduced in pam71 thylakoids, particularly in PSII supercomplexes. In cation partitioning assays with intact chloroplasts, Mn2+ and Ca2+ ions were differently sequestered in pam71, with Ca2+ enriched in pam71 thylakoids relative to the wild type. The changes in Ca2+ homeostasis were accompanied by an increased contribution of the transmembrane electrical potential to the proton motive force across the thylakoid membrane. PSII activity in pam71 plants and the corresponding Chlamydomonas reinhardtii mutant cgld1 was restored by supplementation with Mn2+, but not Ca2+. Furthermore, PAM71 suppressed the Mn2+-sensitive phenotype of the yeast mutant Δpmr1. Therefore, PAM71 presumably functions in Mn2+ uptake into thylakoids to ensure optimal PSII performance. PMID:27020959

  19. Membrane palmitoylated protein 2 is a synaptic scaffold protein required for synaptic SK2-containing channel function

    PubMed Central

    Kim, Gukhan; Luján, Rafael; Schwenk, Jochen; Kelley, Melissa H; Aguado, Carolina; Watanabe, Masahiko; Fakler, Bernd; Maylie, James; Adelman, John P

    2016-01-01

    Mouse CA1 pyramidal neurons express apamin-sensitive SK2-containing channels in the post-synaptic membrane, positioned close to NMDA-type (N-methyl-D-aspartate) glutamate receptors. Activated by synaptically evoked NMDAR-dependent Ca2+ influx, the synaptic SK2-containing channels modulate excitatory post-synaptic responses and the induction of synaptic plasticity. In addition, their activity- and protein kinase A-dependent trafficking contributes to expression of long-term potentiation (LTP). We have identified a novel synaptic scaffold, MPP2 (membrane palmitoylated protein 2; p55), a member of the membrane-associated guanylate kinase (MAGUK) family that interacts with SK2-containing channels. MPP2 and SK2 co-immunopurified from mouse brain, and co-immunoprecipitated when they were co-expressed in HEK293 cells. MPP2 is highly expressed in the post-synaptic density of dendritic spines on CA1 pyramidal neurons. Knocking down MPP2 expression selectively abolished the SK2-containing channel contribution to synaptic responses and decreased LTP. Thus, MPP2 is a novel synaptic scaffold that is required for proper synaptic localization and function of SK2-containing channels. DOI: http://dx.doi.org/10.7554/eLife.12637.001 PMID:26880549

  20. Plasma-membrane-bound macromolecules are dynamically aggregated to form non-random codistribution patterns of selected functional elements. Do pattern recognition processes govern antigen presentation and intercellular interactions?

    PubMed

    Vereb, G; Mátyus, L; Bene, L; Panyi, G; Bacsó, Z; Balázs, M; Matkó, J; Szöllösi, J; Gáspár, R; Damjanovich, S

    1995-01-01

    Molecular recognition processes between cell surface elements are discussed with special reference to cell surface pattern formation of membrane-bound integral proteins. The existence, as detected by flow cytometric resonance energy transfer (Appendix), and significance of cell surface patterns involving the interleukin-2 receptor, the T-cell receptor-CD3 system, the intercellular adhesion molecule ICAM-1, and the major histocompatibility complex class I and class II molecules in the plasma membrane of lymphocytes are described. The modulation of antigen presentation by transmembrane potential changes is discussed, and a general role of transmembrane potential changes, and therefore of ion channel activities, adduced as one of the major regulatory mechanisms of cell-cell communication. A general role in the mediation and regulation of intercellular interactions is suggested for cell-surface macromolecular patterns. The dynamic pattern of protein and lipid molecules in the plasma membrane is generated by the genetic code, but has a remarkable flexibility and may be one of the major instruments of accommodation and recognition processes at the cellular level.

  1. Virus-mimetic nanovesicles as a versatile antigen-delivery system

    PubMed Central

    Zhang, Pengfei; Chen, Yixin; Zeng, Yun; Shen, Chenguang; Li, Rui; Guo, Zhide; Li, Shaowei; Zheng, Qingbing; Chu, Chengchao; Wang, Zhantong; Zheng, Zizheng; Tian, Rui; Ge, Shengxiang; Zhang, Xianzhong; Xia, Ning-Shao; Liu, Gang; Chen, Xiaoyuan

    2015-01-01

    It is a critically important challenge to rapidly design effective vaccines to reduce the morbidity and mortality of unexpected pandemics. Inspired from the way that most enveloped viruses hijack a host cell membrane and subsequently release by a budding process that requires cell membrane scission, we genetically engineered viral antigen to harbor into cell membrane, then form uniform spherical virus-mimetic nanovesicles (VMVs) that resemble natural virus in size, shape, and specific immunogenicity with the help of surfactants. Incubation of major cell membrane vesicles with surfactants generates a large amount of nano-sized uniform VMVs displaying the native conformational epitopes. With the diverse display of epitopes and viral envelope glycoproteins that can be functionally anchored onto VMVs, we demonstrate VMVs to be straightforward, robust and tunable nanobiotechnology platforms for fabricating antigen delivery systems against a wide range of enveloped viruses. PMID:26504197

  2. FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids ▿ †

    PubMed Central

    Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M.

    2011-01-01

    FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth. PMID:21926226

  3. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane.

    PubMed

    Truschel, Steven T; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C; Tenza, Danièle; Thomas, Penelope C; Herman, Kathryn E; Sackett, Sara D; Cowan, David C; Theos, Alexander C; Raposo, Graça; Marks, Michael S

    2009-09-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome that lack BLOC-1, melanosomal proteins such as tyrosinase-related protein 1 (Tyrp1) accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here, we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverse early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant-negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle.

  4. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane

    PubMed Central

    Truschel, Steven T.; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C.; Tenza, Danièle; Thomas, Penelope C.; Herman, Kathryn E.; Sackett, Sara D.; Cowan, David C.; Theos, Alexander C.; Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome (HPS) that lack BLOC-1, melanosomal proteins such as Tyrp1 accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverses early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle. PMID:19624486

  5. Evaluation of the humidification requirements of new proton exchange membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Grot, Stephen; Hedstrom, J. C.; Vanderborgh, N. E.

    Measurements of PEM fuel cell device performance were made with different gas inlet temperatures and relative humidity using a newly-designed test fixture. Significant improvement in device performance was observed when the fuel inlet temperature was increased above the operating temperature of the cell. These measurements were then correlated to a model to describe energy and mass transport processes. Proton exchange membrane (PEM), fuel cells--the focus of this study--use an ion conducting polymer, especially polyperfluorosulfonic acid materials. These polymer materials, when imbibed with water, exhibit solution-like properties, but because the anions are chemically bound to the polymeric structure, the electrolyte is contained. Importantly, product water removal is simplified, as electrolyte dilution is not a concern. However, the proton transport rate is a function of the polymer geometry, which is set, in part, by the polymer water content. Consequently, dynamics of water flow are essential to understand the design of efficient conversion devices.

  6. An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors

    PubMed Central

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.

    2014-01-01

    ABSTRACT Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found. PMID:25425235

  7. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE PAGES

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; ...

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  8. COPI-mediated membrane trafficking is required for cytokinesis in Drosophila male meiotic divisions.

    PubMed

    Kitazawa, Daishi; Yamaguchi, Masamitsu; Mori, Hajime; Inoue, Yoshihiro H

    2012-08-01

    The coatomer protein complex, COPI, mediates retrograde vesicle transport from the Golgi apparatus to the ER. Here, we investigated the meiotic phenotype of Drosophila melanogaster spermatocytes expressing dsRNA of 52 genes encoding membrane-trafficking-related factors. We identified COPI as an essential factor for male meiosis. In Drosophila male meiotic divisions, COPI is localized in the ER-Golgi intermediate compartment of tER-Golgi units scattered throughout the spermatocyte cytoplasm. Prior to chromosome segregation, the vesicles assemble at the spindle pole periphery through a poleward movement, mediated by minus-end motor dynein along astral microtubules. At the end of each meiotic division, COPI-containing vesicles are equally partitioned between two daughter cells. Our present data strongly suggest that spermatocytes possess a regulatory mechanism for equal inheritance of several types of membrane vesicles. Using testis-specific knockdown of COPI subunits or the small GTPase Arf or mutations of the γCOP gene, we examined the role of COPI in male meiosis. COPI depletion resulted in the failure of cytokinesis, through disrupted accumulation of essential proteins and lipid components at the cleavage furrow region. Furthermore, it caused a reduction in the number of overlapping central spindle microtubules, which are essential for cytokinesis. Drosophila spermatocytes construct ER-based intracellular structures associated with astral and spindle microtubules. COPI depletion resulted in severe disruption of these ER-based structures. Thus, we propose that COPI plays an important role in Drosophila male meiosis, not only through vesicle transport to the cleavage furrow region, but also through the formation of ER-based structures.

  9. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    SciTech Connect

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.

  10. Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction.

    PubMed

    Kolesar, Peter; Altmannova, Veronika; Silva, Sonia; Lisby, Michael; Krejci, Lumir

    2016-04-01

    Srs2 plays many roles in DNA repair, the proper regulation and coordination of which is essential. Post-translational modification by small ubiquitin-like modifier (SUMO) is one such possible mechanism. Here, we investigate the role of SUMO in Srs2 regulation and show that the SUMO-interacting motif (SIM) of Srs2 is important for the interaction with several recombination factors. Lack of SIM, but not proliferating cell nuclear antigen (PCNA)-interacting motif (PIM), leads to increased cell death under circumstances requiring homologous recombination for DNA repair. Simultaneous mutation of SIM in asrs2ΔPIMstrain leads to a decrease in recombination, indicating a pro-recombination role of SUMO. Thus SIM has an ambivalent function in Srs2 regulation; it not only mediates interaction with SUMO-PCNA to promote the anti-recombination function but it also plays a PCNA-independent pro-recombination role, probably by stimulating the formation of recombination complexes. The fact that deletion of PIM suppresses the phenotypes of Srs2 lacking SIM suggests that proper balance between the anti-recombination PCNA-bound and pro-recombination pools of Srs2 is crucial. Notably, sumoylation of Srs2 itself specifically stimulates recombination at the rDNA locus.

  11. Epididymal metastasis from prostate adenocarcinoma: An unusual and challenging diagnosis suspected in gallium-68 prostate-specific membrane antigen-positron emission tomography/computed tomography and histologically confirmed

    PubMed Central

    Santos-Lopes, Sofia; Lobo, João; Henrique, Rui; Oliveira, Jorge

    2017-01-01

    A few cases of prostate adenocarcinoma (PCa) metastases to the epididymis have been documented in literature. We report a case of a 69-year-old man with a left epididymal metastasis, 6 years after radical prostatectomy and adjuvant radiation therapy for PCa. Although he developed biochemical recurrence, only gallium-68 prostate-specific membrane antigen-positron emission tomography/computed tomography revealed high uptake in the left testis and retrovesical space. An unrecognized painless firm nodule was palpable on the left epididymis. Radical orchiectomy was performed, and histopathological examination confirmed PCa metastasis located in the epididymis. To the best of our knowledge, this is the 27th reported case of epididymal metastasis from PCa. PMID:28216940

  12. Common antigen structures of HL-A antigens

    PubMed Central

    Miyakawa, Y.; Tanigaki, N.; Yagi, Y.; Pressman, D.

    1973-01-01

    Antigenic determinants recognizable by rabbits were found to be present on the molecular fragments (48,000 Daltons) which were obtained by papain-solubilization of the membrane fractions of cultured human lymphoid cells and which carried the HL-A determinants. Results were obtained which suggest that these antigenic determinants are present in common on these molecular fragments carrying HL-A determinants regardless of their HL-A specificity and are restricted to the molecular fragments which carry HL-A determinants. The study was made by use of radioimmune methods involving the binding of radioiodine-labelled soluble HL-A antigen preparations by anti-HL-A alloantisera and by rabbit antisera raised against the membrane fractions of cultured human lymphoid cells. PMID:4119543

  13. Phase 1/2a Study of the Malaria Vaccine Candidate Apical Membrane Antigen-1 (AMA-1) Administered in Adjuvant System AS01B or AS02A

    DTIC Science & Technology

    2009-04-01

    control malarial antigen [14]. T-cell responses to AMA-1 were detected in naı̈ve adult volunteers immunized with irradiated P. falciparum sporozoites [15...endpoints included anti-AMA-1 antibody titers as determined by Enzyme-Linked Immunoassay (ELISA), as well as functionality of anti-AMA-1 antibodies versus...Enzyme-Linked Immunoassay . Serum for anti-AMA-1 antibody determination was collected from each volunteer at Day 0, 14, 28, 42, 56, 70, 93, 114 and 156

  14. Major cytoplasmic membrane protein of Legionella pneumophila, a genus common antigen and member of the hsp 60 family of heat shock proteins, induces protective immunity in a guinea pig model of Legionnaires' disease.

    PubMed Central

    Blander, S J; Horwitz, M A

    1993-01-01

    We have examined the capacity of the major cytoplasmic membrane protein (MCMP) of Legionella pneumophila, a genus common antigen and member of the hsp 60 family of heat shock proteins, to induce protective immunity in a guinea pig model of Legionnaires' disease. We purified MCMP to homogeneity from L. pneumophila by buffer extraction, ion-exchange chromatography, and molecular sieve chromatography. Guinea pigs immunized with MCMP developed a strong cell-mediated immune response to the immunogen manifest by marked cutaneous delayed-type hypersensitivity. Guinea pigs immunized with MCMP and then challenged with a lethal aerosol dose of L. pneumophila exhibited a high level of protective immunity. Altogether, in four independent experiments, 55 of 64 (86%) animals immunized three times with 0.6-40 micrograms MCMP including 11 of 11 (100%) animals immunized three times with 40 micrograms MCMP survived aerosol challenge with L. pneumophila compared with 1 of 29 (3%) sham-immunized control animals (P < 0.0001, Cochran-Mantel-Haenszel X2 statistic for pooled data). To our knowledge, MCMP is the first member of the hsp 60 family of proteins shown to induce protective immunity to a microbial pathogen. MCMP has potential as a vaccine against Legionnaires' disease. Since MCMP is a genus common antigen, vaccination with a combination of MCMPs derived from different Legionella species has the potential of inducing protective immunity against all the major Legionella species causing human disease. Images PMID:8432872

  15. Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae.

    PubMed

    Fagarasanu, Monica; Fagarasanu, Andrei; Tam, Yuen Yi C; Aitchison, John D; Rachubinski, Richard A

    2005-06-06

    Cells have evolved molecular mechanisms for the efficient transmission of organelles during cell division. Little is known about how peroxisomes are inherited. Inp1p is a peripheral membrane protein of peroxisomes of Saccharomyces cerevisiae that affects both the morphology of peroxisomes and their partitioning during cell division. In vivo 4-dimensional video microscopy showed an inability of mother cells to retain a subset of peroxisomes in dividing cells lacking the INP1 gene, whereas cells overexpressing INP1 exhibited immobilized peroxisomes that failed to be partitioned to the bud. Overproduced Inp1p localized to both peroxisomes and the cell cortex, supporting an interaction of Inp1p with specific structures lining the cell periphery. The levels of Inp1p vary with the cell cycle. Inp1p binds Pex25p, Pex30p, and Vps1p, which have been implicated in controlling peroxisome division. Our findings are consistent with Inp1p acting as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p is the first peroxisomal protein directly implicated in peroxisome inheritance.

  16. Ankyrin-B directs membrane tethering of periaxin and is required for maintenance of lens fiber cell hexagonal shape and mechanics.

    PubMed

    Maddala, Rupalatha; Walters, Mark; Brophy, Peter J; Bennett, Vann; Rao, Ponugoti V

    2016-01-15

    Periaxin (Prx), a PDZ domain protein expressed preferentially in myelinating Schwann cells and lens fibers, plays a key role in membrane scaffolding and cytoarchitecture. Little is known, however, about how Prx is anchored to the plasma membrane. Here we report that ankyrin-B (AnkB), a well-characterized adaptor protein involved in linking the spectrin-actin cytoskeleton to integral membrane proteins, is required for membrane association of Prx in lens fibers and colocalizes with Prx in hexagonal fiber cells. Under AnkB haploinsufficiency, Prx accumulates in the soluble fraction with a concomitant loss from the membrane-enriched fraction of mouse lenses. Moreover, AnkB haploinsufficiency induced age-dependent disruptions in fiber cell hexagonal geometry and radial alignment and decreased compressive stiffness in mouse lenses parallel to the changes observed in Prx null mouse lens. Both AnkB- and Prx-deficient mice exhibit disruptions in membrane organization of the spectrin-actin network and the dystrophin-glycoprotein complex in lens fiber cells. Taken together, these observations reveal that AnkB is required for Prx membrane anchoring and for maintenance of lens fiber cell hexagonal geometry, membrane skeleton organization, and biomechanics.

  17. Ankyrin-B directs membrane tethering of periaxin and is required for maintenance of lens fiber cell hexagonal shape and mechanics

    PubMed Central

    Maddala, Rupalatha; Walters, Mark; Brophy, Peter J.; Bennett, Vann

    2015-01-01

    Periaxin (Prx), a PDZ domain protein expressed preferentially in myelinating Schwann cells and lens fibers, plays a key role in membrane scaffolding and cytoarchitecture. Little is known, however, about how Prx is anchored to the plasma membrane. Here we report that ankyrin-B (AnkB), a well-characterized adaptor protein involved in linking the spectrin-actin cytoskeleton to integral membrane proteins, is required for membrane association of Prx in lens fibers and colocalizes with Prx in hexagonal fiber cells. Under AnkB haploinsufficiency, Prx accumulates in the soluble fraction with a concomitant loss from the membrane-enriched fraction of mouse lenses. Moreover, AnkB haploinsufficiency induced age-dependent disruptions in fiber cell hexagonal geometry and radial alignment and decreased compressive stiffness in mouse lenses parallel to the changes observed in Prx null mouse lens. Both AnkB- and Prx-deficient mice exhibit disruptions in membrane organization of the spectrin-actin network and the dystrophin-glycoprotein complex in lens fiber cells. Taken together, these observations reveal that AnkB is required for Prx membrane anchoring and for maintenance of lens fiber cell hexagonal geometry, membrane skeleton organization, and biomechanics. PMID:26538089

  18. Klebsiella pneumoniae outer membrane protein A is required to prevent the activation of airway epithelial cells.

    PubMed

    March, Catalina; Moranta, David; Regueiro, Verónica; Llobet, Enrique; Tomás, Anna; Garmendia, Junkal; Bengoechea, José A

    2011-03-25

    Outer membrane protein A (OmpA) is a class of proteins highly conserved among the Enterobacteriaceae family and throughout evolution. Klebsiella pneumoniae is a capsulated gram-negative pathogen. It is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by a lack of an early inflammatory response. Data from our laboratory indicate that K. pneumoniae CPS helps to suppress the host inflammatory response. However, it is unknown whether K. pneumoniae employs additional factors to modulate host inflammatory responses. Here, we report that K. pneumoniae OmpA is important for immune evasion in vitro and in vivo. Infection of A549 and normal human bronchial cells with 52OmpA2, an ompA mutant, increased the levels of IL-8. 52145-Δwca(K2)ompA, which does not express CPS and ompA, induced the highest levels of IL-8. Both mutants could be complemented. In vivo, 52OmpA2 induced higher levels of tnfα, kc, and il6 than the wild type. ompA mutants activated NF-κB, and the phosphorylation of p38, p44/42, and JNK MAPKs and IL-8 induction was via NF-κB-dependent and p38- and p44/42-dependent pathways. 52OmpA2 engaged TLR2 and -4 to activate NF-κB, whereas 52145-Δwca(K2)ompA activated not only TLR2 and TLR4 but also NOD1. Finally, we demonstrate that the ompA mutant is attenuated in the pneumonia mouse model. The results of this study indicate that K. pneumoniae OmpA contributes to attenuate airway cell responses. This may facilitate pathogen survival in the hostile environment of the lung.

  19. Laminin α5 in the keratinocyte basement membrane is required for epidermal-dermal intercommunication.

    PubMed

    Wegner, Jeannine; Loser, Karin; Apsite, Gunita; Nischt, Roswitha; Eckes, Beate; Krieg, Thomas; Werner, Sabine; Sorokin, Lydia

    2016-12-01

    Laminin α5 is broadly expressed in the epidermal basement membrane (BM) of mature mice and its elimination at this site (Lama5(Ker5) mouse) results in hyperproliferation of basal keratinocytes and a delay in hair follicle development, which correlated with upregulation of the dermally-derived laminin α2 and laminin α4 chains in the epidermal BM and of tenascin-C subjacent to the BM. In vitro studies revealed laminin 511 to be strongly adhesive for primary keratinocytes and that loss of laminin α5 does not result in cell autonomous defects in proliferation. Flow cytometry reveals that the loss of laminin α5 resulted in increased numbers of CD45(+), CD4(+) and CD11b(+) immune cells in the skin, which temporo-spatial analyses revealed were detectable only subsequent to the loss of laminin α5 and the appearance of the hyperproliferative keratinocyte phenotype. These findings indicate that immune cell changes are the consequence and not the cause of keratinocyte hyperproliferation. Loss of laminin α5 in the epidermal BM was also associated with changes in the expression of several dermally-derived growth factors involved in keratinocyte proliferation and hair follicle development in adult but not new born Lama5(Ker5) skin, including KGF, EGF and KGF-2. In situ binding of FGF-receptor-2α (IIIb)-Fc chimera (FGFR2IIIb) to mouse skin sections revealed decoration of several BMs, including the epidermal BM, which was absent in Lama5(Ker5) skin. This indicates reduced levels of FGFR2IIIb ligands, which include KGF and KGF-2, in the epidermal BM of adult Lama5(Ker5) skin. Our data suggest an initial inhibitory effect of laminin α5 on basal keratinocyte proliferation and migration, which is exacerbated by subsequent changes in growth factor expression by epidermal and dermal cells, implicating laminin α5 in epidermal-dermal intercommunication.

  20. Outer membrane protein OmpQ of Bordetella bronchiseptica is required for mature biofilm formation.

    PubMed

    Cattelan, Natalia; Villalba, María Inés; Parisi, Gustavo; Arnal, Laura; Serra, Diego Omar; Aguilar, Mario; Yantorno, Osvaldo

    2016-02-01

    Bordetella bronchiseptica, an aerobic Gram-negative bacterium, is capable of colonizing the respiratory tract of diverse animals and chronically persists inside the hosts by forming biofilm. Most known virulence factors in Bordetella species are regulated by the BvgAS two-component transduction system. The Bvg-activated proteins play a critical role during host infection. OmpQ is an outer membrane porin protein which is expressed under BvgAS control. Here, we studied the contribution of OmpQ to the biofilm formation process by B. bronchiseptica. We found that the lack of expression of OmpQ did not affect the growth kinetics and final biomass of B. bronchiseptica under planktonic growth conditions. The ΔompQ mutant strain displayed no differences in attachment level and in early steps of biofilm formation. However, deletion of the ompQ gene attenuated the ability of B. bronchiseptica to form a mature biofilm. Analysis of ompQ gene expression during the biofilm formation process by B. bronchiseptica showed a dynamic expression pattern, with an increase of biofilm culture at 48 h. Moreover, we demonstrated that the addition of serum anti-OmpQ had the potential to reduce the biofilm biomass formation in a dose-dependent manner. In conclusion, we showed for the first time, to the best of our knowledge, evidence of the contribution of OmpQ to a process of importance for B. bronchiseptica pathobiology. Our results indicate that OmpQ plays a role during the biofilm development process, particularly at later stages of development, and that this porin could be a potential target for strategies of biofilm formation inhibition.

  1. A novel fixed fibre biofilm membrane process for on-site greywater reclamation requiring no fouling control.

    PubMed

    Jabornig, Simon; Podmirseg, Sabine Marie

    2015-03-01

    On-site greywater treatment and reuse in urban areas bears the potential to reduce huge quantities of wastewater and lower freshwater shortages. Until now dissemination of small, single household applications has been rather limited as simple and high quality water producing, but also cost-effective treatment units have not been developed so far. This paper proposes a new process, based on a concurrently working hollow-fibre membrane as fixed biofilm support and filtration device. Bioreactor characteristics, influence of different aeration rates, membrane flux development, as well as structure and composition of biofilm were monitored to evaluate the performance of the tested pilot unit. The introduced process achieved international water reuse guidelines, worked soundly and could, compared to conventional micro MBR, significantly reduce energy demand (<1.4 kWh m(-3)). Fouling control by air scouring and chemical cleaning was not required once flux had stabilized. The biofilm analysis showed a porous, spongy-like structure. Microbiological investigation revealed a community of sheathed bacteria and nematodes that could play an important role in the flux stabilisation effect. In general, the study confirmed the suitability of the presented process for greywater treatment and provides valuable design data for future optimization and systematic analysis.

  2. Insulin-like growth factor-I-stimulated Akt phosphorylation and oligodendrocyte progenitor cell survival require cholesterol-enriched membranes.

    PubMed

    Romanelli, Robert J; Mahajan, Kedar R; Fulmer, Clifton G; Wood, Teresa L

    2009-11-15

    Previously we showed that insulin-like growth factor-I (IGF-I) promotes sustained phosphorylation of Akt in oligodendrocyte progenitor cells (OPCs) and that Akt phosphorylation is required for survival of these cells. The direct mechanisms, however, by which IGF-I promotes Akt phosphorylation are currently undefined. Recently, cholesterol-enriched membranes (CEMs) have been implicated in regulation of growth factor-mediated activation of the PI3K/Akt pathway and survival of mature oligodendrocytes; however, less is know about their role in OPC survival. In the present study, we investigate the role of CEMs in IGF-I-mediated Akt phosphorylation and OPC survival. We report that acute disruption of membrane cholesterol with methyl-beta-cyclodextrin results in altered OPC morphology and inhibition of IGF-I-mediated Akt phosphorylation. We also report that long-term inhibition of cholesterol biosynthesis with 25-hydroxycholesterol blocks IGF-I stimulated Akt phosphorylation and cell survival. Moreover, we show that the PI3K regulatory subunit, p85, Akt, and the IGF-IR are sequestered within cholesterol-enriched fractions in steady-state stimulation of the IGF-IR and that phosphorylated Akt and IGF-IR are present in cholesterol-enriched fractions with IGF-I stimulation. Together, the results of these studies support a role for CEMs or "lipid rafts" in IGF-I-mediated Akt phosphorylation and provide a better understanding of the mechanisms by which IGF-I promotes OPC survival.

  3. 2B4-SAP signaling is required for the priming of naive CD8(+) T cells by antigen-expressing B cells and B lymphoma cells.

    PubMed

    Huang, Yu-Hsuan; Tsai, Kevin; Tan, Sara Y; Kang, Sohyeong; Ford, Mandy L; Harder, Kenneth W; Priatel, John J

    2017-01-01

    Mutations in SH2D1A gene that encodes SAP (SLAM-associated protein) result in X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency disease defined by exquisite sensitivity to the B-lymphotropic Epstein-Barr virus (EBV) and B cell lymphomas. However, the precise mechanism of how the loss of SAP function contributes to extreme vulnerability to EBV and the development of B cell lymphomas remains unclear. Here, we investigate the hypothesis that SAP is critical for CD8(+) T cell immune surveillance of antigen (Ag)-expressing B cells or B lymphoma cells under conditions of defined T cell receptor (TCR) signaling. Sh2d1a(-)(/)(-) CD8(+) T cells exhibited greatly diminished proliferation relative to wild type when Ag-presenting-B cells or -B lymphoma cells served as the primary Ag-presenting cell (APC). By contrast, Sh2d1a(-)(/)(-) CD8(+) T cells responded equivalently to wild-type CD8(+) T cells when B cell-depleted splenocytes, melanoma cells or breast carcinoma cells performed Ag presentation. Through application of signaling lymphocyte activation molecule (SLAM) family receptor blocking antibodies or SLAM family receptor-deficient CD8(+) T cells and APCs, we found that CD48 engagement on the B cell surface by 2B4 is crucial for initiating SAP-dependent signaling required for the Ag-driven CD8(+) T cell proliferation and differentiation. Altogether, a pivotal role for SAP in promoting the expansion and differentiation of B cell-primed viral-specific naive CD8(+) T cells may explain the selective immune deficiency of XLP patients to EBV and B cell lymphomas.

  4. Modulatory Effect of Taurine on 7,12-Dimethylbenz(a)Anthracene-Induced Alterations in Detoxification Enzyme System, Membrane Bound Enzymes, Glycoprotein Profile and Proliferative Cell Nuclear Antigen in Rat Breast Tissue.

    PubMed

    Vanitha, Manickam Kalappan; Baskaran, Kuppusamy; Periyasamy, Kuppusamy; Selvaraj, Sundaramoorthy; Ilakkia, Aruldoss; Saravanan, Dhiravidamani; Venkateswari, Ramachandran; Revathi Mani, Balasundaram; Anandakumar, Pandi; Sakthisekaran, Dhanapal

    2016-08-01

    The modulatory effect of taurine on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in rats was studied. DMBA (25 mg/kg body weight) was administered to induce breast cancer in rats. Protein carbonyl levels, activities of membrane bound enzymes (Na(+) /K(+) ATPase, Ca(2+) ATPase, and Mg(2+) ATPase), phase I drug metabolizing enzymes (cytochrome P450, cytochrome b5, NADPH cytochrome c reductase), phase II drug metabolizing enzymes (glutathione-S-transferase and UDP-glucuronyl transferase), glycoprotein levels, and proliferative cell nuclear antigen (PCNA) were studied. DMBA-induced breast tumor bearing rats showed abnormal alterations in the levels of protein carbonyls, activities of membrane bound enzymes, drug metabolizing enzymes, glycoprotein levels, and PCNA protein expression levels. Taurine treatment (100 mg/kg body weight) appreciably counteracted all the above changes induced by DMBA. Histological examination of breast tissue further supported our biochemical findings. The results of the present study clearly demonstrated the chemotherapeutic effect of taurine in DMBA-induced breast cancer.

  5. Reactivation of DNA replication in nuclei from terminally differentiated cells: nuclear membrane permeabilization is required for initiation in Xenopus egg extract.

    PubMed

    Leno, G H; Munshi, R

    1997-05-01

    We have used Xenopus egg extract to investigate the requirements for reactivation of DNA replication in nuclei isolated from terminally differentiated chicken erythrocytes. Previous work has shown that reactivation of erythrocyte nuclei in egg extract is accompanied by chromatin decondensation, nuclear envelope reformation, and the accumulation of egg lamin, LIII. However, in those studies, erythrocyte nuclei were prepared by methods that were not designed to maintain the selective permeability of the nuclear membrane, and as such, it is not clear if loss of nuclear membrane integrity played a role in the reactivation process. Therefore, the purpose of this study was to determine if changes in nuclear membrane permeability are required for reactivation of erythrocyte nuclei in egg extract. Nuclei with intact nuclear membranes were prepared from erythrocytes with streptolysin O and permeable nuclei by treatment of intact nuclei with the detergent Nonidet-P40. Like permeable nuclei, most intact nuclei decondensed, imported nuclear protein, and accumulated lamin LIII from the extract. However, unlike permeable nuclei, which replicated extensively in the extract, few intact nuclei initiated replication under the same conditions. These data demonstrate that permeabilization of the nuclear membrane is required for reactivation of DNA replication in terminally differentiated erythrocyte nuclei by egg extract and suggest that loss of nuclear membrane integrity may be a general requirement for replication of quiescent cell nuclei by this system.

  6. RAB-5- and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin.

    PubMed

    Los, Ferdinand C O; Kao, Cheng-Yuan; Smitham, Jane; McDonald, Kent L; Ha, Christine; Peixoto, Christina A; Aroian, Raffi V

    2011-02-17

    Pore-forming toxins (PFTs) secreted by pathogenic bacteria are the most common bacterial protein toxins and are important virulence factors for infection. PFTs punch holes in host cell plasma membranes, and although cells can counteract the resulting membrane damage, the underlying mechanisms at play remain unclear. Using Caenorhabditis elegans as a model, we demonstrate in vivo and in an intact epithelium that intestinal cells respond to PFTs by increasing levels of endocytosis, dependent upon RAB-5 and RAB-11, which are master regulators of endocytic and exocytic events. Furthermore, we find that RAB-5 and RAB-11 are required for protection against PFT and to restore integrity to the plasma membrane. One physical mechanism involved is the RAB-11-dependent expulsion of microvilli from the apical side of the intestinal epithelial cells. Specific vesicle-trafficking pathways thus protect cells against an attack by PFTs on plasma membrane integrity, via altered plasma membrane dynamics.

  7. Nonclassical antigen-processing pathways are required for MHC class II-restricted direct tumor recognition by NY-ESO-1-specific CD4(+) T cells.

    PubMed

    Matsuzaki, Junko; Tsuji, Takemasa; Luescher, Immanuel; Old, Lloyd J; Shrikant, Protul; Gnjatic, Sacha; Odunsi, Kunle

    2014-04-01

    Tumor antigen-specific CD4(+) T cells that directly recognize cancer cells are important for orchestrating antitumor immune responses at the local tumor sites. However, the mechanisms of direct MHC class II (MHC-II) presentation of intracellular tumor antigen by cancer cells are poorly understood. We found that two functionally distinct subsets of CD4(+) T cells were expanded after HLA-DPB1*04 (DP04)-binding NY-ESO-1157-170 peptide vaccination in patients with ovarian cancer. Although both subsets recognized exogenous NY-ESO-1 protein pulsed on DP04(+) target cells, only one type recognized target cells with intracellular expression of NY-ESO-1. The tumor-recognizing CD4(+) T cells more efficiently recognized the short 8-9-mer peptides than the non-tumor-recognizing CD4(+) T cells. In addition to endosomal/lysosomal proteases that are typically involved in MHC-II antigen presentation, several pathways in the MHC class I presentation pathways, such as the proteasomal degradation and transporter-associated with antigen-processing-mediated peptide transport, were also involved in the presentation of intracellular NY-ESO-1 on MHC-II. The presentation was inhibited significantly by primaquine, a small molecule that inhibits endosomal recycling, consistent with findings that pharmacologic inhibition of new protein synthesis enhances antigen presentation. Together, our data demonstrate that cancer cells selectively present peptides from intracellular tumor antigens on MHC-II by multiple nonclassical antigen-processing pathways. Harnessing the direct tumor-recognizing ability of CD4(+) T cells could be a promising strategy to enhance antitumor immune responses in the immunosuppressive tumor microenvironment.

  8. Three wall-associated kinases required for rice basal immunity form protein complexes in the plasma membrane.

    PubMed

    Cayrol, Bastien; Delteil, Amandine; Gobbato, Enrico; Kroj, Thomas; Morel, Jean-Benoit

    2016-01-01

    Receptor-like kinases (RLKs) play key roles in disease resistance, in particular basal immunity. They recognize patterns produced by the pathogen invasion and often work as complexes in the plasma membrane. Among these RLKs, there is increasing evidence in several plant species of the key role of Wall-associated kinases (WAKs) in disease resistance. We recently showed using rice (Oryza sativa) loss-of-function mutants of three transcriptionally co-regulated OsWAK genes that individual OsWAKs are positively required for quantitative resistance to the rice blast fungus, Magnaporthe oryzae. This finding was unexpected since WAK genes belong to large gene families where functional redundancy is expected. Here we provide evidence that this may be due to complex physical interaction between OsWAK proteins.

  9. Structural requirements of organophosphorus insecticides (OPI) to inhibit chicken yolk sac membrane kynurenine formamidase related to OPI teratogenesis.

    PubMed

    Seifert, Josef

    2013-03-01

    This paper provides new information related to the mechanism of OPI (organophosphorus insecticides) teratogenesis. The COMFA (comparative molecular field analysis) and COMSIA (comparative molecular similarity indices analysis) suggest that the electrostatic and steric fields are the best predictors of OPI structural requirements to inhibit in ovo chicken embryo yolk sac membrane kynurenine formamidase, the proposed target for OPI teratogens. The dominant electrostatic interactions are localized at nitrogen-1, nitrogen-3, nitrogen of 2-amino substituent of the pyrimidinyl of pyrimidinyl phosphorothioates, and the oxygen of crotonamide carbonyl in crotonamide phosphates. Bulkiness of the substituents at carbon-2 and carbon-6 of the pyrimidinyls and/or N-substituents and carbon-3 substituents of crotonamides are the steric structural components that contribute to superiority of those OPI as in ovo inhibitors of kynurenine formamidase.

  10. ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes.

    PubMed Central

    Donaldson, J G; Cassel, D; Kahn, R A; Klausner, R D

    1992-01-01

    The coatomer is a cytosolic protein complex that reversibly associates with Golgi membranes and is implicated in modulating Golgi membrane transport. The association of beta-COP, a component of coatomer, with Golgi membranes is enhanced by guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]), a nonhydrolyzable analogue of GTP, and by a mixture of aluminum and fluoride ions (Al/F). Here we show that the ADP-ribosylation factor (ARF) is required for the binding of beta-COP. Thus, beta-COP contained in a coatomer fraction that has been resolved from ARF does not bind to Golgi membranes, whereas binding can be reconstituted by the addition of recombinant ARF. Furthermore, an N-terminal peptide of ARF, which blocks ARF binding to Golgi membranes, inhibits GTP[gamma S]- as well as the Al/F-enhanced binding of beta-COP. We show that Golgi coat protein binding involves a sequential reaction where an initial interaction of ARF and GTP[gamma S] with the membrane allows subsequent binding of beta-COP to take place in the absence of free ARF and GTP[gamma S]. The fungal metabolite brefeldin A, which is known to prevent the association of coat proteins with Golgi membrane, is shown to exert this effect by interfering with the initial ARF-membrane interaction step. Images PMID:1631136

  11. Antigen Export Reduces Antigen Presentation and Limits T Cell Control of M. tuberculosis.

    PubMed

    Srivastava, Smita; Grace, Patricia S; Ernst, Joel D

    2016-01-13

    Persistence of Mycobacterium tuberculosis results from bacterial strategies that manipulate host adaptive immune responses. Infected dendritic cells (DCs) transport M. tuberculosis to local lymph nodes but activate CD4 T cells poorly, suggesting bacterial manipulation of antigen presentation. However, M. tuberculosis antigens are also exported from infected DCs and taken up and presented by uninfected DCs, possibly overcoming this blockade of antigen presentation by infected cells. Here we show that the first stage of this antigen transfer, antigen export, benefits M. tuberculosis by diverting bacterial proteins from the antigen presentation pathway. Kinesin-2 is required for antigen export and depletion of this microtubule-based motor increases activation of antigen-specific CD4 T cells by infected cells and improves control of intracellular infection. Thus, although antigen transfer enables presentation by bystander cells, it does not compensate for reduced antigen presentation by infected cells and represents a bacterial strategy for CD4 T cell evasion.

  12. The Membrane Attack Complex of Complement is Required for the Development of Murine Experimental Cerebral Malaria

    PubMed Central

    Ramos, Theresa N.; Darley, Meghan M.; Hu, Xianzhen; Billker, Oliver; Rayner, Julian C.; Ahras, Malika; Wohler, Jillian E.; Barnum, Scott R.

    2011-01-01

    Cerebral malaria (CM) is the most severe complication of Plasmodium falciparum infection and accounts for a large number of malaria fatalities worldwide. Recent studies demonstrated that C5−/− mice are resistant to experimental CM (ECM) and suggested that protection was due to loss of C5a-induced inflammation. Surprisingly, we observed that C5aR−/− mice were fully susceptible to disease, indicating that C5a is not required for ECM. C3aR−/− and C3aR−/− × C5aR−/− mice were equally as susceptible to ECM as wild type mice, indicating that neither complement anaphylatoxin receptor is critical for ECM development. In contrast, C9 deposition in the brains of mice with ECM suggested an important role for the terminal complement pathway. Treatment with anti-C9 antibody significantly increased survival time and reduced mortality in ECM. Our data indicate that protection from ECM in C5−/− mice is mediated through inhibition of MAC formation and not through C5a-induced inflammation. PMID:21572031

  13. Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes.

    PubMed Central

    Hermiston, T W; Tripp, R A; Sparer, T; Gooding, L R; Wold, W S

    1993-01-01

    Adenovirus E3-gp19K is a transmembrane glycoprotein, localized in the endoplasmic reticulum (ER), which forms a complex with major histocompatibility complex (MHC) class I antigens and retains them in the ER, thereby preventing cytolysis by cytotoxic T lymphocytes (CTL). The ER lumenal domain of gp19K, residues 1 to 107, is known to be sufficient for binding to class I antigens; the transmembrane and cytoplasmic ER retention domains are located at residues ca. 108 to 127 and 128 to 142, respectively. To identify more precisely which gp19K regions are involved in binding to class I antigens, we constructed 13 in-frame virus deletion mutants (4 to 12 amino acids deleted) in the ER lumenal domain of gp19K, and we analyzed the ability of the mutant proteins to form a complex with class I antigens, retain them in the ER, and prevent cytolysis by adenovirus-specific CTL. All mutant proteins except one (residues 102 to 107 deleted) were defective for these properties, indicating that the ability of gp19K to bind to class I antigens is highly sensitive to mutation. All mutant proteins were stable and were retained in the ER. Sequence comparisons among adenovirus serotypes reveal that the ER lumenal domain of gp19K consists of a variable region (residues 1 to 76) and a conserved region (residues 77 to 98). We show, using the mutant proteins, that the gp19K-specific monoclonal antibody Tw1.3 recognizes a noncontiguous epitope in the variable region and that disruption of the variable region by deletion destroys the epitope. The monoclonal antibody and class I antigen binding results, together with the serotype sequence comparisons, are consistent with the idea that the ER lumenal domain of gp19K has three subdomains that we have termed the ER lumenal variable domain (residues 1 to ca. 77 to 83), the ER lumenal conserved domain (residues ca. 84 to 98), and the ER lumenal spacer domain (residues 99 to 107). We suggest that the ER lumenal variable domain of gp19K has a specific

  14. Structural analysis of the human interferon gamma receptor: a small segment of the intracellular domain is specifically required for class I major histocompatibility complex antigen induction and antiviral activity.

    PubMed

    Cook, J R; Jung, V; Schwartz, B; Wang, P; Pestka, S

    1992-12-01

    Mutations of the human interferon gamma (IFN-gamma) receptor intracellular domain have permitted us to define a restricted region of that domain as necessary for both induction of class I major histocompatibility complex antigen by IFN-gamma and protection against encephalomyocarditis virus. This region consists of five amino acids (YDKPH), all of which are conserved in the human and murine receptors. Tyr-457 and His-461 are essential for activity. Approximately 80% of the amino acids of the intracellular domain of the receptor is not required for major histocompatibility complex class I antigen induction or for antiviral protection against encephalomyocarditis virus. The observation that there was no protection by IFN-gamma against vesiculostomatitis virus indicates that other factors, in addition to chromosome 21 accessory factor(s), are required to generate the full complement of transduction signals from the human IFN-gamma receptor.

  15. Anti-apical-membrane-antigen-1 antibody is more effective than anti-42-kilodalton-merozoite-surface-protein-1 antibody in inhibiting plasmodium falciparum growth, as determined by the in vitro growth inhibition assay.

    PubMed

    Miura, Kazutoyo; Zhou, Hong; Diouf, Ababacar; Moretz, Samuel E; Fay, Michael P; Miller, Louis H; Martin, Laura B; Pierce, Mark A; Ellis, Ruth D; Mullen, Gregory E D; Long, Carole A

    2009-07-01

    Apical membrane antigen 1 (AMA1) and the 42-kDa merozoite surface protein 1 (MSP1(42)) are leading malaria vaccine candidates. Several preclinical and clinical trials have been conducted, and an in vitro parasite growth inhibition assay has been used to evaluate the biological activities of the resulting antibodies. In a U.S. phase 1 trial with AMA1-C1/Alhydrogel plus CPG 7909, the vaccination elicited anti-AMA1 immunoglobulin G (IgG) which showed up to 96% inhibition. However, antibodies induced by MSP1(42)-C1/Alhydrogel plus CPG 7909 vaccine showed less than 32% inhibition in vitro. To determine whether anti-MSP1(42) IgG had less growth-inhibitory activity than anti-AMA1 IgG in vitro, the amounts of IgG that produced 50% inhibition of parasite growth (Ab(50)) were compared for rabbit and human antibodies. The Ab(50)s of rabbit and human anti-MSP1(42) IgGs were significantly higher (0.21 and 0.62 mg/ml, respectively) than those of anti-AMA1 IgGs (0.07 and 0.10 mg/ml, respectively) against 3D7 parasites. Ab(50) data against FVO parasites also demonstrated significant differences. We further investigated the Ab(50)s of mouse and monkey anti-AMA1 IgGs and showed that there were significant differences between the species (mouse, 0.28 mg/ml, and monkey, 0.14 mg/ml, against 3D7 parasites). Although it is unknown whether growth-inhibitory activity in vitro reflects protective immunity in vivo, this study showed that the Ab(50) varies with both antigen and species. Our data provide a benchmark for antibody levels for future AMA1- or MSP1(42)-based vaccine development efforts in preclinical and clinical trials.

  16. Nucleotide sequence and expression of the gene encoding the major 25-kilodalton outer membrane protein of Brucella ovis: Evidence for antigenic shift, compared with other Brucella species, due to a deletion in the gene.

    PubMed Central

    Cloeckaert, A; Verger, J M; Grayon, M; Zygmunt, M S; Grépinet, O

    1996-01-01

    The nucleotide sequences encoding the major 25-kDa outer membrane protein (OMP) (omp25 genes) of Brucella ovis 63/290, Brucella melitensis 16M, Brucella suis 1330, Brucella canis RM6/66, and Brucella neotomae 5K33 (all reference strains) were determined and compared with that of Brucella abortus 544 (P. de Wergifosse, P. Lintermans, J. N. Limet, and A. Cloeckaert, J. Bacteriol. 177:1911-1914, 1995). The major difference found was between the omp25 gene of B. ovis and those of the other Brucella species; the B. ovis gene had a 36-bp deletion located at the 3' end of the gene. The corresponding regions of other Brucella species contain two 8-bp direct repeats and two 4-bp inverted repeats, which could have been involved in the genesis of the deletion. The mechanism responsible for the genesis of the deletion appears to be related to the "slipped mispairing" mechanism described in the literature. Expression of the 25-kDa outer membrane protein (Omp25) in Brucella spp. or expression from the cloned omp25 gene in Escherichia coli cells was studied with a panel of anti-Omp25 monoclonal antibodies (MAbs). As shown by enzyme-linked immunosorbent assay (ELISA) and immunoelectron microscopy, Omp25 was exported to the outer membrane in E. coli expressing either the truncated omp25 gene of B. ovis or the entire omp25 genes of the other Brucella species. Size and antigenic shifts due to the 36-bp deletion were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting and by the differences in binding patterns in ELISA of the anti-Omp25 MAbs at the cell surface of E. coli cells harboring the appropriate gene and of cells of B. ovis and other Brucella species. In particular, MAbs directed against discontinuous epitopes of the entire Omp25 showed the absence of, or a significant reduction in, antibody reactivity with the B. ovis truncated Omp25. The results indicated that, as defined by the MAbs, exported Omp25 probably presents similar

  17. Functional characterization of human CD34+ cells that express low or high levels of the membrane antigen CD111 (nectin 1).

    PubMed

    Belaaloui, G; Imbert, A-M; Bardin, F; Tonnelle, C; Dubreuil, P; Lopez, M; Chabannon, C

    2003-06-01

    Nectins are recently described adhesion molecules that are widely expressed on many tissues, including the hematopoietic tissue. Nectin 1 (CD111) is expressed on a higher proportion of mobilized peripheral blood (mPB) than cord blood (CB) CD34+ cells, and of CD34+/CD38+ cells when compared with CD34+/CD38- cells. We studied functional properties of human CB and mPB CD34+ cells that express low or high levels of CD111. CD34+/CD111(dim) cells contain a higher proportion of cells in G0/G1 phase than CD34+/CD111(bright) cells. CD34+/CD111(bright) cells contain more erythroid progenitors: CFU-E, than their counterparts, which on the opposite contain more HPP-CFC. Limiting dilution analyses demonstrate a higher frequency of immature progenitors: cobblestone-area colony-forming cells, CD34+/CD111(dim) than in CD34+/CD111(bright) cells. In vitro differentiation assays demonstrate a higher frequency of B-, T- and dendritic-cell precursors, but less NK-cell precursors in CD34+/CD111(dim) cells. Evaluation of engraftment in NOD-SCID mice shows that SCID repopulating cells are more frequent among mPB CD34+/CD111(dim) cells. Liquid culture of CD34+/CD111(dim) cells with erythropoietin shows that CD111 expression increases simultaneously with CD36, following CD71 and before glycophorin A expression. In conclusion, immature human hematopoietic progenitors express low levels of CD111 on their surface. During erythroid differentiation CD34+ cells acquire higher levels of the CD111 antigen.

  18. A pore-forming toxin requires a specific residue for its activity in membranes with particular physicochemical properties.

    PubMed

    Morante, Koldo; Caaveiro, Jose M M; Tanaka, Koji; González-Mañas, Juan Manuel; Tsumoto, Kouhei

    2015-04-24

    The physicochemical landscape of the bilayer modulates membrane protein function. Actinoporins are a family of potent hemolytic proteins from sea anemones acting at the membrane level. This family of cytolysins preferentially binds to target membranes containing sphingomyelin, where they form lytic pores giving rise to cell death. Although the cytolytic activity of the actinoporin fragaceatoxin C (FraC) is sensitive to vesicles made of various lipid compositions, it is far from clear how this toxin adjusts its mechanism of action to a broad range of physiochemical landscapes. Herein, we show that the conserved residue Phe-16 of FraC is critical for pore formation in cholesterol-rich membranes such as those of red blood cells. The interaction of a panel of muteins of Phe-16 with model membranes composed of raft-like lipid domains is inactivated in cholesterol-rich membranes but not in cholesterol-depleted membranes. These results indicate that actinoporins recognize different membrane environments, resulting in a wider repertoire of susceptible target membranes (and preys) for sea anemones. In addition, this study has unveiled promising candidates for the development of protein-based biosensors highly sensitive to the concentration of cholesterol within the membrane.

  19. Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM

    PubMed Central

    Georgiev, Alexander; Sullivan, David P.; Kersting, Michael C.; Dittman, Jeremy S.; Beh, Christopher T.; Menon, Anant K.

    2011-01-01

    Sterol transport between the endoplasmic reticulum (ER) and plasma membrane (PM) occurs by an ATP-dependent, non-vesicular mechanism that is presumed to require sterol transport proteins (STPs). In Saccharomyces cerevisiae, homologues of the mammalian oxysterol-binding protein (Osh1–7) have been proposed to function as STPs. To evaluate this proposal we took two approaches. First we used dehydroergosterol (DHE) to visualize sterol movement in living cells by fluorescence microscopy. DHE was introduced into the PM under hypoxic conditions and observed to redistribute to lipid droplets on growing the cells aerobically. Redistribution required ATP and the sterol acyltransferase Are2, but did not require PM-derived transport vesicles. DHE redistribution occurred robustly in a conditional yeast mutant (oshΔ osh4-1ts) that lacks all functional Osh proteins at 37°C. In a second approach we used a pulse-chase protocol to analyze the movement of metabolically radiolabeled ergosterol from the ER to the PM. Arrival of radiolabeled ergosterol at the PM was assessed in isolated PM-enriched fractions as well by extracting sterols from intact cells with methyl-β-cyclodextrin. These experiments revealed that whereas ergosterol is transported effectively from the ER to the PM in Osh-deficient cells, the rate at which it moves within the PM to equilibrate with the methyl-β-cyclodextrin extractable sterol pool is slowed. We conclude (i) that the role of Osh proteins in nonvesicular sterol transport between the PM, ER and lipid droplets is either minimal, or subsumed by other mechanisms and (ii) that Osh proteins regulate the organization of sterols at the PM. PMID:21689253

  20. closca, a new gene required for both Torso RTK activation and vitelline membrane integrity. Germline proteins contribute to Drosophila eggshell composition.

    PubMed

    Ventura, Gemma; Furriols, Marc; Martín, Nicolás; Barbosa, Vitor; Casanova, Jordi

    2010-08-01

    The Drosophila eggshell is a specialised extracellular matrix (ECM) that surrounds and protects the oocyte and the embryo until its eclosion. In addition, the vitelline membrane, the innermost layer of the eggshell, holds the local determinant required to activate the Torso RTK pathway, which establishes the embryonic terminal regions. Here we report the identification and characterisation of closca, a gene encoding a new member of a group of proteins that act non-redundantly in vitelline membrane biogenesis and in Torso signalling. We also show that the Nasrat protein, another member of this group, is incorporated into the vitelline membrane, thereby indicating that the eggshell is a shared ECM that receives contributions from both follicle cells and the germline. This observation also provides a new scenario that accounts for the long known contribution of germline products to vitelline membrane biogenesis and to the follicle cell-dependent activation of the Torso receptor.

  1. N-terminal residues of an HIV-1 gp41 membrane-proximal external region antigen influence broadly neutralizing 2F5-like antibodies.

    PubMed

    Li, Dezhi; Liu, Jie; Zhang, Li; Xu, Tianshu; Chen, Junheng; Wang, Liping; Zhao, Qi

    2015-12-01

    The Human immunodeficiency virus type 1 (HIV-1) gp41 membrane proximal external region (MPER) is targeted by broadly neutralizing antibodies (e.g. 2F5, 4E10, Z13e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However, these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope (amino acids (aa) 662-667 in the MPER) but also several other residues (aa 652-655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.

  2. Cutting edge: the membrane attack complex of complement is required for the development of murine experimental cerebral malaria.

    PubMed

    Ramos, Theresa N; Darley, Meghan M; Hu, Xianzhen; Billker, Oliver; Rayner, Julian C; Ahras, Malika; Wohler, Jillian E; Barnum, Scott R

    2011-06-15

    Cerebral malaria is the most severe complication of Plasmodium falciparum infection and accounts for a large number of malaria fatalities worldwide. Recent studies demonstrated that C5(-/-) mice are resistant to experimental cerebral malaria (ECM) and suggested that protection was due to loss of C5a-induced inflammation. Surprisingly, we observed that C5aR(-/-) mice were fully susceptible to disease, indicating that C5a is not required for ECM. C3aR(-/-) and C3aR(-/-) × C5aR(-/-) mice were equally susceptible to ECM as were wild-type mice, indicating that neither complement anaphylatoxin receptor is critical for ECM development. In contrast, C9 deposition in the brains of mice with ECM suggested an important role for the terminal complement pathway. Treatment with anti-C9 Ab significantly increased survival time and reduced mortality in ECM. Our data indicate that protection from ECM in C5(-/-) mice is mediated through inhibition of membrane attack complex formation and not through C5a-induced inflammation.

  3. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes.

    PubMed

    Dewerchin, Hannah L; Desmarets, Lowiese M; Noppe, Ytse; Nauwynck, Hans J

    2014-02-12

    Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.

  4. High expression of prostate-specific membrane antigen in the tumor-associated neo-vasculature is associated with worse prognosis in squamous cell carcinoma of the oral cavity.

    PubMed

    Haffner, Michael C; Laimer, Johannes; Chaux, Alcides; Schäfer, Georg; Obrist, Peter; Brunner, Andrea; Kronberger, Irmgard E; Laimer, Klaus; Gurel, Bora; Koller, Johann-Benedikt; Seifarth, Christof; Zelger, Bettina; Klocker, Helmut; Rasse, Michael; Doppler, Wolfgang; Bander, Neil H

    2012-08-01

    Prostate-specific membrane antigen (PSMA) is a transmembrane protein expressed in prostate cancer as well as in the neo-vasculature of nonprostatic solid tumors. Here, we determined the expression pattern of PSMA in the vasculature of oral squamous cell carcinoma. Using a previously validated antibody, PSMA staining distribution and cyclooxygenase 2 (COX2) expression status was evaluated in a cohort of patients with squamous cell carcinoma of the oral cavity (n=96) using immunohistochemistry and was correlated with clinicopathological features as well as outcome. Twenty-four (25%) cases showed no detectable PSMA staining, 48 (50%) demonstrated positive immunoreactivity for PSMA in less than 50% of microvessels and 24 (25%) cases showed strong endothelial PSMA expression in more than 50% of tumor-associated microvessels. High endothelial PSMA expression was associated with greatly reduced survival (18.2 vs 77.3 months; P=0.0001) and maintained prognostic significance after adjusting for grade and stage in multivariate analysis (hazard ratio=2.19, P=0.007). Furthermore, we observed a strong association between endothelial PSMA and cancer cell-specific COX2 expression. In conclusion, we provide the first evidence for the prognostic significance of endothelial PSMA expression in oral squamous cell carcinoma and, suggest a potential interaction between arachidonic acid metabolites and endothelial PSMA expression in the tumor neo-vasculature.

  5. Phosphatidylinositol and phosphatidic acid transport between the ER and plasma membrane during PLC activation requires the Nir2 protein.

    PubMed

    Kim, Yeun Ju; Guzman-Hernandez, Maria Luisa; Wisniewski, Eva; Echeverria, Nicolas; Balla, Tamas

    2016-02-01

    Phospholipase C (PLC)-mediated hydrolysis of the limited pool of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] requires replenishment from a larger pool of phosphatidylinositol (PtdIns) via sequential phosphorylation by PtdIns 4-kinases and phosphatidylinositol 4-phosphate (PtdIns4P) 5-kinases. Since PtdIns is synthesized in the endoplasmic reticulum (ER) and PtdIns(4,5)P2 is generated in the PM, it has been postulated that PtdIns transfer proteins (PITPs) provide the means for this lipid transfer function. Recent studies identified the large PITP protein, Nir2 as important for PtdIns transfer from the ER to the PM. It was also found that Nir2 was required for the transfer of phosphatidic acid (PtdOH) from the PM to the ER. In Nir2-depleted cells, activation of PLC leads to PtdOH accumulation in the PM and PtdIns synthesis becomes severely impaired. In quiescent cells, Nir2 is localized to the ER via interaction of its FFAT domain with ER-bound VAMP-associated proteins VAP-A and-B. After PLC activation, Nir2 also binds to the PM via interaction of its C-terminal domains with diacylglycerol (DAG) and PtdOH. Through these interactions, Nir2 functions in ER-PM contact zones. Mutations in VAP-B that have been identified in familial forms of amyotrophic lateral sclerosis (ALS or Lou-Gehrig's disease) cause aggregation of the VAP-B protein, which then impairs its binding to several proteins, including Nir2. These findings have shed new lights on the importance of non-vesicular lipid transfer of PtdIns and PtdOH in ER-PM contact zones with a possible link to a devastating human disease.

  6. An amino-proximal domain required for the localization of FtsQ in the cytoplasmic membrane, and for its biological function in Escherichia coli.

    PubMed

    Dopazo, A; Palacios, P; Sánchez, M; Pla, J; Vicente, M

    1992-03-01

    The location of FtsQ, an Escherichia coli protein essential for cell division, is, under physiological conditions, in the cytoplasmic membrane facing towards the periplasmic space. An amino-proximal hydrophobic domain is required for FtsQ to reach its location and for its activity in the cell. Overexpression of modified forms of FtsQ is deleterious for the cell.

  7. Localized surface antigens of guinea pig sperm migrate to new regions prior to fertilization

    PubMed Central

    1984-01-01

    We have previously defined distinct localizations of antigens on the surface of the guinea pig sperm using monoclonal antibodies. In the present study we have demonstrated that these antigen localizations are dynamic and can be altered during changes in the functional state of the sperm. Before the sperm is capable of fertilizing the egg, it must undergo capacitation and an exocytic event, the acrosome reaction. Prior to capacitation, the antigen recognized by the monoclonal antibody, PT-1, was restricted to the posterior tail region (principle piece and end piece). After incubation in capacitating media at 37 degrees C for 1 h, 100% of the sperm population showed migration of the PT-1 antigen onto the anterior tail. This redistribution of surface antigen resulted from a migration of the surface molecules originally present on the posterior tail. It did not occur in the presence of metabolic poisons or when tail-beating was prevented. It was temperature-dependent, and did not require exogenous Ca2+. Since the PT- 1 antigen is freely diffusing on the posterior tail before migration, the mechanism of redistribution could involve the alteration of a presumptive membrane barrier. In addition, we observed the redistribution of a second surface antigen after the acrosome reaction. The antigen recognized by the monoclonal antibody, PH-20, was localized exclusively in the posterior head region of acrosome-intact sperm. Within 7-10 min of induction of the acrosome reaction with Ca2+ and A23187, 90-100% of the acrosome-reacted sperm population no longer demonstrated binding of the PH-20 antibody on the posterior head, but showed binding instead on the inner acrosomal membrane. This redistribution of the PH-20 antigen also resulted from the migration of pre-existing surface molecules, but did not appear to require energy. The migration of PH-20 antigen was a selective process; other antigens localized to the posterior head region did not leave the posterior head after the

  8. Rab17 mediates differential antigen sorting following efferocytosis and phagocytosis

    PubMed Central

    Yin, Charles; Kim, Yohan; Argintaru, Dean; Heit, Bryan

    2016-01-01

    Macrophages engulf and destroy pathogens (phagocytosis) and apoptotic cells (efferocytosis), and can subsequently initiate adaptive immune responses by presenting antigens derived from engulfed materials. Both phagocytosis and efferocytosis share a common degradative pathway in which the target is engulfed into a membrane-bound vesicle, respectively, termed the phagosome and efferosome, where they are degraded by sequential fusion with endosomes and lysosomes. Despite this shared maturation pathway, macrophages are immunogenic following phagocytosis but not efferocytosis, indicating that differential processing or trafficking of antigens must occur. Mass spectrometry and immunofluorescence microscopy of efferosomes and phagosomes in macrophages demonstrated that efferosomes lacked the proteins required for antigen presentation and instead recruited the recycling regulator Rab17. As a result, degraded materials from efferosomes bypassed the MHC class II loading compartment via the recycling endosome – a process not observed in phagosomes. Combined, these results indicate that macrophages prevent presentation of apoptotic cell-derived antigens by preferentially trafficking efferocytosed, but not phagocytosed, materials away from the MHC class II loading compartment via the recycling endosome pathway. PMID:28005073

  9. Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface.

    PubMed

    Bernardino de la Serna, Jorge; Vargas, Rodolfo; Picardi, Victoria; Cruz, Antonio; Arranz, Rocío; Valpuesta, José M; Mateu, Leonardo; Pérez-Gil, Jesús

    2013-01-01

    Pulmonary surfactant is a lipid-protein complex essential to stabilize alveoli, by forming surface active films able to reach and sustain very low surface tensions (< 2 mN m(-1)) during the film compression that occurs at end-expiration. The particular lipid composition of surfactant, including a high proportion of dipalmitoylphosphatidylcholine (DPPC), induces segregation of fluid ordered and disordered phases in surfactant membranes and films at physiological temperatures. The segregation of DPPC-enriched ordered phase has been related with the ability of surfactant films to produce very low tensions, while the presence in surfactant of two specific hydrophobic polypeptides, SP-B and SP-C, is absolutely required to facilitate surfactant dynamics, including film formation and re-spreading during expansion at inspiration. In the present study, we have used X-ray scattering to analyze the structure of (1) whole native surfactant membranes purified from porcine lungs, (2) membranes reconstituted from the organic extract of surfactant containing the full lipid complement and the physiological proportion of SP-B and SP-C, and (3) membranes reconstituted from the lipid fraction of surfactant depleted of proteins. Small angle X-ray scattering data from whole surfactant or from membranes reconstituted from surfactant organic extract indicated the co-existence of two lamellar phases with different thicknesses. Such phase coexistence disappeared upon heating of the samples at temperatures above physiological values. When assessed in a captive bubble surfactometer, which mimics interfacial compression-expansion dynamics, the ability of surfactant films to produce very low tensions is only maintained at temperatures permitting the coexistence of the two lamellar phases. On the other hand, membranes reconstituted in the absence of proteins produced diffractograms indicative of the existence of a single dominant lamellar phase at all temperatures. These data suggest that SP

  10. Human leucocyte antigen class I‐redirected anti‐tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells

    PubMed Central

    Tan, M. P.; Dolton, G. M.; Gerry, A. B.; Brewer, J. E.; Bennett, A. D.; Pumphrey, N. J.; Jakobsen, B. K.

    2016-01-01

    Summary CD4+ T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour‐specific CD4+ T cells occur in low frequency, express relatively low‐affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4+ T cells with tumour‐specific HLA class I‐restricted TCRs prior to adoptive transfer. The lack of help from the co‐receptor CD8 glycoprotein in CD4+ cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4+ and CD8+ T cells expressing wild‐type and a range of affinity‐enhanced TCRs specific for the HLA A*0201‐restricted NY‐ESO‐1‐ and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4+ T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4+ T cells than CD8+ T cells. These results indicate that the CD4+ T cell component of current adoptive therapies using TCRs optimized for CD8+ T cells is below par and that there is room for substantial improvement. PMID:27324616

  11. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts.

    PubMed

    Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H

    2007-08-15

    Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.

  12. Requirement for continuous antigenic stimulation in the development and differentiation of antibody-forming cells. The effect of passive antibody on the primary and secondary response.

    PubMed

    Hanna, M G; Nettesheim, P; Francis, M W

    1969-05-01

    The essential role of continuous antigenic stimulation in the development and differentiation of antibody-forming cells as defined in the X-Y-Z immune cell maturation scheme was examined in these studies. Mice were primed with sheep erythrocytes (SRBC) in an attempt to induce maximum immune progenitor cell conversion (X --> Y). Subsequently antigen was depleted at 1 or 4 days after priming with isologous specific antibody in order to interrupt further immune cell differentiation (Y --> Z). It was reasoned that this condition would result in depression of the functional antibody-producing cell compartment as measured in the intact mice and subsequently in enhancement of the sensitized (Y cell) compartment as measured in the spleen cell transfer system. These data were also correlated with systematic studies of the hyperplasia of the spleen germinal centers. The effect of passive antibody on the primary response to SRBC was a marked decrease indirect and indirect hemolysin-producing cells (DPFC and IPFC). However, there was a lack of correlation in the degree of antibody-mediated 19S and 7S immune cell suppression during the primary response, the DPFC being much less depressed than the IPFC. As measured in the transfer system there was an enhanced 19S sensitized cell compartment and a depressed 7S sensitized cell compartment in 1 day passively immunized mice. This was true whether or not transfers were performed 1, 2, or 4 wk after priming. Similarly, there was an enhanced 19S-sensitized cell compartment with little or no effect on the 7S-sensitized. cell compartment in 4 day passively immunized mice. These data suggest that progeny of the antigen-stimulated progenitor cells (X cell), as a consequence of lack of further antigenic stimulation, were forced into maturation arrest. These studies further demonstrate that isologous passive antibody suppresses germinal center growth regardless of whether the antibody is infused 1, 2, or 4 days after priming. In terms of

  13. Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane

    PubMed Central

    1992-01-01

    We have used stably transfected CHO cell lines to characterize the pathway of intracellular transport of the lgp120 (lgp-A) to lysosomes. Using several surface labeling and internalization assays, our results suggest that lgp120 can reach its final destination with or without prior appearance on the plasma membrane. The extent to which lgp120 was transported via the cell surface was determined by two factors: expression level and the presence of a conserved glycine-tyrosine motif in the cytoplasmic tail. In cells expressing low levels of wild-type lgp120, the majority of newly synthesized molecules reached lysosomes without becoming accessible to antibody or biotinylation reagents added extracellularly at 4 degrees C. With increased expression levels, however, an increased fraction of transfected lgp120, as well as some endogenous lgp-B, appeared on the plasma membrane. The fraction of newly synthesized lgp120 reaching the cell surface was also increased by mutations affecting the cytoplasmic domain tyrosine or glycine residues. A substantial fraction of both mutants reached the surface even at low expression levels. However, only the lgp120G----A7 mutant was rapidly internalized and delivered from the plasma membrane to lysosomes. Taken together, our results show that the majority of newly synthesized wild-type lgp120 does not appear to pass through the cell surface en route to lysosomes. Instead, it is likely that lysosomal targeting involves a saturable intracellular sorting site whose affinity for lgp's is dependent on a glycine-tyrosine motif in the lgp120 cytoplasmic tail. PMID:1560028

  14. Linkage between anaplasma marginale outer membrane proteins enhances immunogenicity, but is not required for protection from challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prevention of bacterial infections via immunization presents particular challenges. While outer membrane extracts are often protective; they are difficult and expensive to isolate and standardize, and thus often impractical for development and implementation in vaccination programs. In contrast, ind...

  15. Detection of functional class II-associated antigen: role of a low density endosomal compartment in antigen processing

    PubMed Central

    1995-01-01

    We have developed a functional assay to identify processed antigen in subcellular fractions from antigen-presenting cells; stimulatory activity in this assay may be caused by either free peptide fragments or by complexes of peptide fragments and class II molecules present on organellar membrane sheets and vesicles. In addition, we have developed a functional assay to identify proteolytic activity in subcellular fractions capable of generating antigenic peptides from intact proteins. These techniques permit the direct identification of intracellular sites of antigen processing and class II association. Using a murine B cell line stably transfected with a phosphorylcholine (PC)-specific membrane-bound immunoglobulin (Ig), we show that PC- conjugated antigens are rapidly internalized and efficiently degraded to generate processed antigen within an early low density compartment. Proteolytic activity capable of generating antigenic peptide fragments from intact proteins is found within low density endosomes and a dense compartment consistent with lysosomes. However, neither processed peptide nor peptide-class II complexes are detected in lysosomes from antigen-pulsed cells. Furthermore, blocking the intracellular transport of internalized antigen from the low density endosome to lysosomes does not inhibit the generation of processed antigen. Therefore, antigens internalized in association with membrane Ig on B cells can be efficiently processed in low density endosomal compartments without the contribution of proteases present within denser organelles. PMID:7722450

  16. Geometry of membrane fission.

    PubMed

    Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V

    2015-01-01

    Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes.

  17. Stabilization of Transfected Cells Expressing Low-Incidence Blood Group Antigens: Novel Methods Facilitating Their Use as Reagent-Cells

    PubMed Central

    González, Cecilia; Esteban, Rosa; Canals, Carme; Muñiz-Díaz, Eduardo; Nogués, Núria

    2016-01-01

    Background The identification of erythrocyte antibodies in the serum of patients rely on panels of human red blood cells (RBCs), which coexpress many antigens and are not easily available for low-incidence blood group phenotypes. These problems have been addressed by generating cell lines expressing unique blood group antigens, which may be used as an alternative to human RBCs. However, the use of cell lines implies several drawbacks, like the requirement of cell culture facilities and the high cost of cryopreservation. The application of cell stabilization methods could facilitate their use as reagent cells in clinical laboratories. Methods We generated stably-transfected cells expressing low-incidence blood group antigens (Dia and Lua). High-expresser clones were used to assess the effect of TransFix® treatment and lyophilization as cell preservation methods. Cells were kept at 4°C and cell morphology, membrane permeability and antigenic properties were evaluated at several time-points after treatment. Results TransFix® addition to cell suspensions allows cell stabilization and proper antigen detection for at least 120 days, despite an increase in membrane permeability and a reduction in antigen expression levels. Lyophilized cells showed minor morphological changes and antigen expression levels were rather conserved at days 1, 15 and 120, indicating a high stability of the freeze-dried product. These stabilized cells have been proved to react specifically with human sera containing alloantibodies. Conclusions Both stabilization methods allow long-term preservation of the transfected cells antigenic properties and may facilitate their distribution and use as reagent-cells expressing low-incidence antigens, overcoming the limited availability of such rare RBCs. PMID:27603310

  18. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

    PubMed

    Hoppins, Suzanne; Collins, Sean R; Cassidy-Stone, Ann; Hummel, Eric; Devay, Rachel M; Lackner, Laura L; Westermann, Benedikt; Schuldiner, Maya; Weissman, Jonathan S; Nunnari, Jodi

    2011-10-17

    To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane-associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria.

  19. Biodistribution, Tumor Detection, and Radiation Dosimetry of 18F-DCFBC, a Low-Molecular-Weight Inhibitor of Prostate-Specific Membrane Antigen, in Patients with Metastatic Prostate Cancer

    PubMed Central

    Cho, Steve Y.; Gage, Kenneth L.; Mease, Ronnie C.; Senthamizhchelvan, Srinivasan; Holt, Daniel P.; Jeffrey-Kwanisai, Akimosa; Endres, Christopher J.; Dannals, Robert F.; Sgouros, George; Lodge, Martin; Eisenberger, Mario A.; Rodriguez, Ronald; Carducci, Michael A.; Rojas, Camilo; Slusher, Barbara S.; Kozikowski, Alan P.; Pomper, Martin G.

    2013-01-01

    Prostate-specific membrane antigen (PSMA) is a type II integral membrane protein expressed on the surface of prostate cancer (PCa) cells, particularly in androgen-independent, advanced, and metastatic disease. Previously, we demonstrated that N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-18F-fluorobenzyl-Lcysteine (18F-DCFBC) could image an experimental model of PSMA-positive PCa using PET. Here, we describe the initial clinical experience and radiation dosimetry of 18F-DCFBC in men with metastatic PCa. Methods Five patients with radiologic evidence of metastatic PCa were studied after the intravenous administration of 370 MBq (10 mCi) of 18F-DCFBC. Serial PET was performed until 2 h after administration. Time- activity curves were generated for selected normal tissues and metastatic foci. Radiation dose estimates were calculated using OLINDA/EXM 1.1. Results Most vascular organs demonstrated a slow decrease in radioactivity concentration over time consistent with clearance from the blood pool, with primarily urinary radiotracer excretion. Thirty-two PET-positive suspected metastatic sites were identified, with 21 concordant on both PET and conventional imaging for abnormal findings compatible with metastatic disease. Of the 11 PET-positive sites not identified on conventional imaging, most were within the bone and could be considered suggestive for the detection of early bone metastases, although further validation is needed. The highest mean absorbed dose per unit administered radioactivity (µGy/MBq) was in the bladder wall (32.4), and the resultant effective dose was 19.9 ± 1.34 µSv/MBq (mean ± SD). Conclusion Although further studies are needed for validation, our findings demonstrate the potential of 18F-DCFBC as a new positron-emitting imaging agent for the detection of metastatic PCa. This study also provides dose estimates for 18F-DCFBC that are comparable to those of other PET radiopharmaceuticals such as 18F-FDG. PMID:23203246

  20. Pathogen receptor discovery with a microfluidic human membrane protein array.

    PubMed

    Glick, Yair; Ben-Ari, Ya'ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella; Gerber, Doron

    2016-04-19

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein-pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism.

  1. Design and evaluation of a tandemly arranged outer membrane protein U (OmpU) multi-epitope as a potential vaccine antigen against Vibrio mimicus in grass carps (Ctenopharyngodon idella).

    PubMed

    Zhang, Yu-qing; Zhang, Ting-ting; Li, Jin-nian; Liu, Xue-lan; Li, Lin

    2014-07-15

    Vibrio mimicus (V. mimicus) is an extracellular pathogen that causes ascites disease in aquatic animals. In our previous studies, the outer membrane protein U (OmpU) of V. mimicus has been proven to be a protective antigen, and several mimotopes of the protein were identified. Here, a tandemly arranged multi-epitope peptide (named 6EPIS) was designed with six mimotopes and heterologously expressed. Then, the immunoprotection efficacy of recombinant 6EPIS (r6EPIS) was evaluated in grass carps (Ctenopharyngodon idella) by determining relative percentage survival (RPS), specific immunoglobulin M (IgM) antibody titer, and transcriptional levels of immune-related genes of inoculated grass carps. Fish vaccinated with r6EPIS via intraperitoneal injection exhibited 85.71% RPS over the control, when challenged with V. mimicus. The enzyme-linked immunosorbent assay titer of specific IgM antibodies against r6EPIS reached 1:12,800 on Day 28 post the primary immunization. After 28 days post immunization, the transcriptional level of total IgM mRNA was significantly higher in the r6EPIS-vaccinated fish than in those vaccinated with recombinant OmpU, inactivated bacterin and rHis tag peptide (p<0.05). In addition, the transcription levels of interleukin-1β and tumor necrosis factor-α genes in the spleen and head kidney of r6EPIS-vaccinated fish were significantly increased during the period of immunization and early phase of infection, while the transcription level of interleukin-10 gene was significantly increased from Day 3 to 7 post challenge, compared to the control level. These results show that r6EPIS was highly immunogenic and could elicit strong protective immune responses. It may be an attractive vaccine candidate against V. mimicus infection.

  2. The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity.

    PubMed

    Cebrián, Rubén; Martínez-Bueno, Manuel; Valdivia, Eva; Albert, Armando; Maqueda, Mercedes; Sánchez-Barrena, María José

    2015-05-01

    The molecular mechanism underlining the antibacterial activity of the bacteriocin AS-48 is not known, and two different and opposite alternatives have been proposed. Available data suggested that the interaction of positively charged amino acids of AS-48 with the membrane would produce membrane destabilization and disruption. Alternatively, it has been proposed that AS-48 activity could rely on the effective insertion of the bacteriocin into the membrane. The biological and structural properties of the AS-48G13K/L40K double mutant were investigated to shed light on this subject. Compared with the wild type, the mutant protein suffered an important reduction in the antibacterial activity. Biochemical and structural studies of AS-48G13K/L40K mutant suggest the basis of its decreased antimicrobial activity. Lipid cosedimentation assays showed that the membrane affinity of AS-48G13K/L40K is 12-fold lower than that observed for the wild type. L40K mutation is responsible for this reduced membrane affinity and thus, hydrophobic interactions are involved in membrane association. Furthermore, the high-resolution crystal structure of AS-48G13K/L40K, together with the study of its dimeric character in solution showed that G13K stabilizes the inactive water-soluble dimer, which displays a reduced dipole moment. Our data suggest that the cumulative effect of these three affected properties reduces AS-48 activity, and point out that the bactericidal effect is achieved by the electrostatically driven approach of the inactive water-soluble dimer towards the membrane, followed by the dissociation and insertion of the protein into the lipid bilayer.

  3. PilF Is an Outer Membrane Lipoprotein Required for Multimerization and Localization of the Pseudomonas aeruginosa Type IV Pilus Secretin

    SciTech Connect

    Koo, J.; Tammam, S; Ku, S; Samplaeanu, L; Burrows, L; Howell, P

    2008-01-01

    Type IV pili (T4P) are retractile appendages that contribute to the virulence of bacterial pathogens. PilF is a Pseudomonas aeruginosa lipoprotein that is essential for T4P biogenesis. Phenotypic characterization of a pilF mutant confirmed that T4P-mediated functions are abrogated: T4P were no longer present on the cell surface, twitching motility was abolished, and the mutant was resistant to infection by T4P retraction-dependent bacteriophage. The results of cellular fractionation studies indicated that PilF is the outer membrane pilotin required for the localization and multimerization of the secretin, PilQ. Mutation of the putative PilF lipidation site untethered the protein from the outer membrane, causing secretin assembly in both inner and outer membranes. T4P-mediated twitching motility and bacteriophage susceptibility were moderately decreased in the lipidation site mutant, while cell surface piliation was substantially reduced. The tethering of PilF to the outer membrane promotes the correct localization of PilQ and appears to be required for the formation of stable T4P. Our 2.0-A structure of PilF revealed a superhelical arrangement of six tetratricopeptide protein-protein interaction motifs that may mediate the contacts with PilQ during secretin assembly. An alignment of pseudomonad PilF sequences revealed three highly conserved surfaces that may be involved in PilF function.

  4. Nuclear inner membrane fusion facilitated by yeast Jem1p is required for spindle pole body fusion but not for the first mitotic nuclear division during yeast mating.

    PubMed

    Nishikawa, Shuh-ichi; Hirata, Aiko; Endo, Toshiya

    2008-11-01

    During mating of budding yeast, Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. The process of nuclear fusion requires two J proteins, Jem1p in the endoplasmic reticulum (ER) lumen and Sec63p, which forms a complex with Sec71p and Sec72p, in the ER membrane. Zygotes of mutants defective in the functions of Jem1p or Sec63p contain two haploid nuclei that were closely apposed but failed to fuse. Here we analyzed the ultrastructure of nuclei in jem1 Delta and sec71 Delta mutant zygotes using electron microscope with the freeze-substituted fixation method. Three-dimensional reconstitution of nuclear structures from electron microscope serial sections revealed that Jem1p facilitates nuclear inner-membrane fusion and spindle pole body (SPB) fusion while Sec71p facilitates nuclear outer-membrane fusion. Two haploid SPBs that failed to fuse could duplicate, and mitotic nuclear division of the unfused haploid nuclei started in jem1 Delta and sec71 Delta mutant zygotes. This observation suggests that nuclear inner-membrane fusion is required for SPB fusion, but not for SPB duplication in the first mitotic cell division.

  5. Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering.

    PubMed

    Molnár, Eszter; Swamy, Mahima; Holzer, Martin; Beck-García, Katharina; Worch, Remigiusz; Thiele, Christoph; Guigas, Gernot; Boye, Kristian; Luescher, Immanuel F; Schwille, Petra; Schubert, Rolf; Schamel, Wolfgang W A

    2012-12-14

    The T-cell antigen receptor (TCR) exists in monomeric and nanoclustered forms independently of antigen binding. Although the clustering is involved in the regulation of T-cell sensitivity, it is unknown how the TCR nanoclusters form. We show that cholesterol is required for TCR nanoclustering in T cells and that this clustering enhances the avidity but not the affinity of the TCR-antigen interaction. Investigating the mechanism of the nanoclustering, we found that radioactive photocholesterol specifically binds to the TCRβ chain in vivo. In order to reduce the complexity of cellular membranes, we used a synthetic biology approach and reconstituted the TCR in liposomes of defined lipid composition. Both cholesterol and sphingomyelin were required for the formation of TCR dimers in phosphatidylcholine-containing large unilamellar vesicles. Further, the TCR was localized in the liquid disordered phase in giant unilamellar vesicles. We propose a model in which cholesterol and sphingomyelin binding to the TCRβ chain causes TCR dimerization. The lipid-induced TCR nanoclustering enhances the avidity to antigen and thus might be involved in enhanced sensitivity of memory compared with naive T cells. Our work contributes to the understanding of the function of specific nonannular lipid-membrane protein interactions.

  6. Immunotherapy of malignant disease with tumor antigen (TA)-specific monoclonal antibodies: does its therapeutic efficacy require cooperation with TA-specific CTL?

    PubMed Central

    Campoli, Michael; Ferris, Robert; Ferrone, Soldano; Wang, Xinhui

    2009-01-01

    A few tumor antigen (TA)-specific monoclonal antibodies (mAb) have been approved by FDA for the treatment of several major malignant diseases and are commercially available. Once in the clinic, mAb have an average success rate of ~30% and are well tolerated. These results have changed the face of cancer therapy, bringing us closer to more specific and more effective biologic therapy of cancer. The challenge facing tumor immunologists at present is represented by the identification of the mechanism(s) underlying patients’ differential clinical response to mAb-based immunotherapy. This information is expected to lead to the development of criteria to select patients to be treated with mAb-based immunotherapy. In the past in vitro and in vivo evidence has shown that TA-specific mAb can mediate their therapeutic effect by inducing tumor cell apoptosis, inhibiting the targeted antigen function, blocking tumor cell signaling and/or mediating complement-or cell-dependent lysis of tumor cells. More recent evidence suggests that TA-specific mAb can induce TA-specific cytotoxic T cell responses by enhancing TA uptake by dendritic cells (DC) and cross-priming of T cells. In this manuscript, we briefly summarize the TA-specific mAb that have received FDA approval. Next we review the potential mechanisms underlying the therapeutic efficacy of TA-specific mAb with emphasis on the induction of TA-specific cellular immune responses and their potential to contribute to the clinical efficacy of TA-specific mAb-based immunotherapy. Lastly, we discuss the potential negative impact of immune escape mechanisms on the clinical efficacy of TA-specific mAb-based immunotherapy. PMID:20028761

  7. The association of myosin IB with actin waves in dictyostelium requires both the plasma membrane-binding site and actin-binding region in the myosin tail.

    PubMed

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A; Korn, Edward D

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave.

  8. The Association of Myosin IB with Actin Waves in Dictyostelium Requires Both the Plasma Membrane-Binding Site and Actin-Binding Region in the Myosin Tail

    PubMed Central

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A.; Korn, Edward D.

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave. PMID:24747353

  9. Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrP(Sc)) into contiguous membranes.

    PubMed

    Baron, Gerald S; Wehrly, Kathy; Dorward, David W; Chesebro, Bruce; Caughey, Byron

    2002-03-01

    Prion protein (PrP) is usually attached to membranes by a glycosylphosphatidylinositol-anchor that associates with detergent-resistant membranes (DRMs), or rafts. To model the molecular processes that might occur during the initial infection of cells with exogenous transmissible spongiform encephalopathy (TSE) agents, we examined the effect of membrane association on the conversion of the normal protease-sensitive PrP isoform (PrP-sen) to the protease-resistant isoform (PrP-res). A cell-free conversion reaction approximating physiological conditions was used, which contained purified DRMs as a source of PrP-sen and brain microsomes from scrapie-infected mice as a source of PrP-res. Interestingly, DRM-associated PrP-sen was not converted to PrP-res until the PrP-sen was either released from DRMs by treatment with phosphatidylinositol-specific phospholipase C (PI-PLC), or the combined membrane fractions were treated with the membrane-fusing agent polyethylene glycol (PEG). PEG-assisted conversion was optimal at pH 6--7, and acid pre-treating the DRMs was not sufficient to permit conversion without PI-PLC or PEG, arguing against late endosomes/lysosomes as primary compartments for PrP conversion. These observations raise the possibility that generation of new PrP-res during TSE infection requires (i) removal of PrP-sen from target cells; (ii) an exchange of membranes between cells; or (iii) insertion of incoming PrP-res into the raft domains of recipient cells.

  10. Mycosins Are Required for the Stabilization of the ESX-1 and ESX-5 Type VII Secretion Membrane Complexes

    PubMed Central

    van Winden, Vincent J. C.; Ummels, Roy; Piersma, Sander R.; Jiménez, Connie R.; Korotkov, Konstantin V.; Bitter, Wilbert

    2016-01-01

    ABSTRACT Pathogenic mycobacteria contain up to five type VII secretion (T7S) systems, ESX-1 to ESX-5. One of the conserved T7S components is the serine protease mycosin (MycP). Strikingly, whereas MycP is essential for secretion, the protease activity of MycP1 in Mycobacterium tuberculosis has been shown to be dispensable for secretion. The essential role of MycP therefore remains unclear. Here we show that MycP1 and MycP5 of M. marinum have similar phenotypes, confirming that MycP has a second unknown function that is essential for its T7S system. To investigate whether this role is related to proper functioning of the T7S membrane complex, we first analyzed the composition of the ESX-1 membrane complex and showed that this complex consists of EccBCDE1, similarly to what was previously shown for ESX-5. Surprisingly, while mycosins are not an integral part of these purified core complexes, we noticed that the stability of both the ESX-1 complex and the ESX-5 complex is compromised in the absence of their MycP subunit. Additional interaction studies showed that, although mycosins are not part of the central ESX membrane complex, they loosely associate with this complex. We hypothesize that this MycP association with the core membrane complex is crucial for the integrity and functioning of the T7S machinery. PMID:27795391

  11. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane

    PubMed Central

    Tanaka, Yoshiki; Ono, Natsuki; Shima, Takahiro; Tanaka, Gaku; Katoh, Yohei; Nakayama, Kazuhisa; Takatsu, Hiroyuki; Shin, Hye-Won

    2016-01-01

    Type IV P-type ATPases (P4-ATPases) are phospholipid flippases that translocate phospholipids from the exoplasmic (or luminal) to the cytoplasmic leaflet of lipid bilayers. In Saccharomyces cerevisiae, P4-ATPases are localized to specific subcellular compartments and play roles in compartment-mediated membrane trafficking; however, roles of mammalian P4-ATPases in membrane trafficking are poorly understood. We previously reported that ATP9A, one of 14 human P4-ATPases, is localized to endosomal compartments and the Golgi complex. In this study, we found that ATP9A is localized to phosphatidylserine (PS)-positive early and recycling endosomes, but not late endosomes, in HeLa cells. Depletion of ATP9A delayed the recycling of transferrin from endosomes to the plasma membrane, although it did not affect the morphology of endosomal structures. Moreover, depletion of ATP9A caused accumulation of glucose transporter 1 in endosomes, probably by inhibiting their recycling. By contrast, depletion of ATP9A affected neither the early/late endosomal transport and degradation of epidermal growth factor (EGF) nor the transport of Shiga toxin B fragment from early/recycling endosomes to the Golgi complex. Therefore ATP9A plays a crucial role in recycling from endosomes to the plasma membrane. PMID:27733620

  12. Basement membrane assembly of the integrin α8β1 ligand nephronectin requires Fraser syndrome-associated proteins.

    PubMed

    Kiyozumi, Daiji; Takeichi, Makiko; Nakano, Itsuko; Sato, Yuya; Fukuda, Tomohiko; Sekiguchi, Kiyotoshi

    2012-05-28

    Dysfunction of the basement membrane protein QBRICK provokes Fraser syndrome, which results in renal dysmorphogenesis, cryptophthalmos, syndactyly, and dystrophic epidermolysis bullosa through unknown mechanisms. Here, we show that integrin α8β1 binding to basement membranes was significantly impaired in Qbrick-null mice. This impaired integrin α8β1 binding was not a direct consequence of the loss of QBRICK, which itself is a ligand of integrin α8β1, because knock-in mice with a mutation in the integrin-binding site of QBRICK developed normally and do not exhibit any defects in integrin α8β1 binding. Instead, the loss of QBRICK significantly diminished the expression of nephronectin, an integrin α8β1 ligand necessary for renal development. In vivo, nephronectin associated with QBRICK and localized at the sublamina densa region, where QBRICK was also located. Collectively, these findings indicate that QBRICK facilitates the integrin α8β1-dependent interactions of cells with basement membranes by regulating the basement membrane assembly of nephronectin and explain why renal defects occur in Fraser syndrome.

  13. A Golgi-associated protein 4.1B variant is required for assimilation of proteins in the membrane.

    PubMed

    Kang, Qiaozhen; Wang, Ting; Zhang, Huizheng; Mohandas, Narla; An, Xiuli

    2009-04-15

    The archetypal membrane skeleton is that of the erythrocyte, consisting predominantly of spectrin, actin, ankyrin R and protein 4.1R. The presence in the Golgi of a membrane skeleton with a similar structure has been inferred, based on the identification of Golgi-associated spectrin and ankyrin. It has long been assumed that a Golgi-specific protein 4.1 must also exist, but it has not previously been found. We demonstrate here that a hitherto unknown form of protein 4.1, a 200 kDa 4.1B, is associated with the Golgi of Madin-Darby canine kidney (MDCK) and human bronchial epithelial (HBE) cells. This 4.1B variant behaves like a Golgi marker after treatment with Brefeldin A and during mitosis. Depletion of the protein in HBE cells by siRNA resulted in disruption of the Golgi structure and failure of Na(+)/K(+)-ATPase, ZO-1 and ZO-2 to migrate to the membrane. Thus, this newly identified Golgi-specific protein 4.1 appears to have an essential role in maintaining the structure of the Golgi and in assembly of a subset of membrane proteins.

  14. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    PubMed

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  15. Factors important in the extraction, stability and in vitro assembly of the hepatitis B surface antigen derived from recombinant plant systems.

    PubMed

    Smith, Mark L; Keegan, Mark E; Mason, Hugh S; Shuler, Michael L

    2002-01-01

    The expression of vaccine antigens in edible plant material together with their delivery by the oral route constitutes a powerful paradigm, with the potential to dramatically reduce the cost of vaccine production and administration, in addition to improving distribution and patient compliance. These products will be subject to many of the same regulations applied to current injectable vaccines, so reliable methods to quantify antigen and ensure stability in crude plant extracts are required. As a model system the hepatitis B surface antigen (HBsAg) was expressed in soybean and tobacco cell cultures. This complex antigen consists of membrane-associated small surface antigen proteins (p24(s)), disulfide cross-linked to yield dimers and higher multimers. Although the total p24(s) extracted from plant cells was relatively unaffected by detergent concentration, the quantification of antigenically reactive product depended strongly on the ratio of detergent to cell concentration. Furthermore, 1-20% w/v sodium ascorbate improved the measured levels of monoclonal-reactive antigen 4- to 12-fold. Detergent also influenced antigen stability in cell lysates stored at 4 degrees C; under optimum conditions stability was maintained for at least 1 month, whereas excess detergent rendered the antigen susceptible to proteolytic degradation. This proteolysis could be counteracted by the addition of skim milk or its protein component, which stabilized antigenically reactive p24(s) for up to 2 months. The immunologically relevant epitopes of HBsAg are critically dependent on disulfide bonding. By altering the sodium ascorbate concentration or buffer pH the proportion of HBsAg displaying the monoclonal reactive epitopes was increased between 8- and 20-fold. In addition, under certain conditions the dimerized p24(s) could be converted to oligomeric aggregates, resembling the form of the serum-derived antigen. These simple in vitro manipulations, compatible with the goal of a minimally

  16. Rac1-mediated membrane raft localization of PI3K/p110β is required for its activation by GPCRs or PTEN loss.

    PubMed

    Cizmecioglu, Onur; Ni, Jing; Xie, Shaozhen; Zhao, Jean J; Roberts, Thomas M

    2016-10-04

    We aimed to understand how spatial compartmentalization in the plasma membrane might contribute to the functions of the ubiquitous class IA phosphoinositide 3-kinase (PI3K) isoforms, p110α and p110β. We found that p110β localizes to membrane rafts in a Rac1-dependent manner. This localization potentiates Akt activation by G-protein-coupled receptors (GPCRs). Thus genetic targeting of a Rac1 binding-deficient allele of p110β to rafts alleviated the requirement for p110β-Rac1 association for GPCR signaling, cell growth and migration. In contrast, p110α, which does not play a physiological role in GPCR signaling, is found to reside in nonraft regions of the plasma membrane. Raft targeting of p110α allowed its EGFR-mediated activation by GPCRs. Notably, p110β dependent, PTEN null tumor cells critically rely upon raft-associated PI3K activity. Collectively, our findings provide a mechanistic account of how membrane raft localization regulates differential activation of distinct PI3K isoforms and offer insight into why PTEN-deficient cancers depend on p110β.

  17. Mycobacterium requires an all-around closely apposing phagosome membrane to maintain the maturation block and this apposition is re-established when it rescues itself from phagolysosomes.

    PubMed

    de Chastellier, Chantal; Forquet, Frédérique; Gordon, Alon; Thilo, Lutz

    2009-08-01

    Pathogenic mycobacteria survive in macrophages of the host organism by residing in phagosomes which they prevent from undergoing maturation and fusion with lysosomes. Several molecular mechanisms have been associated with the phagosome maturation block. Here we show for Mycobacterium avium in mouse bone marrow-derived macrophages that the maturation block required an all-around close apposition between the mycobacterial surface and the phagosome membrane. When small (0.1 microm) latex beads were covalently attached to the mycobacterial surface to act as a spacer that interfered with a close apposition, phagosomes rapidly acquired lysosomal characteristics as indicators for maturation and fusion with lysosomes. As a result, several mycobacteria were delivered into single phagolysosomes. Detailed electron-microscope observations of phagosome morphology over a 7-day post-infection period showed a linear correlation between bead attachment and phagosome-lysosome fusion. After about 3 days post infection, conditions inside phagolysosomes caused a gradual release of beads. This allowed mycobacteria to re-establish a close apposition with the surrounding membrane and sequester themselves into individual, non-maturing phagosomes which had lost lysosomal characteristics. By rescuing themselves from phagolysosomes, mycobacteria remained fully viable and able to multiply at the normal rate. In order to unify the present observations and previously reported mechanisms for the maturation block, we discuss evidence that they may act synergistically to interfere with 'Phagosome Membrane Economics' by causing relative changes in incoming and outgoing endocytic membrane fluxes.

  18. Rac1-mediated membrane raft localization of PI3K/p110β is required for its activation by GPCRs or PTEN loss

    PubMed Central

    Cizmecioglu, Onur; Ni, Jing; Xie, Shaozhen; Zhao, Jean J; Roberts, Thomas M

    2016-01-01

    We aimed to understand how spatial compartmentalization in the plasma membrane might contribute to the functions of the ubiquitous class IA phosphoinositide 3-kinase (PI3K) isoforms, p110α and p110β. We found that p110β localizes to membrane rafts in a Rac1-dependent manner. This localization potentiates Akt activation by G-protein-coupled receptors (GPCRs). Thus genetic targeting of a Rac1 binding-deficient allele of p110β to rafts alleviated the requirement for p110β-Rac1 association for GPCR signaling, cell growth and migration. In contrast, p110α, which does not play a physiological role in GPCR signaling, is found to reside in nonraft regions of the plasma membrane. Raft targeting of p110α allowed its EGFR-mediated activation by GPCRs. Notably, p110β dependent, PTEN null tumor cells critically rely upon raft-associated PI3K activity. Collectively, our findings provide a mechanistic account of how membrane raft localization regulates differential activation of distinct PI3K isoforms and offer insight into why PTEN-deficient cancers depend on p110β. DOI: http://dx.doi.org/10.7554/eLife.17635.001 PMID:27700986

  19. Truncation of the membrane-spanning domain of human immunodeficiency virus type 1 envelope glycoprotein defines elements required for fusion, incorporation, and infectivity.

    PubMed

    Yue, Ling; Shang, Liang; Hunter, Eric

    2009-11-01

    The membrane-spanning domain (MSD) of the envelope (Env) glycoprotein from human (HIV) and simian immunodeficiency viruses plays a key role in anchoring the Env complex into the viral membrane but also contributes to its biological function in fusion and virus entry. In HIV type 1 (HIV-1), it has been predicted to span 27 amino acids, from lysine residue 681 to arginine 707, and encompasses an internal arginine at residue 694. By examining a series of C-terminal-truncation mutants of the HIV-1 gp41 glycoprotein that substituted termination codons for amino acids 682 to 708, we show that this entire region is required for efficient viral infection of target cells. Truncation to the arginine at residue 694 resulted in an Env complex that was secreted from the cells. In contrast, a region from residues 681 to 698, which contains highly conserved hydrophobic residues and glycine motifs and extends 4 amino acids beyond 694R, can effectively anchor the protein in the membrane, allow efficient transport to the plasma membrane, and mediate wild-type levels of cell-cell fusion. However, these fusogenic truncated Env mutants are inefficiently incorporated into budding virions. Based on the analysis of these mutants, a "snorkeling" model, in which the flanking charged amino acid residues at 681 and 694 are buried in the lipid while their side chains interact with polar head groups, is proposed for the HIV-1 MSD.

  20. A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes

    PubMed Central

    1996-01-01

    N-myristoylation is a cotranslational modification involved in protein- protein interactions as well as in anchoring polypeptides to phospholipid bilayers; however, its role in targeting proteins to specific subcellular compartments has not been clearly defined. The mammalian myristoylated flavoenzyme NADH-cytochrome b5 reductase is integrated into ER and mitochondrial outer membranes via an anchor containing a stretch of 14 uncharged amino acids downstream to the NH2- terminal myristoylate glycine. Since previous studies suggested that the anchoring function could be adequately carried out by the 14 uncharged residues, we investigated a possible role for myristic acid in reductase targeting. The wild type (wt) and a nonmyristoylatable reductase mutant (gly2-->ala) were stably expressed in MDCK cells, and their localization was investigated by immunofluorescence, immuno-EM, and cell fractionation. By all three techniques, the wt protein localized to ER and mitochondria, while the nonmyristoylated mutant was found only on ER membranes. Pulse-chase experiments indicated that this altered steady state distribution was due to the mutant's inability to target to mitochondria, and not to its enhanced instability in that location. Both wt and mutant reductase were resistant to Na2CO3 extraction and partitioned into the detergent phase after treatment of a membrane fraction with Triton X-114, demonstrating that myristic acid is not required for tight anchoring of reductase to membranes. Our results indicate that myristoylated reductase localizes to ER and mitochondria by different mechanisms, and reveal a novel role for myristic acid in protein targeting. PMID:8978818

  1. Adrenocorticotropic Hormone (ACTH) Responses Require Actions of the Melanocortin-2 Receptor Accessory Protein on the Extracellular Surface of the Plasma Membrane.

    PubMed

    Malik, Sundeep; Dolan, Terrance M; Maben, Zachary J; Hinkle, Patricia M

    2015-11-13

    The melanocortin-2 (MC2) receptor is a G protein-coupled receptor that mediates responses to ACTH. The MC2 receptor acts in concert with the MC2 receptor accessory protein (MRAP) that is absolutely required for ACTH binding and signaling. MRAP has a single transmembrane domain and forms a highly unusual antiparallel homodimer that is stably associated with MC2 receptors at the plasma membrane. Despite the physiological importance of the interaction between the MC2 receptor and MRAP, there is little understanding of how the accessory protein works. The dual topology of MRAP has made it impossible to determine whether highly conserved and necessary regions of MRAP are required on the intracellular or extracellular face of the plasma membrane. The strategy used here was to fix the orientation of two antiparallel MRAP molecules and then introduce inactivating mutations on one side of the membrane or the other. This was achieved by engineering proteins containing tandem copies of MRAP fused to the amino terminus of the MC2 receptor. The data firmly establish that only the extracellular amino terminus (Nout) copy of MRAP, oriented with critical segments on the extracellular side of the membrane, is essential. The transmembrane domain of MRAP is also required in only the Nout orientation. Finally, activity of MRAP-MRAP-MC2-receptor fusion proteins with inactivating mutations in either MRAP or the receptor was rescued by co-expression of free wild-type MRAP or free wild-type receptor. These results show that the basic MRAP-MRAP-receptor signaling unit forms higher order complexes and that these multimers signal.

  2. Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Takabatake, Akiko; Kawazoe, Nozomi; Izawa, Shingo

    2015-03-01

    Yro2 and its paralogous protein Mrh1 of Saccharomyces cerevisiae have seven predicted transmembrane domains and predominantly localize to the plasma membrane. Their physiological functions and regulation of gene expression have not yet been elucidated in detail. We herein demonstrated that MRH1 was constitutively expressed, whereas the expression of YRO2 was induced by acetic acid stress and entering the stationary phase. Fluorescence microscopic analysis revealed that Mrh1 and Yro2 were distributed as small foci in the plasma membrane under acetic acid stress conditions. The null mutants of these genes (mrh1∆, yro2∆, and mrh1∆yro2∆) showed delayed growth and a decrease in the productivity of ethanol in the presence of acetic acid, indicating that Yro2 and Mrh1 are involved in tolerance to acetic acid stress.

  3. The Mechanoenzymatic Core of Dynamin-related Protein 1 Comprises the Minimal Machinery Required for Membrane Constriction*

    PubMed Central

    Francy, Christopher A.; Alvarez, Frances J. D.; Zhou, Louie; Ramachandran, Rajesh; Mears, Jason A.

    2015-01-01

    Mitochondria are dynamic organelles that continually undergo cycles of fission and fusion. Dynamin-related protein 1 (Drp1), a large GTPase of the dynamin superfamily, is the main mediator of mitochondrial fission. Like prototypical dynamin, Drp1 is composed of a mechanochemical core consisting of the GTPase, middle, and GTPase effector domain regions. In place of the pleckstrin homology domain in dynamin, however, Drp1 contains an unstructured variable domain, whose function is not yet fully resolved. Here, using time-resolved EM and rigorous statistical analyses, we establish the ability of full-length Drp1 to constrict lipid bilayers through a GTP hydrolysis-dependent mechanism. We also show the variable domain limits premature Drp1 assembly in solution and promotes membrane curvature. Furthermore, the mechanochemical core of Drp1, absent of the variable domain, is sufficient to mediate GTP hydrolysis-dependent membrane constriction. PMID:25770210

  4. Inner nuclear membrane protein LEM-2 is required for correct nuclear separation and morphology in C. elegans.

    PubMed

    Morales-Martínez, Adela; Dobrzynska, Agnieszka; Askjaer, Peter

    2015-03-15

    The inner nuclear membrane proteins emerin and LEMD2 have both overlapping and separate functions in regulation of nuclear organization, gene expression and cell differentiation. We report here that emerin (EMR-1) and LEM domain protein 2 (LEM-2) are expressed in all tissues throughout Caenorhaditis elegans development but their relative distribution differs between cell types. The ratio of EMR-1 to LEM-2 is particularly high in contractile tissues, intermediate in neurons and hypodermis and lowest in intestine and germ line. We find that LEM-2 is recruited earlier than EMR-1 to reforming nuclear envelopes, suggesting the presence of separate mitotic membrane compartments and specific functions of each protein. Concordantly, we observe that nuclei of lem-2 mutant embryos, but not of emr-1 mutants, have reduced nuclear circularity. Finally, we uncover a so-far-unknown role of LEM-2 in nuclear separation and anchoring of microtubule organizing centers.

  5. Early events in the generation of autophagosomes are required for the formation of membrane structures involved in hepatitis C virus genome replication.

    PubMed

    Mohl, Bjorn-Patrick; Bartlett, Christopher; Mankouri, Jamel; Harris, Mark

    2016-03-01

    Hepatitis C virus (HCV) infection has been shown to induce autophagy but the mechanisms underpinning this process remain to be elucidated. Induction of autophagy requires the class III phosphatidylinositol 3-kinase, Vps34, which produces phosphatidylinositol 3-phosphate (PI3P) within the endoplasmic reticulum (ER) membrane. This recruits proteins with PI3P binding domains such as the double-FYVE-containing protein 1 (DFCP1). DFCP1 generates cup-shaped protrusions from the ER membrane, termed omegasomes, which provide a platform for the production of autophagosomes. Here we present data demonstrating that both Vps34 and DFCP1 are required for HCV genome replication, in the context of both a subgenomic replicon and virus infection, but did not affect virus entry or initial translation. Using live cell fluorescence microscopy we demonstrated that early during HCV infection the nascent viral genome replication complexes (identified by using non-structural protein NS5A as a marker) transiently colocalize with DFCP1-positive punctae (omegasomes), before the two structures move apart from each other. This observation is reminiscent of the transient association of LC3 and DFCP1 during omegasome formation, and therefore we propose that omegasomes are utilized by HCV to generate the double-membrane vesicles which are the hallmark of HCV replication complexes.

  6. CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

    PubMed Central

    Lei, Lei; Bashline, Logan; Li, Shundai

    2015-01-01

    Plants are constantly subjected to various biotic and abiotic stresses and have evolved complex strategies to cope with these stresses. For example, plant cells endocytose plasma membrane material under stress and subsequently recycle it back when the stress conditions are relieved. Cellulose biosynthesis is a tightly regulated process that is performed by plasma membrane-localized cellulose synthase (CESA) complexes (CSCs). However, the regulatory mechanism of cellulose biosynthesis under abiotic stress has not been well explored. In this study, we show that small CESA compartments (SmaCCs) or microtubule-associated cellulose synthase compartments (MASCs) are critical for fast recovery of CSCs to the plasma membrane after stress is relieved in Arabidopsis thaliana. This SmaCC/MASC-mediated fast recovery of CSCs is dependent on CELLULOSE SYNTHASE INTERACTIVE1 (CSI1), a protein previously known to represent the link between CSCs and cortical microtubules. Independently, AP2M, a core component in clathrin-mediated endocytosis, plays a role in the formation of SmaCCs/MASCs. Together, our study establishes a model in which CSI1-dependent SmaCCs/MASCs are formed through a process that involves endocytosis, which represents an important mechanism for plants to quickly regulate cellulose synthesis under abiotic stress. PMID:26443667

  7. Activation of integrin α5 mediated by flow requires its translocation to membrane lipid rafts in vascular endothelial cells.

    PubMed

    Sun, Xiaoli; Fu, Yi; Gu, Mingxia; Zhang, Lu; Li, Dan; Li, Hongliang; Chien, Shu; Shyy, John Y-J; Zhu, Yi

    2016-01-19

    Local flow patterns determine the uneven distribution of atherosclerotic lesions. Membrane lipid rafts and integrins are crucial for shear stress-regulated endothelial function. In this study, we investigate the role of lipid rafts and integrin α5 in regulating the inflammatory response in endothelial cells (ECs) under atheroprone versus atheroprotective flow. Lipid raft proteins were isolated from ECs exposed to oscillatory shear stress (OS) or pulsatile shear stress, and then analyzed by quantitative proteomics. Among 396 proteins redistributed in lipid rafts, integrin α5 was the most significantly elevated in lipid rafts under OS. In addition, OS increased the level of activated integrin α5 in lipid rafts through the regulation of membrane cholesterol and fluidity. Disruption of F-actin-based cytoskeleton and knockdown of caveolin-1 prevented the OS-induced integrin α5 translocation and activation. In vivo, integrin α5 activation and EC dysfunction were observed in the atheroprone areas of low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice, and knockdown of integrin α5 markedly attenuated EC dysfunction in partially ligated carotid arteries. Consistent with these findings, mice with haploinsufficency of integrin α5 exhibited a reduction of atherosclerotic lesions in the regions under atheroprone flow. The present study has revealed an integrin- and membrane lipid raft-dependent mechanotransduction mechanism by which atheroprone flow causes endothelial dysfunction.

  8. Prognostic value of PLA2R autoimmunity detected by measurement of anti-PLA2R antibodies combined with detection of PLA2R antigen in membranous nephropathy: A single-centre study over 14 years

    PubMed Central

    Mihout, Fabrice; Cachanado, Marine; Brocheriou, Isabelle

    2017-01-01

    Introduction Clinical course of membranous nephropathy (MN) is difficult to predict. Measurement of circulating anti-PLA2R autoantibodies (PLA2R-Ab) and detection in immune deposits of PLA2R antigen (PLA2R-Ag) are major advances in disease understanding. We evaluated the clinical significance of these biomarkers. Methods In this 14-year retrospective study, we collected data from 108 MN patients and assessed the relationship between clinical course, PLA2R-Ab and PLA2R-Ag. We also assessed THSD7A status. Results Eighty-five patients suffered from primary MN (PMN) and 23 patients from a secondary form. The median follow-up was 30.4 months [interquartile range, 17.7;56.7]. Among the 77 patients with PMN and available serum and/or biopsy, 69 (89.6%) had PLA2R-related disease as shown by anti-PLA2R-Ab and/or PLA2R-Ag, while 8 patients (8/77, 10.4%) were negative for both. There was no significant difference between these two groups in age at diagnosis and outcome assessed by proteinuria, serum albumin level and eGFR. Two of the 8 negative patients were positive for THSD7A. In patients with PLA2R related PMN, younger age, lower proteinuria, higher eGFR, and lower PLA2R-Ab level at baseline and after 6 months were associated with remission of proteinuria. Initial PLA2R-Ab titer ≤ 97.6 RU/mL and complete depletion of PLA2R-Ab within 6-months were significantly associated with spontaneous remission at the end of follow-up. In rituximab treated patients, lower PLA2R-Ab titer at initiation of treatment, and absence of PLA2R-Ab and higher serum albumin level at 3 months were significantly associated with remission. Noticeably, 81.8% of the patients who achieved remission completely cleared PLA2R-Ab. Depletion of PLA2R-Ab and increase of serum albumin level preceded the decrease of proteinuria. Conclusion Assessment of PLA2R autoimmunity is essential for patient management. Combination of PLA2R-Ab and PLA2R-Ag increases diagnosis sensitivity. PLA2R-Ab titer is a biomarker of

  9. Protective Effect of Human Leukocyte Antigen B27 in Hepatitis C Virus Infection Requires the Presence of a Genotype-Specific Immunodominant CD8+ T-Cell Epitope

    PubMed Central

    Kersting, Nadine; Fitzmaurice, Karen; Oniangue-Ndza, Cesar; Kemper, Michael N.; Humphreys, Isla; McKiernan, Susan; Kelleher, Dermot; Lohmann, Volker; Bowness, Paul; Huzly, Daniela; Rosen, Hugo R.; Kim, Arthur Y.; Lauer, Georg M.; Allen, Todd M.; Barnes, Eleanor; Roggendorf, Michael; Blum, Hubert E.; Thimme, Robert

    2015-01-01

    Human leukocyte antigen B27 (HLA-B27) is associated with protection in human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infection. This protective role is linked to single immunodominant HLA-B27-restricted CD8+ T-cell epitopes in both infections. In order to define the relative contribution of a specific HLA-B27-restricted epitope to the natural course of HCV infection, we compared the biological impact of the highly conserved HCV genotype 1 epitope, for which the protective role has been described, with the corresponding region in genotype 3 that differs in its sequence by three amino acid residues. The genotype 3a peptide was not recognized by CD8+ T cells specific for the genotype 1 peptide. Furthermore, patients with acute or chronic infection with HCV genotype 3a did not mount T-cell responses to this epitope region, and their autologous viral sequences showed no evidence of T-cell pressure. Finally, we found a significantly higher frequency of HLA-B27 positivity in patients with chronic HCV genotype 3a infection compared to genotype 1 infection, indicating that there is no protection by HLA-B27 in HCV genotype 3 infection. Conclusion Our data indicate that the protective effect of HLA-B27 is limited to HCV genotype 1 infection and does not expand to other genotypes such as genotype 3a. This can most likely be explained by intergenotype sequence diversity leading to the loss of the immunodominant HLA-B27 epitope in viral strains other than genotype 1. Our results underline the central role of a single HLA-B27-restricted epitope-specific CD8+ T-cell response in mediating protection in HCV genotype 1 infection. PMID:20034048

  10. IL-4 suppresses very late antigen-4 expression which is required for therapeutic Th1 T-cell trafficking into tumors.

    PubMed

    Sasaki, Kotaro; Pardee, Angela D; Qu, Yanyan; Zhao, Xi; Ueda, Ryo; Kohanbash, Gary; Bailey, Lisa M; Okada, Hideho; Muthuswamy, Ravikumar; Kalinski, Pawel; Basse, Per H; Falo, Louis D; Storkus, Walter J

    2009-10-01

    Murine CD4 T cells cultured under type 1 polarizing conditions selectively express significantly higher levels of the very late antigen (VLA)-4 and VLA-6 integrins when compared with T cells cultured under type 2 or nonpolarizing (type 0) conditions. This difference appears due to the action of interleukin (IL)-4, as loss of VLA-4/-6 expression on Th cells was prevented by inclusion of neutralizing anti-IL-4 mAb during the initial culture period. We also observed that CD4 T cells deficient in Stat6, a critical component of the IL-4R signaling cascade, retained high levels of VLA-4 and VLA-6 expression, regardless of IL-4 status in the culture conditions. When applied to committed Th1 cells, rIL-4 readily inhibited VLA-4 and VLA-6 expression to levels observed for Th2 cells, without altering the type 1 functional status of these cells. Conversely, low levels of VLA-4/VLA-6 expressed by committed Th2 cells could not be resurrected by culture in the presence of the Th1-kines IL-12p70 and interferon-gamma. Predictably, among the Th populations evaluated, Th1 cells alone adhered efficiently to, and were costimulated by, plate-bound VCAM-1 and laminin in a VLA-4-dependent or VLA-6-dependent manner, respectively. Finally, adoptive-transferred Th1 (but not Th2) cells developed from OT-II mice were uniquely competent to traffick into OVA M05 melanoma lesions in vivo, thereby enhancing the therapeutic benefits associated with cotransferred OVA-specific type 1 CD8 (OT-I) cells. These data suggest that treatment strategies capable of sustaining/enhancing VLA-4/VLA-6 expression on Th1 effector cells may yield improved clinical efficacy in the cancer setting.

  11. Toll-Like Receptor Ligand-Based Vaccine Adjuvants Require Intact MyD88 Signaling in Antigen-Presenting Cells for Germinal Center Formation and Antibody Production

    PubMed Central

    Mosaheb, Munir M.; Reiser, Michael L.; Wetzler, Lee M.

    2017-01-01

    Vaccines are critical in the fight against infectious diseases, and immune-stimulating adjuvants are essential for enhancing vaccine efficacy. However, the precise mechanisms of action of most adjuvants are unknown. There is an urgent need for customized and adjuvant formulated vaccines against immune evading pathogens that remain a risk today. Understanding the specific role of various cell types in adjuvant-induced protective immune responses is vital for an effective vaccine design. We have investigated the role of cell-specific MyD88 signaling in vaccine adjuvant activity in vivo, using Neisserial porin B (PorB), a TLR2 ligand-based adjuvant, compared with an endosomal TLR9 ligand (CpG) and toll-like receptor (TLR)-independent (alum, MF59) adjuvants. We found that intact MyD88 signaling is essential, separately, in all three antigen-presenting cell types [B cells, macrophages, and dendritic cells (DCs)] for optimal TLR ligand-based adjuvant activity. The role of MyD88 signaling in B cell and DC in vaccine adjuvant has been previously investigated. In this study, we now demonstrate that the immune response was also reduced in mice with macrophage-specific MyD88 deletion (Mac-MyD88−/−). We demonstrate that TLR-dependent adjuvants are potent inducers of germinal center (GC) responses, but GCs are nearly absent in Mac-MyD88−/− mice following immunization with TLR-dependent adjuvants PorB or CpG, but not with TLR-independent adjuvants MF59 or alum. Our findings reveal a unique and here-to-for unrecognized importance of intact MyD88 signaling in macrophages, to allow for a robust vaccine-induced immune responses when TLR ligand-based adjuvants are used. PMID:28316602

  12. The Mxi-Spa Type III Secretory Pathway of Shigella flexneri Requires an Outer Membrane Lipoprotein, MxiM, for Invasin Translocation

    PubMed Central

    Schuch, Raymond; Maurelli, Anthony T.

    1999-01-01

    Invasion of epithelial cells by Shigella flexneri is mediated by a set of translocated bacterial invasins, the Ipa proteins, and its dedicated type III secretion system, called Mxi-Spa. We show here that mxiM, part of the mxi-spa locus in the S. flexneri virulence plasmid, encodes an indispensable type III secretion apparatus component, required for both Ipa translocation and tissue culture cell invasion. We demonstrated that mature MxiM, first identified as a putative lipoprotein, is lipidated in vivo. Consistent with features of known lipoproteins, MxiM (i) can be labeled with [3H]palmitate and [2-3H]glycerol, (ii) is associated with the cell envelope, (iii) is secreted independently of the type III pathway, and (iv) requires an intact lipoprotein modification and processing site for full activity. The lipidated form of MxiM was detected primarily in the outer membrane, where it establishes a peripheral association with the inner leaflet. Through analysis of subcellular Ipa distribution in a mxiM null mutant background, MxiM was found to be required for the assembly and/or function of outer, but not inner, membrane regions of Mxi-Spa. This function probably requires interactions with other Mxi-Spa subunits within the periplasmic space. We discuss implications of these findings with respect to the function of MxiM and the structure of Mxi-Spa as a whole. PMID:10085046

  13. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    SciTech Connect

    Smith, Mary Ellen; Koser, Martin; Xiao Sa; Siler, Catherine; McGettigan, James P.; Calkins, Catherine; Pomerantz, Roger J.; Dietzschold, Bernhard; Schnell, Matthias J. . E-mail: matthias.schnell@jefferson.edu

    2006-09-30

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems.

  14. Vaccinia virus A6 is a two-domain protein requiring a cognate N-terminal domain for full viral membrane assembly activity.

    PubMed

    Meng, Xiangzhi; Rose, Lloyd; Han, Yue; Deng, Junpeng; Xiang, Yan

    2017-03-08

    Poxvirus virion biogenesis is a complex, multistep process, starting with the formation of crescent-shaped viral membranes, followed by their enclosure of viral core to form the spherical immature virions. Crescent formation requires a group of proteins that are highly conserved among poxviruses, including A6 and A11 of vaccinia virus (VACV). To gain a better understanding of the molecular function of A6, we established a HeLa cell line that inducibly expressed VACV-A6, which allowed us to construct VACV mutants with A6 deletion or mutation. As expected, A6 deletion VACV mutant failed to replicate in non-complementing cell lines with defects in crescent formation and A11 localization. Surprisingly, a VACV mutant that had A6 substituted with a close ortholog from Yaba-like disease virus, YLDV-97, also failed to replicate. This mutant, however, developed crescents and had normal A11 localization despite failing to form immature virions. A limited proteolysis of the recombinant A6 protein identified an N- and a C-domain of approximately 121 and 251 residues, respectively. Various chimeras of VACV-A6 and YLDV-97 were constructed, but only one that precisely combined the N-domain of VACV-A6 and the C-domain of YLDV-97 supported VACV replication, albeit at reduced efficiency. Our results show that VACV A6 has a two-domain architecture and functions in both crescent formation and its enclosure to form immature virions. While a cognate N-domain is not required for crescent formation, it is required for virion formation, suggesting that interactions of N-domain with cognate viral proteins may be critical for virion assembly.IMPORTANCE Poxviruses are unique among enveloped viruses in that they acquire their primary envelope not through budding from cellular membranes but by forming and extending crescent membranes. The crescents are highly unusual, open-ended membranes, and their origin and biogenesis have perplexed virologists for decades. A group of five viral proteins

  15. How does antigen retrieval work?

    PubMed

    Leong, Trishe Y-M; Leong, Anthony S-Y

    2007-03-01

    The introduction of antigen retrieval has enabled immunohistology to become an integral component of morphologic diagnosis, routinely employed in cancer diagnosis, and for the identification of therapeutic and prognostic markers. The mechanism of antigen retrieval, however, remains speculative with the key to our understanding embedded in the actions of formaldehyde on proteins. One commonly held concept is that heat primarily breaks down protein cross-linkages that occur with aldehyde fixation, thus "unmasking" protein epitopes of interest. Enzymatic pretreatment is also thought to have a similar action whereas such "breakages" are the result of extremely rapid molecular movement induced by microwaves and ultrasound. The formation of rigid cagelike calcium complexes during formaldehyde fixation is another suggested mechanism of antigen masking requiring chelating agents for reversal. A more recent suggestion for the antigen retrieval phenomenon has evoked the Mannich reaction, which occurs with the cross-linking of some proteins. Such cross-linkages can be hydrolyzed by heat or alkalis so that the process of antigen retrieval may be the simple removal of such cross-linked proteins that are sterically interfering with the binding of antibodies to linear protein epitopes in the tissue section. We are clearly not yet in possession of all the answers to the problem.

  16. Vipp1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes.

    PubMed

    Aseeva, Elena; Ossenbühl, Friederich; Sippel, Claudia; Cho, Won K; Stein, Bernhard; Eichacker, Lutz A; Meurer, Jörg; Wanner, Gerhard; Westhoff, Peter; Soll, Jürgen; Vothknecht, Ute C

    2007-02-01

    Vipp1 (vesicle inducing protein in plastids 1) is found in cyanobacteria and chloroplasts where it is essential for thylakoid formation. Arabidopsis thaliana mutant plants with a reduction of Vipp1 to about 20% of wild type content become albinotic at an early stage. We propose that this drastic phenotype results from an inability of the remaining Vipp1 protein to assemble into a homo-oligomeric complex, indicating that oligomerization is a prerequisite for Vipp1 function. A Vipp1-ProteinA fusion protein, expressed in the Deltavipp1 mutant background, is able to reinstate oligomerization and restore photoautotrophic growth. Plants containing Vipp1-ProteinA in amounts comparable to Vipp1 in the wild type exhibit a wild type phenotype. However, plants with a reduced amount of Vipp1-ProteinA protein are growth-retarded and significantly paler than the wild type. This phenotype is caused by a decrease in thylakoid membrane content and a concomitant reduction in photosynthetic activity. To the extent that thylakoid membranes are made in these plants they are properly assembled with protein-pigment complexes and are photosynthetically active. This strongly supports a function of Vipp1 in basic thylakoid membrane formation and not in the functional assembly of thylakoid protein complexes. Intriguingly, electron microscopic analysis shows that chloroplasts in the mutant plants are not equally affected by the Vipp1 shortage. Indeed, a wide range of different stages of thylakoid development ranging from wild-type-like chloroplasts to plastids nearly devoid of thylakoids can be observed in organelles of one and the same cell.

  17. Pentobarbital-Induced Myocardial Stunning in Status Epilepticus Requiring Extracorporeal Membrane Oxygenation: A Case Report and Literature Review

    PubMed Central

    Molaie, Donna; Nurok, Michael; Rosengart, Axel; Lahiri, Shouri

    2016-01-01

    Introduction. Mild hypotension is a well-recognized complication of intravenous pentobarbital; however fulminant cardiopulmonary failure has not been previously reported. Case Report. A 28-year-old woman developed pentobarbital-induced cardiopulmonary failure that was successfully treated with maximal medical management including arteriovenous extracorporeal membrane oxygenation. She made an excellent cardiopulmonary and neurological recovery. Discussion and Conclusion. Pentobarbital is underrecognized as a potential cause of myocardial stunning. The mechanism involves direct myocardial depression and inhibition of autonomic neuroanatomical structures including the medulla and hypothalamus. Early recognition and implementation of aggressive cardiopulmonary support are essential to optimize the likelihood of a favorable outcome. PMID:27529037

  18. Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens.

    PubMed

    Kuczkowska, Katarzyna; Kleiveland, Charlotte R; Minic, Rajna; Moen, Lars F; Øverland, Lise; Tjåland, Rannei; Carlsen, Harald; Lea, Tor; Mathiesen, Geir; Eijsink, Vincent G H

    2017-01-15

    Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery.

  19. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter.

    PubMed Central

    Ortiz, D F; Kreppel, L; Speiser, D M; Scheel, G; McDonald, G; Ow, D W

    1992-01-01

    In response to heavy metal stress, plants and certain fungi, such as the fission yeast Schizosaccharomyces pombe, synthesize small metal-binding peptides known as phytochelatins. We have identified a cadmium sensitive S. pombe mutant deficient in the accumulation of a sulfide-containing phytochelatin-cadmium complex, and have isolated the gene, designated hmt1, that complements this mutant. The deduced protein sequence of the hmt1 gene product shares sequence identity with the family of ABC (ATP-binding cassette)-type transport proteins which includes the mammalian P-glycoproteins and CFTR, suggesting that the encoded product is an integral membrane protein. Analysis of fractionated fission yeast cell components indicates that the HMT1 polypeptide is associated with the vacuolar membrane. Additionally, fission yeast strains harboring an hmt1-expressing multicopy plasmid exhibit enhanced metal tolerance along with a higher intracellular level of cadmium, implying a relationship between HMT1 mediated transport and compartmentalization of heavy metals. This suggests that tissue-specific overproduction of a functional hmt1 product in transgenic plants might be a means to alter the tissue localization of these elements, such as for sequestering heavy metals away from consumable parts of crop plants. Images PMID:1396551

  20. Rab11 is required for membrane trafficking and actomyosin ring constriction in meiotic cytokinesis of Drosophila males.

    PubMed

    Giansanti, Maria Grazia; Belloni, Giorgio; Gatti, Maurizio

    2007-12-01

    Rab11 is a small GTPase that regulates several aspects of vesicular trafficking. Here, we show that Rab11 accumulates at the cleavage furrow of Drosophila spermatocytes and that it is essential for cytokinesis. Mutant spermatocytes form regular actomyosin rings, but these rings fail to constrict to completion, leading to cytokinesis failures. rab11 spermatocytes also exhibit an abnormal accumulation of Golgi-derived vesicles at the telophase equator, suggesting a defect in membrane-vesicle fusion. These cytokinesis phenotypes are identical to those elicited by mutations in giotto (gio) and four wheel drive (fwd) that encode a phosphatidylinositol transfer protein and a phosphatidylinositol 4-kinase, respectively. Double mutant analysis and immunostaining for Gio and Rab11 indicated that gio, fwd, and rab11 function in the same cytokinetic pathway, with Gio and Fwd acting upstream of Rab11. We propose that Gio and Fwd mediate Rab11 recruitment at the cleavage furrow and that Rab11 facilitates targeted membrane delivery to the advancing furrow.

  1. Development of the Cellular Immune System of Drosophila Requires the Membrane Attack Complex/Perforin-Like Protein Torso-Like.

    PubMed

    Forbes-Beadle, Lauren; Crossman, Tova; Johnson, Travis K; Burke, Richard; Warr, Coral G; Whisstock, James C

    2016-10-01

    Pore-forming members of the membrane attack complex/perforin-like (MACPF) protein superfamily perform well-characterized roles as mammalian immune effectors. For example, complement component 9 and perforin function to directly form pores in the membrane of Gram-negative pathogens or virally infected/transformed cells, respectively. In contrast, the only known MACPF protein in Drosophila melanogaster, Torso-like, plays crucial roles during development in embryo patterning and larval growth. Here, we report that in addition to these functions, Torso-like plays an important role in Drosophila immunity. However, in contrast to a hypothesized effector function in, for example, elimination of Gram-negative pathogens, we find that torso-like null mutants instead show increased susceptibility to certain Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis We further show that this deficit is due to a severely reduced number of circulating immune cells and, as a consequence, an impaired ability to phagocytose bacterial particles. Together these data suggest that Torso-like plays an important role in controlling the development of the Drosophila cellular immune system.

  2. Vacuole Membrane Protein 1 Is an Endoplasmic Reticulum Protein Required for Organelle Biogenesis, Protein Secretion, and Development

    PubMed Central

    Calvo-Garrido, Javier; Carilla-Latorre, Sergio; Lázaro-Diéguez, Francisco; Egea, Gustavo

    2008-01-01

    Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1− Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1− cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised. PMID:18550798

  3. Monogalactosyldiacylglycerol synthesis in the outer envelope membrane of chloroplasts is required for enhanced growth under sucrose supplementation

    PubMed Central

    Murakawa, Masato; Shimojima, Mie; Shimomura, Yuichi; Kobayashi, Koichi; Awai, Koichiro; Ohta, Hiroyuki

    2014-01-01

    Plant galactolipid synthesis on the outer envelope membranes of chloroplasts is an important biosynthetic pathway for sustained growth under conditions of phosphate (Pi) depletion. During Pi starvation, the amount of digalactosyldiacylglycerol (DGDG) is increased to substitute for the phospholipids that are degraded for supplying Pi. An increase in DGDG concentration depends on an adequate supply of monogalactosyldiacylglycerol (MGDG), which is a substrate for DGDG synthesis and is synthesized by a type-B MGDG synthase, MGD3. Recently, sucrose was suggested to be a global regulator of plant responses to Pi starvation. Thus, we analyzed expression levels of several genes involved in lipid remodeling during Pi starvation in Arabidopsis thaliana and found that the abundance of MGD3 mRNA increased when sucrose was exogenously supplied to the growth medium. Sucrose supplementation retarded the growth of the Arabidopsis MGD3 knockout mutant mgd3 but enhanced the growth of transgenic Arabidopsis plants overexpressing MGD3 compared with wild type, indicating the involvement of MGD3 in plant growth under sucrose-replete conditions. Although most features such as chlorophyll content, photosynthetic activity, and Pi content were comparable between wild-type and the transgenic plants overexpressing MGD3, sucrose content in shoot tissues decreased and incorporation of exogenously supplied carbon to DGDG was enhanced in the MGD3-overexpressing plants compared with wild type. Our results suggest that MGD3 plays an important role in supplying DGDG as a component of extraplastidial membranes to support enhanced plant growth under conditions of carbon excess. PMID:25002864

  4. Cardiac failure in very long chain acyl-CoA dehydrogenase deficiency requiring extracorporeal membrane oxygenation (ECMO) treatment: A case report and review of the literature.

    PubMed

    Katz, Sharon; Landau, Yuval; Pode-Shakked, Ben; Pessach, Itai M; Rubinshtein, Marina; Anikster, Yair; Salem, Yishay; Paret, Gideon

    2017-03-01

    Fatty acid oxidation (FAO) defects often present with multi-system involvement, including several life-threatening cardiac manifestations, such as cardiomyopathy, pericardial effusion and arrhythmias. We report herein a fatal case of cardiac dysfunction and rapid-onset tamponade following an acute illness in a neonate with molecularly proven very long chain acyl-CoA dehydrogenase (VLCAD) deficiency (harboring the known del799_802 mutation), requiring 15 days of extracorporeal membrane oxygenation (ECMO) treatment. As data regarding the use of ECMO in FAO defects in general, and VLCAD in particular, are scarce, we review the literature and discuss insights from in vitro models and several successful reported cases.

  5. N-linked glycosylation is required for plasma membrane localization of D5, but not D1, dopamine receptors in transfected mammalian cells.

    PubMed

    Karpa, K D; Lidow, M S; Pickering, M T; Levenson, R; Bergson, C

    1999-11-01

    We have analyzed the role of N-linked glycosylation in functional cell surface expression of the D1 and D5 dopamine receptor subtypes. Treatment of transfected HEK 293 cells with tunicamycin, an inhibitor of N-linked oligosaccharide addition, was found to prevent localization of D5 receptors in the plasma membrane. In contrast, tunicamycin treatment had no effect on the plasma membrane localization of the D1 receptor. Polymerase chain reaction mutagenesis was used to generate a panel of D5 receptors containing mutations in the three predicted sites of N-linked glycosylation. Expression of mutant receptors indicated that glycosylation of residue N7 was the major determinant of D5 receptor plasma membrane localization. Mutation of a comparable site in the D1 receptor at position N5 had no effect on the delivery of the D1 receptor to the cell surface. Tunicamycin treatment during receptor biosynthesis, but not N-glycosidase F digestion of mature receptors, abrogated binding of the D5 receptor antagonist [(3)H]SCH23390, suggesting that while oligosaccharide moieties play a key role in the cell surface expression of D5 receptors, they do not appear to contribute to the receptor's ligand binding properties. Together, our data indicate a differential requirement for N-linked glycosylation in functional cell surface expression of D1 and D5 dopamine receptors.

  6. Targeting of a Nicotiana plumbaginifolia H+-ATPase to the Plasma Membrane Is Not by Default and Requires Cytosolic Structural Determinants

    PubMed Central

    Lefebvre, Benoit; Batoko, Henri; Duby, Geoffrey; Boutry, Marc

    2004-01-01

    The structural determinants involved in the targeting of multitransmembrane-span proteins to the plasma membrane (PM) remain poorly understood. The plasma membrane H+-ATPase (PMA) from Nicotiana plumbaginifolia, a well-characterized 10 transmembrane–span enzyme, was used as a model to identify structural elements essential for targeting to the PM. When PMA2 and PMA4, representatives of the two main PMA subfamilies, were fused to green fluorescent protein (GFP), the chimeras were shown to be still functional and to be correctly and rapidly targeted to the PM in transgenic tobacco. By contrast, chimeric proteins containing various combinations of PMA transmembrane spanning domains accumulated in the Golgi apparatus and not in the PM and displayed slow traffic properties through the secretory pathway. Individual deletion of three of the four cytosolic domains did not prevent PM targeting, but deletion of the large loop or of its nucleotide binding domain resulted in GFP fluorescence accumulating exclusively in the endoplasmic reticulum. The results show that, at least for this polytopic protein, the PM is not the default pathway and that, in contrast with single-pass membrane proteins, cytosolic structural determinants are required for correct targeting. PMID:15208389

  7. Mitochondrial-bacterial hybrids of BamA/Tob55 suggest variable requirements for the membrane integration of β-barrel proteins

    PubMed Central

    Pfitzner, Anna-Katharina; Steblau, Nadja; Ulrich, Thomas; Oberhettinger, Philipp; Autenrieth, Ingo B.; Schütz, Monika; Rapaport, Doron

    2016-01-01

    β-Barrel proteins are found in the outer membrane (OM) of Gram-negative bacteria, chloroplasts and mitochondria. The assembly of these proteins into the corresponding OM is facilitated by a dedicated protein complex that contains a central conserved β-barrel protein termed BamA in bacteria and Tob55/Sam50 in mitochondria. BamA and Tob55 consist of a membrane-integral C-terminal domain that forms a β-barrel pore and a soluble N-terminal portion comprised of one (in Tob55) or five (in BamA) polypeptide transport-associated (POTRA) domains. Currently the functional significance of this difference and whether the homology between BamA and Tob55 can allow them to replace each other are unclear. To address these issues we constructed hybrid Tob55/BamA proteins with differently configured N-terminal POTRA domains. We observed that constructs harboring a heterologous C-terminal domain could not functionally replace the bacterial BamA or the mitochondrial Tob55 demonstrating species-specific requirements. Interestingly, the various hybrid proteins in combination with the bacterial chaperones Skp or SurA supported to a variable extent the assembly of bacterial β-barrel proteins into the mitochondrial OM. Collectively, our findings suggest that the membrane assembly of various β-barrel proteins depends to a different extent on POTRA domains and periplasmic chaperones. PMID:27982054

  8. Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast.

    PubMed

    Dimmer, Kai Stefan; Jakobs, Stefan; Vogel, Frank; Altmann, Katrin; Westermann, Benedikt

    2005-01-03

    The MDM31 and MDM32 genes are required for normal distribution and morphology of mitochondria in the yeast Saccharomyces cerevisiae. They encode two related proteins located in distinct protein complexes in the mitochondrial inner membrane. Cells lacking Mdm31 and Mdm32 harbor giant spherical mitochondria with highly aberrant internal structure. Mitochondrial DNA (mtDNA) is instable in the mutants, mtDNA nucleoids are disorganized, and their association with Mmm1-containing complexes in the outer membrane is abolished. Mutant mitochondria are largely immotile, resulting in a mitochondrial inheritance defect. Deletion of either one of the MDM31 and MDM32 genes is synthetically lethal with deletion of either one of the MMM1, MMM2, MDM10, and MDM12 genes, which encode outer membrane proteins involved in mitochondrial morphogenesis and mtDNA inheritance. We propose that Mdm31 and Mdm32 cooperate with Mmm1, Mmm2, Mdm10, and Mdm12 in maintenance of mitochondrial morphology and mtDNA.

  9. Diverse Endogenous Antigens for Mouse Natural Killer T Cells: Self-Antigens That Are Not Glycosphingolipids

    PubMed Central

    Pei, Bo; Speak, Anneliese O; Shepherd, Dawn; Butters, Terry; Cerundolo, Vincenzo; Platt, Frances M; Kronenberg, Mitchell

    2011-01-01

    Natural killer T cells with an invariant antigen receptor (iNKT cells) represent a highly conserved and unique subset of T lymphocytes having properties of innate and adaptive immune cells. They have been reported to regulate a variety of immune responses, including the response to cancers and the development of autoimmunity. The development and activation of iNKT cells is dependent on self-antigens presented by the CD1d antigen-presenting molecule. It is widely believed that these self-antigens are glycosphingolipids (GSLs), molecules that contain ceramide as the lipid backbone. Here we used a variety of methods to show that mammalian antigens for mouse iNKT cells need not be GSLs, including the use of cell lines deficient in GSL biosynthesis and an inhibitor of GSL biosynthesis. Presentation of these antigens required the expression of CD1d molecules that could traffic to late endosomes, the site where self-antigen is acquired. Extracts of antigen-presenting cells (APCs) contain a self-antigen that could stimulate iNKT cells when added to plates coated with soluble, recombinant CD1d molecules. The antigen(s) in these extracts are resistant to sphingolipid-specific hydrolase digestion, consistent with the results using live APCs. Lyosphosphatidylcholine, a potential self-antigen that activated human iNKT cell lines, did not activate mouse iNKT cell hybridomas. Our data indicate that there may be more than one type of self-antigen for iNKT cells, that the self-antigens comparing mouse and human may not be conserved, and that the search to identify these molecules should not be confined to GSLs. PMID:21191069

  10. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex

    PubMed Central

    1992-01-01

    The ERD2 gene, which encodes the yeast HDEL (His-Asp-Glu-Leu) receptor, is essential for growth (Semenza, J. C., K. G. Hardwick, N. Dean, and H. R. B. Pelham. 1990. Cell. 61:1349-1357; Lewis, M. J., D. J. Sweet, and H. R. B. Pelham. 1990. Cell. 61:1359-1363). SED5, when present in multiple copies, enables cells to grow in the absence of Erd2p. Sequence analysis of SED5 reveals no significant homology with ERD2 or other known genes. We have raised antibodies to Sed5p which specifically recognize a 39-kD integral membrane protein. A stretch of hydrophobic residues at the COOH terminus is predicted to hold Sed5p on the cytoplasmic face of intracellular membranes. Cells that are depleted of Sed5p are unable to transport carboxypeptidase Y to the Golgi complex, and stop growing after a dramatic accumulation of ER membranes and vesicles. We conclude that the SED5 gene is essential for growth and that Sed5p is required for ER to Golgi transport. When Sed5p is overexpressed the efficiency of ER to Golgi transport is reduced, vesicles accumulate, and cellular morphology is perturbed. Immunofluorescence studies reveal that the bulk of Sed5p is not found on ER membranes but on punctate structures throughout the cytoplasm, the number of which increases upon SED5 overexpression. We suggest that Sed5p has an essential role in vesicular transport between ER and Golgi compartments and that it may itself cycle between these organelles. PMID:1400588

  11. Members of the Conserved DedA Family Are Likely Membrane Transporters and Are Required for Drug Resistance in Escherichia coli

    PubMed Central

    Kumar, Sujeet

    2014-01-01

    Bacterial resistance to antibiotics and biocides is an increasing public health problem. Genes encoding integral membrane proteins belonging to the DedA family are present in most bacterial genomes, including Escherichia coli. An E. coli strain lacking partially redundant DedA family genes yqjA and yghB (strain BC202) displays temperature sensitivity and cell division defects. These phenotypes can be corrected by overexpression of mdfA, an Na+-K+/H+ antiporter of the major facilitator superfamily. We show that BC202 is hypersensitive to several biocides and cationic compounds that are known substrates of several multidrug resistance transporters, including MdfA, EmrE, and AcrB. The introduction of deletions of genes encoding these drug transporters into BC202 results in additional sensitivity. Expression of wild-type yghB or yqjA can restore drug resistance, but this is eliminated upon mutation of two membrane-embedded acidic amino acids (E39 or D51 in either protein). This dependence upon membrane-embedded acidic amino acids is a hallmark of proton-dependent antiporters. Overexpression of mdfA in BC202 or artificially restoring proton motive force (PMF) restores wild-type resistance to substrates of MdfA as well as other drug resistance transporters such as EmrE and AcrAB. These results suggest that YqjA and YghB may be membrane transporters required for PMF-dependent drug efflux in E. coli. PMID:24277026

  12. Neural antigen-specific autoimmune disorders.

    PubMed

    Iorio, Raffaele; Lennon, Vanda A

    2012-07-01

    Neural-specific autoantibodies have been documented and their diagnostic utility validated in diseases affecting the neuraxis from cerebral cortex to the somatic, autonomic, and enteric nervous system and skeletal muscle. These neurological disorders occur both idiopathically and in a paraneoplastic context. Molecular identification of the antigens has expedited development of confirmatory and high-throughput tests for serum and cerebrospinal fluid, which permit early diagnosis and reveal the underlying molecular pathogenic mechanisms. The autoantibodies are classifiable on the basis of antigen location: intracellular (nuclear or cytoplasmic) or plasma membrane. Immunohistopathological studies of patients' biopsied and autopsied tissues suggest that effector T cells mediate the autoimmune neurological disorders for which defining autoantibodies recognize intracellular antigens. Antigens within intact cells are inaccessible to circulating antibody, and the associated neurological deficits rarely improve with antibody-depleting therapies. Tumoricidal therapies may arrest neurological progression, but symptom reversal is rare. In contrast, autoantibodies specific for plasma membrane antigens have pathogenic potential, and the associated neurological deficits are often amenable to antibody-depleting immunotherapy, such as plasma exchange and anti-B-cell monoclonal antibody therapy. These reversible neurological disorders are frequently misdiagnosed as neurodegenerative. The focus of this review is the immunobiology, pathophysiology, and clinical spectrum of autoimmune neurological disorders accompanied by neural-specific IgGs.

  13. Cloning and expression of genes encoding Haemophilus somnus antigens.

    PubMed Central

    Corbeil, L B; Chikami, G; Yarnall, M; Smith, J; Guiney, D G

    1988-01-01

    A genomic library of Haemophilus somnus 2336, a virulent isolate from a calf with pneumonia (later used to reproduce H. somnus experimental pneumonia), was constructed in the cosmid vector pHC79. The gene bank in Escherichia coli DH1 was screened by filter immunoassay with convalescent-phase serum, which reacted with several outer membrane antigens of H. somnus. On Western blotting (immunoblotting) of immunoreactive colonies, five clones were found to express proteins which comigrated with H. somnus surface antigens. Three clones (DH1 pHS1, pHS3, and pHS4) expressed both a 120-kilodalton (kDa) antigen and a 76-kDa antigen, one clone (DH1 pHS2) expressed only the 76-kDa antigen, and the fifth clone (DH1 pHS5) expressed a 60-kDa antigen. The 120-kDa and 76-kDa antigens were found internally, whereas the 60-kDa protein was detected in the DH1 pHS5 culture supernatant as membrane blebs or insoluble protein. Both the H. somnus 120-kDa antigen and the recombinant 120-kDa antigen had immunoglobulin Fc-binding activity. Restriction endonuclease mapping demonstrated that the genomic DNA inserts of clones expressing the 76-kDa antigen shared a common 28.4-kilobase-pair region, and the three clones also expressing the 120-kDa antigen shared an additional 7.0-kilobase-pair region. The restriction endonuclease map of pHS5, which expressed the 60-kDa antigen, was not similar to the maps of the other four plasmids. Since these three H. somnus antigens reacted with protective convalescent-phase serum, the recombinants which express these proteins should be useful in further studies of protective immunity in bovine H. somnus disease. Images PMID:2843469

  14. Myristoylation-facilitated binding of the G protein ARF1GDP to membrane phospholipids is required for its activation by a soluble nucleotide exchange factor.

    PubMed

    Franco, M; Chardin, P; Chabre, M; Paris, S

    1996-01-19

    We have investigated the role of N-myristoylation in the activation of bovine ADP-ribosylation factor 1 (ARF1). We previously showed that myristoylation allows some spontaneous GDP-to-GTP exchange to occur on ARF1 at physiological Mg2+ levels in the presence of phospholipid vesicles (Franco, M., Chardin, P., Chabre, M., and Paris, S. (1995) J. Biol. Chem. 270, 1337-1341). Here, we report that this basal nucleotide exchange can be accelerated (by up to 5-fold) by addition of a soluble fraction obtained from bovine retinas. This acceleration is totally abolished by brefeldin A (IC50 = 2 microM) and by trypsin treatment of the retinal extract, as expected for an ARF-specific guanine nucleotide exchange factor. To accelerate GDP release from ARF1, this soluble exchange factor absolutely requires myristoylation of ARF1 and the presence of phospholipid vesicles. The retinal extract also stimulates guanosine 5'-3-O-(thio)-triphosphate (GTP gamma S) release from ARF1 in the presence of phospholipids, but in this case myristoylation of ARF is not required. These observations, together with our previous findings that both myristoylated and non-myristoylated forms of ARF GTP-gamma S but only the myristoylated form of ARFGDP bind to membrane phospholipids, suggest that (i) the retinal exchange factor acts only on membrane-bound ARF, (ii) the myristate is not involved in the protein-protein interaction between ARF1 and the exchange factor, and (iii) N-myristoylation facilitates both spontaneous and catalyzed GDP-to-GTP exchange on ARF1 simply by facilitating the binding of ARFGDP to membrane phospholipids.

  15. Beta-glucuronidase is not required for transfer of [3H]-estrone-[14C]glucuronide across guinea pig fetal membranes.

    PubMed

    Goldhawk, D E; Hobkirk, R

    1998-07-01

    To understand the means whereby a charged, estrogen conjugate may be transferred across guinea pig amnion and chorion, the permeability to [3H]estrone-[14C]glucuronide was examined at 45 days and near term. No evidence of deconjugation was obtained in either early or late amnion, despite significantly greater transfer near term. Early amnion was virtually impermeable, regardless of ATP depletion. In contrast, early chorion transferred estrone-glucuronide without any requirement for deconjugation or ATP. No effect of tissue orientation was observed in amnion; whereas, incubations from maternal to fetal side of late chorion exhibited beta-glucuronidase activity. Inhibition of the latter demonstrated that hydrolysis was concomitant with but not required for transport. [3H]Estrone produced by deconjugation was enzymatically reduced after pubic symphysis relaxation, although beta-glucuronidase activity began prior to this stage. Transport across late fetal membranes was not saturable and chorion incubations from maternal to fetal side demonstrated a lower transport capacity. In either tissue orientation, late chorion displayed a lower rate of transfer than amnion. These results indicate that fetal membranes possess distinct abilities for transferring intact estrone-glucuronide, depending on stage of development and tissue orientation. The passive nature of transport and its dependence on structural characteristics is consistent with possible regulation of tight junctions.

  16. A Cysteine-Rich Protein Kinase Associates with a Membrane Immune Complex and the Cysteine Residues Are Required for Cell Death.

    PubMed

    Yadeta, Koste A; Elmore, James M; Creer, Athena Y; Feng, Baomin; Franco, Jessica Y; Rufian, Jose Sebastian; He, Ping; Phinney, Brett; Coaker, Gitta

    2017-01-01

    Membrane-localized proteins perceive and respond to biotic and abiotic stresses. We performed quantitative proteomics on plasma membrane-enriched samples from Arabidopsis (Arabidopsis thaliana) treated with bacterial flagellin. We identified multiple receptor-like protein kinases changing in abundance, including cysteine (Cys)-rich receptor-like kinases (CRKs) that are up-regulated upon the perception of flagellin. CRKs possess extracellular Cys-rich domains and constitute a gene family consisting of 46 members in Arabidopsis. The single transfer DNA insertion lines CRK28 and CRK29, two CRKs induced in response to flagellin perception, did not exhibit robust alterations in immune responses. In contrast, silencing of multiple bacterial flagellin-induced CRKs resulted in enhanced susceptibility to pathogenic Pseudomonas syringae, indicating functional redundancy in this large gene family. Enhanced expression of CRK28 in Arabidopsis increased disease resistance to P. syringae Expression of CRK28 in Nicotiana benthamiana induced cell death, which required intact extracellular Cys residues and a conserved kinase active site. CRK28-mediated cell death required the common receptor-like protein kinase coreceptor BAK1. CRK28 associated with BAK1 as well as the activated FLAGELLIN-SENSING2 (FLS2) immune receptor complex. CRK28 self-associated as well as associated with the closely related CRK29. These data support a model where Arabidopsis CRKs are synthesized upon pathogen perception, associate with the FLS2 complex, and coordinately act to enhance plant immune responses.